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ABSTRACT 

 

There is a need for reliable rules of thumb for various applications in the area 

of biochemistry, supramolecular chemistry and material sciences. Simultaneously, 

the amount of information, which we can gather from X-ray crystal geometries about 

the nature of recognition processes, is limited. Deeper insight into the noncovalent 

interactions playing the most important role is needed in order to revise these universal 

rules governing any recognition process. In this thesis, systematic development and 

study of the accuracy of the computational chemistry methods followed by their 

applications in protein•DNA and host•guest systems, are presented. 

The non-empirical quantum mechanical tools (DFT-D, MP2.5, CCSD(T) etc. methods) 

were utilized in several projects. We found and confirmed unique low lying interaction 

energies distinct from the rest of the distributions in several amino acid−base pairs 

opening a way toward universal rules governing the selective binding of any DNA 

sequence. Further, the predictions and examination of changes of Gibbs energies (ΔG) 

and its subcomponents have been made in several cases and carefully compared 

with experiments. We determined that the choline (Ch+) guest is bound 2.8 kcal/mol 

stronger (calculated ΔG) than acetylcholine (ACh+) to self-assembled triple helicate 

rigid cage, corresponding a K(Ch+)/K(ACh+) = 109 that is in fairly good correlation 

with the experimental value of 20. Finally, excellent correlation between theoretical and 

experimental ΔG has been reported (ρ2 = 0.84) for cucurbit[n]uril (CB[n]) host•guest 

systems. Here, prediction has been made that binding in CB[7]•Diam-4,9-

di(NMe2propanoNH3) complex could become next world record in the world 

of noncovalent interactions. This diamantane derivate is now being synthetized. 

Clearly, these findings demonstrate that the computational chemistry has a solid 

position as the complementary source of information to the data obtained 

from the experiments.  
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ABSTRAKT 

 

Spolehlivá a jednoduše aplikovatelná pravidla jsou potřebná v oblasti biochemie, 

supramolekulární chemie i materiálových vědách. Zároveň množství informací, které 

můžeme získat z rentgenových krystalových struktur o povaze rozpoznávacích procesů, 

je omezené. Lepší pochopení nekovalentních interakcí, které hrají nejdůležitější roli, je 

potřebné pro přezkoumání univerzálních pravidel, řídících jakékoliv rozpoznávací 

procesy. V této práci je prezentován systematický vývoj a studium přesnosti 

výpočetních metod, doplněný aplikacemi na systémech bílkovina•DNA a hostitel•host. 

Ne-empirické kvantově mechanické nástroje (metody DFT-D, MP2.5, CCSD(T) atd.) 

byly využity v několika projektech. Našli a potvrdili jsme existenci unikátních nízko 

ležících interakčních energií, vzdálených od zbývajících distribucí v několika párech 

aminokyselina−báze, které otevírají cestu k univerzálním pravidlům řídícím selektivní 

navázání jakékoliv sekvence DNA. Dále byly v několika případech provedeny predikce 

a ověřeny změny Gibbsovy energie (ΔG) a jejich komponentů a nakonec byly pečlivě 

porovnány s experimenty. Stanovili jsme, že molekula cholinu (Ch+) je vázána o 2.8 

kcal/mol silněji (vypočtením ΔG) než acetylcholin (ACh+) v samo-uspořádané tří 

helikální rigidní kleci, odpovídající K(Ch+)/K(ACh+) = 109, což je v poměrně dobrém 

souladu s experimentální hodnotou 20. Nakonec byla popsána výborná korelace mezi 

teoretickou a experimentální ΔG pro systémy hostitel•host s molekulou cucurbit[n]urilů 

(CB[n]). Byla provedena predikce, že vazba u CB[7]•Diam-4,9-di(NMe2propanoNH3) 

by se mohla stát novým světovým rekordem v nekovalentní vazbě. Výše zmíněný 

derivát diamantanu je nyní připravován experimentálně. Tyto výsledky jasně 

demonstrují pevnou pozici výpočetní chemie jako komplementárního zdroje informací 

pro experimenty.  
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1 INTRODUCTION 

The understanding of the rules regulating the recognition processes in the area of 

biochemistry, supramolecular chemistry, material sciences or molecular biology, is far 

from being complete.1-3 In recent years, the continually increasing amount of structural 

data has opened the space for studies combining the techniques of X-ray 

crystallography, bioinformatics and computational chemistry.4 Despite enormous 

endeavor, no unanimous recognition code applicable to all types of bindings in the 

realm of biochemistry has been described to date, though e.g. the conclusions about zinc 

finger domains and transcription activator-like effector proteins have already found 

their use in the genetic engineering.5 This demonstrates that the understanding of 

binding selectivity principles has a great application potential in biotechnology, 

medicine and related areas. 

In spite of the ongoing efforts, the number of new molecular entities that are approved 

for use as medicines per year is decreasing. The companies leading the development 

toward new pharmaceutical drugs have to deal with both, the growing cost of the clinical 

trials and the luck which seem to be at the basis of the discovery of the most drugs. The 

newly reported technologies, such as the DNA-linked Inhibitor Antibody Assay can 

speed up the screening significantly, however it still requires the drug molecule being 

synthesized and purified.6 Fortunately, recent studies show that the trial and error is not 

the only options in the further development.7 The usage of computational and 

experimental tools in the so-called “rational drug design” has the potential to 

dramatically reduce the number of trial compounds which have to be prepared, purified 

and tested in the process of a new drug discovery. It has been successfully demonstrated 

that binders of the Y220C mutant of the p53 tumor suppressor can be found with virtual 

screening methods.8,9 Broad spectrum of similar applications requires thorough 

understanding of the nature of the noncovalent interactions and phenomena, such as 

hydrophobicity, high-energy water molecules and many-body effects. Research in these 
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areas is mandatory and has to be performed in hand with the development and the 

identification of efficient, accurate and suitable methods. 

Here, the main focus is being put on the description and behavior of protein, DNA and 

various biomimetic complexes both, isolated and in its natural environments. 

Nowadays, the specific types of interactions which manifest metal-coordination or 

surface adsorption play crucial role in the large variety of applications.10 Although we 

do believe that these complex systems will have a large impact in the near future, the 

accurate description of the biopolymers represents the first essential goal which is still 

to be achieved in the large systems containing thousands of atoms.11 While the 

experiments successfully assess the strength of the binding in many instances, they 

mostly provide only limited information about the nature of the noncovalent 

interactions involved in the binding processes. Here, computational results can 

complement, provide insight or even predict the information received from 

experiment.12 

For a very long time, the main focus had been put on the description of the dominant 

hydrogen bonding interactions.13,14 Later, it was shown that the wide range of 

interaction motifs exist together with the hydrogen bonding: London dispersion, 

electrostatic, σ-hole interactions etc. and they need to be described adequately and in a 

balanced way.15,16 Dispersion energy in particular plays an important role in 

biomolecular complexes and its accurate evaluation in systems of larger scale is of 

prime importance.17 Further, charge transfer can play a key role in stabilization in 

charged systems; however, especially this last contribution is at the molecular 

mechanics (MM) level very often being described poorly or not at all. Nonetheless that 

is, up to now, the most widely used methodology in the majority of the cutting edge 

applications. These striking facts support the interest of our laboratory that lies in the 

deeper understanding of non-dynamic properties of molecules and their interactions. 

For the studies where binding may be primarily enthalpy-driven, the quantum 

mechanical (QM) methods bring many advantages in description of many body effects, 

electron and proton transfers, formation and dissociation of a covalent bond etc. 

However sometimes it is not straightforward to find out the role of enthalpy and entropy 

contributions a priori.18 Enthapic contribution can now be treated, even at QM level, 

however the determination of entropic effects is still challenging for most of the 
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applications.19 A various approaches are available at MM level but they are strongly 

dependent on the quality of the applied force field.19,20 The accuracy of Potential Enery 

Surface (PES) description implies also the accuracy of the entropy analysis. 

Additionaly, the identification of the dominating conformations is a must because the 

number of considered binding modes is strongly limited by computing power. Recently, 

it has been shown that the accuracy of 2 kcal/mol can be achieved for estimates of 

changes of Gibbs energies upon binding (ΔG) in host•guest systems where one binding 

mode dominates over the others.21 

Noncovalent interactions mentioned briefly above are well defined in sharp contrast to 

e.g. hydrophobicity which is interpreted as a property of molecule that is being repelled 

from water environment. Additionally, hydrophobicity requires much larger system size 

to be studied, when compared to easily isolated nature of noncovalent interactions.22 

Advantageously, all is being solved when appropriate solvation model is chosen 

because hydrophobicity is driven by the preferential interaction of the molecule with 

other partners than the solvent or more commonly preferential interaction of the solvent 

molecules with themself.23 However, for the studies of both, noncovalent interactions 

and other effects such as hydrophobicity, it is crucial to have solid geometrical data at 

hand. Every studied image of molecule up to now was based on the data generated by 

crystallography.24 For these reasons, a very fruitful cooperation between the areas of 

crystallography and computational chemistry, described also in this thesis, arised. 

 

 

1.1 Use of Crystallographic Data in Computational Chemistry 

Since 1914 and 1915 when first two Nobel prizes were awarded to Von Laue and 

Braggs, molecular crystallography dramatically expanded human understanding of the 

structure and function of many materials.25-27 Contemporary crystallographic 

techniques providing very detailed structural information include X-ray, neutron and 

electron diffraction.28 These data are afterwards used to refine proposed atomic 

arrangements inside of the sample.29 

Over the past few decades, material sciences as well as day life were enriched by various 

applications of crystals reaching from crystal displays in mobile phones, computer and 
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TV screens to crystalline beads in catalytic car converters.30,31 Nowadays, any studied 

image of a molecule is based on or use the data generated by crystallography. The main 

drawback represents the necessity of performing a crystallization of the studied sample 

that can be a difficult task. Flexible proteins, especially present inside of the 

membranes, were proven to be very difficult to study using X-ray crystallography.32 

Moreover, the orientation of the flexible molecules inside of the crystal can be different 

from its arrangement in natural environment. This phenomena is caused by crystal 

packing.33 Therefore, information from X-ray crystallography is often combined with 

other techniques such as nuclear magnetic resonance (NMR) spectroscopy, electron 

micrographic or computational studies. These multidisciplinary studies are able to 

determine the structure of large assemblies (e.g. transfer RNA or ribosomes) and atomic 

details such as protonation states.34 Crystallography played a prime role in filling the 

gaps in our knowledge and shed light on unexpected close contacts between atoms. 

Various studies of these close contacts revealed new types of interactions including 

halogen or chalcogen bonding in exotic species.35 

Additionally, the crystallography uncover what happens when two complex regions of 

e.g. protein DNA-binding domain and the target DNA sequence, meet. Protein−DNA 

interactions are responsible for important processes in cells such as DNA replication, 

DNA repair and cell cycle regulation.36 Further, the genetic information is stored inside 

of DNA which is tightly packed with histone proteins and in the same time the high 

fidelity recognition is required for the gene expression. Here, the understanding of rules 

governing the recognition process would constitute a major accomplishment in the 

fields of bioinformatics and computational biology. The possibility of specific base pair 

recognition in the major groove by amino acids accompanied by two hydrogen bond 

formation was first examined by Seeman.37 It was described shortly after first 

experimental studies occurred and still constitutes an important tool guiding the 

prediction of protein−DNA binding sites. A second factor contributing to the specificity 

of sequence recognition is the DNA shape readout.38 Local deviations from the native 

B-form have been observed in many protein−DNA complexes. It has been shown that 

the ability or tendency to adopt different conformations (e.g. kinks and bents) is 

sequence-dependent.39 On the other hand an overall bend of the DNA double strand 
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represents a nonlocal effect that can enable the formation of interactions impossible in 

the B-form.40-42 

Recently, research of cytochrome P450 enzymes (CYPs), family of biotransformation 

enzymes, was stimulated by emerging biochemical and X-ray structural data.43 

However, these data are based on the mutated or variously modified CYPs designed to 

enhance enzyme solubility. Despite the growth in the number of these complex 

structures the information about orientation of anchored CYPs remains very limited. In 

such situation computer modelling brought already much insight into several key 

aspects of the binding including position of ibuprofen in membrane or secondary 

structure predictions in cases when X-ray-resolved structure is not available.44-46 

The continually increasing amount of structural data has opened space for theoretical 

studies in many areas and few of them were outlined above. On the other hand, there 

are several pilot studies using QM as the tools for resolution of X-ray structures in place 

of MM methodology dominating the field.47,48 This represents a way forward because 

in many cases we may achieve perfect agreement with experiment, but still get some 

predictions wrong. It can be caused mainly by two reasons. Firstly, studied systems are 

outside of the parametrization set used for development of the force field methods. 

Secondly, the error cancellation behaves in various systems differently. 

 

 

1.2 Accuracy of Production Calculations 

The largely unsolved problems in computational chemistry are both the accurate 

predictions in large scale applications and the precision assessment of the applied 

methodology. Generally errors in any kind of calculation or measurement are defined 

as being systematic or random.49 While the random errors cannot be predicted, the 

systematic errors are largely predictable in both magnitude and sign. The random errors 

propagate as the square root of the sum of squares. On the contrary, the systematic errors 

accumulate as a simple sum. Therefore it is highly advantageous for error analysis to 

routinely check not only the most studied root-mean-square-error but also average 

signed error (for definitions see section 1.2.2). It represents a shift of values in the 

measured or calculated values from the right value. It is important to note that it 
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vanishes when differences between individual measurements are calculated or only 

relative order of results is in the center of interest. 

We have to consider following fundamental sources of the random error in 

computational chemistry: the accuracy of implemented numerical algorithm, truncation 

and round off errors. Computer device is not able to deal with certain numbers therefore 

they need to be rounded off. This is direct consequence of finite floating point number 

usage on computers.50 The quality of the approximation is dependent on the word size 

and is typically negligible when compared to any other source of error. On the other 

hand, the truncation error is error connected to the given method because it takes place 

when series (both finite and infinite) need to be truncated to fewer number of terms.51 

These errors are typical for computational chemistry and are method and system 

dependent (see later). Because our intentions here are to study the noncovalent 

interactions in large systems containing several hundreds of atoms, the method accuracy 

cannot be routinely assessed by the exact non-relativistic energy calculated by e.g. Full 

Configurational Interaction (FCI).52 However, one can study isolated errors of 

individual approximations at much smaller model system with a high-level method and 

compare it with the lower-level method where the respective approximation was used. 

Afterwards, the best overall method performing consistently in various scales ranging 

from few atom systems to few tens up to hundred is used afterwards.53 

The ultimate test of methods represents comparison with experiment. However, there 

are two severe limitations in the field of noncovalent interactions. Firstly, the 

experimental data for the wide range of noncovalent interactions observed in nature are 

not available. Secondly, the measured quantity in experiments is not interaction energy 

(eq. 1) but the dissociation energy D0. This quantity includes also on the deformation 

energy (Edef) and change of zero-point vibration energy (ΔZPVE) that requires 

description of not only electronic but additionally vibrational state of the system.54 

 

         (B)](A)[-(AB) EEEE           (1) 

 

These limitations are usually overcomed by comparison with more accurate methods 

instead of the direct comparison with experiment. It is important to note here, that the 

conclusions from such studies are not limited only to interaction energies. However, it 
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provides a good clue on how well the methods would work in all kind of calculations, 

e.g. determination of more complex quantities that rely on the precise description of the 

potential energy surface.11 We will now describe the data sets of geometries and 

interaction energies of dimers playing essential role in accuracy assessment, description 

and studies of noncovalent interactions. Afterwards, we will describe error analysis 

used throughout the text, the fundamental approximations and the most popular 

computational methods used nowadays. 

 

 

1.2.1 Data Sets 

Recent advances in methodology and computer hardware enabled construction of 

various data sets useful for both noncovalent interactions studies and thorough tests of 

methods. These data sets commonly include geometries and interaction energies in the 

local minima representing an interaction motif e.g. hydrogen bonding, ᴨ-ᴨ and σ-hole 

interaction. However, such data describe the system’s behavior only in the one point in 

the PES. On the contrary, the experimental D0 value brings additional information 

characterizing the PES around the equilibrium geometry.11 Part of this information can 

be recovered when we calculate energy not only in the potential energy minimum but 

also in additional points along the dissociation curve. The prime example of such data 

set is S66(x8) data set where are included the most common interaction motifs between 

organic and biomolecular building blocks.55 

The most important feature of any benchmark data set is its size. It has to be large 

enough to provide data for meaningful statistical analysis. Additionally, it should not 

be excessively large from the analysis point of view as well as the computational one.56 

This means that any important type of interaction has be present in the several versatile 

model systems and the system sizes included in the data set have to be manageable for 

calculations using the unified setup and methodology.55 Further, the interaction energies 

in the set should be roughly in the same range of values because the systems interacting 

too weakly do not contribute to the error statistics equally as the ones interacting 

strongly.57 The strongly interacting systems can override the contribution of the rest of 

the systems in the data set. This can be partly solved by calculations of relative errors. 
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However, this approach fails when interaction energies are close to zero. Finally, for 

method validation a great care has to be taken in distinguishing between data sets 

utilized for parametrization of the given method and an independent data set suitable 

for validation. This information has to be always included. 

