Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Ondrej Kudlacek

SOFA 2 graphical tools improvements

Katedra distribuovanych a spolehlivych systémii (32-KDSS)

Supervisor of the bachelor thesis:
RNDr. Michal Malohlava

Study programme: Computer Science
Specialization: Programming

Prague year 2011

At first I would like to thank my family. They have been a great support for
me. I know, that there were times when I was not easy to cope with, and I am
grateful that they did not let me down. I am also thankful for the help my supervisor
provided me. Without his backing I would not have been able to complete this work.
And finally thanks to my colleagues that they let me use their computer for
development, while I was not able to use mine.

I declare that I carried out this bachelor thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University in Prague has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In......... date............ signature

Nézev prace: VylepSeni grafickych néstroji komponentového systému SOFA 2
Autor: Ondrej Kudlacek

Katedra / Ustav: Katedra distribuovanych a spolehlivych systémii (32-KDSS)
Vedouci bakalarské prace: RNDr. Michal Malohlava

Abstrakt: Tato prace se zabyva vylepSenim komponentového systému SOFA 2 a je
zameérena na grafické fidici rozhranni. SOFA 2 je zaloZena na modelovacim nastroji
Eclipse Modeling Framework. Pomoci néj je vykonstruovan hierarchicky model
tohoto systému. RozSifeni vyvinuta v ramci tohoto projektu poskytuji skrz grafické
rozhrani mozZnost upravovat tzv. Deployment plany aplikaci vyvinutych v systému
SOFA 2 a prenaSet jejich komponenty mezi repozitafi. Grafické rozhrani je
provedeno jako samostatny program nebo jako rozSifujici soucastka (plug-in) do
platformy Eclipse. VylepSeni systému je zahrnuto v soucastce MConsole, pomoci
které se daji vyvijené aplikace v systému SOFA 2 spravovat. Cely program je
implementovan v jazyce Java. Grafickd rozhranni jsou zkonstruovana pomoci
knihovny JFace, kterda umoZiiuje praci s modely zaloZenymi na EMF. Pfi upravach
modelu se pouziva framework EMF.Edit a jeho podknihovna Command.

Kli¢ova slova: komponentovy systém, graficky nastroj, Eclipse, Java

Title: SOFA 2 graphical tools improvements
Author: Ondrej Kudlacek

Department / Institute: Department of Distributed and Dependable Systems (32-
KDSS)

Supervisor of the bachelor thesis: RNDr. Michal Malohlava

Abstract: This enhancement of component system SOFA 2 is focused on the
graphical interface. SOFA 2 is based on Eclipse Modeling Framework, through
which is constructed a hierarchical model of the system. The extension of SOFA 2
developed in this project provides — via the graphical interface tools for the so called
Deployment Plan — an editing of applications developed by SOFA 2 and copying of
their components between repositories. The graphical interface is created as a stand-
alone program or as a plug-in for the Eclipse platform. The enhancement is added to
the management console called MConsole, which allows editing models and
applications developed in SOFA 2. The whole library is programmed in the Java
programming language. The graphical environment is build on JFace library for
EMF-based models editors. EMF.Edit framework and its library Command are used
for the editation of the models.

Keywords: component system, graphical tool, Eclipse, Java

Contents

Preface

1. Introduction

1.1. Goals

1.2. Structure of the text

2. Introduction of SOFA 2 model
2.1. Introduction to EMF

2.2 Basics of the SOFA 2 model
3. Analysis of the solution

4. Program documentation
4.1 Used techniques

4.2 In-memory editation

4.3 Clone and merge tool

5. User documentation

5.1 In-memory editation

5.2 Clone and merge tool
Conclusion

Bibliography

List of Abbreviations
List of Figures
Attachments

11

11

12

16

19

19

22

24

25

26
27
28

Preface

Over the past years the component-based development became one of the
good ways to build software systems. The SOFA 2 system is an environment
providing tools for creating those applications. These applications consist of models
made of components. By this system they can be created and managed. SOFA 2
consists of a few independent parts. One of them is MConsole, a tool designed for
administering the model's components and SOFA's runtime environment. It is a
stand-alone application based on Eclipse Rich Client Platform or it is also available
as a plug-in for the Eclipse environment. Enhancements created in this project are
part of MConsole. They add new features to the system to provide more functionality
and comfort during the work with MConsole and SOFA 2.

Enhancement called In-memory ADL editation implements recommended
techniques of Eclipse Modeling Framework. It takes the settings of a developed
application in SOFA 2 stored in ADL to the memory of MConsole.

Merging and cloning feature adds a new functions to MConsole. The
repository of the system — another independent part of SOFA 2 — contains
components of a modeled application. The SOFA 2 system may contain not only one
repository. This feature adds an user interface to MConsole and provides merging
and cloning of components between SOFA's repositories.

1. Introduction

Creation of applications and software in general is quite a new domain.
Programming techniques like Object-oriented programming appeared in 1960s.
Developers try to grasp the idea of what could a computer program do through these
techniques. For example using the Object-oriented technique programmer divides the
application into objects. Divisions of the program describe real or abstract objects
that may have no meaning without the rest of the program. Another approach is
called Component-based engineering. Its idea was first published at NATO
conference in Germany, 1968 and IBM used it to create System Object Model in
early 1990's. [8],[9] This technique takes the other side of programmer's view.
Applications created by it are put together smaller components, packages containing

related data and functions.

