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Introduction

This bachelor thesis has three main goals. The first goal is to prepare a sol-
id theoretical background for a study of Krylov subspace methods in our further
research. Willing to achieve this goal, a detail description of the Method of conju-
gate gradients (CG) and of its relationship to many different mathematical areas
is given. The second goal of our thesis is to describe a fundamental difference
between stationary iterative methods, the Chebyshev semiiterative method and
Krylov subspace methods. The third goal is to emphasize the effects of rounding
errors in practical computations and the necessity of rigorous analysis of finite
precision behaviour. In compliance with this goal we present numerical experi-
ments which examine an upper bound for the energy norm of the error in CG
computations.

In the first chapter we present definitions and basic properties of several math-
ematical objects from various mathematical areas whose knowledge is useful for
the further parts of our thesis. Short review of properties of Riemann–Stieltjes
integral, orthogonal polynomials, Jacobi matrices and quadrature rules is giv-
en. Very interesting and indeed important is a tight connection between Jacobi
matrices and orthogonal polynomials. Since the Chebyshev polynomials take an
important role in numerical mathematics in general and in iterative methods in
particular, we review their extremal properties.

The history of linear iterative methods can be divided into two main periods.
The first period is dominated by stationary iterative methods and can be roughly
dated between 1950 and 1970. The second period lasts from the beginning of
1970s up to now and is dominated by Krylov subspace methods. In the second
part of our thesis we, based on [26, Chapter 4] and [34, Chapter 3 and 4], present
a brief summary of basic stationary iterative methods and, following [20], we
introduce the principle of Krylov subspace methods. The Chebyshev semiiterative
method is also discussed, based on [34, Chapter 5].

The method of conjugate gradients was described by Hestenes and Stiefel in
their famous paper [14] and it can be related to various areas of mathematics.
Already in the original paper (see [14, Sections 14–18]) the relationship of the CG
method to the Riemann-Stieltjes integral, Gauss quadrature, orthogonal polyno-
mials and continued fractions was described. In the third chapter of our thesis
we derive CG using the minimalization of the quadratic functional and we reveal
the important relationship of the CG method to the Lanczos method. Using
a tight connection between the Lanczos algorithm and Jacobi matrices we de-
scribe the relationship of CG and Lanczos algorithms to orthogonal polynomials.
These polynomials are orthogonal with respect to an inner product defined by the
Riemann-Stieltjes integral for specific distribution function. We will see that CG
iterations are tightly related to approximations of the Riemann-Stieltjes integral
of specific function by Gauss-Christoffel quadrature rule. Using the relationship
between the Gauss-Christoffel quadrature and problem of moments we describe
how the CG method can be viewed as some kind of model reduction. We also
present the formulation of the problem of moments given by Vorobyev because
this point of view is convenient also for matrices which are not symmetric and
positive definite. In this and the following parts of the thesis we greatly benefit
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especially from the thorough description in [20, 21, 31].
In exact arithmetic it often happens that the convergence rate in the CG

computations accelerates with the number of performed iterations. An explana-
tion of this superlinear convergence is based on the relationship between CG and
the Lanczos method. We briefly comment that the analysis of the convergence
behaviour can be based also on potential theory.

Practical computations are influenced by rounding errors and it is known that
the effect of finite precision arithmetic is often very substantial. The difficulty
of analysis of rounding errors and their substantial consequences were reasons
why CG and Lanczos method were quite overlooked by numerical analysts for
a period of time. We review important works of Paige and Greenbaum which
rigorously analyze the effects of rounding errors. Their results allowed to explain
the behaviour of CG and the Lanczos method in practical computations.

Since convergence curves in exact and finite precision arithmetic can be sub-
stantially different, we emphasize that the analysis of the real convergence be-
haviour and the derivation of estimates of the error must involve proper mathe-
matical analysis of rounding errors. Numerical experiments in the fourth chapter
of our thesis demonstrate that an upper bound which does not take such affects
into account can completely fail in practical computations.

Krylov subspace methods still represent an area of very active research. It is
believed that detailed understanding of the properties of Krylov subspaces could
help in analysis of modern iterative methods especially in case of non-normal
matrices. Two open problems about Krylov subspaces are formulated in the last
chapter of our thesis. They could be motivate our further research.