Recently, several specialized data sets were published among which following will be 

used throughout the text: AA-sidechain4 (amino acid side chains), L753 (7 large 

complexes chosen for studying dispersion interaction), 1hsg58 (decomposition of the 

HIV-II protease crystal structure with a bound ligand indinavir into 21 interacting 

fragment pairs), Charged HB57 (charged hydrogen bonds), A2459 (set of 24 small 

noncovalently bound dimers small enough to be calculated with high level of theory), 

S2260, S22x561 Halogens and Halogensx10 data sets.62 Most of these data sets include 

useful system division according to a dominant stabilization term based on DFT-SAPT 

analysis.63 

Three additional data sets that consist of the structures and relative energies of different 

conformations of complexes and molecules will be utilized: the Goddard water set of 

water clusters64, Wat565 (relative energies of different conformations of the water 

pentamer) and PCONF66 (conformations and relative energies of the FGG tripeptide). 

The terms marked in italics represents the name of the data used in the text bellow. 

 

 

1.2.2 Error Analysis 

There are multiple statistical measures that can be used for the evaluation of an error in 

data set highliting different information about error measurements. Here, we will give 

an overview of the most commonly used statistical tools. 

When a single error measure need to be considered, the root-mean-square error (RMSE) 

is the natural choice. It is being referred, especially for geometry differences, also as 

root-mean-square deviation (RMSD). When quantities X are being compared to 

reference quantities Xref, it is defines as: 
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where N stands for size of the data set. Further, this is the most robust and commonly 

used error function to be minimized in the parametrization of methods (see later for 

optimization of dispersion correction in section 3.2).11 In addition to the RMSE, which 

is sensitive to the most problematic cases, it is advantageous to utilize mean signed error 

(MSE) that refers to the simple average of errors: 

 

                            



N
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ref

ii XX
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MSE
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   .  (3) 

 

It is not a measure of the overall accuracy but it isolates the systematic part of the error. 

Finally, it can be highly important to list and check also largest (unsigned) error. 

For a relative comparison between the interaction energies of the different interaction 

types or different data sets with different ranges of energies, we often utilize the RMSE 

as the percentage of the average interaction energy in the group (rRMSE). Similarly to 

rRMSE, we do define also the relative mean signed error (rMSE). However, this analysis 

can fail when energies approach zero value because the relative error in such cases is 

very high. 

 

 

1.3 Fundamental Approximations in Computational 

Chemistry 

In this section, we would like to briefly summarize the conventional approximations 

representing the most important tools of quantum chemistry: The Born–Oppenheimer, 

frozen core and non-relativistic approximation. 

 

 

1.3.1 The Born–Oppenheimer Approximation 

Without a doubt the Born–Oppenheimer approximation (BOA) belongs nowadays 

among the most used approximations. It is based on the large mass difference between 
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electrons and nuclei. It follows the assumption that the electrons are able to be 

accommodated adiabatically in the field of the nuclei that are being sluggish in their 

motion relative to the electronic motions in the system.67 In practice, at any given 

moment the electrons feel a Hamiltonian 
eH


 that depends only on the nuclei positions 

at that instant. Therefore, the nuclei are treated as being stationary and their kinetic 

energy is neglected, while one is solving only electronic part of the Schrödinger 

equation written as: 

 

                    eeee EH 


               (4) 

    where 

 

nnneeeee VVVTH


   .  (5) 

 

When such approximation break down? There are numerous special phenomena that 

originate from the failure of the BOA. It typically happens when two electronic energies 

of two separate electronic states become very close to each other at some point. A classic 

example is avoided crossing between two states (e.g. ionic and covalent states in the 

ground state of sodium chloride).68 Another example of BOA breakdown was described 

in electron-transfer reactions involving long-distance electron tunneling. It happens 

when the time spent by electron in the barrier region between redox centers is 

comparable to periods of the nuclei vibrations.69 

However, the BOA represents very solid approximation when two PES are well 

separated. Typically, it is the case in the realm of noncovalent interactions, and therefore 

it is safe to separate motions of electrons and nuclei. Additionally, only the systems 

containing few electrons can be studied without this approximation.70 

 

 

1.3.2 The Frozen Core Approximation 

In the last paragraph we proposed separation of electronic and nuclei degrees of freedom 

based upon the significant difference between the mass of an electron and the masses 

of the nuclei. We can push it further and lower even more the number of variables that 
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need to be handled in the calculations. One can assume that upon the interaction of two 

molecules the interesting chemistry happens only in the valence electron region. The 

resulting approximation is referred as the frozen core approximation stating that the 

lowest-lying molecular orbitals are constrained to be double-occupied. 

Recently, Řezáč et al. prepared balanced data set, named A24 (see section 1.2.1), of 24 

small noncovalently bound dimers composed from period 1 and 2 elements.59,71 These 

systems were studied by the highest possible level of theory applicable up to date. It is 

a must to study not only isolated types of interactions but more importantly a range of 

different systems in a systematic manner and of the same composition as are present in 

the target applications. Here, they included calculations with and without core electrons 

correlation at the CCSD(T)/CBS level (see description later). The maximum errors 

showed to be as large as: 0.04 and 0.01 kcal/mol in case of water ammonia and ethene 

ethyne pairs counting only 0.6% and 1.3% of interaction energy, respectively. Neither 

these reported marginal differences nor average relative error 0.57% of interaction 

energy for whole data set justify the computational expense accompanied with all core 

correlation calculations. Additionally, a second motivation exists for frozen core 

approximation because approximate solutions (effective potentials) open a way how to 

empirically include the non-relativistic effects that are described in next paragraph.72 

 

 

1.3.3 The Non-Relativistic Treatment 

Another approximation carried out routinely for small atom number elements is 

neglection of relativistic effects i.e. finite speed of light and the gravitational effects at 

the size scale of atoms. 

Among the most celebrated manifestations of relativity are the yellow color of solid 

gold and the low melting point of the mercury. Lesser known example is the magnitude 

of electric potential difference in the lead-acid car battery being out of 90% attributed 

to the relativistic effects, therefore one can argue that “cars start due to relativity”.73 

Despite these cases with heavy atom effects, it is clearly less important for systems 

containing only first-two-row elements present at A24 data set.59 Authors studied the 

relativistic effects by means of parameter-free fourth-order Douglas−Kroll−Hess 
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(DKH) Hamiltonian in an all-electron CCSD(T) calculation using the extended aug-cc-

pCVQZ-DK basis set. The average relative error caused by omitting the relativistic 

effects is 0.14% or in absolute range from −0.003 to 0.017 kcal/ mol. It represents the 

smallest effect studied in the original publication.59 
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2 METHODS 

Both, the total energy (eq. 6) and interaction energy (eq. 1) are in ab initio 

computational chemistry commonly divided into two parts74: Hartree Fock (EHF) and 

electron correlation (Ecorr) contributions. 

 

      
corrHF EEE                     (6) 

 

In general, the numerical methods capturing the most out of the Ecorr are very 

computationally demanding and therefore cannot be used but for the small systems 

composed of few tens of atoms. Often we desire to understand a large system, e.g. whole 

protein, however these methods are not directly applicable for such system size. 

Therefore, the most expensive methodologies are used sololy for calculations of precise 

energies of small model systems. Afterwards, these data are assembled into data sets 

(such as the A24 set described above, see section 1.2.1). They are utilized for method 

comparison and accuracy assessments of the methods applicable to large systems. The 

accurate and efficient calculations of correlation energies for diverse systems play the 

key role in this thesis. 

 

 

2.1 Extrapolation to the Complete Basis Set Limit 

The energy eigenfunctions (the Schrödinger electronic wave-functions e in eq. 4) are 

constructed from finite number of one-electron wave functions (basis functions) while 

the true wavefunction would need a complete i.e. infinite orthogonal set. The most 

severe errors of ab initio methods typically originate from the slow energy convergence 
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with respect to the number of basis functions describing the electronic wave-function

e . 

Fortuitously, the basis set cardinal number (X) dependent extrapolation schemes have 

been shown to work very well. Large variety of these equations, which utilize this 

approach for obtaining complete basis set (CBS) limit results, has been published. 

Currently, the one proposed by Helgaker is the most commonly used.75,76 We used here 

solely the two-point extrapolation scheme. It was pointed out that results calculated with 

the lowest basis set can be of much lower quality and can easily spoil results of the two 

other more expensive calculations.59 The HF and correlation energy are being 

commonly extrapolated separately: 

 

       )exp( XAEE HF

CBS

HF

X     ,      (7) 

 

where HF

CBSE  is basis set limit of the HF energy, A is pre-factor and β is a parameter that 

was fitted previously by Helgaker for two combinations: 1.43  when using double and 

triple zeta basis sets and 1.54 for triple and quadruple zeta basis set combination.75,76 

The correlation energy is determined from following formula: 

 

           3 BXEE corr

CBS

corr

X
  ,      (8) 

 

where corr

CBSE  is correlation energy extrapolated to the CBS limit and B is pre-power 

factor. Both terms are determined in extrapolation procedure. This scheme was 

developed together with the systematically improved family of Dunning‘s basis sets 

called Correlation Consistent Polarized Valence Double, Triple or Quadruple-Zeta basis 

sets (cc-pVXZ).77 These basis sets are very often augmented with a set of diffuse 

functions (aug-cc-pVXZ). The accuracy of this and similar schemes is still an open 

question, because the performance of the given basis set is strongly dependent on the 

chosen method for the description of electron correlation energy. On the contrary, the 

HF energy has been shown to converge fairly quickly with the basis set size and even 

energies from QZ size basis sets are commonly used without any extrapolation.59 
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2.2 Post-HF Calculations of Correlation Energy 

 

 

2.2.1 Møller-Plesset Perturbation Theory 

In order to study the correlation energy one has to pass from HF method to e.g. 

perturbative methods, used in many areas of physics and chemistry. The perturbation 

of the Fock operator was introduced into computational chemistry by Møller and Plesset 

in 1934.78 The first correction to HF energy arise from second order of perturbation 

resulting in MP2 correlation energy. Nowadays, Møller-Plesset perturbation (MPP) 

theory represents the most favorite approach for correlation energy calculations. This 

correction accounts typically for 80-90% of the correlation for moderate computational 

expense scaling roughly )( 54 NO , where N stands for number of electrons. The 

truncations of the perturbation series up to third, fourth, etc. order are denoted as MP3, 

MP4, respectively. 

Recently, it has been shown that remarkable results can be achieved when MP2 and 

MP3 results are combined and we use for such method acronyms MP2.5 or MP2.X. 

These methods, introduced by our laboratory, are based on the fact that MP2 method 

generaly overestimates the interactions and MP3 underestimates by about the same 

amount. The amount of over- and under-estimation is system and basis set dependent 

but it was observed that the fourth order effect of triples is roughly 50% of the MP3 

third order correction, therefore this MP2.X scaled version is delivering results of MP4 

quality comparable to the most precise methods. 

It has been shown that with increasing size of basis set the golden ratio between MP2 

and MP3 is slowly approaching approximately to 0.5.79 MP2.5 method is known to 

provide excellent interaction energies for various types of noncovalent complexes and 

it is typically advantageous to use a composite scheme (eq. 9) similar to the one used 

for CCSD(T) and other methods (see later). 

 

       
setbasissizemedium
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1
[ 23/2//5.2   (9) 
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Here, equation 3rd term, named ΔMP2.5 correction, is calculated from the difference 

between the MP3 and MP2 interaction energies in a medium size basis set [e.g. aug-cc-

pVDZ or 6-31G*(0.25)].80-83 

The idea of scaling of energy components determined by MPP methodology gave birth 

one additional class of methods: spin component scaled (SCS) MP2 methods. In 2003 

it was introduced for the first time by Grimme84, who scaled the antiparallel (singlet) 

and parallel (triplet) spin components of the correlation energy by formula: 

 

               TTSS

MPSCS EpEpE  2  ,           (10) 

 

where pS=6/5 and pT=1/3 are scaling parameters while ES and ET are singlet and triplet 

components of the MP2 energy, respectively. The pS scaling parameter was derived 

from theory, contrary to pT that was parametrized against a data set of reaction and 

atomization energies. However, several studies showed that despite the success in 

improving the description of dispersion bound systems the different types of 

noncovalent complexes (e.g. hydrogen bonding) are described by SCS-MP2 and MP2 

methods only comparably.85 Since then, several similar and more empirical approaches 

were published such as: SCS-MI-MP2, SCSN-MP2 or SSS-MI-MP2.86,87 All three 

methods were fitted against the S22 or a specialized data set of nucleic acid base pairs. 

Both data sets contain reference CCSD(T) interaction energies. SCSN-MP2 and SSS-

MI-MP2 utilize only one, the triplet component of MP2 energy. The most accurate SCS 

method for description of noncovalent interaction, SCS-MI-MP2, was tested in this 

thesis (see later). 

Finally, the explicitly correlated methods represent another important direction that 

significantly improves basis set convergence toward CBS limit. The standard atomic 

orbital basis set is not properly describing the singularity of the Coulomb operator in 

the situations when distance between two electrons approaches zero. In this position the 

so-called correlation cusp occurs resulting in slow convergence of correlation energy 

with respect to the basis set size.88 However, the explicit correlation effect can be added 

as a correction to the calculation in an AO basis resulting in R12 or F12 class of 

methods.89-91 
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2.2.2 Coupled Cluster Method 

In this chapter coupled cluster (CC) methodology applied for noncovalent interactions 

is briefly outlined.92 It is based on the exponential form of the wave operator that is 

expanded into the clusters of excitation operators. The size-extensivity and the rather 

fast convergence toward full configurational interaction value represents the most 

important features of CC ansatz. Due to the advances in both software and computer 

hardware the affordability of the methods is increasing. The computational cost of 

coupled cluster singles and doubles (CCSD) method scales as )( 24

occupiedvirtualNNO  

where Nvirtual and Noccupied is the number of virtual and occupied orbitals, respectively. 

Inclusion of perturbative estimate of the energy contribution arising from triples leads 

to the so-called CCSD method augmented by non-iterative connected triples 

[CCSD(T)].93 It increases the scaling to )( 34

occupiedvirtualNNO . CCSD(T) level of theory 

at the CBS limit is generally considered to provide high-confidence benchmark 

interaction energies for many small complexes of up to about 50-70 atoms. Interaction 

energy ΔECCSD(T)/CBS is calculated in following way: 

 

    
set basis size medium

MP2CCSD(T)SMP2corr/CBHF/CBSSCCSD(T)/CB ) -   (++ EEEEE      .     (11) 

 

The ΔECCSD(T)/CBS determination involves two terms. The first term represents the 

extrapolated MP2 interaction energy (ΔEMP2/CBS) determined using the Helgaker 

technique with the cc-pVXZ basis sets very often augmented with diffuse function. The 

second term is the ΔCCSD(T) correction and it is determined as the difference between 

ΔECCSD(T) and ΔEMP2 energies calculated with a small or medium size basis set. The 

CCSD(T) calculations are impractical for larger complexes, and thus only the first two 

terms can be extrapolated to the CBS but advantageously the third term is much less 

dependent on the size basis set.[64] This has been thoroughly studied by Řezáč et al. 

where they analyzed three groups of the composite CCSD(T) schemes, differing in the 

size of basis sets used in ΔCCSD(T) correction, MP2 correlation and HF terms.59 They 

pointed out that the CCSD(T) term calculated with aug-cc-pVDZ basis set combined 

with any of the MP2 terms tested yielded a reasonable error of about 2%. This is also 

the method of choice for assembling of benchmark data sets where aug-cc-pVT(D)Z 
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and aug-cc-pVQ(T)Z basis sets are used for MP2 calculation and aug-cc-pVDZ for 

ΔCCSD(T) correction term.55 Additionally, very low errors less than 2% due to error 

cancellations were found also when 6-31G**(0.25,0.15) basis set was utilized (the 

exponent of the polarization function on hydrogen atoms is set to be 0.15 and in other 

elements reduced to 0.25). This shows great promise also for the calculations with 

smaller variant of above mentioned basis set trimmed off polarization functions on 

hydrogen atoms 6-31G*(0.25) for post-HF method (see later). 

In previous section we mentioned the empirical approaches how to improve description 

of MP2 method by scaling of the same spin and opposite spin components of MP2 

energy. The same approach has been successfully applied in case of CCSD method 

resulting in SCS-CCSD and SCS-MI-CCSD methods.94,95 Both methods surpass their 

SCS-MP2 and SCS-MI-MP2 counterparts significantly. 

 

 

2.3 High-Accuracy Alternative for Cross Check of Post-HF 

Methods: Quantum Monte Carlo Methods 

Only few ab initio computational methods can achieve the desired accuracy 

of 1 kcal/mol (see later). Methods described above, such as FCI, CCSD(T) and MP2.5, 

suffer from exponentional or high polynomial scaling and they are therefore feasible for 

molecules with only up to ~500 electrons and medium size basis set. Therefore, classes 

of linear- and low-order polynomial scaling methods represent important direction of 

method development. One such attempt is fixed-node diffusion Monte Carlo (FN-

DMC) method providing )( 43 electronsNO scaling and intrinsic massive parallelism.96 

However, the large prefactor to the CPU cost and missing easy-to-use implementation 

(in a black box fashion) still limit its applications in computational chemistry 

community. 

The FN-DMC calculations in this thesis were performed with software packages 

GAMESS97 and QWalk98. Time step of 0.005 and Slater-Jastrow trial wave-functions 

were used.96 For construction of the single determinant Slater part the valence B3LYP 

orbitals were utilized and expanded in valence triple-zeta basis sets (augmented with 

s functions while f and g shells were removed) and the effective-core potentials were 
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used for representation of the atomic cores.99 The Jastrow part contained electron-

electron and electron-nucleus terms.100 

 

 

2.4 Density Functional Theory 

During past decades the Density Functional Theory (DFT), a method dominating solid 

state physics, was brought into the spotlight in the fields of chemistry. With the 

increasing number of applications to large systems, it has become apparent that the 

accurate description of the London dispersion plays a fundamental role. However, 

standard density functionals (LDA, GGA, meta-GGA and hybrids) are based on the 

electron density that has local (or semi local) character resulting in inability to properly 

capture most of the long range van der Waals interaction. 