Components can be reused in contrary to the objects and to achieve it they
implement interfaces for communication. In a typical implementation components do
not have access to inner structure of other components. Moreover, components are
substitutable, if user component required services are satisfied with substituted one's.
Applications constructed by these independent packages are called component
models. As components use their interfaces for communication, the model can be

distributed through computer network.

The model can be of two types, flat or hierarchical. The flat component
models are older and more advanced. And despite being not able to apply multiple
techniques for one action, they are widely used. The hierarchical component models
may be composed of other components, which makes them easier to make use of,
e.g. more than one communication style between elements of a model. Because of
that, they support more advanced concepts and features. But hierarchical models do
not often appear outside an academical environment. These usually provide only a
very limited platform without any repository or container or any basic service for
components. These advanced features are very often applied in the flat models, that

is why hierarchical models are used lesser. [2]

SOFA 2 is a hierarchical component system and includes support for tools,
runtime environment, repository for storing components. It serves as a component-

based application modelling environment and a complete framework [1]. Tools

contained in the SOFA 2 system are Cushion — an application development and
repository manipulation tool — SOFA IDE - a graphical tool and an Eclipse
environment plug-in — and MConsole — monitoring, SOFA 2 runtime environment
maintenance tool and a stand-alone or Eclipse plug-in application. By these parts of
the SOFA 2 system components can be created and models assembled. Settings of
components and their communication can be done in MConsole. Because the parts of
applications modelled in the system can be distributed through network, these
settings may not be available locally but on a remote computer. But SOFA 2 does

handle these settings directly.
1.1. Goals

The main purpose of this project is to enhance graphical tools of the SOFA 2
system. This includes a feature for the MConsole tool and an improvement of the
tools-api library. These enhancements are directly related to the user interface of the

SOFA 2 system and addition of them would increase its usability.

The SOFA 2 system contains except the repository model a meta-model or
ADL. This meta-model is used for defining components and their relations, the
settings of components. Developers who use the stand-alone or Eclipse plug-in
versions of SOFA 2 have a copy of ADL stored in a local files. MConsole directly
accesses and modifies them. This mostly concerns a deployment plan files containing
execute instructions for the SOFA 2 runtime. To provide indirect accessing of
component settings during editation process an enhancement called In-memory

editation should be added to the SOFA 2 system.

Components are stored in repository of the system. SOFA 2 allows to operate
not only with one repository. Its repositories are divided into development and stable
and allow stored components to be cloned between them. MConsole as a tool for
environment maintaining should provide a feature to support migration of
components between repositories. This should be allowed through clone — copying a
component from stable repository — and merge — copying a component from

development repository — operations.
1.2. Structure of the text

Preface and the Section 1 introduces to the topic of component modelling and

describes goals of this project.

The Section 2 provides basic description of the SOFA 2 EMF-based model

and the meta-model processed by In-memory editation enhancement.

Section 3 contains construction steps that led to the solution of In-memory

editation.

Section 4 tells about technical content. In the first subsection are described
libraries and approaches used in the In-memory editation. The second subsection
contains technical description of the In-memory editation part. And in the third

technically describes the Clone and merge tool.

Section 5 shows how to use both enhancements. In the first subsection is
described which parts of MConsole and SOFA 2 environment use the In-memory
editation. In the second is shown how to clone or merge model components through

Clone and merge tool in MConsole.

The last Section Conclusion sums the whole project up and tells about

stability of the new enhancements.

2. Introduction of SOFA 2 model

2.1. Introduction to EMF

Modelling tools provide various functions for application development. There
are tools for data modelling, applications structure languages for modelling or even
object modelling tools. Since SOFA is based on the Eclipse platform and is also a
plug-in, it uses its tools for modelling. The graphics of SOFA and mainly MConsole
(which is described in the Used techniques Section 4.1 of Program documentation)
come from Graphical Modeling Project of Eclipse foundation. It provides libraries
for graphical editors based on Graphical Modeling Framework (GMF) and Eclipse
Modeling Framework (EMF).

The EMF is a library provided by the Eclipse Foundation. It allows to access
facilities of Eclipse platform. The main point of the EMF is that it creates a
connection between Java programming language, Extensible Markup Language, and
Unified Modeling language via generating code. It allows to describe a model in any
of the mentioned languages and generate the others. For example using EMF after

creating a XML Schema file Java implementation classes can be generated.

With the EMF come other tools, libraries, and frameworks. One of them is
applied in In-memory editation part of this project. It is EMF.Edit framework which
provides classes for building editors for EMF-based models. With its Command
subsection it is possible to set, add or remove attributes of objects of a model.
Moreover these modifications can be undone in the contrary with classic
programmatic change to an attribute of a class. For more description and application

of this framework see Sections 4.1 an 4.2.
2.2. Basics of the SOFA 2 model

Since the In-memory Editation part of this project works with the structures
of the SOFA 2 model and meta-model, it is useful to mention it. This Section is taken

from [2]'s Section Overview of the SOFA 2.0 component model.

“In the SOFA 2 system, components interact through provided and required
Interfaces with other components which can be either black-box or grey-box. The
black-box does not provide any view of its internals, while the grey-box provides

view of its inner structure. The black-box is represented by the component Frame.

