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Chapter 1

Introduction

One of the most prominent subfields of graph theory is definitely the theory
of sparse graphs, where the object of study is not the family of all graphs, but
somehow restricted sub-family. This restriction can be of various forms, for in-
stance, we can simply prescribe a bound on the maximum number of edges in the
graph, or we can define a specific parameter for graphs and investigate only those
graphs for which this parameter is small. The fundamental example of sparse
graphs are the planar graphs, which have very natural definition—they can be
drawn in a plane without edge crossings—and also posses many good structural
properties, e.g., they have very few edges and contain small separators. Planar
graphs have been studied at least since the 19th century, when the famous Four
colour conjecture was formulated. Since then this area has evolved profoundly,
both in terms of new conjectures and solved problems.

What makes the idea of restricting graphs so attractive? One argument is that
the restrictions carry with them very useful properties which make the graphs
much easier to work with, compared to unstructured chaos of the family of all
graphs. However, the “true reason” is much deeper. Ideally, we would like to be
able to solve any problem on graphs in fast, exact and reliable way. But the results
from complexity theory tell us, that unless P is equal to NP, this is not possible
— thus we have to make a compromise. One way is to have algorithms that
are either not exact and approximate only, or algorithms that are not reliable
and work using some randomness. The other way is to restrict the family of
investigated graphs. And very often, this restriction is exactly of the “sparse” or
“structural” style.

However, not only algorithmic applications motivate research in this area.
Structural results about graph classes are interesting on their own and often
provide tools for proving theorems about graphs in general. Also, many results
about graphs can be generalised to relational structures and model theory. In
turn, tools and language of model theory have proven very applicable for purely
graph theoretical results.

Yet another area this thesis is related to is the area of dynamic data structures.
In the usual static setting, we are given a property, e.g. “graph is triangle free”,
and we are supposed to be able to decide for a given graph whether it has the
property or not. In the dynamic setting, the graph we are dealing with dynam-
ically changes over time. That is, we must implement operations of two kinds,
query—reporting whether the graph has the property or not, and modify—for



instance, adding or removing an edge to the graph.

There are again various motivations for this kind of approach. Firstly, many
natural phenomena, for instance a graph of some social network, are from the
definition changing over time. Instead of having a static algorithm and running
it repeatedly after each change, it makes more sense to keep a “dynamic track
of information”. The same applies for the situation, where we are running some
subprocedure on a structure we are gradually building. Examples of such appli-
cations are given later.

In the rest of the thesis, the reader first encounters a gentle and informal
introduction to the vast areas of parametrised complexity, sparse graph theory,
algorithmic model theory and dynamic data structures. Emphasis is on results
and tools with algorithmic flavour, especially on those that will be applied or are
related to the next part, where two data structures the author has developed are
presented with all rigorous detail.

The first data structure serves to keep a tree-depth decomposition of a graph.
Decompositions are a corner-stone of structural graph theory. Possibly the most
famous structural result, the Graph Minor Theorem of Robertson and Seymour,
investigates the decompositional parameter of tree-width. And as if that were
not enough, tree-width gained even more popularity with the Courcelle’s theo-
rem, which puts it in the context of algorithmic meta-theorems. Both results rely
heavily on the associated decomposition of the graph, and both have inspired
other results that investigate other parameters and decompositions in these con-
texts. More information about tree-depth and its importance will be given in
2311

The second data structures serves to keep track of occurrences of some spec-
ified patterns in a larger structure. A simple example thereof is counting of tri-
angles in a planar graph, which can be modified by adding and removing edges,
under the condition that it remains planar. This so-called subgraph problem has
a rich history in both static and dynamic setting, and it has found applications
in areas like social networking or bioinformatics.



Chapter 2

Preliminaries

2.1 Parameterised Complexity

The purpose of this section is to introduce notions from the field of computa-
tional and parametrised complexity, and shortly survey its historical development
as well as its important tools.

We use standard terminology and notation from graph theory, see e.g. the
classical textbook by Diestel [28]. Throughout the thesis, by G we usually denote
a big “sparse” graph whereas H stands for small graph which can be arbitrary.
Very often we will work with (rooted) trees and forests, which we denote by T
and F respectively.

For the analysis of algorithms and their running time we use the standard
random-access machine (RAM) model, see the book [20] for details. We make
use of the asymptotic O-notation, and sometimes hide expression independent of
|[V(G)| in it — such expressions might depend on some structural parameter of
the considered graph class, because we consider that parameter to be very small
compared to the size of the graph. Also, when we say that an algorithm runs in
polynomial (linear) time, we mean that the dependence on |V(G)| is polynomial
(linear); dependence on other parameters may be worse.

We assume familiarity with basic notions of computational complexity, namely
with NP-hardness and reductions. For reference, see the book by Arora and
Barak [9]. The notion of NP-hardness, which appeared in Cook’s paper in 1971
[19], serves as a first step for distinguishing whether for a problem there is an
efficient algorithm. Informally, a problem is NP-hard, if an efficient algorithm
for it gives an algorithm for every problem solvable in polynomial time with a
help of guessing oracle. A more practical criterion of determining that a certain
problem P is NP-hard is showing that some existing NP-hard problem P’ can
be solved using P. A list of known NP-hard problems is huge — already in 1972
Karp [62] has provided a list of 21 NP-hard combinatorial problems, for example
vertex cover, maximum clique or 0-1 integer programing. For more information,
see the book by Garey and Johnson [55]

The chief goal of parametrised complexity is to provide a finer classification
of problems that are NP-hard, and identify in what cases we can achieve an
efficient solution of a problem that is generally NP-hard. As the name suggest,
the approach to do this is to measure the time complexity of an algorithm not
with respect just to n, but to some other value, called parameter, which usually



represents some property of the graph or is just the maximum allowed size of a
solution. Let us give some specific examples.

2.1.1 Examples of parameterised problems

A wvertex cover of a graph G is a set of vertices A such that every edge of G is
incident to at least one vertex of A. The problem of finding minimum vertex cover
for G is NP-hard. However, if we consider parameterisation by the size of the
solution, that is, we want to decide whether GG has a vertex cover of size at most
k, there is an algorithm which runs in the time O(2*-n). The idea behind it is an
example of the so-called depth-bounded search tree method. Consider arbitrary
edge uv of G. If there is a vertex cover A of GG, then at least one of u, v must be
in A. Therefore we branch into two subproblems, one assumes u € A and works
in G — {u}, the other v € A and works in G — {v}. After investigating k edges
in every branch, if we are left with an edgeless graph, we have found a vertex
cover of size at most k, otherwise there is none. A problem for which there is an
algorithm with such kind of running time, that is, of the form f(k)p(n) where
f is arbitrary function and p is a polynomial, is called fized-parameter tractable
(FPT).

Another algorithmic technique, called kernelization or data reduction, tries
to make the problem easier by simply reducing its size, instead of some clever
organisation of the data. Let us illustrate it on the vertex cover problem also.
First, notice that if there is a vertex v of degree one, then we can clearly put
into the cover the other vertex of the edge adjacent too v. Also, if there is a
vertex v of degree strictly greater than k and we are looking for a vertex cover
of size at most k, then we must always include v in it, otherwise we would not
be able to cover all the edges adjacent to v. The reduction consists of applying
these two rules as long as possible. Now comes a crucial observation, that if the
reduced graph has strictly more vertices than k2, then it cannot have a vertex
cover of size at most k£ — every vertex has degree at least two so the graph has
more than k? edges, but every vertex cover at most k edges. Therefore, we only
have to solve the vertex cover for a graph of size at most k2, which can be done by
brute force. The reduction rules can be applied in time O(n +m) where m is the
number of edges, and the brute force search in time O(2¥°k). The kernelization
idea is of particular importance for us, since our application in chapter B3 uses it.
Also, the relation between FPT and kernelization is straightforward: a problem
has an FPT algorithm iff there is an algorithm which reduces any instance of the
problem to an instance of size bounded by a function of the parameter only, such
that the reduction preserves solutions (allows recovery of the solution).

To show a problem which is not FPT unless P=NP, consider the following.
A k-colouring of a graph G is a mapping c¢: {1..k} — V such that for every edge
uv we have c¢(u) # c(v). The problem is to determine whether a graph has a
k-colouring. For k < 2 this problem is trivial, but already for £ = 3 this problem
is NP-hard, thus we cannot parametrise it by the number of colours.

This problem remains NP-hard even for planar graphs, thus trying restriction
to such classes of graphs also does not help. However, planarity indeed helps
in many cases. For instance, if we are deciding 4-colourability, there is a simple
algorithm for planar graphs — one that always answers “yes”, which is guaranteed



to be correct thanks to the 4-colour theorem [5]. For something less trivial,
consider the problem of dominating set. A set A of vertices is dominating if
every vertex of (G is either in A or adjacent to a vertex in A. When we restrict
ourselves to planar graphs only, there is an algorithm for deciding the existence
of a dominating set of size at most k that runs in time O(8* - n) [3]. This result
is obtained by the method of bounded-depth search trees, but in a very intricate
way — compared to the vertex cover example.

2.1.2 Parameterised Complexity Hierarchy

The problem of dominating set itself seems to be much harder than the ver-
tex cover. When tackling some computational problem, the first step is usu-
ally to either find a polynomial algorithm (hence showing the problem is easy)
or prove that it is NP-hard. Sadly, this is not always feasible, but luckily,
parametrised complexity gives us a finer classification hierarchy. It consists of
classes W1], W2],..., which can be defined by satisfiability problems of various
restricted logics or as classes of problems solvable by some restricted boolean cir-
cuits. As we are only illustrating the theory, let us just give explicit description of
the classes W[1] and W[2], which are the most commonly encountered ones any-
way. The weighted CNF-satisfiability is a problem of deciding for a given formula
¢ in conjunctive normal form and an integer k whether there is a satisfying assign-
ment for ¢ such that at most k variables are set to true. Analogously, weighted
3-CNF-satisfiability is restricted to formulas with clauses of size at most three.
A parameterised problem P is in W/[1] iff there exists a parametrised reduction
from P to weighted 3-CNF-satisfiability. Parametrised reduction works similarly
as to reductions in the classical complexity theory, with the addition that the size
of the parameter of the image depends only on the size of the parameter of the
reduced instance.

For instance, the problem of finding a clique and the problem of finding an
independent set are reducible to each other even in the parametrised sense — by
taking the complement of the graph, independent set becomes a clique and vice
versa, and their sizes do not change. On the other hand, although the vertex
cover problem is reducible in the classical sense to the independent set—again by
taking the complement of the graph—it is not reducible to it in the parametrised
sense, since if the size of the cover is k, the size of the corresponding independent
set is n — k, which does not depend on the value of k£ only.

The W([l]-hard problems are defined as those to which weighted 3-CNF-
satisfiability can be reduced in the parametrised sense, W1]-complete problems
are then those that are both W[1] and W{l]-hard. The classes W[2], W|[2]-hard
and W |[2]-complete are defined similarly, but with weighted CNF-satisfiability in
place. Notable examples of W [1]-complete problems are the problems of finding
a clique (parameterised by the size of the clique) or deciding whether a non-
deterministic single-tape Turing machine stops within k& steps. Notable examples
of W[2]-complete problems are the dominating set problem or deciding whether a
non-deterministic multi-tape Turing machine stops within & steps. Problems that
admit an FPT solutions are sometimes called W[0] — as we have seen, vertex cover
is one such problem. In general, proving that some problem, say k-dominating
set, is in W[2], is not as strong as proving that for some fixed k it is NP-hard,



but it shows that it is unlikely to expect anything better than algorithm running
in time O(n¥) — this is the “finer classification” we mentioned before.

All the W(i] classes are contained in the classes W[P], for which there is a
nice definition from [I] — a problem is in W[P] if it can be solved by a non-
deterministic machine which does at most h(k)logn non-deterministic step and
at most f(k)p(n) steps altogether, for some functions f and h and a polynomial
p. The original definition [32] is also in terms of satisfiability problems. Reader
familiar with more complexity theory can observe a similarity between Ladner’s
theorem, which says that there are infinitely many classes between P and NP
(unless P=NP). This has actually been one of the motivations for the development
of the whole parameterised complexity theory (see [31]). Also, the polynomial
hierarchy (from complexity theory), defined in terms of quantifier alterations, has
some relation to our world, see the logic-related chapters of [49).

The hardness of dominating set did not discourage mathematicians form work-
ing on it, quite the contrary, it stimulated a deeper investigation of the problem.
Instead of parametrising just by the size of the solution, we can look more into
the structure of the graph. Specifically, there is an FPT-algorithm for dominat-
ing set parameterised additionally by the genus of the graph, running in time
O((249)*n?) [43], obtained again by the technique of bounded-depth search trees.
This is not an exceptional case — for hard problems, we generally try to find as
detailed and fine parameterisation as possible. Such approach brings us better
understanding to where exactly lies the hardness of the problem, in other words,
which parameter has the most influence on the complexity of solution and causes
the “combinatorial explosion”. Results of this kind are interesting from the the-
oretical point of view and can also explain why some heuristics perform better in
practice.

Speaking of the genus, it brings us to another interesting topics. First of all,
deciding the genus of a graph was shown to be NP-complete in 1989 [108] and later
in 1999 [77] to be solvable when parameterised by the genus in linear time in the
size of the graph. Genus and graphs on surfaces played an important role in the
landmark Graph Minor Theorem by Robertson and Seymour [93], which says that
every proper minor-closed graph class can be described by finitely many minor
obstructions. One of the consequences actually partly inspired the development
of the parametrised complexity theory itself. The problem of testing whether a
graph H is a minor of a graph G is in general NP-complete (follows already from
Karp [62] by considering for instance Hamiltonian path), but for a fixed H can
be solved in time O(|V(G)|?) [98]. This implied already in 1990 that deciding of
the genus of the graph is FPT.

However, parameterised complexity differs from the graph minor theory in a
profound detail. The results of graph minor theory are often either existential
or very often involve large constants making them not too practical, whereas
parameterised complexity has always held practical feasibility important [33].
Still, the importance of the graph minor theory is huge, as we will see in the next
section. Before we get there, let us just mention general sources for parametrised
complexity theory. The first monograph is from 1999 by Downey and Fellows [34],
fathers of the theory, followed by a book by Niedermeier [87] which emphasises
algorithms and applications and by a book by Flum and Grohe [49] which is
oriented more towards structural results.



2.2 Structural Graph Theory

The purpose of this section is to introduce some notions commonly used in
structural approach to graph theory. The word “structural” itself does not have
any precise definition, but results and approaches in this part of graph theory
have many ideas in common, which we try to exemplify here. One of the possible
interpretations of the term is that we have a graph class C and try to find a
simple description of every graph in C — say, we want to have a small set of “basic
components” and rules how to glue them together according to some structure.
A trivial example thereof is the classical theorem for 2-connected graphs — every
such graph arises from a cycle by gluing paths to it.

Another recurring idea in this area is capturing of “structuredness” of graphs
in some well-defined parameter. The simpler the structure, the lower the value
of the parameter is. This is somehow shared with the parameterised complexity,
but we should stress a slight difference — whereas in parametrised complexity,
the parameter is very often (but definitely not always) the size of the solution,
here the parameter is solely a property of the graph itself. This difference also
reflects the emphasis of these two areas — in parametrised complexity, we are
more interested in the nature of the computational problem; in structural graph
theory, the graphs themselves are the point of interest.

2.2.1 Treewidth

No other parameter deserves a prominent place more than the ubiquitous
treewidth. A tree-decomposition of a graph G = (V, E) is a tree T' = (B, F)
where to each b € B we associate a subset of vertices of GG, such that

® [Upep b=V, that is, every vertex is contained in some b,
e V{u,v} € E 3b € B {u,v} C b, that is, every edge is contained in some b,
e Vv € V the set {b: v € b} induces a connected subgraph of T

The vertices of T are usually called bags. The width of a decomposition is de-
fined as maxycp|b| — 1. The treewidth of a graph G is the minimum width of
a decomposition of G. For instance, the trees have treewidth one (which is the
explanation for the —1 in the definition). The treewidth of a graph intuitively
measures how close a graph is to a tree, in other words, how “thick” its tree-like
structure is.