In theory, the DFT is formally exact providing the same accurate prediction of 

observables that a solution of the electron Schrödinger equation provides. However, in 

reality we do not have the true functional at hand. It is since when 1964 the Hohenberg-

Kohn proof was formulated and more rigorous foundations of DFT were developed.101 

It says that „The external potential is a unique functional of the electron density only.“ 

and „The functional that delivers the ground state energy of the system, gives the lowest 

energy if and only if the input density is true ground state energy“. At first glance recent 

studies seems to contradict the second theorem. Medvedev et al. calculated the electron 

densities and derivatives for wide range of contemporary functionals.102 They showed 

that since appearance of meta-GGA formalism there is no further improvement in 

RMSD of electron density but mostly worsening. The worst description showed those 

functionals either developed before 1985 or those simply obtained by the tuning of tens 

of parameters with the aim of getting the best energetic and geometric description of a 

broad data set. The chemical space is vast and the chosen test performed on the electron 

densities of few atom-size model systems shows inherent inconsistencies. Despite this 

fact, these methods are nowadays more and more popular. It sets up a disturbing trend 

of turning away from the path toward the celebrated exact functional. 

Nowadays, most of the efforts continue to improve the description of attractive long-

range van der Waals interactions, which is well documented in the number of new DFT 
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functionals addressing this issue published each year.103,104 The most popular 

approaches are introducing truly non-local density functionals, reparametrization of the 

current functionals, double hybrid functionals or long range corrected functionals. 

However, in our laboratory we choose to follow different approach, namely a posteriori 

calculated empirical correction term as is described later. We tested thoroughly several 

functionals and in terms of efficiency and accuracy the GGA-type functional BLYP 

shows great promise when combined with properly parametrized empirical dispersion 

term. 

 

 

2.4.1 Inclusion of Dispersion by Atom-Atom Empirical Dispersion 

Correction 

An efficient approach how to compensate the lack of dispersion energy is included here 

via a posteriori calculated empirical correction term. The most successful versions, 

Grimme’s D and D3, are utilized both, because the more recent one D3 version is 

limited only to few TZ size and larger basis sets, whereas, the former one does not have 

this limitation. The dispersion can be described by the damped pairwise interatomic 

potentials of the form 105: 
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where the expansion is usually terminated at n=8, letters A and B are indexes of the 

atoms in the system, Cn,AB are dispersion coefficients derived from atom polarizabilities 

for atom pair AB and rAB is the respective interatomic distance. For description of 

dispersion between atoms at shorter distances, where part of the dispersion is covered 

by the correlation part of the DFT functional, the damping term fd,n(rAB) has to be used. 

In the D3 zero damping approach, it is defined as a function of cutoff radii for AB pair

ABR0
, radii scaling parameter sR,n (sR,8=1), global scaling factor s6 =1, steepness 

parameters α6=14 and α8=16 and is given by: 
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Later, a revised rational damping to finite values for small interatomic distances was 

developed by Becke and Johnson (BJ).106-108 It enters the calculations as109: 
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Here a1 and a2 are free fit parameters. Note that the number of adjustable parameters is 

two (s8 and sR,6) and three (s8, a1, a2) for zero and BJ damping, respectively. These 

parameters are functional and basis set dependent. 

 

 

2.5 Semiempirical Quantum Mechanical Methods 

Semiempirical QM methods (SQM), representing a compromise between accuracy and 

economy, can be applied to systems with thousands of atoms. Recently they have been 

successfully used even for whole proteins.110-112 Although the SQM methods are 

considered to be a very promising tool for large-scale calculations of any biological 

systems, their description of noncovalent interactions is not satisfactory and clearly 

represents the limiting factor.113 This is caused by its development which was for a long 

time focused solely on description covalent bonding and thermochemical properties of 

individual small molecules. The most crucial approximation that are being made are the 

inclusion of only valence orbitals and electrons, neglecting of differences between s- 

and p- type orbitals, setting the overlap matrix set to zero and parametrization of 

Hamiltonian matrix. This often leads to two main drawbacks. Firstly, the missing 

repulsion between atoms because core–core term usually underestimates the H–H non-

bonded distances in aliphatic systems. Secondly, these methods are parametrized 
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against none or only limited number of noncovalent interactions, therefore their 

applicability here is limited. First SQM methods capturing at least qualitatively the 

geometry of hydrogen bonded complexes were Austin Model 1 (AM1) and 

Parametrized Model 3 (PM3). This was achieved by additional core–core term 

specifically parametrized on hydrogen bonded complexes. Further development was 

done in order to cover also dispersion interaction by empirical R-6, R-8 and R-10 terms. 

However, even with inclusion correction for missing repulsion energy none of the SQM 

methods were accurate enough for quantitative description of hydrogen bonds and 

dispersion interactions in noncovalent complexes. Novel approaches in parametrization 

of SQM methods were tested, however they were only partly successful resulting in e.g. 

RM1 method. 

The breakthrough in both accuracy and efficiency, when MOZYME algorithm is 

applied, was done with introduction of PM6 method.114 It was shown to be the most 

accurate SQM method available despite the insufficient core–core Gaussian functions 

used to mimic correlation or van der Waals effects. In order to bring PM6 method to 

the border of the chemical accuracy of 1 kcal/mol several versions of a posteriori 

calculated corrections were introduced in years 2009-2011 in our laboratory.57,110,111,115 

They are denoted by DxHy suffixes where x and y stand for version of dispersion and 

hydrogen bonding correction, respectively. All versions are included in cuby framework 

(http://cuby.molecular.cz).116 Recently, the most favorite form of the dispersion 

correction is derived from the D3 correction proposed by Grimme for DFT methods, 

see previous paragraph. The main difference from correction applied for DFT methods 

represents the inclusion of additional correction connected to specific errors in short 

distances for hydrogen–hydrogen distances caused by underestimated Pauli repulsion 

for hydrocarbons.57 At first glance, the most advanced version of hydrogen bond 

correction, H4, consists of multiplication of several contributions: proton transfer term, 

radial and angular parts that are scaled by free parameter determining strength. Finally, 

there are two specific corrections for charged groups and water hydrogen bonds. 

Polynomials are usually used for both angular and radial parts and appropriate cutoff 

radius is chosen (about 5.5 Å). The actual functional forms are available in the original 

paper.57 
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In 2012 the newest version of PM7 was introduced where both corrections for hydrogen 

bonding (with functional form H+ version) and dispersion correction as formulated by 

Jurečka et al. were introduced prior to parametrization.117 The performance of this 

method will be discussed later in section 3.1. 

 

 

2.6 Molecular Mechanics 

The molecular mechanics (MM) methods, also referred as “classical” or “force fields”, 

are based on the Newton’s laws of physics where the atoms are modelled as charged 

spheres. The MM energy is defined as a sum of various terms arising from bonding 

(stretch, bend and torsion) and non-bonding (van der Waals and Coulomb) terms. The 

performance and reliability of MM methods strongly depend on the parameters found 

in the functional forms (typically harmonic potentials) in equations of the energetic 

terms. These values are assigned once, fixed and for most of the systems available in 

the literature. They are parametrized to reproduce data such as experimental frequencies 

and ab initio energies of some sets of molecules, while atomic charges are derived from 

ab initio calculations combined with Restrained Electrostatic Potential (RESP) 

fitting.118 

In this thesis, results obtained with Amber99SB-ILDN protein force field119 combined 

with Amber94 nucleic-acid parameters will be discussed for protein-DNA 

bioinformatic analysis.120,121 Additionally, the entropy analysis and second derivatives 

were performed with Amber11 at 298 K in order to estimate change of the Gibbs energy 

in host•guest systems.119 In all cases the rigid rotor harmonic oscillator (RRHO) 

approximation was used. This approximation enables to uncouple the motions of 

molecules into translations, rotations and vibrations.122 It makes calculations of 

molecular motions mathematically tractable even for large molecules.123 
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2.7 Fragment-Based Methods 

One of the ways of executing calculations for the large systems without parametrization 

or sacrificing accuracy is to use some kind of fragment-based method. It generally 

includes performing of independent fractional calculations on portion of the system at 

a time and afterwards combining the results from the fragment calculations to predict 

the same properties as for the whole. The golden grail for a numerous of these 

approaches represents linear scaling coupled with the outcome accuracy approaching 

that which would be obtained for the full calculation. These techniques are being called 

„embarrassingly parallel“ and commonly take advantage of massively parallel 

computers where each separate fragment calculation is performed on a separate 

compute node.124 The way how fragment-based methods are trying to achieve it differ 

in the fragmentation of the system and description of the local environment in each 

independent electronic structure calculation. There is no such thing as a “free lunch” 

therefore one has to be cautious when any kind of system fragmentation is being 

applied. Not only computational time but mainly the desired accuracy has to be met. 

Getting an answer quickly can become attractive enough to sacrifice the accuracy along 

the way therefore any application of the fragmentation scheme should be accompanied 

by accuracy assessment. One has to consider several tasks to be fulfilled: (1) energies 

has to be described on small to large systems evenly (2) different conformations has to 

be considered and described with similar accuracy, e.g. opened and closed conformation 

arrangement (3) several electronic structure methods have to be tested. (4) several 

model systems should be tested thoroughly. 

Fragment-based methods in literature are divided into several groups. First class of 

methods is dealing with all orbitals in the full system. These methods are based on 

localized type orbitals often defining molecular orbital groups. Or alternatively, the 

methods are applying some kind of divide and conquer idea where from the fragment 

densities an ad hoc molecular density is being constructed and afterwards single energy 

calculation follow.125-129 The interaction between fragments is readily introduced 

through modification of the Fock operator by the Coulomb potential of a partner, often 

doing it self consistently until simple monopole representation of electrostatic potential 

of the rest of the system is converged. This takes into account both electrostatic and 

polarization effects. An important general development has been been made when 
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strong orthogonality between fragment wave-functions was introduced. This made 

construction of block Fock matrix possible without the need of diagonalization of full 

Fock matrix. Further discussion of this class of approaches is however beyond the scope 

of our work and can be found reviewed elsewhere.130 

Second large class of fragment-based methods can be derived from the Multibody 

Expansion (MBE) or cluster expansion method. It has been developed in the field of 

solid-state chemistry in order to calculate the total energy as a linear combination of the 

energies calculated on the atom clusters using N-order interaction potentials. It proved 

to be a general concept in computational strategies of total energy evaluation from 

subsystem energies.131 Individual methods then are distinguished from each other by 

the way how they generate overlapping or disjoint fragments, write down the order of 

truncation, neglect the non-overlapping fragment and non-chemically bonded 

interactions. Few such examples are molecular fractionation with conjugate caps 

(MFCC) method,132,133 fragment energy method (FEM)131 and kernel energy method 

(KEM) utilized by us here for host•guest project (see later in section 3.5).134 The 

pairwise additive KEM total energy can be calculated from fragments (smaller kernels 

of atoms): 
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or in case of summation from all double kernels reduced by those of any single kernels 

that have been overcounted in the sum over double kernels:135 
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where M is total number of fragments, Ei is the energy of the system composed of the 

ith fragment,  Eij is the energy of the system composed of the i, j fragments etc. We 

were forced to apply it for MP3 calculation, because the system size exceeded 180 

atoms. 
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2.8 Energy Decomposition Analysis 

Noncovalent interactions are governed by various physical/chemical phenomena that 

are however hard to determine by experimental techniques and no QM operators exist 

that would enable to compute any energy or interaction energy components.136 

However, there are possibilities how to tackle this problem that will be described herein. 

Recently, they have been utilized even for whole proteins using fragmentation or 

QM/MM scheme. Hirao calculated the protein environment effect on an intermediate 

compound I of cytochrome P450cam. Author was successful in decomposing it into 

driving forces showing the electrostatic effect being the largest in the magnitude.137 

There are two general approaches how to decompose the interaction energies. First 

approach is by means of perturbation theory, where the interaction between monomers 

is treated as a perturbation between two previously noninteracting monomer systems. 

This is referred as symmetry adapted perturbation theory (SAPT) scheme.63 Second 

approach is used for variational calculations of the complex where it is defined by a 

stepwise evaluation and relaxation of the separate contributions for the complex starting 

from a state composed from noninteracting monomers – this is called energy 

decomposition analysis (EDA).138 Both these approaches are nowadays being 

developed for quantifying various effects playing role in noncovalent interactions. 

Schemes implemented at the higher levels than HF or DFT, e.g. at the coupled cluster 

(CC) level of theory, are offering the possibility to highly accurately describe the 

studied system however also significantly restricts the affordable size of the systems 

under study. Additionally, there is discussion in the current literature about ill-defined 

polarization and charge transfer at close intermolecular distance that can be considered 

as polarized electron density of one molecule extended into the space occupied by the 

other molecule where it is hard to separate it from the remaining polarization.138 This is 

especially true when large basis set is utilized.  

Here, the interaction energy EDA method was readily utilized for the partitioning of the 

DFT interaction energy into the electrostatic interaction energy (ΔEelectro), the exchange-

repulsion (ΔEexch-rep), the orbital relaxation energy (ΔEorb-rel), the correlation interaction 

(ΔEcorr) and finally the Grimme’s D3 empirical dispersion interaction energy (ΔEdisp): 
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2.9 Solvation 

The solvation effects or interactions of the environment with solute can be described as 

the either 'specific' or 'nonspecific'. By the specific we mean the directional noncovalent 

interactions between participating molecules in the system. Another important 

component of solvation could be called 'nonspecific' since environment simply 

attenuates the electrostatic interaction in our system when we compare it to situation in 

vacuo. On the other hand solvent environment affects also other interactions (e.g. 

dispersion interaction) however to a considerably less extent than electrostatic energy. 

Therefore, one has to be vigilant when comparing magnitudes of different contributions 

described in previous section. The attraction from dispersion energy, although usually 

being small, could be in e.g. water environment comparable, or even higher than from 

the electrostatic energy. This can easily result in large change of the physical nature 

of the binding when different environment is considered. In the field of computational 

chemistry two approaches how to describe the effect of solvent on the solute are 

routinely being used. 

First, the popular in applications using more approximate methods, is inclusion of the 

explicit water molecules. This is the most robust and general approach, how to account 

for solvation requiring long equilibration or geometry optimization of the system 

especially when the positions of the water molecules are unknown. This drastically 

increases the complexity of the calculation because of both the harder sampling 

of the potential energy surface and increase of the system size. 

On the contrary, the second approach, implicit solvation model, is more approximate 

and efficient because it depends only on the coordinates of the solute itself. Therefore, 

it leaves out the problems with equilibration of the system caused by addition of large 

number of water molecules and its connected number of degrees of freedom 

in the system. Additionally, in order to achieve converged solute-solvent interactions 

one does not have to calculate relatively long times for achieving a reasonable statistical 

certainty but the solvation free energy is updated instantaneously. This can be proved 
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to be useful in studies of long processes by molecular dynamics. All effects introduced 

by solvent (entropy cost for cavity formation, polar screening of solute charges, van der 

Waals interactions etc.) are typically introduced by suitable functions resulting in: 
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where first two penalty terms, cavity formation and hydrophobicity, have both 

the enthalpic and entropic character. While the third term is purely enthalpic and 

represents the shielding of electrostatic interactions by the polarized solvent. 

Poisson equation (eq. 19) provides the foundation of the description of electrostatic 

interactions in the field of continuous electric dielectricum and also all implicit solvent 

models such as Conductor-like Screening Model (COSMO) or density-based solvation 

model (SMD). The main difference between these is that the later method calculates 

free energy using not partial atomic charges but rather full solute electron density with 

noticeably increased computational expense. The electrostatic potential )(r


 can be 

described as: 
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where ρ(r⃗) is charge distribution and ε is uniform dielectric constant. The choice 

of dielectric constant is an open question as it is impossible to derive from experiment 

under most conditions. It can easily differ in the cavity of the molecule and on its surface 

and its true value is still an ongoing debate in the literature.139,140 Second severe 

downfall of implicit solvent models is the lack of description of the direct hydrogen 

bonding mediated via water hydrogen network system. 

The hybrid models utilizing both approaches in the same time were still not proven to 

be superior to any of the two approaches but are commonly accepted because of the 

both efficiency and introduction of the direct interacting water molecules.141-143 

The direct hydrogen bonds were readily proved to be necessary in order to adequately 

describe the energetic or the geometrical aspects of the systems. But how do we 

determine the positions of the water molecules? One favorite approach is the inclusion 
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of the first or also second solvation shell - it is layer of the water molecules near or 

in the „direct contact“ with the solute. This is still not affordable for some applications. 

Second approach is run a molecular dynamics of the water molecules in the presence 

of the frozen solute and determine the important water molecules from the clustering 

procedure, i.e. determination of water sites with high occupation number directly related 

to the frequency of water molecule being found in the given position. In this way one 

can determine the most important water molecules, incorporate them 

into the calculation prior to the system equilibration. Such procedure has been 

automated e.g. in the Schrödinger package in the WaterMap module.144-146 
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3 PROJECTS 

Projects are organized as follows. First, we discuss the PM7 performance and 

parametrization of D3 correction for various basis set and functional combinations 

on a number of benchmark data sets of noncovalent interactions (attachment A+B). 

Next, we verify the bioinformatic findings and accuracy of ab initio and MM methods 

for protein•DNA interactions using available crystal geometries (attachment C+D). 

Finally, we describe two projects; in one of them quantum chemistry tools helped 

to determine the leading interaction motifs governing interplay between larger organic 

molecules (attachment E) and in the second one we studied and designed the host•guest 

binding (attachment F+G+H). 