The grey-box is Architecture with implementation of Frame. The Architecture can be
an implementation of a component or it can be a collection of other components

(Subcomponents).” More detailed description can be found in the cited text.

In a programmatic look at the model, there are common classes as
NamedEntity, VersionedEntity, and Version, which are used throughout the model.
These provide to all its implementations a name and a version for versioning system
of SOFA 2. Frame is a base element for component representation of the black-box
type. It has references via provided and required lists to Interface to provide
communication. The Interface is of a type defined by InterfaceType. Other elements
of Frame are Annotation and Property. Annotation can be used to mark a Frame as
top-level, which represents an entry component of the model. Property may define

properties, as expected. For more details see Section 3 of [3].

The SOFA 2 system contains also a meta-model which is used to define
components and capture relations between them. Through tools of repository the
meta-model can be also used for generating components. Its structure does not differ
from the model much. It contains also Frame or Architecture but these structures do
not express the same as information as model structures do. The meta-model
components contain references to components of the model and by these references
the structure of an application developed in the SOFA 2 system is described.

Structure of the meta-model shows the Figure 2.2.1.

ajuelsul BunbaEp

ted

13225 20Ep=W|

Tadsy

500 = g0 g ue

% 100 3EY AW 50

WEUBdWaIqns Juall

Y 01384 BLIELY
&
i Sl s=anbar m
e BIEPBW] nosun|
5 ==p, . BIUEISU| BB |
anen adAi3 uoizejuswaduy) [0 (D aunjEubs poyIELw =3y
SLWEL uoiiEjuaa|du 3lUEel fio3Ey RIS
FEEINEE I ECLNEEETE] m Av Av
I JUEUCdWo D) 013y SEy — Ry
!.Jx EECITEIGYETI] n\ﬁ -
Sd SBY DK W A0 DKW - 1 =iE6a 3P oW Av 5§77 UD SPUE0RP I *0 adiy
. — 215 UoRENUNLCD
0 5§03 U0 spU=gap 1) uopa|ods | .
ey TD
anea 5
pasnbays anjEuliis _ _ e
Pap AL gs] 0 SIS |- SINEE] WaN * + 0
B - EL LR
Av |_.___W abenfue| BUIEL] PEAIAD.
N e gpans)
L h 4 oo SO UD EpuIdEp LW clo o FWEU anjen 5
SRR SRS adky saunbau
v = FELENES] sepinar
BIUEISU| OU |y auweu_._ rlotlo
T EEETE NN TTES) EEEE R Av
P aLe un
u\ﬁ zMWE_“ S3|pNg 13030 Uo spuadap 3jpung
=] g paytads anEy AEW 4
Juspuadaq 3|pung 2pog IS NdE3IAEs
..._“_% T I3BHIRIIINABE
dio
angiud [5g3 uo spuadep W &. ‘v * anwnd sy sEY Y _w___w._w_._.w_w
S1M4 Jo B3UEjs| ey
g3 Buyss .
aBenbue| |0« [0
N | o
R — 4v U jEIuE L du) umm_.c._mn_n._m 0
faznb| SEIUEISUL SEY 53 3Weu i l *
0 — ¥ adky 54 =l 4
- Bweu| .
- — — — — 20
- Q—, =0 E Av o Av _ =auziayay 185 Auadoly _ Fadoig
SUEY 1) BJUBya 5
Yy JO 3JUIayal 5, .AVl TSRy s
o1 = 5 SIUEIEU| JNUEUA] A LUSssy 4 awed| g
e e 100 = gg y3lymuc _ — — 10V 40 Y2y T
o —
YIIE-{3na-do}
EIEHEETE Ayadod sy pue
320q Jusw Ao dag Av fpadud S o Buidew
10| 10w §24 W EEE TR adfy
FIUEIEY| JWELA] Juswio|dag Fuad FLUEL
e « (0 setue Fuadolg paddely
- 90 15 2pou ¢ T
ey LT - e 5 01 UDI333UUnd
= SWEU - Fiquassy T o oy Juiodpugy - 1 7q uoii3au0ns
5040 Add . k k »%
¥[0 5ganeq few sg . 4
ki .
5 SEY Y aweu|

Bn[Ep, fadold Juawi|dag

anjen
ey

{ fiddy) sauasEEl 12edsy

aIuslEEY 1aedsy

suodwoIgng A guiEssy

’

fio3e ueg Juawiojdag

500 o BusucduoIgng

ion between

V1S

ts d

jec

Structure of the ADL meta-model and obj

Figure 2.2.1

factories

3. Analysis of the solution

The original version of SOFA 2 handles ADL meta-model by JDOM tools.
The best interest is to simulate operations done with files containing ADL without
any difference between the previous and the new versions of the manipulation
routines. Fetching and saving of objects from and into repository is needed. The
previous version of the modified routines already used repository access tools from
sofa-repository project. This way are entities loaded from the repository to be
processed and afterwards saved. The only thing required to provide editing of ADL

in memory is to replace the implementation of JDOM tools.

