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Preface

Back in the year 1943 when physical basis of life was not clear and molecular
mechanism of reproduction was yet to be discovered Erwin Schrödinger wrote
a short book titled What is Life? [Schrödinger, 1944] that inspired a number of
pioneers of molecular biology. The underlying idea of the book was that the
essence of life is information and the thesis was that this information is stored by
conformation of atoms in molecules.

It is not, however, just the genetic information that is of interest for biology.
Since 1950’s we have collected large amount of three-dimensional structural data
that describe individual parts of macromolecular machinery of living organisms.
Our understanding of how those parts work together and ability to extract applicable
knowledge from this data is but lacking behind the collection efforts. Although we
still have only a fraction of structural information about macromolecules in human
body, databases are growing exponentially.

This resembles the situation with genetic sequence data at the end of the
century. Now, ten years after the completion of the Human Genome Project, it is
clear that genomics in medicine did not bring improvements and new treatments
many hoped for. Relationships between genes and biological function turned out to
be too complex. Thanks to genomics we can, for instance, predict that individuals
with certain genetic variation are 25% more likely to get Alzheimer’s disease, but
not what is the underlying mechanism and what can we do to stop it. This is where
structural biology comes into the picture.

We are approaching the age when structural information of all molecules in
human body will be known (which is anticipated within two decades [Nair et al.,
2009]). At the same time DNA sequencing is getting radically cheaper and soon
it will be possible to have a complete genetic information of each person as a
presupposition of any medical intervention. By combining this information we
can get a full structural information of an individual and offer personalized and
fundamentally rationalized (not just statistically effective) treatments.

Intelligent algorithms are therefore needed that can interpret and exploit rapidly
growing amount of biological structural data.
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Chapter 1

Introduction

The goal of this chapter is to provide a biological, bioinformatical and pharmaco-
logical overview of the problem and its context. We will also try to touch on all
realities and facts which lead to considerations that were shaping presented work.
In case of biochemistry we will go to greater detail only when it will be directly
used in our proposed algorithm (such as list of amino acids and their properties)
or particularly interesting from a computer science point of view.

1.1 Biochemistry and molecular biology

1.1.1 Proteins

Proteins and their role

Proteins are biological macromolecules responsible for most processes in living
organisms. Of all types of biological macromolecules (such as polysacharides and
nucleic acids) they are arguably most complex in terms of variety of their forms
and functions they perform. To give a better idea about the ubiquity and variety
of proteins lets briefly look at some of the most important protein types and their
roles.

Fibrillar proteins are building blocks of muscle fibres and generate their coordin-
ated mechanical motion. However, they also have important passive roles and
provide bones and ligaments with their characteristic strength. Transport proteins
store and transport various biologically important substances such as glucose, O2,
metal ions and lipids. Enzymes are highly selective biological catalysts, which
means they accelerate both rate and specificity of metabolic reactions. An enzyme,
through the arrangement of atoms in its enzymatic active site, creates energetically
favourable pathways for chemical reaction that would not occur in physiological
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CHAPTER 1. INTRODUCTION

conditions at a sufficient rate otherwise. These reactions can have either catabolic
(breakdown of complex molecules into simpler ones) or anabolic (resulting in more
complex molecules) character.

Figure 1.1: Structure of nicotinic acetylcholine receptor in a closed state: a prototypic example of
a ligand-gated ion channel (PDB code: 2BG9)

Receptors are proteins that help to regulate those metabolic reactions by me-
diating chemical signals. Those signals are carried by small signaling molecules
such as hormones, neurotransmitters, drugs and other chemical messengers. They
do so by recognizing certain molecules and letting them attach. A small molecule
that attaches to a receptor (or any protein) is called a ligand. This temporary
ligand binding results in conformational change of the receptor protein, that — by
interacting with other biomolecules — sends the signal further down the signal-
ing pathway or produces the desired biochemical response itself. The prominent
type of receptors are so-called GPCRs (G-protein coupled receptors). They are
transmembrane proteins that sense signaling molecules outside of the cell and
activate signal pathways inside. Receptors within GPCR class share a similar design
and mechanism of action but respond to different signaling molecules because of
relatively small differences in their ligand binding sites. Another interesting type
of receptors are ligand-gated ion channels (Fig. 1.1). They are transmembrane
proteins that allow certain ions (such as Na+, K+, Ca2+, or Cl–) to get in or out
of the cell. As their name suggests, they open only in the presence of particular
ligand(s). Ligand-gated ion channels play central role in nerve cells where they
convert chemical signal of released neurotransmitter into an electrical signal.

Amino acids and polypeptides

Structurally a single protein consists of one or more long chains of amino acids
linked together by covalent peptide bonds. Those chains are called polypeptides
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CHAPTER 1. INTRODUCTION

and are always linear (that is, no branching occurs). Amino acids that are already
linked in a polypeptide chain are usually referred to as residues (since, at least
conceptually, two stand-alone amino acids polymerise through the elimination
of one water molecule). Polypeptides in proteins range in length from ~40 to
~34,000 amino acid residues (although few are longer than 1500 residues) [Voet
and Voet, 2010]. It should be noted here that not all amino acids found in living
organisms are constituents of polypeptides and not all polypeptides are parts of
proteins. Some (usually shorter) polypeptides exist independently and play various
biologically important roles.

Figure 1.2: Peptide bond [Voet and Voet, 2010]

Polypeptides that proteins are made of are biosynthesized from their monomeric
units in ribosomes according to the information stored in DNA. There are 20
standard amino acids. These are the amino acids encoded by triplets of universal
genetic code, which is nearly identical for all known life-forms. All proteins are
initially synthesized from those 20 standard amino acids.1 All of these amino acids
consist of the same peptide group built around the central α-Carbon atom but
differ in their side chains. These side chains are of different sizes, shapes and
physicochemical properties. Great variety of proteins largely stem from the varied
properties of side chains of 20 standard amino acids.

Standard amino acids are, however, not the only amino acids found in actual
proteins. Some residues on certain proteins are modified in the process called
post-translational modification. In most cases this modification is essential for the
function of the protein.

1 To be correct there are 2 more amino acids (Selenocysteine and Pyrrolysine) that are incorpor-
ated into polypeptide chains by unique synthetic mechanisms. Sometimes they are being included
among standard amino acids. Their occurrence is but rare (only 25 human proteins for example
contain Selenocysteine [Kryukov et al., 2003]).
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CHAPTER 1. INTRODUCTION

Chemical bonds and interactions

In this section we will describe some of the most important chemical interactions
that play roles in protein structures themselves (folding and stabilizing, see p. 14)
and in their bonding with other molecules. In some cases typical bonding energies
are provided for comparative reasons.

• Covalent bonds. Covalent bonds are bonds between atoms that share one or
more (up to three) electron pairs. They are comparatively “firm” that is, not
so easily reversible. Typical length of covalent bonds in organic molecules
range from 1 to 1.5 Å. The length and strength of a particular covalent bond
does not depend only on the type of the atoms that enter the bond (and the
number of electron pairs they share) but is also affected by the conformation
of other neighboring atoms in the molecule. Double and triple bonds are
stronger than single bond but restrict rotation around bond axis. Special type
of covalent bonds can be observed in so-called aromatic rings of benzene
and other organic molecules where electrons are delocalized between more
than 2 atoms.

• Hydrogen bonds or H bonds are predominantly electrostatic interactions
between a weakly acidic hydrogen donor group and a weakly basic acceptor
that is an atom with lone pair of electrons or a π bond (schematic repres-
entation: D−H···A) [Horowitz and Trievel, 2012]. They are characterized by
an H···A distance that is at least 0.5 Å shorter than the calculated van der
Waals distance (distance of closest approach between two non-bonded atoms)
between the atoms. The energy of a hydrogen bond is small compared to
covalent bond energies (for instance, ~460 kJ ·mol−1for an O−H covalent
bond). Hydrogen bonds have energies that are normally in the range of 12
to 40 kJ ·mol−1. The typical length of a hydrogen bond (the distance D···A)
is in the range 2.7 to 3.1 Å. Some of the hydrogen bonds in proteins are
members of networks in which each donor is H bonded to two acceptors (a
bifurcated hydrogen bond) and each acceptor is H bonded to two donors.

• Ionic interactions. An ion is a particle or molecular group charged either
positively (cation) or negatively (anion). The charge is caused by surplus or
deficit of electron(s). The association of two ionic protein groups of opposite
charge is known as an ion pair or salt bridge. The distance at which two
such groups form a salt bridge is usually taken to be 4 Å.2 Ionic bonds have
relatively high stability (typical energy ~80 kJ ·mol−1).

