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Chapter 1

Theoretical background

Non–formally speaking a point process is a random set of points, i.e. one ob-
servation of the point process is a set of points. As an example of a point process
we can imagine positions of all people in a town, occurrences of an epidemic in
time and space or epicenters of earthquakes. When we have a suitable model for
the observations, we can use it to understand their behavior.

This work usually deals with point processes on R2 × R+, where R2, R+

represents space, time respectively. But first of all, let us present some basic
theory in Rd where d ≥ 1, d ∈ N.

1.1 Point processes on Rd

On Rd we have a system of Borel subsets Bd and a system of bounded Borel
subsets Bd0 ⊆ Bd.

Definition 1. (Locally finite subsets and their σ–algebra)
Locally finite subsets of Rd (point configurations) are elements of
N =

{
ϕ ⊆ Rd : ϕ(B) <∞∀B ∈ Bd0

}
, ϕ(B) denotes the number of points of a set

ϕ ∩B.
σ–algebra on N is N = σ

{
{ϕ ∈ N : ϕ(B) = m} ,m ∈ N0, B ∈ Bd0

}
.

We present the definition of a point process on Rd, but it is also possible to
define point processes on any S ⊆ Bd.

Definition 2. (Point process)
Point process Φ defined on Rd is a measurable mapping Φ : (Ω,A,P) −→ (N ,N),
where (Ω,A,P) is a probability space, (N ,N) is a space of point configurations
with σ–algebra N from the Definition 1.
A point process Φ is called finite, when it has finite number of points almost
surely.

Note 1. Number of points of the set Φ(ω) in a given set B ∈ Bd we denote by
Φ(B) where we leave out the variable ω.

Proposition 1. Φ is a point process if and only if Φ(B) is a random variable for
every B ∈ Bd0.
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Definition 3. (Distribution of a point process)
Distribution of a point process Φ is a measure Π on (N ,N) defined by Π(U) =
P({ω ∈ Ω : Φ(ω) ∈ U}), U ∈ N.

Definition 4. (Void probabilities)
Let Φ be a point process. By void probabilities we understand probabilities
P(Φ(B) = 0), B ∈ Bd0 .

Proposition 2. The distribution of a point process Φ is uniquely determined by
its void probabilities.

Proof. See [3], p.5.

k

Definition 5. (Stationarity and Isotropy)
A point process Φ is stationary if its distribution is invariant under translations,

that is, the distribution of Φ + s = {ξ + s : ξ ∈ Φ} is the same as that of Φ for
any s ∈ Rd.

A point process Φ is isotropic if its distribution is invariant under rotations
about the origin in Rd, i.e. the distribution of OΦ = {Oξ : ξ ∈ Φ} is the same as
that of Φ for any rotation O around the origin.

Definition 6. (Intensity measure and Intensity function, Homogeneity)
For a point process Φ we define intensity measure by

µ(B) = EΦ(B), B ∈ Bd,

meaning that µ(B) is a mean number of points of the process Φ in the set B. If
there exists a density ρ of the measure µ with respect to Lebesgue measure, that
is

µ(B) =

∫
B

ρ(x)dx, B ∈ Bd,

then ρ is called intensity function.

If ρ is constant, then Φ is said to be homogeneous or first order stationary
with intensity ρ.

Definition 7. (Moment measures)
For a point process Φ we define n–th order moment measure µ(n) by

µ(n)(A) = E
∑

ξ1,...,ξn∈Φ

I[(ξ1, . . . , ξn) ∈ A], A ∈ (Bd)n

and the n–th order factorial moment measure α(n) by

α(n)(A) = E
6=∑

ξ1,...,ξn∈Φ

I[(ξ1, . . . , ξn) ∈ A], A ∈ (Bd)n,

where 6= over the summation sign means that n points ξ1, . . . ξn are pairwise
distinct.
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Note 2. The n–th order moment measure µ(n) determines the n–th order moments
of count variables Φ(B), B ⊆ Bd, since

µ(n)(B1 × . . .×Bn) = E[Φ(B1) . . .Φ(Bn)], B1 × . . .×Bn ∈ Bd,

specially
µ(n)(B × . . .×B) = E[Φ(B)]n.

In particular we can notice that µ = µ(1) = α(1).

Definition 8. (n–th order product density)
If there exists a density ρ(n) of n–th order factorial moment measure α(n) with

respect to the nd–dimensional Lebesgue measure, then ρ(n) is called n–th order
product density.

Note 3. First order product density is the intensity function from the Definition
6, ρ(1) = ρ.

Definition 9. (Second order reduced moment measure, Second order intensity
reweighted stationarity (SOIRS)).
Suppose that Φ has an intensity function ρ and that the measure

K(B) =
1

|A|
E

6=∑
ξ,η∈Φ

I[ξ ∈ A, η − ξ ∈ B]

ρ(ξ)ρ(η)
, B ∈ Bd,

does not depend on the choice of A ∈ Bd with 0 < |A| < ∞, where we take
a/0 = 0 for a ≥ 0. Then Φ is said to be second order intensity reweighted
stationary and K is called the second order reduced moment measure (see [1],
p.32).

Proposition 3. If Φ is stationary, then Φ is second order intensity reweighted
stationary.

Proof. If Φ is stationary, then ρ is constant and

ν(A) = |A| ρ2K(B) = E
6=∑

ξ,η∈Φ

I[ξ ∈ A, η − ξ ∈ B]

is a translation invariant measure for A ∈ Bd when B is fixed, and so ν is pro-
portional to Lebesgue measure on Rd (see [1], p.32).

k

Definition 10. (K–function)
For a second order intensity reweighted stationary point process Φ we define

K–function by
K(r) = K(b(0, r)), r ≥ 0,

where b(0, r) is a d–dimensional sphere with radius r.

Note 4. In the stationary case, ρK(B) can be interpreted as the conditional
expectation of the number of further points in B given that Φ has a point at the
origin.
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Definition 11. (Pair correlation function)
If both ρ and ρ(2) exist, the pair correlation function is defined by

g(ξ, η) =
ρ(2)(ξ, η)

ρ(ξ)ρ(η)
, ξ, η ∈ Rd

where we take a/0 = 0 for a ≥ 0.

Proposition 4. Let Φ be a SOIRS point process. Then for the pair correlation
function g holds

g(ξ, η) = g(ξ − η, 0), ξ, η ∈ Rd.

Note 5. Sometimes we write g(ξ − η) instead of g(ξ − η, 0) for a SOIRS point
process Φ.

Definition 12. (Binomial point process)
Let f be a density function on a set B ∈ Bd and let n ∈ N. A point process Φ

consisting of n i.i.d. points with density f is called a binomial point process of n
points in B with a density f . We write Φ ∼ binomial(B, n, f).

Definition 13. (Poisson process)
Let ρ be a locally integrable function on Rd. A point process Φ on Rd is a Poisson
point process with intensity function ρ if the following properties are satisfied:
(i) for any B ∈ Bd0 , Φ(B) has a Poisson distribution with parameter µ(B) (if
µ(B) = 0 then Φ(B) = 0),
(ii) for any n ∈ N and B ∈ Bd0 with 0 < µ(B), conditional on Φ(B) = n,
ΦB = Φ ∩B ∼ binomial(B, n, f) with f(ξ) = ρ(ξ)/µ(B).
We write Φ ∼ Poisson(Rd, ρ).

Note 6. In the Definition 13, (ii) can be replaced by a condition that random
variables Φ(B1), . . . ,Φ(Bn) are independent for disjoint sets B1, . . . , Bn ∈ Bd0 .
But (ii) in the Definition 13 gives a better idea how to simulate the process.

Definition 14. (Cluster point process)
Suppose that we have a point process Φp (parent process) and a set of finite point
processes

{
Xu, u ∈ Rd

}
. Then

X =
⋃
ξ∈Φp

Xξ

is called a cluster point process. For ξ ∈ Φp, process Xξ is called a daughter
process.
Cluster point process X is called a Poisson cluster point process when:
(i) Φp is a Poisson point process
(ii) Xu, u ∈ Rd, are independent and independent of Φp.

Definition 15. (Neymann–Scott process)
Let f be a probability density on Rd and let X be a Poisson cluster point process.
Then X is called a Neymann–Scott process if:
(i) Xu(Rd), u ∈ Rd, are i.i.d. random variables,

(ii) Xu = ∪Xu(Rd)
i=1 ηi, where ηi are i.i.d. random vectors with density f(· − u), i.e.

points of centered processes Xu − u are i.i.d. with density f .
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Definition 16. (Marked point process)
Let Φ be a point process on Rd, let (M,M) be a given measurable space. If a

random element mξ : (Ω,A,P) −→ (M,M) is attached to each point ξ ∈ Φ, then

Φ̂ = {(ξ,mξ) : ξ ∈ Φ}

is called a marked point process with points in Rd and mark space M .

If further Φ is a Poisson point process, and conditional on Φ, the marks
{mξ : ξ ∈ Φ} are mutually independent, then Φ̂ is a marked Poisson process. If
the marks are identically distributed with a common distribution Q, then Q is
called the mark distribution.

Definition 17. (Independent thinning)
Let Φ be a point process, p : Rd → [0, 1] is a measurable function and{

U(x) : x ∈ Rd
}

are independent random variables with uniform distribution on (0, 1) and inde-
pendent of Φ. Point process Φth = {ξ ∈ Φ : U(ξ) < p(ξ)} is called a thinned point
process.

Proposition 5. For a Poisson point process Φ with intensity measure µ, the cor-
responding thinned process Φth is a Poisson point process with intensity measure

µth(B) =

∫
B

p(y)µ(dy), B ∈ Bd.

Proof. (see also [3], p.18) We are going to show that void probabilities of the
thinned process Φth are equal to void probabilities of a Poisson point process with
intensity µth. Then by the Proposition 2 the proof is finished. For B ∈ Bd0 is

P(Φth(B) = 0) =
∞∑
n=0

P(Φ(B) = n)P(Φth(B) = 0|Φ(B) = n)

=
∞∑
n=0

µ(B)n

n!
e−µ(B)

∏
ξ∈Φ∩B

P(U(ξ) ≥ p(ξ)|Φ(B) = n)

=
∞∑
n=0

µ(B)n

n!
e−µ(B)

[∫ 1

0

∫
B

I[u ≥ p(x)]
µ(dx)

µ(B)
du

]n
=
∞∑
n=0

e−µ(B)

n!

[∫
B

(1− p(x))µ(dx)

]n
= e−µ(B)e

∫
B(1−p(x))µ(dx) = e−

∫
B p(x)µ(dx).

k

Proposition 6. (Campbell theorem)
For a point process Φ and any non–negative measurable function h it holds that

E
∑

ξ1,...,ξn∈Φ

h(ξ1, . . . , ξn) =

∫
Rd
. . .

∫
Rd
h(x1, . . . , xn)α(n)(dx1, . . . , dxn)

(see [3], p.8).
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1.2 Space–time point processes

For our purposes, we will need space–time processes on R3 = R2×R+, where
R2, R+ stands for space, time respectively. Sometimes we will also deal with
marked point processes with points in R3 and mark space R+. According to the
Proposition 7 at the end of this chapter, we can view these marked space–time
processes as point processes on R3 × R+, where R+ = (0,∞). Following defini-
tions we formulate in R3, but they can be modified for R3 × R+ as well.