MConsole and other parts of SOFA 2 use a library for meta-model
manipulation operations, it is called tools-api (located in
org.objectweb.dsrg.sofa.tools package). Classes located in the sub-package api
contain tools for generating, exporting or creating the ADL files. These Actions need
to be modified to use the In-memory-adl library (added to the tools-api library),
which substitutes functions provided by JDOM. Two types of functions were done
by the JDOM tools, creation and editation of ADL is the first one. The second is
serializing and saving informations in ADL to a file in a computer file system. In-
memory-adl is intended to provide only in-memory editation of ADL files, but since
all the needed operations can be done through EMF, the added library provides

construction and save procedures of the ADL structures too.

Starting with the creation and editation routines of an ADL model object a
library is needed (the In-memory-adl library). To be able to set up every attribute
there is in the model a pack of static functions should be provided. Approach of usual
use of the set and get routines is possible. But since objects of ADL model do not
contain same attributes an abstraction for setting up process is required. The ADL
model is based on EMF, that means abstract set and get routines are provided. Using
these routines to set up objects would be better, because of the abstraction they
provide. But EMF models also have a description structure of components and their
attributes or features. This contains information about every attribute there is in the
model. The framework EMF.Edit — mentioned in Sections 2 and 4.1 — uses these
feature descriptions and allows to set up attributes of model's objects. The framework
does the process by creating a command for every modification. This command can

be executed to perform the change and afterwards undone if needed. Moreover the

use of the Edit framework is recommended for EMF model editation. For more

information see [7].

Routines for setting, adding, removing and clearing attributes are required to
imitate the processes done with ADL files by the JDOM tools. AdICreatingAction
class responsible for generating ADL uses the JDOM routines the most from the
classes. Feature identifying numerical constants — provided by the ADL model — are
used to specify operations e.g. adding a dependency to an architecture. Every
constant (in SOFA2ADLPackage class located in org.objectweb.dsrg.sofa.adl
package) uniquely describes a certain feature of an object in the model. This method
of determining a feature allows to use the In-memory library without any need of
including any other libraries in the user class. On the other hand creating a Command
to edit a feature by the Edit framework requires a literal of that feature
(EStructuralFeature class). This feature class also uniquely describes any attribute
and is also accessible in the ADL packages. The technique using numeral identifiers
requires to write a unique setting function for every feature. Each function would
than represent a unique feature literal class that would be used inside it to create a set
up command. Also to be able to use these functions a tool would be needed for

deciding which numeral identification goes to which unique function.

As it turns out the comfort of no need to use other libraries comes for a high
price of unsuitably static pack of functions. It would require a suitable modification
every time the ADL model is changed. More dynamic solution is needed to support
future changes of the SOFA 2 ADL model. This leads to second solution of object
modification routines. Using feature descriptions (EStructuralFeature classes) allows
to provide same functionality as using provided constants, but in a dynamic way.
Feature describing objects contains all required data, e.g. name of the feature or type
of the value contained in the feature. Using Reflection API of Java language even

type checking can be done.

The other thing that the previous JDOM approach provided is saving ADL
structures. JDOM handles ADL in XML structured files. Those files are stored in a
file system, where the current part of the SOFA 2 system is running, e.g. MConsole.
Storing of the files is done by the java.io library. But the EMF tools can be used to
provide local file system independent ADL storing. To use the serialization provided

by EMF and in SOFA 2 implemented XML factories the In-memory editation library

contains save, load and remove routines required by the Action classes of tools-api.
EMF provides structural containing of objects. As is described in the Sections 4.1
and 4.2. Editing domain contains Command classes. It also may contain the edited
objects under a structure of resources. Editing domain contains Resource set, this
contains Resource objects which are bound to a specific location described by a
uniform resource identifier or in short URI. EMF provides also load, save and delete
routines which require the identification. To allow access to these routines to Action
classes of tools-api, the library simply provides them to imitate the previous JDOM

version.

The in memory editation is achieved by the EMF tools and its XML Java
transformation tools. By adding an object of the ADL model to a Resource in an
Editing domain and setting its URI makes it ready to be transformed and saved to a
specified location. When objects are serialized from their memory form, they can be

deserialized back to the memory when needed.

Using this approach of EMF model storing allows to perform similar action
while handling the ADL files as if the JDOM tools were still used. It provides access
to edited modelled object in memory while it can be stored in a serialized form in file

system available for other parts of the SOFA 2 system.

10

4. Program documentation

4.1. Used techniques

It is quite hard to compare this enhancement to other tools or libraries since it
is made for a specific system. The only way to confirm that the In-memory editing is
done in the right manner is comparing it with other EMF model editors and
recommended approaches of EMF-based models editation. All entities of the SOFA
2 model are based on Eclipse Modeling Framework. It was found useful that EMF
has its own library for modifying model's objects. According to the Java language it
is located in the org.eclipse.emf.edit package. That is provided mainly by the sub-
package command. For every EMF object the command toolkit allows to create
certain modification commands and add it to the EditingDomain object. If needed, a
command can be created by specifying the EditingDomain, the owner of a modified
feature, the feature itself, and a new value. Thereby the concrete object of model can

be modified.

As described above, this toolkit takes care of editing. The loading process of
the ADL data is done by XML-based techniques, since EMF works with XML
schema. This simplifies work with ADL files. Basic routines processing the ADL
files use libraries of JDOM project. That provides for SOFA necessary abstraction
for reading and writing ADL files.

