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Introduction

Regression analysis plays important role in statistics being one of its most powerful
and commonly used tools for analysing relationships among variables in datasets.  It
includes many different techniques, from which only small portion is presented in the
thesis,  where the main focus always lies on the relationship between a response and
one or more predictors. 

The goal of this thesis is to describe and examine some largely used regression tech-
niques from the theoretical point of view, but first and foremost demostrate this knowl-
edge on practical example from non-life insurance.

In the first chapter  we begin by introducing the components of the basic technique
known as linear regression for the standard linear model (SLM). Although, we focus
on more complicated techniques, it would be easier for us to understand them when
we firstly describe the components of the one from which they all originate. Also we
demonstrate that the linear regression is not always the proper choice due to big restric-
tions on the form of examined relationships, which justify latter introduced techniques.

Consequently,  in  the  second  chapter  we  introduce  the  Generalized  Linear  Model
(GLM), which represent an extension of the SLM by enabling the regression analysis
to deal with a wider class of relationships.  Namely,  we allow the response to have
other than normal distribution and enable a degree of nonlinearity in the model struc-
ture. We discuss the key elements of GLM as well as available response distributions,
link functions, maximum likelihood estimates and the fact that model fitting has to be
done iteratively. Also,  we show that the cost of such generalization is that distribu-
tional results are now approximate and justified by large sample limiting results, rather
than being exact.

In the third chapter we explain new task to which we often refer in practical part of this
thesis with real life data. Namely, that we cannot use one uniform function as proper
transformation of predictor since the functional relationship between the mean of the
response and the predictors changes at certain points of their domains. Hence, in this
chapter we propose as proper technique Segmented Generalized Linear model, which
extend the possibilities of GLM by enabling these relationships to be piecewise linear.
Furthermore we introduce possible algorithms for localization of the points in which
the relationship changes, called breakpoints.

We return to the problem of proper parametrization in the fourth chapter. However,
we assume that the piecewise linear parameterization is not flexible enough to produce
reliable models. Hence, we introduce Generalized Additive Model (GAM), which 
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extend possibilities of GLM by using penalized regression splines as reparametrization
tool.  This  new  flexibility and  convenience  yields  to  two  new  problems;  it  will  be
necessary not only to pay attention how represent these splines in some predefined way
but  also  to properly reconsider  and  choose  how smooth in the  result  these  splines
should be. 

Finally,  in the  last fifth chapter  we focus on practical demonstrations of mentioned
models in terms of non-life insurance. We present business case for which satisfying
solution we will have to use all introduced techniques. Because we threat this problem
also as real life situation, we pay a  big attention besides presenting modeling tech-
niques also to business and interpretation side. 
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1. Preliminaries 

We assume that the reader is familiar with the basics in regression. However,  let us
remind that the purposse of regression is to model and study the relationships between
a given set of variables (predictors), for which one knows their true values (or is able
to predict them), and a variable (response), in which estimated values is one interested. 

We perform regression on dataset of observations which include the values of predic-
tors as well as the value of response for particular observation.

Such dataset can be easily interpreted by: 

 The matrix  representing the predictors

 

X1,0 ... X1,k

  
Xn,0  Xn,k

for which we assume:

 the predictor Xi, j is a random variable uncontaminated with measurement 
errors. Consequently, it can be treated as some fixed value xi, j  
repressenting the ith observation of jth predictor,

 the first predictor serves to model intercept and so  i  1, ..., n  it holds 
xi,0  1, 

 rank of the matrix  equals k  1 (= the number of columns).

Note: These three assumptions are not necessery but dropping them leads to signifi-
cantly more difficult models. Therefore, from now on we will use the following form
of the predictor matrix:

 

1 x1,1 ... x1,k

   
1 xn,1  xn,k

.

 The vectors representing the response: 

 

y1


yn

,  
Y1


Yn

for which we assume:

 meassurment yi is the observation of corresponding random variable Yi,

 the distribution of the random variable Yi depends on the matrix row i,

 vectors Y1,...,Yn  are mutually independent random variables.

In next two sections we introduce the basic regression model, Standard linear model,
and we look closer at the estimation of regression coefficient for this model.

Because all definitions used in this chapter  are contained in [7],  the source is men-
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Because all definitions used in this chapter  are contained in [7],  the source is men-
tioned only if it is necessary or recommended.

1.1. Standard Linear Model (SLM)

In case of the Stanard Linear Model (SLM) we assume that the relationship between
predictors and response is linear. And so, we are using linear regression to determining
the corresponding relationship which can be expressed by following equation:

i  i., for i  1, ..., n,
where

Yi  i  i, for i  1, ..., n,
E Yi  i, for i  1, ..., n

and for errors (residuals) i hold assumptions:

(E1) 1, ..., n are mutually independendent random variables, 

E2 Ei  0 , 

(E3) Constant variance: var(i) = 2 > 0. 

Note:  The variable   represents the vector of regression coefficients which values are
unknown and our goal is to estimate them. Subsequently, based on this estimations we
can determine the estimates of response itself.

Matrix form of model is

  .,

where

   ,

E   ,

  1, ..., nT ,   1, ..., nT ,   0, ..., kT .

Since predictors are treated as fixed values, using their non-linear transformations does
not cause any troubles.  We list some common versions of SLM, where the predictors
values are transformed:

1. Model of the relationship between Yi and logxi, where xi>0

Yi  0  1  log xi i,  i  1, ..., n,
is 

i  0  1  log xi ,  i  1, ..., n.
Therefore k  1 and   0, 1T .
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2. Cubic model of the relationship between Yi and xi

Yi  0  1  xi  2  xi
2  3  xi

3  i,  i  1, ..., n,
is 

i  0  1  xi  2  xi
2  3  xi

3,  i  1, ..., n .

Therefore k  3 and   0, ..., 3T .

1.2. The Least Square Estimation method

Let us introduce this basic method for estimation of regression coefficients  based on
n-observations in linear regression.

Firstly we  define  some  terms  commonly used  in  statistics.  Suppose,  we  have  the
observations y1,...,yn  of random variables  Y1,...,Yn  with distribution functions which
depend on some parameter  (vector). And we want to estimate this parameter .

Definition: A statistic T is any measurable function of random variables Y1,...,Yn; it is
also a random variable.  A (point)  estimator  is any statistic TY1, ..., Yn.  A (point)
estimate is a realized value of an point estimator that is obtained when a sample of
observations is already taken.

To estimate the regression coefficients  using Least Square Estimation (LSE) we use
the following notation:

 vector  


-  estimate  of    for  realization    of  random  sample  ;  computed  using

LSE:




  arg mink1T    T 1
T .

 vector   - estimate of  for realization  of random sample  representing fitted 
values of response in LSE; computed as:

   


 .

 vector    -  estimate  of  residuals    for  realization    of  random  sample  
representing the  difference  between  the  fitted  value  of the  response  predicted  by
the model and the true data value of the response; computed as:

    .

 descriptive  statistic  RSS  (Residual  Sum  of  Squares)  -  measures  the  discrepancy
between  the  data  and  the  estimations.  Small value  of RSS  indicates  a  good  fit  of
the model to the data: 

RSS  
T     

T   .

The values 


 have to make the model best fitting to the data in the sense of 
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minimizing RSS.

 descriptive  statistic  S2  (Residual  variance)  -  represents  estimate  of  2  for
realization  of random sample : 

S2 
RSS

nRank


RSS

n  k  1
.

To evaluate the reliability of such estimates we have to consider some properties of
corresponding estimators. So we look at the estimators of  instead of estimates:

 


- estimator of ; expressed in the following way:



 arg mink1 T   T 1

T .

Note: By definition of statistic, we have TY1, ..., Yn = LSE(Y1, ..., Yn) = 


.

In [7] is shown, that the estimator 


 has following attributes:

i. E 

 ,

ii. var 

 2T 1,

iii. 



p
 , consistent estimate.

By Gauss–Markov theorem ([7]) can be proven, that such estimator 


 under 
introduced valid conditions is the Best Linear Unbiased Estimator (BLUE) of the 
regression coefficients  and so it holds: 

iv. E 
j1

k1

 j   j2 is minimal.

   - point estimator of : 

  .


,

by applying properties of 


we get: 

i. E  .=,

ii. var   2 .T .1.T , 

iii. 
p
 , consistent estimate.

  - estimator of : 

    ,

by applying properties of 


 we get: 

i. E  0,

ii. var   2.In .T .1.T ; In is the n n identity matrix. 
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  2 - point estimator of  2: 

 2 
T .

nRank
.

Based on this properties of LSE 


and by adding assumption for distribution of the
response  we  are  able  to  evaluate  the  reliability of  estimates  by testing hypotheses
related  to  the  model.  Usually,  in  SLM  we  consider  the  distribution  to  be  nor-
mal,Nn, 2.In. In this case it can be proven e.g. : 

i. 

Nk1, 2T 1,

ii. RSS
2  nk1

2 ,

iii.



i  i

2T 1
i,i

tnk1.

Different  distributions  can  be  replaced  by asymptotic  normal  distribution  for  big
number of observations:

iv. n .

  d Nk10, 2T 1.

Note: Formulations of all used claims together with their proofs can be found in [7].

Standard linear model predicts the expected value of the response variable as a linear
combination of predictors. This implies that a constant change in the predictors leads
to a constant change in the response variable which is appropriate when a response
variable can vary essentially randomly in either direction by a relatively small amount
as it is in normal distribution. 

However,  the  assumption  of  linear  relationship  between  the  response  and  the
predictors  becomes  very  problematic  for  distributions  which  put  constraints  on
allowable values of response. For example, if the response has binomial distribution,
we expect fitted values to be in interval [0,1]  but by using SLM we could encounter
situations when the  predicted values  are  for some values of  predictors  outside this
interval. Hence, the assumptions in SLM reduce the practical usage of this model to
only a few cases in which the response actually behaves in the requested way. 

Possible way how to deal with this problem is to allow the response variable to depend
on predictors through a non-linear function  :

Yi  i. i,  i  1, ... n.
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Such relationship could lead to the two possible models:

EYi  i. ,  i  1, ... n
and

E  Yi  i., i  {1, ... n}.

While the first one represents generalized linear model where the mean is transformed
by the link function (Chapter 2.), the second one can be rewritten as SLM by trans-
froming the response and declaring new variable Zi:

Zi  Yi ,  i  1, ... n.
These two models can lead (recall Jensen inequality) to quite different results.

Note: For serie of observations it is not the same if we take log of average of these
observations or average of  log of observations.

And although, because of easier interpretation it may appear that the mean of the log-
transformed response is prefferable,  from a practical point of view is the log-trans-
formed mean of response typically much more useful. The reason for this conclusion
comes from recognition, that allowing the response variable Yi to depend on predictors
through a non-linear function  causes "much bigger problems" as we demonstrate in
following example. 

Example: Let us assume that iN 0, 2 and the non-linear function  is defined as
log function. Then for  Yi  0 we have:

Yi  logYi,  i  1, ... n.
After transforming the response itself we get: 

logYi  i. i,  i  1, ... n,

Subsequently, we can express LSE 


 for model:

ElogYi  i.,  i  1, ... n.
and get:

Ei.

  i.  i  E  i,  i  1, ... n.

By standard transformations of log-relationship between response and predictors we
get:

Yi  expE  i.ei , where iN 0, 2,

Eei  e
2

2 ,  i  1, ... n.
And so:

E Yi  expE  i e
2

2 ,  i  1, ... n.
Looking at the  above  formula,  we  can see that  the  mean of response increases  as
variance of response increases.
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Even more from:

varei  e2
 e2

 1,  i  1, ... n.
and using the assumption that the errors are uncorrelated with the predictor variables
we get:

varYi  expi.2. e2
 e2

 1,  i  1, ... n.
From the last equation we can see that the assumption of equal variances (E3) was
broken. 

These are the primary causes of the fact, that regression coefficients can not be esti-
mated by presented LSE. The fitting of regression coefficients has to be done itera-
tively by some algorithm for non-linear least squares. 
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2. Generalized Linear Model (GLM)

By GLM can be fitted certain forms of non-linear models. The idea was formulated by
John Nelder and Robert Wedderburn ([4]) as a way of unifying various other statistical
models,  including linear regression,  logistic regression and Poisson regression.  They
proposed  an  iteratively reweighted  least  squares  method  for  maximum  likelihood
estimation of the model parameters. That allows us to consider models with other than
linear dependece between predictors and mean of response and other type of response
distribution than normal.

Three Keystones of GLM

A random component specifying the conditional distribution of the response variable,
Yi, depending on the values of the predictors in the model. In this work we are using
Nelder and Wedderburn’s original formulation that the distribution of Yi  is a member
of an family of exponential distributions; so all corresponding definitions can be found
in [4].

Note:  There are methods which were developed to extend GLM to have the distribu-
tion of response variable from multivariate exponential family (such as the multinomial
distribution) or certain nonexponential families (such as the two-parameter negative-
binomial distribution)  or  there  are  methods  for  which  the  distribution  of  response
variable is not specified completely, but this is not part of this thesis. 

