
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Ondřej Kudláček

SOFA 2 graphical tools improvements

Katedra distribuovaných a spolehlivých systémů (32-KDSS)

Supervisor of the bachelor thesis: 
RNDr. Michal Malohlava

Study programme: Computer Science

Specialization: Programming

Prague year 2011





At first I would like to thank my family.  They have been a great support for 
me. I know, that there were times when I was not easy to cope with, and I am 
grateful that they did not let me down. I am also thankful for the help my supervisor 
provided me. Without his backing I would not have been able to complete this work. 
And finally thanks to my colleagues that they  let me use their computer for 
development, while I was not able to use mine.



I declare that I carried out this bachelor thesis independently, and only with the cited 
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No. 
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles 
University in Prague has the right to conclude a license agreement on the use of this 
work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In…...... date............ signature



Název práce: Vylepšení grafických nástrojů komponentového systému SOFA 2

Autor: Ondřej Kudláček

Katedra / Ústav: Katedra distribuovaných a spolehlivých systémů (32-KDSS)

Vedoucí bakalářské práce: RNDr. Michal Malohlava 

Abstrakt: Tato práce se zabývá vylepšením  komponentového systému SOFA 2 a je 
zaměřena na grafické řídící rozhranní. SOFA 2 je založena na modelovacím nástroji 
Eclipse  Modeling  Framework. Pomocí něj je vykonstruován hierarchický model 
tohoto systému. Rozšíření vyvinutá v rámci tohoto projektu poskytují skrz grafické 
rozhraní možnost upravovat tzv. Deployment plány aplikací vyvinutých v systému 
SOFA  2 a přenášet jejich  komponenty mezi repozitáři. Grafické rozhraní je 
provedeno jako samostatný program nebo  jako rozšiřující součástka (plug-in) do 
platformy Eclipse. Vylepšení systému je zahrnuto v součástce MConsole, pomocí 
které se dají vyvíjené aplikace v systému  SOFA  2  spravovat. Celý program je 
implementován v jazyce Java. Grafická rozhranní jsou zkonstruována pomocí 
knihovny JFace, která umožňuje práci s modely založenými na EMF. Při úpravách 
modelu se používá framework EMF.Edit a jeho podknihovna Command.

Klíčová slova: komponentový systém, grafický nástroj, Eclipse, Java

Title: SOFA 2 graphical tools improvements

Author: Ondřej Kudláček

Department / Institute: Department of Distributed and Dependable Systems (32-
KDSS)

Supervisor of the bachelor thesis: RNDr. Michal Malohlava

Abstract: This enhancement of component system SOFA  2 is focused on the 
graphical interface. SOFA 2  is based on Eclipse Modeling Framework,  through 
which is constructed a hierarchical model of the system. The extension of SOFA 2 
developed in this project provides – via the graphical interface tools for the so called 
Deployment Plan – an editing of applications developed by SOFA 2 and copying of 
their components between repositories. The graphical interface is created as a stand-
alone program or as a plug-in for the Eclipse platform. The enhancement is added to 
the management console called MConsole, which allows editing models and 
applications developed in SOFA 2. The whole library is programmed in the  Java 
programming language. The graphical environment is build on JFace library for 
EMF-based models editors. EMF.Edit framework and its library Command are used 
for the editation of the models.

Keywords: component system, graphical tool, Eclipse, Java



Contents

Preface 1

1. Introduction 2

1.1. Goals 3

1.2. Structure of the text 3

2. Introduction of SOFA 2 model 5

2.1. Introduction to EMF 5

2.2 Basics of the SOFA 2 model 5

3. Analysis of the solution 8

4. Program documentation 11

4.1 Used techniques 11

4.2 In-memory editation 12

4.3 Clone and merge tool 16

5. User documentation 19

5.1 In-memory editation 19

5.2 Clone and merge tool 22

Conclusion                        24

Bibliography  25

List of Abbreviations 26

List of Figures 27

Attachments 28



Preface
Over the past years the  component-based development became one of the 

good ways to build software systems. The SOFA  2 system is an environment 
providing tools for creating those applications. These applications consist of models 
made of components.  By this  system they can be created and managed. SOFA 2 
consists of a  few independent parts. One of them is MConsole, a tool designed for 
administering the model's components and SOFA's runtime environment. It is a 
stand-alone application based on Eclipse Rich Client Platform or it is also available 
as a plug-in for the Eclipse environment. Enhancements created in this project are 
part of MConsole. They add new features to the system to provide more functionality 
and comfort during the work with MConsole and SOFA 2.

Enhancement  called  In-memory  ADL  editation  implements  recommended 
techniques  of Eclipse  Modeling  Framework.  It  takes the settings  of a  developed 
application in SOFA 2 stored in ADL to the memory of MConsole.

Merging  and  cloning  feature  adds  a  new  functions  to  MConsole.  The 
repository  of  the  system  –  another  independent  part  of  SOFA  2  –  contains 
components of a modeled application. The SOFA 2 system may contain not only one 
repository. This feature adds an user interface to MConsole and provides merging 
and cloning of components between SOFA's repositories.