EMF.Edit and EMF is suited for JFace viewers. In SOFA's MConsole, these
viewers are used for visualization of components and model in a repository. The
model object is accessible via ContentProvider adapter. It provides a mechanism for
a JFace viewer to get required object's attributes or sub-objects. This comes very
handy in case of the hierarchical model. As the TreeViewer is in MConsole used
quite often, its description is in place. This JFace object provides a structural view of
a object for the user interface. Through its TreeContentProvider class, which inherits
the ContentProvider, it accesses the model by getting children and parent items of

the observed object. Figure 4.1.1 describes this situation.

The viewer actually does not handle the received components of the model as
objects. The TreeViewer works with generic items which are obtained through
AdapterFactoryContentProvider class, by EMF adapters knowing how to process the

structure of components for JFace type viewer. [7]

11

TreeViewer Application model

N O O
ContentProvider O O O

Figure 4.1.1: Access of TreeViewer to the model [7]

4.2. In-memory editation

The SOFA system is implemented in the Java programming language and so
is this enhancement. The documentation to the source codes, generated by the

Javadoc tool, can be found in the attachments of this thesis.

Structure of the enhancement is shown on the Figure 4.2.1. According to the
Java packaging, its location is org.objectweb.dsrg.sofa.tools.adl.edit.memory. The
main entry point class of the library is located in the sub-package impl. Its name is
InMemoryAdlI. It extends the InMemoryModelFactoryImpl class to provide a getter of
resources and a Universal Resource Identificator (URI) creator according to the usual
SOFA resource identification. The extended class actually provides all the abstract
routines for working with the model's objects. This could be also used as an entry
point of the library. However to keep the SOFA class structure and use common (not
only Java) programming technique, the InMemoryAdI class was added to represent
the top of the library. It also adds loading and saving routines for model's object

storage.

According to the Analysis Section, two approaches are possible a dynamic
and a static. For observation both of them are available in the In-memory editation
library. To this point of the technical description both are the same. Numeral

identification approach is described first.

Lower level factory classes in the library represent handlers of concrete

operations like creating an Architecture object of the model and call static functions

12

in the Helper class. The main factory has abstract routines for creating
(createModelObject) and modifying (updateValue) the model's objects. These
routines decide which sub-factory will take care of the request. The decision depends
on the type of the modified object while updating a value or on a number of the type
from SOFA2ADLPackage from org.objectweb.dsrg.sofa.adl package. When the
request is forwarded to a lower level factory class, its routine calls one or more static
functions from Helper class, which represents the lowest level of the library. The low
level factories do not do any processing but they provide a certain level of
abstraction of the Helper class, like adding a collection of objects to a feature. Since
the EditingDomain object is necessary for performing the modifications, they also
contain a pointer to it. Thus every call to modify the object does not need it as a
parameter. This means that the domain object has to be the same in the instance of
the factories — the instance of the main InMemoryModelFactory contains pointers to
the lower level factories which makes them contain the same domain object. If the
domain was changed in one of the factories, the objects returned by every

modification call would not be consistent.

Low level factories

InMemoryadl

Helper

InMemoryModel-
Factory L~

/1N
AL/

Figure 4.2.1: Structure of the library

The lowest level of processing the modifications is the Helper class. It
contains only Java language static functions, which means the function works only
with the parameters and nothing else. Beacause the count of the functions is high,
making them not static could be quite confusing. The creator functions work only
with the SOFA2ADLFactory (package org.objectweb.dsrg.sofa.adl). They do not add
the created object to the EditingDomain because on the low level the library does not

have any information about where to add the new object. The adding of it is therefore

13

left for the user of the library. Edit operations on the other hand add new information
to the domain.When the modification is specified via choosing the right function in
Helper through factories, the library has all the necessary information to perform the

action.

Using the EMF.Edit framework, the particular function creates a command to
edit an object of the model. Creating a command requires EditingDomain, which is
specified by a low level factory, an edited object, a feature of the object — specifying
which attribute is to be changed — and the new value. When a new command is
created, it is performed using the execute routine of CommandStack
(org.eclipse.emf.common.command package), which is accessible in EditingDomain.
This processes the command according to the EMF.Edit approaches. It performes a
test whether the command is executable, it cleares all undone commands (as
described in the 4.1 Section, EMF.Edit provides an undo-redo interface), and
executes the new one. After the command is performed, that means the modification
is in place, the modified object is returned as a result of the operation. The returning
might seem useless, since one of the parameters is the model's object, but in some

cases it could be used e.g. to campare the original and the modified objects.

Now the secondary approach is described. Using the same entry classes to the
library, the dynamic editation does not require the low level factories. InMemoryAdl
class provides also the same pack of set, add, remove and clear routines as the static
approach does. But these ones require EStructuralFeature parameter and directly use
three functions in the Helper class, which are setValue, addValue and removeValue.
Because the ADL model implements EMF, the SOFA2ADLFactory can create new
instances of classes by only having an EClass object. The edit routines refer directly
to the features owned by the classes of ADL model. In class
SOFA2ADLPackage.Literals is listed each of those features. These are used in calls
of the edit routines from Action classes modified in tools-api — Figure 4.2.2 describes
access into the library. Moreover implementation of EMF in ADL provides in feature
literals classes contained in features of the ADL objects. This in combination with
Java Reflection allows to dynamically check types of inputed values and throw

exceptions if needed.

