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1. Introduction

Image rendering algorithms nowadays can be divided into two groups. First group
consists of real-time rendering techniques that strive to render the image in time
frames of fractions of a second, which is enabled by the use of a variety of tricks
and simplifications. The second group of algorithms, on the other hand, tries
to simulate the transport of light between objects in the scene as realistically as
possible.

A prominent example of algorithms from the second group are path tracing
algorithms that construct various possible paths of the light’s particles from light
emitters to the image sensor. When the scene or a part of it are submerged in
a medium that interacts with the light’s particles, the light path vertices can be
located in the medium as well as on an object’s surface.

The construction of the light paths requires a lot of visibility queries between
two points in space and the execution of these queries takes a large portion of the
rendering time, especially for scenes with complex and detailed geometry, which
is often the case when trying to render as realistic images as possible. The goal of
this thesis is to lower the rendering times by accelerating these visibility queries.

The fundamental idea behind this thesis is the fact that in order to accelerate
a visibility query from point A to point B, we don’t have to know the exact shape
of the scene’s geometry. A knowledge of the closest point on the scene’s geometry
for both points will be sufficient. If the distance between A and B is smaller than
the closest point on the geometry for either of the points, we know that the
segment between these two points is not occluded by any part of the geometry.

The data structures that contain this closest point information are called
distance functions or distance fields. I studied several methods for implementing
the distance fields, both undirected and directed (where the distance to the closest
point varies with the direction of the query) and considered their applicability
to my problem in the light of two main criteria. First, I needed the methods to
be conservative so that no ray intersection would be skipped by the acceleration.
Second, I needed the acceleration to be as fast as possible, to be able to compete
with a well-written and optimized k -d tree structure that is traditionally used to
test visibility and find ray intersections.

After initial research of several distance field methods, I chose some of these
methods and implemented them in an existing renderer in order to test their
usability for visibility query acceleration.

1.1 Structure of the Text

The rest of this text is organized as follows.
The first chapter, which you are currently reading, is an introduction to the

thesis.
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Follows the second chapter, which contains the necessary theoretical back-
ground to the thesis, describing the light transport equations and renderers that
use them to estimate the incoming light intensity. This chapter also defines a
visibility query and discusses, which parts of the described renderers contain vis-
ibility queries and which of these queries can be accelerated. A discussion on the
acceleration potential of general visibility query acceleration algorithms concludes
the chapter.

The third chapter defines and describes distance fields and distance functions
and the notions related to them. The details of non-directional distance field
methods†, like metrics and initialization, are also described here.

The fourth chapter builds upon the third chapter by analyzing three direc-
tional distance field methods that could be used for visibility query acceleration.
My own method is then introduced that improves the acceleration by caching the
result of the distance field visibility queries for the most frequently queried vox-
els. An extension to the method is then proposed that could accelerate a higher
percentage of visibility queries than it does by caching distance field visibility
queries. A possible method for accelerating visibility queries to point lights using
this method is then outlined.

The implementation details are discussed in the fifth chapter. In that chap-
ter, I also write about the technology that was used to test the distance field
acceleration methods, talk about the debugging features that I created for the
implementation and then provide some details regarding the compilation and
running of the Mitsuba renderer with my changes.

The sixth chapter then describes the testing conditions and contains tables
with the results from testing of the implemented distance field methods. These
results are then discussed and interpreted.

The final chapter then concludes the text with a summary of the whole thesis
and a proposal of possible areas of further research.

†although many of them are used in the directional methods in the same manner.



2. Theoretical Background

Generating images from scenes created with the help of computers is a complex
task that was originally solved only by empirical shading or ray tracing algo-
rithms. Although these algorithms might have been perceived as diverse in the
techniques they employed, all of them strived to simulate the same physical phe-
nomenon – perception or detection of light particles that arrive to the observer’s
eye or camera after being emitted by a light source and possibly after several
interactions with the scene’s geometry and/or participating media.

The theoretical construct that united all these algorithms was James T. Ka-
jiya’s rendering equation [10], which is an integral equation that mathematically
describes the light transport equilibrium in a scene. Apart from the rendering
equation, Kajiya also developed a Monte Carlo technique for estimating the inten-
sity of light traveling through a certain point in space in a certain direction†. This
method was named path tracing and for its simplicity and properties‡ continues
to be used in many rendering frameworks.

2.1 Volumetric Rendering Equation

The rendering equation was later generalized to account for interaction of light
with participating media. This generalization was described for example by James
Arvo in [2]. Aside from taking into consideration the light bouncing off of scene’s
surfaces, the generalization mathematically describes absorption and scattering
of photons on particles of the participating medium as well as light emission from
the medium’s particles.

Let us look at the quantities used in the (slightly re-written) equation:

L(x, ~ω) = Tr(x′ ↔ x)Lsurf (x′, ~ω) +

∫ |x−x′|
0

Tr(x↔ (x− ~ωl))Lin(x− ~ωl, ~ω)dl

(2.1)
In the above equation:

x′ is the first surface that is visible from x in the direction −~ω.
L(x, ~ω) is the radiance passing through point x in the direction ~ω.

Tr(x′ ↔ x) is the so-called transmittance function, whose values range in
[0, 1] and which accounts for diminishing of the light’s intensity
due to out-scattering and attenuation in the medium.

Lsurf (x, ~ω) is radiance coming from a surface at x in the direction ~ω.
Lin(x, ~ω) is radiance that gets scattered via interaction with the medium

to direction ~ω at x from all directions.
†This physical quantity is called luminosity, or radiosity, depending on whether the reaction

of human visual system to the radiation is taken into account or not.
‡For example, it is an unbiased and consistent estimator of the radiance passing through a

given point in space in a given direction.
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Equation 2.1 is an integral equation, because both Lsurf and Lin contain L:

Lsurf (x, ~ω) = Le(x, ~ω) + Lr(x, ~ω) (2.2)

Lin(x, ~ω) = σs(x) ·
∫
~ωi∈S

px(~ω, ~ωi) · L(x,−~ωi) · dωi (2.3)

Lr(x, ~ω) =

∫
~ωi∈H

fx(loc(~ω, x), ~ωi) · L(x,−~ωi) · (~ωi · ~n(x)) · d~ωi (2.4)

In the previous equations:

Le(x, ~ω) is the light emitted by the surface at point x in direction ~ω.
Lr(x, ~ω) is the light reflected by the surface from other directions into

direction ~ω at point x.
σs(x) is the scattering coefficient of the medium in point x. This

coefficient tells us the proportion of light that gets scattered
per unit of length.

S is a sphere that contains all unit vectors.
px(~ωo, ~ωi) is the scattering phase function†in point x.

H is a positive hemisphere (i.e. it contains all unit vectors that
would be above a surface in that surface’s local tangent coor-
dinate system).

fx(~ωo, ~ωi) is the bi-directional reflection distribution function‡in point x.
loc(~ω, x) is an operator that converts the vector ~ω into the local tangent

coordinate system in point x (see Figure 2.1).
~n(x) is the normal vector to the surface in point x.

~ωi · ~n(x) is actually the cosine of the elevation angle of loc(~ωi, x). This
factor accounts for the reduction in radiance due to Lambert’s
cosine law.

Figure 2.1 – Local tangent coordinate system in point x on the scene’s geometry.

As can be seen from the Equation 2.1, in order to render physically correct
images, one just has to evaluate the integral in the equation for a ray (or several

‡This function gives us the probability density of the event that photon bouncing of the
surface at x from the direction ~ωi will be reflected in the direction ~ωo. More on this function
can be found in Matt Pharr’s and Greg Humphreys’ book on physically-based rendering [12,
pg. 583]
‡This function returns the probability density of the event that a photon traveling from

the direction ~ωi and interacting with the medium in x will be scattered into the direction ~ωo.
Again, the function is described more in-depth in [12, Pharr, Humphreys, pg. 294].
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rays) that is cast through every pixel in the image plane of the camera. Unfor-
tunately, the evaluation is complicated by the fact that the function L appears
in an integral on the right-hand side of the equation. This makes the Equation
2.1 an integral equation, which is generally not analytically solvable. However,
numerical methods such as Monte Carlo integration exist to estimate the value
of L. What every physically grounded renderer then tries to achieve is essentially
to calculate such an estimate.

Single and Multiple Scattering

In media with high scattering coefficient σs(x), the probability of light interacting
with the medium and scattering away from the original ray direction gets higher.
Often, the light particles bounce in the medium multiple times before arriving to
the observer. This effect, known as multiple scattering, is very difficult and ex-
pensive in terms of computation time and many renderers choose not to simulate
it.

Single scattering, on the other hand, is the situation, when the light changes
its path in the medium only once. Often, when only single scattering is computed,
the light that is allowed to scatter is limited to the emitted light, which is much
more simple to evaluate. In that case, the in-scattered radiance is calculated by
L∗(x, ~ω), which is a simplification of the Equation 2.1 that takes into consideration
only the emitted radiance and ignores the in-scattered light:

L∗(x, ~ω) = Tr(x′ ↔ x)Le(x, ~ω)

Substituting L∗(x, ~ω) into the Equation 2.3 yields L∗in for computation of
single-scattered radiance:

L∗in(x, ~ω) = σs(x) ·
∫
~ωi∈S

px(~ω, ~ωi) · Tr(x′ ↔ x)Le(x,−~ωi) · dωi

2.2 Light Emitters

For the needs of the subsequent discussion, we will need to describe the various
light emitters that can appear in the scene. This is neither a complete list of
all emitter types that can be simulated on a computer, nor a complete list of all
emitter types implemented in Mitsuba. The purpose of this section is to get the
reader acquainted with all the light emitter types that are relevant to my work.

Point Lights

As the name suggests, a point light is a light emitter, which emits radiance from
a single point in space evenly into all directions. The emitter is not associated
with any geometry, so any ray casts will miss it. In order to sample light from
this light source, the renderer has to explicitly connect light paths to the light’s
position.

The fact that the emitter does not have to originate from a scene’s surface is
important for us, because the renderers that I used in this work query visibility
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between the connected point on a light path and the sampled position on the light
source (in this case the point, where the point light source is positioned). If the
light was positioned on a surface, the visibility query would not be accelerable
using a distance field. This is the main reason why I use point lights almost
exclusively in the testing scenes.

Area Lights

An area light is a light source that emits light from a patch of surface geometry.
Usually, the radiance is uniform across the patch and across the possible emission
directions. It can be intersected by ray casting and it can also be sampled for a
point on the light’s geometry†.

The visibility tests between an arbitrary point in space and a sampled point
located on the light’s geometry cannot be accelerated by the distance field meth-
ods that I currently use. Nevertheless, a method for accelerating visibility queries
on area lights is proposed in the Section 4.4.1.

Environment Maps

An environment map is a light emitter that can be used to simulate light coming
from the distant surroundings of the scene. Usually, the light source of the envi-
ronment light is regarded to be distant and the light emitted by an environment
map is thus parametrized only by the outgoing direction of the ray that is used
to sample the light.

However, in Mitsuba, an environment map is implemented as a sphere, which
encompasses the whole scene and acts as an area emitter, with the difference that
its geometry cannot be intersected. Instead, the intersection is calculated only
when a ray is cast out of the scene. In addition to this, the environment map
emitter can be sampled for a point in the same manner as an area light.

The fact that an environment light has its own geometry might convince us
that visibility queries due to sampling of the environment lighting cannot be
accelerated because the sampled point will be located on the scene’s geometry.
Fortunately, the geometry is only virtual and will never be registered in the
distance field. We only have to ensure that the distance field is large enough to
contain not only the scene, but the environment map as well.

2.3 Volumetric Path Tracing

The volumetric path tracing algorithm, a generalization of Kajiya’s path tracing,
is a Monte Carlo solver of the volumetric rendering equation. A good introduction
into the theory behind Monte Carlo methods can be found in lecture materials
by Stefan Weinzierl [19].

In this section, I will describe the volumetric path tracer as it appears in
the Mitsuba renderer that I used for my work. An other volumetric path tracer
implementation might differ in details, but its general structure will be the same.

†Because of this, a special care has to be taken so as not to count this emitter’s radiance
twice.
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In the original path tracer from Mitsuba, the ray casting function, which finds
the nearest intersection along a ray, is called several times, but in some cases, a
simple information on whether the ray intersected the scene’s geometry is needed.
These cases are in fact visibility tests, because their purpose is to determine the
visibility between two points in the scene. These parts of the code are of the
greatest interest to this work, because our goal is to accelerate these queries.

Volumetric Path Tracer in Mitsuba

Note: In all of the pseudo-code descriptions in this thesis, the names of functions,
classes, variables, etc. might be different than those in the original source code of
Mitsuba. Also, the inner structure of the path tracer such as functions, recursion
and other control structures, might be changed. This is for clarity reasons.

Excursion: Pseudo-code conventions

The pseudo-code used in this thesis is a combination of Python, C++ and Pascal.
Keywords are typeset in a bold font, so that the structure of the code stands out
better.

If a functions needs to access variables or data that are not its parameters or
local variables, these variables are labeled by the keyword global.

Assignment operator is ’:=’ instead of simple ’=’, so as to avoid confusion with
comparison operator ’==’.

Sometimes, a function needs to modify one of its parameters. Such parameters
are passed by reference and are marked as such by the ampersand before the
parameter name in the function definition as well as the call:
function test(param, &modifiableParam)

// Comments are preceded by two slashes and are typeset in grey color.

Every radiance integrator in Mitsuba gets as a parameter the ray and position,
along which it should calculate the radiance. After the integrator finishes, a
spectral value is returned, which represents the radiance along the ray that was
passed as the parameter. Nevertheless, for the sake of simplicity of the pseudo-
code, I will regard all radiance values as simple floating-point numbers.

Follows a detailed pseudo-code for the volumetric path tracer from Mitsuba†.