1



1. Introduction

Creation  of  applications  and  software  in  general  is  quite  a  new  domain. 

Programming  techniques  like  Object-oriented  programming  appeared  in  1960s. 

Developers try to grasp the idea of what could a computer program do through these 

techniques. For example using the Object-oriented technique programmer divides the 

application into objects. Divisions of the program describe real or abstract objects 

that may have  no  meaning  without  the rest  of the program.  Another  approach is  

called  Component-based  engineering.  Its  idea  was  first  published  at  NATO 

conference in  Germany,  1968 and IBM used it  to create System Object  Model in  

early  1990's.  [8],[9]  This  technique  takes  the  other  side  of  programmer's  view. 

Applications created by it are put together smaller components, packages containing 

related data and functions.

Components can be reused in contrary to the objects and to achieve it  they 

implement interfaces for communication. In a typical implementation components do 

not have access to inner structure of other components. Moreover, components are 

substitutable, if user component required services are satisfied with substituted one's. 

Applications  constructed  by  these  independent  packages  are  called  component 

models.  As components use their  interfaces for communication, the model can be 

distributed through computer network.

The model can be of two types, flat or hierarchical. The flat component 

models are older and more advanced. And despite being not able to apply multiple 

techniques for one action, they are widely used. The hierarchical component models 

may be composed of other components, which makes them easier to make use of, 

e.g. more than one communication style between elements of a  model. Because of 

that, they support more advanced concepts and features. But hierarchical models do 

not often appear outside an academical environment. These usually  provide only a 

very limited platform without any repository or container or any basic service for 

components. These advanced features are very often applied in the flat models, that 

is why hierarchical models are used lesser. [2]

SOFA 2 is a hierarchical component system and includes support for tools, 

runtime environment, repository for storing components. It serves as a component-

based  application  modelling  environment  and  a  complete  framework  [1].  Tools 

2



contained  in  the  SOFA 2 system are Cushion  – an application development  and 

repository  manipulation  tool  –  SOFA  IDE  –  a  graphical  tool  and  an  Eclipse  

environment  plug-in – and MConsole – monitoring, SOFA 2 runtime  environment  

maintenance tool and a stand-alone or Eclipse plug-in application. By these parts of 

the SOFA 2 system components can be created and models assembled. Settings of 

components and their communication can be done in MConsole. Because the parts of 

applications  modelled  in  the  system  can  be  distributed  through  network,  these 

settings may not be available  locally  but on a remote computer. But SOFA 2 does 

handle these settings directly.

1.1. Goals

The main purpose of this project is to enhance graphical tools of the SOFA 2 

system.  This  includes a feature for the MConsole tool and an improvement  of the 

tools-api library. These enhancements are directly related to the user interface of the 

SOFA 2 system and addition of them would increase its usability.

The SOFA 2 system contains except the repository model a meta-model or 

ADL.  This  meta-model  is  used  for  defining  components  and  their  relations,  the 

settings  of  components.  Developers  who  use  the  stand-alone  or  Eclipse  plug-in 

versions of SOFA 2 have a copy of ADL stored in a local files.  MConsole directly 

accesses and modifies them. This mostly concerns a deployment plan files containing 

execute  instructions  for  the  SOFA  2  runtime.  To  provide  indirect  accessing  of 

component  settings  during  editation  process  an  enhancement  called  In-memory 

editation should be added to the SOFA 2 system. 

Components are stored in repository of the system. SOFA 2 allows to operate 

not only with one repository. Its repositories are divided into development and stable  

and allow stored components to be cloned between them. MConsole as a tool for 

environment  maintaining  should  provide  a  feature  to  support  migration  of 

components between repositories. This should be allowed through clone – copying a 

component  from  stable  repository  –  and  merge  –  copying  a  component  from 

development repository – operations.

1.2. Structure of the text

Preface and the Section 1 introduces to the topic of component modelling and 

describes goals of this project.

3



The Section 2 provides basic description of the SOFA 2 EMF-based model 

and the meta-model processed by In-memory editation enhancement.

Section 3 contains construction steps that led to the solution of In-memory 

editation.

Section 4 tells  about technical content. In the first  subsection are described 

libraries  and approaches  used  in  the In-memory editation.  The second subsection 

contains  technical  description  of  the  In-memory  editation part.  And  in  the  third 

technically describes the Clone and merge tool.

Section 5 shows how to use both enhancements.  In the first  subsection is  

described which parts of MConsole and SOFA 2 environment  use the In-memory 

editation. In the second is shown how to clone or merge model components through 

Clone and merge tool in MConsole.

The  last  Section  Conclusion  sums  the  whole  project  up  and  tells  about 

stability of the new enhancements.