Brief summary and short discussion is given at the end. We found conve-
nient to note here that we will mostly consider in this thesis real symmetric or
symmetric positive definite (SPD) matrices in this thesis.
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1 Required tools

1.1 Some basic concepts

Definition 1.1 (Spectrum of a matrix, spectral radius). Consider square matrix
A ∈ RN×N and denote the eigenvalues of A as λi, i = 1, . . . , N .
Spectrum σ(A) of matrix A is a set of all eigenvalues, i.e.,

σ(A) = {λ1, . . . , λN}.

Spectral radius ρ(A) of matrix A is a number

ρ(A) ≡ max
i=1,...,N

|λi|.

Definition 1.2 (Matrix norm). Let ∥·∥V be any norm on the space RN .
Matrix norm ∥·∥M induced by the vector norm ∥·∥V can be defined as

∥A∥M ≡ ∥Ax∥V
∥x∥V

.

Theorem 1.1. For every ϵ > 0 there exists matrix norm ∥·∥M induced by some
vector norm ∥·∥V such that

∥A∥M < ρ(A) + ϵ ∀ A ∈ RN×N .

Definition 1.3 (Symmetric and positive definite matrix). We say that A =
(ai,j)

n
i,j=1 is symmetric if

ai,j = aj,i, for i, j = 1, . . . , n.

We say that the matrix A is positive definite if

xTAx > 0 ∀ x ̸= 0

xTAx = 0 ⇔ x = 0.

Symmetric and positive definite matrix A will be often denoted as SPD matrix A
in this thesis.

Definition 1.4 (Irreducible matrix). We say that A = (ai,j)
n
i,j=1 is irreducible,

if the associated graph is strongly connected. The associated graph has n vertexes
and there is an edge between ith and jth vertex, if ai,j ̸= 0. Strong connection
means, that for every pair of vertexes v, u, there exists directed path form u to v
and conversely.

Definition 1.5 (Irreducibly and strictly diagonally dominant matrices). We say
that A = (ai,j)

n
i,j=1 is diagonally dominant, if it satisfies

|ai,i| ≥
n∑
j=1
j ̸=i

|ai,j|.

A is called strictly diagonally dominant, if the inequality is sharp. A is called
irreducibly diagonally dominant, if it is irreducible and diagonally dominant, with
sharp inequality for at least one i.
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1.2 Riemann-Stieltjes integral

The Riemann-Stieltjes integral is a generalization of the Riemann integral and
satisfies classical properties such as linearity, additivity, etc. The generalization
is quite straightforward and it does not represent hard task. However, since it
may not be so well known, we present it here in detail. This section is adopted
from the lecture notes [18]. Exposition of the properties of the Riemann-Stieltjes
integral can be found also in [16].

Definition 1.6 (Riemann-Stieltjes integral). Let [a, b] be a finite interval in the
real line and let f, ω be real valued functions of a real variable.
A partition of the closed interval [a, b] is a subset P = {x0, x1, . . . , xn} of [a, b]
with a = x0 < x1 < · · · < xn = b, (n ≥ 1).
The norm of a partition P = {x0, x1, . . . , xn} is the number

υ(P ) = max
1≤k≤n

(xk − xk−1)

If P,Q are two partitions of [a, b] then P is finer than Q if P ⊃ Q. Note that,
in this case, υ(P ) ≤ υ(Q).
A tagged partition of [a, b] is a pair (P, t) where P = {x0, x1, . . . , xn} is a
partition of [a, b] and t = (t1, t2, . . . , tn) with xk−1 ≤ tk ≤ xk.
If (P, t), (Q, s) are tagged partitions of [a, b] then (P, t) is finer than (Q, s) if P
is finer than Q. We denote this by (P, t) > (Q, s).
If (P, t) is a tagged partition of [a, b] with P = {x0, x1, . . . , xn} then

S(P, t, f, ω) =
n∑
k=1

f(tk)(ω(xk)− ω(xk−1))

is the Riemann-Stieltjes sum of f with respect to ω for the tagged partition
(P, t). Function f is Riemann-Stieltjes integrable with respect to ω if

∃L ∀ϵ > 0 ∃(Q, s) ∀(P, t) : (P, t) > (Q, s) =⇒ |L− S(P, t, f, ω)| < ϵ .

In this case, the number L is unique and is called the Riemann-Stieltjes integral
of f with respect to ω; it is denoted by∫ b

a

f dω or

∫ b

a

f(λ) dω(λ).

The set of functions f which are Riemann-Stieltjes integrable with respect to ω is
denoted by R(ω, a, b). If ω(x) = x then R(ω, a, b) is the set of Riemann integrable
functions on [a, b] and is denoted by R(a, b).