1 // Returns the radiance in a given point along the given direction

2 function Li(point, dir):
3 global scene
4
5 // Try to find intersection point by ray casting:

6 surfPoint := scene.intersect(point, dir)

7 return LiRecursive(point, surfPoint, dir)
8 end function
9

10 function LiRecursive(point, surfPoint, dir):

†This is actually the simple version which does not use multiple importance sampling to
reduce variance, but that is only a slight implementation detail.
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11 global scene
12 retval = 0.0

13 pdfSuccess := 0.0

14 pdfFailure := 1.0

15 medPoint := NULL

16 isInMedium := inMedium(point, dir)

17
18 if (surfPoint == NULL) return retval
19 // Try to sample point in the medium and save the probability density

20 if (isInMedium) then
21 medPoint := samplePointInMedium(point, dir, &pdfSuccess)

22 pdfFailure := 1.0 - pdfSuccess

23 endif
24 // If the sampled point was before surfPoint, do medium interaction

25 if (isInMedium and |point - medPoint| < |point - surfPoint|) then
26 tr1 := transmittance(point, medPoint)

27 s := sigmaS(medPoint)

28
29 // Direct illumination sampling

30 value := pickAndSampleEmitter(medPoint, &sampledPoint, &pdfSample)

31 if (visible(medPoint, sampledPoint)) then
32 tr2 := transmittance(medPoint, sampledPoint)

33 phase := phaseFunc(medPoint, -dir, norm(sampledPoint - medPoint))

34 retval := retval +

35 s * value * phase * tr1 * tr2 / (pdfSample * pdfSuccess)

36 endif
37
38 // Phase function sampling

39 sampledDir1 := samplePhaseFunc(medPoint, &phase)

40 surfPoint := scene.intersect(medPoint, sampledDir1)

41 shouldContinue := russianRoulette(&rrProb)

42 li := 0.0

43 if (shouldContinue) then
44 li := LiRecursive(medPoint, surfPoint, sampledDir1)

45 endif
46 return retval + s * li * phase * tr1 / (pdfSuccess * rrProb)
47 // If the sampled distance was further than the intersection

48 // or there is no medium, generate surface interaction

49 else
50 // Evaluate transmittance

51 tr3 := 1.0

52 if (isInMedium) then
53 tr3 := transmittance(point, surfPoint)

54 endif
55
56 // Direct illumination sampling

57 value := pickAndSampleEmitter(surfPoint, &sampledPoint2, &pdfSample)

58 sampledDir2 := norm(sampledPoint2 - surfPoint)

59 if (visible(surfPoint, sampledPoint2)) then
60 tr4 := 1.0
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61 if (inMedium(surfPoint, sampledDir2)) then
62 tr4 := transmittance(surfPoint, sampledPoint2)

63 endif
64 bsdfVal := evalBsdf(surfPoint, -dir, sampledDir2)

65 retval := retval +

66 value * bsdfVal * tr3 * tr4 / (pdfSample * pdfFailure)

67 endif
68
69 // BSDF sampling

70 bsdfVal := sampleBsdf(surfPoint, &sampledDir3)

71 point := surfPoint

72 surfPoint := scene.intersect(point, sampledDir3)

73 shouldContinue := russianRoulette(&rrProb)

74 li := 0.0

75 if (shouldContinue) then
76 li := LiRecursive(point, surfPoint, sampledDir3)

77 endif
78 return retval + li * bsdfVal * tr3 / (pdfFailure * rrProb)
79 endif
80 end function

As we can see, the integrator first casts a ray from point in direction dir in
order to find the next intersection with the scene – point surfPoint. Then, if
the segment from point to surfPoint is in a participating medium (this happens
when the ray from the starting point points into the medium, because a medium
boundary is always regarded as a surface and as such would be detected and
intersected by the ray-cast), a distance is sampled in the medium. This distance
can be shorter than the distance from point to surfPoint, in which case Lin

part of the Equation 2.1 is sampled. If the surface interaction is closer than the
medium interaction, Lsurf is sampled.

In both cases, the direct illumination is sampled by sampling the light emitters
from medPoint and surfPoint and then recursion is applied to sample longer
paths. Russian Roulette is used to ensure path termination while keeping the
integral estimation consistent.

The described integrator is capable of evaluating contribution of light paths
with an arbitrary length and consisting of arbitrary interaction types (surface or
medium) along the way†.

2.4 Visibility Test Classification

Definition 1. Let a ∈ R3 and b ∈ R3 be two points and let Σ ⊆ R3 be a set of
a scene’s surface points. A visibility test (or query) on the line between two

†Actually, as it was described here, the path tracer never calculates the contribution of paths
from the eye/camera directly to a light source, but this is another implementation detail that
I chose to omit for the sake of simplicity.
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Figure 2.2 – Illustration of the variables used in the pseudo-code description of the volu-
metric path tracer.

points a and b is a boolean predicate defined in the following way:

vis(a, b) =

{
1 : {(1− t)a+ tb : t ∈ [0, 1]} ∩ Σ = ∅
0 : {(1− t)a+ tb : t ∈ [0, 1]} ∩ Σ 6= ∅

There are several visibility tests in the pseudo-code that was described above.
Let us now look at them and discuss, which of them bear some acceleration
potential.

One visibility test is on line 31, where the direct illumination is sampled in the
medium. Here, visibility is tested between points medPoint and sampledPoint1.
Another visibility test is on line 59 in direct illumination sampling on surfaces,
testing visibility between surfPoint and sampledPoint2.

Possibly another visibility test would be after each medium sampling (line
21), if the ray-cast was postponed after the sampling. That way, the integrator
could first sample the medium for the medium point, test visibility between that
sampled point and the starting point and only after the test it would possibly cast
a ray. Whether or not the ray would be cast would depend on the visibility test
result. If the line between the two points was certainly unoccluded, the integrator
would not have to proceed with the ray casting, because the intersection (if any)
would certainly lie behind the sampled point in the medium.

The aforementioned acceleration would, however, need a refactoring of the
volumetric path tracer and I chose to test viability of the acceleration techniques
first before optimizing the original integrators in Mitsuba.

Definition 2. If a ∈ R3 and b ∈ R3 are two points and Σ ⊆ R3 is a set of a
scene’s surface points, a visibility test vis(a, b) is called spatial, if and only if
a /∈ Σ ∧ b /∈ Σ. I will call non-spatial visibility tests superficial.

If we want to use distance fields to accelerate the visibility queries, only spatial
visibility queries are candidates for acceleration. Points on a surface would fall
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Figure 2.3 – The two types of visibility tests.

into a voxel from the set Σ′ (see the Section 3.3) and the visibility query between
them and other points would not be accelerated.

Looking back at the pseudo-code of the volumetric path tracer, we can now
identify the visibility test categories in the code. Visibility test on the line 31 can
be spatial or superficial, depending on the type of light emitter. Unfortunately,
visibility test on the line 59 has one point on a surface of the scene, so it will
always be superficial. If we re-factored the source code of the integrator and first
sampled the distance in the medium before casting the intersection ray, we would
possibly create another spatial visibility test, but only after the light path had
an interaction with the medium (otherwise, the test would be superficial).

2.5 Volumetric Ray Marching

In order to increase the number of spatial visibility tests, but also to simulate
conditions for which the visibility test acceleration was primarily intended, I
implemented a single-scattering volumetric integrator that uses ray-marching in
participating media to estimate the in-scattered radiation.

The integrator was created by copying the source code of the volumetric path
tracer and changing the sampling strategy in the medium so that instead of
choosing between sampling the radiance from a distant intersected surface and
sampling the medium in-scattered radiance, both the surface radiance and the
in-scattered medium radiance are estimated for every ray and summed together.

1 // Returns the radiance in a given point along the given direction

2 function Li(point, dir):
3 global scene
4
5 // Try to find intersection point by ray-casting:

6 surfPoint := scene.intersect(point, dir)

7 return LiRecursive(point, surfPoint, dir)
8 end function
9

10 function LiRecursive(point, surfPoint, dir):
11 global scene
12 retval := 0.0
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13 isInMedium := inMedium(point, dir)

14
15 if (isInMedium) then
16 // Calculate sigma_t of the medium as if it always were homogeneous

17 transmittance := scene.evalTr(point, surfPoint)

18 sigma_t := -log(transmittance) / |surfPoint - point|

19
20 // Sample the single scattering according to transmittance

21 intervalWidth = (1.0 - transmittance) / sampleNum

22 sampleMin := 1.0

23 sampleMax := 1.0

24 repeat sampleNum times
25 // Modify the current sampling interval

26 sampleMax := sampleMin

27 sampleMin := sampleMax - intervalWidth

28
29 // Generate sample and calculate its ray parameter and pdf

30 sample := uniform(sampleMin, sampleMax)

31 t := -log(sample) / sigma_t

32 pdf := sigma_t * exp(-sigma_t * t) / intervalWidth

33
34 // Sample an emitter from the generated point

35 medPoint := point + t * dir

36 value := pickAndSampleEmitter(medPoint, &sampledPoint, &pdfSample)

37
38 if (visible(medPoint, sampledPoint)) then
39 // Calculate transmittance and retrieve the scattering coeff.

40 // and the value of the phase function

41 tr := transmittance(point, medPoint)

42 s := sigmaS(medPoint)

43 phase := phaseFunc(medPoint, -dir, norm(sampledPoint - medPoint))

44
45 // Add the result to the in-scattered radiance estimate

46 retval := retval + tr * s * phase * value / (pdf * pdfSample)

47 endif
48 end repeat
49 endif
50
51 // Only the scattered radiance will be returned when no surface

52 // was intersected

53 if (surfPoint == NULL) return retval
54
55 // This part of code is omitted, because it calculates the radiance

56 // reflected by a surface in the same way as the path tracer does

57 // The code would copy path tracer lines 50 - 77

58 return retval + li * bsdfVal * tr3 / rrProb
59 end function
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The ray marcher begins in the same manner as the volumetric path tracer
– it casts a ray from point in direction dir to see, whether a point on the
geometry will be intersected. Regardless of the outcome of the ray-cast, if the
current segment is in medium, the in-scattered radiance L∗in along the segment
is estimated using ray-marching. The surface radiance Lsurf is then estimated
in the same way as in the volumetric path tracer and added to the in-scattered
radiance.

Ray marching divides the whole segment into separate parts, casts a sampling
ray from a randomly generated point in each of the parts and sums the resulting
radiances to estimate the radiance along the whole segment. This technique of
subdivision of the domain of the estimated integral is called stratified sampling
[19, S. Weinzierl, pg. 13] and serves to reduce the variance of the result. The
number of the subdivisions is given as a parameter sampleNum.

To further reduce the variance, I use importance sampling [19, S. Weinzierl,
pg. 14] to generate the ray marching samples. If the segment was divided into
subsegments of the same length, the first segment would (most probably) con-
tribute to the estimated radiance much more than the last, because of the trans-
mittance term tr that would be almost zero for the sample in the first segment
and large for the furthest samples. In fact, if the in-scattered radiance at all
points were uniform, the contribution of all of the ray marching samples would
be proportional to the transmittance.

It is therefore advantageous to sample the ray not uniformly, but taking the
transmittance into account, so that the cumulative distribution function is pro-
portional to the transmittance – roughly half of the samples should be positioned
before a point on the ray, where the transmittance reaches a value of 0.5, three
quarters before a point with transmittance of 0.25, etc. . .

Visibility Tests in Ray Marcher

The number of spatial visibility tests in the ray marcher can be potentially much
higher than in the volumetric path tracer. This is due to large number of light
samples placed in the medium. For example, if the whole scene was submerged in
the participating medium, each level of recursion of the sampling ray would mean
sampleNum spatial visibility tests due to light sampling in the medium and one
superficial visibility test from the surface to a light source. With the increasing
number of the ray marching samples, the percentage of accelerable visibility tests
will approach 100%.

2.6 Acceleration in Theory

In the following chapters, I will thoroughly describe the methods that were ex-
amined for the acceleration of visibility queries. In order to evaluate or improve
the methods, one needs to understand, which properties of these methods and
the used rendering algorithms influence the resulting acceleration.

I will now assume the following acceleration scheme: for each spatial visibility
query (as was mentioned in Section 2.4, only spatial visibility tests can be accel-
erated), first query an acceleration data structure that can speed the query up
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by quickly proving that the two points in the query are unoccluded. If, however,
the answer is not conclusive, the standard test proceeds as it would without the
acceleration structure.

In the following calculations, the probability of a given visibility query being
spatial is denoted psp, whereas the probability that a certain spatial visibility test
will be accelerated is denoted pacc|sp. The resulting probability of a given visibility
test being accelerated is denoted as pacc = psp · pacc|sp †. With the increasing
number of rays shot into the scene, the measured ratios of the visibility tests
types will converge to these probabilities.

We will now split the total time needed to render a scene without a visibility
acceleration method Trender into the time needed for all N visibility tests (Tquery =
N · tquery) and the rest of the render time Trest. The time to render with an
acceleration method is denoted by T acc

render and can be split into time to build the
acceleration structure Tbuild, time needed for visibility tests in those cases that
are not accelerated (that happens (1 − pacc) · N times out of N), time spent for
querying the acceleration structure for spatial tests (this is only done for psp ·N
tests) and the remainder Trest:

Trender = Tquery + Trest = N · tquery + Trest (2.5)

T acc
render = Tbuild + T acc

query + Trest =

= Tbuild + (1− pacc) ·N · tquery + psp ·N · tacc + Trest (2.6)

If the visibility queries are to be accelerated at all, then Trender > T acc
render must

hold. By modifying this inequality, we get:

Trender > T acc
render /− Trest

N · tquery > Tbuild + (1− pacc) ·N · tquery + psp ·N · tacc / : N

tquery >
Tbuild
N

+ (1− pacc) · tquery + psp · tacc /− (1− pacc) · tquery

pacc · tquery >
Tbuild
N

+ psp · tacc / : psp

pacc|sp · tquery >
Tbuild
N · psp

+ tacc

/ Tbuild
N · psp

def
= tbuild

pacc|sp · tquery > tbuild + tacc (2.7)

Here, I introduce tbuild as the amortized build time. It is defined as Tbuild

N ·psp , which
means that the total build time is divided between the spatial visibility tests.

In the Inequality 2.7 on the left side we have the time that is saved per a spatial
visibility query, i.e. the time it would take to perform the query multiplied by
the probability that the query will not have to be performed. On the right hand
side of the inequality, we have the time that is added per each spatial visibility
query, i.e. time to build the acceleration data structure amortized between the

†Note that pacc|sp is a conditional probability P (test accelerated | test spatial).
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queries plus the time it takes to query the acceleration data structure. The saved
time then has to be larger than the added overhead.

The conditions for acceleration can now be discussed. We can strive to di-
minish the tbuild = Tbuild

N ·psp summand, which can be achieved by shooting a larger
number of rays into the scene, making the number of visibility queries N larger.
We could also make a larger proportion of visibility tests spatial (higher psp) or
reduce the total time Tbuild needed to build the data structure.

We can also directly optimize the time it takes to query the acceleration data
structure tacc.

Looking at the left hand side of the equation, a larger percentage of accelerated
spatial visibility tests pacc|sp increases the time saved. Also, if the original visibility
query takes a lot of time tquery, for example when the scene contains a huge amount
of geometry primitives, the opportunity for acceleration gets much higher.

If we neglect the build time (which we theoretically can, for large N), from
2.7 we get

pacc|sp >
tacc
tquery

(2.8)

That said, if we express tacc as a percentage of tquery, a larger percentage of
spatial visibility tests have to be accelerated in order for the acceleration to be
of any use.

We can also look at the total acceleration time, which is Trender − T acc
render:

Trender − T acc
render =

= N · tquery − Tbuild − (1− pacc) ·N · tquery − psp ·N · tacc =

= pacc ·N · tquery − psp ·N · tacc − Tbuild (2.9)

For large N, we can neglect Tbuild and we get:

pacc ·N · tquery − psp ·N · tacc − Tbuild ≈
≈ pacc ·N · tquery − psp ·N · tacc =

= N · psp · (pacc|sp · tquery − tacc)

Factor N is not surprising in the above result, because after neglecting the
time to create the acceleration structure, the total speed up should be linear in
number of visibility queries. We already know that by dividing the Tbuild, the
factor psp helps amortize the acceleration structure build time. But we see here
that it also improves the total acceleration time.

From the Equation 2.9, we can calculate the upper limit for the time saved
by the acceleration. We would reach this limit if we were able to accelerate 100%
of the visibility tests and all of them would be spatial, if the time it would take
us to query the acceleration data structure would be almost zero and if the build
time of the data structure was negligible.

In that case, because pacc = 1, tacc = 0 and Tbuild = 0, we would get:
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Trender − T acc
render = 1 ·N · tquery − psp ·N · 0− 0

= Tquery

Thus, we cannot possibly save more time by the acceleration than it takes to
execute all of the visibility queries.