4



2. Introduction of SOFA 2 model

2.1. Introduction to EMF

Modelling tools provide various functions for application development. There 

are tools for data modelling, applications structure languages for modelling or even 

object modelling  tools. Since SOFA is based on the  Eclipse platform and is also a 

plug-in, it uses its tools for modelling. The graphics of SOFA and mainly MConsole 

(which is described in the Used techniques Section 4.1 of Program documentation) 

come from Graphical Modeling Project of Eclipse foundation. It provides libraries 

for graphical editors based on Graphical Modeling Framework (GMF) and Eclipse 

Modeling Framework (EMF).

The EMF is a library provided by the Eclipse Foundation. It allows to access 

facilities of Eclipse platform. The main point of the EMF is that it creates a 

connection between Java programming language, Extensible Markup Language, and 

Unified Modeling language via generating code. It allows to describe a model in any 

of the mentioned languages and generate the others. For example using EMF after 

creating a XML Schema file Java implementation classes can be generated.

With the EMF come other tools, libraries, and frameworks. One of them is 

applied in In-memory editation part of this project. It is EMF.Edit framework which 

provides classes for building editors for EMF-based models. With its Command 

subsection it is possible to set, add or remove attributes of objects of a model. 

Moreover these modifications can be undone in the contrary with  classic 

programmatic change to an attribute of a class. For more description and application 

of this framework see Sections 4.1 an 4.2.

2.2. Basics of the SOFA 2 model

Since the In-memory Editation part of this project works with the structures 

of the SOFA 2 model and meta-model, it is useful to mention it. This Section is taken 

from [2]'s  Section Overview of the SOFA 2.0 component model.

“In the SOFA 2 system, components interact through provided and required 

Interfaces with other components which can be either black-box or grey-box. The 

black-box does not provide any view of its internals, while the grey-box provides 

view of its inner structure. The black-box is represented by the  component Frame. 

5



The grey-box is Architecture with implementation of Frame. The Architecture can be 

an implementation of a component or it can be a collection of other components 

(Subcomponents).” More detailed description can be found in the cited text.

In a programmatic  look at the model, there are common classes as 

NamedEntity, VersionedEntity, and Version, which are used throughout the model. 

These provide to all its implementations a name and a version for versioning system 

of SOFA 2. Frame is a base element for component representation of the black-box 

type. It has references via provided and required lists to Interface to provide 

communication. The Interface is of a type defined by InterfaceType. Other elements 

of Frame are Annotation and Property. Annotation can be used to mark a Frame as 

top-level, which represents an entry component of the model. Property may define 

properties, as expected. For more details see Section 3 of [3].

The  SOFA 2 system contains  also  a meta-model  which  is  used  to define 

components  and capture relations  between them.  Through tools  of repository the 

meta-model can be also used for generating components. Its structure does not differ 

from the model much. It contains also Frame or Architecture but these structures do 

not  express  the  same  as  information  as  model  structures  do.  The  meta-model 

components contain references to components of the model and by these references 

the  structure  of  an  application  developed  in  the  SOFA  2  system  is  described. 

Structure of the meta-model shows the Figure 2.2.1.

6



Figure 2.2.1: Structure of the ADL meta-model and objects division between 

factories

7



3. Analysis of the solution

The original version of SOFA 2 handles ADL meta-model by JDOM tools. 

The best interest is  to simulate operations done with files containing ADL without 

any  difference  between  the  previous  and  the  new  versions  of  the  manipulation 

routines.  Fetching  and saving  of objects from and  into repository is  needed.  The 

previous version of the modified routines already used repository access tools from 

sofa-repository  project.  This  way  are  entities  loaded  from  the  repository  to  be 

processed and afterwards saved. The only thing required to provide editing of ADL 

in memory is to replace the implementation of JDOM tools.

MConsole  and  other  parts  of  SOFA  2  use  a  library  for  meta-model 

manipulation  operations,  it  is  called  tools-api  (located  in 

org.objectweb.dsrg.sofa.tools package).  Classes  located  in  the  sub-package  api 

contain tools for generating, exporting or creating the ADL files. These Actions need 

to  be modified  to  use  the  In-memory-adl  library  (added to the tools-api  library), 

which substitutes functions provided by JDOM. Two types of functions were done 

by the JDOM tools, creation and  editation of ADL is the first one. The second is 

serializing  and saving informations in ADL to a file  in a computer file  system. In-

memory-adl is intended to provide only in-memory editation of ADL files, but since 

all  the  needed  operations  can  be  done  through EMF,  the  added  library  provides 

construction and save procedures of the ADL structures too.

Starting with the creation and editation routines of an ADL model object a 

library is  needed (the In-memory-adl library).  To be able to set up every attribute 

there is in the model a pack of static functions should be provided. Approach of usual 

use of the set and get routines is possible.  But since objects of ADL model do not 

contain same attributes an abstraction for setting up process is  required. The ADL 

model is based on EMF, that means abstract set and get routines are provided. Using 

these  routines  to  set  up objects would  be  better,  because  of the abstraction they 

provide. But EMF models also have a description structure of components and their  

attributes or features. This contains information about every attribute there is in the 

model.  The framework EMF.Edit  – mentioned in  Sections 2 and 4.1 – uses these 

feature descriptions and allows to set up attributes of model's objects. The framework 

does the process by creating a command for every modification. This command can 

be executed to perform the change and afterwards undone if needed. Moreover the 

8



use  of the  Edit  framework  is  recommended  for  EMF model  editation.  For  more 

information see [7].