The Riemann-Stieltjes integral can be defined in exactly the same way as the
Riemann integral also for infinite intervals of integration.

Theorem 1.2. Let f ∈ R(ω, a, b) be bounded on [a, b] and suppose that ω is a
function on [a, b] with a continuous derivative ω′. Then fω′ ∈ R(a, b) and∫ b

a

f(λ) dω(λ) =

∫ b

a

f(λ)ω′(λ) dλ.
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In agreement with [20, Section 3.1] we will consider only nondecreasing func-
tions ω defined on the finite interval [a, b] in this thesis. In such a case, the
Riemann-Stieltjes integrability is justified for all continuous functions, see the
following theorem and its corollary.

Definition 1.7 (Function with bounded variation). We say that function ω :
[a, b] → R has a bounded variation if

V b
a (ω) = sup

{
n∑
i=1

|ω(xi)− ω(xi−1)|, {xi}ni=0 is a partition of [a, b]

}
<∞

Theorem 1.3 (Sufficient condition for existence). Let f be continuous and ω
with bounded variation on the interval [a, b]. Then f ∈ R(ω, a, b).

Corollary 1.4 (Existence of the Riemann-Stieltjes integral for nondecreasing
function). Let f be continuous and let ω be nondecreasing on the interval [a, b].
Then f ∈ R(ω, a, b).

Proof. Since every function with bounded variation on [a, b] can be expressed as a
difference of two nondecreasing and bounded functions, the last theorem secures
that f ∈ R(ω, a, b) for every f continuous.

In agreement with [20, Section 3.1], the nondecreasing function ω from the
definition of the Riemann-Stieltjes integral will be called distribution function,
the point of increase of ω is a point in the neighborhood of which function ω
is not constant, the number of points of increase will be denoted as n(ω). Note
that n(ω) can be finite as well as infinite, even uncountable.

We will often consider distribution function ω as a piecewise constant function
with N distinct points of increase λ1, . . . , λN and positive weights ω1, . . . , ωN , i.e.,

ω(λ) =


0 if a ≤ λ < λ1∑i
j=1 ωj if λi ≤ λ < λi+1, i = 1, . . . , N − 1∑N
j=1 ωj if λN ≤ λ < b

(1.2.1)

In this case the Riemann-Stieltjes integral satisfies∫ b

a

f(λ) dω(λ) =
N∑
i=1

ωif(λi). (1.2.2)

1.3 Orthogonal polynomials

This section is based on [6, Chapter 1] and [20, Sections 3.2 and 3.3]; see also [8,
Chapter 1]. We find convenient to point out different meaning of inner product
in [6]. Inner product, as understood in this thesis, corresponds to properties of
positive inner product defined in [6].

Definition 1.8 (Mapping ⟨·, ·⟩ω). Let P be a space of polynomials and ω be a
nondecreasing function on [a, b]. We define mapping ⟨·, ·⟩ω : P × P → R as

⟨f, g⟩ω =

∫ b

a

f(λ)g(λ) dω(λ) ∀f, g ∈ P

7



Theorem 1.5 (⟨·, ·⟩ω as an inner product). Let P be a space of polynomials and
ω be a nondecreasing function. Let ω be such a function that

⟨f, f⟩ ω ≥ 0 ∀f ∈ P with equality only for f = 0.

Then mapping ⟨f, g⟩ω defines an inner product on the space P. The asso-
ciated norm is given by

∥f∥2ω ≡ ⟨f, f⟩ω =

∫ b

a

f2(λ) dω(λ).

The mapping ⟨·, ·⟩ω is not in general an inner product because it may exist
nontrivial polynomial p such that ∥p∥ω = 0. It is not hard to see that the mapping
⟨·, ·⟩ω defines an inner product for any nondecreasing distribution function ω with
infinite number of points of increase.

If the distribution function ω has only N distinct points of increase, the map-
ping ⟨·, ·⟩ω is an inner product on subspace PN−1 of polynomials of degree less
then N (see e.g. [6, Section 1.1]).

General definition of orthogonal polynomials takes into account distribution
functions ω̂(λ) defined on infinite intervals and thus it requires existence of finite
moments of all orders, i.e.,∫

R
λr dω̂(λ) <∞, r = 0, 1, 2, . . . (1.3.1)

However, Corollary 1.4 implies that in our case is this assumption satisfied.