This definition of treewidth comes from the Graph Minor Theorem area [94].
However, other equivalent definitions have appeared even before, for instance one
as subgraphs of k-trees. A k-tree is either a clique on k vertices, or arises from a
smaller k-tree by a adding a new vertex and joining it to a clique of k —1 vertices.
Clearly, a graph has treewidth at most k iff it is a subgraph of a (k—1)-tree. This
definition comes from [10], and has had algorithmic/decompositional applications
in quite early time, see [7]. We mention that the definition of k-tree was inspired
by that of simplex, a notion from topology. In the whole Graph Minor Theory,
topology of graphs and their embedding properties play an important role.



Computing tree-width

One can either compute treewidth exactly, which is NP-complete [§] but FPT
with respect to the actual value of treewidth [12]. However, it has been shown
that this FPT algorithm (which is even linear) does not perform very well practice
[T0T]. On the other hand, there are many heuristics that do not give exact value
of treewidth but usually quite good approximation and perform well in practice;
these heuristics exploit the variety of equivalent definition of treewidth [I5]. For
instance, one can construct tree-decomposition recursively by the min-degree rule,
which selects vertex v of smallest degree, puts v in a bag with all its neighbours,
removes v from the graph and adds an edge between every two non-adjacent
neighbours of v. Also, there are algorithms that aim on specific small values of
k, or algorithms that work with specific graph classes.

Furthermore, it is interesting to obtain for a given graph G lower bounds on
treewidth. A simple one comes from degeneracy — treewidth is at least as big as
the degeneracy of G. However, this bound is sometimes horribly bad, for example
for planar graphs — their degeneracy is at most 5, but treewidth can be arbitrarily
big (e.g., grid). For planar and similar graphs the notion of brambles is useful
for obtaining a better bound. A bramble is a collection of subsets of vertices,
such that each two subsets either share a vertex or there is an edge between two
vertices, one from each set. The order of a bramble is the size of a smallest set .S
such that S intersects every set in the bramble. Brambles are, in a sense, a dual
concept to treewidth, as the maximum order of a bramble is equal to treewidth
plus one [102]. There are some heuristics that construct brambles of large order,
thus lowerbound treewidth [I6]. For more on computing treewidth, see [14, [13].

Applying treewidth

First of all, it is important to say that graphs with bounded treewidth do
appear in practice — probabilistic networks, chemical compounds, control-flow
graphs of programs all tend to have small treewidth (see [13]). Graph classes
with small tree-width are for instance outerplanar graphs (planar graphs that
can be drawn in plane such that every vertex lies in the outerface) or series-
parallel graphs (a class of graphs that arise by gluing K5 graphs according to two
rules of parallel composition and series composition). Planar graphs do not have
bounded tree-width, but something can be salvaged — the tree-width of a planar
graph is bounded by a function of its diameter, which makes them a class with
local-bounded treewidth, a notion we will discuss more in 2.4

Treewidth has many applications, both outside graph theory — e.g., VLSI
layouts, matrix factorisations, evolution theory (see [11]); and in graph theory
itself. Many NP-complete or even PSPACE- and P#-complete problems become
polynomial on graphs with bounded treewidth. Examples of these include Hamil-
tonian path, Dominating set, Vertex cover, Chromatic number. But it is not the
list of individual problems that is the most striking, much stronger result is a
theorem by Courcelle [21], that states that for every problem from a very general
class there exists an FPT algorithm with respect to the length of the formula and
treewidth to decide the formula. The class of such problems includes for instance
those mentioned above. This theorem is an example of meta-theorem, that is,
a theorem that gives “infinitely many” algorithms. We will discuss this matter

10



more in [2.4]

Beyond Treewidth

Treewidth is not the only parameter of its kind. Pathwidth is defined as
treewidth with the exception that the decomposition graph is a path, not an
arbitrary tree. This parameter also rose during the proof of the Graph Minor
Theorem in [91], as a tool to deal with forest minors. Cliquewidth, appearing first
in [24], is defined by a sequence of gluing recursive operations, the value of the
parameter depends on the complexity of operations (number of auxiliary labels
they require). Its name stems from the fact that complete graphs have bounded
cliquewidth, so, unlike treewidth, there are classes with high edge density that
have bounded cliquewidth. For the other direction, treewidth at most k& implies
cliquewidth at most 2F. Analogues of Courcelle’s theorem [21] hold for cliquewidth
[22, 23], although slightly weaker. As for some sad news, FPT algorithm for
computing cliquewidth is not known. Also, Hamiltonian cycle or Chromatic
number are W[1]-hard with respect to cliquewidth [50].

Another interesting parameter is neighbourhood diversity. It has been defined
in [71] while describing classes for which a faster version of Courcelle’s theorem
holds, which is partly related to our result in Chapter [38l Graph has neighbour-
hood diversity at most k if its vertices can be partitioned into k groups such
that the neighbourhood of a vertex depend only on the group the vertex is in.
This parameter is incomparable to treewidth (consider a path and a clique), but
cliquewidth is at most neighbourhood diversity +1. For more information about
this parameter, see [65].

Important property of treewidth is the separation of vertices. This has inspired
the definition of branchwidth [97], which instead of vertices separates edges. A
decomposition for this parameter is a cubic tree T where the leaves are labelled
by edges of the decomposed graph GG. Each non-leaf vertex t of T" partitions the
edges of G in two sets, the number of vertices of G' that is common to both sets is
the width ¢. The width of the decomposition is then the maximum over all ¢, the
branchwidth of the graph is minimum width over all decompositions. In terms
of value it is essentially the same as treewidth — b <t +4+1 < f%lﬂ However, its
edge-aimed definition makes it easy to generalise into hyper graphs, which was
important for the Graph Minor Theorem. Also, branchwidth can be defined for
other structures for which some kind of connectivity makes sense—for instance,
matroids.

For more information about these and other width parameters, see the survey
[59].

2.2.2 Structural Theorems

This part deals with results of more theoretical kind. Namely, we will discuss
the already mentioned Graph Minor Theorem in some detail and related results.

The oldest investigated graph class are definitely the planar graphs. The most
famous problem related to them, the question whether for every planar graph we
can colour its vertices by 4 colours such that no two adjacent have the same
colour (that is, properly coloured), has been posed already in 1852. Its solution
came in 1977 [5] and was based on the technique of discharging — basically, one

11



argues that every big graph can be reduced to a smaller one such that a solution
can then be extended, and then a number of minimal configurations with respect
to the reduction rules is analysed by hand. The proof of this theorem has been
revolutionary since it has used computer for analysing the minimal configurations.
Even today, no short proof of this theorem is known (although there is a simpler
proof [90]).

This problem gave rise to the branch of graph theory called graph colouring.
Chromatic number of graph G is the minimal number ¢ such that vertices of G
can be properly coloured with ¢ colours. The question is usually of the form:
Given a class of graphs, what is an upper bound on chromatic number of graphs
in this class? It has been solved for graphs embeddable on a given surface — a
tight upper bound was given already in 1890 [58], with the exception of the plane;
and the answer is given by the Heawood formula:

{7 + /49 — 24)(J
2 )

however, the bound has been shown to be tight much later — the last case has
been solved in 1968 (see [89]).

There is another important theorem tied to planar graphs, Kuratowski’s theo-
rem [70]. It says that graph is planar if and only if it does not contain K5 or K33
as a minor. This is a recurring pattern in structural graph theory — characterising
a graph class by forbidden substructures. Can this theorem be also extended to
other surfaces? The situation is quite funny — although we know the list of for-
bidden minors explicitly only for the projective plane (and there are 35 forbidden
minors, see [78]), the answer is yes. It has been proven for non-orientable case
first [6] and later in general [96].

Graph Minor Theorem

However, this kind of characterisation can be extended even further, namely to
proper minor-closed classes. A class C is minor-closed whenever for every G € C
and for every H, if H is a minor of G then H € C. Furthermore, class is proper if
it does not contain every graph. The already mentioned Graph Minor Theorem
[93], whose proof spans over 20 papers, then says that every proper minor-closed
class can be characterised by a finite list of forbidden minors. Crucial is the word
finite — the existence of an infinite list is trivial, because one can just take all
graphs not in the given class. Alternatively, the theorem can be spelled in terms
of orderings: there are no infinite antichains for the minor relation on graphs,
that is, the class of graphs is well-quasi-ordered by the minor relation.

The importance of this theorem is illustrated by the fact that a great num-
ber of graph properties are inherited by minors — for instance, being cycle-free,
embedabbility to a fixed surface or other topological properties. Also, all the
mentioned width parameters are preserved by taking minors. Another example
is the property of being series-parallel. It has been proved already in 1952 [30]
that series-parallel graphs are characterised by not having a K -minor. Similarly,
forests have no Kjz-minor, and 4-colourable graphs have no Ks-minor (this is
proven using the Four Colour Theorem).

The Graph Minor Theorem, originally called Wagner’s conjecture, has been
possibly inspired by a simpler case saying that the class of all rooted forests is
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well-quasi-ordered by the minor relation, proven in 1960 [69, [106]. The proof is
not that hard — one assumes the converse statement and constructs a “minimal”
infinite antichain. Then, using the fact that every rooted tree can be decomposed
into two trees by cutting one of the edges between the root and its first son, a
smaller antichain is obtained, which is a contradiction.

The proof of the Graph Minor Theorem itself is much harder, although it also
starts by taking a minimal infinite antichain. However, no decomposition as for
trees is at hand, which means we have to work harder. Let GG; be the first graph
of the sequence, then we know that the remaining graphs have no G;-minor and
thus have special structure.

First consider the case that G is planar. Here is a point when treewidth
comes into play —in [95] it is proved that for every planar H the class of graphs
that do not have H as a minor has bounded treewidth, and that for every class C
with bounded treewidth there is a planar graph H such that C is H-free (that is,
no graph in C has a minor isomorphic to H). The proof of the theorem uses dual
characterisation of treewidth — graphs with large treewidth have big grid minors,
and vice versa. Thus, our GGi-free sequence has bounded treewidth. Then the
original proof for forests can be modified by working with the decompositions
instead.

When G is not planar, the situation is more complicated, and one has to
invoke the so-called Structure Theorem from [99]. This theorem basically says
that G1-free graphs have “two-dimensional” component for which certain modifi-
cation of the tree-approach works, and “approximately embeddable” component,
for which topological methods are used. For more surveying of this topic, see the
survey [74].

2.3 Bounded Expansion and Nowhere-denseness

In this section we will introduce the concepts of bounded expansion and
nowhere-dense classes. As these concepts are fundamental to our results in Chap-
ters [l and M, we will investigate them more formally and thoroughly. The whole
theory has been developed mainly by Nesettil and Ossona de Mendez, who have
recently authored a corresponding monograph [85] to which we refer the reader
for this whole section.

2.3.1 Treedepth

Treedepth is yet another parameter to measure structuredness of a graph.
The name comes from the paper [81], where it has been defined as follows. Let
T be a rooted tree, we define the partial order on 7" by putting a < b when the
vertex a lies on the path from b to the root of T'. The depth of a tree is the length
of a longest path from a leaf to the root. The closure clos(T") of T is a graph
obtained by adding all edges (a,b) whenever a < b. A treedepth decomposition of
G is a rooted tree T' on the vertex set V(G) such that E(G) C E(clos(T)). The
treedepth td(G) of G is the minimum of depth over all treedepth decompositions
of G.
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There is an equivalent, recursive, definition, called elimination tree:

1 when G is a single vertex,
td(G) = { minyey () td(G — {v}) when G is connected,

max td(C') where C' runs over connected components of G.

We also immediately see that when we run a depth-first search algorithm on a
graph, we obtain a treedepth decomposition. As the depth of a depth-first search
tree cannot be greater than the length of a longest path in G, and treedepth
of a path of length [ is log,((), this procedure yields a decomposition of depth
at most O(2!4%)). In 24 we will see that computing treedepth exactly is FPT
when parametrised by treedepth. This is best possible, as computing treedepth
is NP-complete.

One can immediately observe that td(G) > tw(G)+ 1, because taking all root-
leaf paths as bags yields a treewidth decomposition, even a pathwidth decompo-
sition. For the converse, there is an inequality td(G) < (tw(G) + 1) log,(3|V(G)])
— first, for every tree T' on n vertices we have td(T") < log,(n) by using the re-
cursive definition and always taking the centre of the graph as a root. Second,
replacing every vertex in 7' by a clique of size tw(G) + 1 increases the depth
at most (tw(G) 4 1)-times. In connection with [I5], this yields a log*(|V (G)|)-
approximation algorithm for treedepth. Omne can say that treewidth measures
similarity to a tree, and treedepth measures similarity to a star. From below, we
see immediately that treedepth of a graph is bounded by the size of its minimum
vertex cover.

Let us now illustrate how treedepth made a name for itself in the context in
structural graph theory. The graph colouring problem asks to colour the graph
such that globally only few colours are used. A possible way to generalise this
problem is to impose an additional condition that we want to use locally many
colours — such colouring obviously gives more information. Instances of this
include acyclic chromatic number — there is no subgraph isomorphic to a cycle
which gets only two colours, or star chromatic number — no path of length 3 gets
two colours. In general, we can ask for x(f, G), the minimum number of colours
needed to properly colour G such that for every graph H and every subgraph H’
of G isomorphic to H we have that H' gets at least f(H) colours. For acyclic
chromatic number, f assigns 3 to every cycle and is 0 otherwise, analogously with
path of length 3 for star chromatic number.

If we put f(H) = gx(H) = min(k,tw(H)) + 1, we get to an important result
dubbed low treewidth colouring [27]. It says that for every proper minor-closed
graph class the numbers x(gx, G) are bounded (the bound depends on %k and the
class itself). In other words, for every graph K and every j € N there exists
k € N such that every K-free G' can be partitioned into k graphs such that any
j' < j parts induce graph with treewidth at most j° — 1. This result, originally
conjectured by Thomas in 1995 and motivated by a weaker result that held for
surfaces only [29], tells us that although minor-closed classes can have unbounded
treewidth, there is still a lot of “bounded structure”. The proof uses tools from
the proof of the Graph Minor Theorem.

The paper [81] investigates how many colours can we require locally, in other
words, how big can the function f from the definition of x(f, G) be. Let H be a
graph and C a proper minor-closed graph class, the upper chromatic number x(H)
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is the greatest integer such that there exists a constant ¢ = ¢(C, H) such that for
any graph G € C there exist a proper colouring of G with ¢ colours such that
any subgraph of G isomorphic to H gets at least x(H) colours. That is, xy(H) is
the largest possible value of f(H) so that x(f,G) are bounded for every proper
minor-closed class. The surprising crucial result of [81] is that Y(H) = td(H). As
treedepth upperbounds treewidth up to —1, this results generalises the previous
one, and we use the name low treedepth colouring for it.

To illustrate how colouring and bounded-depth trees get along, we just show
another equivalent definition of treedepth, that of centred colouring — it is a
colouring of a graph such that for every its connected subgraph there exist a
Colo which appears exactly once. The minimum number of colours required for
a centred colouring is precisely the treedepth of the graph — when constructing
the colouring from the decomposition, remove all roots of the forests and assign
a new colour to them, when constructing the decomposition from the colouring,
pick a connected component and select the vertex with the unique colour to be
its root.