A linear predictor i is defined as linear function of predictors:

i  i  ,  i  1, ... n.
The structure of linear predictor  reminds the structure of the standard linear model.
And as in SLM we can use transformations of predictors to create extended versions
of GLM.

A link function , strictly monotonic and twice differentiable; transforms the mean of
the response variable to the linear predictor:

EYi  i  ,  i  1, ... n.
i  i,  i  1, ... n.

Note: Because the link function is strictly monotonic it is also invertible and we can
write:

i  1i,  i  1, ... n.
The inverse link 1 is called the mean function.  
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To sum it up, suppose that an appropriate formula describing the relationship between
i and Yi  is:

Yi  i   i,  i  1, ... n,
then the basic structure of GLM is:

i  i,  i  1, ... n.

2.1. Family of exponential distributions

As was mentioned before, we make assumptions that Yi,  i  {1, ...  n} are mutually
independent  random variables and  distributions of  Yi,  i  {1,  ...  n} belong to  the
family of exponential distributions.  We also  assume that the  type of distribution of
response is known. In this section we take a closer look at distributions from the family
of exponential distribution.

Defintition ([7]): A distribution of random variable Y  belongs to the family of exponen-
tial distributions (exponential family), if it’s probability density function can be written
as function:

f y, ,   exp 
y   b

a
 cy, ,

where a, b, c are known functions,  is so called scale parameter and  is so called
canonical parameter of the distribution.

In this thesis we work only with distributions where the function a is defined as

a    ,

where  is known constant.

This restriction of definition of function a suffices for all practical examples of GLM
presented in this thesis. The known constants  represents weight of particular observa-
tion and we use it e.g. to compensate different time exposures of observations.

The exponential family of distribution includes many distributions that are useful for
practical modelling,  especially for  usage  in insurance  are the  Poisson,  Gamma and
Binomial very suited  and  common.  Determination of functions a (only in restricted
form),  b, c and parameters ,   for  these three distributions is subsequently demon-
strated. 

Note: Normal distribution also belongs to the exponential family of distribution.
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 Binomial distribution

- the values of Y  belong to 1, ..., n, where n represents number of observations.

Density function for expected mean value EY  

fy  n
y 



n


y
1 



n


ny

can be rewritten as:

fy  exp y log


n  
 n log 1



n  
 log

n
y .

The form of density function for exponential family of distributions can be 
achieved by following substitutions:

 = 1,

a() = 1, 

  log


n  
,

b  n  log1 e,

cy,   log
n
y .

Note: Further we use special case of binomial distribution and alternative 
distribution for modelling of probability of specific occurance. 

 Poisson distribution

- the values of Y  belong to 0.

Density function for expected mean value EY  

fy 
y exp

y

can be rewritten as:

fy  exp y log  logy.
The form of density function for expenential family of distributions can be 
achieved by following substitutions:

 = 1,

a = 1, 

 = log,
b  e,

cy,   logy.
Note: Further we use Poisson distribution for modelling of number of specific 
occurances.
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 Gamma distribution

-the values of Y  belong to the interval 0, .
Density function for expected mean value EY  p  a

fp,ay 
ap yp1 expa y

 p
can be rewritten as:

fp,ay  exp 
y  p  a log p  a

1  p
 p logp log p p 1 log y.

Form of density function from expenential family of distributions can be achieved 
by following substitutions:

  p,

a  1  p,

   p  a,

b  log,
cy,    log log   1 log y).

Note: Further we use Gamma distribution for modelling of severity of specific 
occurances.

2.2. Link functions

There are many commonly used link functions and the choice of one of them for given
purpose  can  be  somewhat  arbitrary.  Although,  it  can  be  convenient  to  match  the
domain of the link function (abbreviated as link) to the support of the distribution of
the response variable.

Table 2.1 Common link functions and their inverses for i  i

Link i 1i
Identity i i

Log log(i) i

Inverse i
1 i

1

Square-root  i i
2

Logit logi  1  i 1  1  i
Probit 1(i) (i)

Log  log loglogi expexpi 
Complementary log  log loglog1  i 1  expexpi 

Note:  is the cumulative distribution function of the standard-normal distribution.

13 



Remind, that we are using distributions of the response variable defined as:

f y, ,   exp 
y   b

a
 cy, ,

For such density functions, which are defined with a canonical parameter , we intro-
duce the canonical link functions  as the class of link functions for which holds:

  .
The canonical link simplifies the GLM but other link functions may be used as well.

Table 2.2 Canonical link functions for some distributions from exponential family.

Distribution Canonical Link

Normal Identity

Binomial Logit

Poisson Log

Gamma Inverse

One of the advantages of GLM is that the choice of the link function is partly separated
from the distribution of the response. Although the domain of the link function should
match to  the  support  of  the  distribution of the  response  variable,  the  specific  link
functions,  which may be  used,  vary from one software  implementation of GLM to
another. But the choice is still important and has to be done carefully. While the choice
of canonical link is prefferable, neither the usage of e.g. the identity, log, inverse, or
square-root links for binomial data, nor the usage of e.g. the logit, probit, log-log, or
complementary log-log link for nonbinomial data are favourable.

2.3. Likelihood function

As we mentioned before,  the  GLM estimates  are seen as  the  maximum likelihood
estimates and so naturally we have to introduce term the likelihood function, which is
crucial for the process of fitting.    

Definition ([7], scalar version): The likelihood function of scale and canonical parame-
ters,  and , for a random variable Y  with density function f y, ,  is defined as

Ly,   f y, , ,
where y is some realization of random variable Y .

Note:  For  simplicity,  in  this  section we  work with  scalar  version of  definition for
likelihood function.
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The likelihood function rewritten for some distribution from exponential family is then:

Ly,   exp 
y.  b

a
 cy, .

Note: It  is nothing else than density function of random variable Y  considered as a
function of parameters ,  for given y.

The log-likelihood function is defined as:

ly,   logLy,  
y.  b

a
 cy, 

and by replacing the particular observation y by the random variable Y  the log-likeli-
hood function becomes random variable itself.  This enables us to compute its mean
value: 

E lY,  
E Y .  b

a
 E cY , .

Important step in our search for the maximum likelihood estimate (= GLM estimate) is
finding the way how to determine the value of canonical parameter   for which the
value of log-likelihood function will be in maximum. It is caused by the intivituve fact
that for the most reliable estimate of response variable we consider the most probable
one in terms of predetermined distribution. For such value of canonical parameter 
holds:

(1)E
 lY


,  
E Y  b' 

a
 0,

which implies the first important relationship for likelihood function and distributions
from family of exponentional distributions: 

(2)E Y  b' .

Definition: The value of canonical parameter for which holds the equation (2) is called
the true value of .

Now, when we know the  way how could  be trouhg canonical parameter  the  mean
value estimated,  we need to  identify the variance  of Y  in order  to  be able to  fully
describe it’s distribution (in most cases).  From the second derivation of the likelihood
function we get:

E
2 lY
2


b'' 

a
.

Theorem ([7]): For true value of  holds:

E
 lY


2

 E
2 lY
2

.

15 



Proof: 

Let’s denote support of random variable Y  as SY.
At first, we see that

E
 lY


 
SY

 logLy, 


f y, ,   y  
SY

 log f y, , 


f y, ,   y,

which after applying the chain rule
 log f y, , 




1

f y, , 
 f y, , 


,

can be rewritten as


SY

1

f y, , 
 f y, , 


f y, ,   y 

 




SY
f y, ,   y  0.

This implies


SY

 log f y, , 


f y, ,   y  0.

Differentiating the last equation again by  yields to


SY

2 log f y, , 
2

f y, ,   y 
SY

 log f y, , 


 f y, , 


 y  0,

for which after applying the same chain rule as before holds


SY

2 log f y, , 
2

f y, ,   y
SY

 log f y, , 


2
f y, ,   y  0.

Finally we get

E
 lY


2
 E

2 lY
2

. Q.E.D.

 It is to be taken that all derivatives are evaluated at true value of  for which is

sufficient regularity. Since f y, , ,  f y,,


 are continuous on their domains and

SY
 f y,,


 y  E Yb' 

a  for the true value of  is equalled to 0, the order of

differentiation and integration can be exchanged.

Recall the formula (1)  based on which for the true  value of canonical parameter  
holds:

E
 lY


2
 E

Y2  2 Yb'  b' 2

a 2
,
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where by applying (2)  we get:

E
 lY


2


E Y2  2 E Y E Y  E Y2

a 2


E Y2  E Y2

a 2


var Y

a 2
.

It  implies the second important relationship for likelihood function and distributions
from family of exponentional distributions:

(3)var Y  b''  a.
Recall that for purposes of this thesis we define:

a   
and hence:

var Y 
b''  


.

Based on (3) we define Variance function V  as:

V b'  
b'' 


,

which for the true value of canonical parameter  together with E Y  =  gives:

V  
b'' 


,

and finally, if we use (3) and return to pointwise notation, we have:

(4)var Yi  V i , i  1, ... n,
E Yi  b' i.

Looking at the equation (4) we can see, that the variance of responses Yi is a function
of its mean i  and a scale parameter . This fact represents very convenient property
of distributions from the exponential family.

Note: For cannonical link , using previous equations, holds:

1. (i)=b '1 i

2.  ' i  1
V i

Table  2.3 Variance  function  V  for  some  distributions  from exponential  family of
distributions.

Distribution Variance function

Normal 1

Binomial
i.(1-i)

ni

Poisson i

Gamma i
2

Note: For binomial distribution is  ni the number of trials.
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2.4. The estimation of regression coefficients

The first relationship (2) introduced in the previous section is crucial for fitting data in
process of GLM. It implies that the expected mean value of Yi, EYi=i,  having any
distribution from family of exponentional distributions depends  only on function b,
which is given by distribution of Yi and value of canonical parameter i:  

i  b ' i,  i  1, ..., n.
This  equation and  the  fact that  from definition of the  generalized  linear  model we
know that expected mean value depends also on values of regression coefficients 
through equation:

i  i  ,  i  1, ..., n,
leads to the equation:

b ' i  i  ,  i  1, ..., n.
We can see that by using likelihood function and maximimizing the value in canonical
parameter , the estimates of regression coefficients can be computed .

In terms of GLM, instead of one random variable for the response Y , we have the
disposal vector of observation   y1, y2, ..., yn, which are realizations of vector of
random variables   = (Y1, Y2, ..., Yn)  with same type of distribution from the family
of exponentional distributions.

Hence, it was shown in previous chapter, that for the group of functions

lyii,   logLyii,  
yi.i  bi

ai
 cyi, ,  i  1, ..., n,

we can find corresponding group of random variables with mean values

E lYii,   E logLYii,  
i.i  bi

ai
 cyi, ,  i  1, ..., n,

for which in the case of true values of cannonical parameters i we have

b ' i  1i ,  i  1, ..., n.

We can express the canonical parameters i, representing the true values of cannonical
parameters, as values of some functions  pi describing relationships between i and ,
via

(5)p i. : b '1 1i   i,  i  1, ..., n.
The vector  is supossed to be common for all response variables Yi, which are mutu-
ally independent  and  have  same  type  of  distribution  and  so  their  join  distribution
function can be written as the product of singles ones. Hence, our goal is to determine
the vector , through relationship (5), for which the log-likelihood function of this join
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the vector  through relationship (5), for which the log-likelihood function of this join
distribution for given values   y1, ... yn is in maximum:    

l,   logL,   log 
i1

n

exp
yi i  bi

ai
 cyi,  ,

where  = (1, ..., n.
Note: If  is vector of random variables,  = (Y1,...,Yn) , with vector of observations
  y1, ..., yn  then:

l,   
i1

n

lyi,  ,  i  1, ..., n.

Using the restricted form for functions ai  ( =  i), defined in section 2.1, and equa-
tion (5) the log-likelihood function can be rewritten as function of :

(6)l,   
i1

n yi p i  bp i 
 i

 cyi,  .

And now we get the formula for maximum likelihood estimate of , as: 




, 
   argmaxk1, 

i1

n yi.p i  bp i 
 i

 cyi,  ,

where 

 is maximum likelihood estimate of scale parameter .

Hence, the maximum likelihood estimates of cannonical parameters i are:

i

 p i.


  b '1 1i.


,  i  1, ..., n.

When we are working with GLM in practise, it is useful to have an estimator which
meassures the reliability of model in a similar way how RSS does in SLM. By enumerat-
ing the estimator in realizations  of vector of random variables  we get an estimate
called deviance of the model and is defined as

D, 

  2. l


,  l


,     2 

i1

n

iyii

 i
  bi

  bi
 ,

where 


i  indicates the estimate of cannonical parameter  i,  i  1, ..., n  for the
saturated model, the model with one parameter per observation, for which holds

i
  1i 

   yi,  i  1, ..., n.
If the dataset is given, the value of likelihood function for the saturated model is the
highest which the likelihood function could possibly have and is given by

i

 b '1 1i,  i  1, ..., n.