Definition 1.9 (Orthogonal polynomials). Let ⟨·, ·⟩ be an inner product on the
space of polynomials P. Sequence of polynomials ϕ0(λ), ϕ1(λ), . . . , ϕn(λ), . . . (fi-
nite or infinite) is called orthogonal if

⟨ϕi(λ), ϕj(λ)⟩ = 0 ∀i ̸= j

and
⟨ϕi(λ), ϕi(λ)⟩ ̸= 0 ∀i.

The orthogonal polynomials are called orthonormal if

⟨ϕi(λ), ϕi(λ)⟩ = 1 ∀i.

The monic orthogonal polynomials are orthogonal polynomials with leading
coefficients equal to one.

Theorem 1.6 (Existence of monic orthogonal polynomials). [6, Theorems 1.6
and 1.7] For given distribution function ω with infinite points of increase in
the interval [a, b] and appropriate inner product ⟨·, ·⟩ω on the space of polyno-
mials P there exists infinite unique sequence of monic orthogonal polynomials
ψ0(λ), ψ1(λ), . . ..

For given distribution function ω with N points of increase in the interval
[a, b] and appropriate inner product ⟨·, ·⟩ω on the space of polynomials PN−1 there
exists unique sequence of monic orthogonal polynomials ψ0(λ), ψ1(λ), . . . , ψN−1(λ)
which forms a basis of the space PN−1.
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The uniquely defined monic orthogonal polynomials can be generated by or-
thogonalizing the sequence of monomials 1, λ, λ2, . . . using the Gram-Schmidt
method. The sequence of orthonormal polynomials can be obtained by normal-
izing the sequence of monic orthogonal polynomials. Thus the monic orthogonal
polynomials and orthonormal polynomials have the same roots.

Theorem 1.7 (Three-term recurrence). [6, Theorems 1.27 and 1.29] Let n <
n(ω). The sequence of monic orthogonal polynomials ψ0, . . . , ψn is given by a
three-term recurrence

ψk+1(λ) = (λ− αk)ψk(λ)− δkψk−1(λ), k = 0, . . . , n− 1 (1.3.2)

where ψ−1(λ) = 0, ψ0(λ) = 1 and

αk =
⟨λψk, ψk⟩ω
⟨ψk, ψk⟩ω

, k = 0, 1, . . . , n− 1

δk =
⟨ψk, ψk⟩ω

⟨ψk−1, ψk−1⟩ω
, k = 1, 2, . . . , n− 1

δ0 =

∫ b

a

dω(λ).

The sequence of orthonormal polynomials φ0, . . . , φn is given by a similar three-
term recurrence√

δk+1φk+1(λ) = (λ− αk)φk(λ)−
√
δkφk−1(λ), k < n, (1.3.3)

where φ−1(λ) = 0, φ0(λ) = 1/
√
δ0.

Consider the special case when n(ω) = N < ∞ and suppose that the points
of increase λi, i = 1, . . . , N of the distribution function ω(λ) satisfy

a < λ1 < λ2 < · · · < λN ≤ b.

Then the previous theorem gives us a sequence of monic orthogonal polynomials
ψ0, ψ1, . . . , ψN−1 and we can define monic polynomial ψN as a result of orthogo-
nalization of the monomial λN with respect to the polynomials ψ0, ψ1, . . . , ψN−1,
i.e., it must hold that

⟨ψN , ψi⟩ω = 0, i = 0, . . . , N − 1. (1.3.4)

Although ⟨·, ·⟩ω is an inner product only on the subspace of polynomials of de-
gree less then N , it can be shown that conditions (1.3.4) defines polynomial ψN
uniquely. Because of the definition of the inner product (1.2.2) it is obvious that
with the choice

ψN = (λ− λ1)(λ− λ2) . . . (λ− λN)

the conditions (1.3.4) are satisfied and thus the monic polynomial defined by the
conditions (1.3.4) has roots at the points of increase of the piecewise constant
distribution function ω(λ). To sum up, although ⟨·, ·⟩ω is not an inner prod-
uct on the space PN , the polynomials ψ0, . . . , ψN−1, ψN are monic and they are
orthogonal to each other with respect to mapping ⟨·, ·⟩ω.
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We have seen that for given distribution function ω(λ) there exists (finite or
infinite) sequence of monic polynomials orthogonal to the inner product ⟨·, ·⟩ω. In
addition, these monic orthogonal polynomials can be expressed by the three-term
recurrence. There is a converse of this theorem. It is usually attributed to Favard
but it was known to many mathematicians (e.g. Stieltjes) before.