An interesting application of the result of [81] is a bound on chromatic numbers
of exact powers. The p-th exact power G? of a graph G is the graph on the same
vertex set and edge (x,y) iff there exists a path of length p in G between = and
y. For proper minor-closed class C, chromatic numbers of even exact powers of
graphs from C are clearly unbounded — consider stars. However, for every odd p
there exists an integer k such that for every G € C with odd-girth at least p + 1
the chromatic number of G? is at most k. Another corollaries are from the area
of restricted dualities, which we do not deal with in this thesis.

To show treedepth in the light of forbidden substructures, we mention the pa-
per [36] which presents minimal minor/subgraph/induced subgraph obstructions
for the class of all graphs of tree-depth at most ¢. From the Graph Minor Theo-
rem it follows that the number of such obstructions is finite, but in this case more
has been revealed — there is an upper bound 22" on the size of forbidden graphs,
and there are exactly %2?71%(1 +22"71=t) of obstructions (for all three relations)
that are acyclic. The paper also presents simple structural lemma for construct-
ing bigger obstructions from smaller ones, and gives precise list of obstructions
for t < 3.

2.3.2 Bounded expansion

In the previous subsection, we looked at the function x(f, G) from the point of
view of f, that is, how big can the function be for individual H. In this subsection,
we look at it from the point of view of G, in other words, can we extend the result
on low treewidth colouring beyond minor-closed classes? The answer is yes, more
precisely, the answer is classes of graphs with bounded expansion. The notion of
bounded expansion appeared in [82] and as in the case of treedepth, there are
many equivalent definitions.

Let us introduce the ideas behind the definitions before we state them formally.
If the maximum average degree (mad) of graphs in a class is bounded, then the
chromatic number of graphs in that class is also bounded. However, even more
is true — let C be a class of graphs, and C’ the class {G’: G’ arises from a G € C
by contracting star forests}. If the mad of graphs in C’ is bounded, then the star
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chromatic number of C is also bounded [79]. For the other direction, if the star
chromatic number of C is bounded by N, then the mad of C is also bounded —
for every two colours 7, j < N, orient the edges in the star forest induced by the
colours 7, j towards the roots, then every vertex in the original graph has indegree
at most (];[ )

Can this be generalised? Let x,(G) be the minimum number of colours such
that there is a colouring of G for which for every i < p each 7 colour classes induce
a graph with treedepth at most 7. Note that y; is the usual chromatic number
and x» is the star chromatic number. We say that H is a d-depth minor of G,
if H arises from G by contracting connected subgraphs of radius at most d and
omitting some edges/vertices. The question is then whether there exist functions
f1 and f5, such that for every p and every class C:

e if the minors of depth at most fi(p) of C have bounded mad, then the graphs
in C have bounded x,,

e if the graphs in C have bounded X, (), then the class of all minors at depth
p has bounded mad.

Such functions do exist, and, in way, define the bounded expansion classes.
Another way to discover such classes is to ask “how to define sparseness”?
Clearly, if mad of a class is not bounded, then the class cannot be sparse. However,
even bounded mad does not guarantee sparseness — consider a class arising from
the class of all cliques by subdividing every edge once. Such class has mad = 2,
but still retains many properties of cliques and thus should not be called sparse.
So, we want to forbid this (in a mild manner), and we arrive at the definition of
greatest reduced average density — V. Let G be a graph, V,.(G) is max % where
the maximum is over all r-depth minors H of G. A class C has bounded expansion
if there exists a function f (called expansion function) such that V,.(G) < f(r)
for every G € C. In other words, the mad after contracting r-depth minors is
bounded, but the bound does not have to be uniform. Let us also explicitly state
that for a bounded expansion class the average degree of a graph G is at most
2V (G); hence, graphs in any class of graphs with expansion bounded by f have
average degree bounded by a constant 2f(0). Similarly, we conclude that every
G € C has an orientation (even acyclic one) with in-degree at most 2f(0).
Bounded expansion classes properly generalise proper minor-closed classes
— for which the expansion function is constant, which follows from the results
[64], 1T07]. For instance, bounded degree classes have bounded expansion—the
expansion function is an exponential one—but do not form a proper minor-closed
class, as the minor closure of the class of all cubic graphs is the class of all graphs.
Another interesting example is the class of graphs that can be drawn in the plane
(or any other fixed surface) such that every edge crosses at most k other edges.
In the paper [82], this notion of bounded expansion is investigated with re-
spect to low treedepth colourings. First of all, bounded expansion classes have
low treedepth colouring, which generalises the previous result for proper minor-
closed classes, but surprisingly even more is true — they precisely characterise
it. That is, a class has low treedepth colouring if and only if it has bounded
expansion. In order to prove the result, authors investigated two notions which
are of independent interest. First is stability with respect to lexicographic product
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— the graph G e K, is obtained from G by replacing every vertex by a copy of K.,
and for every two cliques whose original vertices were adjacent we put all edges
between them. In other words, G e K, is a “c-thickening” of G. The bounded
expansion classes are stable — that is, for fixed ¢ the class {G @ K.: G € C} has
also bounded expansion, albeit the expansion function for it is bigger than that
for f. This implies that the bounded-crossings class from previous paragraphs
has bounded expansion — the lexicographic product of planar graphs with Kj,
where £ is the bound on the crossing number, contains the bounded-crossings
class as topological minors of depth 2. We should also note that minor-closed
classes are not stable with respect to this product — every graph is a minor of the
product of some planar graph and K.

Second and for our later results more important notion is that of fraternal
augmentations. Let 8 be a directed graph, then a I-transitive fraternal augmen-
tation of G is a directed graph H such that whenever (z,y) and (y, z) are arcs of

then (z, z) is an arc of H (transitive edges) and whenever (z,y) and (z,y) are
arcs of G then either (x,z) or (z,x) is an arc of H (fraternal edges). Furthermore,

we require ﬁ to retain all edges of 8 The augmentation is tight, if it is edge-
minimal among all augmentations, that is, no extra edges were added. Transitive
fraternal augmentation of is a sequence =G C Gy C...CGE; CLLl
The bounded expansion classes are also stable with respect to augmentations,
that is, the class {G’: G’ is the underlying undirected éraph of G’ which is a

tight 1-transitive fraternal augmentation of 8, where is an orientation with
maximum indegree k of a graph G in C} has bounded expansion. The iterative
version says that there exists a function f such that every graph G € C has a
transitive fraternal augmentation G, G, ... where maximum indegree of G; is
at most f(i). The fraternal augmentations played an important role in the proof
of existence of low treedepth colouring for bounded expansion classes. Intuitively,
the edges that arise from augmentations help to find the tree whose closure con-
tains the original graph. We will use the augmentations similarly in our result in
Chapter @l

The proof of the original result with low treewidth colouring [27] relied on
the Structure Theorem and thus did not yield a practical algorithm. However, in
[80] a simple algorithm for finding a low treedepth colouring is shown, and when
restricted on a fixed class with bounded expansion, its running time is linear in
|[V(G)|. For fixed k, Bk from the transitive fraternal augmentation of G can
also be computed in linear time, when G is from a class with bounded expansion.
The existence and algorithmical constructibility of low treedepth colouring has an
important corollary in subgraph testing and deciding general first-order properties
for bounded expansion classes. We postpone the discussion to 2.4.11

Let us summarise the many-facetedness of bounded expansion. For a class of
graphs C, the following conditions are equivalent:

e C has bounded expansion,

e C has low treedepth colourings,

C has low treewidth colourings,

e for every c, the class C ® K, has bounded expansion,
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e for every k the class of 1-transitive fraternal augmentations of directed

graphs with maximum indegree at most £ and G € C has bounded
expansion,

e there exists a function f such that every graph G € C has a transitive

fraternal augmentation 81, 2, ... where maximum indegree of 82 is at
most f(7).

We also mention that although we have defined the grad and expansion func-
tion in terms of minors, the same results can be obtained when using topological
minors. Specifically, class has bounded expansion with respect to minors iff it has
bounded expansion with respect to topological minors; the proof of that amounts
to showing that the greatest reduced average density and its topological analogue
are polynomially related. This is quite interesting, as in generals topological mi-
nors differ profoundly — for instance, the Hajos conjecture turned out to be false
for almost all graphs, whereas Hadwiger conjecture is true for almost every graph.
Also, analogue of the Graph Minor Theorem for topological minor order is not
true.

2.3.3 Nowhere dense

In this section we describe the concept of nowhere dense classes, which attain
even higher level of generality than bounded expansion classes. Denote by CV1
the class {G: G is an i-depth minor of some graph in C}. Class C is called nowhere
dense if supgeew; w(G) is finite for every ¢, in other words, no CVi is the class of
all finite graphs. Compare this with the definition of bounded expansion classes,
where instead of w(G) we were interested in the density. Bounded expansion
classes can also be defined as classes for which every CV¢ has bounded chromatic
number. This shows us instantly that nowhere dense classes properly generalise
bounded expansion classes — an example of a class which is nowhere dense but has
not bounded expansion is a class of graphs with unbounded chromatic number
and no triangles [4].

The origin of nowhere dense classes lies in (finite) model theory. Model theory
is a branch of logic which deals with general relation structures and formulas,
and finite model theory restricts itself to finite structures only. It is a virtue
of this heritage that most of the result we obtain for graphs can be transfered
into general relation structures — and this is interesting for other branches as
Database theory or Constraint-satisfaction programming since in these areas one
works with general relational structures also. Very often, finite model theory
investigates which results from general model theory hold when restricted to finite
and which do not. One of such question was that of homomorphism preservation,
that is, whether a validity of a formula is preserved under homomorphism of the
structure. Nowhere dense classes arose as characterisation of classes for which
results of such kind hold. For more on this connection, see [83].

There is another characterisation of nowhere dense classes, in terms of asymp-
totic edge density. If one aims at a definition of sparseness and denseness, it should
be complete, that is, every class should be either sparse or dense (and ideally, not
both). It turns out that our definitions allow such theorem [84], that is, for every
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class one of four possibilities happens:

—oo  (graphs with no edges),
o log| E(G)] 0  (graphs with at most k edges),
lim limsup ———*
r—oo gecvr 10g|V(G) 1 (nowhere dense classes),

2 (somewhere dense classes).

The somewhere dense classes are exactly those such that there exists an ry for
which CVry is the class of all graphs. We again note that this theorem can be
stated in terms of topological minors with the same results.

In a sense, the nowhere dense classes are a quantitative generalisation of
bounded expansion classes. Let n = |V(G)|, the bounded expansion classes con-
sists of graphs with O(n) edges where and average degree bounded by constant,
whereas nowhere dense classes have n'+°(M) edges, that is, for any nowhere-dense
class C and for every ¢ > 0 there exists a function g(n) = O(n?) such that every
graph G € C has average degree at most g(n). Algorithms for bounded expansion
classes that run in linear time lead to n!*°() (that is, almost linear) algorithms
for nowhere dense classes. We note that graphs with n'*® have some typical
properties of random graphs, see for instance the book [4]. This fits into the
“randomness vs. structure” paradigm, see [105].

2.4 Algorithmic Model Theory

In this part we explore the area of algorithmic metatheorems for sparse graph
classes. Metatheorems usually say that some families of problems can be solved
efficiently on structured graphs classes. The prefix meta- emphases that we give a
family of algorithms at once, instead of the usual ratio one algorithm per theorem.
The advantage of such approach is also that the obtained algorithms have usually
very compact and uniform description.

It turns out that for such kind of results, the language of logic and model the-
ory is the most fitting one, and as knowledge of these is not so widespread among
our expected readers, graph theorist, we provide short introduction to notation
and results. The chief references for finite model theory are the books [73], aimed
more on computer scientists, and [41], which aims more on mathematicians. For
introduction to logic, see for instance the book [40], for general model theory, see
[60]. For algorithmic metatheorems there are recent surveys [56], 66, [57].

Let us first define general relational structure. A wvocabulary is a collection
o of constant symbols ¢y, cs, ... and relational symbols R, Rs,...; each symbol
has associated arity. A o-structure A = (A, {c}, {R#}) consists of universe A
together with interpretation of each constant ¢; as an element ¢! € A and each k-
ary symbol R; as a k-ary relation R C A*. For example, graphs have vocabulary
consisting only of the relation for adjacency, a structure is then a set of vertices
along with tuples-edges. There are some ways how to turn relational structures
into graphs. The first is Gaifman graph, where the vertices are elements of the
universe, and (a,b) is an edge whenever there exists a k-ary relation R and a
tuple (x1,...,2x) € R such that a and b are in (z1,...,x;). More convenient is
incidence graph, which is a bipartite graph (A, B) where A are the elements of
the universe and B are the tuples in relations, and edge is between a vertex and
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a tuple if that vertex is in the tuple. Further ways include e.g. star selectors
[83]. For a class C of structures, we say that C has bounded expansion if the
corresponding class of Gaifman graphs has bounded expansion (it turns out that
it happens if and only if the corresponding class of incidence graphs has bounded
expansion — we prove this in [.4]). Similarly we define other notions like nowhere
denseness for classes of structures.

Now we define terms and formulae in certain languages. Let o be a vocabulary
and x1,... a countably infinite set of variables.

e Each constant ¢; is a term.
e Each variable z; is a term.
o If ¢y, ¢y are terms, then t; = ¢, is an (atomic) formula.

e Ifty,...,t; are terms and R; is a k-ary relational symbol, then R;(t1, ..., )
is an (atomic) formula).

o If ¢y, ¢y are formulae, then ¢ A o, ¢1V ¢, =1, Vo1, P are formulae.

Every such formula is called first order (FO) formula. If we forbid V quantification,
we obtain a fragment — the existential first order logic (FFQ). Furthermore, if
we add variables X7, ... for sets of elements of the universe, we obtain monadic
second order logic (MSQ). This logic is further classified into MSO; and MSQ,,
the first one is over the vocabulary of graphs as defined in the previous paragraphs,
the second one contains in the universe both vertices and edges, and has the
relational symbol for vertex-edge incidence. Monadic second order logic is itself a
fragment of second order logic, where the set quantifiers are not restricted to sets
of elements only, but range over relations of arbitrary (finite) arity. Furthermore,
existential second order logic holds a connection to computational complexity,
embodied in the theorem of Fagin [47] which says that existential second order
logic corresponds precisely to the class NP. This theorem led to the development
of the area of descriptive complexity [61].

Complexity of a formula is often measured by its quantifier rank (qrank),
atomic formulas have qrank zero, and formula of the form Q¢ where @) is a quan-
tification over some variable is one higher than the qrank of ¢. For conjunction
or disjunction, the qrank is defined as the maximum of qrank of conjuncts or dis-
juncts, respectively. Similarly, we define quantifier alteration (qalt), which counts
only alteration between 3 and V quantifiers. For formulae we define validity —
atomic formula is true if the corresponding terms are equal (for the t; = t5 case)
or the tuple is in the relation; non-atomic formulae are evaluated recursively.

It is natural to ask what can be expressed in various logics. Proving that some-
thing can be expressed amounts simply to giving a corresponding formula, proving
inexpressibility is usually harder. A classical tool for such result is Ehrenfeucht-
Fraisse game. 1t is a game on two structures A, B with players spoiler and dupli-
cator. The spoiler picks elements from the structures and tries to show that the
structures are not isomorphic, the duplicator tries to respond by picking elements
such that a partial isomorphism is maintained between the picked parts of the
structures. If the duplicator has a winning strategy, it tells us that the structures
are in a certain sense not distinguishable, namely, it might happen that one has
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a given property and the other does not, which shows an inexpressibility result.
For instance, this can be used to show that Hamiltonicity is not expressible in
MSQ;, (but is clearly expressible in MSQ,). For more details and examples see
[73].

Now we move to a definition we will use in Chapter B for our result. Two
graphs are said to be n-equivalent, if they satisfy the same first order formulas
with at most n quantifier alterations. This concept of n-equivalence is of practical
use for evaluating formulae on graphs. It serves to reduce the investigated graph
to a small one, so that time-expensive approaches as brute force become possible
— recall kernelization from 2. 1.l An example of such application is the following
theorem (from section 6.7 of [85]): for every D, n exists N such that every graph
G with td(G) < D is n-equivalent to one of its induced subgraphs of order at
most N. This can be extended even to labelled graphs. In our work we use a
similar theorem, taken from [53]. Informally, the result says that when one is
interested in checking whether a specific formula is true on a class of trees of
bounded depth, then one can also assume bounded degree.