Routines for setting, adding, removing and clearing attributes are required to 

imitate the processes done with ADL files  by the JDOM tools.  AdlCreatingAction 

class responsible  for generating ADL uses the JDOM routines  the most  from the 

classes. Feature identifying numerical constants – provided by the ADL model – are 

used  to  specify  operations  e.g.  adding  a  dependency  to  an  architecture.  Every 

constant  (in  SOFA2ADLPackage class  located  in  org.objectweb.dsrg.sofa.adl 

package) uniquely describes a certain feature of an object in the model. This method 

of determining  a feature allows to use the In-memory library without any need of 

including any other libraries in the user class. On the other hand creating a Command 

to  edit  a  feature  by  the  Edit  framework  requires  a  literal  of  that  feature 

(EStructuralFeature class).  This feature class also uniquely describes any attribute 

and is also accessible in the ADL packages. The technique using numeral identifiers 

requires to write a unique setting function for every feature. Each function would  

than represent a unique feature literal class that would be used inside it to create a set 

up command.  Also  to be able  to use these functions a  tool would be needed for 

deciding which numeral identification goes to which unique function.

As it turns out the comfort of no need to use other libraries comes for a high 

price of unsuitably static pack of functions. It would require a suitable modification 

every time the ADL model is changed. More dynamic solution is needed to support 

future changes of the SOFA 2 ADL model. This leads to second solution of object 

modification routines. Using feature descriptions (EStructuralFeature classes) allows 

to provide  same functionality  as using provided constants,  but in  a dynamic  way. 

Feature describing objects contains all required data, e.g. name of the feature or type 

of the value contained in the feature. Using Reflection API of Java language even 

type checking can be done.

The other thing that the previous JDOM approach provided is saving  ADL 

structures. JDOM handles ADL in XML structured files.  Those files are stored in a 

file system, where the current part of the SOFA 2 system is running, e.g. MConsole.  

Storing of the files is done by the java.io library. But the EMF tools can be used to 

provide local file system independent ADL storing. To use the serialization provided 

by EMF and in SOFA 2 implemented XML factories the In-memory editation library 

9



contains save, load and remove routines required by the Action classes of tools-api.  

EMF provides structural containing  of objects. As is described in  the Sections 4.1 

and 4.2.  Editing domain contains  Command classes.  It also may contain the edited 

objects under a structure of resources.  Editing domain contains  Resource set,  this 

contains  Resource objects  which  are bound  to a  specific  location described  by  a 

uniform resource identifier or in short URI. EMF provides also load, save and delete 

routines which require the identification. To allow access to these routines to Action 

classes of tools-api, the library simply provides them to imitate the previous JDOM 

version.

The in  memory editation is achieved  by the EMF tools and its  XML Java 

transformation tools.  By adding an object  of the ADL model to a  Resource in  an 

Editing domain and setting its URI makes it ready to be transformed and saved to a 

specified location. When objects are serialized from their memory form, they can be  

deserialized back to the memory when needed.

Using this approach of EMF model storing allows to perform similar  action 

while handling the ADL files as if the JDOM tools were still used. It provides access 

to edited modelled object in memory while it can be stored in a serialized form in file  

system available for other parts of the SOFA 2 system.

10



4. Program documentation

4.1. Used techniques

It is quite hard to compare this enhancement to other tools or libraries since it 

is made for a specific system. The only way to confirm that the In-memory editing is 

done in the right manner is comparing it with other EMF model editors and 

recommended approaches of EMF-based models editation. All entities of the SOFA 

2 model are based on Eclipse Modeling Framework. It was found useful that EMF 

has its own library for modifying model's objects. According to the Java language it 

is located in the org.eclipse.emf.edit package. That is provided mainly by the sub-

package command. For every EMF object the command toolkit allows to create 

certain modification commands and add it to the EditingDomain object. If needed, a 

command can be created by specifying the EditingDomain, the owner of a modified 

feature, the feature itself, and a new value. Thereby the concrete object of model can 

be modified.

As described above, this toolkit takes care of editing. The loading process of 

the ADL data is done by XML-based techniques, since EMF works with XML 

schema. This simplifies work with ADL files. Basic routines processing the ADL 

files use libraries of JDOM project. That provides for SOFA necessary abstraction 

for reading and writing ADL files.