Theorem 1.8 (Favard’s Theorem). If a sequence (finite or infinite) of monic
polynomials ψ0, ψ1, . . . satisfies a three-term recurrence relation such as (1.3.2)
with real coefficients αk and with real and positive coefficients δk then there exists
distribution function ω(λ) such that the polynomials are orthogonal to the inner
product ⟨·, ·⟩ω defined by the Riemann-Stieltjes integral for ω(λ).

Theorem 1.9 (Properties of the roots). [20, Lemma 3.2.4] Consider distribution
function ω(λ) with finite or infinite number of points of increase. Then the n zeros

λ
(n)
1 , . . . , λ

(n)
n of the monic orthogonal polynomial ψn are distinct and located in

the interval (a, b] for n ≤ n(ω). If n < n(ω), then the zeros of ψn are located in
the open interval (a, b).

Theorem 1.10. [20, Corollary 3.3.3] Let n(ω) may be finite or infinite, then the
roots of two consecutive monic orthogonal polynomials strictly interlace, i.e., for
n < n(ω) it holds that

a < λ
(n+1)
1 < λ

(n)
1 < λ

(n+1)
2 < λ

(n)
2 < · · · < λ(n+1)

n < λ(n)n < λ
(n+1)
n+1 < b,

where λ
(n)
i are the zeros of ψn and λ

(n+1)
i are the zeros of ψn+1.

The previous theorem is only a corollary of stronger result [20, Theroem 3.3.1].
We present it here because of its relationship to eigenvalues of Jacobi matrices;
see Theorem 1.12.

Theorem 1.11 (Minimalization property of monic orthogonal polynomials). [6,
Theorem 1.24] Let ψ0(λ), ψ1(λ), . . . , ψn(λ) be a sequence of the monic orthogonal
polynomials, where n < n(ω). The polynomial ψk(λ) has the smallest norm among
the monic polynomials of degree k, where k ≤ n, i.e.,

ψk(λ) = arg min
ψ∈Mk

∥ψ∥ω

= arg min
ψ∈Mk

∥ψ∥2ω

= arg min
ψ∈Mk

∫ b

a

ψ2(λ) dω(λ),

where Mk is a set of monic polynomials of degree k.

1.4 Jacobi matrices

The Jacobi matrices represent an important class of matrices. We will see that
they can realize the connection orthogonal polynomials and the Lanczos algo-
rithm. Their basic properties can be found in [8, Chapter 3]. In this section we
will focus on their connection to orthogonal polynomials.

10



Definition 1.10 (Jacobi matrix). Real and symmetric matrix Tn ∈ Rn×n is called
Jacobi matrix if it is tridiagonal with positive off-diagonal elements.

Consider sequence of orthonormal polynomials φ0, . . . , φn and coefficients
{αi}n−1

i=0 and {δi}n−1
i=0 from the Theorem 1.7. The coefficients δi are positive and

thus matrix

Tn =


α0

√
δ1√

δ1 α1

√
δ2

. . . . . . . . .√
δn−2 αn−2

√
δn−1√

δn−1 αn−1


is the Jacobi matrix. Denote by Φn(λ) a column vector with orthonormal poly-
nomials φ(λ) as its entries, i.e.,

Φn(λ) = [φ0(λ), φ1(λ), . . . , φn−1(λ)] .

The three term recurrence (1.3.2) can be written in a matrix form

λΦn(λ) = TnΦn(λ) +
√
δnφn(λ)un, (1.4.1)

where un = [0, . . . , 0, 1]T .

The polynomial φn(λ) has n roots denoted as {λ(n)i }ni=1. Putting λ = λ
(n)
i in

(1.4.1) gives the following theorem.

Theorem 1.12 (Eigenvalues of the Jacobi matrix). [6, Theorem 1.31] The zeros

{λ(n)i }ni=1 of the polynomial φn(λ) are the eigenvalues of the Jacobi matrix Tn and

the vectors Φn(λ
(n)
i ) are the corresponding eigenvectors.

Using Theorem 1.8 we can conclude that any Jacobi matrix determines a
sequence of polynomials which are orthogonal with respect to certain distribution
function. The Cauchy interlacing property formulated as in [8, Theroem 3.3] says
that eigenvalues of two consecutive Jacobi matrices strictly interlace each other
and it can be viewed as a consequence of Theorem 1.12 and Theorem 1.10. For
detailed discussion see [20, Remark 3.3.2].

1.5 Chebyshev polynomials

The Chebyshev polynomials are one of the most important sequences of poly-
nomials. Following [3, Section 3.2.3], we will review and shortly discuss their
properties in this section.