• Polar interactions. When bonding electrons are asymmetrically distributed
over the atomic nuclei involved, one atom will bear a negative, and its partner
a positive partial charge. The molecule thus presents a positive and a negative

2 [Karshikoff and Jelesarov, 2008], all other numbers in this section taken from [Voet and Voet,
2010]
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CHAPTER 1. INTRODUCTION

pole, i. e., is a dipole. A partial charge can interact electrostatically with an
ion or another dipole. Dipoles may be permanent or induced – a permanent
dipole can induce a dipole moment on a neighboring group so as to form an
attractive interaction.

• van der Waals interactions are non-covalent associations between electric-
ally neutral molecules. Although nonpolar molecules are nearly electrically
neutral, at any instant they have a small dipole moment resulting from the
rapid fluctuating motions of their electrons. This transient dipole may induce
dipole in the neighbouring molecule such that they are attracted to one
another (a quantum mechanical effect that cannot be explained in terms of
only classical physics). These so-called London forces are extremely weak
and only significant for contacting groups because their association energy
is proportional to r−6 [Voet and Voet, 2010]. Nevertheless, the great num-
bers of interatomic contacts in the closely packed interiors of proteins or
between sterically complementary ligands and binding sites can make them
very significant.

• Hydrophobic forces. Nonpolar substances are hydrophobic, i. e., they have
tendency to minimize their contacts with water. To put it very roughly: in a
sense by trending towards each other, polar H2O molecules squeeze apolar
particles from their midst [Lüllmann, 2005]. The actual physical mechanism
of this effect is more complex and the tendency of nonpolar molecules to
cluster together in aqueous environment is entropic in character. In a similar
manner we can say that polar molecules or groups are hydrophilic and have
a tendency to be exposed to water. Globular proteins have cores comprised
mostly of hydrophobic residues and polar residues located on the outside, in
contact with the aqueous solvent.

• Other interactions. Very recently determined ultra-high-resolution protein
structures (1.1 Å resolution allowing to determine hydrogen atoms positions)
confirmed prevalence of many poorly understood or at least underappreciated
interactions (unusual H bonds, n · · ·π∗ interactions) [Chen et al., 2012,
Horowitz and Trievel, 2012].

In case of small molecules we can attribute characterizing labels to the whole
molecule. For example H2O is a polar molecule and benzene (C6H6 ring) an
aromatic molecule. Bigger molecules can consist of parts with different character-
istics. Single molecule can have parts that are polar and others that are non-polar
(aliphatic or aromatic). In the same fashion one molecule can be acid and base or
anion and kation (zwitterion, German: hybrid) at the same time.
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CHAPTER 1. INTRODUCTION

Protein structure

Two amino acid residues connected by a peptide bond are spatially flexible around
two rotational axes of Cα−N and Cα−C bonds. This allows polypeptide chains to
fold and create complex three-dimensional structures. Structure of proteins can be
described in terms of four levels:

• Primary structure defines the order of amino acid residues in polypeptide
chain(s) of the protein. The sequence of amino acids in a particular protein
is given by the sequence of nucleotides in a protein coding part of a gene.

• Secondary structure is the local spatial arrangement of polypeptide’s back-
bone without regard to the conformations of their side chains. Several local
structural patterns can be recognized, of which α-helices and β-sheets are
the most common. Subsequences of polypeptide chain can be annotated
according to which secondary structural element they form.

• Tertiary structure refers to three-dimensional arrangement of all atoms of
the protein including those in residue side chains and in any prosthetic groups
(groups of atoms other than amino acids that were added to the protein to
help them perform their function).

• Quaternary structure. Most of proteins are composed of more than one
polypeptide chain. Quaternary structure refers to the spatial arrangement of
subunits created by individual chains. These subunits are usually connected
by noncovalent and in some cases disulfide covalent bonds.

Apart form the four structural levels we would like to introduce two other im-
portant terms related to protein structure: domain and fold. Domains are distinctive
modules of single-chain proteins or subunits. They usually form a recognizable
globular clusters. Many, but not all, proteins consist of several structural domains.
Even though they are parts of a single polypeptide chain, they often fold, stabilize
and evolve independently. Domains are basic building blocks of structural evolu-
tion. One domain may appear (often slightly modified) in different proteins of the
same organism.

If we abstract from the exact 3D coordinates of the atoms in a single domain
and consider only secondary structural elements of the backbone like α-helices
and β-sheets and the way they are arranged with respect to each other we are
talking about fold. The number of possible different folds may seem to be unlimited.
However, comparisons of the now large number of known protein structures have
revealed that few protein folds are unique. Theoretical considerations suggest
there are less than 8000 naturally occurring folds of which around 1200 have
already been observed [Voet and Voet, 2010].
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CHAPTER 1. INTRODUCTION

Protein folding

Polypeptide chains of proteins in their natural physiological environment quickly
fold into their native three-dimensional conformations. The way how exactly they
fold and which of many possible conformations they finally assume is the subject
of notorious protein folding problem. However, in recent years it became clear that
many biologically important proteins remain natively unfolded [Tsvetkov et al.,
2009]. Such intrinsically disordered proteins (IDPs) lack specific tertiary (and even
secondary) structures. IDPs constitute a separate class of proteins that are not
considered in this thesis. Interestingly, ~33% of eukaryotic proteins are predicted
to contain long disordered regions [Ward et al., 2004].

Protein stability and flexibility

The stability of folded protein structures is mostly the result of a fine balance
among the various non-covalent interactions and countervailing forces (ionic and
dipolar interactions, hydrogen bonds, van der Waals interactions and hydrophobic
forces). Covalent disulfide bonds can form between two Cysteine residues of one
polypeptide chain. However, they are usually found only in extracellular proteins.

Most of protein structures in humans are only marginally stable under physiolo-
gical conditions and are easily disrupted by sharp changes in temperature, pH or
physical disruptions [Creighton, 1993]. Hyperthermophiles (organisms that grow
at temperatures near 100◦C) have many homologous proteins that carry almost
the same functions. This fact suggests that this marginal stability is an essential
property that has arisen through evolutionary design3. One explanation for this is
that the marginal stability allows more structural flexibility which many proteins
require to carry out their functions [Petsko and Ringe, 2004].

1.1.2 Ligands and binding sites

Ligands

Ligand in biochemistry and pharmacology4 is a substance, typically a small molecule
or a short peptide, that binds to a protein to form a complex. In relation to a
particular protein, ligand can be native or artificial. Native ligand is “supposed to”
bind to the protein as a part of some biological mechanism or regulatory process
(case of neurotransmitters for example). Another way to look at it is to say that
protein has evolved to recognize certain ligands. Artifical ligands (that can be

3 More careful way to put it would be to say that clearly-possible higher structural stability does
not seem to provide any evolutionary advantage.

4 in the context of coordination chemistry the term ligand is used to mean any ion or molecular
group that bind to a central metal atom
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CHAPTER 1. INTRODUCTION

synthetic drugs or natural toxins) may, by binding to it, disable or improve protein
function.

In most cases ligand binding is caused and stabilized by non-covalent forces.
Binding is therefore usually reversible and its length somewhat proportional to
the binding energy. In some cases binding can be permanent (for instance there
are cases of enzyme inhibitors that permanently disable the enzyme by forming
covalent bonds).

Figure 1.3: Example of ligand in a binding site

Binding sites

Ligand binding sites are usually found in concave pockets and clefts on the protein
surface. On enzymes, location of active/binding site correlates with deepest or
biggest cleft on protein surface [Laskowski et al., 1996]. Traditional view is that
ligand-binding site tends to be the largest or most geometrically complex [Pettit
and Bowie, 1999] cavity on the surface. Binding sites for small molecules are
often generalized to be hydrophobic and enclosed cavities. However, not all
ligand binding sites are deep pockets. It is important to acknowledge that such
generalizations are derived from currently known structures of ligand binding
complexes and have their exceptions. There are examples of ligands found to
bind to rather exposed shallow clefts [Nisius et al., 2012]. Statistical analysis of
15,232 concavities in 756 protein structures showed that true binding sites cannot
be determined on the basis of size alone. The chemical properties resulting from
composition of surrounding amino acid residues significantly contribute to the
determination of ligand binding sites [Soga et al., 2007].
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CHAPTER 1. INTRODUCTION

In multi-chain proteins ligand binding sites can be located at the interface
between subunits in a way that atoms of both chains contribute to the creation of
a binding pocket. This is particularly the case in ligand gated ion channels.

Terminology note: in the following text we will use the terms pocket and binding
site interchangeably with the following distinction: the binding site will always
mean experimentally confirmed or “true” binding site whereas pocket can be just
putative (or predicted) binding site depending on context.