EMF.Edit and EMF is suited for JFace viewers. In SOFA's MConsole, these 

viewers are used for visualization of components and model in a  repository. The 

model object is accessible via ContentProvider adapter. It provides a mechanism for 

a JFace viewer to get required object's attributes or sub-objects. This comes very 

handy in case of the hierarchical model. As the TreeViewer is in MConsole used 

quite often, its description is in place. This JFace object provides a structural view of 

a object for the user interface. Through its TreeContentProvider class, which inherits 

the ContentProvider, it accesses the model by getting children and parent items of 

the observed object. Figure 4.1.1 describes this situation.

The viewer actually does not handle the received components of the model as 

objects. The TreeViewer works with generic items which are obtained through 

AdapterFactoryContentProvider class, by EMF adapters knowing how to process the 

structure of components for JFace type viewer. [7] 

11



Figure 4.1.1: Access of TreeViewer to the model [7]

4.2. In-memory editation

The SOFA system is implemented in the Java programming language and so 

is this enhancement. The documentation to the source codes, generated by the 

Javadoc tool, can be found in the attachments of this thesis.

Structure of the enhancement is shown on the Figure 4.2.1. According to the 

Java packaging, its location is org.objectweb.dsrg.sofa.tools.adl.edit.memory. The 

main entry point class of the library is located in the sub-package impl. Its name is 

InMemoryAdl. It extends the InMemoryModelFactoryImpl class to provide a getter of 

resources and a Universal Resource Identificator (URI) creator according to the usual 

SOFA resource identification. The extended class actually provides all the abstract 

routines for working with the model's objects. This could be also used as an entry 

point of the library. However to keep the SOFA class structure and use common (not 

only Java) programming technique, the InMemoryAdl class was added to represent 

the top of the library.  It  also adds loading  and saving  routines for  model's  object 

storage.

According to the Analysis  Section, two approaches are possible  a dynamic  

and a static. For observation both of them are available in the In-memory editation 

library.  To  this  point  of  the  technical  description  both  are  the  same.  Numeral 

identification approach is described first.

Lower  level factory classes in the library represent handlers of concrete 

operations like creating an Architecture object of the model and call static functions 

12



in the Helper class. The main factory has abstract routines for creating 

(createModelObject) and modifying (updateValue) the model's objects. These 

routines decide which sub-factory will take care of the request. The decision depends 

on the type of the modified object while updating a value or on a number of the type 

from SOFA2ADLPackage from org.objectweb.dsrg.sofa.adl package. When the 

request is forwarded to a lower level factory class, its routine calls one or more static 

functions from Helper class, which represents the lowest level of the library. The low 

level factories do not do any processing but they provide a certain level of 

abstraction of the Helper class, like adding a collection of objects to a feature. Since 

the EditingDomain object is necessary for performing the modifications, they also 

contain a pointer to it. Thus every call to modify the object does not need it as a 

parameter. This means that the domain object has to be the same in the instance of 

the factories – the instance of  the main InMemoryModelFactory contains pointers to 

the lower level factories which makes them contain the same domain object. If the 

domain was changed in one of the factories, the objects returned by every 

modification call would not be consistent.

Figure 4.2.1: Structure of  the library

The lowest level of processing the modifications is the Helper class. It 

contains only Java language static functions, which means the function works only 

with the parameters and nothing else. Beacause the count of the functions is high, 

making them not static could be quite confusing. The creator functions work only 

with the SOFA2ADLFactory (package org.objectweb.dsrg.sofa.adl). They do not add 

the created object to the EditingDomain because on the low level the library does not 

have any information about where to add the new object. The adding of it is therefore 

13



left for the user of the library. Edit operations on the other hand add new information 

to the domain.When the modification is specified via choosing the right function in 

Helper through factories, the library has all the necessary information to perform the 

action.

Using the EMF.Edit framework, the particular function creates a command to 

edit an object of the model. Creating a command requires EditingDomain, which is 

specified by a low level factory, an edited object, a feature of the object – specifying 

which attribute is to be changed –  and the new value. When a new command is 

created, it is performed using the execute routine of CommandStack 

(org.eclipse.emf.common.command package), which is accessible in EditingDomain. 

This processes the command according to the EMF.Edit approaches. It performes a 

test whether the command is executable, it cleares all undone commands (as 

described in the 4.1  Section, EMF.Edit provides an undo-redo interface), and 

executes the new one. After the command is performed, that means the modification 

is in place, the modified object is returned as a result of the operation. The returning 

might seem useless, since one of the parameters is the model's object, but in some 

cases it could be used e.g. to campare the original and the modified objects.

Now the secondary approach is described. Using the same entry classes to the 

library, the dynamic editation does not require the low level factories. InMemoryAdl 

class provides also the same pack of set, add, remove and clear routines as the static 

approach does. But these ones require EStructuralFeature parameter and directly use 

three functions in the Helper class, which are setValue, addValue and removeValue. 

Because the ADL model implements EMF, the SOFA2ADLFactory  can create new 

instances of classes by only having an EClass object. The edit routines refer directly 

to  the  features  owned  by  the  classes  of  ADL  model.  In  class 

SOFA2ADLPackage.Literals is listed each of those features. These are used in calls 

of the edit routines from Action classes modified in tools-api – Figure 4.2.2 describes 

access into the library. Moreover implementation of EMF in ADL provides in feature 

literals classes contained in features of the ADL objects. This in combination with 

Java  Reflection  allows  to  dynamically  check  types  of  inputed  values  and  throw 

exceptions if needed.