Let us also mention that there exists a notion dual to n-equivalence for graphs,
called rank-n type of a formula. For a structure A, a type is a set of all qrank n
sentences (i.e., formulae without free variables) that hold in A. It turns out that,
up to equivalence of formulae, there are only finitely many formulae in a rank-n
type, and that there are only finitely many rank-n types. Many results which
aim on general formulae deciding, such as metatheorems, work by (brute-force)
computing the type of a structure.

2.4.1 Model Checking Problem

The standard problem in the finite model theory is the model checking problem.
Let a logic L and a class C of structures be fixed, the problem is to decide G |= ¢
for arbitrary G € C and ¢ € L. When measuring the complexity, we try to
isolate the part that depends on ¢ and the part that depends on G. We denote
this problem as MC(L,C). Usually, the complexity is of the form f(¢) - p(G)
where f is arbitrary function and p is a polynomial. This fits well into practical
applications as in databases, since usually the structure is big and changing often,
whereas the formula is small and fixed — therefore it makes sense to do some
formula-specific optimisations.

Let us now survey known results. Let G be the class of all graphs, both
MC(FO, G) and MC(MSQ, G) are PSPACE-complete [I10]. The already men-
tioned result of Courcelle [21] says that MC(MSQ,, {G: tw(G) < k) is linear in
|V (G)G| and non-elementary in k and qalt of ¢. Its analogue for cliquewidth [22]
works for MSQ); only. In addition, there is a counting version [22] which not only
tells whether there is an satisfying assignment of variables, but also answers how
many such assignments are there.

In particular, the result of Courcelle implies that deciding td(G) < k is FPT
in k — first, do a depth-first search on G. If the resulting depth is greater than 2%,
treedepth is strictly greater than k. Otherwise, G has treewidth at most 2*, and
as td(G) < k can be expressed in MSQO, we can solve it in time linear in |V (G)].

As every existential FO property is directly equivalent to finding an induced
subgraph—the vertices of the subgraph are evaluations of the variables, the result
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[44] implies that MC(3FQ, planar graphs) is linear in |V (G)|. The result exploits
the fact that although planar graphs have unbounded treewidth, locally they are
simple — namely, the treewidth is a function of diameter [92]. We say that class C
of graphs has locally bounded treewidth if there is a function f such that for every
graph G € C and every vertex v € GG the graph induced by vertices in distance
at most r from v has treewidth at most f(r), for every r. Consequently, in [51]
it has been shown that MC(FFQ, locally bounded treewidth) can be decided in
almost linear time in |V (G)|. For the graph classes excluding a fixed minor, FPT
algorithm for FO model checking was found in the same year [48]. We note that
locally bounded treewidth and minor exclusion are mutually incomparable. In
order to obtain a unifying result, the concept of locality has been taken to minors
also — a graph class C locally excludes a minor if for every r there is a graph H,
such that H, is not a minor of graphs induced by r-neighbourhoods of vertices
of graphs in C. This concept generalises graphs with bounded expansion — if f
is the function bounding the expansion, then K42 are locally forbidden. The
fixed-parameter tractability for classes locally excluding a minor has been shown
in [25]. However, the result relies on the structural results from the proof of the
Graph Minor Theorem.

From the existence of low treedepth colourings [80] follows a linear-time algo-
rithm for testing JFQ properties for classes of graphs with bounded expansion.
For nowhere-dense classes, this algorithm runs in almost linear time. This result
has been extended [37] to all properties expressible in FOL, showing that such
properties can be decided in linear time on any class with bounded expansion
(the nowhere-dense case is still open, although the result extends to classes of
graphs with locally bounded expansion, which generalises all previously known
results). Conversely, if a class of graphs C is closed on subgraphs and it is not
nowhere-dense, then the subgraph problem restricted to C is W[1]-hard (when pa-
rameterised by the subgraph). This follows from the result that subgraph testing
for the class of all graphs is W[1]-hard, and that the somewhere case is reducible
to the all graphs case — let r be such that CVr is the class of all graphs, then
instead of looking for subgraph H we can look for its minors at depth r. This
shows that the result [80] is essentially the best possible.

Lower Bounds

The drawback of most of the mentioned results for model checking is that
although their dependence on |V (G)| is polynomial or even linear, the dependence
on ¢ is much worse, usually something like tower of exponents as high as the qalt
of ¢. It turns out that this kind tower is not avoidable even for FO on simple
classes as trees or coloured paths [72 52] (unless EXP=NEXP).

This motivated a search for meta-theorems similar to [21] on more restricted
classes of graphs, such as the result of Lampis [71] that provides algorithms
with better dependence on the size of the formula for classes such as those with
bounded vertex cover or bounded max-leaf number. This result was subsequently
generalised by Gajarsky and Hlinény to graphs with bounded tree-depth [53] — as
mentioned in [2.3.1] bounded treedepth forbids the presence of long paths, which
is the reason for hardness of model checking. Basically, the height of the tower
in this result depends on the treedepth but not on the qrank. We will comment
more on the the result [53] in Chapter [3] as we use it in order to prove our result.
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Lower bounds that concern the complexity part depending on G must concern
classes with unbounded treewidth. For instance, the result [75] says that unless
P=NP, MC(MSQ, C) cannot be FPT unless for any graph class C closed under
topological minors. The result relies on the presence of large grids, and the
fact that grids enable, very roughly said, Turing machine simulation — see [67]
for formalisation of this. A further step in this direction is a result [68] which
shows (under some complexity theory assumptions) that MSQ,-model checking
is not FPT for any class of graphs whose treewidth is at least ~ log|V(G)| (and
some technical assumptions). This is an improvement, since grids mean imply
only square treewidth. Similar result [54] aims on MSQ; with slightly different
complexity assumptions. The logarithmic bound cannot be significantly improved
—in [75] a class of graphs with logarithmic treewidth is shown for which MSQO,-
model checking is FPT (the result do not contradict each other because of the
constants hidden in asymptotic).

2.5 Dynamic Data Structures

In this section we define what does “Dynamic data structure” mean, and
survey some existing ones. However, this section is, compared to the previous
ones, rather short, as our results do not use much of existing data structure
theory; most examples here serve only for illustration of possible applications.

Dynamic data structure for deciding graph property P is a data structure
which represents varying graph G and supports the following operations:

e add edge (u,v) — modify the varying graph so that it represents G + (u, v),
e remove edge (u, v) —modify the varying graph so that it represents G—(u, v),

e initialise by G — initialise the structure so that the varying graph it repre-
sents G,

e query — report whether G has the property P.

This is the most basic setting, which is usually somehow modified. For in-
stance, we might require restriction to some specific graph class — that is, we
implicitly assume that all the operations that modify the represented graph re-
spect this restriction. Or the query operation might be extended such that it
reports a witness for the property, for instance if the property is represented by
an existential first order logic formula, the structure has to report which vertices
satisfy the formula.

The complexity of the structure is measured in running time for individual
operations. Very often, amortised complexity is used — very roughly, it says that
we measure the total complexity of a sequence of operations, instead of focusing
on worst case and multiply it by the number of operations (which might be quite
unrealistic). For details, see [20].

As for applications, many of the problems occurring in nature are dynam-
ical in principle. For instance, social networks or dynamical systems as those
encountered in physics or biology represent phenomena that change over time.
Similarly, in computer science we need data structures to describe computer net-
works or to store databases. In this situation, classical static algorithms have
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to be dynamised. For general techniques that can be used for dynamisation, see
[88].

Another application occurs when one reduces a graph by removing edges, and
each time an edge is removed, some procedure has to be performed. Instead
of running the procedure from scratch every time, it makes sense to keep some
dynamic information. Classical examples are the usage of a disjoint-find-union
data structure in minimal spanning tree algorithms [20] or Link-cut trees for
network flow algorithms [I03]. A more recent example is for colouring graphs on
surfaces, we describe it as a part of our result in Chapter [l

Possibly oldest dynamic data structure is the AVL tree [2], which represents
set of elements ordered by their keys, and allows insertion, deletion and retrieval
in logarithmic time. This is an example of a binary search tree, a term which
fits to many structures that have appeared since then. Other important binary
search trees include splay tree [104] and tango trees [26], which are so far the
best data structure in competitiveness sense. Competitiveness is a measure of
how well the algorithm performs when compared to an algorithm that can “see
the future”, that is, has the knowledge of what queries and updates it will have
to do, and thus can perform optimally. An area where dynamic data structures
flourished is computational geometry, again, see [88] for more details.
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Chapter 3

Dynamic Tree-depth
Decomposition

In this chapter, we describe our application of the theory. It is a dynamic
data structure for representing a graph G with treedepth at most D. For the
definition of treedepth and relevant concepts, see 2.3.11

The structure allows addition and removal of edges and vertices such that the
resulting graph still has tree-depth at most D, in time bounds depending only on
D. A tree-depth decomposition of the graph is maintained explicitly.

This makes the data structure useful for dynamization of static algorithms for
graphs with bounded tree-depth. As an example application, we give a dynamic
data structure for MSQ-model checking, with time bounds for removal depending
only on D and constant-time testing of the property, while the time for the
initialization and insertion also depends on the qalt of the formula expressing the
property.

The result has been co-authored by Zdenék Dvordk and Martin Kupec, its
full version can be found at [3§].

Let us state the result precisely.

Theorem 1. Let ¢ be a MSQ, formula and D € N. There exists a data structure
for representing a graph G with td(G) < D supporting the following operations:

e insert edge e, provided that td(G + {e}) < D,
e delete edge e,
o query—determine whether G satisfies the formula ¢.

The time complexity of deletion depends on D only, in particular, it does not
depend on ¢ or |[V(G)|. The time complexity of insertion depends on ¢ and D,
but does not depend on |V(G)|. The time complexity of the initialization of the
data structure depends on ¢, D and |V (G)|. The query is done in constant time,
as s addition or removal of an isolated vertex.

The dependence of the initialization and edge insertion is roughly a tower of
height D where the highest element of the tower is the qrank of ¢ squared — that
is, the dependence on ¢ is elementary.

The basic idea of the data structure is to explicitly maintain a forest of smallest
depth whose closure contains GG, together with its compact constant-size summary
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obtained by identifying equivalent subtrees. This summary is sufficient to decide
the property expressed by ¢, which we show using the notion of n-equivalency
from 2.4 and a result from [53]. Informally, the result says that when one is
interested in checking whether a specific formula is true on a class of trees of
bounded depth, then one can also assume bounded degree.

3.1 Auxiliary tools

All trees we work with are rooted. For simplicity, we also assume in this section
that all graphs we work with are connected. If we encounter a disconnected graph,
we consider each of its connected components individually.

Two trees are isomorphic if there exists a graph-isomorphism between them
such that the root is preserved under it. Mostly we will work with trees with
vertices labelled from some set of [ labels — two [-labelled trees are [-isomorphic
if they are isomorphic as trees and the isomorphism preserves labels. A limb of a
vertex v € T is the subgraph induced by some of the children of v. A second-order
logic formula ¢ is in MSO logic, if all second-order quantifiers are over sets of
elements (vertices) and the language contains just the relation edge(u,v).

The following result is a simplification of Lemma 3.1 from [53].

Lemma 2. Let ¢ be an MISQ sentence, [, D € N. Then there exists a number S
with the following property. Let T be an [-labelled tree of depth at most D with
vertices labelled with | labels, and v a vertex of T. If v has more than S pairwise
l-isomorphic limbs, then for the tree T' obtained by deleting one of those limbs
we have that

T' satisfies ¢ <= T satisfies ¢.

The Lemma implies in particular that with respect to ¢-checking there are
only finitely many [-labelled trees of depth at most D — that is, every [-labelled
tree of depth at most D is ¢-equivalent to some [-labelled tree of depth at most
D and maximum degree at most S. We call such trees ¢-minimal.

Let G be a graph of tree-depth D, the tree decomposition T of G is a
labelled tree such that G C clos(T"), where a vertex v is labelled by a 0-1 vector of
length D —1 that encodes the edges between v and the vertices on the path from v
to the root (1 whenever the edge is present, 0 otherwise). Let [ be a set of labels
we describe later, compressed tree decomposition of the graph G is an [p-labelled
tree C' obtained from a tree decomposition 7" of G as follows. For every vertex, all
its limbs that are pairwise-isomorphic are deleted except for one representative,
in which we additionally store the number of these limbs. Vertices of C' are called
cabinets, and the underlying tree decomposition 7' is called a decompression of
C'. A set of all vertices corresponding to the same cabinet (that is, inducing I-
isomorphic limbs) and having the same vertex as a father in the decompression is
called a drawer. Thus every cabinet is disjointly partitioned into drawers. For an
example how a graph, its tree decomposition and compressed tree decomposition
look like, see the figures on page 27 (in the compressed tree decomposition, the
number next to the drawers denotes how many vertices are there in each drawer).

Now we describe the labelling. We start inductively, with [y being just a set
of vectors of length D — 1. Assume that ¢ is some fixed formula we specify later
(in Section B.2.5]) and let S be the number obtained from applying Lemma [2 to

2D—1_
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Figure 3.1: Graph
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Figure 3.3: Compressed graph

it. Let B be a cabinet that induces a subtree of depth ¢’ < ¢ in C. The label of
B consists of the label of a corresponding vertex b of T and of a vector vec with
entry for every [;_i-labelled ¢-minimal tree M of depth smaller than ¢’ with value

vecy = min{ S, number of limbs of b which are ¢-equivalent to M }.

During the update operations, we will be occasionally forced to have more
than one cabinet for a given isomorphism type (that is, a cabinet will have two
pairwise-isomorphic limbs). Both the decomposition and the individual cabinets
that have isomorphic children will be called dirty.

3.2 Data structure

Our data structure basically consists of storing some extra information for
every vertex v of the represented graph G, and of a compressed tree-depth de-
composition 7" of G with depth at most D. We will store the following for every
veQG.

e Label of the cabinet corresponding to v, that is, the vector of its neighbors
on the path to root and the vector with the numbers of limbs of v isomorphic
to individual ¢-minimal trees.

e Pointer to the father of v in T' (more precisely, pointer to a vertex u of
G that is the father of v in the decompression of 7). However, in some
operations we need to change the father of all vertices in a drawer at once —
thus instead of storing father individually for every vertex, for every drawer
we will maintain a pointer to the common father of the vertices in this
drawer, and every vertex in the drawer will have a pointer to this pointer.
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e Linked list of sons of v in T'. This is again implemented by having a linked
list of drawers at v, and for every drawer in it, a linked list of vertices in
this drawer.

Additionally, we keep the vertex v which is the root of T" and we call it r —
we again assume connectedness of GG in this section, otherwise we keep a list of
roots corresponding to individual components.

3.2.1 Extraction of a path

In this subsection we describe an auxiliary operation of extracting a path. It
can be seen as a temporary decompression of a part of 7" in order to make some
vertex accessible. The result of extracting v from T is a dirty compressed tree
decomposition 7" of GG, such that on the cabinets in 7" corresponding to r — v
path there are no cabinets to which corresponds more than one vertex of G.

First, we find the vertices of the r — v path, and the corresponding cabinets
in 7. This is done by simply following the father-pointers from v, and then by
going backwards from r, always picking the cabinet that corresponds to the label
of the vertex on the » — v path. Then, for every cabinet B on this path with
more than one vertex, let b be the vertex of the r — v path lying in B, and c its
father — which we assume to be the only vertex in its cabinet, C. We remove b
from the lists of sons of ¢ of the label of b, and move b into a new list for ¢, and
do the corresponding change in 7", that is, creating a new cabinet of the same
label as a son of (', thus making C' a dirty cabinet.