 

 

3.1 Performance of the Semiempirical Quantum Mechanical 

PM6 and PM7 Methods 

The SQM methods are considered a promising tool for large-scale calculations in both 

material science and applications on biological systems. Here, we compared the 

performance of recently released semiempirical method PM7 with its predecessor, PM6 

with post-SCF (DH+, DH2 and D3H4X) corrections for various types of noncovalent 

interactions. These corrections were included during development of the PM7 method 

therefore the respective parameters were adjusted along with remaining parameters of 

the PM7 method. For these reasons a more balanced description of different interactions 

types can be expected and any double counting should be automatically avoided. It has 

been shown that PM7 method considerably improved the description of such properties 

as the heat of formation or the height of the reaction barriers for reactions.147 However, 

its description of noncovalent interactions was not thoroughly tested up to date and 
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usually represents the limiting factor for the most of the contemporary SQM methods. 

For these reasons, we utilized various benchmark data sets of interaction energies and 

geometries available in the literature. 

 

3.1.1 Computational Details 

Results of PM7 and PM6 methods augmented with empirical corrections were validated 

on a total of 13 data sets listed below while their brief description can be found in the 

method section 1.2.1. Eleven data sets contain geometries and interaction energies of 

molecular complexes. The two remaining data sets consist of the structures and relative 

energies of different conformations of complexes and complex molecules: Wat565 and 

PCONF,66 whereas the reference served the global minima the puckered ring and 

FGG.99. 

The two last data sets, Wat5 and  PCONF, and 4 others are the most important for the 

validation, because they were utilized in the parametrization of neither the PM7, PM6 

nor any post-SCF corrections: the Goddard water set64 (only electroneutral clusters of 

water molecules were considered), AA-sidechains,4 1hsg58 and L753. The seven 

remaining data sets; the S22,60 S22x5,61  S66 and S66x8,55 Charged HB,57 Halogens and 

Halogensx1062 were used for the parametrization of the new PM7 method as well as the 

DH+ and D3H4 corrections. Or more specifically, DH+ and DH2 used a S22 data set 

for parametrization; the same is true for S66 in the case of D3H4 and PM7; Charged 

HB for D3H4; Halogens(x10) for halogen corrections (DH2X and D3H4X) and for the 

PM7 method. These data sets were included here for their useful system division 

according to a dominant stabilization term based on DFT-SAPT analysis.148 

Most of these data sets were published with the well-constructed benchmark 

CCSD(T)/CBS energies. The first exception is the L7 set, for which Sedlák et al. 

published QCISD(T)/CBS energies calculated in a similar way to CCSD(T)/CBS 

estimates with the inclusion of the ΔQCISD(T) correction term instead of the CCSD(T) 

one. For more details, go to the original paper.53 Second exception represents the Wat5 

data set. We calculated CCSD(T)/CBS estimates on the previously published structures 

according to the scheme mentioned above (eq. 11) with aug-cc-pVDZ basis set for the 

correction term and aug-cc-pVTZ and aug-cc-pVQZ basis sets for ΔEMP2corr/CBS and 
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ΔEHF/CBS extrapolations according to Helgaker.75 Benchmark interaction energies were 

corrected for basis set superposition error (BSSE) using the counterpoise scheme of 

Boys and Bernardi.149 The PM6 and PM7 calculations were performed using the 

MOPAC2012 program150 and all benchmark calculations were performed using the 

Molpro2012 program.151 

 

 

3.1.2 Results and Discussion 

Table 1 summarizes a statistical analysis of the PM7, PM6, PM6-DH+, PM6-DH2(X) 

and PM6-D3H4(X) methods calculated on various data sets. First, we will analyze 

results of the following data sets (used for parametrization of SQM methods): S22(x5), 

S66(x8), Halogens(x10) and Charged HB. For these data sets the PM7 method showed 

substantial improvement over its older version PM6. Additionally, it delivers results of 

the similar accuracy as the three modified PM6 methods. These results provide a good 

clue on how well were the methods parametrization handled. Because there are achieved 

similar error magnitudes with PM7 as for other methods it indicates that the 

parametrization of the correction terms analogous to the ones added to PM6 was made 

properly. Further, it is evident that all but the methods with the specific corrections for 

halogen bond failed to describe systems containing this specific noncovalent interaction 

(Halogens and Halogensx10). 

Next, all the SQM methods have problems with the relative energies of the molecules 

and complexes included in the PCONF and Wat5 sets. This is clearly reflected in a 

generally much higher RMSE for these data sets when compared to any other in the list. 

Figure 1 shows how all SQM methods fail to assign the order of the stabilities of both, 

water pentamer and FGG tripeptide conformations. Among the methods tested, the DH2 

and D3H4 approaches show the best performance. The very poor performance is 

slightly surprising especially in the case of DH+ correction due to the fact that this 

particular version has been parametrized to reproduce the cooperativity effects in water 

clusters. Additionally, overall performance for the rest of the data sets is slightly worse 

when compared to the DH2 and D3H4 corrections (see Table 1). The 3rd generation 

correction, DH+, evidently lacks the accuracy of the DH2 and D3H4 versions. 
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  PM6 PM6-DH+ PM6-DH2(X) PM6-D3H4(X) PM7 

S22 4.18 0.78 0.53 0.8 0.85 

S22x5 3.25 0.84 0.61 0.88 1.16 

S66 3.07 0.84 0.94 0.68 1 

S66x8  2.49 0.76 0.79 0.66 0.98 

Charged HB 4.56 2.18 2.51 1.65 1.85 

Halogens 2.8 2.56 2.60 (2.32) 2.60 (2.32) 3 

Halogensx10 4.15 4.18 4.19 (3.65) 4.20 (3.29) 3.4 

Wat5 9.38 7.15 5.5 5.43 6.71 

PCONF 2.69 2.74 3.03 3.15 2.98 

Goddard water 27.47 26.47 4.17 4.54 12.4 

AA-sidechains 4.08 1.89 1.32 1.17 1.49 

1hsg 2.09 1.37 1.13 0.72 1.4 

L7 15.79 3.22 3.35 3.93 4.93 

  

Table 1. Comparison of SQM methods with benchmark data. The numbers listed here 

are RMSE for the respective data sets and the results were colored according to the 

relative difference between the method’s RMSE and ’the best’ SQM method tested here. 

 

 

 

Figure 1. The relative stabilities of the conformers of water pentamer (Wat5) and the 

FGG tripeptide (PCONF). As the reference the global minima have been chosen: the 

puckered ring and FGG.99. 
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The poor stability order estimations of water pentamers has lead us to investigate 

systems of water clusters in more detail. The relative deviations of interaction energies 

for the Goddard water data set as a function of the number of interacting molecules are 

summarized in the Figure 2. PM6 method strongly underestimates the interaction 

energy showing the urgent need of hydrogen bonding correction. On the contrary, PM7 

and PM6-DH+ methods strongly overestimate it indicating that they are not well suited 

for this class of systems. Finally, DH2 and D3H4 approaches again systematically 

provide the best results. The very good performance of the D3H4 correction was 

achieved not only for the neutral hydrogen bonds from the Goddard water set but it was 

followed by comparably accurate results in systems with charged hydrogen bonds 

(Charged HB set in Table 1). It originates from the inclusion of specific parameters for 

charged hydrogen bonds (parametrized on this set). 

 

 

Figure 2. The relative deviations of interaction energies for the Goddard water data set. 

 

 

Next, the results for the two biological data sets, AA-sidechains and 1hsg, will be 

described. The aforementioned data set consists of representative structures of amino 

acid side chains, while the second one includes fragmented parts of the HIV-II protease 
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– ligand (indinavir) complex. In both cases the D3H4 approach provided the best results 

and reached almost chemical accuracy (~1 kcal/mol). 

The L7 data set consisting mostly of large dispersion-bound systems (of a size ranging 

from 48 up to 121 atoms) provides a good clue on how the methods studied would work 

in larger complexes. We found that PM6 failed, while all the other approaches provide 

reasonable agreement with the benchmark results. Important method comparison 

represents the RMSE, plotted as a percentage of the average stabilization energy 

(rRMSE), for the L7 data set and three datasets of smaller complexes (1hsg, S22, AA-

sidechains) in Figure 3. The rRMSEs increased roughly two-times for DH+, while for 

all other methods the increase was fourfold. 

 

 

 

Figure 3. The rRMSE for L7 and a variety of medium-sized data sets. 

 

 

Several data sets [S66(x8), S22(x5) and Halogens(x10)] are split into different classes 

with a common interaction motifs: hydrogen bond, dispersion interaction (π-π, π-

aliphatic, aliphatic-aliphatic), halogen bond (X-O,N,S,π) and mixed. The RMSE were 

plotted as a percentage of the average interaction energy for all the SQM methods under 

study and summarized in Figure 4. The poor description of PM7 method for dispersion 

bound complexes is surprising considering the fact this method includes similar 
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correction for dispersion interaction as the other methods tested with the exception of 

PM6. The most striking results were obtained in the case of π-π dispersion in 

Halogensx10 and S66x8 sets, where the RMSE is twice as large for PM7 than for PM6-

D3H4. The halogen bonded complexes are comparably well described in both PM7 and 

PM6-D3H4X methods. Great improvement was observed for the X-π interaction, where 

the RMSE of PM7 is half of the one of corrected PM6.  

 

 

Figure 4. The rRMSE plotted for groups of different interaction types for Halogensx10, 

S66x8 and S22x5 data sets. 
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3.1.2.1 Geometry Optimization 

In previous section we focused on the energetics of noncovalent interactions. However, 

additional information characterizing the PES around the equilibrium geometry is 

necessary to demonstrate the accuracy of SQM methods. Several data sets S66x8, S22x5 

and Halogensx10 data sets contain besides the potential energy minimum also 

additional points along the dissociation curves. However, these several points provide 

only limited knowledge about the accuracy of the whole PES. From the full geometry 

optimization more information on the relation between geometry and energy changes 

can be gathered. Additionally, it is important in those cases when the structure is not 

known and geometry optimization is a must. 

 

 

Figure 5. The RMSE for the energetics (a) and geometries (b) for Goddard water 

complexes, S22 and S66, optimized and calculated by the SQM methods. 

 

 

Bottleneck of the most of the SQM and MM methods represent the accurate predictions 

of hydrogen bond networks. In order to demonstrate it we investigated neutral water 

clusters from the Goddard water as well as all structures in the S22 and S66 sets. Results 

are presented in Figure 5 and 6.  The RMSE (in Å) of the optimized structures is rather 
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high for all SQM methods and no significant differences have been found. However, 

interaction energy of these optimized structures represents a more sensitive measure. 

Inspecting Figure 6a, we find that the RMSE of the interaction energy is surprisingly 

large, exceeding 15 kcal/mol in all cases. The relative deviations of water cluster 

interaction energies are depicted in Figure 7. We found that PM7, PM6 and PM6-DH+ 

methods provide inaccurate results. A slightly better results are given by DH2 and 

D3H4 approaches. From visual comparison we must conclude that all of the SQM 

methods investigated failed seriously in reproducing the structure of water clusters. 

Evidently, the SQM methods investigated are not well suited for water simulations. 

The situation is very different in the case of binary complexes from S22 and S66 data 

sets. Both, the structures and interaction energies for the optimized dimers differ only 

slightly from the benchmark results. For the S66 data set the PM6-DH+ and PM6-D3H4 

methods exhibit the lowest value (0.7 and 1.0 kcal/mol) and PM7 and PM6-DH2 yield 

only slightly worse numbers. 

 

 

 

Figure 6. The relative deviations of interaction energies for the Goddard water data set 

after optimization. 
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Additionally, inspecting Figure 5a we can see that the best performing methods for S22 

data sets are PM6-D3H4 and PM6-DH2 with the RMSE under 0.2 Å. However, the 

second method, PM6-DH2, has to be performed with numerical gradient optimization 

due to missing the analytical gradients and cannot be therefore recommended for routine 

geometry optimizations. 

 

3.1.3 Conclusion 

We can summarize this study by stating that none of the methods tested showed a clear 

dominance and can thus be unambiguously recommended to the use in the field of 

noncovalent interactions. Although PM6-D3H4(X) and PM6-DH2(X) are slightly 

superior to the others in some cases, it is impossible to generalize this statement for the 

whole range of noncovalent interactions investigated. It should be taken into 

consideration that the modified PM6 methods are designed exclusively for noncovalent 

interactions while PM7 showed a remarkable improvement over many properties of 

isolated systems (not studied here). However, relatively large errors of PM7 for the 

interaction energy calculations of dispersion bound complexes and water clusters are a 

limiting factor in the possible applications. For other types of binary complexes in the 

13 data sets, PM7 yields only slightly worse results as compared to PM6 with the 

inclusion of the newest post-SCF correction for dispersion, hydrogen and halogen bonds 

(PM6-D3H4X). Nevertheless, due to the improvements in the description of the 

properties of isolated molecules reported in Stewart’s original paper, PM7 constitute 

the most robust tool among the semiempirical methods.147 

Finally, when one wants to achieve accuracy of 1 kcal/mol and better across the wide 

range of exotic noncovalent interactions, e.g. other than hydrogen bonds and dispersion 

dominated, the less approximate methods need to be chosen. One of such examples is 

DFT methodology accompanied with range of post-HF methods used in the rest of the 

projects here. 
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3.2 Accurate DFT-D3 Calculations in Small Basis Set 

The key idea to express the electronic energy as a functional of the electron density led 

to methods called Density Functional Theory (DFT). The substantial increase in the 

accuracy of both energetic and geometric descriptions in the last decades caused 

development of DFT to focus toward more sophisticated applications in e.g. energy 

decomposition, QM/MM and vibrational analysis.11,152,153 Affordable scaling enabled 

its use for assemblies up to few hundreds of atoms opening space for increasing number 

of these applications in the areas of catalysis, supramolecular chemistry, molecular 

biology or biotechnology.154 Shortly, it has been recognized that the accurate 

description of the London dispersion is of crucial importance.155 

The improvement of the description of attractive long-range van der Waals interactions 

is in the center of interest of many researchers that is well reflected in the number of 

new DFT functionals addressing this issue published each year.103,104 We chose to 

follow an alternative approach to compensate the lack of dispersion energy, namely a 

posteriori calculated empirical correction term decribed in previous section 2.4.1.105 

The most successful version, Grimme’s D3, was up to now limited to triple-zeta (TZ) 

and larger basis sets because of the severe BSSE native to smaller basis sets.109 For the 

treatment of large systems, it is highly desirable to use a small basis set if the error can 

be kept reasonably small. To find the best setup, we have searched a library of basis sets 

ranging from a minimal basis set to split valence (SV) and double-zeta (DZ) basis sets, 

selected those with the smallest BSSE and parameterised the Grimme’s D3 correction 

(see section 2.3.1) for them.105 

 

 

3.2.1 Computational Details 

We started by building a library of DFT interaction energies calculated for the S66 data 

set11,55,57  using multiple common DFT functionals:  BLYP156, B97-D157, PBE158  (GGA 

functionals), B3LYP159, PBE0160 (hybrid functionals) and TPSS161  (meta-GGA) in the 

following basis sets: STO-3G, MINI, MINI3, MINIS, MINI3S (minimal basis), 6-31G, 

6-31G*, 6-31G**, SV, SV(P), SVP, def2-SV(P), def2-SVP, def2-SVPD, MIDI, 

MIDIX, DZ,  DZP, DZVP, DZVP-DFT, cc-pVDZ and aug-cc-pVDZ (split-valence and 
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double-zeta).81,82,162-168 We calculated average BSSE (over S66x855 data set) of these 

combinations and interestingly DZVP-DFT showed superior results to other basis sets 

of comparable size.164 Next, we chose Generalized Gradient Approximation (GGA) 

functionals BLYP156 and PBE,158 meta-GGA TPSS161 and hybrids PBE0160 and 

B3LYP159 combined with def2-TZVP,167 DZVP-DFT,164 def2-SVP167 and 6-31G*81,82 

basis sets for further studies. Both the standard zero and BJ damping were tested for 

dispersion correction.106-108 Parametrization of dispersion was exclusively performed 

on the subset of the S66x8 data set, i.e. geometries and interaction energies of dispersion 

bound complexes at points along dissociation curves.11,57 Note that we excluded 

systems containing a hydrogen bond from the parametrization. In these, the BSSE is 

largest what would lead to underestimated dispersion in all the other systems. We chose 

RMSE as the only optimized criterion for parameter search. The Cuby framework 

(http://cuby4.molecular.cz) was used to automate the calculations.116 In some 

combinations of functional and basis set, the parameters of the BJ damping function 

reach unphysical values resulting in positive dispersion energy balancing the 

overstabilization caused by the large BSSE. These combinations were omitted from the 

discussion. The final parameters will be included in the new version of Cuby package 

and in original publication.116 

 

 

3.2.2 Results and Discussion 

 

3.2.2.1 Validation for Interaction Energies 

The transferability and the quality of parametrization were tested on data sets X40 and 

L7.53,62 The former data set plays a prominent role in the validation, because it contains 

halogen elements not present in the training set. The L7 data set represents mostly 

dispersion-bound complexes of larger size and is then a step between small model 

systems and biologically relevant systems. We utilized RMSE of interaction energies 

and RMSD of the geometry as the most important descriptive statistic criterions for 

ranking the methods. Additionally, for purpose of deeper analysis we calculated signed 

and unsigned mean error indicators. 
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Here, results are summarized in a plot of RMSE (Figure 7). The combinations of basis 

sets and functionals are ordered by their complexity. Generally, the BJ damping proved 

to be superior over zero damping although this behavior is strongly system, basis set 

and functional dependent. 