3. Distance Fields

The rationale behind studying distance fields for the purpose of visibility query
acceleration is that to accelerate some of these queries, we do not need to know
the exact shape of the scene’s geometry. It is sufficient to know the distance of
the query from the geometry. If the geometry is far enough, we do not need to
perform any tree traversal and we immediately know that the query is unoccluded.

To give a more specific example, if we want to know, whether a line between
points A and B is unoccluded, and we happen to know the distance to the closest
point on the scene’s geometry for both points and this distance is for either of
the points larger than distance from A to B, we can safely conclude that the line
does not intersect the scene’s geometry (see Figure 3.1).

Figure 3.1 – Test on visibility between points a and b. Closest points on the scene’s
geometry are marked by a cross for both points. Point b lies closer to a than a to α, which
means that we can say that line a↔ b is unoccluded, only from the knowledge of distances
from a to α and a to b.

In this chapter, I introduce the concept of distance functions and distance
fields more formally and describe how I used them in my work.

3.1 Distance Functions

My definition of a distance function is analogous to the definition used by Jones
et al. in [9], the only difference being in explicitly using the metric function so
as to hint on the relation between the definition of distance and the resulting
distance field.

Definition 3. Given a metric space M with metric d and a subset of the space
Σ ⊆ M, let us define an unsigned distance function distΣ with respect to Σ

17
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in a following manner:
distΣ(p) = inf

x∈Σ
d(x, p)

That means that for every point p in the space M, the function distΣ returns
the distance to such point from the set Σ that is closest to p in terms of the
metric d. In this thesis, M will always be R2 or R3. Furthermore, the subset Σ
will always correspond to the set of all surface points of the scene geometry, so I
will omit the subscript.

Reworded in the context of rendering and accelerating visibility queries, the
function dist(p) will return for every point p ∈ R3 the smallest distance to the
scene’s geometry.

There are also signed distance functions which return signed distance depend-
ing on whether the point is inside or outside of the geometry defined by Σ, but
we do not need them for our purposes, so I will omit the term “unsigned”.

Definition 4. A distance field is a distance function such that its underlying
metric space M is discrete.

Note that the terms distance function and distance field are used somewhat
interchangeably in the literature, but I will always refer to a discrete distance
function as a distance field.

3.2 Choosing Grids over Hierarchies

When choosing the correct visibility query acceleration data structure, it is im-
portant to have in mind the initial requirements, which were to minimize the
query time and most importantly ensure that the acceleration is conservative in
the sense that the data structure does not classify an occluded visibility query as
unoccluded.

As was outlined at the beginning of this chapter, to be able to accelerate
visibility queries, we need to know the distance function value for every point in
the scene. To calculate this value, we have several options.

The most obvious one is a brute force method, which calculates the closest
distance for every geometrical primitive in the scene and keeps track of the small-
est value. Of course, if our goal was to make the visibility queries as quick as
possible, this approach would not be useful.

In chapter 3.1 of a paper by Jones & al. [9], we can find a summary of a
variety of hierarchical methods to compute the value of the distance function and
sometimes also the closest point, but after some consideration, I decided to not
use these methods because their time overhead is still not negligible.

The only approach that is quick enough for our purposes is use of a data
structure which stores the distance function value in a grid. That way, a distance
function value query consists of a mere affine transformation of scene coordi-
nates, rounding the transformed result to yield grid coordinates and finally of the
retrieval of the stored value.
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The grid methods for distance fields usually but not necessarily use a regular
rectilinear grid.† In my work, I decided to use Cartesian grid for the sake of
simplicity of the used algorithms, but more importantly also because using an
irregular grid would mean for each of the coordinates some sort of tree data
structure that would convert the scene coordinates into grid coordinates, which
would add unnecessary time complexity to the visibility queries.

3.3 Voxel Grids

For the purposes of further definitions and discussion, let us now define voxel
grids and voxels more formally.

Definition 5. A voxel grid V with resolution (X, Y, Z), origin (ox, oy, oz)
and voxel size s is defined as a Cartesian product of sets of certain intervals on
R:

V = {[ox, ox + s], [ox + s, ox + 2s], . . . , [ox + (X − 1) · s, ox +Xs]} ×
× {[oy, oy + s], [oy + s, oy + 2s], . . . , [oy + (Y − 1) · s, oy + Y s]} ×
× {[oz, oz + s], [oz + s, oz + 2s], . . . , [oz + (Z − 1) · s, oz + Zs]}

Definition 6. A member of a voxel grid is called a voxel.

I define coordinates of the voxel v ∈ V to be the unique triple

coords(v) = (a, b, c) ∈ N

for which the following equation holds:

v = ([ox + as, ox + (a+ 1) · s], [ox + bs, ox + (b+ 1) · s], [ox + cs, ox + (c+ 1) · s])

Each voxel can also be assigned unique linear coordinates which are useful
for indexing a linear array. If a voxel v has coordinates (a, b, c), I define linear
coordinates of the voxel to be equal to:

lincoords(v) = a+ b ∗X + c ∗X ∗ Y
where (X, Y, Z) is grid resolution of the corresponding voxel grid.

3.3.1 Σ on a Voxel Grid

If we have a set of surface points Σ ⊂ R3 and a voxel grid V on which we want
to create a distance field, we can set

Σ′ = {v ∈ V | v ∩ Σ 6= ∅}
This ensures that Σ′ is conservative in the sense that every point from Σ is

contained in a voxel from Σ′. The distance can then be created with respect to
Σ′.

A voxel from the set Σ′ is called an occupied or non-free voxel. The other
voxels are called free.
†For example Miloš Šrámek and Arie Kaufman extend their Chessboard Distance Traversal

algorithm to irregular rectilinear grids in [17].
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3.4 Metrics

When defining the distance functions and distance fields, various underlying met-
rics can be used. The three basic and most frequently used metrics are Euclidean
metric, Manhattan metric and chessboard metric.

In the following descriptions of the metrics, a and b denote points from R3

and V and U denote voxels from a voxel grid. For better clarity, coordinates of
the points or voxels are designated using letter subscripts instead of number sub-
scripts – ax, by, Vz, etc. Only three-dimensional versions of the metric functions
are described here – their two-dimensional counterparts can be obtained easily.

Definition 7. In a metric space M with metric d, an (open)† ball with radius r
around a point p ∈M is defined as a locus of all points closer to p than r:

ball(p, r) = {q ∈M | d(p, q) < r}

With each metric, I describe what an open ball in that metric looks like,
because the notion of a ball corresponds with a later notion of a safe zone.

3.4.1 Euclidean Metric

In Euclidean metric, differences between the coordinates are squared, added to-
gether and a square root is taken of the result. The locus of points with the same
distance to a given point is a circle (in 2D) or a sphere (in 3D) centered around
that point. It is important to note that when distance transforms are used to
compute values in a distance field, the result is only an approximation of the
Euclidean metric.

dEucl(a, b) =
√

(ax − bx)2 + (ay − by)2 + (az − bz)2

dEucl(V, U) =
√

(Vx − Ux)2 + (Vy − Uy)2 + (Vz − Uz)2

3.4.2 Manhattan Metric

The Manhattan metric defines distance between two points or voxels as a sum of
differences between the individual coordinates. The locus of points which have
the same distance to a given point is an octahedron centered around the point.

dMan(a, b) = |ax − bx|+ |ay − by|+ |az − bz|

dMan(V, U) = |Vx − Ux|+ |Vy − Uy|+ |Vz − Uz|

3.4.3 Chessboard Metric

The chessboard metric calculates the distance of two points or voxels by taking
the maximum of differences of all their coordinates. The locus of points equally
distant from a given point is a cube centered around the point.

†There are also closed balls, but I will not need them in this thesis.
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dCD(a, b) = max(|ax − bx|, |ay − by|, |az − bz|)
dCD(V, U) = max(|Vx − Ux|, |Vy − Uy|, |Vz − Uz|)

3.4.4 Choosing a Metric

Figure 3.2 – Comparison of open balls in the Euclidean, Manhattan and chessboard
metrics.

The first experiments were tried with a distance field based on the chessboard
distance and using the Euclidean metric for calculating the length of the line
between a and b. This choice was made because both the chessboard metric
distance field and Euclidean distance between two points were easy to compute.
However, there are two major problems with this choice.

To understand the first problem, let us introduce the concept of a safe zone.

Definition 8. In an unsigned distance function dist, given a point p from the
domain of that function (i.e. a metric space M with a metric d), we can define
a safe zone safe(p) around that point in the following manner:

safe(p) = {q ∈M | d(p, q) < dist(p)}

Safe zone for a voxel is defined analogously. In a distance field Dist, given a voxel
v from the voxel grid V with metric d, the safe zone around v is then defined as:

safe(v) = {u ∈ V | d(v, u) < Dist(v)}

We can see that the safe zone around a point p from a metric space M is
actually a ball with radius dist(p). The meaning of a safe zone is quite obvious –
it defines a set of points around p that does not intersect Σ. If the safe zone did
contain some point π ∈ Σ, it would by definition of a ball (and a safe zone) mean
that d(π, p) < dist(p). But that would contradict the definition of the distance
function.

With the definition of a safe zone and with the knowledge of the shape of
balls under the three described metrics comes another argument for the use of
the chessboard metric for the distance field. Scene geometries more often con-
tain rectangular shapes, rooms and corridors rather than spherical or octahedral
empty spaces.
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To return back to visibility acceleration, if we knew that one point is in the
safe zone of the other point, we could be certain that the line between those two
points is not occluded. If we were able to find out the exact value of the distance
function in a point, we could use the following algorithm to accelerate visibility
queries.

1 // Tells whether the line between points a and b is unoccluded

2 function isUnoccluded(a, b):
3 distA := distanceAtPoint(a)

4 distB := distanceAtPoint(b)

5 if (distA > d(a, b) or
6 distB > d(a, b)) then
7 return true
8 endif
9 return standardOcclusionTest(a, b)

10 end function

Figure 3.3 – Radius of a safe zone and the shortest possible line going from the center
voxel out of the safe zone.

With voxel grids, however, the situation is slightly more complicated. As was
discussed above, the value of a voxel in a distance field defines a safe zone of a
corresponding radius. As can be seen in the Figure 3.3, the safe zone around
a voxel with the value 3 has an actual radius of 2, because the voxels one step
further are already too far – their distance of 3 equals to the value in the central
voxel, which, by the definition of a safe zone, is not allowed (remember that the
safe zone is an open ball, which does not contain the boundary).

This means that the shortest line that could possibly span from the central
voxel out of the safe zone would in this case be only 2 units long. In order to still
ensure correctness when accelerating visibility queries, we have to change lines 5
and 6 in the previous function to

5 if (distA > d(a, b) + 1 or
6 distB > d(a, b) + 1) then

This, however creates a problem. In voxels with a distance field value of one,
no acceleration can be achieved, since by adding one to any distance, we get at
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least one, which will always be equal to or larger than the value from the distance
field. This is the case of the line c ↔ d from the Figure 3.4. A visibility query
between points c and d would not be accelerated, although the line between them
does not intersect any voxels with the value zero and although both points lie
inside the safe-zone of the voxel where the other point is located.

The second problem with the approach is obviously the usage of different
metrics in the distance field and for the calculation of the length of the line
between the two points. It would make much more sense and more queries would
be accelerated if the chessboard metric was used here as well†. This might not
seem as such a big problem, but the ratio of the volumes of a cube and an inscribed
ball is approximately 1.9, which means that about 48% of the points that would
be classified to be inside of the safe zone by the chessboard metric are classified
to be outside using the Euclidean metric.

Figure 3.4 – Illustration of the problem with usage of the Euclidean metric for line lengths
but chessboard metric for generating the distance field.

I briefly tried to use the chessboard metric to calculate the length of the line,
but the problem with queries that stay in a single voxel, of course, persisted. I
then realized that instead of measuring the length of the line between the two
points, I could find the respective voxels for both points and check, whether one
of the voxels is in the safe zone of the other one. This would happen when the
distance between the two voxels (in the same metric that was used to construct
the distance field) is smaller than either of the two distance field values. That
way, the problem with short queries is completely eliminated.

The two lines in the accelerated visibility query function would then be

5 if (distA > dV(voxel(a), voxel(b)) or
6 distB > dV(voxel(a), voxel(b))) then

where dV is a metric defined on the voxels of the distance field and the voxel
function returns for a given point the voxel in which the point is included.

†Although, the Euclidean ball is completely contained in the chessboard ball, which means
that by using the Euclidean metric, no points are classified as unoccluded that would not be
classified equally using the chessboard metric to calculate the line length.
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3.5 Distance Transforms

In order to create a grid-based distance field, a variant of a method called the dis-
tance transform is usually applied. From a high-level point of view, this transform
is just a function, which converts a 2D or 3D binary grid into a representation,
where each pixel or voxel maps to a number which represents an approximation
of the distance function in that pixel or voxel.

3.5.1 Initialization

Before the distance transform methods are applied, the grid first needs to be
initialized. This is done by setting the value of every grid voxel that is intersected
by the scene’s geometry to zero and the value of other voxels to infinity (or any
value that is larger than any possible distance)

Figure 3.5 – Initialization of the voxel grid – the voxels intersected by the triangle are set
to zero, the others to infinity.

Old Method

Initialization of the grid is usually done by a scan-line conversion of the scene
or other input data. I first tried a slightly different approach – loop over all the
scene’s triangles and tessellate them so that each of the sub-triangles fits into a
sphere with a radius smaller than half of the voxel grid. Then for each vertex of
the sub-triangles, I marked the voxel, in which the vertex lied, as a voxel that
belonged to the set Σ′. Using this method, I could guarantee that for each input
triangle, the resulting marked set of voxels was 26-connected.† Unfortunately,
as I found out later, there were situations in which an intersected voxel was left
unmarked, which was unacceptable because one of our initial requirements was
for the acceleration to be conservative.
†A set of pixels in 2D is said to be 8-connected, when for every pair of pixels in the set there

exists a path consisting only of pixels in the set such that from each pixel the path continues to
one of the 8 possible neighbors – vertically, horizontally or diagonally – hence 8-connectivity.
In 3D, the situation is analogous, but there are 26 possibilities.
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Improved Method

Although scan-line conversion or rasterization is an often encountered problem
that can be solved using a dedicated graphics processing hardware, a conser-
vative rasterization† is more difficult and until several years ago had rarely been
described in literature or implemented in the dedicated hardware (as stated in the
abstract of a paper by Tomas Akenine-Möller and Timo Aila [1]). I implemented
the method described by Zhang et al. in [21].

This method is a three-dimensional conservative rasterization technique that
can be applied to planar polygons. Each of the polygons first has to be projected
into two dimensions and a two-dimensional conservative rasterization method
applied to it. The minimal and maximal depth value (value of the last dimension)
of the intersecting triangle for each of the intersected pixels are then found and
converted to depth coordinates of three-dimensional voxels in which the extrema
were found. It is then safe to assume that all voxels in between the minimal and
maximal voxel are also intersected by the plane.

Figure 3.6 – Conservative rasterization of a triangle. The triangle is converted into an
offset polygon, which is then rasterized using the standard method – select those pixels,
whose centers lie in the polygon.