Molecular recognition

The driving force during protein-ligand complex formation is not only shape com-
plementarity but also physicochemical complementarity between two binding
partners [Wirth et al., 2013]. However, an old hypothesis that ligand binding in
proteins is like “an insertion of key into a lock” [Fischer, 1894] had to be corrected
to incorporate flexibility of the protein as well as of the ligand. Binding site can
wrap tighter around the ligand and we observe phenomenon called ligand induced
fit. Ligands are usually relatively rigid small molecules but often exhibit rotational
flexibility along some bonds.

Proteins also interact with other proteins through protein-protein binding sites,
or more generally, interfaces. Protein-protein interfaces tend to be large, flat
and relatively featureless, with several hotspots that contribute much of the free
energy of interaction [Jubb et al., 2012]. Protein-protein binding sites and protein-
ligand binding sites are not exclusive concepts and we can talk about ligand
binding pockets located at protein-protein interaction interfaces. Similarly there
are protein-DNA, protein-RNA and protein-membrane interfaces.

Allosteric regulation

One protein can have multiple ligand binding sits. Allosteric pockets are binding
sites that bind small molecules but are different from the primary (orthosteric)
binding site of a receptor or the active site of an enzyme. Binding molecules
to allosteric sites causes structural changes that modulate protein behavior in
respect to its main function conveyed by the active site or primary ligand binding
site. Allostery is one of the most common ways of regulation of protein activity
[Panjkovich and Daura, 2012,Christopoulos, 2002].

Some proteins are found to perform more than one function. This phenomenon
also termed as “protein moonlighting” is being observed in growing list of pro-
teins [Jeffery, 2009]. Existence of protein moonlighting and allosteric regulation
encourages and justifies application of binding site prediction methods also to
proteins of known functions.
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CHAPTER 1. INTRODUCTION

Relationship of structure and function

Relationship between structure and function in molecular biology is an ever dis-
cussed subject. The prevailing paradigm states that structure determines function
and is often interpreted to mean that there is a causal relation between structure
and function. However, proteins perform functions only through interacting with
other molecules. It has been estimated that proteins are able, on average, to
interact with as many as five partners through a variety of binding sites. It has been
suggested that “structure determines function” should be replaced by “binding
determines function” [Van Regenmortel, 2002].

Nevertheless, the important conceptual consideration is this: if we have a
structure we should be able to determine function, maybe only by considering
relationships to other structures, but without regard on the genetic code and
evolutionary relationships.

1.2 Structural Bioinformatics

1.2.1 Determination of protein structures

Work in this thesis revolves around three-dimensional structures of proteins, there-
fore it is important to understand methods used to obtain them and their limitations.
There are two main experimental methods currently being used for determination
of macromolecular structures with atomic level precision: X-ray crystallography and
nuclear magnetic resonance. In the absence of experimental structures, homology
modeling method is used for structural prediction in practice.

X-ray crystallography

X-ray crystallography is responsible for most of the currently known macromolecular
structures. First experimentally determined high resolution protein structure was
the structure of sperm whale myoglobin published in 1958 by Kendrew and Perutz.
Usual procedure is that the symmetrical crystal grown out of identical proteins
is repeatedly, from different angles, exposed to X-ray beam with wavelength of
~1 Å. X-rays interact almost exclusively with the electrons and thus produce images
of electron densities, which are then aggregated into 3D electron density maps.
Positions of individual atoms are then determined and refined with the help of
the knowledge of protein sequence and structures of amino acid residues. The
refinement process usually involves alternating rounds of automated optimization
and manual corrections [Wlodawer et al., 2008].

How precisely it is possible to determine atom coordinates depends on the
resolution of the electron density map (which can be understood as a degree
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CHAPTER 1. INTRODUCTION

of focus). However, relationship between resolution and uncertainty of atom
positions in the final refined structure is not straightforward. On average, the
uncertainty of the position of an atom is roughly one fifth to one tenth of the
resolution [Martz, 2013]. Hydrogen atoms, having only one electron, are detectable
only in the X-ray structures with resolution less than 1.2 Å. The major obstacle to
achieving higher resolutions is not technology related but comes from inability to
to produce sufficiently ordered crystals. Another limitation of X-ray crystallography
is that position of atoms can be altered by crystal packing (particularly near crystal
contacts) [Eyal et al., 2005].

Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) spectroscopy started to be used for determ-
ination of protein structures in 1980’s. Its use is limited to proteins of smaller
molecular weight and in most favourable cases resulting structures are comparable
to crystal structures with resolutions of 2–2.5 Å. Although structures obtained
by NMR are not as detailed and accurate as those obtained crystallographically,
the method has other advantages. It works with molecules in solvent and can
be used to determine the structures of proteins and other macromolecules that
fail to crystallize. Moreover, NMR can probe motions over small time scales and
can be used to study protein folding dynamics and conformational changes. It is
increasingly being used to confirm protein-ligand bindings.

Homology modeling

Homology or comparative modeling is based on the observation that proteins with
similar sequences have similar structures, or at least similar folds. Because models
determined by de novo structural prediction methods are regarded speculative at
best, the term ‘homology modeling’ is used synonymously with ‘structural predic-
tion’. Even with homology modeling at least around 30% sequence identity is
required for meaningful models. Structure of the protein with similar sequence
(or matching secondary structure) is used as a template according to which model
is build and then iteratively refined, optimized and validated. Error of homo-
logy models compared to the actual experimental structures can be up to ~1–2 Å
Cα atom RMSD (root-mean-square deviation distance between corresponding Cα
atoms) [Cavasotto and Phatak, 2009]. Low accuracy of protein structure prediction
is still a limiting factor but sometimes it is the only available choice. For example, up
until recently structures of GPCRs had to be predicted through homology modeling
techniques. Between 2000 and 2007 there was only one representative structure
of this class available [Adams et al., 2012].
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1.2.2 PDB Database

Protein Data Bank (PDB) is the central curated publicly available database of
macromolecular structures. As of July 2013 PDB contains more than 92,000 three-
dimensional structures of mostly proteins and protein-ligand complexes out of
which 8944 were added in the year 2012 alone. Number of annual new entries has
been growing steadily in the recent years (with the exception of 2008). Current
prediction is that PDB size will increase 1.5-fold between 2012 (~85,000) and
the end of 2017 (~134,000) [Berman et al., 2013]. For contrast in the year
2000 size of PDB was only ~13,600 structures. Source organism of around 30%
deposited structures is Homo sapiens. Other structures are coming mostly from
model organisms such as Escherichia coli, mouse and yeast or disease causing
organisms, i. e., viruses and bacteria.

Structural Genomics initiative

In general Structural Genomics can be described as an effort to determine as many
protein strutures from given genome as possible. Traditionally, determination of
experimental 3D structures was driven by projects that researched proteins of
interest with already known function. To fill in the protein fold space and have at
least one representative structure from protein families with no experimental struc-
tural information, several Structural Genomics projects were initiated. Structural
Genomics it thus source of experimentally determined protein structures of un-
known function. Structural Genomics projects have also driven the developments
in X-ray crystallography and NMR, so that new protein structures are solved quicker
and cheaper [Cavasotto and Phatak, 2009]. It was estimated that comprehensive
coverage of UNIprot could be reached in less than 15 years [Nair et al., 2009].

1.2.3 Proteome and chemical space

Human genome contains around 23,500 protein encoding genes. However, it is
estimated that there are ~150,000 different gene transcripts to mRNA due to
a increase in complexity introduced in the process of gene expression [Schmidt,
2010]. The chemical space, the complete set of all possible small molecules, was
estimated to be as large as 1030-10200 structures depending on the parameters
used [Bauer et al., 2010].

1.2.4 Machine learning in bioinformatics

Machine learning approaches are ideally suited for domains characterized by the
presence of large amounts of data, noisy patterns, and the absence of general
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theories (what bioinformatics arguably is). The fundamental idea behind them
is to learn the relationships automatically from the data through a process of
inference, model fitting and learning from examples. An often-met criticism of
machine learning techniques is that they are black box methods: one usually
cannot pin down (in simple terms) how a complex Neural Network, Support Vector
Machine or Random Forest, reaches a particular answer [Baldi and Brunak, 2001].

It is important to realize however two things. Firstly, many techniques in
contemporary molecular biology and pharmacology are used on a purely empirical
basis. For example, the mode of action and molecular basis for the pharmacological
effect and side effects of many currently used drugs remains unknown.5 Secondly,
machine learning methods applied to ever growing set of biological data can give
us positive answer to the question: Is there some new relationship in the data to
be exploited (and therefore new theory to be learnt)?