Note:  The deviance is defined to be independent from . Later we define the related
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Note:  The deviance is defined to be independent from . Later we define the related
term, scaled deviance, which on the other hand depends on  and is used to meassure
the reliability of model.

We use deviance in next section as termination condition for Newton-Raphson algo-
rithm. However, the main role it plays in testing of hypothesis (section 2.8.). 

2.5. Maximum likelihood estimate of 

Recall the  formula  (6)  for  maximum  likelihood  estimate  of    in previous  section.
Now, the process of maximalization of this formula will be done by partial derivative
of log-likelihood function with respect to each element of  and setting equal to 0. By
this we get set of equations

(7)

 l, 
  j

 
i1

n 1

 i
yi
 pii 
  j


bpii 

  j

 pii 
  j

 0,

 j  0, ..., k.

Based on formulas from previous section and by using equation (2) we have 
bpi 
 pi 

 i  1i  ,  i  1, ..., n,

which implies

1i 
 pii 


2 bpi 
 pi 2

,  i  1, ..., n.

By application of the chain rule we get following formulas:

1.
bpii.

  j

bpii 
1i 

1i 
  j

,  i  1, ..., n,

2.
 pii.
  j


 pii 
1i 

1i 
  j

,  i  1, ..., n.

Applying formulas 1., 2. to the set of equations (7) we get

 l, 
  j

 
i1

n yi  1i 
2b p i 
p i 2

1i 
  j

1

 i
 0,  j  0, ..., k.

From the relationship between  i and , equation (5), we get

 l, 
  j

 
i1

n yi  1i 
b'' i i

1i 
  j

1


 0,  j  0, ..., k.
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By using definition of variance function V , which is given by the type of distribution of
the response Yi, we get

 l, 
  j

 
i1

n yi  1i 
V 1i 

1i 
  j

1


 0,  j  0, ..., k.

Finally, the maximum likelihood estimates 


 are determined via equations

(8)
i1

n yi  1i 
V 1i 

1i 
  j

 0,  j  0, ..., k.

2.6. Newton-Raphson algorithm for solving non-linear equations for GLM

Coefficients  can be estimated by iterative approximation using iteratively reweighted
least squares (IRLS).   At each step of the iteration the value of likelihood function
increases and by the logic of GLM the model is improved. The iteration process will
end when the requested precission is achieved (the log-likelihood function does not
change significantly any more). Values of  in the last step of iteration are considered
to be the best estimates and we denote their vector by 


.

Problem: Find  by solving equation (8):


i1

n yi  1i 
V 1i 

1i 
  j

 0,  j  0, ..., k.

Solution: the maximum likelihood estimate 


, via

Algorithm:

1. Set p  0 (step counter) and  
 0

set as in case of LSE equaled to: 


 0

 T 1
T .

2. For current index p calculate vector of variance functions p = (V1
p,...,Vn

p) as:   

Vi
p  V 1i 

 p.
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3. Approximation of: 

S  
i1

n yi  1i 

Vi
p

2

by replacing 1i. by its first order Taylor expansion around 
 p

 leads to an 
approximate value of RSS (pseudo RSS) which we are minimizing (analogically to 
LSE) in order to receive estimates of regression coefficients:


i1

n 1

Vi
p

yi  1i 
 p

j1

k 1i 
  j 

 p  j  


j
p

2

.

Pseudo data

 pseudo values of response:

zi 
1

Vi
p

yi  1i 
 p 

j1

k 1i 
  j 

 p 


j
p

,

  z1, ..., znT .

 pseudo vector of predictors:

i 

1i 
1 

 p

Vi
p

, … ,
1i 

k 
 p

Vi
p ,

 
1


n

.

 pseudo RSS:


i1

n

zi i  2  T .

Iterative estimate 
 p1

 is then obtained as: 


 p1

 arg mink1T .

Solution of minimalization equals to:  
 p1

 T 1
T .

4. Check if terminating condition is met. In this work we use the condition 
implemented in statistical program  as a part of funcion glm. (The practical part 
of this thesis is done using this program.) 
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Terminating condition:

D, p1  D, p

D, p1 101
 107,

where D, p1 represents deviance for the model:

EYi  i.
 p1

.

Then a vector of estimates  p1 for the cannonical parameters  can be obtained 
from:

p1 
1
p1



n
p1

,

where

i
p1  pii 

 p1.

Note: Estimate  p1 of the scale parameter  can be obtained from

p1 
1

n k

i1

n Yi  1 i 
 p1

2

Vi
p1

.

5. If  terminating condition is not met, then increase p by one and return to the step 2, 

otherwise 
 p1

 is wanted estimate 


 and corresponding estimate 

 represents 

Pearson estimate of scale parameter .

2.7. Distribution results for maximum likelihood estimates of 

To be able to investigate the reliability of mentioned estimates we need to take a look
at maximum likelihood estimators and find out which properties they have. In general,
distributional results for GLM are not exact, but mostly they are based on large sample
approximations, which makes use of general properties of maximum likelihood estima-
tors including consistency. This leads to more complex study of corresponding asymp-
totic  properties,  which simplified  version,  based  on [5],  can  be  found  in appendix
together with the most important result 

(9)


D Nk, 1 , where n  

and   is the Information matrix with following elements

 j,l  E
 l, 
  j

 l, 
 l

, where j, l  0, ..., k.
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Usually the Information matrix  is not known and has to be estimated. Such empirical
information matrix  is  based  on theorem  introduced  in section  2.3.  equalled  to  the
negetive of the hessian matrix HH, which exact formulation can be found in [4].

Note:  For  distributions  with known scale  parameter,  ,  this  result  can  be  used  to
express  confidential  intervals  directly,  but  if  the  scale  parameter  is  unknown,  e.g.
gamma  distribution,  confidential  intervals  must  be  based  on  an  appropriate  t
distribution.

2.8. Likelihood ratio tests

Now, we present tests for 2 nested models, from which we want to choose the preffer-
able one.  There is a full model and it’s submodel which omits some variables. The
likelihood ratio tests indicate if the submodel’s fit is significantly worse than the fit of
corresponding full model.

Suppose, that we have two competitive generalized linear models:

1. i  i  , i  1, ... n,
2. i  i

  , i  1, ... n,
where   p,   p, p  p   and matrix i

  is restriction of matrix i. We say,
that the second model represent submodel of the first one to which we adress as to full
model. 

Accordingly to this models we set hypothesis:

H0 : i  i
  & H1 : i  i  ,  i  1, ... n.

Further we assume that the scale parameter  is known and  l


,  , l
 

,  are the

maximized likelihoods of these models.

In such case if the hypothesis H0 is valid, than the following holds:

(10)2 l


,  l


,  D pp
2 where n  .

Derivation of this result can be found in [6].

Note: If the hypothesis H0 is false, then in most cases the first model has much bigger
likelihood than it’s submodel. Submodel has always lower likelihood than full model.

In terms of deviance, a benchmark representing full model for good fit of models is
established by saturated model.  Remind that the deviance, section 2.4, is defined as

D, 

  2 l


,  l


,     2 

i1

n

iyii

 i
  bii

  bii
 ,

where  


i  indicates  the  maximized  likelihood  estimate  of  cannonical  parameter  i,
 i  1, ..., n for the saturated model. 
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i 1, ..., n for the saturated model. 

Notice, that the deviance is defined to be independent from the scale parameter, but
otherwise it strongly reminds the statistic in (10). Therefore we define the related term,
scaled deviance, which on the other hand depends on the estimate of scale parameter



,

DS, 

, 

 

D, 




 ,

which can be rewritten as 

DS, 

, 

  2. l


, 

 l


, 
 .

Analysis of variance ANOVA

Further we assume that  


 is maximum likelihood estimate of  for submodel and 

 is

maximum likelihood estimate of  for full model. Then for

DS, 


,  DS, 

,   2. l


,  l


, 

under H0 holds:

 in case the parameter  is known

DS, 


,  DS, 

,  D pp

2 when n  .

 in case the parameter  is unknown 

D,


D,



pp

D,



np


D Fpp,np when n  .

Derivation of these results can be found in [6].

Note: The advantage of the second result is that it can be used for hypothesis testing
based model comparison, when  is unknown. The disadvantages are the questianable
assumptions  about  distribution  of  D, 

  and  asymptotical  independence  of

D, 
 D, 

 and D, 
.
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3. Segemented generalized linear model

In practical usage of regression we can very often encouter cases in which the relation-
ship  between the  response and  the  predictors changes  only at certain points  of the
domain for some predictor  X j,  j  1, ..., k.  For  example,  the probability of some
occurance(representing the response) is strongly correlated from a certain level but up
to this level predictor has no influance at all. For such cases the linear predictor(one of
keystones in GLM) is very insufficient. However, as we will see, proper transforma-
tions of predictors can represent suitable solution. 

In this chapter we introduce the segmented generalized linear models where the rela-
tionship between the mean of the response transformed by the link function and one or
more predictors is piecewise linear. The points in which the relationship changes are
called breakpoints. The theory justifying segmented generalized linear models can be
found in [8].

The segmented generalized linear model describing the relationship between vector of
response variable  = (Y1,...,Yn) and one predictor X j with observations x1, j ... xn, j  and
one breakpoint  can be written as :

i  0  1 x1, j  2x1, j  
0  1 x i, j if x i, j  

0  1 x1, j  2 x i, j  2  if x i, j  
,

 i  1, ..., n,
where as ussual i = EYi  and    is function defined as max   , 0. 

In  general,  a  segmented  model  with  m j  breakpoints   j1, ..., jm j  describing  the

relationship between the response variable  and the predictors X1,..., Xk,  where only
one predictor X j with obseravations x1, j ... xn, j is considered to have breakpoints, is the
GLM model extended by replacing jth column of matrix  by m j  1 columns:   

x1, j x1, j  j1  x1, j  jm j
   

xn, j xn, j  j1  xn, j  jm j
.

Note: The reparametrization of matrix  can be done in analogical way for more than
one  predictor  X j  and  the  general  framework  for  the  segmented  generalized  linear
model can be achieved. From this representation it can be seen that if all breakpoints
are known we get the GLM model:

i  i
  ,  i  1, ..., n,

where  is matrix originated from matrix   with  k  1 j1
k m j columns.

In next two sections we demonstrate two available algorithms for segmented models
with one breakpoint, which give us the basic idea how the estimations of   and the
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unkown breakpoint  are done and how can be generalized for more complex models. 

To summarize our task, we extend GLM model

i  0  1 xi,1  ...  j xi, j   j1 xi, j1  ... k xi,k ,  i  1, ..., n,
 by replacing  j xi, j with following terms

 j,1 xi, j   j,2xi, j  ,

where  j,1, j,2 are regression coefficients and  is unknown breakpoint. This leads to
the segmented model.

3.1. Exact algorithm

This algrorithm represents extended version of the one itroduced in [2]. 

We assume that the segmented generalized linear model has the following form:

i  0  1 xi,1  ...  j,1 xi, j   j,2xi, j     j1 xi, j1  ... k xi,k,
 i  1, ..., n,

and can be rewritten as:

(11)
i 

0  1 xi,1  ...   j,1   j,1 xi, j   j,1 xi, j j,1   j,2 xi, j  
 j1 xi, j1  ... k xi,k,  i  1, ..., n.

By applying the following set of equations on (11):

0
  0   j,1 ,

 j,1
    j,1,

 j,2
   j,1   j,2,

we get

i  0
  1 xi,1  ...   j,1

  xi, j   j,2
 xi, j    j1 xi, j1  ... k xi,k,

 i  1, ..., n.
Note:   j,1

  is  specific  coefficient  for  the  first  segment  (x i, j  )  and   j,2
  is  for  the

second segment (x i, j  ).

The log-likelihood function, defined in section 2.3., of such model is:

l , ,   
i1

n yi p i
  bip i

 
 i

 ciyi,  ,

where we keep same notation as in the case of GLM and where vector  and vectors
i
 are vectors of  and i corresponding to the model. Again, we consider function a

in it’s  rescricted  form,  i,  and  we are  going to  estimate  not only the  regression
coefficients  but also the breakpoint .
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Note: We add breakpoint  as a paramater to the log-likelihood function. However, as
we  can  see,  such  fucntion  is  not  differentiable  with  respect  to    in  xi, j  for
 i  1, ..., n and fixed j  0, ..., k. Since

limxi, j

 l, , 
 

 limxi, j 
i1

n yi  1i
 

V 1i
 

1i
 



1




1



i1

n yi  1i
  xi, j

V 1i
  xi, j

1i
  ' xi, j  j,1

 ,

limxi, j

 l, , 
 

 limxi, j 
i1

n yi  1i
 

V 1i
 

1i
 



1




1



i1

n yi  1i
  xi, j

V 1i
  xi, j

1i
  ' xi, j  j,2



and so

limxi, j

 l, , 
 

 limxi, j

 l, , 
 

.

Hence, we can not use algorithm for solving non-linear equations based only on maxi-
malization of log-likelihood function by setting the first derivations equaled to zero.
However,  the task can be divided into finite number of local maximalizations from
which we can afterwards choose the global maximum likelihood estimate.