Similarly as in the Section 1.1, let us have σ–algebra of bounded sets B3
0 on

R3. Then from the Definition 1 we have locally finite subsets of R3 given by

N =
{
ϕ ⊆ R3 : ϕ(B) <∞∀B ∈ B3

0

}
and by the Definition 2, a point process Φ on R3 is a random locally finite subset
of R3.

We can also define space and time parts of the process Φ that we can use to
define space and time parts of summary statistics of Φ.

Definition 18. (Space and time parts).
Let Φ be a space–time point process and suppose that with probability one,

ξ1 6= ξ2 and η1 6= η2 for any pair of distinct points (ξ1, η1) and (ξ2, η2) of the
process Φ. Then we define

Φspace = {ξ : (ξ, η) ∈ Φ} , Φtime = {η : (ξ, η) ∈ Φ} . (1.1)

Intensity measure µ of Φ is by Definition 6

µ(B) = EΦ(B), B ∈ B3

and if there exists a density ρ on R3 with respect to Lebesgue measure then

µ(B) =

∫
B

ρ(x)dx, B ∈ B3

and ρ is called intensity function.
Second order intensity measure we define by

α(2)(A) = E
6=∑

ξ1,ξ2∈Φ

I[(ξ1, ξ2) ∈ A], A ∈ (B3)2,

which is the second–order factorial moment measure from the Definition 7. If
there exists a density ρ(2) of α(2) on (R3)2 with respect to 6–dimensional Lebesgue
measure then ρ(2) is called second order intensity function.

If ρ and ρ(2) both exist then the pair correlation function g is, according to
the Definition 11,

g(ξ, η) =
ρ(2)(ξ, η)

ρ(ξ)ρ(η)
, ξ, η ∈ R3

where we take a/0 = 0 for a ≥ 0.
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For a second order intensity reweighted stationary point process Φ we define
K–function (using the Definition 9 and 10) by formula

K(r) =
1

|A|
E

6=∑
ξ,η∈Φ

I[ξ ∈ A, ‖η − ξ‖ ≤ r]

ρ(ξ)ρ(η)
, r ≥ 0

for any A ∈ B3
0 with positive Lebesgue measure, where ‖·‖ is an Euclidean norm

on R3.

Definition 19. (Space–time separability)
A point process Φ on R3 is said to be first order space–time separable when

ρ(u, t) = ρ1(u)ρ2(t), (u, t) ∈ R2 × R,

where ρ1 and ρ2 are non–negative functions.

A point process Φ on R3 is said to be second order space–time separable when

g((u, t), (v, s)) = g1(u, v)g2(t, s), (u, t), (v, s) ∈ R2 × R, (1.2)

where g1 and g2 are non–negative functions.

Note 7. For a SOIRS point process Φ, (1.2) simplifies (using the Proposition 4)
to

g(u, t) = g1(u)g2(t), (u, t) ∈ R2 × R.

Note 8. Space–time independence, i.e. independence of u and t for points ξ =
(u, t) ∈ Φ, does not follow from the first order space–time separability. From the
first order space–time separability it follows that the intensity measure µ(A×B) =∫
A
ρ1(u)du

∫
B
ρ2(t)dt, A ∈ B2, B ∈ B is a product measure.

Note 9. We denote ρspace, ρtime the intensity functions of Φspace, Φtime respectively
(and similarly for g and K functions). In the case of the first order space–time
separability we have

ρspace(u) = ρ1(u)

∫
T

ρ2(t)dt, u ∈ R2,

ρtime(t) = ρ2(t)

∫
W

ρ1(u)du, t ∈ R.

Definition 20. (Space–time marked point process)
Let Φ be a point process on R3. If a random mark mξ ∈ R+ is attached to each

point ξ ∈ Φ, then
Φ̂ = {(ξ,mξ) : ξ ∈ Φ}

is called a space–time marked point process with points in R3 and mark space R+.
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Proposition 7. Let Φ be a Poisson process on R3 with intensity function φ(x)

and let Φ̂ = {(ξ,mξ) : ξ ∈ Φ} be a space–time marked Poisson process, where
conditional on Φ, each mark mξ has a discrete or continuous density pξ which
does not depend on Φ\ξ. Let ρ(x,m) = φ(x)px(m). Then

(i) Φ̂ ∼ Poisson(R3 × R+, ρ),
(ii) if a density on R+ defined by θ(m) =

∫
R3 ρ(x,m)dx is locally integrable, then

{mξ : ξ ∈ Φ} ∼ Poisson(R+, θ).

Proof. See [1], p.27.

k
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Chapter 2

Shot–noise Cox processes
(SNCP)

2.1 Cox point processes

A Cox point process is a generalization of a Poisson point process, where the
intensity function is randomized. This provides the process higher variability of
the number of points in a selected window.

Definition 21. (Random field on Rd)
Random field on Rd is a collection of random variables Z =

{
Z(u) : u ∈ Rd

}
defined on a probability space (Ω,A,P).

Definition 22. (Cox point process on Rd)
Suppose that Z =

{
Z(u) : u ∈ Rd

}
is a non–negative random field so that with

probability one, u −→ Z(u) is a locally integrable function. If the conditional
distribution of X given Z is a Poisson process on Rd with intensity function Z,
then X is said to be a Cox point process driven by Z. The random field Z is
called a driving intensity.

Note 10. Cox processes are also called doubly stochastic Poisson processes.

Definition 23. (Driving measure)
A random measure Λ defined by

Λ(B) =

∫
B

Z(u)du, u ∈ Rd, B ∈ Bd

is called a driving measure of X.

Note 11. Using the Definition 6 we can calculate the intensity measure µ of X:

µ(B) = EX(B) = E [E(X(B)|Λ)] = EΛ(B), B ∈ Bd

and if ρ(u) = EZ(u) exists (is finite) and is locally integrable, then ρ(u) = EZ(u),
u ∈ Rd is the intensity function of X.
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Proposition 8. Let X be a Cox process on Rd with a driving intensity Z(u) with
finite variance for all u ∈ Rd. Then the pair correlation function is given by

g(u, v) =
E [Z(u)Z(v)]

EZ(u)EZ(v)
, u, v ∈ Rd.

Proof.
α(2)(B1 ×B2) = E [X(B1)X(B2)] = E [EX(B1)X(B2)|Λ]

= E [E [X(B1)|Λ]E [X(B2)|Λ]] ,
(2.1)

so we obtain

α(2)(B1 ×B2) = E [Λ(B1)Λ(B2)] (2.2)

for disjoint sets B1, B2 ∈ Bd where Λ is the driving measure of X and the third
equality follows from the Note 6.
Let us denote (Rd)(2) =

{
(x1, x2) : xi ∈ Rd, x1 6= x2

}
set of all pairs of different

points from Rd. It is an open subset of (Rd)2. A class of sets{
B1 ×B2 : Bi ∈ Bd, B1 ∩B2 = ∅

}
is closed under finite intersections and gener-

ates Borel σ–algebra (Bd)(2) on (Rd)(2). Since (2.2) holds on this class of sets,
it also holds on (Bd)(2) using Dynkin lemma and because α(2) is equal to zero on
(Rd)2\(Rd)(2), (2.2) holds also on (Rd)2.
Now when we rewrite (2.2) for densities of Λ and α(2), and use the Definition 11
of the pair correlation function g we are finished with the proof.

k

Now we can show, that a Cox process has greater or equal variance of the
number of points in a given set compared to a Poisson process with an equal
intensity measure.

Proposition 9. Let X be a Cox process with intensity measure Λ and let Φ
be a Poisson process with intensity measure µ = EΛ(B). Let B ∈ Bd with
VarX(B) < ∞ and VarΦ(B) <∞. Then VarX(B) ≥VarΦ(B).

Proof. Since (EX(B))2 = µ(B)2 = (EΦ(B))2, we only need to show, that

E(X(B))2 ≥ E(Φ(B))2. (2.3)

We can notice from the Definition 7 that α2
X(B×B) = EX(B)2−EX(B) and

also α2
Φ(B×B) = EΦ(B)2−EΦ(B). From the proof of the Proposition 8 we know

that α
(2)
X (B × B) = EΛ(B)2 and α

(2)
Φ (B × B) = µ(B)2 = (EΛ(B))2. Substituting

these results to (2.3) we obtain

α
(2)
X (B ×B) + EX(B) ≥ α

(2)
Φ (B ×B) + EΦ(B)

α
(2)
X (B ×B) ≥ α

(2)
Φ (B ×B)

EΛ(B)2 ≥ (EΛ(B))2

which holds from Jensen inequality and the proof is finished.
k
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2.1.1 Neymann–Scott processes as Cox processes

In this section we consider those Neymann–Scott processes which are also Cox
processes.

Proposition 10. Let X be a Poisson cluster process on Rd and let Xu be finite
Poisson point processes with intensity functions ρu (intensity measures µu(B) =∫
B
ϕu(x)dx for B ∈ Bd). Suppose that Z(u) =

∑
ξ∈Φp

ϕξ(u) is a locally integrable
function. Then X is a Cox process with driving intensity Z.

Proof. For B ∈ Bd0 is

P(X(B) = 0) = E [P(X(B) = 0|Φp)] = E

P(
⋂
ξ∈Φp

[Xξ(B) = 0] |Φp


= E

∏
ξ∈Φp

P(Xξ(B) = 0|Φp)


= E

∏
ξ∈Φp

e−µξ(B)

 = Ee−
∑
ξ∈Φp

µξ(B) = Ee−Λ(B),

which are empty probabilities of a Cox process with driving measure Λ. When we
rewrite the result for densities and use the Proposition 2, we are finished with the
proof (see [3], p.15–16).

k

Next proposition shows, when a Neymann–Scott process is also a Cox process.

Proposition 11. Let Φp be a Poisson process on Rd with intensity function ϕp.
Let Xu, u ∈ Rd, be independent Poisson processes on Rd, independent of Φp where
Xu has intensity function

ϕu(x) = αk(x− u)

where α > 0 is a parameter and k is a probability kernel. Then X = ∪ξ∈ΦpXξ

is a special case of Neymann–Scott process with cluster centers Φp and clusters
Xξ, ξ ∈ Φp. Process X is also a Cox process on Rd driven by

Z(u) = α
∑
ξ∈Φp

k(u− ξ).

Proof. It is obvious that Z(u) is a non–negative locally integrable random field
and that X is a Poisson cluster process by Definition 14. Using Proposition 10,
X is a Cox process with driving intensity Z(u).
Let us verify the definition of Neymann–Scott process (15) for X. Xu(Rd), u ∈ Rd

are independent random variables with a Poisson distribution and mean value
EXu(Rd) =

∫
Rd αk(x − u)dx = α which also implies that processes Xu are al-

most surely finite. From the definition of Poisson process (13) it follows that the
points of the process Xu are independent and identically distributed with density
fu(x) = αk(x−u)∫

Rd αk(x−u)dx
= k(x− u).

k
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Note 12. In [1], p.61 they only consider a stationary Poisson point process Φp.

Note 13. In the general definition of Neymann–Scott process (15), Xu(Rd) is not
restricted to be a Poisson variable. Clearly there also exist more general Cox
processes than those that are also Neymann–Scott processes.

Note 14. The intensity function of X is ρ(u) = EZ(u) = αϕp(u) according to the
Campbell theorem.