 

 

Figure 7. RMSE for the three data sets (X40, S66 and L7) and two damping functions 

(zero and BJ). DZVP-DFT-def2-TZVP(forX) stands for mixed basis set where def2-

TZVP is used for halogen atoms and DZVP-DFT for the rest. 

 

 

Clearly, there is no simple increase of accuracy with the complexity of the functional 

from right to the left. The BLYP and B3LYP functionals yielded in average more 

accurate results than PBE, TPSS and PBE0 while the BLYP has lesser computational 

demands when compared to hybrid B3LYP functional. Secondly, we found large 

diversity originating from the different diffuse character of basis sets (i.e. various 

exponential values of Gaussian d-polarization function) and magnitude of BSSE. This 

is most profound in the case of more diffuse DZVP-DFT basis set having average 

RMSE 0.186 kcal/mol delivering superior results of almost TZ size basis set quality. It 

is thus the first choice we can recommend for practical calculations. Closer inspection 

of our results show that the cases limiting the accuracy of the DZVP-DFT calculations 
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are the halogenated molecules in the X40. It can be, however, improved by using larger 

basis set (def2-TZVP) only for these atoms (Cl, Br, I) at negligible additional cost. 

 

3.2.2.2 Validation for Geometries 

In the second step, we analyze influence of the basis set size on the quality of 

geometries. Using smaller basis set size for geometry optimization prior to interaction 

energy calculations is a common practice in many studies. This is based on the 

assumption that geometries are less sensitive to the basis set size. Because we are 

interested only in the effect of the basis set size in DFT calculations, we take geometries 

optimized with BLYP-D3/def2-QZVP as a benchmark. It is used for validation of 

medium and small size basis sets both combined with BLYP functional and D3 

empirical dispersion. Table 2 summarizes the statistical analysis of geometry 

optimizations performed with def2-TZVP, DZVP-DFT and def2-SVP basis set. Clearly, 

results strongly depend on quality of basis set. For example when passing within the 

same basis set family from triple-zeta (def2-TZVP) to double-zeta (def2-SVP) size 

basis set the RMSD increased seven times. On the contrary, DZVP-DFT basis set 

yielded good results delivering three times smaller RMSD when compared to basis set 

of similar size (def2-SVP). This demonstrates the potential of DZVP-DFT basis set to 

be useful not only for calculations of energetics but even more advantageous for 

geometry optimizations. 

 

  def2-TZVP DZVP-DFT def2-SVP 

RMSD 0.01 0.023 0.07 
 

Shortest Distance (average in S66 data set: 2.45Å): 

MSE -0.011 -0.018 -0.044 

MUE 0.011 0.029 0.054 

RMSD 0.017 0.038 0.07 

 

Table 2. Average RMSD and additional statistical analysis of the shortest distances 

between monomer geometries in the complexes. 
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Finally, we discuss the computational demands of the calculations. Table 3 shows the 

computational times for systems increasing in size for given basis set size and 

rationalizing our focus on DZ size basis sets. All the DFT calculations were performed 

using Turbomole 7.0 package.169 

 

Basis set / system size CB[5]=90 atoms CB[8]=144 atoms 

6-31G* 5.8 6.8 

def2-SVP 6.4 8 

DZVP-DFT 7.7 9.3 

def2-TZVP 25 31.1 

def2-QZVP 108.5 161.2 
 

Table 3. Computational times for two cucurbit[n]uril systems where n=5,8 with 90 and 

144 atoms, respectively. We used BLYP functional and one computational node: Intel 

Xeon E5630 2.53 GHz, 8 cores, 5.8 GB RAM per core. 

 

 

3.2.3 Conclusions 

We have shown that DFT method combined with DZ size basis set can yield accurate 

results for noncovalent interactions. Among the tested combinations of functionals and 

basis sets we recommend DZVP-DFT basis set and BLYP functional for both geometry 

optimizations and energy calculations in large systems. The DZVP-DFT basis set was 

already used successfully in studies of brominated carborane cages.170 It is important to 

note that even def2-SVP or 6-31G* basis sets combined with any tested functional 

clearly surpassed SQM methods tested in previous studies. 
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3.3 Large-Scale Quantitative Assessment of Binding 

Preferences in Protein−Nucleic Acid Complexes 

New technologies, methods and advances in the field of crystallography, molecular 

biology, biochemistry, computational analysis and crystallization enabled enormous 

growth of wealth of protein•DNA structure data. It allows a question whether there is 

sufficient enough information for studies of universal rules governing the DNA 

sequence recognition process. Understanding of these rules would be a major leap 

forward to understanding of process such as DNA replication, gene expression, DNA 

repair and cycle regulation. 

Recently, the relative abundance of various modes of amino acid−base contacts 

(dispersion bound, hydrogen bonded) was studied, however such information regarding 

the accurate energetics and types of noncovalent interactions in protein•DNA 

complexes is still missing.171 These interactions typically account for from few up to 

several tens of kcal/mol in vacuo. Therefore the quantitative assessment of binding 

preferences in protein•DNA complexes require results that would be validated by a 

highly accurate ab initio method. There were up to now available no specialized data 

sets for such purpose. 

For these reasons we have quantitatively examined the protein•DNA interactions by 

comparing the interaction energies for all 20 × 4 amino acid−DNA base pair 

combinations. We analyzed all available protein−DNA complexes and therefore we 

could have drawn conclusions that are not limited to any single DNA binding motif or 

protein family. Additionally, this opened a chance to further study the performance of 

computational techniques used nowadays. 

 

 

3.3.1 Computational Details 

In total 50,205 nucleotide−amino acid pairs were gathered from the Protein−DNA 

interaction atlas generated according to the method described by Luscombe et al. and 

updated as of March 2014.172 The atlas was assembled from 1,569 unique structures of 

protein–DNA structures. Amino acid–nucleotide pairs were extracted by the procedure 

similar to the SIRIUS set of scripts introduced by Singh and Thornton.173 According to 
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certain distance criteria (here 4.5 Å) these programs pick out the pairs of residues and 

mark them as interacting. The procedure resulted in 20 x 4 sets of contacts. In each of 

these sets comprising of a unique pair of a single amino acid with a single DNA 

nucleotide, all dimers were transformed to occupy the same frame of reference of the 

DNA base. We therefore generated 20 distributions of amino acid residues around each 

of the DNA bases (see Figure 8). In all the distributions, the RMSD between atom 

positions was calculated for all pairs of amino acid side chains. The dimer with the 

highest number of structures within the RMSD of 1.5 Å was removed together with all 

these "neighboring" structures and denoted as a cluster representative. The contacts 

removed with cluster representative were regarded as corresponding cluster. This 

procedure was repeated up to six times depending on the size of the cluster. 

 

 

Figure 8. Ade-Asn distribution and all identified clusters. The ball-and-stick 

representations of cluster representatives are depicted at the right hand side. 

 

 

Only those with the distance of less than 4.5 Å between any DNA-base atom and any 

amino acid side chain atom were further considered. A total of 272 clusters and the 

same number of cluster representatives, were constructed in this way. The geometries 

of all pairs are available at http://pdna-iea.uochb.cas.cz/. 

The Cα representations of amino acids were prepared by replacing the carbonyl and 

amide groups with hydrogen atoms as described in Berka et al.4 Any potentially non-

specific interactions between the backbone and the DNA base were eliminated by this 

termination of each amino acid by a methyl group. Histidine was protonated on the ε-N 

atom and proline was considered uncharged. Regarding the nucleotides only the base 
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was preserved and the deoxyribose C1’ carbon from N-glycosidic bond was replaced 

with a hydrogen atom. 

As the atlas contains only the positions of heavy atoms, hydrogens were added to each 

cluster representative and optimized at the B3LYP-D3/def2-TZVPP level. 

The cluster representatives were classified according to the physico-chemical character 

of each amino acid: polar (T, S, N, Q, C, M; 69 contacts), non-polar (G, A, V, I, L, P; 

76 contacts), aromatic (F, Y, W, H; 63 contacts), positively (K, R; 33 contacts) and 

negatively (D, E; 31 contacts) charged cluster representatives as shown in Figure 9. A 

more detailed description of the methodology can be found in our publication, where 

mostly bioinformatic aspects and features derived from the distributions involving tens 

of thousands of contacts were highlighted.174 

 

 

 

Figure 9. Examples of geometries of DNA bases and Cα representations of amino acid 

ordered from the top to the bottom column according to the amino acid type: non-polar, 

polar, charged and aromatic. 
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3.3.1.1  Benchmark CCSD(T)/CBS Interaction Energies 

The reference CCSD(T)/CBS interaction energies were approximated by the eq. 11, 

specifically large aug-cc-pVQZ basis set was utilized for HF calculations while the 

second term, ΔEMP2corr/CBS, was determined using aug-cc-pVTZ and aug-cc-pVQZ basis 

sets. The ΔCCSD(T) correction term was calculated in a smaller aug-cc-pVDZ basis 

set. All interaction energies were corrected for BSSE using the counterpoise scheme of 

Boys and Bernardi.149 The resolution of identity was used to accelerate the MP2 

calculations and the frozen-core approximation was applied systematically to all 

calculations of correlation energy.175 The same setup was used to generate extensive 

data sets of benchmark interaction energies such as S66x8 and X40x10.55,62 

 

 

3.3.1.2 Methods Under Study 

The CCSD(T) method has been proven accurate, robust, size-consistent and suitable for 

single reference calculations of noncovalent interactions. For larger systems than 

several dozen atoms, the highest accuracy can be achieved with empirically scaled 

methods based on the scaling of the same- and opposite-spin contributions (such as 

SCS-MP2 and SCS-MI-MP2)86 and methods dependent on MP3 energy (MP2.5, 

MP2.X).79,176 Next, explicitly correlated MP2 methods represents a systematic way how 

significantly speed up the basis set convergence toward the CBS limit. More 

information about these methods can be found above in the sections 2.2.1 and 2.2.2. 

Additionally, it is even more important to test methods that are nowadays routinely 

being applied for large complexes with hundreds of atoms. The balance between the 

accuracy and computational cost is the reason why DFT is the method of choice for 

many applications. Here, we included results of B3LYP, BLYP and TPSS functionals 

combined with def2-TZVPP and def2-QZVP basis sets.163 Both were augmented with 

the D3 empirical dispersion term utilizing the BJ damping function (see section 

2.3.1).109,177 Average absolute value of three-body nonadditive terms for complexes 

presented here was under 0.05 kcal/mol therefore it was not considered. 

Further, we have investigated the performance of the SQM PM6-D3H4 method that 

showed best performance in previous more general tests in section 3.1.57,150 The 

empirical force-field calculations were performed with the Gromacs-4.5.5 package178 
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with the combined Amber99SB-ILDN protein force field119 and Amber94 nucleic-acid 

parameters.120,121 This force field was selected as the most commonly used one and the 

parameters of the Cα representations of amino acids and DNA-base parameters were 

based on the existing topologies of amino acids and free nucleotides, respectively. More 

information about parameters used can be found in our original publication.174 All 

calculations were performed in the gas phase using a double-precision setup.  

 

 

3.3.2 Results and Discussion 

The wall time that was spent by the methods in the standard computational cluster is 

listed in Table 4. In Figure 10 correlations are depicted between the benchmark 

CCSD(T)/CBS estimates and the results obtained by the respective method while Figure 

11 shows relative RMSE for the four groups of complexes between the DNA basis and 

the amino acid residues. 

 

 

Method and basis set Time [hours] 

CCSD(T) / aug-cc-pVDZ 273 

RI-MP2 / aug-cc-pVQZ 117 

RI-DFT / def2-QZVP 31.3 

RI-MP2 /aug- cc-pVTZ 12.8 

RI-MP3 / aug-cc-pVDZ 7.3 

RI-MP2-F12 / cc-pVDZ 6.5 

RI-DFT / def2-TZVPP 3.3 

RI-MP3 / 6-31G*(0.25) 0.6 

Amber force field 0.001 

 

Table 4. Computational times for the ade–trp system with 37 atoms. The indentical 

computational node was used for each calculation: Intel Xeon E5630 2.53 GHz, 8 cores, 

5.8 GB RAM per core. 
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Figure 10. Correlation plots between CCSD(T)/CBS reference and MP2.5/MP2-F12, 

B3LYP-D3/def2-TZVPP, PM6-D3H4 and Amber99SB-ILDN methods. The yellow 

line represents the linear regression and the black one has a slope of 1. All energies in 

kcal/mol. 
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Figure 11. rRMSE for the S66 data set. 

 

 

3.3.2.1 The Performance of MP2.5/CBS 

In previous studies it has been shown that MP2 method strongly overestimates 

interaction energies in complexes with dominant dispersion interaction.53 One of the 

ways how to correct this behavior for systems around 100 atoms it is possible to 

calculate ΔMP2.5 correction term from the difference between MP3 and MP2 energies 

(see section 2.2.1). In our study, we used two basis sets, 6-31G*(0.25) and aug-cc-

pVDZ. When the smaller basis set 6-31G*(0.25), was used, the results were comparable 

(RMSE 0.11 and 0.13 kcal/mol larger smaller basis set, respectively) to the case of the 

considerably larger, and thus much more time-consuming, aug-cc-pVDZ basis set (see 

Table 4). The usage of smaller basis set deteriorated results only for the systems with 

aromatic amino acids where interaction energies were slightly overestimated (with MSE 

-0.07 kcal/mol). 

Next, we studied the correlation and rRMSE between the ΔCCSD(T) and ΔMP2.5 

correction terms. Surprisingly, contradictory results have been obtained. The correlation 

of more than 95% has been achieved for all types of interactions with the exception of 
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charged systems, where it was only 72% and 67% for the larger and smaller basis sets, 

respectively. On the other hand, rRMSE was for charged systems below 2% while for 

neutral complexes was around 4%. This is caused by relative the highest absolute 

interaction energies of charged systems among all interaction types and probably the 

relatively small basis set size. These findings support previous studies concerning the 

very good performance of the 6-31G*(0.25) basis set, which makes it a promising tool 

for various applications in the field of noncovalent interactions. 

 

 

3.3.2.2 Performance of MP2-F12 method and Composite Schemes 

Significant improvement of MP2 method for basis set convergence toward CBS limit 

can be achieved when explicitly correlated methods are used. We tested here MP2-F12 

that can be utilized instead of two separate MP2 calculations with a systematically 

increasing size of correlation-consistent basis sets. We compared MP2-F12/cc-pVDZ(-

F12) results with MP2/CBS benchmark interaction energies. MP2-F12 method 

performed well for the complexes with non-polar and polar amino acids with a RMSE 

below 0.10 kcal/mol. Inspecting the complexes containing aromatic amino acids and 

charged systems, we found larger discrepancies resulting in RMSEs of 0.17 and 0.31 

kcal/mol, respectively. 

Partial error cancellation takes place when MP2-F12 and the ΔMP2.5/6-31G*(0.25) 

correction term are combined. As mentioned above, ΔMP2.5 correction term for 

systems with aromatic amino acids has a mean signed error with the opposite sign when 

compared to MP2-F12 with MSE 0.19 kcal/mol. The resulting RMSE for aromatic 

complexes is about 0.12 kcal/mol. This combination of MP2.5 and MP2-F12 method 

afforded only 0.20 kcal/mol overall RMSE for our data set of DNA-base dimers. This 

approach results in computational savings of almost 2 orders of magnitude when 

compared to the CCSD(T)/CBS calculation. 
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3.3.2.3 A Comparison of DFT-D3, PM6 and Amber Force Field with CCSD(T)/CBS 

Methods 

Figures 10 and 11 show the performance of Amber99SB-ILDN force field, PM6 and 

B3LYP-D3 method (with def2-TZVPP and def2-QZVP basis sets). The key findings 

will be highlighted and discussed next. 

The Amber99SB-ILDN force field performs well for neutral polar and aromatic 

systems, however, significantly underestimates charged complexes (see the second 

column from the right in the Figure 10). The inclusion of deformation energy slightly 

improved the overall performance and decreased RMSE from 2.6 to 2.3 kcal/mol. 

Clearly, the systematically worse agreement with the benchmark data was achieved for 

positively charged systems. 

The SQM PM6 method without corrections exhibit slightly worse results than force 

field calculations (RMSE 2.5 kcal/mol). Significant improvement can be achieved when 

post-SCF correction for dispersion interactions and hydrogen bonding are applied. The 

largest improvement was shown for aromatic systems where RMSE decreased to one 

third (to 0.8 kcal/mol). The same trends were observed in non-polar systems (a decrease 

of the RMSE from 1.0 kcal/mol to 0.2 kcal/mol), charged complexes (the RMSE 

decreased from 3.5 kcal/mol to 1.5 kcal/mol) and polar systems (decreasing the RMSE 

from 2.2 kcal/mol to 1.5 kcal/mol). 

Finally, the DFT-D method was tested. The larger def2-QZVP basis set lowers both the 

absolute and the relative errors roughly by one third (RMSE 0.25 kcal/mol) when 

compared to smaller TZ-size basis set, that overestimates mainly polar and negatively 

charged systems. Although we found that both basis sets systematically overestimates 

the strength of the interactions, they perform well for non-polar and aromatic systems. 