Let us reorder the observations yi, xi,1, ..., xi,ki1
n  with respect to the predictor X j, i.e.

xi, j  xi1, j for i  1, ... n 1 and fixed j. So, if there is some breakpoint, the follow-
ing must hold: 

(12) m  1, ... n :   xm, j or  m  1, ... n 1 :   xm, j, xm1, j.
In the first case,  can be possibly equalled to xi, j  for some i  1, ..., n and so we
have at most n different sets of log-likelihood nonlinear equations:

l, xi, j,   
i1

n yi.pi i
  bip i i

 
 i

 ciyi,  ,

which can be solved by same Newton-Raphson algorithm as was introduced in section
2.6.  Resolving  this  equations  we  get  possibly n  different  values  of  log-likelihood
function, from which we choose the maximal one and the correspondig value x, j  is
considered to be the best estimate of breakpoint ,  . We also get the estimate of .

However, the estimate from the second part of alternative (12) can have even higher
value of likelihood function and so we also have to consider the case (xm, j,xm1, j).
We get possibly n 1 different sets of log-likelihood nonlinear equations,  where we
assume  that  the  unknown  breakpoint  is  between  (xm, j,xm1, j)  for  some
m  1, ... n 1}.
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In this case, the corresponding model can be divided into two parts:

 For i  1, ..., m :

i  0  1 xi,1  ...  j,1
 xi, j   j1 xi, j1  ...  k xi,k

 For i  m 1, ..., n :

i  0
  1 xi,1  ...  j,2

 xi, j   j1 xi, j1  ... k xi,k ,

i  0
  1 xi,1  ...  j,2

 xi, j   j1 xi, j1  ...  k xi,k ,

where 0
  0

   j,2
 .

And so matrix form of model is:

 

1 0 x1,1  x1, j1 x1, j 0 x1, j1  x1,k

         
1 0    xm, j 0   

0 1    0 xm1, j   

         
0 1 xn,1  xn, j1 0 xn, j xn, j1  xn,k

0

0


1


  j,1



 j,2


 j1


k

.

This model already can be solved by Newton-Raphson algorithm introduced in 2.6.

Recall that:

0
  0   j,1

 ,

0
  0

   j,2
 ,

what implies:

 



0  


0





j,1

 


j,2


.

If  (xm, j,xm1, j), we have found a local maximum, otherwise there is no local maxi-
mum  within  interval  (xm, j,xm1, j).  We  repeat  following  process  for  every
m  1, ..., n  1.  At the end we have possibly n 1 different values of local maxi-
mum for intervals (xm, j,xm1, j). 

Finally, the global maximum of log-likelihood function, and corresponding  estimate of
regression coeficients   and  breakpoint    is given by the  maximum of this  finite
number of local maxima.

This algorithm gives us  very good  idea how the  breakpoints can be estimated,  but
because of its computational complexity it is not very efficient. Also, the correspond-
ing algorithms for extensions to more breakpoints become very complicated. 
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3.2. Algorithm based on approximate linear representation

The idea comes from possibility to approximate the non-linear term:

xi, j  
 by a first-order Taylor expansion around an initial known value 0:

xi, j 0

 0  .Ixi, j0,

where  Ixi, j0 
0 xi, j  0

1 xi, j  0 .

Note, that:
xi, j  

 0   Ixi, j0.

In the first step of algorithm we set the step counter p to 0 and choose the initial value
of breakpoint 0. The initial value 0  can represent our expert guess of breakpoint
value. The pth  step of algorithm starts by stating the standardized model with break-
point p

i  0  ...  j,1 xi, j   j,2.xi, j p

 p   Ixi, jp ...  k xi,k,

 i  1, ..., n,
which is reparametrized as

i  0  ...  j,1 xi, j   j,2.xi, j  
p


  j,3 Ixi, j

p  ... k xi,k,

 i  1, ..., n,
using

 j,3   j,2p .

Now, for this parametrized model we can use Newton-Raphson algorithm introduced
in the section 2.6. and receive estimates 


j,2, 


j,3, from which we get estimate :

 



j,2 
p  


j,3




j,2

.

If  the absolute value of estimate 


j,3 is lower than our predetermined terminate condi-

tion, the  algorithm stops and  there is no  significant improvement for    in terms of
breakpoint estimate. Otherwise the counter p increases by 1 and the cycle repeats.  

If the breakpoint exists, the algorithm in a deterministic model converges and therefore
  is  assumed  to  be  maximum  likelihood  estimate.  This  algorithm  may be  easily
extended for  models with more  breakpoints only by including the appropriate  con-
stucted variables for additional breakpoints. So, at each step the estimates of all break-
points are updated via cycle of algorithm and this is a very efficient way how to per-
form muliple breakpoint estimation. 
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Note: This algorithm is part of package segmented implemented in statistical program
 and is used in practical part of this thesis. 
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4. Generalized Additive Model (GAM)

In this  chapter  we  demonstrate  relationships  in which  GLM would  not  be  able  to
deliver precise fit. It is caused by the fact, that there are missing effective tools, besides
segmentation for  reparametrization of predictors.  Hence,  we  introduce  Generalized
Additive  Model  (GAM),  which  extend  possibilities  of  GLM  by using  splines  as
reparametrization tool. Splines are piecewise polynomias characterized as smooth (of
class C)  functions defined over predictors.  In this thesis we introduce one-dimen-
sional regression splines (over one predictor) and two-dimensional regression splines
(over a pair of predictors).  We focus on penalized regression splines, which represent
middle way between regression splines and smoothing splines.

At this place we would like to give some informal definitions([1]) related to regression
splines.

Regression spline is a non-parametric regression technique, which models non-lineari-
ties  and interactions  between variables.  The  data are  fitted  to  a set  of  spline  basis
functions (see 4.1.). On the other hand, smooting spline is a parametric method used
to fit a smooth curve to a set of given observations. There is a smoothing parameter ,
which has to controll the balance between good fitting of data and overfitting the data.
The very importatnt part of this method is roughness penalty, indicating how much is
the curve overfitting. Finally, penalized regression splines is method using the spline
basis functions and also the penalty typicall for smoothnig splines.

We assume that the proper form of model is

Generalized Additive Model with one and two-dimensiol splines

i  0  f1,1xi,1, xi,1  ... f1,kxi,1, xi,k f2,2xi,2, xi,2  ... fk,kxi,k, xi,k,
i  1, ..., n,

where : 

i. For all variables the assumptions of GLM  are valid.

ii. f j, jxi, j, xi, j  f jxi, j for  j  1, ..., k, i  1, ..., n are one-
dimensional splines.

iii.  f j,lxi, j, xi,l for  j, l  1, ..., k , j  l  and  i  1, ..., n  are two 
dimensional splines.

Note: For following choices of spline functions:

f j, jxi, j, xi, j  xi, j,  j  1, ..., k,  i  1, ..., n,
f j,lxi, j, xi,l  0 ,  j, l  1, ..., k , j  l ,  i  1, ..., n

we get the form of GLM as was introduced in the second chapter.  
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In GAM we have  to  specify a basis  for  penalized  regression splines,  along with a
corresponding definition of what is meant by the smoothness of spline (sections 4.3,
4.4). And while correct choices of basis and smoothing parameters allow us to achieve
very precise fit, on the other hand poor choices could lead to the unreliable estimates
or even to overfitting the data. This brings big amount of subjectivity to the modelling
and so the process requires besides statistical knowledges also deep understanding of
dataset. 

Note: In section 4.4, we see the main result of this chapter, namely that by choice of
the bases and roughness penalty we turn GAM into penalized GLM with regression
coefficients  and smoothing parameters .

Firstly we have to choose a set of basis functions for each spline, so that: 

1. One-dimenional regression splines could be represented by regression B-splines or 
regression thin plate splines.

2. Two-dimenional regression splines could be represented by regression thin plate 
splines.

4.1. Regression B-splines for one-dimensional splines

The regression B-splines (abbreviated from Basis splines) are constructed piecewise
from polynomial functions via

f jx  
h1

m j

 jh b jh x,

where: 

i. x belongs to the support of X j,

ii.  jh are regression coefficients, h  1, ..., m j ,

iii. b jh x are polynoms known as basis functions. 

Note: We use  jh  as notation for  j,h  due to bigger transparency in the following
sections. 

And so we assume that the effect of predictor X j for some j {1,...,k} can be approxi-
mated by a polynomial spline written in terms of linear combination of basis functions.
Degree  of  spline  f j,  d j,  is  defined  as  maximal  degree  of  polynoms
{b j1, b j2, ..., b jm j}. Corresponding theory to the following results can be found

in [3].

As was introduced in previous chapter, the relationship between response and predic-
tors can change in some values of predictors.  We dealt  with this problem by using
breakpoints, which could be automatically determined in process of estimation.
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In terms of GAM is with this changes in behaviour dealt by adding knots. Set of knots
represents values of predictors,  in which the splines are constructed.  The choice of
knot's positions is very important and has big impact on estimation. Hence, the choice
of number and position of knots becomes a crucial problem.

In terms of B-Splines for the positions of knots we can use preliminary estmimates.
Such as:

1. The knots can be selected manually, what  is common in practise and for those, 
who understand the dataset very well can be even prefferable. 

2. The knots are selected such that they segment the values of predictors into groups 
of equal size.

3. The knots are distributed at equal distances between the minumum and the 
maximum values of predictors.

4. The knots are selected by random sampling.

Let t  j  t j0, t j1, ..., t jp j be a sequence of such preliminary estimates of knot

positions for the predictor X j, for which holds:

t j0  min x1, j, ..., xn, j,
t jp j

 max x1, j, ..., xn, j,

t j0  t j1  ...  t jp j .

To  such  sequences  t  j  for  j  1, .., k  we  from  now  on  refer  as  to  the  knot
sequences. Small number of knots can cause that the spline is not flexible enough to
capture the effect of predictor but on the other hand a big number of knots can lead to
overfitting. The balance can be achieved by adding the roughness penalty(section 4.3),
which should prevent from overfitting.

For the number of knots , p j, must hold 

(13)p j  d j  h,  j  1, ..., k
where d j is equalled to degree of f j and h is index of the knot from sequence t j.
For each of the knots t jh, where for the index h the inequality (13) holds, of sequence
t  j for the predictor X j  we introduce a h-th B-splines basis function b jh, where the
order of the B-spline basis equals d j.

 Definition of h-th B-spline basis of order d j  for spline f j is given recursively on 
the degree l of basis funcion b jh.

 l  0

b jh
0 x  1 for x  t jh, t jh1

0 otherwise
.
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 l  1

b jh
l x  u jh

l x b jh
l1 x 1 u jh1

l x b jh1
l1 x,

where:

u jh
l x 

xt jh

t jhlt jh
if t jh  t jhl

0 otherwise
.

And so, for l  d j we can introduce the h-th B-spline basis function of order d j as:

b jh x  b jh
d j x.

A B-spline f j  of degree d j  is defined as a linear combination of m j  p j  d j  1 B-
spline basis functions:

f jx  
h1

m j

 jh b jh x.

Obviously, the generality of this process suffers by subjective choice of the position of
knots. However, there are splines introduced in next section which deals with knots in
more general way.

4.2. Thin plate splines for one- and two-dimensional splines

Thin plate splines (TPS) are very elegant and general solution to the problem of estimat-
ing a  regression spline  for multilpe  predictors.  They are  considered  to  be  an ideal
“smoother” , because they were designed to reach exact agreement between smooth-
ness and fitting data.  Theoretical basis are given in [4].  The general design of TPS
even solve  crucial problem of choice  of knot  positions because  basis functions are
emerged according to observed data.

In this thesis we are using the general form of regression TPS, which can be found in
[6]:

 One-dimensional regression thin plate spline for predictor X j is defined as

f jx   j0 x
i1

n

  ji  ji x,

where

i. n is number of observations,

ii. x belongs to the support of X j,

iii.   ji for i  0, ..., n are regression coefficients,

iv. x and   ji x  1
12

xi, j  x3 for i  1, ..., n are basis functions.
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 Two-dimensional regression thin plate spline for predictors X j and Xl for j  l is 
defined as:

f j,lx, y   j, l0
1 x   j, l0

2 y
i1

n

 j, li  j, li x, y,

where

i. n is number of observations,

ii. x belongs to the support of X j, y belongs to the support of Xl,

iii.  j, l0
1 , j, l0

2 , j, li for i  1, ..., n are regression coefficients,

iv. x, y and 

  for  x  xi, j2  y xi,l2
0: 

 j, li x, y  1
16 

x xi, j2  y xi,l2 logx xi, j2  y  xi,l2

  for  x  xi, j2  y xi,l2=0:  i, ji x, y  0

      for i  1, ..., n are basis functions.

On the other hand, when general form of TPS is used,  computational costs can be
large. If the dataset is large, number of parameters also goes up and the computational
complexity for estimation of the model fit is proportional to the cube of the number of
parameters.  Such computional costs  are  very high price  to  pay for  usage  of these
splines. Effective number of needed spline paramaters is in fact usually a small propor-
tion of dataset range. Hence, it seems wasteful to use so many parameters to represent
the model. This brings the question, whether approximation of TSP could be produced
with lower computational complexity.