Definition 24. (Shot–noise Cox process (SNCP))
Let X be a Cox process on Rd driven by

Z(u) = λ(u)
∑

(ξ,r)∈Φp

rk(ξ, u) (2.4)

where k(·, ·) is a probability kernel function and Φp is a Poisson point process
on Rd × (0,∞) with a locally integrable intensity function ζ and λ(u) is a non–
negative bounded function on Rd. Then X is called a Shot noise Cox process
(SNCP).

Note 15. The definition in [1], p. 63 only considers λ(u) = 1, u ∈ Rd. But we
need this extension later in our models.

Note 16. In the definition, we suppose a Poisson point process on Rd × (0,∞)
which is a measurable subset of Rd+1. As mentioned higher, the definition of a
point process can be naturally extended to measurable subsets of Rd+1. Later, we
are going to look at a Poisson process on R3 × (0,∞) as a marked point process
with points in R3 and marks in (0,∞).

Note 17. The Definition 24 is implicitly saying (see Definition 22 of a Cox process)
that Z(u) is a locally integrable function with probability one. This is satisfied,
if the function defined by

ρ(u) = λ(u)

∫
Rd×(0,∞)

rk(v, u)ζ(v, r)dvdr, u ∈ Rd (2.5)

is finite and locally integrable. Then ρ is the intensity function of X (from
Campbell theorem).

Example 1. (SNCP as a cluster process)
Let X be a SNCP with driving intensity (2.4). Let X(u,r) be independent Poisson
processes, independent of Φp with intensity function ϕ(u,r)(x) = λ(u)rk(u, x)

and define a process X̃ = ∪(ξ,r)∈ΦpX(ξ,r). Then X̃ is a Poisson cluster process

(see Definition 14), X(u,r) are finite processes and by the Proposition 10, X̃ is a

Cox process with driving intensity Z. It means, that X and X̃ have the same
distribution and we can view SNCP X as a Poisson cluster process.

Example 2. (SNCP as a Neymann–Scott process)
Let X be a SNCP with driving intensity (2.4). If λ(u) = α is constant and
Φp consists only of points with r coordinate equal to some constant χ, which

happens when the intensity function ζ(u, r) = ζ̃(u)δχ(r), where ζ̃ is some non–
negative locally integrable function on Rd, then X is a Neymann–Scott process
with intensity function ρ(u) = αχζ̃(u). We used the fact from Example 1 that
we can view X as a Poisson cluster process. In this case, cluster processes X(u,χ)

have intensity function αχk(u, x).

13



Definition 25. (Shot noise G Cox process)
A shot noise G Cox process X is an SNCP where the intensity function of Φp is

ζ(u, r) = κr−α−1 exp(−τr)/Γ(1− α)

where κ > 0, α < 1, and τ > 0 (see [1], p.65).

Note 18. The restrictions on parameters are equivalent to local integrability of ζ.

Note 19. The intensity function ζ(u, r) does not depend on u, which means that
Φp is stationary under translations of the first coordinate.

Note 20. Intensity function of X is

ρ(u) = λ(u)κ

∫
(0,∞)

r−α exp(−τr)
Γ(1− α)

dr

∫
Rd
k(x, u)dx = λ(u)κτα−1

∫
Rd
k(x, u)dx.

Proposition 12. Let X be a SNCP. If

β(u, v) = λ(u)λ(v)

∫ ∫
r2k(x, u)k(x, v)ζ(x, r)dxdr

is finite for all u, v ∈ Rd, then the pair correlation function is given by

g(u, v) = 1 +
β(u, v)

ρ(u)ρ(v)
. (2.6)

Proof. By the Formula (2.5) and Jensen’s inequality ρ(u)2 ≤ β(u, u) is finite for
all u ∈ Rd. From (2.4) and (2.5) and Campbell theorem,

E [Z(u)Z(v)] = E
6=∑

(ξ,r),(ξ′,r′)∈Φp

λ(u)rk(ξ, u)λ(v)r′k(ξ′, v)

+ E
∑

(ξ,r)∈Φp

λ(u)λ(v)r2k(ξ, u)k(ξ, v)

=

∫ ∫ ∫ ∫
λ(u)rk(ξ, u)λ(v)r′k(ξ′, v)ζ(ξ, r)ζ(ξ′, r′)dξdrdξ′dr′

+

∫ ∫
λ(u)λ(v)r2k(ξ, u)k(ξ, v)ζ(u, r)dudr

= ρ(u)ρ(v) + β(u, v)

which is finite and (2.6) follows from the Definition 11 (see [1], p.67).

k

2.2 Space–time SNCP

In this chapter we present a space–time SNCP, a space–time separable model,
two ambit models and their most important characteristics with focus on space–
time separability.

14



Definition 26. (Space–time shot–noise Cox process (SNCP))
Let X be a Cox process on R2 × R driven by

Z(u, t) = λ(u, t)
∑

(ξ,η,r)∈Φp

rk((u, t), (ξ, η)) (2.7)

where u ∈ R2, t ∈ R, k(·, ·) is a probability kernel function, Φp is a Poisson point
process on R2×R× (0,∞) with locally integrable intensity function ζ and λ(u, t)
is a non–negative bounded function on R2 × R. Then X is called a space–time
shot noise Cox process (SNCP).

Proposition 13. Let X be a space–time SNCP. Then the intensity function of
X is

ρ(u, t) = λ(u, t)

∫
R2

∫
R

∫
R+

rk((u, t), (v, s))ζ(v, s, r)drdsdv (2.8)

where (u, t) ∈ R2 × R.

Proof. From the Definition 6 of the intensity function, ρ(u, t) = EZ(u, t). The
rest follows from the Campbell theorem.

k

Example 3. (Space–time SNCP as a cluster process)
Let X be a space–time SNCP. Then we can view the process X as a Poisson

cluster process in R3 (see Example 1 and the Proposition 10)

X =
⋃

(ξ,η,r)∈Φp

X(ξ,η,r)

with intensity function of X(ξ,η,r)

ϕ(ξ,η,r)(u, t) = λ(u, t)rk((u, t), (ξ, η)), (u, t) ∈ R2 × R. (2.9)

The clusters are independent finite Poisson processes because∫
R2

∫
R
ϕ(ξ,η,r)(u, t)dtdu

is finite (λ(u, t) is a bounded function) for all (ξ, η, r) ∈ Φp.

Example 4. (Poisson process Φp as a marked Poisson process)
Let Φp be a Poisson process on R2×R×(0,∞) with a locally integrable intensity

function ζ. If ζ̃(u, t) =
∫
R+
ζ(u, t, r)dr is finite for all (u, t) ∈ R2 × R then Φp is

a marked Poisson point process with points Φ ∼ Poisson(R2 × R, ζ̃) and marks
which conditional on Φ are mutually independent with density p(ξ,η) of mark m(ξ,η)

equal to

p(ξ,η)(r) =
ζ(ξ, η, r)

ζ̃(ξ, η)
, r ∈ (0,∞)

(taking a/0 = 0 for a ≥ 0).
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Proposition 14. Let X be a space–time SNCP with driving intensity Z and
intensity function ρ. Then ρ(2)((u, t), (v, s)) = EZ(u, v)Z(v, s) = ρ(u, t)ρ(v, s) +
β((u, t), (v, s)), where

β((u, t), (v, s)) =λ(u, t)λ(v, s)∫ ∫ ∫
r2k((x, y), (u, t))k((x, y), (v, s))ζ(x, y, r)dxdydr.

Proof. Follows from the Proposition 12.
k

Note 21. We can calculate the pair correlation function g from (2.6):

g((u, t), (v, s)) = 1 +
β((u, t), (v, s))

ρ(u, t)ρ(v, s)
, (u, t), (v, s) ∈ R2 × R. (2.10)

If X is a SOIRS process (see the Definition 9) then by the Proposition 4 the
g function depends only on the difference of coordinates of given points in R2×R,
that is g((u, t), (v, s)) = g ((u− v, t− s), 0). Then the K function defined in the
Definition 10 is

K(r, t) =

∫
R2×R

I[‖u‖ ≤ r, |v| ≤ t]g(u, v)d(u, v), r > 0, t > 0, (2.11)

where ‖u‖ denotes the Euclidean distance in R2.

Further, it is possible to define space and time parts of g function and K
function of the process X by formulas

g1(u) =
1

|T |2
∫
T

∫
T

g(u, t− s)dsdt, u ∈ R2, (2.12)

g2(t) =
1

|W |2
∫
W

∫
W

g(u− v, t)dudv, t ∈ R, (2.13)

K1(r) =

∫
‖u‖≤r

g1(u)du, r > 0, (2.14)

K2(t) =

∫ t

−t
g2(s)ds, t > 0. (2.15)

We have already defined space–time separability of the intensity function ρ
and the g function. At this point we are interested also in space–time separability
of kernel k, which is equivalent to space–time independence within the clusters
(on condition that λ(u, t) is also space–time separable). A useful tool connected
with this kind of separability is F function defined as follows:

Definition 27. (Function F )
Let X be a space–time SNCP with K, K1, K2 as defined higher. Then function
F is defined by formula

F (r, t) =
K(r, t)− 2πr2t

(K1(r)− πr2)(K2(t)− 2t)
, r, t > 0.
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If the kernel k of the process X is stationary and space–time separable, i.e.

k((u, t), (v, s)) = k2(u− v)k1(t− s), (2.16)

where k1 is a density on R2 and k2 is a density on R then the F function from
the Definition 27 is a constant depending only on k and intensity of the process
Φp (see the Section 5.1.1 for the calculation). This property is used for checking
space–time separability of k from simulations.

Note 22. If g and K functions are space–time separable then gspace, gtime, Kspace

and Ktime functions of processes Xspace and Xtime are proportional to g1, g2,
K1 and K2 (see [2], p.480). This also explains introducing F function (see also
Section 5.1.1).

2.3 Three models

Let us present here three different space–time SNCP models, each of them
characterized by some restrictions on the general space–time SNCP, which allows
more specific results. Some of the restrictions are common for all the following
models:
We consider space–time SNCP X, where:

(i) The Poisson process Φp has an intensity function ζ(u, t, r) = νp(r) on
R2 × R × R+, where ν is a finite constant and p(r) is a probability density on
R+, where we define p(r) = 0 for r ∈ R+\D(p(r)), where D(p(r)) is the domain
of p(r). Since

ζ̃(u, t) =

∫
R+

ζ(u, t, r)dr = ν

is finite for all (u, t) ∈ R2 × R, we know (see Example 4) that Φp is a marked
Poisson point process with points Φ ∼ Poisson(R2 × R, ν) and marks which
conditional on Φ are mutually independent with common density p, because

ζ(ξ, η, r)

ζ̃(ξ, η)
=
νp(r)

ν
= p(r), r ∈ (0,∞).

In this case, Φ is a stationary Poisson point process.

(ii) The kernel k is stationary on R2×R, i.e. k((u, t), (v, s)) = k((u−v, t−s), 0)
for all (u, t), (v, s) ∈ R2×R. The interpretation is, that when we move the argu-
ment of k to any fixed center, then the value of k depends only on the distance
from this center. In the cluster interpretation of SNCP, these centers are points
of Φ.

(iii) We observe the process X in a compact set W × T ⊂ R2 × R.

Considering this, we obtain new formulations of some of the summary statis-
tics of X. The intensity function of X is (from (2.8))
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ρ(u, t) = λ(u, t)

∫
R2

∫
R

∫
R+

rk((u, t), (v, s))ζ(v, s, r)drdsdv = λ(u, t)ν

∫
R+

rp(r)dr.