Both basis sets can be recommended for applications aiming at larger complexes 

containing several hundreds of atoms. The other two functionals, meta-GGA TPSS and 

GGA-type BLYP, performed slightly worse (with the RMSE being 0.34 kcal/mol and 

0.35 kcal/mol, respectively) with significant computational savings when compared to 

B3LYP hybrid functional. 
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3.3.2.4 Interaction Energy Distributions Calculated by MM and DFT Methods 

In previous sections we analyzed the performance of ab initio, DFT and MM 

methodologies. Next, a brief analysis of the interaction energy profiles of clusters 

associated with a certain amino acid−base pair follows. These energy profiles clearly 

revealed that the cluster representatives derived according to straightforward distance 

criteria and clustering procedure (see section 3.3.1) indeed represent the most typical 

interaction energy value found within the members of its associated cluster. The similar 

findings were reported by Berka et al. for amino acid side chain−side chain 

interactions.4 

Attention should be paid to comparison of interaction energy profiles for individual 

clusters to the energy profile of the entire distribution. Following general observations 

could be drawn in several distributions: (I.) the clusters accommodate most of the 

constants within the interaction energy range (II.) those contacts with the highest 

stabilization energy in the energy profile form the clusters (III) the low energetic 

contacts do not correspond to any cluster (IV.) the peaks of the cluster interaction energy 

distributions corresponds well with the position of the cluster representatives. 

These properties were found for several clusters occurring in the guanine−glutamine, 

adenine−asparagine, cytosine−asparagine, cytosine−tyrosine, adenine−glutamine and 

adenine−lysine energy distribution profiles. An example of such an energy profile 

calculated using Amber03 is shown in Figure 12. Next, the lowest lying energy 

structures of the adenine−asparagine, adenine−glutamine and the guanine−glutamine 

contacts were studied. We have found the presence of two hydrogen bonds and a close 

resemblance between these structures in biomolecules and the local minima determined 

by full geometry optimizations. 

We verified our observations concerning the distributions by recalculating all cluster-

associated contacts for adenine−glutamine contacts using the DFT-D/B3LYP-D3/def2-

TZVPP method. Despite the small shift toward more negative values, the respective 

interaction energy DFT profiles verified the empirical results very well (Figure 12). 

Detail bioinformatic consideration about the limits of our study, presence of low-lying 

hydrogen bonds, rest of the pairs and the examination of changes in geometries after 

full optimization can be found in our original publication.174 
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Figure 12. Ade−glu interaction energy profiles calculated with force field are depicted 

as dashed purple curve; pronounced low-lying cluster is in solid blue curve; additionally 

red solid profile of all cluster-associated contacts was calculated with B3LYP-D3/def2-

TZVPP method; dashed vertical lines corresponds to energy of cluster representatives. 

(all in kJ/mol) 

 

 

3.3.3 Conclusions 

We have quantitatively investigated amino acid-base preferences based on the crystal 

structures. In several cases of amino acid−base pairs we found unique low lying 

interaction energies distinct from the rest of the distributions. These findings were 

verified with DFT-D/ B3LYP-D3/def2-TZVPP methodology. 

Additionally, we have analyzed 272 representative pairs of amino acid side chains with 

nucleic-acid bases. For these the benchmark CCSD(T)/CBS interaction energies were 

calculated and used for testing various methods. We found that MP2.5 method achieved 

small RMSE of 0.11 kcal/mol (relative error of 2%) when compared to CCSD(T) 

method. This technique shows great promise for the future larger scale applications. 

Among DFT functionals the B3LYP systematically overestimated the strength of the 

binding by up to 0.31 kcal/mol in positively charged systems. The RMSE value of 0.25 

kcal/mol is slightly increased to 0.34 and 0.35 kcal/mol, when two tested functionals, 

TPSS and BLYP, are used instead, respectively. PM6-D3H4 and Amber99SB-ILDN 

force field were in reasonable agreement with benchmark method.  
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3.4 Computational Analysis of X-ray Crystal Structures of 

Organic Compounds 

It is known that many molecules undergo large conformational movements upon 

binding of specific ligand molecules and there are not always X-ray structural data 

available to determine these changes easily by their fairly straightforward investigation. 

Furthermore, the positions of water molecules, the role of crystal contacts and crystal 

packing on the complex structure are hard to determine. In these situations the position 

of computational chemistry seems bright. Firstly, not always there is possibility to 

obtain clean X-ray crystal structure of high quality. Secondly, the effect of environment 

can be easily seen if appropriate efficient and accurate computational method is chosen. 

Thirdly, virtual experiments can be performed in order to isolate different effects under 

experimentally unreachable conditions of e.g. different solvent, counterions, pH or 

temperatures. Here, we present one case, where computational chemistry 1) brought 

deeper insight to the binding preferences and properties 2) reproduced experimental 

data with reasonable accuracy. 

Choline (Ch+) molecule is the precursor for synthesis of neurotransmitter acetylcholine 

(ACh+)  as well as phosphatidylcholine and sphingomyelin, two classes of 

phospholipids having essential role in cell membranes. The first step in the respective 

biosynthesis is always the selective binding of this water soluble vitamin. One of such 

examples has been described in case of ChoX protein from the Sinorhizobium meliloti 

family, a plant root-associated bacterium. This protein discriminate all competitors such 

as acetylcholine and glycine betaine in favor of choline. The X-ray crystal structure of 

Ch+•ChoX complex shows aromatic cage binding trimethyl ammonium cation through 

strongly directional cation-ᴨ interactions in site I. 179  This represents the main binding 

of these moieties. The site II with two carboxyl groups fix the hydroxyl tail through 

hydrogen bonds and determine the binding specificity between e.g. choline, 

acetylcholine. 

The studies of naturally assembled protein cavities constitute a driving force for 

synthesis of self-assembled artificial mimics featuring similar binding modes and 

properties.180 Despite of great success in case of suitable artificial receptors, those 

showing high selectivity for choline remain very rare. The strongest competitor for 

choline is referred to be acetylcholine, therefore the selectivity is typically defined as 
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the ratio between equilibrium constants of choline and acetylcholine: 

K(Ch+)/K(ACh+). In nature, the reported selectivity by ChoX protein is 54, while 

among artificial mimics the choline, to the best of our knowledge, was reported to bind 

no more than 3-fold stronger than acetylcholine.179,181 

 

 

Figure 13. (a) Structures of choline and its three derivatives/competitors; (b) binding 

motif of choline inside of the protein ChoX (with two binding sites: I and II).179 

 

 

 

Figure 14. (a) Structures of L1a, L1b and L2 organic molecules (b) Crystal structure of 

(TMA)5[(TMA)•(PO4)2(L2)3] complex; (c) Hydrogen bonds formed between a PO4
3− 

ion and six urea units of L2 molecules; (d) The aromatic cage trapping a TMA+ through 

cation-ᴨ interactions (purple dashed lines). 
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Here, we studied for the first time a a triple helicate assembled from a bis-biurea ligands. 

It was functionalized with an “aromatic cage” that resembles ChoX protein binding 

pocket and achieved selective binding of choline with the binding affinity of Ch+ as 

high as 20 times of that of ACh+. The equilibrium constants were measured in 1H NMR 

competition experiments. Additionally, we obtained crystal structure of 

(TMA)5[(TMA)•(PO4)2(L
2)3] (Figure 14b), which possess desired large cage formed by 

six phenyl rings of the three 4,4’-methylenebis(phenyl)- linkers. In this binding pocket 

a tetramethylammonium (TMA+) cation was trapped. 

 

 

3.4.1 Computational Details 

As the X-ray crystal structures of acetylcholine and choline molecules with triple anion 

helicates were not available, the starting geometries for DFT-D/BLYP-D/def2-SVP 

geometry optimizations were prepared by modification of the crystal structure of the 

complex with tetramethylammonium+ moiety. All DFT calculations have been 

performed utilizing COSMO solvation model in order to include effect of the 

environment (acetone). To understand the nature of the stability of the complexes, the 

DFT-D/BLYP-D3/def2-TZVPP interaction energy and other parameters of binding 

were calculated: dispersion energy (ΔEdisp), deformation energies Edef(guest) and 

Edef([(PO4)2(L2)3] and electrostatic energies (ΔEelectro). The ΔEelectro was determined by 

the Coulomb law calculated by using NBO atomic charges. We will show that these 

crude estimates of ΔEelectro correlate well with more advanced Energy Decomposition 

Analysis method (see later in case of host•guest systems, section 3.5.2.4). The second 

derivatives and entropy analysis were calculated with Amber at 298 K and change of 

the Gibbs energy (ΔG) were derived.119 

 

 

3.4.2 Results and Discussion 

The DFT optimized structure of Ch+•2 (Figure 15) demonstrates a surprisingly similar 

dual-site binding mode with that displayed by the crystal structure of Ch+•ChoX (Figure 
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13b). The DFT optimized structure of the analogous ACh+•2 (Figure 16) displays a 

similar aromatic cage encapsulating the trimethylammonium head and the methyl 

protons of the acetyl group are extending out of the cavity which is consistent with the 

results demonstrated by 1H NMR. In contrast to Ch+•2, no hydrogen bond was formed 

in ACh+•2 with the tail group. Overall, the DFT results show that the binding of Ach+ 

is 2.8 kcal/mol weaker than that of Ch+ (Table 5). The N∙∙∙centroid distances in ACh+•2 

were also measured as ranging from 4.28 to 4.86 Å with an average of 4.62 Å. 

 

 

 

N-C1 N-C2 N-C3 N-C4 N-C5 N-C6 Average 

4.35 4.93 4.81 4.82 4.52 4.67 4.68 

 

Figure 15. DFT optimized structure of Ch+•2 (left) and choline binding sites (right) 

with data of N∙∙∙centroid distances for evaluating the cation- interactions (purple 

dashed lines, distances are in Å). 

 

 

Inspecting the Table 5, we find that the almost 3 kcal/mol difference is originating 

mainly from the entropic contribution. This has lead us to investigate the role of size of 

the system for entropy calculations. It is known for protein•ligand complexes, that the 

usage of whole protein structure for entropy calculations deteriorated results. However, 

we calculated entropy term for two system sizes here for ACh+•2 complex (Figure 14b 

and 14d) with essentially the same results (4.5 and 4.6 kcal/mol, see Table 5). 
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N-C1 N-C2 N-C3 N-C4 N-C5 N-C6 Average 

4.28 4.83 4.7 4.86 4.51 4.54 4.62 

 

Figure 16. DFT optimized structure of ACh+•2 (left) and choline binding sites (right) 

with data of N∙∙∙centroid distances for evaluating the cation- interactions (purple 

dashed lines, distances are in Å). 

 

 

Investigating binding parameters in Table 5 we can conclude that ACh+ molecule is 

more dispersion bound when compared to more electrostatically bound Ch+ guest 

molecule. This is probably caused by the presence of strong hydrogen bond between 

Choline and tail Triple Helicate group (Figure 15). Both these contributions are 

compensating the deformation energies (Edef(guest) and Edef([(PO4)2(L2)3]) that are 

larger for Ch+ molecule. 

 

  ΔE Edef(guest) Edef([(PO4)2(L2)3] ΔG -TΔS ΔH 

Ch+ -46 0.9 4.6 -39 1.5 -40.9 

ACh+ -45 0.3 3.5 -37 4.6(4.5) -41.2 

 

ΔE decomposition 

  ΔEdisp (2-body) ΔEelectro ΔEdisp (3-body) 

Ch+ -43.3 -270.5 1.5 

ACh+ -49.6 -260.8 1.6 

 

Table 5. DFT results for ACh+•2 and Ch+•2 complexes. 
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3.4.3 Conclusions 

Our computational approach determined that the Ch+ is bound 2.8 kcal/mol stronger 

(ΔG) than Ach+, corresponding a K/K = 109. This is in nice correlation with the 

experimental value of 20. When comparing the calculated enthalpic and entropic 

contributions to the change of the Gibbs energy, we can conclude that surprisingly 

relative increase of the entropic contribution from Ch+ to ACh+ is causing the 

discrimination of Ch+ over ACh+ guest molecule. 

However, it is clear that these rather small differences in ΔG are within the accuracy of 

MM method. In order to bring deeper insight, show trends or draw any important 

conclusions into host•guest binding several requirements on studied guest molecules 

would have to be fulfilled. Firstly, not only monocationic guest molecules should be 

studied. Secondly, it would be beneficial to include guest molecules of various sizes. 

And finally, larger range of equilibrium constants is mandatory. All these needs were 

met in the next section thoroughly discussing interactions of the cucurbit[n]uril host 

molecules with list of guest molecules. 
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3.5 Cucurbit[n]uril•Guest Binding Interactions 

The computational chemistry already found its place in the field of new drug discovery. 

However, in this realm of protein•drug complexes its utility is rather limited without a 

firm foundation of experimental structural data. The supramolecular chemistry of 

host•guest complexes represents an logical next step from noncovalently bound small 

molecules in vacuo (e.g. amino acid–DNA-base dimers as described above), self-

assembled triple helicate rigid cages in nonpolar solvents toward protein•drug 

complexes in water.182 Especially the chemistry of cucurbit[n]uril (CB[n], n=5,6,7,8,10) 

macrocycles has undergone wide development and growth in the last decade and great 

interest has been stimulated leading to promising applications in materials chemistry, 

molecular recognition, drug discovery and chemosensing. CB[n] molecules found its 

applications e.g. in reaction inhibition (as protective groups), catalysis (in hydrolysis, 

photoreactions and dipolar cyclo-additions), recognition of peptides and native proteins 

(Trp-rich peptide or N-terminal Phe residues) and as drug carriers (increasing solubility, 

reducing cytoxicity or drug degradation during manufacture).183-187 

The 'cucurbit' prefix in the name of cucurbit[n]uril’s (Figure 17) is derived from its 

gourd or pumpkin-like shape and the 'uril' suffix originates from its methylene-ligated 

glycoluril building blocks. 

Adamantane and diamantane salts, e.g. adamantane-1-ammonium or diamantane-4,9-

diamonium, are known to be relatively strong binding guests to CB[7]. Very high values 

of equilibrium constants were measured in 50 mM NaO2CCD3 buffer at pD 4.74 and it 

can be as high as 1017 in case of CB[7]•diamantane-4,9-di(NMe3I) complex reported as 

a 1000-fold stronger nature's best effort (avidin with its biotin cofactor). These 

assemblies, representing the strongest noncovalently bound host•guest complexes 

known, are a challenging type of systems for any contemporary computational method. 
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Figure 17. Synthesis and scheme of cucurbit[n]uril molecule. 

 

 

Generally, the errors and limitations in ΔG predictions in any protein•ligand 

applications are caused by two factors: (1) unpredictably large errors arising from 

estimation of desolvation free energies (i.e. the absence of benchmark experimental data 

for charged species) and (2) missing structural data about the studied systems and (3) 

system size that restricts the range of affordable computational methods to mostly SQM 

or force field methods. Fortuitously, the <200 total number of atoms in CB[n]•guest 

complexes is small enough for accurate QM calculations of interaction energies.188 

Another very important feature of CB[n]•guest complexes is that the X-ray crystal 

structures of several complexes are available and they constitute the actual binding 

geometries as was verified by several NMR studies. In all applications and types of the 

sytems, the accurate description of noncovalent interactions plays a crucial role wherein 

a balanced treatment of hydrogen bonding, halogen bonding, London dispersion forces, 

polar, electrostatic interactions, etc. is of prime importance.71 Here, the DFT has been 

chosen for the description of driving forces in CB[n]•guest complexes. Current 

development in this field has been described in great detail in recent publications of 

Grimme et al.189 and Jensen190.  
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Lately, various experimental parameters (e.g. equilibrium constants and changes in free 

energy) has been more or less successfully reproduced.189,191,192 The bottleneck in these 

studies is the accurate prediction of guest's spatial arrangement inside the host cavities 

as was reported by Gilson et al.193 Among the techniques tested in the recent blind test 

challenges (SAMPL4 and 5) none fulfilled all the goals regarding prediction of complex 

geometries and binding affinities, although DFT-D3 performed rather well in some of 

them.189,194 The ranking of the guests was not completely reproduced because host•guest 

complex were not represented well by a single configuration or small guest molecule 

arrangement within the host cavity. The situation is greatly simplified when high quality 

X-ray structures are available.  

In this project, we studied eleven X-ray structures of systematically varied geometry 

guest molecules within a (CB[7 or 8]) hosts. Structures of these biomimetic complexes 

showed that no high-energy water molecules present inside of the host cavities are 

required for modeling their binding interactions. This finding greatly simplifies 

modeling of the studied complexes. The final goal of this rational design approach was 

to computationally ascertain the various binding motifs (see Figure 18) of host•guest 

interactions and then maximize the strength of the binding through design of new guest 

molecules reaching unused CB[n] host sites. 

 

 

Figure 18. Three distinctive binding modes: primary (4), tertiary (5) and loop (6). 
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3.5.1 Methods 

 

3.5.1.1 Studied Complexes 

Training set of 11 complexes based on X-ray crystal structures was used for our 

computational protocol. The guests studied herein are depicted in Figure 19. In several 

cases only preliminary or no X-ray structure were available. Therefore the starting 

geometry of CB[7]•2 was derived from CB[7]•9 by removing both methyl substituents 

and CB[7]•3 by deleting half of the diamantane-4,9-di(NMe3) guest (CB[7]•8). 

Similarly, the starting geometries of the complexes containing loops (CB[7]•15, 

CB[7]•16 and CB[7]•17) were prepared by adding loops to similar crystal structures of 

host•guest complexes (different conformations were systematically considered and 

after optimization procedures only the one with lowest energy used). Finally, we studied 

the accuracy of our computational protocol on smaller complex of glycoluril (18) and 

2,3-dimethyl-2,9-diaza-decane (19) prepared from the CB[7]•7 structure, wherein 

hydrogen atoms were added and geometry optimized at the DFT-D level. 