The complexity of this operation is clearly linear in D.

3.2.2 Edge deletion

Edge deletion is simple — let vu be the edge to be deleted, with v the lower
vertex (in the tree-order imposed by 7'). We extract the vertex v from 7. Now
u lies on the » — v path, and as there are no other vertices in the cabinets on
the corresponding path in 7', we remove the edge vu from the graph and change
the labels for the cabinets and vertices accordingly. The only affected labels are
on the r — v path, and we will precompute during initialization what the label
should change into. It can also happen that removal of such edge disconnects
the graph — this also depends only on labels and thus will be precomputed in
advance. When such situation occurs, we split 7" into two components — the new
root depends only on the labels, and the vertices for which labels change are only
on the r — v path.

Now, we need to clean the dirty cabinets. As the only dirty cabinets are on the
r—uv path, we traverse this path, starting from v and going upwards, and for every
vertex w in a dirty cabinet, we compare the label of w with the labels of other
present drawers at the father of w, and move w to the correct drawer/cabinet.

The complexity of this operation is clearly linear in D.

3.2.3 Rerooting

Rerooting is also an auxiliary operation, which will allow us to easily handle
the edge insertion. This operation takes a compressed tree decomposition 7" and a
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vertex ry of GG, for which we have a guarantee that there is a tree decomposition
with depth at most D such that ry is its root, outputs one such compressed
tree decomposition 7" and updates data for vertices in G accordingly. In this
subsection we denote by ro the root of T', that is, the old root.

We proceed as follows:

1. extract ry from T,
2. remove ry from T entirely,

3. consider the connected components thereof — those that do not contain ro
have depth < D and thus can be directly attached under ry. Recurse into
the component with ro.

Only the third point deserves further explanation. The components are deter-
mined by the labels only, so we will precompute which labels are in which com-
ponents and what vertices are the roots of the components. Every connected
component of T"— ry that does not contain ro must have as its highest vertex
(under the tree-order) a son of ry, thus these components are already in their
proper place. For the component C' with rg, either it has depth < D and thus
can be attached under ry, with rp being a son of ry. We have to deal with two
details — firstly, there might be some edges to ry from vertices that were above
ry in T — but none of these vertices was in a cabinet with more than one vertex,
thus we only change the labels accordingly.

Secondly, the limbs of ry in 7" that are in C' have no father after removal of
ry. But as they are in C| for every such limb there is an edge from it to some
vertex on the ry —ro path T'. Choose lowest such vertex, and make it new father
for that limb. This refathering is done by using the pointers for the drawers —
note that every cabinet that is a root of such limb consist only of single drawer,
thanks to the extraction of ry. Thus the total number of operations we have to
do is linear in D and the maximum number of children of ry, which is ;. As in
the case of edge deletion, we have to clean dirty cabinets (which are in C') in the
end. This can again be done by simply comparing labels on that former ry — ro
path.

However, it might happen that C' has depth exactly D. But we are guaranteed
that there exist a tree decomposition with ry as a root, which implies that there
exists a tree decomposition of C' with depth D — 1. If we know which vertex can
serve as a root of such decomposition, we can apply the operation recursively. We
describe the procedure to find a root in Section3.2.5l An additional thing we have
to care about is that some vertices of C' have an edge to ry — this information has
to be preserved in the recursive call. But the number of such vertices is bounded
by a function of D and thus it is not a problem — we only modify their labels
accordingly. After this recursive call, we again clean dirty cabinets.

The complexity of this operation for one call is linear in D + [+ time to find
new root, and there are at most D recursive calls.

3.2.4 Edge insertion

Let u,v be two vertices not connected with an edge, such that G + uv has
treedepth at most D, we now describe how to add such edge. If the edge uv
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respects the tree-order (that is, either u lies on v — r path or vice versa), we just
extract the lower of the two vertices, add the edge, and get rid of dirty cabinets.

Otherwise, there exists a vertex r; which is a root of some tree decomposition
of G + uv. We describe the procedure for finding it in Section Reroot
into this vertex to obtain decomposition 77. Now, u and v must be in the same
connected component C; of 77 — ry. Again, unless the edge uv respects the tree-
order now, we can find a vertex ro in C which is a root of some tree decomposition
of C1 4 uv of depth at most D — 1, and reroot into it to obtain decomposition T5
of C, with u and v lying in the same component C5 of C; — ry. Carrying on in
the obvious manner, this process stops after at most D iterations.

The complexity of this operation is O(D- complexity of rerooting).

Finally, we just remark that addition and removal of a vertex (without incident
edges) is implemented trivially by just adding/removing new component with the
corresponding label.

3.2.5 Finding a root

Let us recall what we have to face in this section. We want to find a vertex v
such that there is a tree T" of depth at most ¢ <t such that its closure contains
the connected component C' of the graph G+ (a, b) —{v1, va, . .., v} as a subgraph
and v is a root of T'. The vertices vy, vy, ..., v, correspond to the roots found in
previous applications of this procedure, (a,b) denotes the edge we are trying to
add.

At this point we define the formula ¢ according to which we constructed
the labelling of our trees. Let «(C') be a formula which is true whenever C is
connected — this is easily seen to be expressible in MSO logic — and 74(G) the
following formula:

7a(G) = (v € G)(VC C G)(v(C = {v}) = 7a-1(C = {v})),

with 71 (v) being always true. Then 74(G) says that there exists a tree T' with
depth at most d such that G C clos(7T"). Furthermore, as we need to express the
addition of an edge, we work with the logic with two extra constants a,b, and
modify the formula for v accordingly to obtain 4’ and 7’. The resulting formula
7, is the formula ¢.

Using Lemma Pl we construct all ¢-minimal trees — note that we have to
consider every possible evaluation of the constants a, b, that is, we construct all
trees of depth at most ¢ such that no vertex has more than S pairwise-isomorphic
limbs, and then for every two of labels, we choose two arbitrary vertices having
that label, and choose them to be a and b. For every such minimal tree, we
evaluate the formula, that is, we find which vertex is to be the root of the tree
decomposition. It might happen that the formula is false, that is, no such vertex
exists, which means we evaluated a and b so that the graph has tree-depth greater
than d. But such evaluation will not occur during the run of the structure —
recall that we restricted the edge additions — and thus we can safely discard
these minimal trees. Thus for every minimal tree we store the label of the vertices
that can be made root, and when applying the rerooting subroutine, we find an
arbitrary vertex of this label. This has complexity at most D, because when
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looking for the given vertex, we follow first pointer from the corresponding linked
list of children for a vertex.

This means that the total complexity of the edge insertion is O(D(D + lp)).
Finally, let us remark on the complexity of initialization. From [53] we conclude
that [p, that is, the number of ¢-minimal trees, is roughly a tower of 2’s of height
linear in D, to the power |¢|?>. The complexity of operations we do for every
¢-minimal tree is bounded by a polynomial in D and [p.

3.2.6 Dynamic model checking

We now describe how to modify the structure so that it also allows queries of
the form “does G satisfy the formula ¢”, where ¢ is some fixed MSO formula.
The modifications affect only the Section Instead of using just the formula
¢ to obtain the ¢-minimal trees, we apply the Lemma/[2] to the formula ¢ also and
in the construction of the minimal trees and the labelling, we use the higher of the
two numbers obtained from the Lemma. Then for every such obtained minimal
tree we evaluate whether it satisfies ¢ or not, this time without evaluating the
constants a,b. Finally, we remark that in principle, we are computing the type
of GG, so we do not have to have the formula ¢ fixed, but can switch between
formulae of the same qalt. This is common to many results in this area.
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Chapter 4

The Subgraph Problem

In this chapter we present a dynamic data structure for representing a graph
G, which allows addition and removal of edges from G and can determine the
number of appearances of a graph H as an induced subgraph of G. The graph H
is arbitrary but fixed for the design of the structure. The queries are answered
in constant time. When the data structure is used to represent graphs from
a class with bounded expansion the amortized time complexity of updates is
polylogarithmic. For nowhere dense classes, the complexity is subpolynomial.
This result has been co-authored by Zdenék Dvorédk, and appeared as [39].

An exemplar application of such data structure is an algorithm for finding
5-coloring of a graph on torus, based on the result of Thomassen [109]. Here,
the algorithm performs various reductions of the considered graph, and after
each reduction, it needs to test whether the reduced graph contains some of four
specific subgraphs. Rather than running a subgraph testing algorithm each time,
it makes more sense to update the information about subgraphs dynamically.

We actually deal with the counting version of the problem, i.e., determining
how many times does a fixed graph H appear as an induced subgraph in the
represented graph. This generalisation has applications in Bioinformatics and
Social Networking research — for instance, see [76] and [100].

As the problem of subgraph testing is W[l]-hard, unless W[1] =FPT, the
discussed data structure cannot have both subpolynomial update and query times
when used to represent general graphs (or even graphs from a hereditary class that
is not nowhere-dense). The best known general algorithms for the static variant
of the problem are based on matrix multiplication; Nesetfil and Poljak [86] gave
an O(|V(Q)|*IVIEI/3)-time algorithm, where w is the exponent in the complexity
of matrix multiplication. This was subsequently refined in [63], [42].

The already mentioned result [37] also provided a semidynamic data structure
for the problem. For a fixed first-order formula ¢ and a class of graphs C with
bounded expansion, this data structure represents a graph G € C and can be
initialized in time O(|V(G)|). The data structure enables testing whether the
graph satisfies ¢ in constant time. However, the data structure is only semi-
dynamic — the graph can be modified by adding and removing edges in constant
time, but the edge additions are restricted: we can only add edges that were
removed before.

In this paper, we eliminate the restriction on edge additions; that is, our data
structure allows addition of arbitrary edges, subject to the restriction that the

32



resulting graph still belongs to the considered (bounded expansion or nowhere-
dense) class of graphs. On the other hand, we only handle the case of subgraph
testing (IFQ), not testing of general FO properties.

Let us now state our result precisely.

Theorem 3. Let H be a fixed graph and let C be a class of graphs. There exists a
data structure ISuby (G) representing a graph G € C which supports the following
operations.

e Determine the number of induced subgraphs of G isomorphic to H.

o Add an edge e, i.e., transform ISubgy(G) to ISuby (G + €), under the as-
sumption that G + e s in C.

e Delete an edge e, i.e., transform ISuby(G) to ISuby(G — e), under the
assumption that G — e is in C.

If C has bounded expansion, then the time complexity of query and edge removal
is O(1), while the amortized time complexity of edge addition is O(log" |V (G)]),
where h = (W(2H)‘) —1. The structure can be initialized in O(|V(G)|) and the space
complexity for the structure is O(|V(G)]). If C is nowhere-dense, then the time
complexity of query is O(1), the amortized time complexity of edge addition or
removal is O(|V(G)[?), the time complexity of the initialization is O(|V (G)|'T)
and the space complexity is O(|V(G)|'T¢), for every e > 0.

Using this data structure, we can also count graph inclusions other than in-
duced subgraphs (e.g., subgraphs and homomorphisms), as these counts only
depend on which and how many small induced subgraphs appear in G. Fur-
thermore, it is easy to modify the data structure to apply to objects other than
undirected graphs, e.g., to directed graphs with colors on vertices and edges.

The problem of dynamic subgraph counting was introduced by Eppstein et al.
in [46] and later extended in [45]. The h-index of a graph G is the largest integer
h such that G has at least h vertices of degree at least h. Let Cj; denote the class
of graphs with h-index at most h. Using a differente approach, the data structure
of et al. [45] makes it possible to determine the number of all induced subgraphs
with at most four vertices in constant time, with time complexity O(h?) per
modification if it is used to reprezent a graph in C,. Note that the class Cy, is
closed on topological minors, and thus it has bounded expansion. Therefore,
Theorem [3] generalizes this result, but it has somewhat worse time complexity
per operation.

The rest of this chapter is organized as follows. In Section 1.1l we describe a
basic idea of the data structure for induced subgraphs. In Section 4.2 we give
some definitions and auxiliary results needed in the rest of the paper. Section .3
contains detailed description of the data structure.

4.1 Basic idea

For concreteness, in this section we consider the class of planar graphs, rather
than an arbitrary class with bounded expansion. Suppose that we want to keep
track of triangles in a planar graph G. A simple way to do this is as follows.
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Orient the edges of GG so that every vertex has in-degree at most 6, which is
possible by 5-degeneracy of planar graphs. For an edge xy of G, we write z — y
if the edge is oriented towards y. For each vertex u € V(G), we maintain

e the number n;(u) of pairs of vertices v, w € V(G) such that u — v, v - w
and u — w;

e the number ns(u) of pairs of vertices v, w € V(G) such that u — v, v - w
and w — u.

We also maintain the sums Ny = 2 gy n(u) and No =37 g n2(u). Con-
sider a triangle 7" C G with vertex set {z,y, z}. By symmetry, we can assume
that © — y and y — z. If x — 2, then T contributes 1 to ny(z). If z — =z,
then T' contributes 1 to each of ny(x), ne(y) and ny(z). Therefore, the number of
triangles in G is N7 + Ny/3.

Let us add an edge zy to GG and choose its orientation, say x — y. Assume for
now that in the resulting orientation, the in-degree of y is still at most 6. Which
of the numbers that we maintain are affected? Clearly, if ni(u) or ng(u) changes,
then either u is incident with the edge xy, or u is an in-neighbor of x. Thus, we
only need to update information for at most 8 vertices of G.

Updating an in-neighbor w of = in constant time is easy, as we just need to
check whether the path u — z — y contributes to n;(u) and ny(u) or not. For y,
the number n;(y) is unchanged, while the number n5(y) increases by the number
of vertices v such that y — v — x. We can enumerate such vertices in a constant
time, as they are in-neighbors of z. Similarly, we can update ny(z) in a constant
time, as the path x — y — z only contributes to nq(z) if 2z is an in-neighbor of x.

There are two ways n;(z) can be affected by the addition of x — y. It could
be that there exists v € V(G) with z — v — y. All these vertices are in-neighbors
of y, and they can be enumerated in constant time. The most complicated case
is that there exists a vertex z with x+ — z and y — z. Here, we cannot easily
enumerate all possibilities for z, as we do not have any bound on out-degrees
of vertices. Therefore, we need one more piece of information. For each pair of
distinct vertices u,v € V(G), let ns(u,v) be the number of vertices w € V(G)
with v — w and v — w. In a hash table, we store

e the number n3(u,v) for all pairs u,v € V(G) such that ns(u,v) # 0.

Hence, in the last case of the update of nq(z), we just need to add ng(z,y).

Let us note that since each vertex has at most 6 in-neighbors, the number
n3(u, v) is non-zero for at most (3)|V(G)| pairs u,v € V(G), and thus nz can be
stored in linear space. We need to consider how the addition of x — y affects
n3. If n3(u,v) changes, then by symmetry we can assume that u = x and v — y.
Consequently, v is an in-neighbor of y, and thus we can enumerate in constant
time all (at most 5) pairs u,v € V(G) such that ns(u,v) increases.

This finishes the description of the update in the case of edge addition. Edge
removal is handled similarly. One problem that we skipped is what to do when
the addition of an edge would violate the constraint on the maximum in-degree.
We are saved by Brodal and Fagerberg [17], who provided an algorithm for main-
taining an orientation with bounded maximum in-degree, which only needs to
change orientation of O(log |V (G)|) edges per update (amortized). In our data
structure, the edge reorientations can be handled similarly to edge additions.
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Therefore, we have described a data structure for counting the number of
triangles in a planar graph (or indeed, any graph with bounded degeneracy), with
logarithmic time complexity per update. For a general subgraph H, there appear
additional complications. The idea of maintaining for each vertex v the number
of copies in H in the subgraph reachable by short paths from v (a similar idea
appears already in Chrobak and Eppstein [18]) only works for the orientations of
H that contain a directed Hamiltonian path. As a first step, we extend this to the
case that H contains a spanning outbranching without cross edges, at the expense
of only counting homomorphisms from H to G instead of subgraphs. This is not
a big problem, as counting subgraphs is equivalent to counting homomorphisms
through a standard inclusion-exclusion argument.