(2.17)
If we adopt the cluster process point of view where points (ξ, η) of Φ determine

the centers of the clusters X(ξ,η) that are independent Poisson processes, then for
every (ξ, η, r) ∈ Φp the intensity function that belongs to a cluster with center
(ξ, η) and mark r is (from (2.9))

ϕ(ξ,η,r)(u, t) = λ(u, t)rk((u, t), (ξ, η)) = λ(u, t)rk(u− ξ, t− η), (u, t) ∈ R2 × R.

Mean number of points of X in the window W × T is

EX(W × T ) =

∫
W×T

ρ(u, t)dudt = ν

∫
R+

rp(r)dr

∫
W×T

λ(u, t)dudt. (2.18)

Function β (from the Proposition 14) is

β((u, t), (v, s)) =λ(u, t)λ(v, s)∫ ∫ ∫
r2k((x, y), (u, t))k((x, y), (v, s))ζ(x, y, r)dxdydr

=νλ(u, t)λ(v, s)∫
R+

r2p(r)dr

∫
R

∫
R2

k(x− u, y − t)k(x− v, y − s)dxdy,

(2.19)
The second order product density of X (see the Definition 8) is

ρ(2)((u, t), (v, s)) = EZ(u, t)Z(v, s) = ρ(u, t)ρ(v, s) + β((u, t), (v, s))

= νλ(u, t)λ(v, s)

[
ν

(∫
R+

rp(r)dr

)2

+

∫
R+

r2p(r)dr

∫
R

∫
R2

k(x− u, y − t)k(x− v, y − s)dxdy
]
,

(2.20)
and the pair correlation function g we calculate from (2.10):

g((u, t), (v, s)) = 1 +
β((u, t), (v, s))

ρ(u, t)ρ(v, s)

= 1 +

∫
R+
r2p(r)dr

∫
R

∫
R2 k(x− u, y − t)k(x− v, y − s)dxdy
ν(
∫
R+
rp(r)dr)2

,

(2.21)
where (u, t), (v, s) ∈ R2 × R. We can denote

h((u, t), (v, s)) =

∫
R

∫
R2

k(x− u, y − t)k(x− v, y − s)dxdy

and using substitution x̃ = x − u and ỹ = y − t we obtain that the function
h((u, t), (v, s)) =

∫
R

∫
R2 k(x̃, ỹ)k(x̃ + u − v, ỹ + t − s)dx̃dỹ is a function of the

18



difference u − v and t − s, so h((u, t), (v, s)) = h̃(z, l) where z = u − v and
l = t − s. It follows, that g function is a function of the difference u − v = z,
t− s = l and we can write

g(z, l) = 1 +
h̃(z, l)

∫
R+
r2p(r)dr

ν(
∫
R+
rp(r)dr)2

,

where h̃(z, l) =
∫
R

∫
R2 k(x, y)k(x+ z, y + l)dxdy and (z, l) ∈ R2 × R.

It is also possible to calculate the variance VarX(B) of number of points
in a given bounded set B ∈ B3

0. We restrict ourselves here to the case when
λ(u, t) = 1, (u, t) ∈ R2×R. Using the Definition 7 and (2.20) and (2.17) and the

fact that α
(2)
X (B ×B) = EX(B)2 − EX(B):

VarX(B) = α
(2)
X (B ×B) + EX(B)− (EX(B))2

= ν2

(∫
R+

rp(r)dr

)2

|B|2

+ ν

∫
R+

r2p(r)dr

∫
B

∫
B

h((u, t), (v, s))d(u, t)d(v, s)

+ ν

∫
R+

rp(r)dr |B| − ν2

(∫
R+

rp(r)dr

)2

|B|2

= ν

(∫
R+

rp(r)dr |B|

+

∫
R+

r2p(r)dr

∫
B

∫
B

h((u, t), (v, s))d(u, t)d(v, s)

)
,

(2.22)

where h((u, t), (v, s)) =
∫
R

∫
R2 k(x − u, y − t)k(x − v, y − s)dxdy is as above.

Compared to a Poisson process Φ with intensity ν
∫
R+
rp(r)dr (the same inten-

sity as the process X) that has Var Φ(B) = ν
∫
R+
rp(r)dr |B| we can see, that

VarX(B) ≥ Var Φ(B).

2.3.1 Model 1 – space–time separable SNCP

This model is a space–time SNCP X from the Definition 26 satisfying (i)–(iii)
from the Section 2.3. Now we present specifications for Model 1:

(i) Kernel k is space–time separable, i.e.

k(u, t) = k1(u)k2(t), (u, t) ∈ R2 × R,

where k1 is a density on R2 and k2 is a density on R.

(ii) The deterministic function λ is space–time separable, i.e.

λ(u, t) = λ1(u)λ2(t), (u, t) ∈ R2 × R,
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where λ1 is a non–negative bounded function on R2 and λ2 is a non–negative
bounded function on R.

(iii) All marks are equal to one with probability one, so we can consider only
the process of points Φ instead of Φp and use r = 1. More formally, this means
that the intensity function of Φp is

ζ(u, t, r) = νδ1(r), (u, t, r) ∈ R2 × R× (0,∞).

Now we only rewrite the summary statistics for this model:

Intensity function of X:

ρ(u, t) = νλ(u, t)

∫
R+

rp(r)dr = νλ(u, t), (2.23)

intensity function that belongs to a cluster X(ξ,η):

ϕ(ξ,η)(u, t) = λ(u, t)k(u− ξ, t− η),

function beta and second order product density:

β((u, t), (v, s)) = νλ(u, t)λ(v, s)∫
R+

r2p(r)dr

∫
R

∫
R2

k(x− u, y − t)k(x− v, y − s)dxdy

= νλ(u, t)λ(v, s)

∫
R

∫
R2

k(x− u, y − t)k(x− v, y − s)dxdy,

(2.24)

ρ(2)((u, t), (v, s)) = νλ(u, t)λ(v, s)

[
ν

(∫
R+

rp(r)dr

)2

+

∫
R+

r2p(r)dr

∫
R

∫
R2

k(x− u, y − t)k(x− v, y − s)dxdy
]

= νλ(u, t)λ(v, s)(
ν +

∫
R

∫
R2

k(x− u, y − t)k(x− v, y − s)dxdy
)
,

(2.25)
and the pair correlation function:

g((u, t), (v, s)) = 1 +

∫
R+
r2p(r)dr

∫
R

∫
R2 k(x− u, y − t)k(x− v, y − s)dxdy

ν
(∫

R+
rp(r)dr

)2

= 1 +

∫
R

∫
R2 k(x− u, y − t)k(x− v, y − s)dxdy

ν
,

(2.26)
where (u, t), (v, s) ∈ R2 × R.

20



2.3.2 Model 2, 3 – ambit models

Ambit models of space–time Cox point processes are introduced in [4]. Here
we consider specially space–time SNCP X from the Definition 26 satisfying (i)–
(iii) from the Section 2.3. They do not have the multiplicative structure of k, but
instead k is distributed on ambit set Au(t) ⊂ R3. We use the term ambit set in
the sense of the following definition:

Definition 28. (Ambit set)
Let (u, t) be a point in R3, let t1 > 0 and 0 < γ < π

2
be parameters. Then the am-

bit set Au(t) on R3 isAu(t) = {(v, s) ∈ R2 × R : t− t1 ≤ s ≤ t, ‖v − u‖ ≤ s tg(γ)}.
Note 23. Ambit set is a base–down oriented cone with apex in point (u, t), base
parallel to the plane s = 0 and angle γ in the apex (between the vertical line and
the surface).

We need to notice, that in ambit models there does not have to be space–time
independence of points in a cluster. So the properties of projection processes
Xspace and Xtime, may not determine the properties of process X.

Example 5. (Non–separability)
Suppose we have an ambit Au(t) with parameters t1, γ and uniformly distributed
n points on Au(t) that we denote Y . Then the points of a projection to time
Ytime are not going to be distributed uniformly.

For both models, k is a density of a uniform distribution on the ambit (k is
stationary):

k(u− v, t− s) = I[(u− v, t− s) ∈ A0(0)]
1

|A0(0)|
, (2.27)

where |A0(0)| is a volume of the ambit set A0(0) (in a sense of three–dimensional
Lebesgue measure).

Now we can simplify the function h:

h((u, t), (v, s)) =

∫
R

∫
R2

k((x, y), (u, t))k((x, y), (v, s))dxdy

=

∫
R

∫
R2

k(x− u, y − t)k(x− v, y − s)dxdy

=
|Au(t) ∩ Av(s)|
|A0(0)|2

,

(2.28)

(u, t), (v, s) ∈ R2 × R.

Next two models differ from each other in the distribution of the number of
points in one cluster. While in Model 2, mean value of the number of points in
one cluster is the same for every cluster, in Model 3 the mean value of number of
points in one cluster depends on a mark that is assigned to each cluster and this
causes higher variance of number of points in one cluster for Model 3. This has
also an effect for example on the pair correlation function that has higher values
for Model 3 then for Model 2 in every point of their domain where it is not equal
to one.
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Model 2

This model is a space–time SNCP X from the Definition 26 satisfying (i)–(iii)
from the Section 2.3 and:

(i) Kernel k is a density of a uniform distribution on ambit set defined by
(2.27).

(ii)All marks are equal to one with probability one, i.e. the intensity function
of Φp is

ζ(u, t, r) = νδ1(r), (u, t, r) ∈ R2 × R× (0,∞).

Intensity function of X:

ρ(u, t) = νλ(u, t)

∫
R+

rp(r)dr = νλ(u, t), (2.29)

intensity function that belongs to cluster X(ξ,η):

ϕ(ξ,η)(u, t) = λ(u, t)I[(u− ξ, t− η) ∈ A0(0)]
1

|A0(0)|
,

function beta and second order product density:

β((u, t), (v, s)) = νλ(u, t)λ(v, s)

∫
R+

r2p(r)dr∫
R

∫
R2

k((x, y), (u, t))k((x, y), (v, s))dxdy

= νλ(u, t)λ(v, s)

∫
R

∫
R2

k((x, y), (u, t))k((x, y), (v, s))dxdy

= νλ(u, t)λ(v, s)
|Au(t) ∩ Av(s)|
|A0(0)|2

,

(2.30)

ρ(2)((u, t), (v, s)) = νλ(u, t)λ(v, s)

[
ν

(∫
R+

rp(r)dr

)2

+

∫
R+

r2p(r)dr

∫
R

∫
R2

k((x, y), (u, t))k((x, y), (v, s))dxdy

]
= νλ(u, t)λ(v, s)(

ν +

∫
R

∫
R2

k((x, y), (u, t))k((x, y), (v, s))dxdy

)
= νλ(u, t)λ(v, s)

(
ν +
|Au(t) ∩ Av(s)|
|A0(0)|2

)
,

(2.31)
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and the pair correlation function:

g((u, t), (v, s)) = 1 +

∫
R+
r2p(r)dr

∫
R

∫
R2 k((x, y), (u, t))k((x, y), (v, s))dxdy

ν
(∫

R+
rp(r)dr

)2

= 1 +

∫
R

∫
R2 k((x, y), (u, t))k((x, y), (v, s))dxdy

ν

= 1 +
|Au(t) ∩ Av(s)|
ν |A0(0)|2

,

(2.32)
where (u, t), (v, s) ∈ R2 × R.