 

 

Figure 19. Illustration of guest molecules considered in our study: 

adamantane/diamantane, naphthalene, bipiperidine and ferrocene derivates together 

with small model systems glycoluril, and 2,3-dimethyl-2,9-diaza-decane. 
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Table 6 shows binding constants (Ka) and changes of Gibbs energies upon binding 

(ΔGexptl) of guests 2-3,7-17 to CB[7] and CB[8] hosts. Both these quantities were 

determined under the same conditions with the same protocol. Comparison of 

experimental data reported by several laboratories and measured by different techniques 

can lead to inconsistencies. Because pKa values of weakly acid ammonium salts differ 

in various media, it can be expected that the data not measured under the same 

conditions as here (50 mM NaO2CCD3 buffered D2O at pD 4.74) would deteriorate 

results. Secondly, the role and location of counterions are not yet fully understood and 

therefore counterions are omitted from our calculations. 

 

Complex Guest Ka ΔGexptl
a 

CB[7]•2 Ada-1-NH3Cl (4.231.00)1012 b –17.200.14 

CB[7]•3 Ada-1-NMe3Cl (1.710.40)1012 b –16.660.14 

CB[7]•7 Diam-4,9-di(NMe3I) (2.00.5)1015 c –20.840.15 

CB[8]•8 Diam-4,9-di(NH3Cl) (8.32.3)1011 c –16.220.17 

CB[8]•9 3,5-diMeAda-1-NH3Cl (4.331.11)1011 –15.840.16 

CB[7]•10 Naph-2,6-di(NMe3Tfl) (1.70.4)1011 d –15.290.14 

CB[7]•11 4,4'-Bipip-N,N'-di(NMe2I) (1.90.4)1011 d –15.360.13 

CB[7]•12 Ferro-1,1'-di(CH2NMe3I) (1.90.4)1013 c –18.090.13 

CB[8]•13 Ada-1,3-di(NMe3I) (1.110.28)1011 b –15.040.15 

CB[7]•14 Ada-2,6-di(NH3Cl) (1.20.4)1012  –16.430.21 

CB[8]•14 Ada-2,6-di(NH3Cl) (4.71.2)108 –11.800.15 

CB[7]•15 Ada-1-NH2(CH2)2NH3Cl2 (2.40.6)1013 c –18.220.15 

CB[7]•16 Ada-1-NH2(CH2)3NH3Cl2 (1.50.4)1013 –17.940.16 

CB[7]•17 Ada-1-NMe2(CH2)3NH3Br2 (6.81.6)1012 –17.480.14 

 

Table 6. Experimental values: Ka (M
–1) and ΔGexptl for CB[n] complexes with various 

mono-cationic and di-cationic guest molecules. Footnotes: a Calculated at 298 K, 

energies are in kcal/mol. b Data taken from ref. 2. c Data taken from ref. 192. d Data 

taken from ref. 188. 
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3.5.1.2  Computational Details 

As well as in previous studies the DFT-D/BLYP/def2-SVP/COSMO//DFT-

D/BLYP/def2-TZVPP/COSMO has been chosen here for description of geometry and 

several binding parameters of host•guest systems. In several cases (CB[7]•3,7,9,10, or 

11 and CB[8]•8) the larger def2-TZVPP basis set was used for geometry optimizations 

in order to validate the above approach. The RMSD between both sets of geometries 

was negligible ranging from 0.039 and 0.115 Å. It justifies the above approach. 

Several methods [FN-DMC, CCSD(T)/CBS and MP2.5/CBS] were used for accuracy 

assessment of BLYP-D3/def2-TZVPP method for interaction energy calculations, as 

described later. MP2.5 and CCSD(T) interaction energies were corrected for BSSE and 

constructed as described previously in the section 2.2. 

Deformation energies (Edef (host) and Edef (guest)) were calculated with the same method as 

the geometry optimizations. The solvents effects were thoroughly studied using 

COSMO and SMD continuum solvent models with applied permittivity ε equal 78.5. 

The entropy analysis and second derivatives were obtained with Amber force field at 

298 K.119 The interaction energy decomposition has been performed by EDA method 

(see section 2.8) using BLYP functional and def2-TZVPP basis set. Additionally, NBO 

atomic charges were used for estimates of the electrostatic interaction energies 

(ΔEelectro) determined by the Coulomb law. 

Following three implicit solvent models were considered for the calculations of 

desolvation free energies:  SQM PM6 method and DFT/BLYP-D/def2-SVP method 

both linked with the COSMO continuous solvation model (resulting in COSMOPM6, and 

COSMODFT) and SMD model based upon the HF/6-31G* electron density (SMD). The 

desolvation free energy was calculated as the difference between the gas phase energy 

of the host and energy of the host calculated with the particular implicit solvent model 

applied. 

The explicit solvation model has been utilized as implemented in WaterMap (WM) 

module in Schrödinger software package (see section 2.8). We performed MD 

simulation (10ps long) of a CB[n] molecules dipped in 12 Å/side periodic cubic box 

filled with explicit water molecules. The atom positions of CB[n] molecules were frozen 

during our simulation. The MD simulation is accompanied by trajectory analysis 

resulting in following water molecule properties: location, occupancy, enthalpy, 
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entropy and free energy. Enthalpy and entropy is associated with the transfer of the 

solute molecule from a bulk water to environment. 

Finally, the dynamic elasticity of CB[n] hosts in water environment was studied with 

MD simulations using PM6-D3 and BLYP-D/def2-SVP methods. The trajectory 

analysis has been performed with the Visual Molecular Dynamics software.195 We 

report here the RMSDaverage calculated as: 
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where ri(t) is the position of the ith atom at time t and Natoms is the total number of atoms 

of a CB[n] host molecule. The systems were simulated under the following conditions: 

298 K and implicit solvent was applied (no explicit waters were included). The 

equilibrium properties were calculated after discarding the initial 1 ps long 

nonstationary segment of the simulated trajectory.  

 

 

3.5.2 Results and Discussion 

In this section properties of host and guest molecules will be discussed as first. Accuracy 

assessment of DFT method for cucurbit[n]uril host•guest complexes will follow. Next, 

correlation between experimental ΔG and the calculated estimates will be described. 

Finally, the binding parameters and design of new guest molecules will be discussed. 

 

 

3.5.2.1 Desolvation Free Energy and Stiffness of Cucurbit[n]uril (n=5,6,7,8) Host 

Molecules 

Section 2.9 described the solvation effects in detail. Here, we would like to remind that 

since the CB[n] host is polar and the studied guest molecules are charged, the significant 

part of the interaction energy (calculated e.g. by DFT methodology) is originating from 

the electrostatic energy between them. However, it is strongly damped when passing 
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from vacuo into water environment. Clearly, the environment can severely change the 

physical nature of binding and thus the accurate description of solvent effects represents 

a crucial point in our approach. Secondly, Nau and coworkers pointed out that the 

release of high energy water from the cavity of CB[n] macrocycles is a major 

determinant for guest binding in aqueous solutions.196,197 Now, we will report our 

investigation of solvation of isolated host molecules (both the explicit and implicit 

solvation models were compared). 

Characteristics for CB[n] hosts composed of different numbers of glycoluril units (n = 

5,6,7,8) with the increasing diameter size will be now compared with existing literature 

data.196,197 The second, third and fourth columns in Table 7 show the linear increase of 

ΔGdesolv with the host's increasing diameter. It is important to note that these results 

show only the nonspecific solvation because the high energy waters in cavity are not 

modeled. On the contrary, these are described by WaterMap calculations. The specific 

solvation free energies results are in fifth column (ΔGpot
WM) while the last column 

contains their enthalpy and entropy components. The calculations of CB[7] and CB[8] 

host molecules showed the most favorable solvation (i.e. the smallest ΔG). This finding 

is not in accord with the results of Nau and coworkers as listed in the left-hand data-

column showing theoretical difference in potential energy (–ΔEpot) of water molecules 

in a spherical cavity within the aqueous bulk and inside the host cavity. However, if one 

takes into account large error bars then it is apparent that reported potential energies for 

CB[7] and CB[8] are statistically the similar. Therefore, their findings basically agree 

with our WaterMap generated results. 

Next, WaterMap simulations determine the number of water molecules with high 

energy residing within the host cavity in the absence of an encapsulated guest. A nice 

agreement depicted in Table 8 has been found with both MD simulation literature results 

in the first column and Packing Coefficients (PC) analysis results in the second column. 
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–ΔEpot

 a COSMODFT b COSMOPM6
  SMD   ΔGpot

WM ΔH/–TΔSpot
WM 

CB[5]   41.6±28.8 71.5 84.1 134 12 7.6 / 4.4 

CB[6]   51.1±29. 93.6 117.1 158.7 21.4 12.3 / 9.1 

CB[7] 102.4±31.3 108.2 138.8 180.8 5.3 –4.9 / 10.2 

CB[8]   66.2±10.7 122.7 162 202.1 4.9 –10.5 / 14.9 

 

Table 7. Calculated energies related to solvation of CB[n] hosts, all units are kcal/mol. 

Footnote: aData taken from ref. 193. 

 

 

   WaterMap 

 MD a PC analysis a Water Sites Avg. Occupancy Nwater molecules 
b 

CB[5]  2 [2.0] 2c 2 94% ~2 

CB[6]  4 [3.3] 4c 6 56% ~4 

CB[7] 7 [7.9] 8c 12 41% ~8 

CB[8] 10 [13.1] 16c 19 41% ~16 

 

Table 8. The number of water molecules trapped within a CB[n]-host's cavity as studied 

by MD, PC analysis, and WaterMap methodologies. Footnotes: a Data taken from ref. 

196. Data in square brackets taken from ref. 197. b Number of water molecules 

determined by analysis of water sites. 

 

 

Finally, MD simulations of CB[n] host molecules in implicit water solvent environment 

have been used for the studies of the dynamic elasticity. Table 9 shows the increase of 

CB[n] host's deformability (dynamic stiffness) increases with the cross-sectional 

diameter host's. Both computational methods (PM6-D3 and DFT methods) clearly show 

that this increase is non-linear since deformability sharply increased in case of CB[8]. 

The increased deformability is important, since it suggests that CB[8] (with its increased 

flexibility) can more readily encapsulate larger guest with higher spatial demands. 
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 PM6-D3 BLYP-D/def2-SVP 

CB[5] 0.27 0.20 

CB[6] 0.30 0.23 

CB[7] 0.36 0.24 

CB[8] 0.50 0.31 

 

Table 9. The dynamic elasticity of CB[n] hosts calculated in COSMO water 

environment. Values in the table are RMSDaverage calculated according to eq. 20. 

 

 

3.5.2.2 The Role of Solvation and Comparison of Different Solvation Models for 

Guest Desolvation 

It is known, that relative solvation energies of neutral small molecules are well 

reproduced with implicit solvent models such as the COSMO198 model that was utilized 

in previous section for CB[n] molecules. In similar cases clear distinction has been 

reported between MM- and QM- based implicit models, showing those based on the 

QM electron density as superior to others.23 However, when comparing neutral, 

monocationic and dicationic molecules the situation is getting more complicated.199 It 

is evident from the magnitudes of the main contributions to the ΔGcalcd (described later), 

solvation and interaction energies, that the accurate description of both terms is 

mandatory. It has been shown that in the rigid molecule case, where the optimized 

geometry represent both solvated and gas phase conformational ensembles adequately, 

the implicit solvent models provide reasonable accuracy.142 

Six of the training set guests had adamantane skeletons, three had diamantane 

frameworks, one of naphthalene, one of 4,4'-bipiperidine and one of ferrocene with their 

charges ranging from +1 to +2. Due to guest's charge and geometry differences, it is 

crucial to select a sufficiently accurate model for the calculation of ΔGdesolv associated 

with complex formation and concomitant guest and host desolvation (i.e. removal of 

the water molecules). The lack of experimental data prevents a direct comparison 

between theory and experiment. Figure 20 compares desolvation free energies for each 

guest as calculated by the COSMOPM6, COSMODFT (using BLYP/def2-SVP method), 

or or SMD implicit solvation techniques. It is noted that the three desolvation free 

energy values for each particular guest are very similar (with SMD energies being 
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consistently the highest for each guest in the series). The fact that similar desolvation 

free energies were obtained by each of the three different methods indicate that any of 

the method tested here may be used for subsequent calculation of ΔGcalcd. Further, 

inspection of Figure 20 also shows some chemically sensible general trends. Quaternary 

aminium guests have lower desolvation free energies than primary ammonium guests: 

(3 < 2,9 and 7,10-13 < 8,14-16). Mono-ammonium/aminium guests have markedly 

lower desolvation free energies than di-ammonium/-aminium guests: 2,3,9 << (7,8,10-

16). 

 

 

 

Figure 20. Desolvation free energies calculated by three implicit solvation models: 

COSMODFT, COSMOPM6 and SMD (all energies are in kcal/mol), the asterisks mark 

quaternary aminium guests. 

 

 

3.5.2.3  Accuracy Assessment of ΔE Interaction Energies Using KEM Method 

In the previous sections we concluded that the COSMO solvation model is well suited 

for predictions of solvation energies in host•guest complexes. Next, the accuracy of the 

BLYP-D3/def2-TZVPP method will be assessed against the more accurate methods 

such as CCSD(T)/CBS, MP2.5/CBS and FN-DMC. 

However, these benchmark methods are limited to the systems containing less than few 

tens of atoms. Here, we decided to calculate ΔEMP2.5/CBS interaction energy estimate for 

CB[7]•7 assembly therefore necessary additional approximations had to take place. The 
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ΔEMP2.5/CBS interaction energy in eq. 9 is determined by two terms. First one, ΔEMP2/CBS 

interaction energy, was calculated here using smaller basis sets (non-augmented, cc-

pVDZ and cc-pVTZ) while the second, ΔMP2.5 correction term, could not be obtained 

for the whole CB[7]•7 complex due to CPU time limitations. However, the 

fragmentation of the CB[n] host was deemed reasonable since it possessed a periodic 

structure of glycoluril building blocks ligated by methylene linkers. Therefore it was 

decided that the ΔMP2.5 correction term would be calculated as a sum the correction 

terms between the guest 7 and each of seven individual CB[7] host fragments to reduce 

the input structure's size. Host CB[7] was subdivided into seven methylene-ligated 

glycoluril units (CH2)top(CH2)bottomglycoluril, and affixed descriptors [i] where i = 0→6. 

[0],[1],[2],[3],[4],[5], and [6]. The fragmented-complex (Fragment-[0-6]•7, see Figure 

21 for illustration) could now be considered to be a suitable set of systems for the so 

called KEM (see section 2.7) calculations of the ΔMP2.5 correction. Resulting –145.6 

kcal/mol ΔEMP2.5/CBS extrapolated value for the CB[7]•7 complex was found to be in 

excellent agreement (within 2%) with that of the –147.6 kcal/mol ΔEBLYP-D3/def2-TZVPP 

value (used in estimates of ΔGcalcd). This close agreement gives full credibility to the 

DFT-D approach used later for the whole set of host•guest complexes. 

 

 

 Construct-[12] Fragment-[1] Fragment-[2] 

 

Figure 21. Construct-[12] (two methylene-linked glycoluril building blocks and 

a whole 7 guest) subdivided into two fragments [1] and [2], each with a 7 guest. 
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While both, KEM and limited basis set, are mandatory in obtaining the ΔEMP2.5/CBS 

interaction energy, it follows that one should study how e.g. the number and size of 

guest fragments or increase of the basis set size would influence the final results. We 

have tried to address these open questions in next paragraphs. 

Let us first examine the accuracy of ΔEMP2.5/CBS extrapolation. Since glycoluril•(2,3-

dimethyl-2,9-diazadecane) complex 18•19 was small, +2 charged, and represented the 

essential binding motif between CB[n] and N-methylated diamantanes, it was chosen 

to test the suitability of using time-efficient non-augmented (cc-pVDZ and cc-pVTZ) 

basis sets for ΔEMP2/CBS extrapolation (see eq. 8). The comparison with the results 

obtained when the recommended (but much more time-expensive) augmented basis sets 

shown only negligible difference of 0.3% relative and 0.08 kcal/mol absolute errors. 

Further, the resulting ΔEMP2.5/CBS and ΔECCSD(T)/CBS energies (larger, aug-cc-pVDZ, 

basis set was utilized for calculation of ΔCCSD(T) correction term) were found to be 

in close agreement as evidenced by their low 0.9% relative and 0.3 kcal/mol absolute 

error values. This comparison clearly supports the use of the more time-economical 

extrapolation. 

A series of additional calculations on the 18•19 model system were performed to test 

the fragmentation technique's accuracy in the use of KEM for the calculation of 

ΔMP2.5's correction term, only the main points will be summarized here. Guest 19 was 

divided into three-fragment set 1 ([a],[b],[c]) and set 2 ([d],[e],[f]) differing in the 

broken C—C bonds. Larger fragments were then fused from the smaller units to provide 

[ab],[bc] or [de],[ef] units. ΔMP2.5 correction terms were then calculated for 

complexes between host 18 and each of the six smaller fragments (and also each of the 

four larger units). Four ΔMP2.5 energies arise from ([a]+[b]+[c]); ([d]+[e]+[f]); 

([ab]+[bc]–[b]} and ([de]+[ef]–[e]) additions. Subtraction of [b] or [e] from their 

respective ([ab]+[bc]) or ([de]+[ef]) sums insures that individual fragments in the host 

composite are counted only once. In the first two cases, similar underestimation (0.2 

kcal/mol) of ΔMP2.5 correction term was noted for the fragmented guest assemblies 

versus that for the 18•unidivided-19 complex. The error for ΔMP2.5 correction term 

[compared to ΔCCSD(T) correction term] exhibited the opposite sign (i.e. 

overestimation by 0.18 kcal/mol). As a result, favorable partial error cancellation 

appeared to occur when the ΔMP2.5 correction term was calculated via the 
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fragmentation technique. These results strongly suggest that both fragmentation 

technique used for ΔMP2.5 correction term is reliable. 