As described in the Analysis Section, the second approach is implemented in 

the tools-api project  because of its  dynamism.  Routines  of the first  approach are 

14



marked as deprecated to ensure further users of the In-memory editation library that 

the dynamic routines should be preferred.

Figure 4.2.2: Two approaches of the ADL objects editation

To get insight of the ADL model and how objects are divided between 

factories see Figure 2.2.1. The Unified Modeling Language (UML) diagram shows 

relations and all components of this model.

Modificatins done in the SOFA 2  system to implement this enhancement 

were done mainly  in the  tools-api  project.  In  the  package 

org.objectweb.dsrg.sofa.tools.api in  Action  classes. Mostly  modified class is the 

AdlCreatingAction which takes care generating ADL objects out of a model objects. 

JDOM  Element  classes  were replaced  with  EObject classes  of EMF.  Classes  for 

checking  out resources in repository,  exporting, deploying  and committing created 

components – operations accessible in SOFA 2 repository view – are modified. Also 

actions  for  preparation  of  deployment  plans  and  assemblies  are  changed  to 

implement approach of In-memory editation library.

The editing  domains  mentioned  previously  are in  the modified  sections  of 

SOFA 2 used separately for each operation to divide logical actions of constructing,  

loading  and saving  an ADL object. For example,  performing  the  Checkout  action 

loads first domain to seek for an existing files of an ADL object that is about to be 

generated from a model's object. Than a second domain is used to construct an ADL 

object using the ADLCreateAction class. Finally by a third domain a serialization and 

a save  operation are performed.  This  behavior  can be changed in the In-memory 

15



editation library by forbidding construction of ADLCreateAction an Editing domain 

object for separate operations.

4.3. Clone and merge tool

Since MConsole is an Eclipse plug-in or a stand-alone application, it is 

defined by plugin.xml, MANIFEST.MF and source code files. The first two describe 

how and in which scenarios is the programmatic representation used. The Clone and 

Merge operations are accessible from a context menu selecting one or more entities 

in the MConsole Navigator, as described in the User documentation Section 5.2. The 

access point of the copy procedures are classes MconsoleCloneAction and 

MconsoleMergeAction in the package org.objectweb.dsrg.sofa.mconsole.ui.actions. 

To follow the same feature style, these Action classes just construct and launch the 

wizards as Figure 4.3.1 displays. Extending the MconsoleAction class and overriding 

run method of org.eclipse.ui.IActionDelegate represent an Eclipse plug-in. The call 

of the whole MConsole UI to launch this action starts a new thread, as typical user 

interfaces do.

Figure 4.3.1: Class structure of the Clone and merge tool

The Action prepares selected resources for 

org.eclipse.jface.wizard.WizardDialog and launches it using the open routine. The 

wizards of merge and clone operations are represented by the 

MConsoleRepositoryCloneWizard and MconsoleRepositoryMergeWizard classes. 

16



Both of them contain an unique identification of wizard. These two classes extend 

MconsoleRepositoryCopyWizard. Since both wizards would be the same –  expect 

wizard's labels and action called by Finish button –  an abstraction was made. The 

copy wizard itself extends Wizard class of org.eclipse.jface package, overriding init, 

addPage and performFinish routines, and INewWizard, an interface for creating 

wizards for Eclipse plug-ins (package org.eclipse.ui). 

The initialization method transforms selected objects from input (MConsole 

Navigator menu) to a list of IMConsoleRepositoryResource objects, which are used 

through the operation of copying. The most important is the performFinish routine. It 

is called by the plug-in when the Finish button is pressed. It loads input information, 

initializes the cloning or merging process, and launches it. As is described in the user 

documentation Section 5.2, this is the point where a dialog listing touched entities 

may appear.

The wizard consists of two pages. Both of them extend 

org.eclipse.jface.wizard.WizardPage and represent the UI of the pages. The only 

technical things in these classes are buttons for checking connection to repositories. 

Listener technique is used here. It uses an inner private class with another thread. 

The connection is checked by a try to create a RepositoryAgent (package 

org.objectweb.dsrg.sofa.repository) class with a specified URL. The agent represents 

a handler of a repository in the SOFA system. Result of the try is displayed through a 

label next to the Check button. If the repository is found, its content will be loaded to 

the viewer on the next page of the wizard.

Since connecting to the repository may take a while, launch of the wizard is 

not instant. The same issue is when switching to the second page of the wizard, when 

the repository data is loaded to the tree viewer.

The processes of cloning and merging itself does not involve any new 

features added in this project. This feature focuses only on setting up and handing 

over the received information to the RepositoryCloner class in 

org.objectweb.dsrg.sofa.repository package. This class takes care of copying the 

components between specified repositories.