As described in the Analysis Section, the second approach is implemented in

the tools-api project because of its dynamism. Routines of the first approach are

14

marked as deprecated to ensure further users of the In-memory editation library that

the dynamic routines should be preferred.

In-memory editation library
InMemoryadl
SOFA tools-api / class
.»‘"'/’, A
Action L1 dynamic gbproach static\qppmach
classes " N
)
Helper Low level
class = — —— — —| factory classes

Figure 4.2.2: Two approaches of the ADL objects editation

To get insight of the ADL model and how objects are divided between
factories see Figure 2.2.1. The Unified Modeling Language (UML) diagram shows

relations and all components of this model.

Modificatins done in the SOFA 2 system to implement this enhancement
were done mainly in the tools-api project. In the package
org.objectweb.dsrg.sofa.tools.api in Action classes. Mostly modified class is the
AdICreatingAction which takes care generating ADL objects out of a model objects.
JDOM Element classes were replaced with EObject classes of EMF. Classes for
checking out resources in repository, exporting, deploying and committing created
components — operations accessible in SOFA 2 repository view — are modified. Also
actions for preparation of deployment plans and assemblies are changed to

implement approach of In-memory editation library.

The editing domains mentioned previously are in the modified sections of
SOFA 2 used separately for each operation to divide logical actions of constructing,
loading and saving an ADL object. For example, performing the Checkout action
loads first domain to seek for an existing files of an ADL object that is about to be
generated from a model's object. Than a second domain is used to construct an ADL
object using the ADLCreateAction class. Finally by a third domain a serialization and

a save operation are performed. This behavior can be changed in the In-memory

15

editation library by forbidding construction of ADLCreateAction an Editing domain

object for separate operations.
4.3. Clone and merge tool

Since MConsole is an Eclipse plug-in or a stand-alone application, it is
defined by plugin.xml, MANIFEST.MF and source code files. The first two describe
how and in which scenarios is the programmatic representation used. The Clone and
Merge operations are accessible from a context menu selecting one or more entities
in the MConsole Navigator, as described in the User documentation Section 5.2. The
access point of the copy procedures are classes MconsoleCloneAction and
MconsoleMergeAction in the package org.objectweb.dsrg.sofa.mconsole.ui.actions.
To follow the same feature style, these Action classes just construct and launch the
wizards as Figure 4.3.1 displays. Extending the MconsoleAction class and overriding
run method of org.eclipse.ui.IActionDelegate represent an Eclipse plug-in. The call
of the whole MConsole UI to launch this action starts a new thread, as typical user

interfaces do.

MConsole-

; MConsoleRepository-
Mergection

CloneWizard

MConsoleRepository-
/ CopyWizard-

FagesSetup

MConsole- MConsoleRepository- |-
Clonehction CopyWizard]

\ MConsoleRe pository-
CopyWizard-

Pagelist

MConsoleRepository-
MergeWizard

Figure 4.3.1: Class structure of the Clone and merge tool

The Action prepares selected resources for
org.eclipse.jface.wizard.WizardDialog and launches it using the open routine. The
wizards of merge and clone operations are represented by the

MConsoleRepositoryCloneWizard and MconsoleRepositoryMergeWizard classes.

16

Both of them contain an unique identification of wizard. These two classes extend
MconsoleRepositoryCopyWizard. Since both wizards would be the same — expect
wizard's labels and action called by Finish button — an abstraction was made. The
copy wizard itself extends Wizard class of org.eclipse.jface package, overriding init,
addPage and performFinish routines, and INewWizard, an interface for creating

wizards for Eclipse plug-ins (package org.eclipse.ui).

The initialization method transforms selected objects from input (MConsole
Navigator menu) to a list of IMConsoleRepositoryResource objects, which are used
through the operation of copying. The most important is the performFinish routine. It
is called by the plug-in when the Finish button is pressed. It loads input information,
initializes the cloning or merging process, and launches it. As is described in the user
documentation Section 5.2, this is the point where a dialog listing touched entities

may appear.

The wizard consists of two pages. Both of them extend
org.eclipse.jface.wizard.WizardPage and represent the Ul of the pages. The only
technical things in these classes are buttons for checking connection to repositories.
Listener technique is used here. It uses an inner private class with another thread.
The connection is checked by a try to create a RepositoryAgent (package
org.objectweb.dsrg.sofa.repository) class with a specified URL. The agent represents
a handler of a repository in the SOFA system. Result of the try is displayed through a
label next to the Check button. If the repository is found, its content will be loaded to

the viewer on the next page of the wizard.

Since connecting to the repository may take a while, launch of the wizard is
not instant. The same issue is when switching to the second page of the wizard, when

the repository data is loaded to the tree viewer.

The processes of cloning and merging itself does not involve any new
features added in this project. This feature focuses only on setting up and handing
over the received information to the RepositoryCloner class in
org.objectweb.dsrg.sofa.repository package. This class takes care of copying the

components between specified repositories.

Libraries mentioned in the previous Sections were used according to the

recommended approaches in the Clayberg, Rubel: Eclipse Plug-ins (3rd Edition) [5].