The two-dimensional rasterization algorithm that I used was a method de-
scribed by Hasselgren et al. in one of the second edition GPU Gems [7]. Their
method creates an offset polygon encompassing the rasterized triangle by center-
ing a pixel-sized box at each of the triangle’s vertices and then creating a convex
hull of these three boxes. This can be done surprisingly easily by assigning to
each of the triangle’s edges the quadrant of the Cartesian plane that this edge’s
normal lies in and creating vertices of the offset polygon according to the relative
positions of the quadrants of the neighboring edges.

Thus created polygon is then rasterized into a set of pixels by selecting those
pixels, whose sample point – their center – lies in the polygon (see Figure 3.6).
This type of rasterization by sampling the central point is mentioned in [1,
Akenine-Möller, Aila].

†This means either selecting all intersected pixels/voxels or an another, but similar, problem
– finding all pixels/voxels completely encased in the given primitive.
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Because there is a potential of a large number of point-in-polygon tests, I
convert the convex polygon† into a set of parallel trapezoids using the following
algorithm (see Figure 3.7):

Figure 3.7 – Illustration of the algorithm that converts a convex polygon into a set of
parallel trapezoids.

First, I find the two vertices of the polygon that have the minimal and maximal
y coordinate. The other vertices of the polygon are added into two chains that
both start with the maximal vertex and end with the minimal one, but one of the
chains consists of vertices left of the polygon and the other one of vertices that
are to the right of it.

The two chains are then traversed in parallel in order to find a way to de-
compose the polygon into a set of parallel trapezoids. In this representation, it is
much quicker to determine, which of a set of points lie in the polygon, especially
if this set contains subsets of points with an equal y coordinate. This is because
a single test on a point belonging into the polygon is done by finding a trapezoid
whose upper and lower bounds contain the y coordinate of the point and then
testing whether the point lies left of the right trapezoid edge and right of the left
one. When testing a set of points that share the same y coordinate, the trapezoid
can be selected once for the whole set for an even quicker subsequent querying.

3.5.2 Chamfer Distance Transform

There are a variety of possible methods to implement a distance transform and
they are well summarized in [9, Jones & al.]. For our purposes, a simple chamfer
distance transform with a wavefront scheme is suitable.

Chamfer distance transforms update the value in a voxel by taking the values
of the neighboring voxels, adding values from a pre-defined distance template
to them and then taking the minimal of the resulting values as a new value for
the current voxel.‡ This is not done if the current value of the voxel is smaller
than the new value. The distance template essentially contains distances from a
voxel to neighboring voxels and during update these distances are added to the

†The convex property is important for the following algorithm to work.
‡The name comes from the Chamfer metric, which is an approximation of the Euclidean

metric and emerges when the distance templates contain Euclidean distances between the neigh-
boring voxels.
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distances already stored in the neighboring voxels in order to see, whether the
distance in the current voxel should be updated.

The following pseudo-code clarifies the update of a voxel. For clarity reasons,
the code is shown in the 2D version. Extension to three dimensions would be
straightforward.

1 // The distance template

2 template := [[ 1.4, 1, 1.4 ],

3 [ 1 , 0, 1 ],

4 [ 1.4, 1, 1.4 ]]

5
6 // The update function receives voxel coordinates as arguments

7 function update(x, y):
8 global distfield
9 smallestValue := distfield[x, y]

10 for i from -1 to 1 do
11 for j from -1 to 1 do
12 if (validCoords(x+i, y+j) and
13 distfield[x+i, y+j] < smallestValue) then
14 smallestValue := distfield[x+i, y+j]

15 endif
16 end
17 end
18 distfield[x, y] := smallestValue

19 end function

3.5.3 Propagation Schemes

When updating a value of a voxel, one has to bear in mind that the neighboring
voxels might not contain correct distance field values yet, so the distance might
not propagate correctly. To counter this problem, sweeping schemes have been
developed (as early as in 1966 by Azriel Rosenfeld and John L. Pfaltz [14]), in
which the distance field is swept over several times, each time with a different
template and in a different order of voxels, which ensure that the distance will
be propagated correctly.

I chose another approach (mentioned in [9, Jones & al.]), which is to process
the voxels in one pass. This method starts with a queue that is filled with voxels
neighboring the marked voxels. Then, one by one, the voxels are taken from the
queue and updated. After each update, the voxel’s neighbors that have not yet
been added to the queue are sorted into the queue. This continues while there
are voxels in the queue. In my case, I used a distance template, which contained
only ones and zeros. This way, I didn’t have to order the new voxels into the
queue, but could append them to the end of the queue instead. This also ensured
that all the distances were integers.

The latter approach is called a wavefront scheme, because a visualization of
the voxels in the queue resembles a wavefront moving away from the scene’s
objects.
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3.6 Performance of Non-Directional Methods

As can be seen from the results presented in Chapter 6, the non-directional dis-
tance field methods perform well in terms of low query time tacc, but the percent-
age of accelerated spatial visibility queries pacc|sp is very low due to the safe zones’
size being hindered by geometry in irrelevant directions. This can be clearly seen
in Figure 3.8, which visualizes the sets of voxels, from which the visibility queries
towards the point light can be accelerated in the scene cbox vol6. First, this set
is displayed for a non-directional distance field, then for the Anisotropic Macro-
Regions, one of the methods that will be described in the next chapter.

Figure 3.8 – The visibility queries between the visualized sets of voxels and the point light
can be accelerated. To the left are such voxels for the non-directional distance field and
to the right for AMR. The displayed scene is cbox vol6 and the colored meshes are the
safe neighborhoods (see Section 4.4) of its point light source, which is located somewhere
inside the meshes.

For this reason, I decided to research directional distance fields, which are
described in the next chapter.



4. Directional Distance Fields

In order to find a better method for acceleration of visibility queries, I looked
into several directional distance field methods. They redefine the notion of a
safe zone so that it no longer depends on the given pixel/voxel, but also on a
direction. Some of the methods extend the classical distance field information
with directional data (e.g. the Dual Extent Method described by Sudhanshu K.
Semwal and H̊akan Kvarnström[15]), whereas the others divide the voxel into
several parts with each of these parts containing safe zone data for a different
direction (e.g. Anisotropic Macro-Regions by [17, Šrámek, Kaufman]).

4.1 Anisotropic Macro-Regions

This method was proposed in [17, Šrámek, Kaufman] as an improvement to the
authors’ Chessboard Distance (CD) Traversal algorithm, which used distance
fields for accelerating ray-tracing queries. In a ray-tracing query, a point and an
associated vector are given (construing a ray) and the query returns the closest
intersection with the scene geometry.

The CD Traversal algorithm registers the individual objects from the scene to
all voxels of a voxel grid that are intersected by each object. Ray-tracing could be
then implemented by stepping through all voxels intersected by the given ray and
testing intersection with all objects registered in each voxel. The CD Traversal
algorithm exploits the observation that empty voxels can be safely skipped and
that such voxels tend to aggregate into larger areas of empty space. A distance
field is then used to skip more than one voxel, according to the value in the
distance field. The distance field in this case tells us the minimal distance to a
non-empty voxel using a chessboard distance metric.

In order to simplify the following definitions, I define the relation “A−−→±±±B”†

for points or voxels in R3, where each “±” can be either “+” or “−” and these
signs then denote relation of the individual coordinates of A and B, that is,
whether we have to add or subtract a positive value from the respective coordi-
nates in order to get from A to B. For example:

A−−→−+−B ⇔ Ax ≥ Bx ∧ Ay ≤ By ∧ Az ≥ Bz

This notation can also be interpreted as saying that B lies in the (− + −)
octant of a new coordinate system that has its origin in A.

The Anisotropic Macro-Regions (AMR) improve upon the ideas in CD Traver-
sal Algorithm by modifying the distance field to contain eight values in each voxel.
I will denote these values by appending the distance function name with a super-
script of three sign marks (one for each dimension):

†there would be just two ± signs in the similar 2D definition

29
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Definition 9. In a voxel grid V over R3 and for a given Σ′ ⊆ V, the anisotropic
distance field in the direction −+− is defined as:

dist−+−(V ) = inf
U∈Σ′ ∧ V−−→−+−U

dCD(U, V )

That is, dist−+−(V ) returns the distance to the closest non-empty voxel U in
the (−+−) octant of V such that U ∈ Σ′. (see Figure 4.1).

Figure 4.1 – Illustration of dist···(V ) in 2D case

Similarly to the definition in [17, Šrámek, Kaufman], anisotropic macro-
regions can be defined for each voxel, parametrized by the voxel itself, maximal
distance of the voxels in the macro-region from the origin voxel and by sign marks
denoting the direction of the macro-region†:

O−+−(n)(V ) = {U ∈ R3 | V−−→−+−U ∧ dCD(U, V ) ≤ n}

Each of the eight dist−+−(V ) values now describes a size of the maximal
empty macro-region in the corresponding direction and can be used to accelerate
ray-tracing in the same way values from a classical distance field are used. Only
now we can choose the value that corresponds to the direction vector of the ray.
That way, the traversal can be much quicker in situations when the ray passes
a geometry which would normally reduce the size of the safe-zone, because the
classical distance field value is equal to minimum of all the dist···(V ) values in
the given vertex V . This situation is illustrated in Figure 4.2.

4.1.1 Construction

To construct a directional distance field that uses AMR, a sweeping scheme dis-
tance transform can be used, analogous to the one that is used to construct an
ordinary distance field.

In the first phase of the construction algorithm, all eight values in the voxels
that intersect the scene’s geometry are set to zero. Values in the remaining voxels
are set to infinity.

The second phase then has eight sub-phases, each corresponding to one of the
eight parts of the voxels and consequently to one of the eight diagonal directions.
In each of these sub-phases, the values are propagated only in the respective
parts of the voxels using a correct distance template and voxel evaluation order
(see Figure 4.3). The value from the current voxel is added to the values in the

†The meaning of the sign marks is the same as in the definition of dist···(V )
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Figure 4.2 – Illustration of ray-tracing acceleration using AMR in 2D. Distance field
values in each visited voxel are shown together with the associated macro-regions.

Figure 4.3 – Distance templates for the eight sub-phases of the construction algorithm for
AMR-based directional distance field. The current voxel is always the one with a 0 value
in the template

voxel template and the results are compared to the values in the corresponding
neighbors of the current voxel. If the value in a neighbor is larger, it is updated
with the newly calculated value.

4.1.2 AMR Safe Zones

The notion of safe zone can be extended to Anisotropic Macro-Regions by in-
troducing function DistAMR, whose value does not depend on a single voxel, but
on two voxels. The function first finds out the octant of the second voxel, in
which the second voxel lies. The value of the corresponding function dist··· is
then returned:
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DistAMR(U, V ) =



dist+++(U) : U−−→+++V

dist++−(U) : U−−→++−V

dist+−+(U) : U−−→+−+V

dist+−−(U) : U−−→+−−V

dist−++(U) : U−−→−++V

dist−+−(U) : U−−→−+−V

dist−−+(U) : U−−→−−+V

dist−−−(U) : U−−→−−−V

(4.1)

Note that several of the −−→±±± relations can be satisfied for a single pair of
voxels U , V †. In that case, the dist±±± for the first satisfied relation is returned.

The Equation 4.1 can now be used to define a safe zone in the Anisotropic
Macro-Region distance field:

Definition 10. Given an anisotropic distance field dist±±± defined for all direc-
tions ±±± on a voxel grid V over R3, and a voxel V ∈ V the anisotropic safe
zone is defined as:

safeAMR(V ) = {U ∈ V | d(V, U) < DistAMR(V, U)}

4.1.3 AMR Acceleration of Visibility Queries

In order to find out whether two points a and b in R3 are visible from each other,
an AMR-based distance field can now be used in a following manner:

First, one has to find out two grid voxels A and B that correspond to these
points. Without loss of generality, let’s presume that B lies in the (+++) octant
of A. Now we just have to check, whether either A lies in the anisotropic macro-
region of B defined by dist−−−(B) or B lies in the anisotropic macro-region of
A defined by dist+++(A). If either of these conditions is met, the line a ↔ b is
surely unoccluded by the scene’s geometry. Conversely, if both of these tests fail,
standard visibility testing has to proceed.

The query can also be described in terms of safe zones. We can presume
the line a ↔ b to be unoccluded if either A is contained in safeAMR(B) or B is
contained in safeAMR(A).

4.2 Directed Safe Zones

This is a method described by Sudhanshu K. Semwal and H̊akan Kvarnström
in [15]. Similar to the paper that described the Anisotropic Macro-Regions, the
authors propose this method for acceleration of ray tracing queries. And similar
to the AMR method, the Directed Safe Zones (DSZ) modify the distance field
information by changing it to directional information. However, the directional

†That happens when at least one of their coordinates is equal
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information in DSZ consists of six values instead of eight. Each value describes a
safe zone for the ray that exits the voxel through one of the six faces of the voxel.

The notable difference of the Directed Safe Zones from the Anisotropic Macro-
Regions is the use of Manhattan metric instead of Chessboard metric.

Similarly to the definitions for Anisotropic Macro-Regions, let us define dis-
tance field for the directed safe zones.

Definition 11. In a voxel grid V over R3 and for a given Σ′ ⊆ V, we define the
directed safe zone size in the positive direction of the X coordinate axis as:

distx+(V ) = inf
U∈Σ′ ∧ Vx<Ux

dMan(U, V )

The directed safe zone distance fields distx−, disty+, disty−, distz+ and distz−

are defined in a similar fashion. Note the strict inequality in the previous def-
inition, because it implies that the voxel will not be included in its own safe
zone.

Using the directed safe zone distance fields, we can define the directed safe
zones themselves.

Definition 12. Given a voxel grid V over R3 and a subset of the voxel grid
Σ′ ⊆ V, a directed safe zone can be defined in positive or negative direction
of each of the coordinate axes as:

safex+(V ) = {U ∈ V | dMan(U, V ) < distx+(V ) ∧ Vx < Ux}

Again, the definitions for safex−, safey+, safey−, safez+ and safez− are similar.

4.2.1 Construction

The DSZ distance field is created by a sweeping scheme propagation method, in
a similar manner to the AMR distance field.

The first phase of the algorithm is initialization of all six values in every voxel
to infinity, except for the voxels that are intersected by the scene’s geometry.
Values of these voxels are set to zero.

The second phase has again eight sub-phases that correspond to one of the
eight diagonal directions. However, slightly different propagation templates are
used this time. These templates ensure that the values are propagated only to
those neighbors of the currently processed voxel that share a face with it and lie
in the correct direction (see Figure 4.4).

When propagating a value from a voxel, we first take the minimum of the
three values in those positions that are being updated in this sub-phase† and
then for each neighbor that is marked by the number one in the template we add
one to the value from the current voxel and propagate it to the neighbor into the
correct position. The position has to correspond to the direction that we have to
take in order to get from the neighbor to the current voxel. Again, as with the
AMR distance fields, the value is only updated in the neighbor, if the old value
was larger.

†These positions are exactly opposite than the propagation directions. For example, if the
propagation direction is +-+, that is in the positive direction of the X axis, negative Y and
positive Z, the values of distx−, disty+ and distz− are used.
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Figure 4.4 – Distance templates for the eight sub-phases of the construction algorithm
for DSZ-based directional distance field. The current voxel is denoted by a zero in the
template. The neighbors in the empty voxels are ignored.

4.2.2 DSZ Acceleration of Visibility Queries

The general pattern in the acceleration of visibility queries with Directed Safe
Zones is the same as with the Anisotropic Macro-Regions.