Model 3

This model is a space–time SNCP X from the Definition 26 satisfying (i)–(iii)
from the Section 2.3 and:

(i) Kernel k is a density of a uniform distribution on ambit set defined in (2.27).

(ii)Distribution of marks is

p(r) = ι
1

r
e−τr, τ > 0, ε > 0, r ∈ (ε,∞),

where ι =
(∫∞

ε
r−1e−τrdr

)−1
, so the intensity function of Φp is

ζ(u, t, r) = νι
1

r
e−τr, τ > 0, (u, t, r) ∈ R2 × R× (ε,∞).

Since for ε = 0 the integral
∫
R+
p(r)dr is not be finite, the process Φp would not be

a marked Poisson point process (the intensity function ζ̃(u, t) of Φ is not locally
integrable) for r ∈ (0,∞). For this reason we choose ε > 0 small and define p(r)
only for r ∈ (ε,∞).

The distribution p(r) corresponds to G Cox process with α = 0 and κ = νι
from the Definition 25.

Intensity function of X:

ρ(u, t) = νλ(u, t)

∫
(ε,∞)

rp(r)dr = νιλ(u, t)
e−τε

τ
, (2.33)

intensity function that belongs to cluster X(ξ,η):

ϕ(ξ,η)(u, t) = λ(u, t)I[(u− ξ, t− η) ∈ A0(0)]
1

|A0(0)|
,

function beta and second order product density:
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β((u, t), (v, s)) = νλ(u, t)λ(v, s)

∫
(ε,∞)

r2p(r)dr∫
R

∫
R2

k((x, y), (u, t))k((x, y), (v, s))dxdy

= νιλ(u, t)λ(v, s)e−τε
1 + ετ

τ 2∫
R

∫
R2

k((x, y), (u, t))k((x, y), (v, s))dxdy

= νιλ(u, t)λ(v, s)e−τε
1 + ετ

τ 2

|Au(t) ∩ Av(s)|
|A0(0)|2

,

(2.34)

ρ(2)((u, t), (v, s)) = νλ(u, t)λ(v, s)

[
ν

(∫
(ε,∞)

rp(r)dr

)2

+

∫
(ε,∞)

r2p(r)dr

∫
R

∫
R2

k((x, y), (u, t))k((x, y), (v, s))dxdy

]
= νλ(u, t)λ(v, s)

ιe−τε

τ 2

(
νιe−ετ

+(1 + ετ)

∫
R

∫
R2

k((x, y), (u, t))k((x, y), (v, s))dxdy

)
= νλ(u, t)λ(v, s)

ιe−τε

τ 2

(
νιe−ετ + (1 + ετ)

|Au(t) ∩ Av(s)|
|A0(0)|2

)
,

(2.35)
and the pair correlation function:

g((u, t), (v, s)) = 1 +

∫
R+
r2p(r)dr

∫
R

∫
R2 k((x, y), (u, t))k((x, y), (v, s))dxdy

ν
(∫

R+
rp(r)dr

)2

= 1 +
1 + ετ

νιe−ετ

∫
R

∫
R2

k((x, y), (u, t))k((x, y), (v, s))dxdy

= 1 +
1 + ετ

νιe−ετ
|Au(t) ∩ Av(s)|
|A0(0)|2

,

(2.36)
where (u, t), (v, s) ∈ R2 × R.
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Chapter 3

Simulation algorithms

Here we present an algorithm for simulating realizations of a space–time SNCP
X from the Definition 26 satisfying (i)–(iii) from the Section 2.3 in a window
W × T . We interpret the process X with intensity function

ρ(u, t) = λ(u, t)ν

∫
(0,∞)

rp(r)dr, (u, t) ∈ R2 × R (3.1)

as a cluster point process

X =
⋃

(ξ,η,r)∈Φp

X(ξ,η,r)

(see Example 1) consisting of clustersX(ξ,η,r), (ξ, η, r) ∈ Φp with intensity function

ϕ(ξ,η,r)(u, t) = λ(u, t)rk(u− ξ, t− η), (u, t) ∈ R2 × R.
To reduce edge effects, we use a larger window W̄ , W × T ⊂ W̄ and after

the simulation we cut the pattern to W × T . The idea behind this is that the
distribution of points in one cluster may not be bounded so there is a non–zero
probability that we observe a point of X inside W × T even from very distant
cluster center X(u,t,r). We need to set W̄ large enough to cover all the possible
cluster centers that have some significant probability to contribute with a point
to X ∩ (W × T ).

Note 24. The algorithm may work only approximately for some kernels k. But
using adequate parameters during the simulation one can obtain almost exact
results.

Algorithm:

(i) Generate a realization of a Poisson point process

Φp ∼ Poisson(R2 × R× (0,∞), νp(r)).

We interpret this process as a marked Poisson point process (see Example 4) with
points Φ ∼ Poisson(R2×R, ν) and marks m(u,t) with distribution p. This is done
in two steps:

a) Generate a realization of a stationary Poisson process Φ with intensity ν
in the window W̄ . This is done by generating a Poisson distributed number with
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mean value ν̂ = ν
∣∣W̄ ∣∣ that determines number of points of Φ in W̄ and then,

given this number, all ν̂ points are uniformly and independently of the other
points distributed in W̄ .

b) Generate a mark m(ξ,η) from distribution p for every point (ξ, η) ∈ Φ. By
now, we are able to construct the marked Poisson process Φp:

Φp =
{

(ξ, η,m(ξ,η)) : (ξ, η) ∈ Φ
}
.

(ii) For each (ξ, η, r) ∈ Φp generate a Poisson process with intensity function

ϕ(ξ,η,r)(u, t) = λ(u, t)rk(u− ξ, t− η), (u, t) ∈ R2 × R.

This is done in three steps:

a) For each (ξ, η, r) ∈ Φp generate a stationary Poisson process Cm
(ξ,η,r) in

WC(∆) ∩ (W × T ), where WC(∆) = ([ξ1 − ∆x, ξ1 + ∆x] × [ξ2 − ∆y, ξ2 + ∆y] ×
[η − ∆zd , η + ∆zu ]), (ξ1, ξ2) = ξ and ∆ = (∆x,∆y,∆zd ,∆zu) is selected so that
the set WC(∆) covers all points of the cluster X(ξ,η,r) with high probability, with
intensity

ϕM(ξ,η,r) = λmrkm,

where λm is upper bound for λ on W̄ and km is upper bound for k on W̄ so
it holds that λm ≥ λ(v,s)(u, t) for every (v, s), (u, t) ∈ W̄ . We can notice, that
in this step we are also cutting the pattern to W × T to make the simulation
computationally faster.

b) (First independent thinning)
For each point (u, t) in Cm

(ξ,η,r) and each (ξ, η, r) ∈ Φp do independent thinning

(see the Proposition 5) with retention probability

q(u, t) =
k(u− ξ, t− η)

km
.

By this we obtain a process Xm with intensity ρm = λmν
∫

(0,∞)
rp(r)dr that is

formed by clusters C(ξ,η,r) ∼ Poisson(W × T, λmrk(u− ξ, t− η)).

c) (Second independent thinning)

Independent thinning with retention probability

p(u, t) =
λ(u, t)

λm

for each point (u, t) ∈ Xm. By this we obtain process X with intensity function
(3.1) formed by clusters X(ξ,η,r) ∼ Poisson(W × T, λrk(u − ξ, t − η)) which we
desired.

Note 25. Some clusters X(ξ,η,r) may be empty if they contain no points in W ×T .

Examples of realizations of the process X for Model 1, 2, 3 are in the Fig-
ure 5.1.
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Chapter 4

Estimation in space–time SNCP

Suppose we are given one or generally n realizations Rj, j = 1 . . . n of a space–
time process X in a compact window W × T ⊂ R3. A realization Rj consists of
points (uji , t

j
i ), i = 1 . . . NRj , (uji , t

j
i ) ∈ W ×T , NRj is the number of points of the

realization inside W × T . We would like to estimate some first and second order
characteristics of X with focus on the intensity function and K–function. We are
also interested in the question whether the process X has space–time separable
kernel k (see (2.16)). For this purpose we also estimate function F .

The method consists in calculating the characteristics from every realization
separately and then calculating an average of these n results. This is how we
estimate the intensity function. Estimation of K, K1 and K2 functions requires
a previous knowledge of the intensity function. We can either use the theoretical
value or a previously estimated value and then we use the method as before. In
the estimation of F function we only use previously calculated estimates.

Usually the calculations for a continuous variable would be computationally
too slow, so we use some natural discretization D of the window W × T . The
described algorithm has a general part that does not suppose anything more spe-
cific about the process, so it is applicable for any space–time point process, and
a modification that is useful in case of first order space–time separability of the
process.

4.1 Estimation of intensity function

We would like to estimate the intensity function ρ(u, t), (u, t) ∈ W ×T . If we
suppose that the process X is first order space–time separable (see the Definition
19), then

ρ(u, t) = ρ1(u)ρ2(t) = ρspace(u)∫
T ρ2(t)dt

ρtime(t)∫
W ρ1(u)du

= ρspace(u)ρtime(t)∫
W×T ρ(u,t)dudt

= ρspace(u)ρtime(t)

N
,

where (u, t) ∈ W × T and N is the expected number of points in W × T . We
can estimate separately the space part ρspace and the time part ρtime and then
the intensity estimate is

ρ̂(u, t) =
ρ̂space(u)ρ̂time(t)

N
, (u, t) ∈ W × T,

27



where N is the expected number of points in W × T .
For the estimation from a given realization Rl of the process X we use kernel

method with edge corrections:

ρ̂lspace(u) =

NRl∑
i=1

ωb(u− uli)
cW,b(uli)

, u ∈ W, (4.1)

where NRl is the number of points of the realization Rl, ωb(u) = ω(u
b
) 1
b2

is a
probability kernel in R2 with bandwidth b > 0. Here ω is a given density function
and cW,b(ui) =

∫
W
ωb(u−ui)du is an edge correction factor that gives higher weight

to points near the edge and causes that the estimate is unbiased. Similarly

ρ̂ltime(t) =

NRl∑
i=1

ω
′
a(t− tli)
cT,a(tli)

, t ∈ T, (4.2)

where NRl is the number of points of the realization, ω
′
a(t) = ω

′
( t
a
) 1
a

is a proba-

bility kernel in R with bandwidth a > 0 where ω
′

is a given density function and
cT,a(ti) =

∫
T
ω
′
a(t− ti)dt is an edge correction factor for time part.

The estimate depends on functions ω, ω′ and its bandwidths b, a respectively.
However, according to [1], p. 37, the estimate is usually sensitive to the choice
of bandwidth, while the choice of the density function is less important. Here we
are using the Epanechnikov kernel (see the Section 5.2).

As mentioned higher, we only calculate the estimates in discrete points D of
their domain. To determine the best bandwidths, we minimize the sum of square
deviations of the estimate from the real intensity function in points of D (see the
Section 5.2.1).