1.3 Pharmacology

The most important motivation for working on this problem, and all other struc-
tural bioinformatics problems for that matter, is their application in medicine. To
understand where it fits into the picture we will take a brief overview of drug dis-
covery process and recent developments in pharmaceutical industry. The fact that
drug discovery is a prominent application of resulting method leads to interesting
considerations.

1.3.1 Drugs and mechanism of action

Great majority of currently used drugs are small molecules that target proteins.
Drugs produce their pharmacological effects by variety of different molecular
mechanisms that always involve binding to a binding site.

Several possible molecular mechanisms of drug action:

• receptor agonism (“activation”) or antagonism (“blocking”)

• enzyme inhibition by binding to the active site

• allosteric modulation of receptors and enzymes

• protein-protein interaction inhibition (or stabilization)

However, the ability of a small molecule to bind to the target protein and thus
potentially produce some disease-modifying/therapeutic effect is not sufficient for
the compound to be used as a drug. Molecules used as drugs need to have others

5 7% of approved drugs are purported to have no known primary target, and up to 18% lack a
well-defined mechanism of action [Elisabet et al., 2012]. This statistics, however, do not consider
side effects and exact structural mechanism.
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necessary or desirable properties:

• water solubility (as it needs to be carried in aqueous blood)

• fat solubility (to be able to cross cell membrane)

• high bioavailability (fraction of the dose that reaches circulation)

• low molecular weight

• low toxicity

• high selectivity

In practice many of these properties are contradictory objectives. Low selectivity
means that drug is bind to several proteins (other than desired target) and is the
major cause of drug side effects. It is important to note that selectivity as well as
toxicity is relative and depend on compound concentration.

1.3.2 Concept of drug-likeness

A traditional method to evaluate drug-likeness is Lipinski’s ‘rule-of-five’ (RO5)
[Lipinski et al., 1997,Lipinski, 2000], which consists of four important properties,
each related to the number 5:

• molecular mass ≤ 500 Da

• H-bond acceptors 6 ≤ 10

• H-bond donors 7 ≤ 5

• octanol-water partition coefficient8 log P ≤ 5

The rule is based on data in the literature for a large number of compounds,
including all known drugs, that correlate physical properties with oral bioavail-
ability [Lombardino and Lowe, 2004]. It has been associated with 90% of orally
active drugs that have achieved phase II clinical status [Lipinski, 2004]. Lipinski’s
rule was formulated to guide chemistry to desired direction and predict success
(or failure) of candidate molecules in clinical trials. As with many other rules of
thumb, there are many exceptions. RO5 is tied specifically to oral bioavailability
and the meaning of “drug-like” is thus dependent on mode of administration. Sub-
sequently many other drug-likeness definitions/indices correcting or extendning
RO5 based on statistical analysis of drug databases have been developed [Ghose
et al., 1999,Oprea, 2000,Veber et al., 2002]. Lipinski himself acknowledged that
defining drug-like by what exists in databases leads to the criticism that most of
chemical space will be undefined and that discovery opportunities in unexplored
chemistry space will be limited [Lipinski, 2004].

6 expressed as the sum of OHs and NHs in the chemical structure
7 expressed as the sum of N and O atoms
8 measure of how lipophilicity – provides an estimate of the ability of the compound to pass

through a cell membrane
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1.4 Problem definition and scope

1.4.1 Binding site detection

We can state the problem in the following way: given the protein of known (static)
structure, predict which areas around the protein surface are likely to bind an
unspecific ligand. Additional information like protein sequence or structure evol-
utionary conservation may be considered. There is an implicit constraint on the
ligand to be a small, relatively rigid molecule and the identified binding sites to
have a meaningful size compared to the size of the protein. Too small ligands
like individual ions are not biologically interesting. Too big ligands like longer
peptides can theoretically be of arbitrary length. For both of those cases specialized
approaches are used that take advantage of distinct properties of ions or peptides.

Often several pockets are detected at a protein surface and it is necessary to
have some method to select relevant ones. Most of pocket detection programs
incorporate some scoring and ranking that is supposed to represent likelihood of
the pocket to accept small molecule ligand. Pocket detection programs are often
compared by their ability to find true (experimentally confirmed) binding site
within top-1 and top-3 detected pockets.

1.4.2 Pocket characterization & druggability

In the recent decade there has been some confusion with the term druggability.
Druggability is usually understood as ability of the protein or binding site to bind
small drug-like molecule with high affinity. Term druggability used in this sense is
thus linked to the notion of drug-likeness [Schmidtke, 2011] but as we mentioned
before traditional scope of drug-likeness has been recently challenged. Many
druggability prediction methods try to predict not just the ability to bind small
drug-like molecules bot also how much “drug-like” (in the sense of ADMET) those
molecules can potentially be at the same time. This gives results that are biased
towards chemical subspace of typical currently used drugs. Some authors argued
that the term druggability implies too much and suggested the term ligandability
(structural druggability) [Hajduk et al., 2005a].

In our opinion it is not clear where (nor it is useful) to make a clear line between
pocket ranking problem (used in pocket detection programs) and structural drug-
gability prediction. Indeed, many of the druggability/ligandability prediction
methods output score that can be used to reorder pockets found by any pocket
detection method and thus lead to better results when considering only first n
found pockets. Some pocket detection programs use very simplistic scoring to rank
pockets (such as volume) but other have more complex scoring functions that could
be viewed as ligandability prediction methods in their own right. The difference
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is mainly in datasets they are trained and tested on and their results are thus
interpreted differently. The only substantial difference is that recently published
druggability methods claim to (or are trained to) distinguish categorically between
druggable and non-druggable sites.

1.4.3 Inherent limitations and difficulties

First and apparent limitation comes from the fact that proteins are to the some
extent flexible. We can even ask the question: does it make sense to work on
algorithms that predict binding sites on static structures when we know that
proteins are flexible? Protein dynamics is so intricate that is extremely difficult
to incorporate protein flexibility directly into the pocket detection algorithm. As
we mentioned before, a small conformational change on one side of the protein
may result in a big change on the other side. Although simplified flexibility models
based on geometric constraints or residue rotamer libraries have been developed,
they reflect only certain aspects of protein flexibility. So far the only way how to
meaningfully predict protein flexibility and conformational changes is molecular
dynamics simulation. Pocket detection can then be performed on static snapshots
of molecular dynamics simulation with subsequent aggregation of the results (like
it is done by MDPocket method [Schmidtke et al., 2011]). Static structures is what
we currently have available. We expect that structural databases will be gradually
enriched by snapshots of different conformations of the same protein.
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Current approaches

Binding site detection methods have been in development for almost 30 years now
(first known method being published in 1985). During this time more than 30
different algorithms or improvements have been published [Schmidtke, 2011].
Especially in the recent five years we have observed increased interest in this field
(indicated by the number of recently published reviews) and also influx of original
or improved methods. It seems that very recently focus has shifted from mere
pocket detection to characterization, that is, ranking and druggability prediction
of binding sites. In this chapter we will overview the most influential and some of
the most recent methods. Table 2.1 contains representative list of pocket detection
methods. It is not our goal, however, to list and review all existing methods but
rather introduce variety of pocket detection and druggability prediction strategies
and somewhat capture developments in the field.

2.1 Pocket detection methods

2.1.1 Geometry based methods

Numerous geometrical methods has been published that focus mainly on the
algorithmic side of the problem of finding concave pockets and clefts on the surface
of 3D structure. From this simpler methods here we mention only LIGSITE and
PocketPicker. None of the other methods can be considered purely geometrical as
they consider also other factors such as physicochemical properties. Geometrical
methods in general do not consider placement of hydrogen atoms. This makes
sense, since most of the known protein structures are not resolved in a sufficient
resolution and hydrogen atoms are not necessarily needed to identify concave
areas.
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Name Date Type Server Executable Source

GRID 1985 energy-based
POCKET 1992 geometric
LIGSITE 1997 geometric
PASS1 2000 geometric Ø
MOE Site Finder 2001 geometric $
Q-SiteFinder 2005 energy-based Ø Ø
ICM-PocketFinder2 2005 energy-based Ø $
LIGSITEcsc 2006 evolutionary Ø Ø
CASTp3 2008 geometric Ø
PocketPicker 2007 geometric Ø Ø
SiteMap4 2007 energy-based $
FINDSITE 2008 evolutionary Ø Ø
PocketDepth5 2008 geometric Ø
MetaPocket 2009 consensus Ø
Fpocket 2009 geometric Ø Ø Ø
ConCavity 2009 evolutionary Ø Ø
SiteHound 2009 energy-based Ø
McVol6 2010 geometric Ø
POCASA7 2010 geometric Ø
MetaPocket 2.0 2011 consensus Ø
MSPocket8 2011 geometric Ø Ø
COFACTOR9 2012 evolutionary Ø

Table 2.1: List of representative pocket detection methods

LIGSITE [Hendlich et al., 1997]

LIGSITE is a simple geometric grid based method. At first regular Cartesian grid is
superimposed over the protein and grid points are separated to solvent accessible
(outside of the protein) and solvent inaccessible according to the minimum distance
from any of the protein’s atoms. For every solvent accessible point scanning is
done along the 7 axes (three Cartesian axes and four cubic diagonals) for protein-
solvent-protein (PSP) “events”, that is, weather on the both side of the line protein
grid point is to be found. Grid points are that way scored from 0 to 7, number that
represents their buriedness. Pockets and cavities are then defined as regions of
grid points with a minimum number of PSP events.