And in the most cases of practical usage as well as in the practical part of this thesis is
used the regression TSP based on preleminary estimates of knot positions similar to
the previous section.

 One-dimensional regression thin plate spline for predictor X j with knots 
t j1, ..., t jp j  is defined as:

f jx   j0 x
h1

p j

  jh  jh x,

where

i. x belongs to the support of X j,

ii. t jh for h  1, ..., p j  are preliminary estimates of knot positions for X j,

iii.  jh for h  0, ..., p j are regression coefficients,

iv. x and   jh x  1
12 t jh  x3 for h  1, ..., p j are basis functions.
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 Two-dimensional regression thin plate spline for predictors X j and Xl for j  l  
with pairs of knots t j, l1

1, t j, l1
2 , ..., t j, lp j,l

1 , t j, lp j,l
2   is defined as:

f j,lx, y   j, l0
1 x   j, l0

2 y
h1

p j,l

 j, lh  j, lh x, y,

where

i. x belongs to the support of X j, y belongs to the support of Xl,

ii. t j, lh
1 for h  1, ..., p j,l  are preliminary estimates of knot positions for 

X j, t j, lh
2 for h  1, ..., p j,l  are preliminary estimates of knot positions 

for Xl,

iii.  j, l0
1, j, l0

2, j, lh for h  1, ..., p j,l are regression coefficients,

iv. x, y and 

 for  x  t j, lh
12

 y  t j, lh
22
0: 

 j, lh x, y 
1

16 
x  t j, lh

12
 y  t j, lh

22 logx t j, lh
12

 y t j, lh
22

 for  x  t j, lh
12

 y  t j, lh
22=0:  j, lh x, y  0

     for h  1, ..., p j,l are basis functions.

For conciseness we introduce notatation: 

1. f j  f jx, f j,l  f j,lx, y,
2.  j - vector of regression coefficients of one-dimensional spline f j for predictor 

X j,

3.  j, l- vector of regression coefficients of two-dimensional spline f j,l for 
predictors X j,Xl.

Note:  Spline  basis  functions can  be  used  as  transformations  of  predictors  without
penalties (sections 4.3,4.4) and such models can be seen as GLM. To this approach we
reffer  as  to  the  simple  regression  spline  approach.  In  a  simple  regression  spline
approach the  regression coefficients can be estimated  using same algorithm as was
introduced in section 2.6.  However the risk of overfitting the data  is very high. To
overcome the problem of finding the balance between overfitting and ensuring suffi-
cient level of fitting we use the penalized likelihood estimation, which we introduce in
next sections.
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4.3. Roughness penalty and regression splines

In this thesis we control the model’s smoothness by adding penalty for too “twisting
shape” of splines. This penalty is defined

 For one-dimensional spline for predictor X j:

J f j  
SX j

2 f jx
x2

2

 x,

 For two-dimensional spline for predictors X j and Xl, jl:

J f j,l  
SX j


SXl 

2 f j,lx, y
x2

2


2 f j,lx, y
x  y

2


2 f j,lx, y

 y2

2

 x  y,

where

i. SX j is support of X j and SXl is support of Xl,

ii. x belong to SX j, y belong to SXl,
iii. f j and f j,l are corresponding spline functions.

The integrated square of second derivative of spline function penalizes models which
include  too  “twisty”  splines.  On the  other  hand  with these  “twisty”  splines  can be
achieved better fits of data. The trade-off between model fit and model smoothness is
then controlled by smoothing parameters  j, i,l. Theory justifying this form of penalty
can be found in [6].

Note: Penalty based on the second derivative is the most common form of penalty used
in modern statistics although the method can easily be adapted to penalties based on
other derivatives.

 Because f j, f j,l  are linear in the regression coefficients  j,  j, l, the penalties can
be written as:

 J f j   jT . j. j,
where  j is vector of dimension p j  1 and  j is matrix p j  1 p j  1,

 J f j,l   j, lT . j, l. j, l, where (j,l) is vector of dimension p j,l  2 and 
 j, l  is matrix p j,l  2 p j,l  2.

Recall that p j and p j,l are numbers of knots for corresponding splines. Thus,  j and
( j, l) are matrices of known values, which depend only on basis of particular splines.
For more details we recommend [7].
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4.4. Turning GAM into penalized GLM

For the general form of GAM (used in this thesis)

i  0  f1xi,1 ...  f1,kxi,1, xi,k  f2xi,2  ...
fk1,kxi,k1, xi,k  fk,kxi,k, xi,k,  i  1, ..., n,

is the penalized likelihood function defined as:

(14)lP, ,   l, 
j1

k  j

2
 jT  j  j

j1

k1


l j1

k  j,l

2
 j, lT  j, l  j, l,

where:

i.  = (1T ,1, 2T ,...,kT),

ii. l,  is the log-likelihood function for simple regression aproach recall 
note in section 4.2.,

iii.  j, j,l are the smoothing parameters and ( j), ( j, l) are the matrices 
defined above.

Smoothing parameters determining the level of trade-off between fitting the data and
smoothness of splines. The higher the  j,  j,l  are, the smoother the estimated splines

f


j, f j,l


 will be. But if they are too high then the splines probably overfit the data and if

they are too low then the splines need not to fit the data on sufficient level. 

The GAM fitting objective (14) can be defined in terms of the model deviance as: 

(15)

 arg min D, 

j1

k

 j  jT  j  j 
j1

k1


l j1

k

 j,l  j, lT  j, l  j, l ,

where D,  is deviance defined in section 2.4. written in terms of regression coeffi-
cients  based on (5).

For given smoothing parameters can be this objective quadratically approximated by 



 arg min 

i1

n

wizi i 2 
j1

k

 j  jT  j  j 
j1

k1


l j1

k

 j,l  j, lT  j, l  j, l ,

where  wi,zi  for   i  1, ..., n  are  original  Newton  based  version  of  pseudodata
which can be found in [6].

Such  approximation  should  reasonably  capture  the  dependence  of  the  penalized
deviance on the smoothing parameters and , in the vicinity of the current choices of
the smoothing parameters, and the corresponding minimizing values of .  Penalized
likelihood  maximization  can  only estimate  model coefficients,  ,  if  the  smoothing
parameters are given.

Before  covering the  estimation  of smoothing  pamarameters,  we  have  to  introduce
number of degrees of freedom for GAM. Notice if the smoothing parameters were all
set to zero then we would get (unconstrained) GLM  and so number of the degrees of
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set to zero then we would get (unconstrained) GLM  and so number of the degrees of
freedom would be the dimension of . On the other hand, if all the smoothing parame-
ters are very high then the model is quite inflexible and therefore number of degrees of
freedom would be very low. 

Let define following terms

  
j1

k

 j  j
j1

k1


l j1

k

 j,l  j, l,

 

w1 0  0
0   
   0
0  0 wn

The  matrix of effective degrees of freedom becomes

  T 1
T 

Then the number of effective degrees of freedom (EDF) is tr(). Effective degrees of
freedom for individual smooths are found by summing the corresponding  j. j  values
for their coefficients.

Smoothing parameters can be estimated for example via cross-validation. The idea of
this method is to delete one observation at a time from dataset and try to predict it
from the model fitting to remaining observations. 

Ordinary cross-validation score is defined as :

CV  
1

n


i1

n

Di, 



This score results from leaving out one observation (leaving ith observation is denoted
by superscript [ i]) in each turn, fitting the model to the remaining data and calculat-
ing it’s deviance Di , 


 on the whole dataset. The goal is to choose a smoothing

parameter,  that produces the best predictions on data,  which haven’t been analyzed
and so we choose the one which minimize CV(). Unfortunately, this is too inefficient
and it is needed a big computional complexity to calculate CV() by leaving out one
observation at a time and fitting the model to each of the n remaining observations.  In
practise are more often used:

 in case that scale parameter  is given, UBRE score defined as : 

UBRE  D, 

 2  tr,
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 in case that scale parameter  is not given, General cross validation score 
defined as: 

GCV  
n1 D, 




1  n1 tr2
.

Substantiations and specifics for these and following results can be found in [7].

To  sum it  up,  the  maximum for  penalized  likelihood  function can be  achieved  by
penalized  Iteratively  Reweighted  Least  Squares  (IRLS)  for  fitting  objective  (15).
When at each iteration a penalized weighted least squares problem is solved and the
smoothing parameters of that problem are estimated by GCV/UBRE. Eventually, both
regression coefficients and smoothing parameter estimates converge.

It can be shown, also in [7], that solution of  this problem has the form:



 T   1

T `, where n  .

And the covariance matrix for the estimators 


 is equaled to



  T   1

T   T  1
.

The scale parameter can be estimated by





i1
n wizi i 


2

n tr
.

And as distributional result we have




D NdimE


, 


 , where n  

Note: Generally, it  does not hold E

=.  However,  if  =0 then E


=0,  with the

same validity approximately for some subsets of . Therefore, this result can be used
for testing significance of regression coefficients. 

Now we introduce distributional results used by Wald tests for expressing the corre-
sponding p-values.

We state the null hypothesis for some subvector of , j, with dimension equaled to d:

H0 :  j  0

Under this null hypothesis following claims hold:

Based on previous note we get 

 j


D Ndim j0, 

 j
 , where n  .
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Therefore, if 
 j
  is of full rank we can use

 j
 T


 j
 1  j



D
d

2,

where n   and d is dimension of  j.

Note: Penalization usually causes that the covariance matrices 
 j
  are very often not

of full rank. 

If  
 j
  is of rank r  d we define  

 j
r  as the r-rank pseudoinverse of the covariance

matrix 
 j
  and we can use

 j
 T


 j
r  j


D
r

2, where n  .

If 
 j
  contains an unknown scale parameter then we can use

 j
 T


 j
r  j


r




ntr


D
r

2, where n  .

And so, based on this distributional results we can perform Wald tests for significance
of regression coefficients  j


 in the following form:

H0 :  j  0 vs. H1 :  j  0

Note: Tests for 2 nested models from which we want to choose the prefferable one are
performed by ANOVA for GAM which represents extension of method introduced in
section 2.7 and can be found in [8]. 

To summarize it, we introduce GAM as extension of GLM in which the linear predic-
tors can also partly depend linearly on some unknown smooth functions. Regression
coefficients  are  estimated  by a  penalized  version of the  method  used  to  fit  GLM,
where an extra criterion has to be optimized to find the smoothing parameters.
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5. The practical part

5.1. The problem formulation

In this chapter we demonstrate the practical usage of models which have been intro-
duced in the previous chapters of this thesis. Generalized linear models as well as their
extension GAM have various applications in all fields related with statistics. The non-
life insurance is no exception where GLM is considered to be the best market practise
in pricing and in reserving.1 

We are going to demostrate the situation in which pricing and reserving are merged
into the one. Such situation can occure for example, when we need compute expected
losses connected  with CASCO policy,  the motor  accidence insurence,  in two  years
time horizont. However, this is also our task and to accomplish it we have to create
models for: 

 Demand              Rate: Probability that particular policy will be renewed on the end of 
the first term.

 Cancel           Rate: Probability of the middle term cancellation.

 Claims           Frequency: Frequency of claim occurrence during one year period.

 Claim          Severity: Severity of occurred claim.

 Days        to     Cancellation: Life expectence of policy in the case of middle term 
cancellation.

For  these models  we  introduce  following notation of their  expected responses  (the
mean values of corresponding responses):

 Demand Rate: D,

 Cancel Rates for the first and the second term: C1, C2,

 Claims Frequencies for the first and the second term: F1, F2,

 Claims Severities for the first and the second term:  S1, S2,

 Days to Cancellation for the first and the second term:  R1, R2.

We assume that the Demand Rate,  Cancel Rate,  Claims Frequency,  Claim Severity,
Days to Cancellation are mutually independent random variables.  Their distributions
and  specifics  are  presented  in the  corresponding sections  devoted  to  the  particular
modelling stages. 

Note: The terms in our case represent calendar years.

 1 In this thesis we are using terminology common in insurance practise.
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On our desired result we look as on the expected written burning costs in two-year
time horizon which can be expressed as:

BC  BC1  BC2,

where BC1 can be computed as:

BC1  C1
R1

365
F1 S1  1C1 F1 S1.

Note: F1 S1 represents netto premium of policy in the first year in case it hasn’t been
cancelled.  Probabilty that  policy is  not  cancelled  during  the  first  year  is  1C1.
Probability that  policy has  been cancelled  during the  first  year  is  C1  and  then R1

365

represents expected part of the year in which the policy has been valid.

And BC2 can be computed as:

BC2  D.1 C1. C2.
R2

365
.F2.S2  1 C2.F2.S2 .

Note: D.1C1 is the probability that policy isn’t cancelled during the first year and
afterwards is renewed. Otherwise, it is analogical to the computation of BC1.