For the two points a and b, we find the corresponding voxels A and B and
check whether A lies in the directed safe zone of B or B in the directed safe zone
of A.

We only have to select the correct safe zone, which is done using the points a
and b. In voxel A, we select the safe zone according to the first face of the voxel
that is intersected by the ray a → b and in the voxel B the safe zone according
to the first face intersected by the ray b→ a.

4.3 Dual Extents

This method is described in [15, Semwal, Kvarnström]. It does not re-define the
distance field information. Rather, it adds six directional values to the original
non-directional distance field value†. Each directional value tells us, how far the
safe zone from the non-directional field can be extended in the given direction
without intersecting an occupied voxel. This corresponds to the number of voxels
that we can traverse in the given direction without encountering a voxel, whose
non-directional distance field value is smaller than the value of the original voxel.
Using this knowledge, we could easily construct the Dual Extent distance field,
however the authors of the original paper propose a smarter solution - see [15,
Semwal, Kvarnström] for details.

To simplify the following definition, I introduce the function vox, which returns
the voxel of a voxel grid on the given coordinates:

vox(V, x, y, z) = v ⇔ v ∈ V ∧ coords(v) = (x, y, z)

†The non-directional distance field used in this method uses the Manhattan distance, similar
to the DSZ method.
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Definition 13. Let V be a voxel grid over R3, Σ′ ⊆ V a subset of the voxel grid
and Dist be a distance field on V with respect to Σ′. The dual extent in the
positive direction of the X axis is defined as:

dualx+(V ) = {U ∈ V | |Uy − Vy| < Dist(V ) ∧
∧ |Uz − Vz| < Dist(V ) ∧
∧ dMan(U, V ) < Dx+

de (V ) + Dist(V )}

where Dx+
de (V ) is the dual extent distance in the positive direction of the X

axis, defined as:

Dx+
de (V ) = min({n ∈ N | Dist(vox(V, Vx + n, Vy, Vz)) < Dist(V )})− 1

The definitions for the remaining axes and directions are defined analogously.

4.3.1 Dual Extent Acceleration of Visibility Queries

In a visibility query between points a and b, we find the corresponding voxels
A and B again. Similarly to the previous two methods, we proclaim the line
a↔ b as unoccluded if either A lies in the correct dual extent of B or if B lies in
the correct dual extent of A. The question is, how to choose the “correct” dual
extent.

If we are trying to find out, whether A lies in a dual extent of B, we count the
number of coordinate axes, for which the difference |Ax−Bx|, |Ay−By| or |Az−
Bz|, is larger than or equal to the value Dist(B). If there is one such coordinate,
we use the corresponding dual extent in such direction that it corresponds to the
direction of ray b → a. If there is no such coordinate, we choose from the three
dual extents that are in the correct direction the one with the largest value. If
there are more than one such coordinates, we cannot accelerate this query using
dual extents.

4.4 Safe Neighborhoods

The distance field methods, either directional or non-directional, can be useful if
the visibility queries are incoherent in the sense that both points of the queries
are distributed over the whole scene. If, on the other hand, one of the points is
always located in a single position in space or if there is a small number of such
positions (which certainly is the case of visibility queries that sample point lights
in path tracing renderers), we can accelerate the distance field queries even more
by exploiting this coherence. I achieve this acceleration using my own technique
that I call Safe Neighborhoods. This technique can be used in conjunction with
any distance field acceleration method to further accelerate queries with one of
the voxels from a selected small set of input voxels.

In order to understand the Safe Neighborhood method, we have to first define
the safe neighborhood:

Definition 14. Let safe be a safe zone function, defined by a directional or a
non-directional distance field (using any method of choice) on a voxel grid V and
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let V ∈ V be a voxel. The safe neighborhood of V is defined as:

neigh(V ) = {U ∈ V | U ∈ safe(V, U) ∨ V ∈ safe(U, V )}

if a directional distance field is used. Otherwise, it is defined as:

neigh(V ) = {U ∈ V | U ∈ safe(V ) ∨ V ∈ safe(U)}

The safe neighborhood of a voxel V thus contains all voxels, which are con-
tained in its safe zone or which contain V in their own safe zone. The safe
neighborhood of a voxel V is a set of voxels which would, together with the
voxel V , form visibility queries that the underlying distance field would classify
as unoccluded.

The Safe Neighborhoods method saves the safe neighborhoods for a set of
voxels in binary arrays. These arrays contain one, if the corresponding voxel
is contained in the safe neighborhood and zero otherwise. This can be viewed
as precomputing the visibility query results for a small subset of voxels. The
advantage of using this method over the distance field itself stems from the fact
that we can skip all distance calculations between the two points and we also
ignore one of the points completely once we identify the safe neighborhood array
associated with it. The query is then just a retrieval of a boolean value from the
array. If none of the points of the query has a precomputed safe neighborhood,
we proceed as we would without this method. In my implementation of the Safe
Neighborhoods method, I can guarantee that the light sample point will be the
second point of the query, which further accelerates the query.

4.4.1 Extending the Safe Neighborhoods

From the definition of the safe neighborhood and safe zones for the AMR method
follows an interesting property:

The Free Cuboid Property: In the Anisotropic Macro-Regions method, if a
voxel U ∈ V is in the safe neighborhood of a voxel V ∈ V, then the minimal axis
aligned bounding voxel cuboid C that contains these two voxels, defined as

C = {W ∈ V | min(Ux, Vx) ≤ Wx ≤ max(Ux, Vx) ∧
∧ min(Uy, Vy) ≤ Wy ≤ max(Uy, Vy) ∧
∧ min(Uz, Vz) ≤ Wz ≤ max(Uz, Vz)}

will contain only free voxels.

Proof: By definition of safe neighborhoods, either U ∈ safe(V ) or V ∈ safe(U).
Without loss of generality, suppose that U is in the safe zone of V . The coor-
dinates of an arbitrary voxel W from the cuboid C will by the definition of C
lie between the respective coordinates of U and V and dCD(W,V ) will thus be
smaller or equal to dCD(U, V ). This means that voxel W will also lie in the safe
zone of V , which means that it must be free. �

This property is valid not only in AMR, but also in non-directional distance fields
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and in the Dual Extent distance fields. This is because in all these methods, for
a given voxel U in the safe zone of a voxel V , the minimal axis-aligned bounding
voxel cuboid of U and V is contained in the safe zone of V .

As will be described in Chapter 5.3, I created a way to visualize voxel sets in
order to be able to debug my implementation of the distance field methods. This
method enabled me to visualize the safe neighborhoods as well. The visualiza-
tion revealed a common feature of the safe neighborhoods derived from an AMR
distance field – cascade edges (see the green region in Figure 4.5 or the jagged
safe neighborhood in Figure 5.1).

Figure 4.5 – Visualization of a Safe Neighborhood derived from AMR distance field in
2D. The safe neighborhood of the yellow voxel is depicted as the green region, however it
could be extended to contain the pink voxels. An anisotropic macro-region of the red voxel
is depicted to show, why that voxel was not included in the safe neighborhood. The violet
voxel is an example of a voxel that could also be considered safe but is much harder to
calculate than the pink voxels.

These cascade edges completely ignore the free cuboid property. The reason
for the cascade edges is geometry that limits the free zone size, although the
tested voxel lies in a different direction from the original voxel. This is illustrated
in the Figure 4.5 by the red voxel and its safe zone marked by the slashed line.

But as can also be seen in the Figure 4.5, there are even more voxels that
create a free bounding cuboid together with the original voxel. These voxels are
contained in the union of the green and pink regions of the illustration. To find
these voxels, I propose the following algorithm, although its implementation is
out of scope of this work. The algorithm has to select a coordinate axis as its
main axis. Here, the Y axis was chosen. Note that for the sake of clarity, the 2D
version of the algorithm is described.
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1 min_y // The y coordinate of the last free voxel when going from V in

2 // the direction of the -Y axis

3 max_y // ditto, but in direction of +Y

4 min_x // ditto, but x coordinate and in the direction of -X

5 max_x // ditto, but in direction of +X

6
7 // Phase 1

8 min := min_x

9 max := max_x

10 for y from V_y to min_y do
11 for x from V_x to min do
12 if voxelIsFree(x, y) then
13 markVoxel(x, y)

14 else
15 min := x + 1

16 break
17 endif
18 done

19 for x from V_x to max do
20 if voxelIsFree(x, y) then
21 markAsSafe(x, y)

22 else
23 max := x - 1

24 break
25 endif
26 done

27 end
28
29 // Phase 2 is the same as phase 1, only in the other direction:

30 min := min_x

31 max := max_x

32 for y from V_y to max_y do
33 // --||--

34 end

This algorithm scans the voxel lane minx ↔ maxx from Vy to minx and then
to maxy, updating the border voxels of the lane as it encounters occupied voxels.
The extension to three dimensions would entail scanning a voxel plane instead
of a lane and instead of updating two border points of the lane, there would be
several border points along a chosen minor axis in the plane. The schematic of
the function of the algorithm can be seen in the Figure 4.6.

Yet another step in the extension of the safe neighborhoods would be consid-
ering voxels similar to the violet voxel in the Figure 4.5. If an arbitrary point
from the violet voxel is connected with any point from the yellow voxel, the line
that connects them would surely be unoccluded. However, finding such voxels
would be a non-trivial task.
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Figure 4.6 – Illustration of the algorithm for creation of the extended safe neighborhoods.
The arrows depict the direction of exploration of free voxels by the algorithm. The resulting
safe neighborhood is marked green.

Limitation of Safe Neighborhoods

One might rightfully ask, why we bothered with the distance fields in the first
place, when the Safe Neighborhoods method together with the proposed exten-
sion accelerates a much larger proportion of visibility queries. However, safe
neighborhoods contain visibility information only from a point of view of a single
voxel in the voxel grid, whereas the distance fields allow us to accelerate visibility
queries between arbitrary voxels.

If the visibility from a single voxel or a set of voxels (see the next section)
is all that is needed, safe neighborhoods are a better choice than distance fields.
Safe neighborhoods constitute an interesting area for future research, as well as
methods for making them more effective, calculating them faster, finding a way
to compress them or exploring their similarity to the well-known shadow maps
algorithm.

Accelerating Area Light Queries

The algorithm for creating the extended safe neighborhoods can be slightly mod-
ified to allow area light acceleration. I will describe the modification very briefly
here and without pseudo-code, as it is out of scope of this work. However, thor-
ough description and exploration of the possibilities of the algorithm would be
another area of possible future endeavors. Again, the described version here is
only a 2D variant.

First, the area light would have to be rasterized using a conservative rasteri-
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zation method. Then, the resulting set of voxels would be projected onto the two
hyperplanes perpendicular to the axes X and Y and these projections would be
swept along the axes in the direction of the normal vector of the area light (in
our example, the area light’s normal is pointing in the increasing direction of the
X axis as well as the increasing direction of the Y axis. The intersection points
of the projections with the geometry will mark the maximal extent of the safe
neighborhood. One of the axes would then be chosen as the algorithm’s main
axis and again, we would find lanes of free voxels, while modifying the minimal
and maximal coordinate of the lane.

Figure 4.7 – Illustration of the algorithm for creation of safe neighborhoods for an area
light. The area light and its projections are the yellow lines. The lanes of free voxels are
scanned to the left and to the right of the area light and the visited voxels are added to
the safe neighborhood (marked in green).

4.5 Implemented Directional Methods

From among the described directional distance field methods, I first implemented
the Anisotropic Macro-Regions and later added the safe neighborhood extension.

The Anisotropic Macro-Regions were chosen because they use the chessboard
metric instead of the Manhattan metric used by the Directed Safe Zones and Dual
Extents. The chessboard metric is better suited for the rectangular features that
are often found in architectural scenes. Another reason for choosing AMR over the
other two methods was that its safe zones divide the space around the voxel into
eight almost disjoint regions, which ensures that the distance field values are more
independent from the geometry in irrelevant directions. In contrast, the Directed
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Safe Zones divide the space around each voxel into six regions. These regions can
be grouped into three pairs, such that the regions in each pair together form the
whole space around the voxel. This implies a lot of unnecessary overlap of the
regions. The shape of the Dual Extent safe zones is a bit more complicated to
describe, but their directionality is probably better than in the AMRs. However,
the safe zones in Dual Extents also overlap and their width is reduced by nearby
geometry, even if it is located in a direction irrelevant to the query.



5. Implementation

5.1 Used Technology

The distance field methods were tested on the Mitsuba physically based renderer
by Wenzel Jacob [20]. Mitsuba is written in C++ [18] and uses Mercurial [11] as
its revision control system, so I had to use them as well if I wanted to modify the
source code of the renderer.

I also used the Python programming language [13] for helper and debugging
scripts. The open-source 3D modeling application Blender 3D [3] was used for
scene editing as well as for debugging and distance field visualization purposes.

5.2 Implementation Details

Of the methods described in the Chapters 3 and 4, I implemented the non-
directional distance field with the chessboard metric for distance field generation
and chessboard metric on voxels for measuring the distance between the query
points. Another implemented method are the directional Anisotropic Macro-
Regions as well as their extension with the Safe Neighborhoods method.

The distance fields are implemented as C++ classes that are derived from
a generic distance field base class, which provides the basic functionality that
is common to all distance fields. However, polymorphism is not used, because
virtual calls to critical distance field functions would slow down the execution of
these functions. Instead, the used distance field class is chosen by C preprocessor
directives at compile time.

The distance field is contained in the scene class and its acceleration methods
are called in the rayIntersect method defined in the header file scene.h.

I could have associated a distance field with each of the participating media
in the scene, but that would be unnecessarily complicated. Instead, I use a single
distance field for the whole scene and thus have to make it large enough to contain
all of the geometry. If the scene contains an environment emitter, the distance
field has to contain its virtual geometry (that is not part of the scene) as well.

5.3 Debugging Features

In order to be able to debug the distance fields, I needed a way to visualize them.
Visualizing the whole distance field as a three dimensional function would be
difficult, so I chose another approach. After the distance field has been generated,
I iterate over all of the voxels in the distance field and divide the voxels into two
sets – free voxels and non-free voxels – each of these sets is converted into a list
of linear coordinates of the voxels that it contains and this list is output into a
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file. Also, another file is created for each of the point lights in the scene. This
file contains a list of linear coordinates of voxels from the safe neighborhood of
the given point light source.

All of these files are created in the current working directory, but note that
they are only created on the condition that the corresponding C preprocessor
directive was uncommented in config.py, as will be described in the following
section.

A python script was then created that converts these lists of linear indices
into Wavefront .obj files†.

This script first reconstructs the indices into a 3D array of voxels and then
iterates over the voxels and creates their faces if their corresponding neighbors
are not in the set. The resulting .obj files can then be imported and viewed in
Blender 3D.

Figure 5.1 – An example of visualization of voxel sets in Blender 3D. The blue voxels are
occupied voxels (note that some of them were removed in Blender so that the court in this
scene would be visible), while the green voxel set is the safe neighborhood of the scene’s
point light.

5.4 Compilation and Running

The code of the Mitsuba renderer with my modifications can be found in the
mitsuba directory.

For compilation, the SCons build system [16] was used. The original compi-
lation configuration files for the Mitsuba renderer are contained in the directory
build

I used the release configuration for 64-bit GNU/Linux operating system, re-
named it as config.py and added several preprocessor directives that control

†This is a common open and widely supported format for 3D models.