1 [Brady and Stouten, 2000]
2 [An et al., 2005]
3 [Binkowski et al., 2003]
4 [Halgren, 2007]
5 [Kalidas and Chandra, 2008]
6 [Till and Ullmann, 2010]
7 [Yu et al., 2010]
8 [Zhu and Pisabarro, 2011]
9 [Roy and Zhang, 2012]
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Method itself is a slight extension of older POCKET algorithm (that used only 3
x , y, z axes in buriedness scanning step) [Levitt and Banaszak, 1992], but was in
turn used as a basis for numerous improvements and as a reference method for
comparison with new methods. Parameters like grid step, minimum number of
PSP events and minimum number of grid points in a pocket are user adjustable
and method does not address ranking of the found pockets. The disadvantage, as
with other grid based approaches, is the dependence on the grid orientation.

PocketPicker [Weisel et al., 2007]

Method is very similar to above mentioned LIGSITE in that it uses a 3D grid and
calculates a buriedness of grid points around protein surface. PocketPicker uses
a finer and optimized scanning approach. Scans are being performed along 30
directions that are approximately equally distributed around a grid probe. 30
search rays of length 10 Å and width 0.9 Å are checked for presence of a protein
atom. Probing whether search ray tube contains any atoms is optimized by dividing
all protein atoms into neighborhoods and searching only in neighborhoods that
tube intersects. Probes with buriedness-indices ranging from 16 to 26 are then
clustered into pockets.

MOE Site Finder [Labute and Santavy, 2001]

Site Finder was released as a part of chemical software package MOE 2001.01 from
the The Chemical Computing Group.10 It is based on the concept of alpha spheres
and Voronoi tessellation of space. An alpha sphere is a sphere that contacts four
atoms on its boundary and contains no internal atoms. Voronoi vertex in 3D is the
point at which four Voronoi regions intersect and is equally distant from four atoms
at the center of those regions. The Voronoi vertices thus coincide with the centers
of alpha spheres. The problem of finding Voronoi tessellation and Vornoi vertices
is equivalent to the dual problem of finding Delaunay triangulation which can be
converted to the much simpler problem of finding a convex hull in 4D space.

Pocket detection is then based on the observation that alpha spheres that are
too small are located in tightly packed interiors of proteins and big alpha spheres
are located at an exposed surface regions. Medium sized alpha spheres are likely
to be found in relatively enclosed concave pockets. Alpha spheres are filtered
according to size and hydrophobicity (hydrophobic sphares with no hydrophilic
neighbours are eliminated). Remaining alpha spheres are subsequently clustered
with single-linkage algorithm and too small clusters are removed. Ranking of
resulting pockets is done according to hydrophobicity calculated as the number of
hydrophobic atoms within a contact distance of any of the alpha spheres of the
pocket. The advantage over grid based methods is independence of results on the
grid placement and generally better time and space complexity.

10http://www.chemcomp.com/
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Fpocket [Le Guilloux et al., 2009]

Fpocket released as an open source project is another alpha sphere theory based
method. The basic principle is much like that of MOE Site Finder but more complic-
ated filtering, clustering and refinement procedure is employed. Fpocket also uses
more advanced scoring function based on several pocket descriptors. For calculat-
ing Vornoi vertices Fpocket relies on publicly available package Qhull11 [Barber
et al., 1996]. Clustering og alpha spheres is done in three steps: (i) clustering
based of Vornoi vertice neighbourhood, (ii) single linkage clustering of centers
of mass of vertice clusters andfinally, (iii) multiple linkage clustering of resulting
clusters. At the end too small and hydrophylic pockets are dropped.

Scoring scheme relies on five of extracted pocket descriptors such as normalized
number of alpha spheres, hydrophobic density and proportion of apolar alpha
spheres. Final scoring function was optimized by partial least squares fitting.
Fpocket program has several user-adjustable parameters that influence refinement
and clustering process. Program can be thus directed to output many smaller
pockets or fewer larger pockets. Default values were determined by an semi
combinatorial/empirical optimization on a training set with the two main goals:
good pocket-ligand center distance and also good ligand coverage/overlap.

2.1.2 Energy based methods

Energy based methods incorporate some level of physics into the pocket identifica-
tion process by attempting to calculate binding potentials or binding energies [Haj-
duk et al., 2005b]. Energetic methods usually build upon some existing force field
(software that approximates physicochemical forces on molecular level) and are
generally computationally more demanding than other approaches.

GRID [Goodford, 1985]

GRID is the first known published and at the same time first energy based compu-
tational procedure that can be used for determining binding sites. It is based on
calculation of non-bonded interaction energies between the probe molecule and
the target protein at position an a three-dimensional grid. GRID does not identify
binding pockets per se, but interaction sites in the target of interest [Henrich et al.,
2010].

Q-SiteFinder [Laurie and Jackson, 2005]

Method places a methyl group (−CH3) probe on a grid of 0.9 Å resolution to
calculate van der Waals interaction energies between the protein and probes.

11http://www.qhull.org/
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Energy calculations are made with GRID energy field. Energetically favourable
probe coordinates are then clustered according to their spatial proximity and total
interaction energies for clusters are calculated. Clusters are then ranked according
to their interaction energies such that highest interaction energy corresponds with
the first predicted binding site.

SiteHound [Ghersi and Sanchez, 2009]

SiteHound uses Molecular Interaction Fields to identify protein structure regions
that show a high propensity for interaction with ligands. SiteHound works in a
similar way to Q-SiteFinder but allows to use multiple probes for the detection of
different types of binding sites. Another improvement lies in the use of alternative
hierarchical clustering algorithm, which improve results for ligands of different
shapes.

2.1.3 Evolutionary or threading based methods

Sequence-based approaches are based on the presumption that functionally im-
portant residues are preferentially conserved during the evolution, because natural
selection acts on function. [Roy and Zhang, 2012]

LIGSITEcsc [Huang and Schroeder, 2006]

LIGSITEcsc improved on original LIGSITE algorithm in two ways. The first (purely
geometric) extension is LIGSITEcs, in which protein’s Connolloy (solvent-excluded)
surface is used to more precisely calculate buriedness of the grid probe. Monitoring
of protein-solvent-protein events is replaced by monitoring surface-solvent-surface
events around the probe. Secondly, in LIGSITEcsc top three pocket detected by
LIGSITEcs are re-ranked according to degree of conservation of amino acid residues
around pockets. The average conservation of the residues within 8 Å of the center
of a pocket is used as a score for re-ranking.

Conservation scores of amino acid residues are obtained from ConSurf-HSSP
database (now ConSurf-DB), which provides evolutionary conservation estimates
for proteins of known structure in the PDB [Glaser et al., 2005]. Degree of conserva-
tion is assigned by Rate4Site algorithm for scoring amino acid residue conservation
based on their calculated evolutionary rate. This algorithm takes into account the
phylogenetic relationships between the homologous proteins and the stochastic
nature of the evolutionary process. Calculation is based on alignment of similar
protein sequences and empirical Bayesian inference.
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FINDSITE [Brylinski and Skolnick, 2008,Skolnick and Brylinski, 2009]

FINDSITE method combines evolutionary and structural approach. It is based on
observation that even distantly homologous proteins usually have similar folds
and bind ligands at similar location. At first ligand-bound structural templates
are selected from the database of already known protein-ligand complexes by a
threading (fold recognition) algorithm. Used threading algorithm PROSPECTOR_3
is not based just on sequence similarity but combines various scoring functions
designed to match structurally related target/template pairs [Skolnick et al., 2004].
Found homologous structures are aligned with the target protein by a global
structural alignment algorithm. Ligands on superimposed template structures are
then clustered into consensus binding sites. Authors showed that FINDSITE is
less sensitive to the distortions in the input structure and was shown to retain
its accuracy even on (erroneous) structures predicted by homology modeling (in
comparison to LIGSITEcsc).