17

The structure of Action, Wizard and WizardPage was taken from other wizards of
SOFA 2 to keep the same flow of computation. There are other possibilities of the
wizard, e.g. creating the wizards with more pages. But to keep the UI as simple as
possible, this turned out, after few programming cycles, to be the right way. There
was also a problem with running the merge and clone process in a separated thread.
It would be very useful to indicate still running operation by changing text of the
Finish button but logically that would corrupt the idea of it being a finish button.
Showing another dialog for the operation would also defeat the simple working UI.

That is why any extra thread was not added.

One thing may appear not finished in this feature. While launching the
wizard, the repository connection check may take a while so a status dialog may have
been used. The same thing happens when switching this wizard to the second page.
The repository URL is loaded and its contents are visualised in the tree. But while
the repository is being contacted and its contents loaded, there is no status indication,
thus through a visualisation the progress would appear to be stopped. So adding this

would be useless.

18

5. User documentation

5.1. In-memory editation

Tools of SOFA can be accessed as a plug-in for the Eclipse development
environment or as a stand-alone application. In both cases, the user interface (UI) is
the same. The main points of the SOFA 2 system are the environment and the
management console MConsole. The environment provides tools for creating and
modifying elements of the model. MConsole allows to modify communication and
relations between elements of the whole model. It also provides access to repository
of the model's elements. The enhancement described in this Section can be accessed

through MConsole and used by tools of SOFA 2 environment.

The user interface and routines done during the use of MConsole's edit
wizards have not changed compared to the previous version. The new feature effects
only the inner mechanics and behavior of the program. The modified tools are in the
edit wizard for DeploymentPlan. The wizard is accessible in MConsole Navigator
view via Edit element in context menu of a Deployment plan item in Deployment

plans folder in list of components in repository.

On its left side, the first page of the wizard shows a tree structure of the
edited deployment plan and its sub-components. Selecting elements from the tree
changes the right side of the page. For deployment plan it shows options such as
those shown on the Figure 5.1.1. This allows to set name and the name of the node of
the deployment plan. Selecting a sub-component in the tree (if available) shows a
setup of the DeploymentSubcomponent, allowing to change its name, node, and
properties. The tree also lists elements of the DeploymentDynamiclnstance type if
there is one owned by the DeploymentPlan or DeploymentSubcomponent elements.
After the selection, fields with dynamic instance's node and architecture name and
version are displayed. Editing any of the mentioned attributes runs a component
change process through the new feature's library. The next page of the Deployment
Plan edit wizard (Figure 5.1.2) provides a view of Aspect elements connected to the
edited deployment plan (the feature of DeploymentPlan component is called Apply).

It allows to add, remove, or set aspects. It even provides buttons to move aspects in

19

the list of the edited deployment plan. This comes in handy in case that the

deployment plan applies to interdependent components.

Setting or adding attributes through the wizard requires those attribute to exist
in the SOFA repository. For example adding a property value to a deployment sub-
component requires that property value to be already present in the repository. If an
invalid configuration is selected an error dialog will appear after confirming the edit
wizard. After confirmation of the dialog the wizard starts up again repeatedly with
the previously selected configuration. The repetition continues until there is no error

or the wizard is canceled.

Tools of the In-memory editation can be also accessed through SOFA 2
environment. Operations done during creation of new components or checking out of
objects in repository use routines of In-memory editation, but do not change any of

its functionalities.

20

SOFA 2 Deployment Plan
Edit SOFA 2 deployment plan|

Define subcompenents and dynamic instances for this deployment plan:

= = foo.DeplPland (deployment plan) Mare: [foD.DepIFIan.ﬂ.]

i tester (subcomponent)
{8 logger (subcomponent)

Mode: [node#.]

@ < Bac [MNext =] | Cancel | Finish

Figure 5.1.1: Deployment plan edit wizard main page

SOFA 2 Deployment Plan
Select SORA 2 deployment plan aspects

Define selecked aspects for this deployment plan:

Add...

Remove
Up
Down

Froperties...

@ = Back Mext = | Cancel | Finish

i

Figure 5.1.2: Deployment plan edit wizard aspect setting page

5.2. Merge and clone tool

This feature makes cloning and merging processes easier without any need to
use command line. It is accessible in the MConsole's user interface (UI). The merge
wizard is launched by selecting one or more components in a repository of a
SOFAnode in Navigator menu and selecting Merge in context menu. The clone

wizard is run likewise.

The wizards are nearly the same for both the actions. They have two pages.
The first one allows to select source and destination repositories by entering their
Uniform Resource Locator (URL) addresses. Accessibility and correct type of
repositories can be checked by pressing the Check connection button. Dry run a Non
recursive run check-boxes provide more setting for the operation. Checking the Dry
run box processes only a simulated operation without copying any components. After
everything is done, a list of components effected by the procedure is displayed. The
Non recursive run box results that only the selected components are processed during

the operation, all dependencies being ignored. Figure 5.2.1 shows the interface.

On the next page a list of components available in the source (if the
repository is accessible) is displayed. Checking component's boxes makes it part of
the operation specified on the previous page. The view of repository behaves as
expected. By checking for example element Frames, all Frame components are
selected. The same happens if the components are selected one by one. Figure 5.2.2

shows an example of this page.

The most important thing of the wizard is, of course, the Finish button, which
launches the specified operation. After the operation is done a dialog appears with
list of the touched components. Moreover, if Dry run is selected and the dialog is
skipped by Cancel button, the UI will return to the wizard. This allows to launch
normal clone or merge operation after simulating the process, without any need to
select required components and set up source and destination repositories all over

again.