5.4 Compilation and Running 44

which distance field methods and which debugging features will be compiled.
The file contains comments that clarify the purpose of each of the directives.

The compilation itself is executed using the command scons After the com-
pilation has finished, the executables can be found in the two directories named
build/release/mitsuba and build/release/mtsgui.

The command-line interface can be run using the command mitsuba whereas
the graphical interface is executed using the command mtsgui. For the thesis, I
used the GUI, because it allows the rendering settings to be changed more easily.

On my testing system, I have an Intel embedded graphics chip and an NVidia
external graphics card, whose cooperation is managed by the NVidia Optimus
technology. Although the graphics cards were not used in my code, they were
used by Mitsuba to visualize the scenes before the main rendering was started.
This caused Mitsuba to crash on my system. My solution was to use programs
from the Bumblebee Project [4] whose goal is to enable the use of the NVidia’s
proprietary Optimus technology on GNU/Linux. After installing the Bumblebee
Project, Mitsuba can be run by typing optirun mtsgui and the visualization is
then calculated using the NVidia card.

In mtsgui, the scene can be loaded by selecting File → Open from the main
menu. The selected scene is then loaded into the memory and a k -d tree is built
over the scene’s geometry to enable logarithmic-time ray casting and visibility
queries.

5.4.1 Scene Settings

After the scene has been loaded and preprocessed, the rendering parameters can
be changed in the Render Settings dialog. This dialog is invoked by clicking the
gear wheel icon in the top panel.

The most important settings are the length of the edge of a voxel or, in other
words, voxel size, sample number per pixel and sample number per path segment.

The voxel size setting can be found in the section “Scene” in the list in the
middle of the dialog. It is labeled “Distance field voxel size”. By setting this
parameter to zero, the distance field can be disabled entirely.

Sample number, labeled “Samples per pixel”, can be found in the section
that corresponds to the used sampler. In the testing scenes, this section will
be “Independent sampler”. This parameter sets the number of samples that are
done for each pixel of the rendered image.

If the “Volumetric ray-marching path tracer” is selected as the integrator for
the rendering, the number of samples per each path segment can be changed in
the integrator’s section in the parameter list.

If the visibility test time is measured, it is important to render with one thread
only, because the timer used for the measurement will not perform correctly if
manipulated by several threads. The number of worker threads can be set in the
settings dialog, invoked from the main menu by selecting Tools → Settings.
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5.4.2 Statistics and Measurements

During the render, the implemented distance field methods show the progress of
building the distance field in Mitsuba’s progress bar. The process of building the
distance field is divided into two parts – initializing the distance field’s voxels
and propagating the values over the whole distance field – for the purposes of
progress reporting.

After the render, there are three statistics that are shown by default: reso-
lution of the voxel grid, size of the distance field in bytes and the distance field
build time Tbuild. Also, Mitsuba always displays the render time Trender. These
statistics show in the output to the log file, which can be displayed in Mitsuba’s
GUI by clicking the rightmost icon in the top panel of the window.

If the DISTFIELD STATS directive has been defined in the compilation con-
figuration file config.py, optional distance field statistics (together with other
Mitsuba’s statistics) can be displayed by clicking the pie chart icon in the top
panel of the log file window. The statistics that are shown for the distance fields
are percentage of free voxels in the distance field, percentage of spacial visibil-
ity tests psp and percentage of spatial tests that were accelerated pacc|sp. If the
DISTFIELD SNS directive has been defined in the config.py file, the point light
safe neighborhood statistics are shown as well – the number of the point light’s
safe neighborhood voxels and the ratio of these voxels to the number of free voxels
in the scene.

The ray-cast timer can be turned on in config.py by defining RAYCAST TIMER.
If this is done, the statistics that were displayed by clicking the pie chart icon
will now contain one more measurement – the spent ray-cast time. This is the
time spent on visibility queries Tquery.



6. Results

This chapter contains the results from measuring the performance of the distance
field methods on the testing scenes.

6.1 Testing Scenes

To be able to test the implemented methods in a variety of environments, I created
several testing scenes which were all encompassed in a participating medium.
Most of them are just boxes with or without simple interior geometry. This
choice was made because for testing and debugging purposes, simple geometry is
much more suitable. However, I also included two scenes that are more complex,
so that the methods could be tested on data that more closely resembles the real
situations that the algorithms would be used in.

6.1.1 Cornell Box Scenes

The first four scenes (cbox vol2, cbox vol3, cbox vol4 and cbox vol6 – see
Figures 6.1 through 6.4) are based on the existing Cornell Box scene that can be
found in the Mitsuba renderer repository.

Figure 6.1 – Scene cbox vol2 Figure 6.2 – Scene cbox vol3

Scene cbox vol2 can be thought of as a base scene. It contains two cuboids
in a box without its front face. The viewpoint is outside of the box, looking at
the cuboids. The whole scene is submerged in a not very dense participating
medium. There is a point light inside the box above one of the cuboids.

Scene cbox vol3 is a modification of the cbox vol2 scene. It contains two
point lights instead of one.
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Figure 6.3 – Scene cbox vol4 Figure 6.4 – Scene cbox vol6

Scene cbox vol4 modifies cbox vol2 by making the medium ten times as
dense. This improves psp (see Section 2.6) with the volumetric path tracer.

Scene cbox vol6 is the same as cbox vol2, except that the box does not
contain any geometry. This is useful for testing the distance field methods. Also,
pacc|sp should be highest of all scenes.

6.1.2 San Miguel Scene

The san-miguel scene (the mesh was obtained from [6, McGuire Graphics Data])
contains a large number of triangles and the average time needed for a visibility
test tquery is high. On the other hand, the scene is relatively rugged, so the
percentage of accelerated visibility tests pacc will be smaller than in the other
scenes.

The scene is an oblong court with two stories of arcades around it. The court
contains a lot of objects, most notably a large tree that occupies the center of
the court. A point light was positioned inside the scene between the tree and the
arcades, so as to ensure that the light was surrounded by some free space. See
Figure 6.5 for a rendering of the scene.

6.1.3 Landscape Scene

The scape scene contains a moderate number of triangles, but a large empty
space, ensuring high percentage of accelerated visibility tests pacc. It consists of
a simple landscape that I modeled in Blender 3D [3].

The light in this scene is provided by an environment emitter. Due to the
Mitsuba’s implementation of the environment emitters, the emitter is represented
as a hemisphere surrounding the whole scene. However, the emitter’s geometry is
not registered in the distance field †, allowing to accelerate the visibility queries

†It is safe to do so, because the emitter’s geometry cannot occlude any other geometry
behind it – there is none.
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even when one of the points of the query lies on the geometry of the emitter.
Normally, such tests would be superficial and could not be accelerated, but I
regard them as spatial.

The medium in this scene encompasses the landscape as well as the virtual
geometry of the emitter. A rendering of the scene is pictured in Figure 6.6

Figure 6.5 – Scene san-miguel Figure 6.6 – Scene scape

6.2 Test Conditions

All of the results were rendered on a laptop PC with a GNU/Linux operating
system, an Intel Core i7-3632QM quad core processor at 2.20GHz clock rate and
with 8GB of the random access memory. The graphics processing unit was never
used for the rendering.

When running the renderer to obtain the test results, all other unnecessary
user processes were terminated in order to consistently provide the renderer with
as much resources as possible and avoid context swaps and the influence of the
system scheduler on the results. The renderer was also restricted to use only one
thread in order for the distance field build times that were not implemented as
multi-threaded to be comparable to the render times.

I experimented with giving the rendering process higher priority for the op-
eration system scheduler with the renice command, but this did not make any
difference in the execution times.

6.2.1 Variance of the Measured Times

In order to estimate, how much the measured times can differ from their average,
several scenes with different settings were run multiple times and the relative
standard deviation (calculation details in a course handout by Mark Iannone [8])
was estimated from the resulting data sets †. This statistical quantity is calculated

†The estimate was not a rigid statistical test, it was done in order to find out, whether the
measurements are reliable.
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Table 6.1 – Test results for consistency of measured times

cbox vol2, Vsize/sps/spp : 4/4/4
Raymarching vol. pathtracer

Tbuild T acc
render T acc

query

1.89 18.86 4.24
1.89 18.70 4.19
1.88 18.68 4.15
1.87 18.64 4.15
1.86 18.67 4.14
1.88 18.79 4.20
1.86 18.69 4.19
1.89 18.70 4.18

RSD 0.68% 0.39% 0.79%

cbox vol4, Vsize/spp : 4/16
Simple volumetric pathtracer

Tbuild T acc
render T acc

query

1.89 47.25 7.53
1.88 47.03 7.44
1.88 47.10 7.45
1.88 47.00 7.44
1.88 47.00 7.46
1.88 46.97 7.40
1.88 46.94 7.47
1.89 46.94 7.38

RSD 0.27% 0.22% 0.61%

Legend:

Vsize Voxel size (voxel edge
length)

sps Samples per path segment
spp Samples per pixel

Tbuild Time in seconds to build the
distance field

T acc
render Render time with a distfield

T acc
query Time spent on visibility

queries
RSD Relative standard deviation

scape, Vsize/sps/spp : 0.25/8/16
Raymarching vol. pathtracer

Tbuild T acc
render T acc

query

1.53 115.2 29.57
1.67 114.6 29.23
1.53 115.2 29.36
1.54 114.6 29.19
1.52 114.0 29.13
1.67 114.6 29.08
1.53 115.2 29.40
1.53 114.6 29.28

RSD 4.16% 0.37% 0.54%

by dividing the standard deviation by the average of the data. The reason for
using relative standard deviation instead of standard deviation or variance is
that the relative standard deviation is a dimensionless quantity and can be easily
compared between different data sets.

The relative standard deviation was calculated with the use of the GNU Oc-
tave programming language[5].

All the results were tested with the distance field statistics and time measure-
ment turned on. The distance field used was an ordinary non-directional distance
field. The T acc

query time in the Table 6.1 is the time needed for all of the visibility
queries. It is equal to T acc

render − Tbuild − Trest (see Equation 2.6 in Section 2.6).
As can be seen from the results in the Table 6.1, the relative standard deviation

does not, in most of the cases, exceed 1%. The only exception – build times in
the scape scene – could have been an anomaly, because if we take a closer look
at the data, most of the values oscillate very closely around 1.53s, except for two
times, when it took 1.67s to build the distance field.

Because of the very low deviation of the time values from their mean, I decided
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Table 6.2 – Test results for measurement influence

cbox vol3, Vsize/sps/spp : 8/8/8
Ray marching vol. path tracer

Tbuild T acc
render T acc

query

w/ M. 0.24 55.96 14.61
w/o M. 0.26 52.63

Diff +0.02 -3.33
RDiff +8.3% -6.0%

cbox vol6, Vsize/sps/spp : 8/2/16
Ray marching vol. path tracer

Tbuild T acc
render T acc

query

w/ M. 0.24 39.28 5.86
w/o M. 0.24 37.02

Diff 0 -2.26
RDiff 0% -5.8%

Legend:

w/ M. With measurement
w/o M. Without measurement

Diff Difference
RDiff Relative difference

Also see legend for Table 6.1

san-miguel, Vsize/spp : 1/32
Simple volumetric path tracer

Tbuild T acc
render T acc

query

w/ M. 3.83 128.4 33.08
w/o M. 3.82 124.2

Diff -0.1 -4.2
RDiff -0.26% -3.3%

that for our purposes, it would suffice to make each time measurement only once.
When interpreting the results, we have to bear in mind that the real average
might differ slightly (but not as much as to completely skew the results).

6.2.2 Influence of Measurement on the Measured Times

The visibility query time measurement is done using a timer class from Mitsuba.
A question is, whether the time measurement itself cannot significantly influence
the measured times and in case it can, whether this influence could not be pre-
dicted and accounted for. In order to find out, I rendered several testing scenes
with different parameters with and without the time measurement turned on and
then compared the results.

From the results in the Table 6.2, it is obvious that the times indeed are
influenced by turning the timer on. Furthermore, we cannot simply subtract a
fixed number or a fixed percentage from the resulting measured times, because
this would be incorrect. This means that in order to calculate the overhead of
the timer, we have to run the rendering both with and without the timer and
then take the difference of Trender as the timer overhead. Note that even with the
visibility query timer turned off, Trender and Tbuild are still measured. This does
not impose large time overhead on the algorithm, as it only requires starting a
timer and stopping it twice (as opposed to N times when measuring visibility
query times).

The problem is that due to the implementation of the timer, it does not start
(or stop) counting time immediately after the function call, but there is a slight
delay, which grows to noticeable proportions due to repetition. Because of this,
we cannot simply subtract the total overhead (which we are now able to calculate,
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as was described in the previous paragraph) from the total measured time, since
part of this overhead will not have been counted into the measured time. To solve
this problem, I looked at the implementation of timers in Mitsuba.

The methods that start and stop the timer have a very similar structure and at
their beginning they both call the same method, which returns the current system
time. We now don’t have to care at which point the latter method samples the
system time, as long as this sampling event occurs at a consistent point in time
of the method’s execution. This is a safe assumption, especially in average over
a lot of calls.

The previous discussion implies a way to calculate the real Tquery from the
measured Tquery – in order to calculate the real value, we just have to subtract
half of the overhead from the measured value, because the other half was not
counted into the measurement.

6.3 Measured Times

6.3.1 Single Query Time

Let us now calculate the time needed for a single visibility query tquery for each
of the scenes and then compare it to the acceleration structure query time tacc
for each of the distance fields to see, whether any acceleration is possible at all.

Recall from the Equation 2.5 in Section 2.6, that Tquery = N · tquery. As we
already discussed, we cannot measure Tquery accurately, but we can get Tquery
by subtracting half of the time measurement overhead from the measured Tquery.
In the Table 6.3, we can see the measured render times for four testing scenes
with visibility query time measurement turned on and off. The parameters
Vsize/sps/spp were chosen so that there would be a large number of the visibility
queries, which ensures that we have enough data to average.

Table 6.3 – Trender times with visibility time measurement and without

Visibility time measurement ON

Scene Vsize/sps/spp Trender Tquery

cbox vol6 0/49/4 2.12 m 18.72 s
cbox vol4 0/49/4 2.16 m 28.57 s
san-miguel 0/49/4 18.26 m 16.43 m

scape 0/49/4 1.68 m 18.87 s

Visibility time measurement OFF

Scene Vsize/sps/spp Trender Tquery

cbox vol6 0/49/4 1.92 m
cbox vol4 0/49/4 1.98 m
san-miguel 0/49/4 17.67 m

scape 0/49/4 1.62 m
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The average single visibility query time tquery can now be calculated for each
of the scenes. The number of the visibility queries N does not depend on the
query acceleration method and the values from Table 6.11 can thus be used. First
we need to calculate the measuring overheads for all scenes:

Ocbox6 = 2.12m− 1.92m = 12s

Ocbox4 = 2.16m− 1.98m = 10.8s

Osmig = 18.26m− 17.67m = 35.4s

Oscape = 1.68m− 1.62m = 3.6s

The real Tquery is calculated by subtracting half of the overhead from the
measured times.†

cbox vol6: Tquery = 18.72s− 6s = 12.72s

cbox vol4: Tquery = 28.57s− 5.4s = 23.17s

san-miguel: Tquery = 16.43m− 17.7s = 968.1s

scape: Tquery = 18.87s− 1.8s = 17.07s

The final step is to divide the Tquery times by the number of visibility queries.

cbox vol6: tquery =
12.72s

170.53 · 106
= 75ns

cbox vol4: tquery =
23.17s

165.05 · 106
= 140ns

san-miguel: tquery =
968.1s

177.80 · 106
= 5.4µs

scape: tquery =
17.07s

58.22 · 106
= 293ns

We can see that the calculated average time of a single visibility query corre-
sponds with the scene complexity, i.e. with the number of the scene’s triangles
– scene san-miguel contains by far the largest number of triangles and the visi-
bility queries in this scene are also by far the most time consuming ones.