ConCavity [Capra et al., 2009]

Authors presented sequence conservation based improvement of geometrical LIG-
SITE method. Jensen-Shannon divergence method has been used to calculate
conservation scores. This method praviously shown state of the art performance
in predicting functionally important residues [Capra and Singh, 2007]. Unlike in
LIGSITEcsc sequence conservation information is not used just to re-rank pockets
but is integrated directly into the pocket detection procedure. Grid points around
the protein are assigned a score that represents likelihood to overlap a ligand atom.
This score is the combination of buriedness-index (as in LIGSITE) and sequence
conservation of neighboring residues. Authors demonstrated that this results in a
more accurate pocket shapes, i. e., pockets that have better overlap with larger
fraction of the ligand volume. Authors also shown that if only sequence conserva-
tion information is considered for pocket prediction, it results to poorer results than
considering geometrical information alone. This is due to the fact that residues can
be conserved for other reasons than ligand binding e. g. stabilizing structural fold.

2.1.4 Consensus methods

MetaPocket [Huang, 2009]

MetaPocket is consensus based method that in recent update MetaPocket 2.0
[Zhang et al., 2011] aggregates results of 8 different pocket detection algorithms
(among them forementioned LIGSITEcs, Q-SiteFinder, Fpocket and ConCavity).
Authors demonstrated that MetaPocket performed better than any of the individual
methods. All of the individual methods output pockets ranked by the different
scoring function. Z-score is therefore calculated separately for each site in different
methods to make them comparable. MetaPocket 2.0 takes only first three pockets
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from each method into account. The total of 24 pockets are then agregated into
meta-pockets with the help of a hierarchical clustering algorithm that identifies
overlapping sites. Then the z-score of each cluster is calculated and serves as a
scoring function to re-rank final meta-pocket sites.

2.2 Druggability prediction

SiteMap [Halgren, 2009]

Halgren developed druggability prediction model as part of commercial program
SiteMap [Halgren, 2007] from Schrödinger LLC.12 SiteMap itself is a grid based
geometrical ligand binding site detection and characterization method.13 Pocket
ranking in SiteMap is done by scoring function SiteScore (2.1) based on only three
descriptors: number of site grid points that is reflecting pocket size (n), degree of
enclosure (e) and hydrophilicity score (p). Druggability scoring function Dscore
(2.2) is using the same properties but with different coefficients.

SiteScore= 0.0733
p

n+ 0.6688e− 0.2p (2.1)

Dscore= 0.094
p

n+ 0.6e− 0.324p (2.2)

Dscore is in principle the same model as SiteScore except it was optimized on
different dataset containing druggable/difficult/undruggable sites. SiteScore is
thus deemed to represent likelihood of the pocket to bind any ligand and Dscore
likelihood to bind drug-like ligand specifically. This model reflects traditional view
that ligand binding sites are usually the biggest, most buried and hydrophobic
pockets.

DrugPred [Krasowski et al., 2011]

Druggability is here understood as “ability of the putative binding site to bind orally
available molecules with high affinity”. Authors compiled a new non-redundant
dataset (termed NRDLD) of 71 druggable and 44 less druggable proteins (mostly
enzymes) and used it do develop and train structure-based druggability predictor.
Druggable class contains only proteins that were experimentally confirmed to bind
drug-like molecule that adhere to the strict criteria, one of which was Lipinski’s rule
of five. Less druggable class contains pockets that were experimentally confirmed
to bind (some) ligand but no drug-like ligand binding has been reported.

Several 1-dimensional pocket descriptors have been defined: 16 capturing

12chemical software company, http://www.schrodinger.com/
13 pocket detection method itself has not been reviewed mainly for the lack of reported details
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polarity, size and compactness and 40 capturing amino acid composition. All
descriptors were tested for normal distribution and only 22 descriptors that ap-
peared to be normally distributed were retained. Dataset was split to training and
validation set containing 76 and 37 proteins respectively and linear model was
then trained using partial least-squares projection to latent structures discriminant
analysis (PLS-DA). Number of descriptors have been further reduced in a manual
iterative process by removing descriptors with weak predictive power.

Final model is a linear combination (2.3) of five descriptors:

• relative polar surface area (psar)
• total hydeophobic surface area (hsat)
• contact surface area (csa)
• relative occurrence of hydrophobic amino acids (haa)
• sum of the hydrophobicity indices of amino acids (hiaa)

DrugPred= −0.2psar + 1.16hsat + 0.11csa+ 0.22haa+ 0.22hiaa+ 1.3 (2.3)

Although three of five components reflect pocket hydrophobicity, removing
either of them would result in worse model. Interesting here as well is the interplay
between relative and absolute value descriptors (roughly reflecting pocket size
squared), that, in our view, encourages the use of non-linear model.

VolSite [Desaphy et al., 2012]

Dataset from DrugPred study has been used to train Support Vector Machine (SVM)
based druggability predictor. The term druggability is here understood in its weaker
form (as authors reiterated) to mean “structural druggability (ligandability)”,
although model was trained on the same dataset as DrugPred method. Input of
the model are descriptors derived from a grid based characterization of a binding
site. At first cube lattice of 143 cells, each cell having 1.5 Å edge, is imposed over
a pocket. Buriedness index is calculated for each cell in a similar way than in
PocketPicker method (as proportion of 120 regularly spaced rays from the cell
that are intersecting protein). Cells are separated into three classes: cells that are
part of the protein (IN), cavity cells, cells outside of the cavity and protein (OUT).
Every cell that is inside of a pocket is assigned one of 8 labels that represents
physicochemical properties: H-bond acceptor, H-bond donor, H-bond acceptor
and donor, negative ionizable, positive ionizable, hydrophobic, aromatic or null.
Label is assigned according to the closest protein atom (in such a way that it is
complementary to the characteristic physicochemical property of the amino acid
residue atom is from).

From this arrangement 73 descriptors are calculated:
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• (1) total number of cavity cells
• (2-9) proportion of cells having each of the 8 physicochemical labels
• (10-73) histograms of buriedness of cells from from each of the 8 labels (8×8

ranges)

Dataset was split in the same way as in DrugPred study into training set (76
entries) and validation set (37 entries). SVM model with RBF (radial basis func-
tion) kernel was trained in a 5-fold cross-validation procedure with systematic
optimization of c and gamma parameters.

2.3 Summary

2.3.1 Recent reviews

Although first algorithm appeared almost three decades ago, systematic develop-
ment of binding site detection methods can be observed mainly in last ten years.
Review articles started to appear only in last few years. First comprehensive review
of pocket detection and characterization methods focused on conceptual differ-
ences between geometric/energy/evolutionary approaches [Henrich et al., 2010].
Leis et al. reviewed protein-ligand as well as protein-protein binding site detection
methods [Leis et al., 2010]. Authors presented visual side-by-side comparison of
results of five ligand binding site prediction servers on the small set of proteins and
emphasized influence of ligand induced protein conformational changes on pre-
diction success. Another review focused on drug discovery applications of pocket
detection and pocket similarity methods [Pérot et al., 2010]. Latest review [Chen
et al., 2011] represents the first independent attempt to systematically assess per-
formance of pocket detection methods (although only a limited number of methods
have been compared). Results of this benchmark will be discussed in section 2.3.3
(page 33).

Review of several pocket detection and druggability prediction approaches as
well as a critical view on the field can be found in PhD Thesis of P. Schmidtke
[Schmidtke, 2011], one ot the two principal authors of Fpocket. Schmidtke points
out to the “identification paradox”: while pocket detection methods are most often
evaluated by identification success among top-1 or top-3 ranked pockets, identifica-
tion and ranking are two completely independent tasks. Pure identification success
is rarely reported and it is very likely that many programs allow identification of all
binding sites.14 He argues that modern pocket identification algorithms should be
acknowledged to be excellent and more focus should be directed towards pocket
classification and scoring.

14 has been reported for Fpocket (refering to unpublished data) and at least one other method
[Singh et al., 2011]
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So far the longest and most complete list of different binding site detection
methods was very recently compiled in [Lumipuu, 2013].

High level overview of the new druggability prediction field, introducing com-
putational as well as experimental methods can be found in [Barril, 2012]. Another
review of binding site analysis and druggability prediction approaches can be found
in [Nisius et al., 2012].