The final estimate is

ρ̂time(t) =

∑n
l=1 ρ̂

l
time(t)

n
, t ∈ T, (4.3)

ρ̂space(u) =

∑n
l=1 ρ̂

l
space(u)

n
, u ∈ W. (4.4)

If we do not suppose space–time separability of ρ, we can do the estimates
analogically:

ρ̂l(u, t) =

NRl∑
i=1

ω
′′
c ((u, t)− (uli, t

l
i))

cW×T,c(uli, t
l
i)

, (u, t) ∈ W × T, (4.5)

where NRl is the number of points of the realization, ω
′′
c (u, t) = ω

′′
(u
c
, t
c
) 1
c3

is a

probability kernel in R2 × R with bandwidth c > 0 where ω
′′

is a given density
function and cW×T,c(ui, ti) =

∫
W×T ω

′′
c ((u, t) − (ui, ti))dudt is an edge correction

factor. Then the final estimate is

ρ̂(u, t) =

∑n
l=1 ρ̂

l(u, t)

n
, (u, t) ∈ W × T. (4.6)
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4.2 Second order characteristics

The K function is defined in the Definition 10 (see also Definition 9). We
would like to estimate the K function of X from simulations in W × T , where X
is a space–time point process defined by Model 1, 2 or 3. The estimation is the
same for all models. We are also interested in estimation of K1 and K2 functions.
These functions are possible to define even when the process X is not space–time
separable. To judge the space–time separability of X we use the function F (see
the Definition 27).

In estimations we need to take care of edge effects for points of X close to the
border of the window or for high r and t (compared to the size of the window),
where (r, t) ∈ W × T are variables of estimated functions. For this reason we use
edge correction factors (described lower).

For the reason of a high computational time we estimated these functions only
in discrete points of their domain (specified in the Chapter 5). Similarly as in the
intensity function estimation, the final estimate is an average from n simulations.

Suppose we have coordinates (uli, t
l
i) ∈ X ∩W × T of points of simulations

Rl, l = 1 . . . n of the process X in the window W × T . Then an approximately
unbiased estimate of function K from simulation Rl is given by (compare with
[2], p.476)

K̂ l(r, t) =
1

|W | |T |
∑
i 6=j

I[
∥∥uli − ulj∥∥ ≤ r,

∣∣tli − tlj∣∣ ≤ t]

ρ̂(uli, t
l
i)ρ̂(ulj, t

l
j)ω1(uli, u

l
j)ω2(tli, t

l
j)
, (r, t) ∈ W ×T, (4.7)

where we sum over all pairs of points from X that are not equal (every pair is
calculated twice), ρ̂(u, t) is an estimate for intensity function of X in (u, t) (or we
can use the intensity function ρ(u, t) itself), ω1(ui, uj) is the Ripley’s isotropic edge
correction factor. This is the reciprocal of the proportion of the circumference of
the circle with center ui and radius ‖ui − uj‖ that lies within W (see [2], p.476),
ω2(ti, tj) is the temporal edge correction factor which is equal to one if both ends
of the interval of length 2 |ti − tj| and center ti lies within T , and ω2(ti, tj) = 1

2

otherwise. Then the final estimate is

K̂(r, t) =

∑n
l=1 K̂

l(r, t)

n
, (r, t) ∈ W × T. (4.8)

Similarly, we define K1(r) and K2(t) functions:

K̂ l
1(r) =

1

|W | |T |2
∑
i 6=j

I[
∥∥uli − ulj∥∥ ≤ r]

ω1(uli, u
l
j)ρ̂(uli, t

l
i)ρ̂(ulj, t

l
j)
, r ≥ 0, (4.9)

K̂ l
2(t) =

1

|W |2 |T |

∑
i 6=j

I[
∣∣tli − tlj∣∣ ≤ t]

ω2(tli, t
l
j)ρ̂(uli, t

l
i)ρ̂(ulj, t

l
j)
, t ≥ 0, (4.10)

K̂2(t) =

∑n
l=1 K̂

l
2(t)

n
, r ≥ 0, (4.11)
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K̂1(r) =

∑n
l=1 K̂

l
1(r)

n
, r ≥ 0. (4.12)

Estimate for F is

F̂ (r, t) =
K̂(r, t)− 2πr2t

(K̂1(r)− πr2)(K̂2(t)− 2t)
, where r, t > 0. (4.13)
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Chapter 5

Numerical results

We apply the theory from previous chapters to numerically specified parame-
ters and kernel functions. For calculations and graphical output we use software
Wolfram Mathematica 9.0. Most of the calculations take a lot of computational
time (that depends on the parameters of the model) so there is a limitation of
what is possible to calculate. Some calculations depend on statistics with high
variance so there is also a limitation of the accuracy of the results. Sometimes
doing an average of 100 realizations is not enough to get close to the theoretical
value, and doing more would take too much time. However, after some effort we
obtained satisfactory results even for ambit models. Some estimates work really
well, for example estimate of function F (Figure 5.3(c)) for Model 2 or estimates
of K1 and K2 functions for all our simulated models.

We are interested in three space–time SNCP models defined in the Section
2.3. Now, we specify the equations and numbers that we use for simulations and
estimations.

All models we simulate in the window W × T = [0, 1]2 × [0, 1].

Model 1

We have chosen parameters of Model 1 according to the article [2] to be able
to compare the results.

Process Φp is a Poisson point process on R3 × R+ with intensity ζ(u, t, r) =
νδ1(r), (u, t, r) ∈ R2 × R × R+, ν = 10, so the point process Φ is a stationary
process on R3 with intensity ν = 10 and marks are equal to r = 1 with probability
one.

The kernel k is k(u, t) = k1(u)k2(t), (u, t) ∈ R2 × R with

k1(u) =
1

2πσ2
exp(−x

2 + y2

2σ2
), u = (x, y) ∈ R2, (5.1)

k2(t) =
α

1− exp(−αt∗)
exp(−αt), 0 ≤ t ≤ t∗, otherwise k2(t) = 0, (5.2)

where σ = 0.025, α = 20, t∗ = 0.1.
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The function λ is

λ(u, t) =
20

(1− e−1)(e− 1)(e2 − 1)
exp(−x+ y + 2t), (u, t) ∈ R2 × R.

Note 26. The function λ is not bounded on R2 × R, but it is bounded in the
window W × T where we are observing the process.

The intensity function of X is

ρ(u, t) = νλ(u, t) =
200

(1− e−1)(e− 1)(e2 − 1)
exp(−x+ y + 2t), (u, t) ∈ R2 × R.

The expected number of points of X in the window W × T is

EX(W × T ) =

∫
W×T

ρ(u, t)d(u, t) = 100.

In the simulation we used a larger window W̄ = [−6σ, 1 + 6σ] × [−6σ, 1 +
6σ]× [−t∗, 1.0] and for bounds for one cluster we used ∆x = ∆y = 6σ, ∆zd = t∗,
∆zu = 0 (see the Chapter 3 for details of the algorithm). Example of a realization
of the process X (blue dots) and the process Φ (red dots) is in the Figure 5.1(a).
We notice a higher intensity of points in clusters situated higher and we also
notice different volumes of one cluster. Some blue dots come from cluster centers
that are not inside W×T which is in agreement with the algorithm of simulation.

Model 2

Process Φp is a Poisson point process on R3 × R+ with intensity function
ζ(u, t, r) = νδ1(r), (u, t, r) ∈ R2 × R × R+, ν = 10, so the point process Φ is a
stationary process on R3 with intensity ν = 10 and marks are equal to r = 1 with
probability one.

The kernel k is a density of a uniform distribution on ambit set A0(0) (see the
Definition 28) with parameters t1 = 0.1, γ = π

6
. We wanted to make the volume

of the clusters in all models similar (even though the kernel k is different).

The function λ(u, t) = 10 for all (u, t) ∈ R2 × R so the intensity function of
X is

ρ(u, t) = νλ(u, t) = 100, (u, t) ∈ R2 × R.

The function λ is constant, but the expected number of points of X in W × T is
the same for Model 1 and 2, EX(W × T ) = 100. Mean number of points in one
cluster is

EXξ,η,r(Aξ(η)) =

∫
Aξ(η)

λ(u, t)rk(u− ξ, t− η)dudt = 10,

where r is almost surely one, (ξ, η, r) ∈ Φp.
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In the simulation we used a larger window W̄ = [−t1 tg(γ), 1 + t1 tg(γ)] ×
[−t1 tg(γ), 1 + t1 tg(γ)] × [0.0, 1 + t1] and for bounds for one cluster we used
∆x = ∆y = t1 tg(γ), ∆zd = 0, ∆zu = t1. Example of a realization of the process
X (blue dots) and the process Φ (red dots) is in the Figure 5.1(b). We can see
clearly the cone shaped clusters with uniformly distributed points (the projection
to two dimensions does not preserve the uniformness).

Model 3

Process Φp is a Poisson point process on R3 × (ε,∞) with intensity function
ζ(u, t, r) = νι1

r
e−τr, (u, t, r) ∈ R2 × R × (ε,∞), so the point process Φ is a

stationary process on R3 with intensity ν and marks have common distribution
with density p(r) = ιr−1e−τr, r ∈ (ε,∞), where ι−1 =

∫∞
ε
r−1e−τrdr, ν = 10,

τ = 0.17, ε = 0.01. These parameters are set to make all three models similar in
the mean number of points in one cluster and in the window W×T . Of course the
distribution of the number of points in one cluster is different from the Model 2.

In the simulation we used a larger window W̄ = [−t1 tg(γ), 1 + t1 tg(γ)] ×
[−t1 tg(γ), 1 + t1 tg(γ)] × [0.0, 1 + t1] and for bounds for one cluster we used
∆x = ∆y = t1 tg(γ), ∆zd = 0, ∆zu = t1. An example of a realization of the
process X (blue dots) and the process Φ (red dots) is in the Figure 5.1(c). Com-
pared to Model 2, there are more clusters with very low number of points and
some with very high number of points.

The kernel k is a density of a uniform distribution on ambit set A0(0) (see the
Definition 28) with parameters t1 = 0.1, γ = π

6
.

The function λ(u, t) = 10 for all (u, t) ∈ R2 × R so the intensity function of
X is

ρ(u, t) = νλ(u, t)

∫
(ε,∞)

rp(r)dr = νλ(u, t)ι
e−τε

τ
= 101.22, (u, t) ∈ R2 × R

The expected number of points of X in W × T is EX(W × T ) = 101.22 and
expected number of points in one cluster is

EE [Xξ,η,r(Aξ(η))|r = r̂] = E
∫
Aξ(η)

λ(u, t)r̂k(u− ξ, t− η)dudt

= 10Er̂ = 10

∫ ∞
ε

rp(r)dr = 10.122.

(5.3)

5.1 Theoretical characteristics

For our models it is possible to derive some theoretical characteristics explic-
itly. We have already calculated the intensity function for all three models. In
this chapter we want to have a closer look on F , K and g functions.
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5.1.1 Calculation of function F for Model 1

We can derive formula for F as follows.
Suppose that we are in the situation of Model 1. Then k(u, t) = k1(u)k2(t) and
g function is of the form

g(u, t) = 1 +

∫
R

∫
R2 k(x− u, y − t)k(x, y)dxdy

ν
= 1 +

k ∗ k̃(u, t)

ν
, (5.4)

(u, t) ∈ R2 × R, k̃(−x,−y) = k(x, y) and k ∗ k̃(u, t) is a convolution of functions

k and k̃. Then g1 and g2 functions defined by (2.12) and (2.13) are

g1(u) =
1

|T |2
∫
T

∫
T

g(u, s− t)dsdt =
1

|T |2
∫
T

∫
T

(
1 +

k ∗ k̃(u, s− t)
ν

)
dsdt

= 1 +
k1 ∗ k̃1(u)

ν1
(5.5)

and

g2(t) =
1

|W |2
∫
W

∫
W

g(u− v, t)dudv =
1

|W |2
∫
W

∫
W

(
1 +

k ∗ k̃(u− v, t)
ν

)
dudv

= 1 +
k2 ∗ k̃2(t)

ν2

,

(5.6)
where

ν1 = |T |2 ν
(∫

T

∫
T

k2 ∗ k̃2(s− t)dsdt
)−1

and

ν2 = |W |2 ν
(∫

W

∫
W

k1 ∗ k̃1(u− v)dudv

)−1

.