However, how to deal with the orientations that do not admit such an out-
branching? For this, we use the idea of fraternal augmentations of from [82].
Essentially, we add new edges to H and G, obtaining new graphs H' and G’, in
such a way that we can recover the original number of homomorphisms, but H’
contains a spanning outbranching without cross edges. The results of [82] and
the assumption of bounded expansion or nowhere-dense class of graphs ensure
that G’ has bounded degeneracy. This is the most technically complicated part
of the argument, formalized in Lemmata [I3] and [7|

4.2 Definitions and auxiliary results

A fundamental tool for our result are fraternal augmentations, which are
special case of augmentations described in Suppose that G is a directed
graph. Vertices u,v € V(G) form a fork if u and v are distinct and non-adjacent
and there exists w € V(G) with u = w,v = w € E(G). Let G’ be a graph
obtained from G by adding the edge u — v or v — u for every pair of vertices u
and v forming a fork. Then G’ is called a fraternal augmentation of G. Let us
remark that a directed graph can have several different fraternal augmentations,
depending on the choices of directions of newly added edges. If G has no fork,
then G is called elder graph. For an undirected graph G, a k-th augmentation of
G is a directed graph G’ obtained from an orientation of G by iterating fraternal
augmentation (for all forks) k times. Note that (('V(f)‘) — 2)-th augmentation of
(G is an elder graph, because any graph with at most 1 edge is already elder and
fraternal augmentation of a non-elder graph adds at least one edge.

The following result from [82] shows that fraternal augmentation preserve
bounded expansion and nowhere-denseness.

Theorem 4. There exist polynomials fo, f1, fo, ... with the following property.
Let G be a graph with expansion bounded by a function g and let G be an orien-
tation of G with in-degree at most D. If G' is the underlying undirected graph of
a fraternal augmentation of Gy, then G’ has expansion bounded by the function

g'(r) = fr(g(2r +1), D).

The fraternal augmentations are a basic tool for deriving properties of graphs
with bounded expansion, e.g., existence of low tree-depth colorings. Once such a
coloring is found, the subgraph problem can be reduced to graphs with bounded
tree-width, where it can be easily solved in linear time by dynamic programing.
However, we do not know how to maintain a low tree-depth coloring dynamically
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(indeed, not even an efficient data structure for maintaining say a proper 1000-
coloring of a planar graph during edge additions and deletions is known). The
main contribution of our result is showing that we can count subgraphs using just
the fraternal augmentations, which are easier to update.

To maintain orientations of a graph, we use the following result by Brodal
and Fagerberg [17]:

Theorem 5. There exists a data structure that, for a graph G with Vy(G) < d,
maintains an orientation with maximum in-degree at most 4d within the following
bounds:

e an edge can be added to G (provided that the resulting graph G’ still satisfies
Vo(G") < d) in amortized O(logn) time, and

e an edge can be removed in O(1) time, without affecting the orientation of
any other edges.

The data structure can be initialized in time O(|V(G)| + |E(G)|). During the
updates, the edges whose orientation has changed can be reported in the same
time bounds. The orientation is maintained explicitly, i.e., each vertex stores a
list of in- and out-neighbors.

Let us remark that the multiplicative constants of the O-notation in Theo-
rem [0l do not depend on d, although the implementation of the data structure as
described in the paper of Brodal and Fagerberg requires the knowledge of d.

Using Theorem [] we obtain the following modification of the Theorem [Gl

Theorem 6. For every k > 0, there exists an integer k' and a polynomial g with
the following property. Let C be a class of graphs and h(n,r) a computable function
such that the expansion of every graph G € C is bounded by f(r) = h(|V(G)|,r).
There exists a data structure representing a k-th augmentation Gy, of a graph
G € G with n vertices within the following bounds, where D = g(h(n,k')):

e the mazimum in-degree of Gy, is at most D,

e an edge can be added to G (provided that the resulting graph still belongs to
C) in an amortized O(Dlog"™ n) time, and

e an edge can be removed in O(D) time, without affecting the orientation of
any other edges.

The data structure can be initialized in time O(Dn + t), where t is the time
necessary to compute D. The orientation is maintained explicitly, i.e., each vertex
stores a list of in- and out-neighbors.

Proof. Let qo(r) = h(n,r). We use the data structure of Theorem [Blto provide an
orientation Gy of G, = G with maximum in-degree at most 4¢y(0). Assume in-
ductively that we have already constructed pairwise edge-disjoint directed graphs
Gy, G1, ..., G; with underlying undirected graphs Gy, G, ..., G}, such that the
expansion of G = G4 U ... UG is bounded by a function ¢;(r) and G; has max-
imum in-degree at most 4¢;(0). We define G}, to be the graph with vertex set
V(@) and with edges corresponding to the forks in G; = GoU...UG;. Note that
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G; has maximum in-degree at most d; = 4(qo(0) + ... + ¢;(i)). By Theorem [
1 =GLU. . UG, has expansion bounded by giy1(r) = fi(q(fa(r)), d;). We
use the data structure of Theorem [l to provide an orientation G, of G, with
maximum in-degree at most 4¢;1(0).

The data structure maintains the orientations G, G, ..., G and their union
Gy.. Observe that Gy, is a k-th augmentation of G. Addition of an edge in G may
result in change of orientation of O(logn) edges in Gy (amortized), which may
result in addition or removal of O(dylogn) edges in Gj. Each of them results
in change of orientation of O(logn) edges in G; and consequently addition or
removal of O(d; logn) edges in G, etc. Altogether, addition of an edge may result
in O(dod, . ..d,_11og"™ n) changes, with the same time complexity. Similarly, a
removal of an edge may result in O(dyd; . ..dj_1) changes.

Therefore, Theorem [6] holds, since we can choose the integer k' and the poly-
nomial g so that D > max(dy,dod; ...d_1). Let us remark that we can assume
that D < n?, as otherwise the claim of the theorem is trivial; hence, the com-
plexity of performing computations with D (once it was determined during the
initialization) does not affect the time complexity of the operations. O

Let G be a directed graph and S a set of its vertices. Let N (S) denote the
set of vertices that are reachable from S by a directed path of length at most d,
and let NI (S) we denote the set of vertices reachable from S by a directed path
of any length. Similarly, N, () and N_(S) denote the sets of vertices from that
S can be reached by a directed path of length at most d and by a directed path of
any length, respectively. We also use N (v), Nf(v), Nj (v), N (v) as shorthands
for N ({v}), NL({v}), N; ({v}), NL({v}), respectively. We say that a directed
graph is connected if its underlying undirected graph is connected. Similarly,
connected components of a directed graph are its subgraphs induced by vertex
sets of the connected components of its underlying undirected graph.

The key property of elder graphs is that they contain a vertex from that we
can reach all other vertices by directed paths. Let us prove a stronger claim that
we need in the design of our data structure. A directed tree T" with all edges
directed away from the root is called an outbranching. The root of T is denoted
by r(T). Let H be a supergraph of an outbranching 7" with V(H) = V(T'), such
that for every edge (t1,t2) € E(H), there exists a directed path in T either from
t1 to ty or from o to t1. We call such a pair (H,T) a vineyard.

Lemma 7. If H is a connected elder graph, then there exists an outbranching
T C H such that (H,T) is a vineyard.

Proof. The claim is obvious if |V (H)| < 2. Therefore, suppose that |V (H)| > 3.
By induction, we can assume that the claim holds for all graphs with less than
|V (H)| vertices. Let v be a vertex of H such that v is not a cutvertex in the
underlying undirected graph of H. Note that every induced subgraph of an elder
graph is elder, and thus by the induction hypothesis, there exists an outbranching
T’ such that (H — v, T") is a vineyard. If (v,r(T")) € E(H), then we can let T
consist of 7" and the edge (v, 7(T")). Therefore, assume that 7(T") & N (v).
Consider a vertex w € N; (v), and let r(T") = wp,wy,...,w, = w be the
directed path in 7' from 7(7") to w. Since both (wg_1,wy) and (v, wy) are edges
of an elder graph H, it follows that either (wy_1,v) or (v,w,—1) is an edge of H.
In latter case, we can repeat this observation. Since 7(T") € N, (v), we conclude
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that there exists ¢ with 0 <7 < k — 1 such that w; € Ny (v) and w; € N; (v) for
all j withi+1<j <Fk.

In particular, since G is connected, N; (v) is not empty. If u; and uy are
distinct vertices in N; (v), then since H is an elder graph, there exists an edge
joining u; with uy. Since (H,T) is a vineyard, there exists a directed path @ C 7"
starting in 7(7") such that Ny (v) € V(Q) and the endvertex z of @ belongs to
Ni (v).

Let Ty, ..., T,, be all components of T7"—V (@) containing at least one neighbor
of v. As we observed before, we have (v,r(7;)) € E(H) for 1 <i <m. Let T be
the outbranching obtained from 7” by removing the incoming edges of r(7}), ...,
r(T,,) and adding the edges (z,v), (v,7(T1)), ..., (v,7(T}n))-

All neighbors of v belong either to one of the trees T, ..., T,, or to @, and
thus they are joined to v by a directed path in 7. Consider an edge (z,y) €
E(H —v)\ E(T). If neither = nor y belongs to X = V(T1) UV (Ty)U...UV(T,,),
then the path in 7" joining = and y also appears in 7. If both z and y belong
to X, then since (H — v,T") is a vineyard, there exists ¢ (with 1 <4 < m) such
that x,y € V(T;), and the path joining x and y in 7" also appears in T". Finally,
suppose that say = belongs to 77 and y does not belong to X. Since (H —v,T") is
a vineyard, we have y € V(@Q)), and = and y are joined in T" by the path consisting
of the subpath of @) from y to z, the path zvr(7}) and the path from r(7}) to =
in 7T7. Therefore, (H,T) is a vineyard. O

Let G and H be undirected graphs, a mapping ¢: V(H) — V(G) is a homo-
morphism if for every edge uwv € E(H), we have that ¢(u)¢(v) is an edge of G (in
particular, ¢(u) # ¢(v)). A homomorphism is a subgraph if it is injective. It is an
induced subgraph if it is injective and ¢(u)¢(v) € E(G) implies uv € E(H), for
every u,v € V(H). Let hom(H, G), sub(H, G) and isub(H, G) denote the number
of homomorphisms, subgraphs and induced subgraphs, respectively, of H in G.
Let us note that the definitions of subgraph and induced subgraph distinguish the
vertices, i.e., sub(H, H) = isub(H, H) is equal to the number of automorphisms
of H.

Similarly, if H and G are directed graphs, a mapping ¢: V(H) — V(G) is a
homomorphism if u — v € E(H) implies that ¢(u) — ¢(v) is an edge of G, and
hom(H, G) denotes the number of homomorphisms from H to G. It turns out
to be convenient to work with graphs with colored edges. We do not place any
restrictions on the coloring; in particular, edges incident with the same vertex
can have the same color. Suppose that H and G are graphs with colored edges.
A mapping ¢: V(H) — V(G) is a homomorphism if for every edge uwv € E(H),
we have that ¢(u)p(v) is an edge of G of the same color as uv (and in particular,
¢(u) # ¢(v)). A homomorphism is a subgraph if it is injective. It is an induced
subgraph if it is injective and ¢(u)p(v) € E(G) implies uv € E(H), for every
u,v € V(H). Let hom(H,G), sub(H,G) and isub(H, G) denote the number of
homomorphisms, subgraphs and induced subgraphs, respectively, of H in G. Let
us note that the definitions of subgraph and induced subgraph distinguish the
vertices, i.e., sub(H, H) = isub(H, H) is equal to the number of automorphisms
of H.

Analogously, if H and G are directed graphs with colored edges, a mapping
¢: V(H) = V(G) is a homomorphism if u — v € E(H) implies that ¢(u) — ¢(v)
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is an edge of G of the same color as uv, and hom(H, G) denotes the number of
homomorphisms from H to G.

4.3 Dynamic data structure for induced sub-
graphs

In this section, we aim to design the data structure ISub as described in
the introduction. More precisely, for any positive integer k, a fixed graph H
with edges colored by colors {1,...,k} and a class C of graphs, we design a data
structure ISuby 4 (G) representing a graph G € C with edges colored by {1, ..., k},
supporting the following operations.

e Determine isub(H, G).
e Change a color of an edge.

e Add an edge, i.e., transform ISuby ;(G) to ISuby (G + e), under the as-
sumption that G + {e} is in C.

e Delete an edge, i.e., transform ISuby 4 (G) to ISuby (G — e).

The complexity of the operations depends on C and is discussed in more detail in
Subsection [£.3.51 To implement the data structure ISuby x(G), we first perform
several standard transformations, reducing the problem to counting homomor-
phisms.

4.3.1 From induced subgraphs to subgraphs

The data structure ISuby x(G) is based on a data structure Subyy ,(G), which
can be used to determine the number of (not necessarily induced) subgraphs of
H' in G, i.e., the number sub(H’, G). The relationship is based on the following
claim.

Let H(+,1,k) denote the set of all graphs which can be obtained from H by

adding exactly i new edges and assigning them colors from {1,... k}.
Lemma 8.
(V) —1B()
isub(H, G) = (1) Z sub(H', G).
=0 H'€H(+i,k)

Proof. Let E be the set of all unordered pairs of vertices of H that are not adja-
cent. For each pair uv € FE let A,, denote the set of all injective homomorphisms
¢: V(H) — V(G) such that ¢(u)p(v) € E(G). Observe that

isub(H,G) = sub(H,G) — U Ay

weE
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and that for 1 <i < |E],

Z sub(H',G) = Z

H'€H (+,i,k) XCE,|X|=i

ﬂAm.

uveX

The claim of the lemma follows by the principle of inclusion and exclusion. [

The data structure ISuby (G) consists of the collection of the data structures
Subpy 1 (G) for all H' € UEO H(+,1,k). The additions, removals and recolorings
of edges of G are performed in all of the data structures, and isub(H,G) is
determined from the queries for sub(H’, G) using the formula from Lemma [§
The complexity of each operation with ISuby ;(G) is thus at most 21V = O(1)

times the complexity of the corresponding operation with Subgy ,(G) for some
graph H' with |V(H')| = |[V(H)|.

4.3.2 From subgraphs to homomorphisms

Next, we aim to base the data structure Subyi(G) on a data structure
Homp x(G), which counts the number hom(H', G) of homomorphisms from H’
to GG. Furthermore, we want to restrict our attention to the case that H’ is
connected.

Consider a graph H with colored edges, and let P be a partition of V (H) such
that

e cach element of P induces an independent set in H, and

e for every pi1,ps € P, u,u’ € p; and v, v € py, if both uv and u'v" are edges
of H, then uv and u/v’ have the same color.

Let H' be the graph obtained from H by identifying the vertices in each part of
P and suppressing the parallel edges. We say that H' is a projection of H. Let
‘H? denote the set of all projections H' of H.

Lemma 9. For every graph H with colored edges, there exist integer coefficients
ap such that for every graph G with colored edges,

sub(H,G) = Z ay hom(H', G).

H'eHr

Proof. Let ¢: V(H) — V(G) be a homomorphism. Note that P = {¢~(v) :
v € dom(¢)} is a partition of V(H) that gives rise to a projection H' of H,
and H' appears as a subgraph in G. Conversely, if a projection H' of H (given
by a partition P of V(H)) is a subgraph of G, then it corresponds to a unique
homomorphism from H to G that maps all vertices of each element of P to the
image of the corresponding vertex of H'.

This bijective correspondence shows that

hom(H,G) = > sub(H',G).