2.3.2 Availability

In terms of availability, several of these methods can be used as web servers but only
few are available as distributable packages [Le Guilloux et al., 2009,Ghersi and
Sanchez, 2011]. Methods exposed as web services are usually free but can be used
only on one individual protein structure at a time and it is impossible to incorporate
them into virtual screening pipelines for multiple targets. Even fewer of these
methods have been released as open source software. Comprehensive reviews
of availability of different methods can be found in [Leis et al., 2010,Khazanov,
2012].

2.3.3 Performance comparison

So far we have not discussed performance of reviewed methods. In case of pocket
detection problem, field suffers from the lack of widely established benchmarking
dataset and clearly defined assessment procedure. Studies that introduced new
methods have compared them to few existing solutions with the expected conclu-
sion that the proposed method performs better or as well as existing solutions.
Comparison of different methods is further complicated by limited availability and
technical differences (e.g some methods define pocket boundaries by listing pocket
surface atoms or binding residues while others define binding site only by a center
point). Another problem that complicates objective comparison are differences in
methodologies that are being used for assessing success rate of methods.

Dataset of 48 bound/unbound structures introduced in LIGSITEcsc study [Huang
and Schroeder, 2006] is practically the only dataset that was steadily used to
compare different methods. Great majority of the methods reported success rate
of around 90% considering Top-3 and above 70% considering Top-1 predicted
binding sites. The size of the dataset and small differences in results, however,
limit how meaningful comparison based on this dataset are.

First independent systematic comparison between a representative set of meth-
ods was presented in already mentioned critical review [Chen et al., 2011]. Authors
created a new non-redundant benchmarking dataset of 251 proteins containing
more than 400 binding sites (which we term CHEN2011 dataset). Every structural
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Figure 2.1: Results of ten pocket detection methods on CHEN2011 dataset. Identification success
is measured using DCA criterion (the minimal distance between center of the binding site to any
atom of the ligand). Binding site is considered correctly predicted if the minimal distance between
that site and Top-n predicted sites is bellow the cutoff distance D (x-axis), where n is the number
of true binding sites on the particular protein in dataset. Cutoff distance of 4 Å was commonly
used in previous studies. Methods are also compared against a baseline predictor that randomly
selects a surface patch on the target protein. (Underlying data have not been published. Reused
with permission. [Chen et al., 2011])

protein family is represented by one protein.15 Unlike in previous studies and
datasets that followed 1-protein/1-binding site rule, proteins in this dataset are
annotated with multiple binding sites (in case more binding sites for given protein
are they are known). Acknowledging the fact that proteins have multiple binding
sites and incorporating it into new dataset is a major conceptual contribution of
this study. While other studies usually based evaluation on Top-1, Top-3 and/or
Top-5 predicted pockets, here Top-n predictions are used for evaluation. That
is, for protein with n binding sites, top n predictions for each methods are con-
sidered. Moreover, instead of using one arbitrary distance threshold, success rate
was evaluated across integer thresholds from 1 Å to 20 Å (figure 2.1).

Results show that evolutionary structure-conservation based method FINDSITE
clearly outperforms other methods, especially when considering (in our view)
meaningful threshold distances 4–10 Å. However, authors also showed that success
rate of FINDSITE quickly drops with decreasing maximal structural similarity

15based on SCOP structural classification of proteins
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between query protein and proteins in template library. Performance of all other
methods (below 50% on threshold 4 Å) was substantially lower that previously
published results on other datasets. Authors showed that predictions from different
methods are complementary and demonstrated it by designing a simple consensus
based predictor that outperforms best single method. Another presented conclusion
is that considerable fraction (over 30% 16) of the binding sites is not identified by
any of the considered methods.

2.4 Conclusions

Different approaches to pocket identification will find use in different scenarios. If
we have only one or a small number of protein targets at hand, we can perform
detailed individual inspections of proteins manually. The combination methods is
likely to give the most meaningful results. In fact, in this case there is no reason
not to use both evolutionary conservation and energetic methods to get all possible
informations/predictions about the investigated protein. On the other hand, fast
geometric methods with knowledge based scoring functions will find use in massive
virtual screenings.

Although evolutionary based methods currently give the best results, they are
dependent on similarity/homology between the target protein and proteins in the
database they work with. The most successful FINDSITE method has additional
disadvantage in that it works only with single-chain proteins and is not able to
detect binding sites on the boundaries between subunits. There is also a case for
methods that use just structural information. Every year more than 8,000 protein
structures are added to the PDB and it is useful to scan all of them for possible new
binding sites that can be than used to discover new interactions with ligands.

2.4.1 Pitfalls of current methods

Size of and exact boundaries of predicted pockets are arbitrary. We can usually
increase success rate of an algorithm on a given dataset by tuning its parameters
to give us pockets with bigger/smaller size. When it comes to pocket ranking and
druggability prediction methods this could be a problem because almost all of them
are based on (global) pocket descriptors based on the shape and size of the whole
pocket.

16 using threshold of 4 Å considering Top-n predictions
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Proposed Improvement

We have developed a pocket ranking function based on prediction model that
predicts ligandability (likelihood to bind a ligand) of a given point inside of a
pocket. Prediction is done considering only a local physicochemical and geometric
properties derived from point’s neighbourhood.

3.1 Initial considerations

The basic assumption was that the the physicochemical properties calculated from
local neighbourhood of a given point can predict ligandability.

Fpocket

Fpocket [Le Guilloux et al., 2009] was selected as a basis four our solution because
it is elegant and fast geometric algorithm. Of all pocket detection methods that
are available as open source, Fpocket is best documented and it is well maintained
as a software project.

Fpocket is an geometric method that is based on Vornoi tessellation of space
and clustering of alpha-spheres (discussed on p. 26). Pocket as defined by Fpocket
is a cluster of alpha spheres that are touching atoms on a protein surface. The
center of an alpha-sphere is Vornoi vertex that is equally distant to the four closest
atoms. Alpha-spheres that constitute a pocket have a radius in range 3–6 Å (this
range is parameterizable but for our research default parameters of Fpocket were
used).
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Figure 3.1: Success rate of Fpocket on CHEN2011 dataset considering gradually larger sets of
pockets ranked at the top. Figure shows room for improvement by using better pocket ranking
function. Binding site is considered correctly predicted if the minimal distance between that site
and Top-n predicted sites is bellow the cutoff distance D (x-axis), where n is the number of true
binding sites on the particular protein in dataset. Compare with Fig. 2.1 (p. 34).

The importance of pocket ranking

Results of the benchmark study (p. 34) compare success rate of pocket detection
methods based on considering only Top-n predicted pockets. To find out pure
identification success of Fpocket we re-run Fpocket on CHEN2011 dataset and
analyzed the results. We used the same evaluation criteria as in original study (DCA

metric) but we looked at success rates considering larger sets of pockets ranked at
the top (see Figure 3.1). Ultimately, the pure identification success (success rate
taking all predicted pocket) was considered. When considering probably the most
meaningful and commonly used cutoff distance of 4 Å this number is much higher
than for commonly considered Top-1/Top-3 pockets. Although (using default
parameters), Fpocket was not able to detect all binding sites (as was recently boldly
suggested by one of the Fpocket authors – see p. 32 ), results show that there is a
clear room for improvement of F-pocket results by creating a better pocket scoring
function.
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Most of pocket detection methods find much more pockets on a give structure
than there is actual binding sites. For example Fpocket outputs average of 12.4
pockets for one protein on CHEN2011 dataset.

3.2 Materials and Methods

3.2.1 Data sets

• CHEN2011 New dataset of 251 proteins containing 476 ligands that was used
to benchmark pocket detection methods in recent comparative review [Chen
et al., 2011]. It can be considered a “hard” dataset as most of methods
performed unexpectedly poorly.

• UB48 Datast of 48 unbound/bound structures [Huang and Schroeder, 2006]
contains 48 liganated proteins in bound and unbound state. This dataset has
been most widely used for comparing pocket detection methods and can be
considered as “easy” dataset. We have joined bound and unbound subsets
into one dataset of 96 proteins containing altogether 106 binding sites.

• ASTEX Astex Diverse set is a collection of 85 proteins containing 133 lig-
ands that was introduced as a benchmarking dataset for molecular docking
methods [Hartshorn et al., 2007].

In the case of UB48 and ASTEX datasets some protein structures contained very
small ligands. We have decided to ignore all ligands smaller than 8 atoms. This step
was not absolutely necessary as it affected only handful of structures. We don’t use
these datasets to compare our method with other methods by directly comparing
results from literature. They are used only to train and compare different classifiers
and results of our ranking function (with respect to original Fpocket ranking that is
evaluated by the same criteria). On the other hand, dataset and methodology used
are the same as in original CHEN2011 study, so the results are directly comparable.