The datasets on which the model are built comes from databases of Generali Insurance
Group  and  are connected  to  the  east  european markets.  Here,  we present  table  of
predictors used in final models.

Table 5.1 Predictors used in final stage of modelling

Policy.Anniversary.Month 12 1,2,…,12

Policy.Deductible.Group 4 1.No Deductibl e, 2.<=1%,2.<=2%,4.> 2%

Policy.New 2 Yes/No

Policy.Other.Drivers 2 Yes/No

Policy.Payment.Frequency 4 1,2,4,12

PolicyHolder.Bonus.Class 10 B0,B1,…,B7,M1,M2

PolicyHolder.Region 11 R01,R02,…,R11

Vehicle.Previous.owners 4 1,2,3,4

Policy.Premium Eur the premium paid in current term

Policy.Previous.Premium Eur the premium paid in previous  term

PolicyHolder.Age Years the age of pol i cyholder on the beginning of term (company 0)

PolicyHolder.Latitude Coordina tes the horizontal  GPS coordina tes

PolicyHolder.Longitude Coordina tes the vertical  GPS coordinates

PolicyHolder.Mileage.per.year Miles the avera ge a nnual  mi les

Vehicle.Age Years the age of vehicl e on the begi nning of the term

Vehicle.Power kW the power of vehi cl e engi ne

Vehicle.Sum.Insured Eur the l imit of pol icy coverage

Vehicle.Value.EUR Eur the vehicle  price  es ti ma te in current term

Categorical Predictors No. of Levels Possible Values

Continuous Predictors Units Description

Note:   Complete  list  of  available  predictors  with corresponding transformation  for
particular models can be found in attached  code. 

44 



Such task enable us  to  introduce  models  with three  types  of response  distribution,
binomial, poisson and gamma (see section 2.1.)  and serves as proper presentation of
GLM/GAM capabilities. Resulting models can be afterwards used for computation of
“optimal premium rates” by tools of optimalization.

For the technical part of this thesis we use the generalized additive modelling functions
provided by statistical program , namely it’s package mgcv. The main gam function
from this library is very much like the often used glm function(following the method
introduced in section 4.4.).  The main difference is that the gam  model formula can
include smooth term, function s(), and there is number of options available for control-
ling automatic smoothness selection or for manual controlling model smoothness. 

Individual models are created manually. We iteratively add particular predictors to the
existing models.  By method  described  in  the  following section,  which is  based  on
graphical illustration of model fit and effect of the new predictor in the single profile
analysis, we determine way how to adjust existing model. For investigation of predic-
tor importance and consequent reparametrization, we use graphical ilustration(as is the
best market practise). Besides it’s non-mathematical nature it is very usefull and brings
the  best  results.  For  such  graphical  ilustrations  we  have  created  functions,  which
source codes can be found in attached -code.  

Note: For reparametrization of the model also exist statistical algorithms, for example
the stepwise algorithm, which can deliver statistically more precise models. However,
for big datasets these algorithms usually propose models with big number of predictors
and  due  to  big  correlation  between  predictors  their  modelled  effects  can  be  also
illogical.

5.2. Demand model

In the last few years, due to econamical crisis, demand modelling became important
practise in the insurance business. It is used as tool for expressing the price elasticity of
policyholders and afterwards used for optimalization of prices on individual level. The
response of such model has binomial type of distribution and as the link function is the
most  often used  logit  or  probit.  In our  case,  the  model is  determined  by response
variable:

Response.Demand :  1 , policy was renewed
0 , policy was not renewed

,

and as link function we use:

logit i : logi  1  i.
Note: The type of regression analysis is logistic regression. 

Model construction is done iteratively and particular steps can be found in the attached
 code. However to ilustrate how the model was built, we demonstrate how the last
predictor was added to the model. 
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The formula of current model is:

(16)
logitResponse.Demand  log Policy.Premium  Vehicle.Power 

sPolicyHolder.Age, k  7  Vehicle.Age.T  Policy.Payment.Frequency 
Deductible.Group  Policy.Anniversary.Month  PolicyHolder.Region.

Note: Current model consists of predictors, listed above, described in Table 4.1. and
s(PolicyHolder.Age,  k  =  7)  represents  thin plate  spline  with  7  knots  for  predictor
PolicyHolder.Age.

We want to examine, if the extension of model by Relative.Premium.Change would
bring  statistically  significant  improvement  of  the  current  model.  Relative.Premi-
um.Change is predictor defined as:

Relative.Premium.Change :
Premium Previous.Premium

Previous.Premium
,

where Previous.Premium represents premium paid in the first term and Premium is the
offered price, which is the policyholder supposed to pay in the second term.

Firstly, we are interested in how well the current model describes dependence between
response and new predictor which we want to add.  For this purpose we use model
analysis of predictor Relative.Premium.Change for the current model, see Picture 1.:

Model Analysis
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Picture 1. Demand.Rate vs Relative.Premium Change for model DEM.10

The green line represents how predictions of the existing model depend on the values
of the new added predictor(relative premium change) and the orange line represents
actual response. The primary y-coordinates represent means of these values and the
secondary y-coordinates  correspond  to  the  counts  for  histogram  of  new predictor
which values are the x-coordinates. Same notations will be also used in all next plots,
if we didn’t say otherwise. 

Note: Functions created in  enable to focus on specific values of studied predictors
by setting manual axis  scaling.  We  use  manual scaling for  the  values  of  predictor
among 2% and 98% percentile, other values have very low exposure.
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From the plot in Picture 1. we can see that adding this new predictor will have very
probably big  impact  on  the  model  estimates.  Also,  predictor  describing  premium
relative change is very important for determination of price elasticity of policyholders
and  so  it’s  adding  is  very desirable.  From  bussiness  logic,  complicated  spline  for
description of it’s effect is not very proper and based on the shape of the dependence
is not even invetibale.  On the other hand, log(Relative.Premium.Change+1)  may be
proved to be proper transformation. Hence, as new model we propose:  

(17)

l ogit Response.Demand  log Policy.Premium
 Vehicle.Power sPolicyHolder.Age, k  7 Vehicle.Age.T

 Policy.Payment.Frequency Deductible.Group  Policy.Anniversary.Month
 PolicyHolder.Region  logRelative.Premium.Change 1.

To judge how big improvement was achieved,  we take a look on Picture 2  produced
by function after.C, which code can be found in attached  code:

Model Analysis
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Picture 2. Demand.Rate vs Relative.Premium Change for last iteration of demand 
model

If we compare plots representing model analysis before (Picture 1.) and after (Picture
2.) adding the predictor, we can observe quite big improvement in the model ability to
describe effect of relative premium change on the demand rate. We could argue, if the
transformation was the best possible and based on the plot we could find functions to
better describe effect of “bigger” relative premium changes. However, these “bigger”
changes represents only very small proportion of the dataset and their exposure is very
low and so corresponding estimates wouldn’t be very reliable. Therefore, we should
focus on  “small”  changes  where,  based  on plots,  is  this  transformation more  than
satisfing. 

The second plot in Picture 2. serves for verification of the form of resulting transforma-
tion. It  illustrates single profile analysis which represents how much would demand
rate be varying for one particular policyholder, randomly chosen, in dependence on the
values of relative premium change if all other characteristics stay constant. 
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However, graphical illustration can be somehow confusing and can be hardly seen as
correct mathematical proof of suitability of model extension. So after each iteration we
perform analysis of variance (ANOVA see section 2.7.) to compare new model with
the old one.

Accordingly, in the current (last) iteration we set hypothesis:

H0 : logitResponse.Demandi  i
. & H1 : logitResponse.Demandi  i. ,
 i  1, ... n,

where i
 represents matrix of predictors of model (16) (submodel) with correspond-

ing regression coefficients   and  i  represents matrix of predictors of model (17)
(full model) with corresponding regression coefficients 

Note:  We set  the  test to  use  2  distribution since the  scale  parameter  of  binomial
distribution is known.

The test produces following result:

Table 5.2 Anova for last iteration of demand rate model

model resid. e. df.  deviance

(16) 25 413 28 359

(17) 25 412 26 962

difference: 0.99 1 397.30

< 2.2e-16 p-value(      ):࣑

Therefore based on p-value (<2.2e-16) we can consider the extended model for more
prefferable.

Subsequently, we perform Wald test (see section 4.4.) to check if all used predictors
are after adding new predictor still statistically significant.

Table 5.3 Wald test for final demand rate model

Predictors df p-value

log(Policy.Premium)   1 53.62 2.44e-13
Vehicle.Power 1 204.61 <2e-16
Vehicle.Age.T 1 176.8 <2e-16
Policy.Payment.Frequency 3 527.31 <2e-16
Policy.Deductible.Group 3 604.6 <2e-16
Policy.Anniversary.Month 11 483.64 <2e-16
PolicyHolder.Region 9 565.75 <2e-16
log(Relative.Premium.Change + 1) 1 274.86 <2e-16

Approximate significance

 Smooth terms e. df ref. df p-value

s(PolicyHolder.Age)     5.899 5.994 226.1 <2e-16

࣑

࣑

In the presented table df represents the degrees of freedom of corresponding 2 statis-
tic for particular predictor (analogically e.df represents effective degrees of freedom).
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tic for particular predictor (analogically e.df represents effective degrees of freedom).
Based on the particular  p-values we can consider all used predictors for significant.
Same notation of this parameters will be also used in all next tables describing used
predictors of final models, if we didn’t say otherwise. 

Let’s assume that this model is considered to be sufficient and we want to verify, if it’s
quality is adequate for practical usage.  For this purposse we analyze results of final fit
by graphical illustration:  
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Picture 3. Fit Analysis for Demand.Rate

Actual vs. Predicted plot provides a visual comparison between the actual value in the
dataset and the corresponding estimated response and shows how well the model fits
the data. The x-coordinates are as before means of estimated responses and  the y-
coordinates are means of corresponding actual values. A diagonal line represents the
points where predicted and actual values are the same. For a perfect fit, all the points
would be on this diagonal. Uncertainty is described as the vertical distance between
this point and the diagonal line. This plot suggests that our model fits data in very good
way. 

The  ROC  graph illustrates  relative  trade-offs  between  benefits(hits)  and  costs(false
alarms). Thus, the ROC curve plots the false alarm rate against the hit rate for a probab-
listic estimates for a range of thresholds(10-quantiles). In these tresholds we set cut-off
probabilities  when  higher  values  of  Response.Demandi   are  undestood  as  positive
responses,  i.e.  policies are renewed.  For the specific  cut-off probabilities we  deter-
mine:  

Hit Rate 
Positives correctly classified

Total positives


TP

TP FN
,

False Alarm Rate 
Negatives incorrectly classified

Total negatives


FP

FP TN
.
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Notice,  there  are  four  possible  outcomes  for  binomial  response.  If  the  predicted
response is that the policy is renewed and the policy has been actually renewed then it
is called a true positive (TP).  However, if the policy has been actually cancelled on
anniversary then it is said to be a false positive (FP). Conversely, a true negative (TN)
has occurred when both the predicted response and the actual response suggest that
the policy is not renewed, and false negative (FN) is when the predicted response is
that the policy is not renewed while actually renewed is.

We use same notation also in the following plots analyzing the fit results, if didn't say
otherwise. 

The area under the ROC curve AUC is understood as a measure of a estimate’s accu-
racy. A measure of 1 would indicate a perfect model. A measure of 0.5 would indicate
a random forecast. The AUC is related to the (in practice frequently used) Gini coeffi-
cient G1 by the formula 

G1  2 AUC  1.

In our model area under the ROC curve is 0.76.  As a rough guide for classifying the
reliability of a model based on AUC is in the practise often used scale:

 0.90-1.00 = excellent,

 0.80-0.89 = good,

 0.70-0.79 = fair,

 0.60-0.69 = poor,

 0.50-0.59 = fail.

Therefore, our model would be considered to be "fair", at separating case where the
policy is renewed  from case  where  don't.  Estimates  from our model hence  can be
considered to be reliable enough, what together with the fact that effects of particular
response makes businness sense leads to  conclussion that created demand model is
good enough for usage in practice.

Single profile analysis for all used predictor, which can give very good visual idea of
particular effects, can be demonstrated by using attached  code. Now we interprate
model results introduced in table 5.4 with respect to the business logic: 

 Policy.Payment.Frequency- with increasing frequency of payments renewal rate is 
also increasing probably due to lower immediate payment in the moment of 
renewal.

 Policy.Deductible.Group- with increasing level of deductibles renewal rate is also 
increasing probably due to lower price level of such policies.

 Policy.Anniversary.Month- during winter is renewal rate lower in the opposite to 
the summer when it is higher what corresponds with market experience.

 PolicyHolder.Region- big differences in the renewal rates corresponds with 
standards of living in the particular regions. In richer regions we expect higher 
renewal rate. 

 Vehicle.Age.T- for older cars is renewal rate higher due to worse price options on 
the market for old cars.  

 Relative.Premium.Change- with increasing price ranewal rate is decreasing.
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 Policy.Premium- with increasing level of offered premium renewal rate is 
decreasing.  