6.3.2 Acceleration Time

Let us now calculate the accelerated query time tacc. As was already mentioned
in Section 2.6 in the Equation 2.8, the ratio of times of tacc and tquery for the given

†Formally the equations contradict themselves, but I chose to omit scene names from Tquery
for the sake of clarity. Otherwise, I should have written Tquery,cbox6, Tquery,cbox4, etc. . .
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scene and distance field method defines the theoretical minimal percentage of the
accelerated spatial queries pacc|sp that is needed for the acceleration to work, in
the limit of N .

To calculate tacc, we will use the Equation 2.6 and express T acc
query from it:

T acc
query = (1− pacc) ·N · tquery + psp ·N · tacc

After a few modifications, we get an equation which can be used to calculate
the accelerated query time tacc:

tacc =
T acc
query − (1− pacc) ·N · tquery

psp ·N

Table 6.4 – Calculated tacc times

Scene Method Vsize tacc tacc/tquery

cbox vol6

Non-directional DF
4 67 ns 89 %
8 45 ns 60 %
16 45 ns 60 %

Anisotropic Macro-Regions
4 86 ns 115 %
8 68 ns 91 %
16 44 ns 59 %

AMR with Safe Neighborhoods
4 16 ns 21 %
8 14 ns 19 %
16 14 ns 19 %

cbox vol4

Non-directional DF
4 75 ns 54 %
8 67 ns 48 %
16 76 ns 54 %

Anisotropic Macro-Regions
4 85 ns 61 %
8 69 ns 49 %
16 55 ns 39 %

AMR with Safe Neighborhoods
4 29 ns 21 %
8 25 ns 18 %
16 23 ns 16 %

scape

Non-directional DF
0.25 189 ns 65 %
0.5 177 ns 60 %
1 84 ns 29 %

Anisotropic Macro-Regions
0.25 227 ns 78 %
0.5 182 ns 62 %
1 152 ns 52 %

To calculate tacc for various testing scenes, I used the data from the tests with
the ray marcher with 49 samples per path segment from the Tables 6.5 – 6.10.
The time needed for the accelerated visibility queries T acc

query was calculated by
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subtracting half of the measurement timer overhead from the measured T acc
query (as

was described in Section 6.2.2). The probability pacc equals to psp · pacc|sp, N can
be found in the Table 6.11 and the values of tquery are known from the previous
calculations.

The Table 6.4 contains the resulting accelerated times for three of the testing
scenes. The times for san-miguel scene could not be calculated due to inaccu-
racies in the measurements.

We can see that the Anisotropic Macro-Regions with the Safe Neighborhood
modification perform much better than the other two methods. That was ex-
pected since the Safe Neighborhoods only retrieve a boolean value from an array,
whereas the other two methods calculate distances and compare them to the
values in the distance field.

Another interesting observation is that the acceleration query time decreases
with the increasing voxel size of the distance field (which decreases the total
voxel number). This is probably due to the various caches in the CPU – the
larger voxel size means a smaller distance field and less frequent cache misses.
Figure 6.7 shows this dependency in a chart.

Figure 6.7 – Accelerated query time vs. voxel number

The larger query times in the scene scape are also interesting because the
distance field dimensions are comparable to the dimensions in the other scenes.
This can be a consequence of the incoherence of the visibility queries. In all of
the other scenes, one of the points is often (if not every time) the position of
the scene’s point light source. The scape scene, on the other hand, contains an
environment map emitter, whose emitted light needs to be sampled in various
points, totally destroying the query coherence and making the CPU’s caching
strategies less efficient.

According to the Criterion 2.8, it will be very difficult to accelerate the visibil-
ity queries with non-directional distance fields or the Anisotropic Macro-Regions.
However, we must bear in mind that the percentages in the Table 6.4 reflect the
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fact that even the original queries were quite fast. Adding more triangles would
lower the ratios and create more opportunity for acceleration.

6.3.3 Acceleration Results

This section contains the complete visibility acceleration test measurements.
First, the testing scenes were rendered without any acceleration for comparison.
Then, each of the distance field methods was tested with three different voxel
size Vsize settings and four different settings for the number of samples per path
segment sps. The setting “VPT” of the parameter sps means that the original
volumetric path tracer was used and this parameter does not make sense.

The probabilities psp were measured only once per setting of the sps param-
eter, because they don’t depend on any other parameter. Likewise, the distance
field build time Tbuild, the distance field dimensions and the probabilities pacc|sp
didn’t have to be calculated for every setting, because their values are identical
for several parameter settings.

The remaining quantities, Trender and Tquery had to be measured separately for
every combination of the parameters. Note that the Trender column actually con-
tains T acc

render where an acceleration method is used. Similarly, the Tquery column
contains T acc

query values if a distance field is used.
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Table 6.5 – Acceleration results 1/6

Non-directional DF, cbox vol6

Vsize/sps/spp Trender Tquery Tbuild psp Dimensions pacc|sp

0/1/4 7.43 s 828 ms 54.34 %
4/1/4 9.59 s 1.10 s 1.87 s 54.34 % 153× 146× 338 7.42 %
8/1/4 7.85 s 1.02 s 0.24 s 54.34 % 77× 73× 169 6.87 %
16/1/4 7.63 s 982 ms 41 ms 54.34 % 39× 37× 85 5.13 %

0/7/4 22.68 s 3.16 s 89.28 %
4/7/4 26.25 s 4.84 s 1.87 s 89.28 % 153× 146× 338 7.42 %
8/7/4 24.04 s 4.27 s 0.24 s 89.28 % 77× 73× 169 6.87 %
16/7/4 23.58 s 4.12 s 41 ms 89.28 % 39× 37× 85 5.13 %

0/49/4 2.12 m 18.72 s 98.31 %
4/49/4 2.33 m 28.99 s 1.87 s 98.31 % 153× 146× 338 7.42 %
8/49/4 2.24 m 25.48 s 0.24 s 98.31 % 77× 73× 169 6.87 %
16/49/4 2.28 m 25.62 s 41 ms 98.31 % 39× 37× 85 5.13 %

0/VPT/4 5.75 s 487 ms 31.18 %
4/VPT/4 7.71 s 599 ms 1.87 s 31.18 % 153× 146× 338 11.84 %
8/VPT/4 6.04 s 556 ms 0.24 s 31.18 % 77× 73× 169 11.04 %
16/VPT/4 5.84 s 534 ms 41 ms 31.18 % 39× 37× 85 8.38 %

Anisotropic Macro-Regions, cbox vol6

Vsize/sps/spp Trender Tquery Tbuild psp Dimensions pacc|sp

0/1/4 7.43 s 828 ms 54.34 %
4/1/4 7.30 s 922 ms 2.95 s 54.34 % 153× 146× 338 73.77 %
8/1/4 7.62 s 858 ms 0.41 s 54.34 % 77× 73× 169 68.11 %
16/1/4 7.22 s 783 ms 59 ms 54.34 % 39× 37× 85 59.37 %

0/7/4 22.68 s 3.16 s 89.28 %
4/7/4 26.34 s 4.08 s 2.95 s 89.28 % 153× 146× 338 73.77 %
8/7/4 23.42 s 3.65 s 0.41 s 89.28 % 77× 73× 169 68.11 %
16/7/4 22.52 s 3.25 s 59 ms 89.28 % 39× 37× 85 59.37 %

0/49/4 2.12 m 18.72 s 98.31 %
4/49/4 2.28 m 23.84 s 2.95 s 98.31 % 153× 146× 338 73.77 %
8/49/4 2.23 m 21.62 s 0.41 s 98.31 % 77× 73× 169 68.11 %
16/49/4 2.11 m 18.64 s 59 ms 98.31 % 39× 37× 85 59.37 %

0/VPT/4 5.75 s 487 ms 31.18 %
4/VPT/4 8.70 s 525 ms 2.95 s 31.18 % 153× 146× 338 81.42 %
8/VPT/4 6.06 s 501 ms 0.41 s 31.18 % 77× 73× 169 78.34 %
16/VPT/4 5.68 s 475 ms 59 ms 31.18 % 39× 37× 85 72.18 %
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Table 6.6 – Acceleration results 2/6

Anisotropic Macro-Regions with Safe Neighborhoods, cbox vol6

Vsize/sps/spp Trender Tquery Tbuild psp Dimensions pacc|sp

0/1/4 7.43 s 828 ms 54.34 %
4/1/4 9.89 s 585 ms 3.09 s 54.34 % 153× 146× 338 73.75 %
8/1/4 7.23 s 579 ms 0.41 s 54.34 % 77× 73× 169 68.18 %
16/1/4 6.96 s 608 ms 60 ms 54.34 % 39× 37× 85 59.44 %

0/7/4 22.68 s 3.16 s 89.28 %
4/7/4 23.98 s 2.15 s 3.09 s 89.28 % 153× 146× 338 73.75 %
8/7/4 21.45 s 2.19 s 0.41 s 89.28 % 77× 73× 169 68.18 %
16/7/4 21.20 s 2.33 s 60 ms 89.28 % 39× 37× 85 59.44 %

0/49/4 2.12 m 18.72 s 98.31 %
4/49/4 2.01 m 12.22 s 3.09 s 98.31 % 153× 146× 338 73.75 %
8/49/4 1.97 m 12.59 s 0.41 s 98.31 % 77× 73× 169 68.18 %
16/49/4 1.98 m 13.60 s 60 ms 98.31 % 39× 37× 85 59.44 %

0/VPT/4 5.75 s 487 ms 31.18 %
4/VPT/4 8.54 s 395 ms 3.09 s 31.18 % 153× 146× 338 81.40 %
8/VPT/4 5.88 s 383 ms 0.41 s 31.18 % 77× 73× 169 78.41 %
16/VPT/4 5.52 s 387 ms 60 ms 31.18 % 39× 37× 85 72.25 %

Non-directional DF, cbox vol4

Vsize/sps/spp Trender Tquery Tbuild psp Dimensions pacc|sp

0/1/4 8.05 s 1.18 s 60.51 %
4/1/4 10.21 s 1.45 s 1.95 s 60.51 % 153× 146× 338 2.14 %
8/1/4 8.53 s 1.38 s 0.25 s 60.51 % 77× 73× 169 1.91 %
16/1/4 8.41 s 1.39 s 41 ms 60.51 % 39× 37× 85 1.51 %

0/7/4 23.59 s 4.80 s 91.47 %
4/7/4 27.17 s 6.44 s 1.95 s 91.47 % 153× 146× 338 2.14 %
8/7/4 25.17 s 6.10 s 0.25 s 91.47 % 77× 73× 169 1.91 %
16/7/4 24.93 s 6.06 s 41 ms 91.47 % 39× 37× 85 1.51 %

0/49/4 2.16 m 28.57 s 98.69 %
4/49/4 2.46 m 40.22 s 1.95 s 98.69 % 153× 146× 338 2.14 %
8/49/4 2.44 m 39.02 s 0.25 s 98.69 % 77× 73× 169 1.91 %
16/49/4 2.54 m 40.67 s 41 ms 98.69 % 39× 37× 85 1.51 %

0/VPT/4 11.18 s 1.39 s 81.71 %
4/VPT/4 13.45 s 1.86 s 1.95 s 81.71 % 153× 146× 338 6.97 %
8/VPT/4 11.69 s 1.71 s 0.25 s 81.71 % 77× 73× 169 6.32 %
16/VPT/4 11.42 s 1.66 s 41 ms 81.71 % 39× 37× 85 5.13 %
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Table 6.7 – Acceleration results 3/6

Anisotropic Macro-Regions, cbox vol4

Vsize/sps/spp Trender Tquery Tbuild psp Dimensions pacc|sp

0/1/4 8.05 s 1.18 s 60.51 %
4/1/4 12.96 s 1.65 s 3.12 s 60.51 % 153× 146× 338 20.65 %
8/1/4 8.43 s 1.28 s 0.41 s 60.51 % 77× 73× 169 19.31 %
16/1/4 8.02 s 1.23 s 58 ms 60.51 % 39× 37× 85 15.37 %

0/7/4 23.59 s 4.80 s 91.47 %
4/7/4 28.23 s 6.38 s 3.12 s 91.47 % 153× 146× 338 20.65 %
8/7/4 25.18 s 5.89 s 0.41 s 91.47 % 77× 73× 169 19.31 %
16/7/4 24.43 s 5.63 s 58 ms 91.47 % 39× 37× 85 15.37 %

0/49/4 2.16 m 28.57 s 98.69 %
4/49/4 2.37 m 37.65 s 3.12 s 98.69 % 153× 146× 338 20.65 %
8/49/4 2.28 m 35.09 s 0.41 s 98.69 % 77× 73× 169 19.31 %
16/49/4 2.26 m 34.00 s 58 ms 98.69 % 39× 37× 85 15.37 %

0/VPT/4 11.18 s 1.39 s 81.71 %
4/VPT/4 14.50 s 1.83 s 3.12 s 81.71 % 153× 146× 338 35.48 %
8/VPT/4 11.75 s 1.67 s 0.41 s 81.71 % 77× 73× 169 34.70 %
16/VPT/4 11.27 s 1.54 s 58 ms 81.71 % 39× 37× 85 30.46 %

Anisotropic Macro-Regions with Safe Neighborhoods, cbox vol4

Vsize/sps/spp Trender Tquery Tbuild psp Dimensions pacc|sp

0/1/4 8.05 s 1.18 s 60.51 %
4/1/4 10.67 s 1.07 s 3.17 s 60.51 % 153× 146× 338 20.64 %
8/1/4 8.01 s 1.05 s 0.41 s 60.51 % 77× 73× 169 19.31 %
16/1/4 7.67 s 1.07 s 64 ms 60.51 % 39× 37× 85 15.37 %

0/7/4 23.59 s 4.80 s 91.47 %
4/7/4 25.90 s 4.70 s 3.17 s 91.47 % 153× 146× 338 20.64 %
8/7/4 23.34 s 4.63 s 0.41 s 91.47 % 77× 73× 169 19.31 %
16/7/4 22.85 s 4.70 s 64 ms 91.47 % 39× 37× 85 15.37 %

0/49/4 2.16 m 28.57 s 98.69 %
4/49/4 2.16 m 28.51 s 3.17 s 98.69 % 153× 146× 338 20.64 %
8/49/4 2.11 m 28.23 s 0.41 s 98.69 % 77× 73× 169 19.31 %
16/49/4 2.11 m 28.82 s 64 ms 98.69 % 39× 37× 85 15.37 %

0/VPT/4 11.18 s 1.39 s 81.71 %
4/VPT/4 13.67 s 1.26 s 3.17 s 81.71 % 153× 146× 338 35.48 %
8/VPT/4 10.99 s 1.24 s 0.41 s 81.71 % 77× 73× 169 34.70 %
16/VPT/4 10.61 s 1.26 s 64 ms 81.71 % 39× 37× 85 30.45 %
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Table 6.8 – Acceleration results 4/6