Now we can see that

ν (g(u, t)− 1) = ν1ν2 (g1(u)− 1) (g2(t)− 1)

and integrating with respect to u and t for ‖u‖ ≤ r and |t| ≤ s (see (2.14),(2.15))
we obtain

ν (K(r, s)− 1) = ν1ν2 (K1(r)− 1) (K2(s)− 1) , r, t > 0.

It is clear, that F from the Definition 27 is constant (see [2], p. 482), and

F (r, t) =
ν1ν2

ν
, r, t > 0.

Note 27. It is also possible to derive a more general form for F for any space–time
SNCP X with a space–time separable kernel k. By the same method we would
obtain

F (r, t) =
ν1ν2

ν

(∫
R+
rp(r)dr

)2∫
R+
r2p(r)dr

, r, t > 0.
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Now we can continue with the calculation in the situation of Model 1:

F (r, t) = ν

(∫
W

∫
W

k1 ∗ k̃1(u− v)dudv

)−1(∫
T

∫
T

k2 ∗ k̃2(s− t)dsdt
)−1

= νP−1
1 P−1

2 ,

(5.7)

where u, v ∈ R2, s, t ∈ R and k̃1(−u) = k1(u) and k̃2(−t) = k2(t), by P1, P2 we
denote first part, second part respectively.
The first convolution is

k1∗k̃1(u−v) =

∫
R2

k1(c)k̃1(u−v−c)dc =

∫
R2

k1(c)k1(c+v−u)dc, whereu, v ∈ R2.

Then using (5.1) and c = (c1, c2), u = (u1, u2), v = (v1, v2), we have:∫
R

∫
R

(
1

2πσ2

)2

e−
c21+c22
2σ2 e−

(c1+v1−u1)2+(c2+v2−u2)2

2σ2 dc1dc2

and separating c1 and c2 from the rest we get

(
1

2πσ2

)2

e−
(v1−u1)2

4σ2 e−
(v2−u2)2

4σ2

∫
R

∫
R
e−

(c1+
(v1−u1)2

2 )2+(c2+
(v2−u2)2

2 )2

2σ2 dc1dc2. (5.8)

After this we need the second convolution

k2 ∗ k̃2(s− t) =

∫
R
k2(c)k̃2(s− t− c)dc =

∫
R
k2(c)k2(t+ c− s)dc,

s, t ∈ R. Now we denote Γ = α
1−eαt∗ and set 0 ≤ c ≤ t∗, −t∗ ≤ t− s ≤ t∗, because

otherwise the convolution is equal to zero. At first, for 0 ≤ t − s ≤ t∗ we have
(using (5.2))∫ t∗+s−t

0

Γe−αcΓe−α(t+c−s)dc = Γ2e−α(t−s)
∫ t∗+s−t

0

e−2αcdc

which we easily adjust to

Γ2

2α
e−α(t−s) (1− e−2α(t∗+s−t)) , where 0 ≤ t− s ≤ t∗.

To integrate this convolution, we only need to divide the integral in two parts:

Γ2

2α

∫
T

∫
T

I[0≤t−s≤t∗]e
−α(t−s) (1− e−2α(t∗+s−t)) dsdt

=
Γ2

2α

(∫ t∗

0

∫ t

0

e−α(t−s) (1− e−2α(t∗+s−t)) dsdt
+

∫ 1

t∗

∫ t

t−t∗
e−α(t−s) (1− e−2α(t∗+s−t)) dsdt)

=
1

2 (1− e−αt∗)2

(
1− 2e−αt

∗
(1− t∗) + e−2αt∗ +

e−2αt∗ − 1

α

)
=
P2

2
.

(5.9)
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The last equation (P2 is defined in (5.7)) we can verify by analogical calculation
for −t∗ ≤ t − s ≤ 0 or by noticing that the convolution has the same value for
t− s positive and t− s negative.

Now we can obtain numerical results. The integral in (5.8) is equal to πσ2,
because we are integrating product of two distribution functions (without the
constant part) of normal distribution with variance σ2

2
over the whole real line.

Using mathematical software, we calculate that

P1 =

∫
W

∫
W

1

4πσ2
e−

(v1−u1)2

4σ2 e−
(v2−u2)2

4σ2 dudv = 0.944377,

where we used σ = 0.025, W = [0.1] according to the definition of Model 1.

From (5.9) we calculate that

P2 = 0.970551,

using t∗ = 0.1, α = 20, T = [0, 1].

Finally we put these results together

F (r, t) = νP1
−1P2

−1 = 10
1

0.944377

1

0.970551
= 10.9103.

5.1.2 Calculation of g function for Model 1

It is possible to express the pair correlation function g for Model 1 in the
following form (in (2.26) we set (v, s) = (0, 0)):

g(u, t) = 1 +
1

ν

∫
R

∫
R2

k(x̃− u, z − t)k(x̃, z)dx̃dz. (5.10)

Since k(u, t) = k1(u)k2(t), (u, t) ∈ R2 × R, the integral is∫
R

∫
R2

k(x̃− u, z − t)k(x̃, z)dx̃dz =

∫
R2

k1(x̃− u)k1(x̃)dx̃

∫
R
k2(z − t)k2(z)dz.

Setting x̃ = (x, y), u = (x0, y0) we can calculate the first part:

∫
R2

k1(x̃− u)k1(x̃)dx̃ =

∫
R

∫
R

(
1

2πσ2

)2

e
(x−x0)2+(y−y0)2

2σ2 e
x2+y2

2σ2 dxdy

=

∫
R

1

2πσ2
e−

(x−x0
2 )2+(x0

2 )
σ2

∫
R

1

2πσ2
e−

(y− y02 )2+( y02 )
σ2

=
1√

4πσ2
e−( x0

2σ2 )
2 1√

4πσ2
e−( y0

2σ2 )
2

,

where we used ∫
R

√
2√

2πσ2
e−

(x−x0
2 )

2

σ2 dx = 1
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for the first integral and ∫
R

√
2√

2πσ2
e−

(y− y02 )
2

σ2 dy = 1

for the second integral.

In the second part, we first calculate the integral for t non–negative.

∫
R
k2(z − t)k2(z)dz =

∫
R

(
α

1− eαt∗
)2

e−α(z−t)eαz I[0 ≤ z − t ≤ t∗] I[0 ≤ z ≤ t∗]dz

=

(
α

1− eαt∗
)2

eαt
∫ t∗

t

e−2αzdz

=
α
(
e−αt − eα(t−2t∗)

)
2 (1− e−αt∗)2 , 0 ≤ t ≤ t∗.

(5.11)
Using analogical calculation (or also directly) we can see that the integral has the
same value for t negative. So the second part is equal to

α
(
e−α|t| − eα(|t|−2t∗)

)
2 (1− e−αt∗)2 , 0 ≤ |t| ≤ t∗.

Putting (5.10) and these two parts together we obtain (u = (x0, y0)):

g(u, t) = 1 +
αe−

x2
0+y2

0
4σ2

(
e−α|t| − eα(|t|−2t∗)

)
8νπσ2 (1− e−αt∗)2 I[0 ≤ |t| ≤ t∗], (5.12)

(u, t) ∈ R2 × R.

Since we have

g(x, y, t) = g(
√
x2 + y2, 0, t) = g̃(r, t), r, t ≥ 0,

where r is the Euclidean distance from the origin, we can graphically visualize
values of g function using plot of g̃ function – see Figure 5.6(a).

Using (5.12) and (2.14), (2.15), (2.11), we can calculate theoretical K1, K2

functions (see Figure 5.2) and K function (see Figure 5.5(a)) for Model 1:

K1(r) = 1
|T |2
∫
‖u‖≤r

∫
T

∫
T

1 +
αe
−
x2
0+y2

0
4σ2 (e−α|s−t|−eα(|s−t|−2t∗))

8νπσ2(1−e−αt∗)
2

 I[0 ≤ |s− t| ≤ t∗]dsdtdu,

(5.13)

K2(t) = 1
|W |2

∫ t
−t

∫
W

∫
W

1 +
αe
− (x0−x1)2+(y0−y1)2

4σ2 (e−α|s|−eα(|s|−2t∗))
8νπσ2(1−e−αt∗)

2

 I[0 ≤ |s| ≤ t∗]dvduds,

(5.14)
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K(r, t) =

∫
‖u‖≤r

∫ t

−t

1 +
αe−

(x0)2+(y0)2

4σ2
(
e−α|s| − eα(|s|−2t∗)

)
8νπσ2 (1− e−αt∗)2

 I[0 ≤ |s| ≤ t∗]dsdu

where u = (x0, y0) ∈ R2, v = (x1, y1) ∈ R2, t ≥ 0.

5.1.3 Calculation of g function for Model 2, 3

We already know from the Chapter 2, that the pair correlation function g for
Model 2 is

g(u, t) = 1 +
|Au(t) ∩ A0(0)|
ν |A0(0)|2

= 1 + c1 |Au(t) ∩ A0(0)|

and for Model 3

g(u, t) = 1 +
1 + ετ

νιe−ετ
|Au(t) ∩ A0(0)|
|A0(0)|2

= 1 + c2 |Au(t) ∩ A0(0)| ,

where (u, t) ∈ R2×R. We can evaluate constants c1 and c2 easily, all parameters
are defined higher (volume of the cone is calculated from angle γ and its height
t1) and numerical results are c1 = 820702 and c2 = 4776000. For the volume
of the intersection of two cones A0(0) and A(x,y)(z) with the same t1 and γ we
derived an explicit formula

Intersection(x, y, z) =
∣∣A(x,y)(z) ∩ A0(0)

∣∣ (5.15)

that the reader can find at the end of this chapter. This formula is a result from
the mathematical software, but the calculation was not straightforward. We had
to divide the problem in more simple parts, integrate these parts as far as it was
possible, then use the software to finish the integration and then put these parts
together. The explicit formula (5.15) is necessary for calculating the F function,
because by numerical integration alone it is not possible to obtain values of F
function (see the Definition 27) with satisfactory accuracy (which is necessary for
recognizing its shape) due to multiple integration.

From the isotropy in spatial coordinates of Models 2, 3 we can visualize the
g function as a function of time and the distance from origin in the spatial co-
ordinate setting g̃(r, t) = g(

√
x2 + y2, 0, t) = g(x, y, t), where r =

√
x2 + y2 (see

Figures 5.6(b) and 5.6(c)).

Theoretical values of K1, K2, K, F functions we calculate only numerically
using explicit formula (5.15). There are still many multiple integrals, but the
accuracy is good. See Figures 5.3 and 5.4.