These promising results with the fragmentation method prompted us to investigate ΔE 

of a methylene-ligated glycoluril double unit ensemble, versus the combined energies 

of its two single fragments, (see Figure 21). Resulting the ΔEFN-DMC (kcal/mol) –

53.0±1.2 (Construct-[12]]) value was statistically indistinguishable from the –54.9±1.6 

(Fragment-[1]+[2]) sum of –27.4±0.9 (Fragment-[1]), and –27.5±0.8 (Fragment-[2]]). 

This finding strongly suggest that the fragmentation method is reliable in terms of both 

the total and subcomponent ΔE energies for the host•guest complexes in this study. 

However, this conclusion is not general, since EBLYP-D3/def2TZVPP comparison for the 

same system exhibited noticeable errors (10% relative error, see Table 10). 

The discrepancies reported in last paragraph are probably caused by method- and 

fragment-size dependent error addition/cancellation effects. Nonetheless it had been 

already shown that it is possible to provide a valid ΔEMP2/CBS total energy calculated for 

the whole non-fragmented system and ΔMP2.5 correction term of much smaller 

magnitude calculated for the fragmented system. The success in using the fragmentation 

method to obtain the ΔMP2.5 term is probably the result of the more additive character 

of dispersion energy compared to less additive induction energy dominating the total 

energy. The authors are of the belief that the above conclusion is general, and not just 

limited to our host•guest complexes. 

 

  ΔEFN-DMC [kca/mol] ΔEBLYP-D3/def2-TZVPP [kcal/mol] 

ΔE(Fragment-[1]) -28.3 –28.5 

ΔE(Fragment-[2]) -28.3 –28.4 

ΔE(from fragments) -56.5 –56.9 

ΔE(Construct-[12]) -54.2 –51.4 

 

Table 10. FN-DMC and DFT interaction energies determined from two separate 

interaction energies calculated on Fragment-[1] and Fragment-[2] compared to 

interaction energy of Construct-[12]. 
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3.5.2.4  Complex Formation – Correlation of ΔGcalcd and ΔGexptl 

It now remains to examine the correlation between the calculated estimate of change of 

Gibbs free energy (ΔGcalcd) in COSMO implicit solvent and ΔGexptl values for 14 

complexes measured in buffer solution. The ΔGcalcd binding free energy was calculated 

as the sum of six binding energy parameters: (1) ΔE, (2) the two body dispersion energy 

ΔD32body calculated as proposed by Grimme et al.177, (3) COSMO

solvG , (4) the Amber 2nd 

derivative gas phase entropy –TΔS, and finally (5,6) the host's and guest's deformation 

energies Edef(host) and Edef(guest): 

 

 )()(32

2/ guestEhostESTGDEG defdef

COSMO

solvbody

TZVPPdefBLYP

calcd       (21) 

 

The reliability of COSMO implicit solvation has been tested on ΔGdesolv(guest) calculated 

with different implicit solvent models and the accuracy of the DFT-D3 computational 

method was assesed by ab initio MP2.5/CBS method. However, each term in eq. 21 has 

clear physical meaning and we did not perform any parametrization or adjustment by 

any means to experimental data. Additionally, three remaining terms of eq. 21, entropy 

and deformation energies, are calculated in approximative way due to computational 

economy. Therefore, only relative values will be relied on and we will seek after 

correlation between theoretical and experimental values. For review about ΔGcalcd 

predictions and detail discussion see ref. 199. Similar trend (i.e. shift of values) was 

reported by Gilson et al.200 

A list of binding energy parameters (ΔGcosmo, ΔE, ΔGsolv, ΔEelectro, ΔEdisp, –TΔS, 

Edef(guest), Edef(host),  ΔGcalcd, Kaexptl, and ΔGexptl) are summarized in Table 11. Entropy 

change for CB[7]•12 complex formation could not be calculated due to missing 

parameters for atom Fe. The electrostatic interaction energies (ΔEelectro) for the 

complexes were determined by the Coulomb law and EDA methods. The Figure 22 

shows that the ΔEelectro(EDA) correlated well (correlation coefficient ρ2 = 0.77) with 

ΔEelectro(NBO). All findings discussed in the following text which utilize the ΔEelectro 

energies were confirmed when any of those two, ΔEelectro(EDA) and ΔEelectro, energies 

were used. 
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Figure 22. Correlation between ΔEelectro terms calculated by EDA method and coulomb 

law using NBO charges. (all in kcal/mol) 

 

 

CB[n]Guest ΔGcosmo ΔE ΔGsolv ΔEelectro ΔEdisp –TΔSa Edef(g) Edef(h) ΔGcalcd Kaexptl
a ΔGexptl

a 

CB[7]•2 –35.2 –92.5 57.3 –111.4 –47.6 4.4 0.8 1.6 –28.3 4.23E+12 –17.2 

CB[7]•3 –33.9 –84.9 51 –93.4 –53.5 3.3 0.2 0.4 –30.0 1.71E+12 –16.7 

CB[7]•7 –47.3 –147.6 100.3 –175.5 –72.4 4.5 0.5 1 –41.2 2.00E+15 –20.8 

CB[8]•8 –40.6 –162.1 121.5 –217.5 –42.1 5.2 1.9 5.4 –28.2 8.30E+11 –16.2 

CB[8]•9 –28.8 –85.5 56.7 –105.8 –37.2 4.9 1.2 2.2 –20.4 4.33E+11 –15.8 

CB[7]•10 –35.7 –144.6 108.9 –177.5 –47.9 3.9 0.3 1.7 –29.7 1.70E+11 –15.3 

CB[7]•11 –31.8 –139.4 107.6 –178.4 –48.9 5.1 0.4 1.5 –24.8 1.90E+11 –15.4 

CB[7]•12 –38.2 –141.2 102.9 –239.6 –62.5 .b 1.1 1.1 . 1.90E+13 –18.1 

CB[8]•13 –30.7 –136.2 105.5 –186.9 –55.2 5.1 0.9 3.6 –21.2 1.11E+11 –15.0 

CB[7]•14 –44.2 –173.4 129.2 –226.7 –53.8 4.4 2 5.1 –32.7 1.20E+12 –16.4 

CB[8]•14 –35.2 –161.0 125.8 –217.4 –38.2 5.2 4.1 10.1 –15.7 4.70E+08 –11.8 

CB[7]•15 –50.1 –177.1 127 –203.7 –54.5 4.5 3 3.7 –38.8 2.40E+13 –18.2 

CB[7]•16 –50.7 –168.8 118.1 –190.4 –55.9 4.9 5.9 2.9 –37.0 1.50E+13 –17.9 

CB[7]•17 –42.7 –144.5 101.8 –154.1 –59.1 4.1 0.7 1.1 –36.8 6.80E+12 –17.5 

Prediction 
           

CB[7]•23 –69.8 –262.8 193 –292.9 –81.9 2.1 9.3 2.7 –55.7 
  

 

Table 11. Binding energies and other parameters for CB[n]guest complexes, all values 

listed are in kcal/mol with the exception Kaexptl in M–1. Footnotes: a Temperature 298 

K. b not calculated. 
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Figure 23 shows a close correlation of ΔGcalcd with ΔGexptl for thirteen complexes with 

ρ2 = 0.84. Our approach was successful in capturing both the strongest and weakest 

complexes in our learning set.  Since the 4.6(6) –TΔSmean value, with its low 0.6 

estimated standard deviation (esd) for the 13 complexes, is small enough the entropy 

can be treated as a constant for a first approximation (see Figure 24a). This proved to 

be valid since after the addition of ferrocene complex CB[7]•12 (blue error bar) the plot 

kept correlation coefficient 2 = 0.84. Clearly, the accuracy of entropy calculations is 

sufficient enough and do not represent a significant term for the overall correlationship's 

fidelity. 

 

 

Figure 23. Correlation between theoretical ΔGcalcd and experimental ΔGexptl (the 

equation of the fit: ΔGexptl = 0.247ΔGcalcd – 9.179, 2 = 0.84, n = 13). 

 

 

Next, we investigate the role of the individual terms in eq. 21, besides the entropy 

discussed above, for quality correlationship with ΔGexptl. It is known that for large scale 

systems the 3-body dispersion energy improve both, the total dispersion and interaction 

energy.177,201 The Figure 24b shows slightly reduced correlationship with correlation 

coefficient lowered to ρ2 = 0.80. It can be explained by the fact that the presented host 

guest systems are not large enough. On the other hand, both, the solvation and 

dispersion terms proved to be mandatory, because the correlation was completely lost 

(not shown) when either of these two terms was omitted from ΔGcalcd. 
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Figure 24. Correlation between ΔGcalcd and ΔGexptl after (a)  entropy term exclusion and 

addition of CB[7]•12 complex (in blue). (b) addition of 3-body dispersion term. 

 

 

 

Figure 25. Illustration of four CB[7] molecules complexed with di-substituted 

diamantane (A, code name: CB[7]•7), naphthalene (B, code name: CB[7]•10), virtual 

complex CB[7]•Diam-4,9-diCMe3 (C, CB[7]•3t-But) and mono-substituted 

adamantane (D, code name: CB[7]•3). 
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In order to understand the role of charged —+NR3 groups, space filling (dispersion) and 

electrostatic interactions we compared the binding modes for 4 CB[7]•guests containing 

tertiary ammonium functional groups (shown in Figure 25). 

The "good fit" and its binding consequences in terms of significant dispersion forces 

are immediately apparent when one compares diamantane (A, CB[7]•7, ΔEdisp = –72.4 

kcal/mol) and naphthalene (B, CB[7]•10, ΔEdisp = –47.9 kcal/mol) scaffolds. 

Additionally, significant difference in space filling dispersion forces were observed also 

for the former (diamantane) versus adamantane (B, CB[7]•3 complex) derivates. Both 

these finding provides insight into the role of dispersion in the exceptionally high 

binding affinities of substituted diamantine derivates. Next, similar N+N+ distances 

(7.94 Å, 8.07 Å and 7.51 Å) accompanied with marginal difference also in ΔEelectro (–

175.5 kcal/mol, –177.5 kcal/mol and –178.4 kcal/mol) were determined for CB[7]•7, 

CB[7]•10 and CB[7]•11, respectively. Showing marginal difference when guests of 

different sizes and the same charge are compared. 

Finally, in case of Ada-2,6-di(NH3) 14 guest two complexes (with CB[7] and CB[8] 

hosts) were previously reported and calculated here for the first time. The larger host 

complex suffers from only 4% and 3 % decrease in ΔEelectro and ΔGsolv, respectively. 

While ΔEdisp is reduced by 29% resulting in substantial decrease in experimental 

equilibrium binding constant from (1.20.4)1012 M–1 Ka to  (4.71.2)108 M–1 Ka. 

 

 

3.5.2.5 Host•guest Complexes Containing Amino Loops 

We applied the same methodology as utilized previously for maximizing the strength 

of the binding through design of new guest molecules through reaching unused CB[n] 

host sites. In a similar way as the binding motif of the primary amines was previously 

enhanced via methylation to tertiary binding motif reaching all 7 carboxyl oxygens as 

depicted in Figure 18. 

Here, two CB[7]•adamantane-1-NH2R
+1 complexes (CB[7]•15,CB[7]•16 containing an 

R = [–(CH2)nNH3]
+1 primary amino loop [where n = 2 (ethano) or 3 (propano)]) and 

Ada-1-NMe2(CH2)3NH3 (CB[7]•17) were studied for the first time. Additional loops 

formed CH2)nN–Hδ+–δO=C 2.7 Å hydrogen bonds that are in accord with an increase 

of ΔG binding free energy increment versus the parent complex (see Figure 26). The 
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increase of both, ΔEelectro and ΔEdisp (see Table 11), is substantial and is partially 

compensated by increased solvation plus the guest's deformation energy. 

 

    
 21 22 

 

Figure 26. Comparison of primary and tertiary amino binding motif combined with 

addition of amino loops. (CB[7]•16 and CB[7]•17, respectively) 

 

 

The Ada-1-NMe2(CH2)3NH3 (17) guest represents success in Ka enhancement of 

CB[7]•quaternary-guest by a [–(CH2)3NH3]
+1 loop (see model 22). The experimental 

and theoretical observation that Ka values of quaternary-aminium guests are augmented 

by [–(CH2)nNH3]+1 loops to a lower extent than those of primary-ammonium guests 

(compare CB[7]•2 with CB[7]•16 and CB[7]•3 with CB[7]•17) must still be proven for 

larger number of guests. Finally, the Diam-4,9-di(NMe2propanoNH3) (23) is now being 

prepared to test this hypothesis. It remains to be seen if a predicted new record ultra-

high value will experimentally be found for complex CB[7]•23 (see Table 11 and Figure 

27 for comparison with the current world record CB[7]•8). 
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Side views 

 

 

 

 

 

 

 

 

Top views 

 

 

 

 

 

 

 

 

 

 

 

 

CB[7]•8        CB[7]•23 

World record binder      New Proposed Guest 

Ka = ( 7.2 ± 0.9 ) x 1017 M-1     Ka to be measured 

ΔGcalcd = – 41.2 kcal/mol                         ΔGcalcd = – 55.7 kcal/mol 

 

 

 

Figure 27. Visual comparison of current world record binder on the left hand side with 

the new proposed guest enriched by two additional amino loop. 
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3.5.3 Conclusions 

In our last project we described properties of isolated host and guest molecules, 

discussed the accuracy of solvation and interaction terms in ΔGcalcd predictions and 

assessed the correlation between ΔGcalcd and ΔGexptl. Finally, we described differences 

between primary and tertiary binding motifs leading to proposal of loop addition as a 

potential way for enhancement of binding strength. Following key findings have been 

highlighted: 

 

 Sharp increase in deformability of CB[n] molecules has been found when passing from 

CB[7] to CB[8] hosts. 

 

 Previously reported solvation properties of CB[n] molecules has been well reproduced 

by explicit (WaterMap) and implicit (COSMO and SMD) solvent models. 

 

 Presence of high-energy water molecules was not required for modeling the CB[n]-

host•guest complexes investigated in our study. 

 

 BLYP-D3/def2-TZVPP interaction energy has been found in close agreement with 

MP2.5/CBS value (utilizing the kernel energy method). 

 

 Nice correlation between theoretical (ΔGcalcd) and experimental (ΔGexplt) changes of 

Gibbs free energies has been reported here. (ρ2 = 0.84) 

 

 Prediction has been made that Diam-4,9-di(NMe2propanoNH3) could become next 

world record binder. Currently, the synthesis work is in progress in group of Pavel 

Majer. 
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4 Concluding Remarks 

In this thesis, research concerning noncovalently driven recognition processes in both 

natural and artificial complexes has been presented. Every careful scientists must make 

an informed choice of the applied methods based on the understanding of the chemical 

system and drawbacks and merits of various methods. In those cases when binding is 

highly probably primarily enthalpy-driven, the QM description brings many advantages 

in description of many body effects, electron and proton transfers, formation and 

dissociation of a covalent bond etc. Major part of the effort here was made to obtain a 

detail understanding of the X-ray structures of host•guest systems, method performance 

and development of empirical dispersion for DFT methodology. While the studies of 

binding preferences between DNA and proteins must be considered as the initial 

investigation to set the stage for more elaborate analysis of larger molecular fragments 

(e.g. containing parts of the sugar−phosphate backbone) especially in solvents. The 

same is true in case of self-assembled artificial cage binding choline and acetylcholine 

guest molecules. 

We have described the performance of various SQM method (used nowadays for ΔG 

predictions in protein•ligand systems). We showed that, when one wants to achieve 

accuracy of 1 kcal/mol and higher across the wide range of exotic noncovalent 

interactions, the less approximate methods need to be chosen. One of such examples is 

DFT methodology accompanied with rage of post-HF methods used in the rest of the 

presented projects. It has been shown that it is mandatory to compensate the lack of 

dispersion energy in DFT methods, therefore we developed here a posteriori calculated 

empirical correction term for small basis sets. 

Next, we quantitatively assessed the binding preferences in protein•DNA complexes. It 

has been proven that amino acid−base geometries capable of one-to-one amino 
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acid−base recognition correspond to unique energy minima with interaction energies 

distinct from the rest of the distribution. 

This thesis has demonstrated that the development in the field of computational 

chemistry has reached the point when it can truly help us to understand and interpret 

the experimental data. Our approach determined that choline guest is bound to self 

assembled triple helicate aromatic cage 2.8 kcal/mol stronger (ΔG) than acetylcholine 

corresponding to K(Ch+)/K(ACh+) = 109 selectivity. The respective experimental 

value is 20 agreeing well with our prediction reported together with decomposition into 

various physically meaningful terms. 

Finally, results concerning CB[n] host•guest systems have been presented. The training 

set of 13 complexes based on X-ray crystal structures was studied including several new 

suggested derivatives containing amino loops. A new guest, namely Diam-4,9-

di(NMe2propanoNH3) has been proposed as the potential new world record binder to 

CB[7]. Additionally, the predicted substantial increase of flexibility of CB[8] indicates 

that it can more readily encapsulate larger and promising guests with higher spatial 

demands. It still remains to be proven experimentally however our recent pilot study of 

several isodiamantane complexes suggests this notion (attachment H). It has been 

reported that the stability of complexes with CB[8] equals the most stable complexes 

containing CB[7] which are known as the strongest artificial complexes formed in 

water. 
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