H'eHP
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Equivalently,

sub(H,G) = hom(H, G) — Z sub(H', G). (4.1)

H'eHP\{H}

We prove Lemma [9 by induction. Assume that the claim is true for all graphs
with fewer vertices than H. In particular, for every H' € HP other than H, there
exist coefficients of, such that

sub(H',G) = Z ot hom(H", G)

Hll eH/p

for every graph G. Note that H'” C HP \ {H}. Therefore, Lemma [0 follows from
(@) by setting ay = 1 and

/
dpgrn = — E Ofg//

H'eHP\{H},H" eH'?
for every H"” € H? \ {H}. O

A similar trick allows us to deal with disconnected graphs.

Observation 10. Let Hy and Hy be two graphs. For the disjoint union Hy U Hy
it holds that
hom(H; U Hy, G) = hom(H,,G) - hom(Hs, G).

In the following subsection, we design a data structure Hompx(G) for a
connected graph H with edges colored by {1,...,k}, which counts the num-
ber hom(H, G) of homomorphisms from H to G, and allows additions, removals
and recolorings of edges in G.

The data structure Subp (G) consists of the collection of data structures
Homp (G) for all connected components of projections of H. Edge additions,
removals and recolorings in G are performed in all these structures. The num-
ber sub(H, G) is determined from the queries to the structures according to the
formula following from Lemmata [9 and

The number of projections of H and their components is bounded by a func-
tion of H, which we consider to be a constant. Therefore, the complexity of
operations with Subg x(G) is the same up to a constant multiplicative factor as
the complexity of operations with Homy (G) with |V(H")| < |V(H)].

4.3.3 Augmented graphs

In order to implement the data structure Homp x(G), we use fraternal aug-
mentations. Essentially, we would like to find a bijection between homomorphisms
from H to G and between homomorphisms from all possible h-th augmentations
of H to an h-th augmentation of GG, where h = ('V(2H)‘) — 2. However, it turns
out that we need to be a bit more careful.

For a graph F' with edges colored by colors {1,... &k}, we define the color of
an edge (u,v) of a t-th augmentation of F' to be the same as the color of uv if
wv € E(F), and to be 0 otherwise (i.e., we introduce a new color for the edges
added through the fraternal augmentation). If F’ and F” are directed graphs
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with edges colored by colors {0,1,...,k}, we say that F" is obtained from F' by
recoloring zeros if F' and F" differ only in the colors of edges whose color in F’
is 0.

Lemma 11. Let H and G be graphs with edges colored by {1, ..., k} andlet h >0
be an integer. Let ¢: V(H) — V(G) be a homomorphism and let G' be an h-th
augmentation of G. There exists a graph H' obtained from an h-th augmentation
of H by recoloring zeros, such that for every edge (u,v) € E(H'),

o if p(u) # d(v), then (p(u), p(v)) € E(G"), and (u,v) has the same color as
((u), ¢(v)); and,

o if o(u) = ¢(v), then the color of (u,v) is 0.

Proof. We prove the claim by the induction on h. If h = 0, we let H' be
the orientation of H such that each edge wv € E(H) is oriented towards v if
(p(u),p(v)) € G" and towards u otherwise (i.e., if (¢p(v),p(u)) € G'), with the
colors of the edges of H' matching the colors of the corresponding edges of H.

Therefore, suppose that h > 0. Let G be an (h—1)-th augmentation of G such
that G’ is a fraternal augmentation of GG;. By induction hypothesis, there exists
a directed graph H; obtained from an (h — 1)-th augmentation H by recoloring
zeros, satisfying the outcome of the lemma.

Let u and v be vertices forming a fork in Hj, such that ¢(u) # ¢(v). If
(p(u),p(v)) € E(Gy) or (¢(v),p(u)) € E(Gy), then we choose the orientation
and the color of the edge uv in H' correspondingly. Otherwise, consider a vertex
w such that (u,w), (v,w) € E(H;), and note that since ¢(u) is not adjacent to
¢(v) in G, the induction hypothesis implies that ¢(u) # ¢(w) # ¢(v) and that
(p(u), p(w)), (p(v), p(w)) € E(Gy). It follows that ¢(u) and ¢(v) form a fork
in G1, and thus (¢(u),¢(v)) € E(G) or (¢p(v),¢(u)) € E(G). We choose the
orientation of the edge uv in H' correspondingly, and color it by 0.

Finally, for each pair u,v € V(H;) forming a fork in H; such that ¢(u) = ¢(v),
we choose an orientation of uv in H’ arbitrarily and assign it color 0. Observe
that the fraternal augmentation H' of H; and its coloring satisfy the outcome
of Lemma [I1] as required. Furthermore, the choices of colors and orientations of
edges of H' that are not mapped to a single vertex are uniquely determined by
the conditions of the lemma. O

Lemma [Tl inspires the following definition. Let F’ be a directed graph with
edges colored by {0,1,...,k}. Let P be a partition of vertices of F’ such that

e for every p € P, the subgraph of F’ induced by p is connected and contains
only edges colored by 0; and

e if py,py € P are distinct, u,u’ € py, v,v" € py and (u,v) is an edge, then
(v',u') is not an edge, and if (v',v’) is an edge, then it has the same color
as (u,v).

Let F” be the directed graph with edges colored by {0,1,...,k}, such that
V(F") = P and (p1,p2) € E(F") if and only if (vy,vs) € E(F") for some vy € p;
and vy € py; and in this case, (p1,p2) and (vy,v9) have the same color. That is,
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F" is obtained from F’ by identifying the vertices in each part of P and sup-
pressing the parallel edges and loops, and we also remember which vertices of F’
correspond to each vertex of F”. We say that F" is a 0-contraction of F".

We aim to find a bijection between the homomorphisms from an undirected
graph H to an undirected graph G and the homomorphisms from all possible
O-contractions of augmentations of H to a fixed augmentation of G. We will need
the following uniqueness result.

Lemma 12. Let H be a graph with edges colored by {1,...,k} and let h =
('V(QH)‘) — 2. Let G’ be a directed graph with edges colored by {0,1, ..., k}, such
that each vertex of G' is contained in a loop with color 0, but G’ has no other loops
or parallel edges. Let Hy and Hy be graphs obtained from h-th augmentations
of H by recoloring zeros, such that there exists ¢: V(H) — V(G') which is a
homomorphism both from Hy and from Hy to G'. Let Py be the partition of V(H)
such that two wvertices u,v € V(H) belong to the same part in P if and only
if p(u) = ¢(v). Fori € {1,2}, let P; be the partition of V(H) such that each
p € P; is the vertex set of a connected component of the subgraph of H; induced
by vertices in some part p’ € Py. Let H] be the 0-contraction of H; corresponding
to P,. Then H| = H).

Proof. Before proceeding with the proof, let us remark that the assumption that
¢ is a homomorphism from H; to G’ ensures that the conditions on the partition
P; from the definition of a O-contraction are satisfied. Furthermore, H; = H}
implies P, = P,.

Suppose that F' is a directed graph with vertex set V(H) and with edges
colored by {0,1,...,k} such that ¢ is a homomorphism from F' to G'. Let P(F)
be the partition of V' (H) such that each p € P(F) is the vertex set of a connected
component of the subgraph of F' induced by vertices in some part p’ € P.

Note that both H; and H, are elder graphs. Let H ? be an orientation of H
and let HY, H}, ..., H¥ be a sequence of directed graphs with edges colored by
{0,1,...,k}, such that H; = HF and for 1 < i < k, the graph H! is obtained
from H!™! by adding an edge joining two vertices forming a fork.

We are going to construct a sequence HY, Hi, ..., HY where

e HY is an orientation of H and H: C H, for 0 <i < k,

e M} is obtained from H. ' by repeatedly adding edges joining two vertices
forming a fork, for 1 < i < k, and

e P(H}) = P(H}) and the 0-contractions of Hi and HS corresponding to this
partition are identical, for 0 < i < k.

We set H) = HY. Since ¢ is a homomorphism from both H; and Hs to G" and
no edge of H is colored by 0, we have HY C H,, hence HY satisfies the required
properties.

Suppose now that 1 < i < k and that we have already constructed H. '.
Let u,v,w € V(H) be the vertices such that u and v are not adjacent in H; ',
(u,w), (v,w) € BE(H™) and (u,v) € E(H}). Let P,_y = P(H™') = P(H.™).
If v and v belong to the same part of P,_;, then note that P(H{) = P,_; and
the O-contractions of H:~! and H! corresponding to this partition are identical.
Therefore, we can set Hi = Hi ',
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Suppose now that v and v belong to different parts p,,p, € P;_1. Let p, €
P;_1 be the part containing w. Note that p,, # p,, as otherwise H; would contain
both edges (u, v) and (v, w) with ¢(u) = ¢p(w) # ¢(v), contrary to the assumption
that ¢ is a homomorphism from H; to G'. If p,, = p,,, then note that P(H}) = P;_;
and the corresponding O-contractions of H' ™' and H} are identical, hence we can
set Hi = H: .

Therefore, we can assume that p, # p, # p,. In this case we construct H&
by initially setting Hi = Hi ' and then adding edges as described in the rest
of this paragraph. Since there exist edges between w and u and v, we also have
d(u) # ¢(w) # ¢(v). Since the O-contractions of H{ ' and Hi ' correspond-
ing to P;_; are identical, there exist vertices u’ € p,, v" € p, and wy,ws € Py,
with (v, w,), (v, ws) € E(HS ). Let wy = a1, T, ..., 1, = wy be an in-
duced path between w; and ws, in the underlying undirected graph of the sub-
graph of H3 ' induced by p,. Let us also set 7o = «’ and z,,; = v’. Since
(z0, 21), (7441, 2;) € E(HL ), observe that there exists j (with 1 < j < t) such
that (z;_1,7;), (vj411,2;) € E(Hy ). Since Hy is an elder graph, we have that
either (x;_1,2j41) or (x;41,2;-1) is an edge of Hy. We add this edge to Hj and
consider the path xg, 1, ..., -1, Tj41, ..., Te41. Let us note that if j = 1 and
t > 1, then we added the edge (¢, z2), as we have xy € py, T2 € p,, there already
exists an edge from p, to p,, and ¢ is a homomorphism from H; to G that maps
all vertices of p, to ¢(u) and all vertices of p,, to ¢(w). A symmetric argument
holds in the case that j =t > 1. Therefore, we can repeat this procedure until
an edge between u' and v’ is added.

If ¢p(u) # ¢(v), then the last added edge is (u/,v'), since ¢ is a homomorphism
from both H; and H, to G. Furthermore, all other added edges were inside p,,,
or between p, and p,, or between p, and p,, hence P(HY) = P,_; = P(HY).
We conclude that the corresponding 0O-contractions are identical as required. If
é(u) = ¢(v), then we similarly conclude that both P(H}) and P(Hj) are obtained
from P;_; by merging p, and p,, and that the corresponding 0-contractions of H}
and H} are identical.

Therefore, there exists the sequence HY, ..., HY with the required properties.
Since HY C H,, we have that P(H,) = P(HY) is a refinement of P(H,). By
switching the role of H; and Hs in the argument, we conclude that P(Hs) is a
refinement of P(H;). Therefore, P(H,) = P(Hs). Since H, = H} and HY have
the same O-contraction corresponding to this partition, it follows that H; C HJ.
By symmetry, we have H) C H{, and thus H; = H),. O

Lemmata [I1] and [12] enable us to express the number of homomorphisms for
undirected graphs in the terms of the homomorphisms of their augmentations.
For a graph H with edges colored by {1,...,k}, let H¢ denote the set of all 0-
contractions of graphs obtained by recoloring zeros from h-th augmentations of
H, where h = (‘V(QH)‘) — 2.

Lemma 13. Let H and G be graphs with edges colored by {1,...,k} and let
h = (‘V(QH)‘) — 2. If G" is an h-th augmentation of G, then

hom(H,G) = Z hom(H', G").
H'eHe
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Proof. Consider a homomorphism ¢ from H to G. Let Hy be a graph obtained
from an h-th augmentation of H by recoloring zeros such that H, satisfies the
outcome of Lemma [IIl Let Py be the partition of V(Hy) such that two vertices
u,v € V(Hp) are in the same part if and only if ¢(u) = ¢(v). Note that every p €
Py induces a subgraph of Hy whose edges have color 0. Let P be the refinement
of P, such that every p’ € P is the vertex set of a connected component of the
underlying undirected graph of the subgraph induced in Hy by some p € F,.
Let H' be the 0-contraction corresponding to the partition P (which satisfies the
assumptions from the definition of a 0-contraction since ¢ is a homomorphism).
Let ¢': V(H') — V(G) be the mapping such that ¢'(p) = ¢(v) for every p €
V(H') and v € p. Observe that ¢’ is a homomorphism from H’ to G’. This defines
a mapping ®(¢) = (H', ¢') which assigns a graph H' € H° and a homomorphism
¢ V(H") = V(G') to each homomorphism ¢: V(H) — V(G).

We need to prove that ® is a bijection. Note that if ®(¢) = (H', ¢'), then
for each v € V(H), we have ¢(v) = ¢/(p), where p is the vertex of H' such that
v € p. Therefore, ® is an injection, and it suffices to argue that & is surjective.

Consider arbitrary H' € H¢ and a homomorphism ¢’ from H’ to G’. Since
H' € H°, there exists a graph H{ obtained from an h-th augmentation of H by
recoloring zeros such that H' is a O-contraction of H|. Let ¢: V(H) — V(G) be
the mapping defined by ¢(v) = ¢'(p), where p is the vertex of H' such that v € p.
Note that if uv € E(H), then (u,v) € E(H)) or (v,u) € E(H{) and this edge has
nonzero color, and thus there exist distinct vertices p,,p, € V(H') with u € p,
and v € p, such that an orientation of p,p, is an edge of H' of the same color.
Since ¢’ is a homomorphism, we conclude that ¢'(p,)¢' (p,) = ¢(u)p(v) is an edge
of G of the same color. It follows that ¢ is a homomorphism from H to G.

We need to prove that ®(¢) = (H',¢'). Suppose that &(¢) = (H”,¢"). Let
Hy be the graph from the definition of ®(¢). Since ¢ is a homomorphism from
both Hy and H{ to the graph obtained from G’ by adding loops of color 0 to each
vertex, Lemma [[2limplies that H” = H’. Since the homomorphism from H' to G’
is uniquely determined by ¢, it also follows that ¢” = ¢', as required. Therefore,
® is indeed a bijection, and the equality of the lemma follows. O

Furthermore, taking 0-contractions preserves elderness.

Lemma 14. If H is an elder graph with edges colored by {0,1,...,k} and H' is
a 0-contraction of H, then H' is an elder graph.

Proof. Let P be a partition of V/(H) that gives rise to H'. Suppose that vertices
' v € V(H') form a fork, i.e., they are non-adjacent and there exists a vertex
w' € V(H') with (u/,w'), (v, w'") € E(H).

By the definition of a 0O-contraction, there exist vertices u € ', v € v' and
wy,wy € w' such that (u,w;), (v,ws) € E(H). Furthermore, the underlying
undirected graph of the subgraph of H induced by w’ is connected, hence it
contains a path ) = z12y...1x; with ;1 = w; and x; = wy. Let us choose the
vertices wy, wy and the path @ so that the length of () is minimal.