K1(r) =

∫
‖u‖≤r

∫
T

∫
T

(1 + φ Intersection(u, s− t)) dsdtdu,

K2(t) =

∫ t

−t

∫
W

∫
W

(1 + φ Intersection(u− v, s)) dvduds
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K(r, t) =

∫
‖u‖≤r

∫ t

−t
(1 + φ Intersection(u, s)) dsdu

F (r, t) =
K(r, t)− 2πr2t

(K1(r)− πr2)(K2(t)− 2t)
,

where u = (x, y) ∈ R2, t ≥ 0 and φ = c1 for Model 2, or φ = c2 for Model 3.

5.2 Estimation results

5.2.1 Intensity estimate

The Epanechnikov kernel used for intensity estimation (see the Section 4.1)
has following forms (depending on the dimension):

ω
′
(t) =

3

4
(1− t2) I[−1 ≤ t ≤ 1], t ∈ R

for time part estimation,

ω(u) =
2

π
(1− x2 − y2) I[x2 + y2 ≤ 1], u = (x, y) ∈ R2

for space part and

ω
′′
(u, t) =

15

8π
(1− x2 − y2 − t2) I[x2 + y2 + t2 ≤ 1], u = (x, y) ∈ R2, t ∈ R

for non–separable space and time.
To determine the best bandwidths we used the following three methods.

Firstly we minimized the sum of square deviations of the estimate (from 100
simulations) from the real intensity function in a certain number of equidistantly
selected points of their domain. That is, to determine a we minimized

10∑
i=1

(
ρ̂atime

(
i

10

)
− ρtime

(
i

10

))2

(5.16)

over a ∈ (0, 1) where ρ̂atime is an average of the kernel estimates of ρtime with
bandwidth a, to determine b we minimized

10∑
i,j=1

(
ρ̂bspace

(
i

10
,
j

10

)
− ρspace

(
i

10
,
j

10

))2

(5.17)

over b ∈ (0, 1) where ρ̂bspace is an average of the kernel estimate of ρspace with
bandwidth b, to determine c we minimized

10∑
i,j,k=1

(
ρ̂c
(
i

10
,
j

10
,
k

10

)
− ρ

(
i

10
,
j

10
,
k

10

))2

(5.18)

over c ∈ (0, 1) where ρ̂c is an average of the kernel estimate of ρ with bandwidth
c (see the Table 5.2.1 for results).
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Table 5.1: Sum of square errors for intensity function estimate from 100 simula-
tions.
bandwidth Model 1 – time Model 1 – space Model 2 Model 3
0.05 6563 142813 1.2× 107 3.9× 107

0.10 12114 51912 2.8× 106 1.5× 107

0.15 8051 55573 1.3× 106 5.4× 106

0.20 7518 59545 0.8× 106 2.4× 106

0.25 8556 42159 0.5× 106 1.7× 106

0.30 14242 46453 0.5× 106 1.0× 106

0.35 12397 58350 0.6× 106 0.7× 106

0.40 15571 54986 0.4× 106 1.1× 106

Secondly, because the estimate is a random variable we also tried other band-
widths and checked the result visually. Thirdly, the minimization depends on the
real intensity function that we do not know from simulations but from theory.
That is why we also adjusted the estimated bandwidth (if it was too high) com-
paring to the size of the window.

Approximately best values (in the situation of Model 1) are a = 0.05 and
b = 0.2 and c = 0.4 for Models 2 and 3 respectively.

Estimated intensity for Model 1 is shown in Figures 5.2(c) (time part) and
5.2(d) (space part). We can see that the estimate fits the real functions quite well.

Note 28. We found out that our estimates for a and b differ from those in [2],
p.484. They suggest values b = 0.067 and a = 0.6 (see [2], p.15). But we find our
estimates more suitable and as is shown further, they work well in the estimation
of F and K functions.

5.2.2 Estimation of K and F function

We did the estimation of K function in discrete points (r, t) = (ri, ti) ∈
[0, 1] × [0, 1] where ri = i

100
, ti = i

100
, i = 1 . . . 100. Function K1(r) was esti-

mated for r = ri = i
100

, i = 1, . . . 100 and K2(t) was estimated for t = ti = i
100

,
i = 1, . . . 100. We are using (4.8), (4.11) and (4.12). Number of simulations
n = 100 was used for estimation of these functions.

Calculation of time edge correction ω2(ti, tj) is quite straightforward. On the
other hand, to calculate space edge correction ω1(ui, uj) for two different points
ui, uj of the process X we need to use formula ArcLength (5.19), where t is the
Euclidean distance of ui and uj, t ∈ (0, 1] and (x, y) = ui ∈ [0, 1]× [0, 1] are the
spatial coordinates of the first point. Then

ω1(ui, uj) = ArcLength(x, y, ‖ui − uj‖),

ui 6= uj. After considering all possible cases we get formula
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ArcLength(x, y, t) =

1

2π

(
I[y ≤ 1− t]

(
arcsin

(
min(

x

t
, 1)
)

+ arcsin

(
min(

1− x
t

, 1)

))
+ I[t ≤ y]

(
arcsin

(
min(

x

t
, 1)
)

+ arcsin

(
min(

1− x
t

, 1)

))
+ I[x2 + (1− y2) ≥ t2, y > 1− t, x < r]

(
π

2
− arccos

(x
t

)
− arccos

(
1− y
t

))
+ I[x2 + y2 ≥ t2, y < t, x < r]

(π
2
− arccos

(x
t

)
− arccos

(y
t

))
+ I[(1− x)2 + (1− y)2 ≥ t2, y > 1− t, x > 1− t](

π

2
− arccos

(
1− x
t

)
− arccos

(
1− y
t

))
+ I[(1− x)2 + y2 ≥ t2, y < t, x > 1− t]

(
π

2
− arccos

(
1− x
t

)
− arccos

(y
t

))
+ I[y > 1− t, x > t] arcsin

(
1− y
t

)
+ I[y > 1− t, x < 1− t] arcsin

(
1− y
t

)
+ I[y < t, x > t] arcsin

(y
t

)
+ I[y < t, x < 1− t] arcsin

(y
t

))
.

(5.19)

Estimated K1 and K2 functions using either the real intensity function or
estimated intensity functions together with corresponding theoretical functions
are in Figures 5.2(e), 5.2(f) for Model 1, 5.3(a), 5.3(b) for Model 2 and 5.4(a),
5.4(b) for Model 3. We can notice that all curves fit the theoretical ones very
well, the estimate using estimated intensity function is naturally a little bit worse.
All curves are above theoretical K1 resp. K2 functions for Poisson process (blue
line).

Estimated and theoretical K function for all three models is in the Figure 5.5.
We show the result of estimation using the real intensity function as well as using
the estimated intensity function. The result of estimation is good, we can see
that the estimated functions are close to their theoretical equivalent for all three
models.

We know from the Section 5.1.1 that F function for Model 1 which has space–
time separable distribution of points in one cluster is constant and F (r, t)

.
= 10.9,

r, t > 0. Moreover we have shown in the calculation that when the kernel k is
space–time separable then the function F is constant for any space–time SNCP. It
means that having some simulated data, we can use the Formula (4.13) to check
the separability of k of the theoretical model. Under the separability hypothesis
k(u, t) = k1(u)k2(t), (u, t) ∈ [0, 1]2 we can expect (4.13) to be approximately
constant. On the other hand, for Model 2 and 3 the estimated F function should
not be constant (see the theoretical F function for Model 2 in Figure 5.3(e), and
for Model 3 in Figure 5.4(e).
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Estimate F̂ (4.13) is a ratio estimator and has higher variance than estimates

K̂, K̂1, K̂2 because it combines deviations of these estimates from their theoret-
ical equivalents. Because of this, we calculated estimates of F from n = 1000
simulations. The result for Model 2 (see Figure 5.3(c)), using the theoretical
intensity function is very precise and the shape is almost the same as that of the
theoretical F function for this model and shows non–separability of the kernel k.
The estimate using the estimated intensity function is worse (see Figure 5.3(d)).

For Model 3 estimates of F̂ using ρ̂ and ρ (see Figures 5.4(c), 5.4(d)) are both
close to the theoretical F function. The estimate for Model 1 is close to the real
value of F , but it is constant only approximately. Probably, this is due to higher
variance of F̂ for Model 1 than for Model 2, 3.
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(a) Model 1 (b) Model 2

(c) Model 3

Figure 5.1: Realization of a point process from Model 1, Model 2 and Model 3.
The vertical axis is temporal, the other two axis are spatial.
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(a) F function using ρ̂ (b) F function using ρ

(c) ρtime function (d) ρspace function

(e) K2 function (f) K1 function

Figure 5.2: Model 1. First row: estimates of F function. Second row: (c) blue
line is the real ρtime function, red line is an estimate, (d) blue surface is the real
ρspace function, green surface is an estimate. Third row: red dots are estimates of
K1 (f) and K2 (e) functions using estimate of intensity function, green dots are
estimates using the theoretical intensity function, blue line is function 2t (e) and
πr2 (f).
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(a) K2 function (b) K1 function

(c) F function using ρ (d) F function using ρ̂

(e) Theoretical F function

Figure 5.3: Model 2. First row: black dots are real K2 (a) and K1 (b) functions,
green dots are estimates of K2 (a) and K1 (b) functions, red dots are estimates
using estimate of intensity function, blue line is function 2t (a) and πr2 (b).
Second row: (c) estimate of F function using real intensity function, (d) estimate
of F function using estimate of intensity function. Third row: theoretical F
function.
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(a) K2 function (b) K1 function

(c) F function using ρ (d) F function using ρ̂

(e) Theoretical F function

Figure 5.4: Model 3. First row: black dots are real K2 (a) and K1 (b) functions,
green dots are estimates of K2 (a) and K1 (b) functions, red dots are estimates
using estimate of intensity function, blue line is function 2t (a) and πr2 (b).
Second row: (c) estimate of F function using real intensity function, (d) estimate
of F function using estimate of intensity function. Third row: theoretical F
function.
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(a) K function (b) K function

(c) K function

Figure 5.5: K function for Model 1 (a), for Model 2 (b) and for Model 3 (c).
For each figure, there are three surfaces. Black surface is the theoretical K
function (for the corresponding model with numerically specified parameters),
green surface is the estimated K function using the theoretical intensity function
and red surface is the estimatedK function using the estimated intensity function.

(a) g̃ function (b) g̃ function

(c) g̃ function

Figure 5.6: Pair correlation functions for Model 1 (a) for Model 2 (b) and for
Model 3 (c) (with numerically specified parameters) as a function of time and
the distance from the origin in the spatial coordinate. Values in point (0, 0): (a)
g̃(0, 0)

.
= 168, (b) g̃(0, 0)

.
= 287, (c) g̃(0, 0)

.
= 1669.
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IntersectionY(x, z) = I[0 ≤ z ≤ t1, 0 ≤ x ≤ (t1 − z) tg(γ)]
1

3
πz(tg(γ)z)2

+ I[0 ≤ z ≤ t1, (t1 − z) tg(γ) < x < (t1 + z) tg(γ)]

[
− 8 tg(γ) (x+ tg(γ)(t1 − z))

(t1 + z) (x+ tg(γ)(−t1 + z))
√

(−x+ tg(γ)(t1 + z)) (x+ tg(γ)(v + z))

+π

(
8 tg3(γ)

√
x2 − tg2(γ)(t1 − z)2(t31 + z3)

)
−16 tg3(γ)t31

√
x2 − tg2(γ)(t1 − z)2 arccsc
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√
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Intersection(x, y, z) = IntersectionY(
√
x2 + y2, t1 − |z|). (5.21)
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