Libraries mentioned in the previous Sections were used according to the 

recommended approaches in the Clayberg, Rubel: Eclipse Plug-ins (3rd Edition) [5]. 

17



The structure of Action, Wizard and WizardPage was taken from other wizards of 

SOFA 2 to keep the same flow of computation. There are other possibilities of the 

wizard, e.g. creating the wizards with more pages. But to keep the UI as simple as 

possible, this turned out, after few programming cycles, to be the right way. There 

was also a problem with running the merge and clone process in a separated thread. 

It would be very useful to indicate still running operation by changing text of the 

Finish button but logically that would corrupt the idea of it being a finish button. 

Showing another dialog for the operation would also defeat the simple working UI. 

That is why any extra thread was not added.

One thing may appear  not finished in this feature. While launching the 

wizard, the repository connection check may take a while so a status dialog may have 

been used. The same thing happens when switching this wizard to the second page. 

The repository URL is loaded and its contents are visualised in the tree. But while 

the repository is being contacted and its contents loaded, there is no status indication, 

thus through a visualisation the progress would appear to be stopped. So adding this 

would be useless.

18



5. User documentation

5.1. In-memory editation

Tools of SOFA can be accessed as a plug-in for the Eclipse development 

environment or as a stand-alone application. In both cases, the user interface (UI) is 

the same. The main points of the SOFA 2  system are the environment and the 

management console MConsole. The environment provides tools for creating and 

modifying elements of the model. MConsole allows to modify communication and 

relations between elements of the whole model. It also provides access to repository 

of the model's elements. The enhancement described in this Section can be accessed 

through MConsole and used by tools of SOFA 2 environment.

The user interface and routines done during the use of MConsole's edit 

wizards have not changed compared to the previous version. The new feature effects 

only the inner mechanics and behavior of the program. The modified tools are in the 

edit wizard for DeploymentPlan. The wizard is accessible in MConsole Navigator 

view via Edit element in context menu of a Deployment plan item in Deployment 

plans folder in list of components in repository.

On its left side, the first page of the wizard shows a tree structure of the 

edited deployment plan and its sub-components. Selecting elements from the tree 

changes the right side of the page. For deployment plan it shows options such as 

those shown on the Figure 5.1.1. This allows to set name and the name of the node of 

the deployment plan. Selecting a sub-component in the tree (if available) shows a 

setup of the DeploymentSubcomponent, allowing to change its name, node, and 

properties. The tree also lists elements of the DeploymentDynamicInstance type if 

there is one owned by the DeploymentPlan or DeploymentSubcomponent  elements. 

After the selection, fields with dynamic instance's node and architecture name and 

version are displayed. Editing any of the mentioned attributes runs a component 

change process through the new feature's library. The next page of the Deployment 

Plan edit wizard (Figure 5.1.2) provides a view of Aspect elements connected to the 

edited deployment plan (the feature of DeploymentPlan component is called Apply). 

It allows to add, remove, or set aspects. It even provides buttons to move aspects in 

19



the list of the edited deployment plan. This comes in handy in case that the 

deployment plan applies to interdependent components.

Setting or adding attributes through the wizard requires those attribute to exist 

in the SOFA repository. For example adding a property value to a deployment sub-

component requires that property value to be already present in the repository. If an 

invalid configuration is selected an error dialog will appear after confirming the edit 

wizard. After confirmation of the dialog the wizard starts up again repeatedly with 

the previously selected configuration. The repetition continues until there is no error 

or the wizard is canceled.

Tools  of the  In-memory  editation  can  be  also  accessed  through  SOFA 2 

environment. Operations done during creation of new components or checking out of 

objects in repository use routines of In-memory editation, but do not change any of 

its functionalities.

20



Figure 5.1.1: Deployment plan edit wizard main page

Figure 5.1.2: Deployment plan edit wizard aspect setting page

21



5.2. Merge and clone tool

This feature makes cloning and merging processes easier without any need to 

use command line. It is accessible in the MConsole's user interface (UI). The merge 

wizard is launched by selecting one or more components in a repository of a 

SOFAnode in Navigator menu and selecting Merge in context menu. The clone 

wizard is run likewise.

The wizards are nearly the same for both the actions. They have two pages. 

The first one allows to select source and destination repositories by entering their 

Uniform Resource Locator (URL) addresses. Accessibility and correct type of 

repositories can be checked by pressing the Check connection button. Dry run a Non 

recursive run check-boxes provide more setting for the operation. Checking the Dry 

run box processes only a simulated operation without copying any components. After 

everything is done, a list of components effected by the procedure is displayed. The 

Non recursive run box results that only the selected components are processed during 

the operation, all dependencies being ignored. Figure 5.2.1 shows the interface.

On the next page a list of components available in the source (if the 

repository is accessible) is displayed. Checking component's boxes makes it part of 

the operation specified on the previous page. The view of repository behaves as 

expected. By checking for example element Frames, all Frame components are 

selected. The same happens if the components are selected one by one. Figure 5.2.2 

shows an example of this page.