 Vehicle.Power- with increasing power of vehicle premium renewal rate is 
decreasing.

 PolicyHolder.Age- is used spline as is market practise due to big changes in 
renewal rates for different ages 

Table 5.4 Summarizaton of predictors of final demand rate model

Estimates Std. Errors

INTERCEPT -0.7601354 0.2615817

Policy.Payment.Frequency 2 0.845097 0.0538545

4 0.7980229 0.0365623

12 0.3931987 0.0719917

Policy.Deductible.Group 2.<=1% 0.5791014 0.033996

3.<=2% 1.1341826 0.0529868

4.> 2% 1.3287439 0.1781191

Policy.Anniversary.Month 2 -0.1325529 0.0883699

3 0.0196991 0.0850213

4 0.2723835 0.0798519

5 0.5432671 0.0749716

6 0.6487246 0.0751698

7 0.7388759 0.0723102

8 0.787978 0.074717

9 0.5869404 0.0787194

10 0.431842 0.0763627

11 0.0772644 0.0762852

12 -0.2360626 0.0780358

Region R02 1.6042869 0.2186268

R03 1.2051194 0.0816404

R04 0.1897306 0.1501979

R05 1.6822947 0.1019669

R06 0.6194212 0.1400566

R07 1.7370018 0.0918404

R08 1.2447694 0.0868298

R10 1.5204394 0.0974941

R11 0.9830114 0.0852183

Vehicle.Age.T Older Car 0.9583068 0.072071

Continuous predictors Transformations Estimates Std. Errors
Relative.Premium.Change log(x+1) -2.6348671 0.1589304

Policy.Premium log(x) -0.3287215 0.0448928

Vehicle.Power identity -0.0138619 0.0009691

PolicyHolder.Age thin plate spline with 7 knots

Regression Coefficients
LevelsCategorical Predictors

Note:  The  list  of  available  predictors  together  with  plots  ilustrating impact  of  the
particular predictor on the response for this model can be found in  code. 
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5.3. Mid term cancellation models

Although mid term cancellation models usually play suporting role in the process of
pricing, they are still very important for calculations of the life time values of policies.
And while the demand rates can be increased or decreased by pricing strategy, mid
term cancellations ussualy depend on factors which can be hardly influenced.  How-
ever,  we  can find segments,  like segment  of  old cars,  for  which the  probability of
cancellation is much higher.  This recognitions  can be  crucial for  pricing strategies,
because in such segments we should not rely on very insecure future incomes from
these policies, but ratherly set prices in such a way that they will bring profit in shorter
time period.  

The probability of mid term cancellation can be described by model for cancel rate
with response defined as:

Response.Cancellation :  1 , policy was cancelled
0 , policy was not cancelled

.

Type of response distribution is binomial and as link function we are going to use:

logit : logi  1  i.
Subsequently, we perform Wald test.

Table 5.5 Wald test for final cancel rate model

Predictors df p-value

log(Policy.Premium + 1)   1 175 <2e-16
Vehicle.Age 1 318.5 <2e-16
Policy.Payment.Frequency 3 2151.6 <2e-16
Policy.New 1 1135.2 <2e-16
Approximate significance

 Smooth terms e. df ref. df p-value

s(PolicyHolder.Age)     3.451 3.79 234.7 <2e-16

࣑

࣑

Note: Based on the particular p-values we can consider all predictors for significant. 

Analysis of fit results for Cancel Rate model 
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Picture 4. Fit Analysis for Cancel.Rate
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The first plot suggests that our model fits data in good way in segmets with satisfying
exposure. Resolution of the model is quite low due to small average cancel rate in the
observed dataset. However the area under the ROC curve is 0.74, therefore our model
can be considered to be "fair" at separating cases, when policy is cancelled from cases
when don't. And so as well as for demand model holds, that estimates can be consid-
ered to be reliable enough.

Table 5.6 Summarizaton of predictors of final cancel rate model

Estimates Std. Errors

INTERCEPT -6.372869 0.148945

Policy.Payment.Frequency 2 2.393604 0.083871

4 2.857504 0.077186

12 3.675746 0.083458

Policy.New Yes -0.810422 0.024053

Continuous predictors Transformations Estimates Std. Errors

Policy.Premium log(x+1) 0.265074 0.020036

Vehicle.Age identity 0.100235 0.005616

PolicyHolder.Age thin plate spline with 5 knots

Categorical Predictors Levels
Regression Coefficients

Interpretation of model results:

 Policy.Payment.Frequency- with increasing frequency of payments cancel rate is 
also increasing probably due to nonpayment.

 Policy.New- policyholders, who stay with us one term is more probable to stay 
another term.

 Policy.Premium- with increasing level of premium cancel rate is increasing.  

 Vehicle.Age- with increasing vehicle age cancel rate is also increasing probably 
due to selling the vehicle.

 PolicyHolder.Age- is used spline as is market practise due to big changes in 
renewal rates for different ages 

In case the policy would be cancelled we need model enabling us to express part of the
year during which we would be exposed to the risk. Response for such model can be
defined as count of corresponding days as

Response.Days.to.Cancellation : k , k  1, ..., 364.
We assume that type of response distribution is Poisson and as the link function we use:

log : logi.

Note: Such model can be also used for modelling refund proportion representing part
of the premium returned to the client after cancelling the policy. 
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Table 5.7  Wald test for final days to cancellation model

Predictors df p-value

Policy.Premium 1 1206 <2e-16
Policy.Deductible.Group 3 1389 <2e-16
Policy.Payment.Frequency 1 10361 <2e-16
Policy.New 1 2802 <2e-16

࣑

Note: Based on the particular p-values we can consider all predictors for significant.
We haven’t used any splines and so propossed model belongs to the GLM.

Analysis of fit results for Day to Cancellation model 

Type of distribution of response for this model is not binomial and so we can not use
ROC, but we are still able to create Actual vs. Predicted plot. However it has slightly
different formatting. Also, we have added histogram of actual responses.
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Picture 5. Fit Analysis for Days.to.Cancellation

From these plots we can see, that our model isn’t very reliable. On the one hand in the
Actual vs. Predicted it is doing well in segments with high exposure, but histograms
show that distributions of actual and estimated differ significantly. Actual histogram
suggests that the recognition capacities of our model are not sufficient. However this
model can be considered to be adequate for our purposses due to low cancel rate,
which diminishes it’s importance.   

Table 5.8 Summarizaton of predictors of final days to cancellation model

Estimates Std. Errors

INTERCEPT 5.18 0.00224

Policy.Payment.Frequency.T 12 -0.2699 0.002651

Policy.Deductible.Group 2.<=1% 0.07373 0.002103

3.<=2% 0.07615 0.002549

4.> 2% 0.02261 0.005947
Policy.New Yes 0.08912 0.001684

Continuous predictors Transformations Estimates Std. Errors

Policy.Premium identity -6.39E-05 0.00000184

Categorical Predictors Levels
Regression Coefficients
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Interpretation of model results:

 Policy.Payment.Frequency.T- policyholders who are paying monthly are more 
probable to cancel the policy sooner.

 Policy.New- policyholders who stayed with us one term are more probable to 
cancel policy later in the next one.

 Policy.Premium- with decreasing level of premium policies are more probable to 
cancel later.  

 Policy.Deductible.Group- with increasing level of deductibles policies are more 
probable to cancel later.

Note:  The  list  of  available  predictors  together  with  plots  ilustrating impact  of  the
particular predictor on the response for both models can be found in  code.

5.4. Risk models

Price for received premium is transfer of specific risks to an insurance company.  Such
risks can be evaluated by the expected loss. In order to express this loss we compute
aggregate costs, repressenting the sum of all claims in the period of time during which
the policy covered given risks. The most datasets, as well as our, include number of
claims on policy level together with the corresponding time during which policy was
exposed to the risk. Since we are interested in number of claims which can occur in
one year time period, we define:

Claims.Frequency :
Claims.Number

Policy.Exposure
.

Note: Usually datasets are created based on informations collected to some moment in
time. However, we have to take to consideration also time delay with which are claims
reported to the insurer. Hence we have to consider extra loading(some coefficients) for
unreported claims. It is common practise to increase the number of known claims with
respect to the time period in which claim incuared. This loading is known as IBNR(In-
cuared  but  not reported).  Therefore,  in this  chapter  we  use variables  Claims.Num-
ber.IBNR and Claims.Severity.IBNR which content multiplicative coefficients increas-
ing the number and severity of reported claims by multiplying them with correspond-
ing loadings.

 Response of model for claims frequency is defined as: 

Claims.Frequency :
Claims.Number . Claims.Number.IBNR

Policy.Exposure
.

Althogh, such defined response is not an integer we still assume that type of it’s distri-
bution is Poisson and as link function we use 

log : logi.

Note: Recall, the estimation process of GLM, as well as process of GAM, simply mean
that we want to solve equations (8) based on relation between regression coefficients
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that we want to solve equations (8) based on relation between regression coefficients
and cannonical parameter. And it is possible to solve them, without any condition such
that values of observations should be integers.

Table 5.9  Wald test for frequency model

Predictors df p-value

log(Vehicle.Value.EUR + 1)    1 413.38 <2e-16
PolicyHolder.Mileage.per.year.T 1 30.51 3.33e-08
Policy.Deductible.Group 3 1542.5 <2e-16
PolicyHolder.Bonus.Class.T 6 586.56 <2e-16
Policy.Payment.Frequency  3 58.08 <1.51e-12
Vehicle.Previous.owners.T 1 46.57 <8.84e-12
Policy.Other.Drivers 1 28.08 <1.16e-07
Approximate significance

 Smooth terms e. df ref. df p-value

s(PolicyHolder.Age)     4.372 4.966 253.2 <2e-16

s(PolicyHolder.Latitude,                    
PolicyHolder.Longitude)

31.58 38.979 418 <2e-16

࣑

࣑

Note: Based on the particular p-values we can consider all predictors for significant.

Analysis of fit results for Frequency model 
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Picture 6. Fit Analysis for Frequency model

The Actual vs. Predicted plot suggests that our model fits data in very good way in all
segmets with almost any exposure and has big recognition capabilities, when it enables
to identify policyholders with low claims frequency as well as policyholders with very
high claims frequency. We also plotted Actual histogram from which we excluded the
nonclaimers to check if the shapes of distributions correspond. The distribution do not
indicates any serious problems, e.g. heavy tails. And so model can be considered to be
reliable.
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Table 5.10 Summarizaton of predictors of final frequency model

Estimates Std. Errors

INTERCEPT -4.23035 0.18341

Policy.Payment.Frequency 2 0.05357 0.02873

4 0.12856 0.01968

12 0.22237 0.03985

Policy.Deductible.Group 2.<=1% -0.62584 0.01878

3.<=2% -0.83871 0.02747

4.> 2% -1.34355 0.09948

PolicyHolder.Bonus.Class.T B1-B3 -0.17174 0.01895

B4 -0.32795 0.02475

B5 -0.5164 0.03067

B6 -0.57504 0.04269

B7 -0.86317 0.1167

M1-M2 0.18136 0.04003
Policy.Other.Drivers Yes 0.13133 0.02478

Vehicle.Previous.owners.T 2+ 0.15232 0.02232

PolicyHolder.Mileage.per.year.T 10000+ -0.13536 0.02451

Continuous predictors Transformations Estimates Std. Errors
Vehicle.Value.Eur log(x+1) 0.38662 0.01902

PolicyHolder.Age thin plate spline with 7 knots

PolicyHolder.Latitude,

PolicyHolder.Longitude

Categorical Predictors Levels
Regression Coefficients

two dimensional thin plate 
spline with 50 knots

Interpretation of model results:

 Policy.Payment.Frequency- with increasing frequency of payments claims 
frequency is also increasing what corresponds with market experience.

 Policy.Deductible.Group- with increasing level of deductibles claims frequency is 
decreasing due to no participation of insurer on small claims.

 PolicyHolder.Bonus.Class.T- with worsening driving history claims frequency is 
increasing.

 Policy.Other.Drivers- policies which cover also other drivers have higher claims 
frequency.

 PolicyHolder.Mileage.per.year-policyholders with more driven miles have lower 
claims frequency.

 Vehicle.Value.Eur- with increasing vehicle value claims frequency is also 
increasing.

 PolicyHolder.Age- is used spline as is market practise due to big changes in 
renewal rates for different ages 

 PolicyHolder.Latitude,PolicyHolder.Latitude- is used two-dimensional spline to 
create risk(heat) map.
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Severity of claims incuaring with introduced frequencies can be defined as average
amount of incuared claims and so taking into account IBNR loadings can be written
as:  

Claims.Severity :
Claim.Severity . Claim.Severity.IBNR

Claims.Number . Claims.Number.IBNR
.

Type of it’s distribution,  based  on the  corresponding histogram of actual response,
Picture 7, can be identified as gamma distribution. As link function we are also going
to use 

log : log i.