3.3 Proposed method

3.3.1 Vector of physicochemical properties

First we define vector of physicochemical properties PC which can be assigned to
any atom on the protein/pocket surface based on the amino acid residue.
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Table 3.1: Vector PC of amino acid residue properties. Most of properties have absolute (0/1)
character

Property Value

hydrophobic 1 for hydrophobic residues
hydrophilic 1 for hydrophilic residues
hydrophatyIndex side-chain hydrophaty index 1 with values in range

〈−4.5,4.5〉
aliphatic 1 for aliphatic residues
aromatic 1 for aromatic residues
sulfur 1 for sulfur containing residues
hydroxyl 1 for hydroxyl group containing residues
basic 1 for basic residues
acidic 1 for acidic residues
amide 1 for amide group containing residues
charge 1 for positively charged and −1 for negatively charged

residues
hBondDonor 1 for H-bond donor residues
hBondAcceptor 1 for H-bond acceptor residues
hBondDonorAcceptor 1 for residues that are H-bond donors & acceptor

residues
polar 1 for polar residues
ionizable 1 for ionizable residues

Aggregation function

To calculate property vector of point inside a pocket property vectors of the pocket
surface atoms are aggregated into one using simple aggregation function. Contri-
bution of particular surface atom is weighted by its distance to the inner pocket
point.

Figure 3.2: Schematic depiction of calculating physicochemical properties of the inner pocket
point (X) from the properties of pocket surface atoms

Atomic neighbourhood of vertex V:

A(V ) =
�

pocket surface atoms within 8 Å radius around V
	

(3.1)
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Aggregated physicochemical properties of vertex V calculated from its atomic
neighbourhood:

PC(V ) =
1
m

m
∑

Ai∈ A(V )

PC (Ai) ·w(dist(V, Ai)) (3.2)

Weight function:

w(d) =

¨

1, d ≤ 4 Å

(4/d)2 d > 4 Å
(3.3)

Additional properties

We also define vector WA of additional properties for given alpha-sphere that is
calculated from its 8 Å neighbourhood.

Table 3.2: Vector WA of additional pocket aplha sphere properties used as an input for classifier

Property Value

atoms absolute number of atoms within 8 Å radius
atomDensity sum of atoms weighted by distance
atomC sum of carbon atoms weighted by distance
atomO sum of oxygen atoms weighted by distance
atomN sum of nitrogen atoms weighted by distance
hDonorAtoms sum of H-bond donor atoms weighted by distance
hAcceptorAtoms sum of H-bond acceptor atoms weighted by distance
vornoiNeighbours absolute number of pocket Vornoi vertices in 4 Å radius
alphaSphereRadius radius of the alpha sphere
Ala . . . Val relative occurrence of amino acid residues weighted by

distance. represents 20 properties each for one standard
amino acid

Final vector

Final vector describing pocket alpha sphere neighbourhood has 45 dimensions.

(PC,WA) ∈ R45

Most of the properties of the vector PC and some of the properties from WA have
values that fin in range 〈0,1〉. Absolute value properties have their upper bound
given by practical restrictions (there can be only so much atoms packed in the
sphere with radius 8 Å).

40



CHAPTER 3. PROPOSED IMPROVEMENT

3.3.2 Classifiers

To predict ligandability of a given alpha sphere we employed and compared various
machine learning methods that we trained on datasets of vectors extracted from
Fpocket outputs.

However, it became clear that the performance of our new pocket scoring
function is limited more by data and set of features used rather than performance
of particular prediction model (however measured). Selecting a best machine
learning model based on a fixed dataset was not the main focus of our work. We
tried and compared different methods including Random Forests, Support Vector
Machines, Neural networks with very similar results which will be discussed in the
next chapter.

Random Forests

Random Forests [Breiman, 2001] is an ensemble machine learning method that con-
structs set decision trees each using only random subset of data vectors considering
random subset of features.

Random Forests have been used throughout our research because of several
inherent advantages. The generalization error for forests converges to a limit as
the number of trees in the forest increases. Moreover Random Forests are generally
very robust with respect to noise and train fast on large datasets.

3.3.3 Ranking function

Classifiers that we used can — additionally to predicted class — output histo-
grams of class probabilities. In our case of binary classification it is ordered pair
[Pclass0, Pclass1]. Pocket score is then sum of predicted probabilities of all alpha-
spheres that constitute a pocket (represended by their centers – Vorni vertices
{Vi}).

PocketScore=
n
∑

i=1

Pclass1(Vi) (3.4)

Originally we experimented with relative pocket score (divided by n, number
of alpha spheres), however we found that absolute score steadily gives us better
results. Using simply the sum of predicted probabilities has two advantages:
(i) Size of predicted pocket do not always match the size of the ligand. For putative
pockets of unusually large size it is more important that there is a presence of ligand-
binding sub-pocket rather than relative ligand-bindability of all pocket volume.
(ii) Non-relative pocket score gives bias to the larger pockets, which is actually
desirable as ligands are usually found in largest pockets. If we had a random
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classifier our pocket score would practically reorder pockets by size, whereas
a perfect classifier would still distinguish true binding site from decoy pockets.
Performance of pocket score based solely on pocket size thus forms the bottom
line of our scoring function on which we can improve even by poorly-performing
classifiers.
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Evaluation and Results

4.1 Classification results

Feature vectors have been extracted from Fpocket outputs on considered datasets
of protein-ligand complexes creating corresponding datasets of ligand binding and
non-binding alpha-spheres. Random Forest classification models have been trained
on given vector datasets to predict ligandability of alpha-spheres.

4.2 Evaluation methods

Pocket detection criteria

DCA (distance between pocket center and any atom of the ligand) has been used as
positive hit criterion.

4.3 Pocket detection results

Despite the difficulties with generalization / data sampling our new scoring function
significantly improved on the results given by default Fpocket scoring function.
Generally speaking improvement is around 5-7% points when considering cutoff
in the meaningful range 3-5% and Top-n to Top-n+ 1 pockets. This may not seem
dramatic but consulting Fig. 2.1 show that our method would outperform all other
methods that are not using any external evolutionary information.

Next we present of our scoring function on several datasets. We have been
careful to never evaluate pocket scoring function on the same dataset that we
trained the classifier.
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Figure 4.1: Success rates on CHEN2011_HALF1 dataset.
Classifier: Random Forest trained on CHEN2011_HALF2 dataset.
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Figure 4.2: Success rates on CHEN2011_HALF2 dataset.
Classifier: Random Forest trained on CHEN2011_HALF1 dataset.
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Figure 4.3: Success rates on ASTEX dataset.
Classifier: Random Forest trained on UB48 dataset.
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Figure 4.4: Success rates on ASTEX dataset.
Classifier: Random Forest trained on CHEN2011 dataset.
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Figure 4.5: Success rates of on CHEN2011 dataset.
Classifier: Random Forest trained on UB48 dataset.
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Figure 4.6: Success rates on CHEN2011 dataset.
Classifier: Random Forest trained on ASTEX dataset.
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Summary and Outlook

5.1 Summary and contributions

We have been successful in developing a novel pocket ranking method that outper-
forms default scoring function of Fpocket. Our scoring function is based on solely
on local structural information and learned predictive model. Unlike any other
scoring functions employed in current pocket detection algorithms, our approach
does not consider global pocket descriptors (which is an advantage since bound-
aries of predicted pockets are arbitrary), neither consults external databases for
evolutionary conservation information.

5.2 Future work

Druggability prediction method

The same model that we used to distinguish between true binding sites and decoy
pockets can possibly be trained to distinguish between druggable and undruggable
binding sites.

Fragment based pocket similarity

Confirmation of the hypothesis that local neighbourhood can predict ligandabil-
ity suggests that it would be possible to create pocket similarity method that is
fragment based and not dependent on global shape of predicted pockets which
boundary is arbitrary. This naturally leads to fast ligand complementarity and
rough binding affinity estimation method. Fragment based character will allow
creation of indexable binding site database that can be query by similar pocket or
complementary ligand.

47



CHAPTER 5. SUMMARY AND OUTLOOK

Making method publicly available

There are three options: (1.) Reimplementation as a new scoring function in
Fpocket. (2.) Stand-alone program - this would mean to re-implement Vornoi
tessellation and alpha sphere clustering but would have few advantages: (i) ability
to use classifier to make more meaningful pocket boundaries and possibly detect
pockets currently ignored by Fpocket (ii) easily implementable multi-threading
and simple distributed computation for large datasets (3.) Web service (shiny but
in our opinion not as useful).
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