The most important thing of the wizard is, of course, the Finish button, which 

launches the specified operation. After the operation is done a dialog appears with 

list of the touched components. Moreover, if Dry run is selected and the dialog is 

skipped by Cancel button, the UI will return to the wizard. This allows to launch 

normal clone or merge operation after simulating the process, without any need to 

select required components and set up source and destination repositories all over 

again.

22



                    

Figure 5.2.1: The first page of the merge wizard

Figure 5.2.2: An example of a component list in the merge wizard

23



Conclusion

The SOFA 2  system is a well constructed base for developing component-

based  applications by providing advanced features and hierarchical model editors. 

The In-memory editor of ADL files makes the environment of SOFA 2 more usable. 

Which environments used for developing large scale software systems typically are, 

so that numerous programmers can work simultaneously on a project. For 

administrators of developed applications, merge and clone features provide more 

comfort than the command line scripts that were part of the previous version of the 

SOFA 2  system. Moving of developed components between repositories is a 

common action, like committing a written code to a version system server. 

Development and stable repositories are supposed to be part of development 

environment of applications developed in  SOFA 2. These new features bring work 

with repositories closer to the user and the MConsole's interface.

Stability of the added library was tested  via  its implementation in the 

sofa.mconsole.ui,  sofa.adl.presentation.wizards and  sofa.tools packages. During the 

testing  of  the  new features and  the changes, no crashes of the program were 

observed.

24



Bibliography

[1] SOFA 2 component system website [online]. 2006 [citation 2011-11-30]. 
Accessible at WWW: <http://sofa.ow2.org/>.

[2] Bures, T., Hnetynka, P., Plasil, F., Klesnil, J., Kmoch, O., Kohan, T., Kotrc, 
P.: Runtime Support for Advanced Component Concepts, Proceedings of SERA 
2007, 
Busan,Korea, IEEE CS, ISBN 0-7695-2867-8, pp. 337-345, Aug 2007. 

[3] Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balancing Advanced Features in 
a Hierarchical Component Model, Proceedings of SERA 2006, Seattle, USA, IEEE 
CS, ISBN 0-7695-2656-X, pp.40-48, Aug 2006. 

[4] Steinberg, D., Budinsky, F.,Paternostro, M., Merks, E.: EMF: Eclipse Modeling 
Framework (2nd Edition), 
Addison-Wesley Professional, December 26, 2008. 

[5] Clayberg, E., Rubel, D.: Eclipse Plug-ins (3rd Edition), Addison-Wesley 
Professional, December 21, 2008. 

[6] Cerny, O., Hosek, P., Papez, M., Remes, V.: SOFA 2 Component System User's 
Guide, November 9, 2009

[7] WebSphere Application Server [online]. June 1, 2004 [citation 2011-11-30]. The 
EMF.Edit Framework Overview. Accessible at WWW: 
<http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=
%2Forg.eclipse.emf.doc%2Freferences%2Foverview%2FEMF.Edit.html>.

[8] Rainer Niekamp: Software Component Architecture in Institute for Scientific 
Computing, TU Braunschweig. July 29, 2011

[9] Report on a conference sponsored by the NATO Science Committee. Software 
Engineering. October 7th to 11th, 1968, Garmisch, Germany

25



List of Abbreviations

ADL – Architecture Description Language; a language used to describe and 
represent software architectures

EMF – Eclipse Modeling Framework; a library provided by Eclipse foundation to
            model and generate code for development of applications based on
            component data model

GMF – Graphical Modeling Framework; a library provided by Eclipse foundation to
             create editors of EMF-based models with UI

UI – User Interface

UML – Unified Modeling Language; a standardized language with graphic notation
             techniques for creating models of software systems

URI – Uniform Resource Identifier; a character sequence for identifying a
           resource on network; more abstract than URL

URL – Uniform Resource Locator; a character sequence with a defined structure for
            specifying exact locations of resources

XML – Extensible Markup Language; a type of encoding documents in
             computer-readable form

26



List of Figgures

2.2.1 Structure of the ADL meta-model and objects division between factories 7
4.1.1 Access of TreeViewer to the model [7] 12
4.2.1 Structure of the library 13
4.2.2 Two approaches of the ADL objects editation 15
4.3.1 Class structure of the Clone and merge tool 16
5.1.1 Deployment plan edit wizard main page 21
5.1.2 Deployment plan edit wizard aspect setting page 21
5.2.1 The first page of the merge wizard 23
5.2.2 An example of a component list in the merge wizard 23

27



Attachments

Content of the enclosed CD ROM

With this thesis comes a CD ROM containing source code of the implementation and 
binaries for installation to the Eclipse development platform. The CD ROM contains:

/bin/
Files for installation of the environment to the Eclipse platform.

/doc/
Electronic version of this thesis and a PDF file containing a scalable meta-
model visualisation.

/src/
Source code of the modified and added classes with documentation in 
Javadoc.

28