Table 5.11  Wald test for severity model

Predictors df F p-value

log(Vehicle.Sum.Insured + 1)    1 262.59 <2e-16
PolicyHolder.Region 10 7.181 2.15e-11
Vehicle.Power.T 1 31.002 2.63e-08
Vehicle.Power 1 15.095 1.03e-05
Vehicle.Age 1 133.847 <2e-16
Policy.New 1 85.908 <2e-16

Note: Based on the particular p-values we can consider all predictors for significant.
We haven’t used any splines and so propossed model belongs to GLM.

Analysis of fit results for Severity model 
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Picture 7. Fit Analysis for Severity model

The Actual vs. Predicted plot suggests that our model fits data in good way in segmets
with satisfying exposure . We also plotted Actual histogram to check if the shapes of
distributions correspond and if we do not neglect heavy tails for claims severities by
choice of gamma distribution. The distributions do not indicates any serious problems.
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choice of gamma distribution. The distributions do not indicates any serious problems.
And so model can be considered to be reliable.

Note: We haven’t used any splines and so propossed model belongs to the GLM. We
did it, because of possible overfitting caused by small size of dataset and possible big
randomness in response variable due to fact that severity of claims is variable varying
in quite big way from case to case and so can not be “perfectly” estimated. However,
during the process of fitting we have encountered the situation, when we needed to use
some form of automatic parametrization of predictors and so it was preferable to use
methods of segmented generalized linear models. Concretely, we want include Vehi-
cle.Power as predictor to the model because models for severity usually include this
variable. However, adding this predictor didn’t have expected effect due to fact that
severities of  claims increased  rapidly from some level of this  predictor,  but  to this
point it didn’t have such effect. Such point represents breakpoint and so we use algo-
rithm desribed in chapter 3. For it’s localization the propossed value was 75, and so
the new predictor 

Vehicle.Power.T  Vehicle.Power  75
was added to the model and both Vehicle.Power and Vehicle.Power.T became statisti-
cally significant.

Table 5.12 Summarizaton of predictors of final severity model

Estimates Std. Errors

INTERCEPT 2.16266 0.297507

Region R02 -0.164668 0.125111

R03 -0.191607 0.058521

R04 -0.251708 0.107425

R05 -0.336999 0.065714

R06 -0.081864 0.091791

R07 -0.344235 0.061558

R08 -0.180122 0.061199

R09 -0.150787 0.097942

R10 -0.143919 0.065783

R11 -0.204905 0.061755

Policy.New Yes -0.174832 0.018863

Continuous predictors Transformations Estimates Std. Errors
Vehicle.Sum.Insured log(x+1) 0.552542 0.034098

Vehicle.Power identity -0.004196 0.00108

Vehicle.Power max(x-75,0) 0.006394 0.001148

Vehicle.Age identity 0.07509 0.00649

Categorical Predictors Levels
Regression Coefficients

Interpretation of model results:

 PolicyHolder.Region- regional differences are to be expected.

 Policy.New- policyholders in the first year cause claims with smaller severity than 
in the next year.
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 Policy.Deductible.Group- with increasing sum insured claims severity is also 
increasing due to higher limit of coverage.

 Vehicle.Power- vehicles with small or big engine power causes claims with higher 
severity than vehicles with an average power. 

 Vehicle.Age- with increasing vehicle age severity is also increasing.

 Expected Burning costs, aggregate expected loss during one year, for our risk models
on the policy level are then given by:

EAggreage loss  EClaims.Frequency.EClaims.Severity.

5.5. Results

We have prepared all models in order to be able to complete the task which we have
stated in the section 6.1.  and that compute expected losses connected with CASCO
policy in two years time horizont. To demostrate possible results and to recapitulate
used  predictors  we  introduce  example  computed  for  random  policyholder  profile.
Attached  code can provide results for any profile selected by user.  

Table 5.13 Values of predictors for random profile

First Year Second Year

Policy.Anniversary.Month 5 5
Policy.Deductible.Group 2.<=1% 2.<=1%

Policy.New Yes No
Policy.Other.Drivers No No
Policy.Payment.Frequency 4 4
Policy.Premium 340 350
Policy.Previous.Premium 340
PolicyHolder.Age 35 36
PolicyHolder.Bonus.Class B5 B6
PolicyHolder.Latitude 45 45
PolicyHolder.Longitude 26 26
PolicyHolder.Mileage.per.year 11000 11000
PolicyHolder.Region R01 R01
Vehicle.Age 1 2
Vehicle.Power 80 80
Vehicle.Previous.owners 1 1
Vehicle.Sum.Insured 8000 8000
Vehicle.Value.EUR 10000 9000

Predictors
Random Profile

Note: The gray color of fill sugests that the value of predictor can change between the
first and the second term, other are considered to be constant. 
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Model Results for such values of predictors:

Table 5.14 Model results for random profile

Cancel Rate 6.63%
Days to Cancellation 204.97
Claims Frequency 18.78%
Claim Severity 833.04
Demand Rate 23.81%
Cancel Rate 14.90%
Days to Cancellation 187.59
Claims Frequency 16.73%
Claim Severity 1069.56

1 Year

2 Year

Written burning costs,  as  were stated  in the section 6.1.,  for  the first  year and  the
second year:

BC1  C1.
R1

365
.F1.S1  1 C1.F1.S1

BC2  D2.1C1. C2.
R2

365
.F2.S2  1C2.F2.S2

Evaluation for demonstrative model results gives:

BC1  151.94 Eur

BC2  36.89 Eur

Note: Burning costs for the second year are diminished by probability, that policy is
even “alive”  in the second  term, otherwise our  expected costs for  the second term
would be: 

C2.
R2

365
.F2.S2  1C2.F2.S2  165.95 Eur

To sum it up, we propose extension of GLM approach, typically used in insurance, to
investigate the risks connected with non-life policy.  On the one hand, we are able to
achieve more precise model fits by introducing segmented generalized linear models
and  GAM. On the  other hand,  we  also propose  method  for calculation of burning
costs, which takes to consideration not only risk factors for one year time period but it
focus on probable written costs during the expected life of the policy in two years' time
horizon.  This horizon could be theoretically extended for the infinite period but due to
volatility of the market and the small portion of non-life CASCO policies surviving
more than two years we choose this variant. However, in more stable environment and
for other products this method can be analogically extended.  We believe that potential
of this method lies in creating new pricing strategies using the processes of optimiza-
tion, when we could optimize the expected written margin as the function of offered
premium in the first term with respect to the expected life of the policy.
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Appendix

I. Consistency of maximum likelihood estimator

In order to derive an maximum likelihood estimator we would expect, that we have to
make an assumption about the type  of distribution from which response originates.
However, the distributions can often differ without affecting the form of the maximu-
mum likelihood estimator. Hence, the general theory of maximum likelihood estima-
tion can  be  developed  without  reference  to  a  specific  distribution  of the  response
variable. In order  to reveal important characteristics of the likelihood estimators, we
firstly investigate the properties of the corresponding log-likelihood function.

For  simplicity of  presentation we consider  the  case  where    is  the  sole  parameter
common  for  Y 1, ..., Yn  of  and  so  for  log-likelihood  function  we  have  l, 
:=l, ,  where    is  as  ussual  vector  of  observations  of  random  variable    =
(Y 1, ..., Yn) . In seeking for the estimate of the parameter , we regard to it as to an
argument of the log-likelihood function while the response is considered to have fixed
values. However, in analysing the statistical properties of log-likelihood function, we
return the role of random compoment to the response (we use insted of vector of fixed
values    random sample  ).  This  "randomness" is  consequently transferred  to  the
cannonical parameter maximising likelihood. Hence, 


 becomes estimator with statisti-

cal properties.

Remind 

l,   
i1

n

lYi, ,

from which by multiplying both sides of equation by 1
n

 we get

1

n
.l,  

1

n
.

i1

n

lYi, .

For any value of , this represents a sum of mutually independent random variables
with not  only same type  of distribution,  but  also  with the  exact  same distribution,
because  of distribution of Y1, .., Yn  are  determined  by same cannonical parameter.
Hence, the Law of large numbers can be applied to the previous equation

1

n
.l,  P E lYi,  , where n  .

As we have shown in section 2.3., the expression

E
1

n
.
i1

n

lYi, 

is maximal in the true value of cannonical parameter , for now denotate it as 0.
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Therefore

1

n
.l,  P E

1

n

i1

n

lYi, , where n  

implies, that the estimated value 

, which maximize 1

n
.l,  converges under some

assumptions of regularity to the true value of cannonical parameter 0. This leads to
the consistency of maximum likelihood estimation. And so, in the process of estima-
tion the distribution of 


 becomes increasingly concentrated around the true value of

cannonical parameter 0. Maximum likelihood estimators are often not unbiased, but
their consistency implies asymptotic unbiasedness, as dataset size tends to infinity.

Note: To show that 

 converges to the true value of cannonical parameter 0  in some

well ordered manner as n   requires an assumption of some regularity. For exam-
ple, we need to be able to assume, at least, that if 1  and 2 are “close”, then l1, 
and  l2,   are also  “close”.  Luckily,  in vast  majority of  practical situations such
conditions hold.

A  fundamental result  is,  that  as  the  sample  size  increases,  the  likelihood  function
divided by the sample size tends to stabilise in such sense that it converges in probabil-
ity at every point in its domain to a constant function. This leads to the recognition,
that estimates by maximum likelihood functions are for big datasets very stable. On the
other hand this method achieves poor results for small datasets.

For simplicity of explanation, the above argument dealt only with a single parameter 
and responses were independent observations of a random variables from one distribu-
tion. In fact, consistency holds in much more general circumstance: for vector parame-
ters  and  non-independent  data  which  do  not  necessarily all  come  from  the  same
distribution.

II. Large sample distributions of maximum likelihood estimators

To obtain the large sample distribution of the maximum likelihood estimator 

,  we

express a  Taylor expansion of the log likelihood function around the  true value  of
cannonical parameter , 0:

l  l0
 l0


.  0
1

2
.
2 l0
2

.  02 
1

6
.
3 l0
3

.  03 .

In pursuing the asymptotic distribution of the maximum likelihood estimator we can
concentrate upon a quadratic approximation which is based on the first three terms of
this expansion. The reason is, as we have mentioned above, that the distribution of the
estimator becomes increasingly concentrated in the close distance of the true value of
cannonical parameter 0  as the size of the sample increases. Therefore, the quadratic
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cannonical parameter 0  as the size of the sample increases. Therefore, the quadratic
approximation  becomes  increasingly  accurate  for  big  datasets  in  which  we  are
interested.

The quadratic approximation at the point 0 is

l  l0
 l0


.  0
1

2
.
2 l0
2

.  02.

It’s derivative with respect to  is

 l



 l0



2 l0
2

.  0.

Using the fact, that l


 evalueted in maximum likelihood estimator 

 must be eqaual

to 0, we find that evalatution of expression in 

 leads to

0 
 l0



2 l0
2

.  0.

It can be rewritten as:

(18)n .  0 
 1

n
. l0



1
n . 

2l0
2

.

Now the top part of this fraction has mean value zero: 

E
1

n
.
 l0


 E
1

n
.

i1

n  lYi0



1

n
.

i1

n

E
 lYi0


 0

since 0 is the true value of cannonical parameter  (see section 2.3. equation (1) ).

And the formula from Theorem, section 2.3.,   together with previous result lead to
following expression of variance

var
1

n
.
 l0



1

n
.E

 l0


2


1

n
.E 

i1

n  lYi0


2

Let’s define measure   known as Fisher’s Information as:

  E 
i1

n  lYi0


2

 Note: Clearly the measure increases with the size of the dataset. 

And so:

var
1

n
.
 l0




n

.

Using the fact, that  lYi 0


 for i  1, ..., n are mutually independent and identically

distributed random variables we can apply the Central limit theorem and get: 
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1

n
.
 l0



D N 0,


n

, where n  .

For the bottom part of the fraction (18) from the Law of large numbers we get: 

1

n
.
2 l0
2


P 1

n
.E

 l0


2


n

, where n  .

Finally, combining last two result and equation (18) we get the limiting distribution :

n .  0 
D N 0,

n

 , where n  .

This leads to: 

  0 
D N 0, 1 , where n  .

In  establishing  these  results,  we  have  considered  only the  case  where  only single
parameter has to be estimated. This enabled us to proceed without using vectors and
matrices. Neverheless, nothing essential has been ommited. In the case where  is a k-
dimensional vector, we define the Information matrix   (extension of Fisher’s Informa-
tion) with following elements

 j,l  E
 l0, 

 j
.
 l0, 

l
, where j, l  1, ..., k.

Therefore, in case of k-dimensional vector , the result is a vector of parameters




D Nk0, 1. where n  .

This represents general result for maximum likelihood estimate. Hence, consequently
for maximum likelihood  esmitate 


 in which we are  interested,  using equation (5)

from section 2.4 it holds:




D Nk, 1, where n   and

where the Information matrix  has following elements

 j,l  E
 l, 
  j

.
 l, 
 l

, where j, l  1, ..., k.

Note: Usually the Information matrix  will not be known, until 0  is, and it has to be
estimated by putting 


 into the expression for . 
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