Non-directional DF, san-miguel

Vsize/sps/spp Trender Tquery Tbuild psp Dimensions pacc|sp

0/1/4 45.99 s 29.37 s 72.80 %
0.25/1/4 1.58 m 29.02 s 49.96 s 72.80 % 277× 63× 109 0.75 %
0.5/1/4 1.07 m 32.55 s 13.01 s 72.80 % 139× 32× 55 0.47 %
1/1/4 51.52 s 30.40 s 3.87 s 72.80 % 70× 16× 28 0.12 %

0/7/4 3.15 m 2.64 m 94.93 %
0.25/7/4 3.83 m 2.54 m 49.96 s 94.93 % 277× 63× 109 0.75 %
0.5/7/4 3.29 m 2.59 m 13.01 s 94.93 % 139× 32× 55 0.47 %
1/7/4 3.27 m 2.70 m 3.87 s 94.93 % 70× 16× 28 0.12 %

0/49/4 18.26 m 16.43 m 99.24 %
0.25/49/4 18.92 m 16.26 m 49.96 s 99.24 % 277× 63× 109 0.75 %
0.5/49/4 18.41 m 16.25 m 13.01 s 99.24 % 139× 32× 55 0.47 %
1/49/4 18.17 m 16.25 m 3.87 s 99.24 % 70× 16× 28 0.12 %

0/VPT/4 16.42 s 4.37 m 6.71 %
0.25/VPT/4 1.09 m 4.31 m 48.75 s 6.71 % 277× 63× 109 1.60 %
0.5/VPT/4 31.59 s 4.65 m 13.10 s 6.71 % 139× 32× 55 1.01 %
1/VPT/4 20.60 s 4.45 m 3.76 s 6.71 % 70× 16× 28 0.24 %

Anisotropic Macro-Regions, san-miguel

Vsize/sps/spp Trender Tquery Tbuild psp Dimensions pacc|sp

0/1/4 45.99 s 29.37 s 72.80 %
0.25/1/4 55.33 s 28.98 s 10.36 s 72.80 % 277× 63× 109 5.95 %
0.5/1/4 54.46 s 28.98 s 9.50 s 72.80 % 139× 32× 55 4.96 %
1/1/4 54.22 s 28.85 s 9.38 s 72.80 % 70× 16× 28 4.25 %

0/7/4 3.15 m 2.64 m 94.93 %
0.25/7/4 3.23 m 2.59 m 10.36 s 94.93 % 277× 63× 109 5.95 %
0.5/7/4 3.22 m 2.59 m 9.50 s 94.93 % 139× 32× 55 4.96 %
1/7/4 3.21 m 2.58 m 9.38 s 94.93 % 70× 16× 28 4.25 %

0/49/4 18.26 m 16.43 m 99.24 %
0.25/49/4 18.73 m 16.70 m 10.36 s 99.24 % 277× 63× 109 5.95 %
0.5/49/4 18.67 m 16.65 m 9.50 s 99.24 % 139× 32× 55 4.96 %
1/49/4 18.62 m 16.62 m 9.38 s 99.24 % 70× 16× 28 4.25 %

0/VPT/4 16.42 s 4.37 s 6.71 %
0.25/VPT/4 26.23 s 4.26 s 10.28 s 6.71 % 277× 63× 109 11.27 %
0.5/VPT/4 26.08 s 4.34 s 9.53 s 6.71 % 139× 32× 55 9.46 %
1/VPT/4 25.92 s 4.32 s 9.36 s 6.71 % 70× 16× 28 8.32 %
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Table 6.9 – Acceleration results 5/6

Anisotropic Macro-Regions with Safe Neighborhoods, san-miguel

Vsize/sps/spp Trender Tquery Tbuild psp Dimensions pacc|sp

0/1/4 45.99 s 29.37 s 72.80 %
0.25/1/4 55.57 s 29.35 s 10.48 s 72.80 % 277× 63× 109 5.97 %
0.5/1/4 55.03 s 29.18 s 9.40 s 72.80 % 139× 32× 55 4.98 %
1/1/4 54.50 s 29.16 s 9.52 s 72.80 % 70× 16× 28 4.23 %

0/7/4 3.15 m 2.64 m 94.93 %
0.25/7/4 3.22 m 2.58 m 10.48 s 94.93 % 277× 63× 109 5.97 %
0.5/7/4 3.18 m 2.56 m 9.40 s 94.93 % 139× 32× 55 4.98 %
1/7/4 3.18 m 2.56 m 9.52 s 94.93 % 70× 16× 28 4.23 %

0/49/4 18.26 m 16.43 m 99.24 %
0.25/49/4 18.90 m 16.87 m 10.48 s 99.24 % 277× 63× 109 5.97 %
0.5/49/4 18.39 m 16.39 m 9.40 s 99.24 % 139× 32× 55 4.98 %
1/49/4 18.39 m 16.40 m 9.50 s 99.24 % 70× 16× 28 4.23 %

0/VPT/4 16.42 s 4.37 s 6.71 %
0.25/VPT/4 26.15 s 4.25 s 10.60 s 6.71 % 277× 63× 109 11.30 %
0.5/VPT/4 25.27 s 4.23 s 9.72 s 6.71 % 139× 32× 55 9.48 %
1/VPT/4 25.27 s 4.23 s 9.56 s 6.71 % 70× 16× 28 8.28 %

Non-directional DF, scape

Vsize/sps/spp Trender Tquery Tbuild psp Dimensions pacc|sp

0/1/4 7.88 s 1.17 s 52.65 %
0.25/1/4 10.41 s 1.38 s 1.91 s 52.65 % 188× 188× 188 6.12 %
0.5/1/4 8.92 s 1.35 s 0.40 s 52.65 % 94× 94× 94 5.48 %
1/1/4 8.77 s 1.32 s 0.22 s 52.65 % 47× 47× 47 3.71 %

0/7/4 19.86 s 3.49 s 88.63 %
0.25/7/4 23.73 s 4.60 s 1.91 s 88.63 % 188× 188× 188 6.12 %
0.5/7/4 21.87 s 4.40 s 0.40 s 88.63 % 94× 94× 94 5.48 %
1/7/4 21.49 s 4.16 s 0.22 s 88.63 % 47× 47× 47 3.71 %

0/49/4 1.68 m 18.87 s 98.20 %
0.25/49/4 2.08 m 28.66 s 1.91 s 98.20 % 188× 188× 188 6.12 %
0.5/49/4 2.07 m 28.06 s 0.40 s 98.20 % 94× 94× 94 5.48 %
1/49/4 1.79 m 23.07 s 0.22 s 98.20 % 47× 47× 47 3.71 %

0/VPT/4 7.47 s 1.56 s 63.58 %
0.25/VPT/4 9.88 s 1.79 s 1.89 s 63.58 % 188× 188× 188 12.10 %
0.5/VPT/4 8.38 s 1.76 s 0.40 s 63.58 % 94× 94× 94 11.51 %
1/VPT/4 8.16 s 1.73 s 0.22 s 63.58 % 47× 47× 47 9.88 %
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Table 6.10 – Acceleration results 6/6

Anisotropic Macro-Regions, scape

Vsize/sps/spp Trender Tquery Tbuild psp Dimensions pacc|sp

0/1/4 7.88 s 1.17 s 52.65 %
0.25/1/4 10.11 s 505 ms 4.98 s 52.65 % 188× 188× 188 19.30 %
0.5/1/4 7.76 s 506 ms 2.72 s 52.65 % 94× 94× 94 18.97 %
1/1/4 7.43 s 505 ms 2.40 s 52.65 % 47× 47× 47 17.89 %

0/7/4 19.86 s 3.49 s 88.63 %
0.25/7/4 22.76 s 4.42 s 4.98 s 88.63 % 188× 188× 188 19.30 %
0.5/7/4 21.16 s 4.25 s 2.72 s 88.63 % 94× 94× 94 18.97 %
1/7/4 20.72 s 3.99 s 2.40 s 88.63 % 47× 47× 47 17.89 %

0/49/4 1.68 m 18.87 s 98.20 %
0.25/49/4 1.97 m 28.59 s 4.98 s 98.20 % 188× 188× 188 19.30 %
0.5/49/4 1.88 m 26.09 s 2.72 s 98.20 % 94× 94× 94 18.97 %
1/49/4 1.85 m 24.53 s 2.40 s 98.20 % 47× 47× 47 17.89 %

0/VPT/4 7.47 s 1.56 s 63.58 %
0.25/VPT/4 12.99 s 1.86 s 5.00 s 63.58 % 188× 188× 188 23.79 %
0.5/VPT/4 10.68 s 1.81 s 2.72 s 63.58 % 94× 94× 94 23.43 %
1/VPT/4 10.34 s 1.77 s 2.42 s 63.58 % 47× 47× 47 22.29 %

Table 6.11 – Visibility query statistics

Scene Vsize/sps/spp N psp

cbox vol6

8/1/4 6,300,000 54.34 %
8/7/4 26,820,000 89.28 %
8/49/4 170,530,000 98.31 %

8/VPT/4 3,670,000 31.18 %

cbox vol4

8/1/4 5,490,000 60.51 %
8/7/4 25,440,000 91.47 %
8/49/4 165,050,000 98.69 %

8/VPT/4 6,970,000 81.71 %

san-miguel

8/1/4 4,940,000 72.80 %
8/7/4 26,560,000 94.93 %
8/49/4 177,800,000 99.24 %

8/VPT/4 3,530,000 6.71 %

scape

8/1/4 2,220,000 52.65 %
8/7/4 9,220,000 88.63 %
8/49/4 58,220,000 98.20 %

8/VPT/4 1,920,000 63.58 %
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6.3.4 Discussion

As can be seen from the results of the tests in the Tables 6.5 – 6.10, the probability
of a given visibility query being spatial psp increases with the number of samples
per light path segment, which should not be surprising. Also, the probability
of a spatial test being accelerated pacc|sp increases slightly with the voxel grid
resolution. This is because a finer grid approximates the continuous distance
function more precisely.

As for the visibility query times, their dependence on the voxel grid resolution
can be described by three major influences. First, the distance field build time
increases with the increasing resolution, up to by a factor of 23, because that many
more voxels have to be visited during the propagation of the distance values. The
time of a single query also increases with the increase of the voxel grid size, as
was already discussed in Section 6.3.2.

A factor that works against the build times and query times is the decreasing
of the probability pacc|sp with the increasing voxel size. In most of the scenes, the
first two factors dominate the query time, but for example, in the scene cbox vol6
with Anisotropic Macro-Regions with the Safe Neighborhoods, the differences in
the probabilities pacc|sp are large enough for the visibility query time to actually
increase with the decreasing resolution.

If the distance field methods were to be used in a real setting, it would be
necessary to estimate the grid size with respect to the factors that were just
described, so as to ensure that the visibility query time would be as small as
possible.

In most of the scenes, the render times with the distance field are larger than
without it, with the notable exception of the Anisotropic Macro-Regions with the
Safe Neighborhoods in scenes cbox vol6 and cbox vol4. However, as I showed
in Section 6.3.2, in most cases the time spent for the accelerated query is smaller
than the time for a standard query, even for very simple scenes like cbox vol6
and cbox vol4. Therefore, the distance field methods can be expected to work
much better with complex scenes. The problem with my testing complex scene
san-miguel is that the free space in the scene is divided by columns, furniture
and vegetation to the extent that the probability pacc|sp drops to around 5%.

The scenes that will see the largest benefit from the distance field acceleration
methods will thus be scenes with a very large number of triangles and large regions
of free space. Because of the Safe Neighborhoods method, scenes with point light
sources will also benefit from the distance field acceleration much more than other
scenes.



7. Conclusion

In this thesis, I explored a number of existing methods for creation of distance
functions or distance fields, both with and without directional information. The
objective was to investigate, whether any of them could be used for acceleration of
visibility queries in participating media. I decided that if the acceleration were to
be as fast as possible, the only choice was to use the discrete grid-based distance
field methods.

Initially, I chose two methods, a non-directional distance field with the chess-
board voxel metric and directional Anisotropic Macro-Regions. The methods
were implemented into the Mitsuba open-source renderer and tested with the
existing integrators, mainly the volumetric path tracer. I also implemented a ray
marching single scattering volumetric path tracer, so that I could test the meth-
ods on an integrator that had a higher percentage of spatial visibility queries.

A debugging feature was also implemented that enabled me to visualize sets
of voxels from the distance field methods in three dimensions. The study of the
visualizations led to the creation of the Safe Neighborhoods method that I also
implemented and tested together with the previously implemented methods.

7.1 Future Work

Due to the large difference in the performance of the directional Anisotropic
Macro-Regions and a non-directional distance field, I am forced to conclude that
if any method is to succeed in acceleration of visibility queries, it has to make use
of the directional information. I thus suggest that the eventual future research
concentrates on directional methods.

The results have shown a high dependency of the acceleration potential of the
implemented methods on the geometry of the scene. For example, the addition of
two boxes to the scene cbox vol4 in comparison to the empty cbox vol6 resulted
in the decrease of accelerated spatial visibility tests from around 70% to slightly
above 20%. Also, the san miguel scene, which has a very complex geometry, has
only around 5% of accelerated spatial queries. Also, the acceleration depends on a
variety of other factors such as the number of geometrical primitives in the scene,
the used integrator, etc. It would be interesting to quantify this dependency so
as to be able to decide, in which cases to use the distance field.

The most promising method for visibility query acceleration are the Safe
Neighborhoods, both because of their speed and percentage of accelerated queries.
As was shown in the Chapter 4, with some modifications, they could be even used
to accelerate visibility queries to area lights and it would be interesting to explore
these modifications more thoroughly and implement and test them.

Future research might also focus on finding a compete set of voxels that are
unoccluded when viewed from any point of a given voxel. Similarly, one could
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strive to find completely occluded voxels, which would further accelerate the
queries by being able to provide an immediate answer not only for certainly
unoccluded visibility queries, but now also for the certainly occluded ones.
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Contents of the CD

The enclosed compact disc contains the digital version of this text and the source
code of the Mitsuba renderer with my modifications. Here, the directory structure
of the cd is briefly described.

mitsuba This directory contains the modified source code of the Mitsuba ren-
derer as well as the testing scenes.

scenes The testing scenes can be found here.

scripts The voxelization debugging script is located in this directory

voxelator.py The voxelization script

voxelixe.sh Shell script for easier execution of the above python
script.

include/mitsuba/render/genericdistfield.h

src/librender/genericdistfield.cpp Base class for the distance fields.

include/mitsuba/render/distfield.h

src/librender/distfield.cpp The non-directional distance field implemen-
tation.

include/mitsuba/render/distfield amr.h

src/librender/distfield amr.cpp Implementation of the AMR distance
field.

src/integrators/raymarcher/volraymarcher.cpp The volumetric ray
marching integrator.

include/mitsuba/render/scene.h The distance field acceleration is in
the rayIntersect function, which is defined here.

config.py The example compilation configuration file that contains the
directives needed to change the distance field compilation settings.
Note that the configuration file is for the GNU/Linux operating system
only.

tex The source codes and images for this text are found here.

pics This directory contains pictures and diagrams used in the text.

previews The screenshots and previews for the thesis text are contained
in this directory.

dp-houska.pdf The PDF version of the text.
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