22

SOFA 2 Merge Repository
Specify merging operation

Source repository: lhttp:jﬂucalhnst:a 173/5ofaServiet]

[Check r_nnne:tion]

Destination repository: []

[Check conner_tiun]

(] Dry run

| Mon recursive run

@ = Bacl Mext = I | Cancel] | Anish

Figure 5.2.1: The first page of the merge wizard

SOFA 2 Merge Repository
Select resources to merge

I [Architectures
I [assemblies

~ W Code Bundles
[[] org.ow2.dsrg.sofa.aspects.scnpt.CbCommon 534f498d302059a53b21093422266fa2«
[] erg.ow2.dsrg.sofa.examples.script.logdemo.cbundle Commen b6 7dc33caeaecf2322

B[] Deployment Plans
I+ [Frames
[+ [] Interface Types

. | B

@ _ < Back " hext = . Cancel] [Anish I

Figure 5.2.2: An example of a component list in the merge wizard

23

Conclusion

The SOFA 2 system is a well constructed base for developing component-
based applications by providing advanced features and hierarchical model editors.
The In-memory editor of ADL files makes the environment of SOFA 2 more usable.
Which environments used for developing large scale software systems typically are,
so that numerous programmers can work simultaneously on a project. For
administrators of developed applications, merge and clone features provide more
comfort than the command line scripts that were part of the previous version of the
SOFA 2 system. Moving of developed components between repositories is a
common action, like committing a written code to a version system server.
Development and stable repositories are supposed to be part of development
environment of applications developed in SOFA 2. These new features bring work

with repositories closer to the user and the MConsole's interface.

Stability of the added library was tested via its implementation in the
sofa.mconsole.ui, sofa.adl.presentation.wizards and sofa.tools packages. During the
testing of the new features and the changes, no crashes of the program were

observed.

24

Bibliography

[1] SOFA 2 component system website [online]. 2006 [citation 2011-11-30].
Accessible at WWW: <http://sofa.ow2.org/>.

[2] Bures, T., Hnetynka, P., Plasil, F., Klesnil, J., Kmoch, O., Kohan, T., Kotrc,
P.: Runtime Support for Advanced Component Concepts, Proceedings of SERA
2007,

Busan,Korea, IEEE CS, ISBN 0-7695-2867-8, pp. 337-345, Aug 2007.

[3] Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balancing Advanced Features in
a Hierarchical Component Model, Proceedings of SERA 2006, Seattle, USA, IEEE
CS, ISBN 0-7695-2656-X, pp.40-48, Aug 2006.

[4] Steinberg, D., Budinsky, F.,Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework (2nd Edition),
Addison-Wesley Professional, December 26, 2008.

[5] Clayberg, E., Rubel, D.: Eclipse Plug-ins (3rd Edition), Addison-Wesley
Professional, December 21, 2008.

[6] Cerny, O., Hosek, P., Papez, M., Remes, V.: SOFA 2 Component System User's
Guide, November 9, 2009

[7] WebSphere Application Server [online]. June 1, 2004 [citation 2011-11-30]. The
EMF.Edit Framework Overview. Accessible at WWW:
<http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=
%?2Forg.eclipse.emf.doc%2Freferences%2Foverview%2FEMF.Edit.html>.

[8] Rainer Niekamp: Software Component Architecture in Institute for Scientific
Computing, TU Braunschweig. July 29, 2011

[9] Report on a conference sponsored by the NATO Science Committee. Software
Engineering. October 7th to 11th, 1968, Garmisch, Germany

25

List of Abbreviations

ADL - Architecture Description Language; a language used to describe and
represent software architectures

EMF — Eclipse Modeling Framework; a library provided by Eclipse foundation to
model and generate code for development of applications based on

component data model

GMF — Graphical Modeling Framework; a library provided by Eclipse foundation to
create editors of EMF-based models with Ul

UI - User Interface

UML - Unified Modeling Language; a standardized language with graphic notation
techniques for creating models of software systems

URI — Uniform Resource Identifier; a character sequence for identifying a
resource on network; more abstract than URL

URL — Uniform Resource Locator; a character sequence with a defined structure for
specifying exact locations of resources

XML — Extensible Markup Language; a type of encoding documents in
computer-readable form

26

List of Figgures

2.2.1 Structure of the ADL meta-model and objects division between factories
4.1.1 Access of TreeViewer to the model [7]

4.2.1 Structure of the library

4.2.2 Two approaches of the ADL objects editation

4.3.1 Class structure of the Clone and merge tool

5.1.1 Deployment plan edit wizard main page

5.1.2 Deployment plan edit wizard aspect setting page

5.2.1 The first page of the merge wizard

5.2.2 An example of a component list in the merge wizard

27

7

12
13
15
16
21
21
23
23

Attachments

Content of the enclosed CD ROM

With this thesis comes a CD ROM containing source code of the implementation and
binaries for installation to the Eclipse development platform. The CD ROM contains:

/bin/
Files for installation of the environment to the Eclipse platform.

/doc/
Electronic version of this thesis and a PDF file containing a scalable meta-
model visualisation.

/src/

Source code of the modified and added classes with documentation in
Javadoc.

28