Since v’ and v’ are not adjacent, it follows that u and v are not adjacent, and
since H is an elder graph, we conclude that w; # ws. Note that @ is an induced
path. Since H is an elder graph, it follows that for every ¢ with 2 <1 < t—1, either
(xi—1,2;) & E(H) or (zi41,2;) € E(H). This implies that if (z;,22) € E(H),
then (z;,z,41) € E(H) for 1 <i <t — 1. Therefore, either (z9,w,) € E(H) or
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(x4_1,wy) € E(H). By symmetry, we assume the former. Since H is an elder
graph, this implies that either (u,z9) € E(H) or (x9,u) € E(H). Since H' is a
0O-contraction of H arising from the partition P, (u,w;) € F(H) and wy, 23 € P,
it follows that the edge between u and x5 cannot be oriented towards u, and thus
(u,z9) € E(H). However, the path between x5 and ws is shorter than ). Since
() was chosen so that its length is minimal, this is a contradiction. O

In the following subsection, we design a data structure AHom g 1+ p(G’)
for an elder vineyard (H’,T") and a directed graph G’ of maximum in-degree at
most D, where both H" and G’ have edges colored by {0,1,...,k}. The data
structure AHom counts the number hom(H’, G) of homomorphisms from H' to
G’ and allows additions, removals, reorientations and recolorings of edges in G'.

The data structure Homy ;(G) consists of

e an h-th augmentation G’ of G (where h = ('V(QH)‘) — 2) maintained as
described in Theorem [6] and

e the collection of data structures AHomg vy p(G’) for each H' € H°,
where D is the bound from Theorem [(] for the class of graphs containing
G and 7" is an outbranching in H' such that (H’,T") is an elder vineyard
(which exists by Lemma [7]).

Note that |H¢| is bounded by a function of H and k only, and thus its size is
constant.

Edge additions and removals are first performed in the data structure for the
h-th augmentation G’ of G. Each addition results in O(D log"™! |V (G)|) changes
in G’ each removal results in O(D) such changes (amortized). A recoloring in G
only affects one edge of G'. In all the cases, the changes of G’ are performed in
all the AHom substructures. The number hom(H, G) is determined by summing
the results of the queries to these substructures, as follows from Lemma [I3]

4.3.4 Homomorphisms of elder graphs

In this subsection, we describe the data structure AHom, thus finishing the
design of the data structure for subgraphs.

Let (H,T) be an elder vineyard. A clan is a subset C of vertices of H such
that N;"(C) = C and the subgraph T of T induced by C is an outbranching.
Let r(C') denote the root of this outbranching 7”. The ghosts of a clan C are the
vertices Ny (C) \ C.

Lemma 15. Let (H,T) be an elder vineyard.
1. For every v € V(H), the set NI (v) is a clan.
2. The ghosts of a clan C' are exactly the vertices in Ny (r(C)) \ C.
3. All ghosts of a clan C" are on the path from r(H) to r(C) in T.

Proof. Let us prove the claims separately:
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1. Let C = NX(v). Clearly, N;"(C) = C. Note that the subgraph H[C] of
H induced by C' is connected. If the subgraph of T induced by C' is not
an outbranching, then it contains two components 7} and 75 joined by an
edge of H[C]. Observe that no directed path in 7' contains a vertex both
in 77 and T5. This contradicts the assumption that (H,T) is a vineyard.

2. Suppose that v is a ghost of C| i.e., there exists an edge (v,w) € E(H)
for some w € C. Let w be such a vertex whose distance from r(C) in T is
minimal. If w # r(C'), then consider the in-neighbor z of w in T'. Since H is
an elder graph, v and z are adjacent in H. Since v does not belong to C', we
have (z,v) € E(H), and thus (v,2) € E(H). However, the distance from
r(C) to z in T is smaller than the distance to w, which is a contradiction.
Therefore, we have w = r(C) as required.

3. This follows from the definition of vineyard.
O

The extended clan C* for a clan C'is obtained from the subgraph of H induced
by C' and its ghosts by removing the edges joining pairs of ghosts.

Let G be a directed graph and let (H,T) be an elder vineyard, where the
edges of G and H are colored by colors {0,1,...,k}. let C' be a clan with ghosts
g1, - -, gm listed in the increasing order by their distance from r(C) in T and let
v and wy, ..., w, be (not necessarily distinct) vertices of G. Note that ¢; is the
in-neighbor of r(C) in T'. Let homg,7)(C, v, wy, . .., wn, G) denote the number of
homomorphisms from C* to G such that r(C') maps to v and gy, ..., g, map to
Wi, . .., Wy, inorder. Let hom((H,T),G,v) denote the number of homomorphisms
from H to G such that (T') maps to v.

Theorem 16. Let (H,T) be an elder vineyard with edges colored by {0,1,...,k}
and let D be an integer. There exists a data structure AHom g r)xp(G) rep-
resenting a directed graph G with edges colored by {0,1,...,k} and mazximum
in-degree at most D supporting the following operations in O(D‘V(H”Q) time.

1. Addition of an edge e to G such that the mazimum indegree of G + e is at
most D.

2. Reorientation of an edge in G such that the maximum indegree of the re-
sulting graph is at most D.

3. Removal or recoloring of an edge.

The data structure can be used to determine hom((H,T),G,v) for a vertex v €
V(G), as well as hom(H,G), in O(1). The data structure can be built in time
O(DIVEDPHY YV (G)|) and has space complezity O(DIVIDI|V (G)|).

Proof. We store the following information:

e For each clan C' # V(H) with m ghosts and each m-tuple of vertices
w1, ..., w, of G we record the number

S(Ciwy, ..., wy) = Z hom g1y (C, v, wy, ..., wpy),

vENT (w1)
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that is the number of homomorphisms of C* to G such that the ghosts of
C' map to wy, ..., w, and r(C) maps to some outneighbor v of wy.

e For each v € V(G), the number hom((H,T), G, v).
e The sum hom(H, G) of these numbers over all vertices of G.

The number S(C,wy,...,w,) is only stored for those combinations of C' and
Wi, . .., Wy, for that it is non-zero. The values are stored in a hash table (see
e.g. [20] for implementation details), so that they can be accessed in a constant
time. By Lemma [I3] if homy ) (C, v, wy, ..., wy,) is non-zero, then wy, ..., wpy,
are in-neighbors of v in GG. Since the maximum indegree of GG is at most D, each
vertex v contributes at most D!V non-zero values (and each of the numbers
is smaller or equal to |V(G)|VU)!), thus the space necessary for the storage is
O(DVENV(@)]). Queries can be performed in a constant time by returning the
stored information.

The addition of an edge (z,y) to G is implemented as follows. We process the
clans of (H,T) in the decreasing order of size, i.e., when we use the information
stored for the smaller clans, it still refers to the graph G without the new edge.
Let us consider a clan C' # V(H) with ghosts ¢1,...,gm. For each non-empty
set X of edges of C* which have the same color as (z,y), we are going to find all
vertices v and wy, . . ., w,, such that there exists a homomorphism of C* mapping
r(C) to v and the ghosts of C' to wy, ..., w,, which maps precisely the edges of
X to (x,y). We will also determine the numbers of such homomorphisms, and
decrease the number S(C,wy, ..., w,,) by this amount. Note that the number of
choices of X is constant (bounded by a function of H).

Consider now a fixed set X. Let M be the set of vertices z € V(C*) such
that there exists a directed path in C* from z to the head of an edge of X. Note
that r(C) and all ghosts of C' belong to M. Let Cy, ..., C; be the vertex sets
of connected components of C* — M, and observe that they are clans. Now, let
F be the set of all homomorphisms from the subgraph of C* induced by M to
G + (x,y) such that exactly the edges of X are mapped to (z,y). Note that
if 2z is an image of a vertex of M in such a homomorphism, then GG contains a
directed path from z to y of length at most |V (H)]|, thus there are only O(DV()
vertices of G to that M can map, and consequently only O(DIV(H )‘2) choices for
the homomorphisms. Each such choice fixes the image of r(C') as well as all the
ghosts.

Consider ¢ € F. We need to determine in how many ways ¢ extends to
a homomorphism of C* that maps no further edges to (z,y) (this number is
then added to the value S(C,¢(¢g1),...,6(gm))). Note that for 1 < i < ¢, the
ghosts of C; are contained in M, and thus their images are fixed by the choice
of ¢. Therefore, if ¢';,...,¢,, are the ghosts of C;, then the number of the
homomorphisms extending ¢ is

t

[TsCiedh), ... (gin.).

i=1

Here, we use the fact that the values S(C;, . ..) were not updated yet, and thus in
the homomorphisms that we count, no other edge maps to (z,y). These products
can be determined in a constant time.

48



The values hom((H,T), G, v) are updated similarly, before the values S(C, .. .)
are updated. The changes in the values of hom((H,T), G, v) are also propagated
to the stored value of hom(H, G). The complexity of the update is given by the
number of choices of partial homomorphisms F, i.e., O(D'V(H)‘Q).

Edge removal works in the same manner, except that the information is sub-
tracted in the end, and that the clans are processed in the opposite direction, i.e.,
starting from the inclusion-wise smallest clans, so that the values for the graph
without the edge are used in the computations.

Change of the orientation of an edge or its recoloring can be implemented
as subsequent deletion and addition. The data structure can be initialized by
adding edges one by one, starting with the data structure for an empty graph G
whose initialization is trivial. O

4.3.5 Induced subgraphs

The data structure ISuby ;(G) consists essentially of the data structure for
maintaining the h-th augmentation G’ of G (where h = ('V(2H)|) —2) and of a
constant (bounded by a function of k£ and H) number of data structures AHom,
to that we have to propagate all the changes in G’. Therefore, if D is the bound
from the data structure from Theorem [ then the data structure ISuby x(G) has
the following complexities (amortized).

e Edge addition: O(D/VH)IP+1 log(W(QH)>_1 V(G)]).
e Edge removal: O(DIVUF+),

e Edge recoloring: O(DIVUI),

e Initialization: O(DVHPH |V (G)| +t).

e Space: O(DIVUID*|V(@))).

For dense graphs, the bound on D is too large for the data structure to
be useful. However, if G is kept within some class C of graphs with bounded
expansion, then the function h(n,r) from Theorem [Glcan be chosen to be constant,
and we obtain D constant. Therefore, when applied to such a class of graphs,
the complexities are as follows.

e Edge addition: O(logcvé}”)_1 V(G))).
e Edge removal and recoloring: O(1).

e Initialization: O(|V(G)|).

e Space: O(|V(G))).

Similarly, if C is nowhere-dense, then the function h(n,r) is O(n) for any
fixed r and any ¢ > 0. Therefore, given any € > 0, we can choose &' to be less
than ¢/(|]V(H)|> + 1) and the complexities of the data structure are as follows.

e Edge addition, removal and recoloring: O(|V(G)|¢).

e Initialization and space: O(|V (G)|'*%).
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4.4 Extensions

Although we have for simplicity formulated the data structure ISub for a
graph G with a fixed vertex set, there is no problem with adding or removing
isolated vertices to/from G in a constant time.

One can ask about a number of possible extensions to the data structure ISub.
Can we allow directed edges? Or colors of vertices? Or hyperedges? All these
can be expressed as relational structures, recall the definition from 2.4l We work
with colors here, note that colors of vertices and edges can be represented by
additional unary and binary relations, respectively.

We define |S| as [V(S)| + Y ge, |R®|, and for a structure S work with its
incidence graph G'. Note that for structures with bounded expansion, the maxi-
mum average degree of corresponding Gaifman graph G is bounded by a constant
(IV(9)|¢ for every € > 0, respectively). Consequently, the number of cliques in
G of size bounded by the maximum arity of a relation symbol of S is O(|V (5)])
(O(|V(S)])1*¢ for every € > 0, respectively), see [I11]. It follows that we have
S| = O(|V(G)]) (O(|]V(S)|)* for every e > 0, respectively).

As promised in[2.4] we prove that Gaifman graphs and incidence graphs define
the same density.

Lemma 17. If a class of structures S has bounded expansion (is nowhere-dense),
then the class S = {G%; S € S} has bounded expansion (is mowhere dense,
respectively).

Proof. We present the proof for bounded expansion. The argument for the
nowhere-dense case is analogical.

For t > 0 and a class C of graphs, let C V t denote the set of all graphs G such
that there exists a graph G’ € C and a graph obtained from G by subdividing
each edge at most ¢ times is a subgraph of G’. As was shown in [35], C has
bounded expansion if and only if for every ¢ > 0, there exists a constant ¢; such

that all graphs in C V ¢ have average degree at most c¢;.
Suppose that there exists ¢ such that we can find arbitrarily dense graphs

in & V t. Since &' V t is closed on subgraphs, it also contains graphs of
arbitrarily large minimum degree. Let k be the maximum arity of the symbols

in the dictionary of S and let H be a graph in 8¢ V ¢ with minimum degree at
least £+ 2, and let S € S be a relational structure such that a graph H’ obtained
from H by subdividing each edge at most ¢ times appears as a subgraph of G%.
The branching vertices of H' in G’ must correspond to the vertices of V(S),
since all other vertices of G% have degree at most k+1. However, for every path of
length two in G between two vertices u and v corresponding to vertices of V(.S),

there is an edge in Gg between u and v. We conclude that H € {Gg; S € S} %

[t/2]. Therefore, {Gg; S € S} v [t/2] would contain graphs of arbitrarily large
minimum degree, contradicting the assumption that & has bounded expansion.
O

To count the number of appearances of a fixed relational structure Sy as an
induced substructure of a relational structure S, it suffices to count the number
of appearances of Gfgo in G% as an induced subgraph (assuming that every vertex
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of Sy belongs to at least one relation; the case that Sy contains isolated vertices
can be dealt with by introducing a new unary relation satisfied for all vertices).
A change (addition or removal of a tuple to/from a relation) in .S results in only a
constant number of changes in G, thus ISub can be used to represent relational
structures through this transformation.

A seemingly more general question is testing existential first order properties,
i.e., properties which can be defined by closed first-order formulas using only
non-negated existential quantifiers. Such a formula ¢ can be considered to be in
the disjunctive normal form, i.e.

t
¢ = \/ EIIL'l, e '73$l¢i7
i=1

where each ¢; is a conjunction of finitely many terms of the form R(z;,,...,x;, ) or
—R(z;,...,x; ) for arelation R € cU{=} of arity k. For example, existence of an
induced subgraph, subgraph or homomorphism from a graph H of a bounded size
can be expressed this way, by a formula having one variable for each vertex of H
and describing the required adjacency, non-adjacency and non-equality relations
between them.

In order to decide whether a structure S satisfies the given formula ¢, we need
to find a set of witnessing vertices x1, ..., x; which satisfies the subformula ¢; for
some 1 < i < t. For every such ¢; there is only a finite number of structures .S;
on at most [ vertices which satisfy ¢;. Hence, it suffices to check whether one
of these structures is an induced substructure of S. Therefore, using the data
structure ISub, we can decide arbitrary existential first order properties with a
bounded number of variables on classes of structures with bounded expansion (or
nowhere-dense), within the same time bounds.
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Chapter 5

Conclusion

In this thesis we have gathered important and influential results from the
areas of parameterised complexity, structural graph theory and model theory;
and showed rich interplay between these areas. Although the development has
been rich, in many places our knowledge is not full and many gaps remain to be
filled.

We have contributed with two new data structures, showing how results and
tools can be lifted from their static variants and applied to dynamic problems.
We conclude with open problems tightly related to our work.

As for the Subgraph problem, a natural question is whether one can design a
fully dynamic data structure to decide properties expressible in First Order Logic
on graphs with bounded expansion. For this purpose, it would be convenient to
be able to maintain low tree-depth colourings of [80], which however appears to
be difficult.

Possibly a much easier problem is the following. We have described a dynamic
data structure that enables us to count the number of appearances of H as an
induced subgraph of GG, for graphs from a class with bounded expansion. If this
number is non-zero, can we find such an appearance? Getting this from our data
structure is not entirely trivial, due to the use of the principle of inclusion and
exclusion.

By the result Courcelle, any property expressible in MSQ, can be tested
for graphs of bounded tree-width in linear time. Can one design a dynamic
data structure for this problem? It is not even clear how to maintain a tree
decomposition of bounded width dynamically.

As for the Dynamic treedepth decomposition, there is a natural question
whether we can provide a dynamic decomposition for other graph classes, say,
with bounded treewidth.
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