Definition 1.11 (Chebyshev polynomials). The Chebyshev polynomials Tn can
be defined as follows.

Tn(x) =

{
cos(n arccos(x)), x ∈ [−1, 1]
cosh(n arccosh(x), x /∈ [−1, 1]

It is not hard to show that the roots of the Chebyshev polynomials are points

xk = cos

(
2k − 1

n

π

2

)
, k = 1 . . . n

11



and extremes on [−1, 1] are taken at points:

x̂k = cos

(
kπ

n

)
, k = 0 . . . n

and it holds that
Tn(x̂k) = (−1)k. (1.5.1)

Theorem 1.13 (Recurrence for Chebyshev polynomials). [3, Section 3.2.3] The
Chebyshev polynomials can be expressed by the following three-term recurrence

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1. (1.5.2)

Proof. This theorem can be considered as a consequence of trigonometric formulas

cos((n+ 1)θ) + cos((n− 1)θ = 2 cos(θ) cos(nθ)

cosh((n+ 1)θ) + cosh((n− 1)θ = 2 cosh(θ) cosh(nθ)

Using the three-term recurrence we obtain

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

...

Theorem 1.14 (The orthogonality of the Chebyshev polynomials I.). [3, Theo-
rem 4.5.20]

Define a discrete inner product on the space of polynomials Pm

⟨f, g⟩ =
m∑
k=0

f(xk)g(xk),

where

xk = cos

(
2k + 1

m+ 1

π

2

)
, k = 0, . . . ,m

are the zeros of Tm+1.
The sequence of the Chebyshev polynomials {Tk}mk=0 is orthogonal with respect

to this inner product and

∥Tk(x)∥ =

{ √
1
2
(m+ 1) for k ̸= 0

√
m+ 1 for k = 0

12



Theorem 1.15 (The orthogonality of the Chebyshev polynomials II.). [3, The-
orem 4.5.20]

Define an inner product on the space of polynomials P

⟨f, g⟩ω =

∫ 1

−1

f(x)g(x) dω(x) =

∫ 1

−1

f(x)g(x)ω′(x) dx (1.5.3)

and define the associated norm

∥f∥ω =
√
⟨f, f⟩ω, (1.5.4)

where

ω(x) =
2

π
arcsin(x) (1.5.5)

ω′(x) =
2

π

1√
1− x2

.

The distribution function ω is strictly increasing which ensures (see Theorem 1.5)
that (1.5.3) is really an inner product.

The sequence of the Chebyshev polynomials {Tk}∞k=0 is orthogonal with respect
to this inner product and

∥Tk(x)∥ω =

{
1 for k ̸= 0√
2 for k = 0

Thus the sequence of polynomials

1√
2
T0,T1, . . . ,Tn, . . .

is orthonormal with respect to the inner product defined by the Riemann-Stieltjes
integral with distribution function (1.5.5). If we rewrite the three-term recurrence
(1.5.2) as

1

2
Tn+1(x) = xTn(x)−

1

2
Tn−1(x), n ≥ 1

then we see that the associated Jacobi matrix has the form
0 1/2
1/2 0 1/2

. . . . . . . . .

1/2 0 1/2
1/2 0

 .

In compliance with the theory of orthogonal polynomials there is also a sequence
of monic orthogonal polynomials

T0,T1, 2
−1T2, . . . , 2

−(n−1)Tn, . . . (1.5.6)

We will say that these polynomials are monic Chebyshev polynomials.

13



Theorem 1.16 (Minimalization property I.). The monic Chebyshev polynomial
2−(n−1)Tn minimizes the norm ∥·∥ω among the monic polynomials of degree n,
i.e.,

2−(n−1)Tn = arg min
ψ∈Mn

∥ψ∥ω (1.5.7)

The monic Chebyshev polynomial 21−nTn(x) is the only polynomial with this min-
imalization property.

Theorem 1.16 is only a special case of Theorem 1.11.

Theorem 1.17 (Minimalization property II.). [3, Theorem 3.2.4] The monic
Chebyshev polynomial 2−(n−1)Tn minimizes the maximum norm ∥·∥∞ among the
monic polynomials of degree n, i.e.,

2−(n−1)Tn = arg min
ψ∈Mn

∥ψ∥∞ , (1.5.8)

where the maximum norm is defined as

∥f∥∞ = max
x∈[−1,1]

|f(x)|. (1.5.9)

The monic Chebyshev polynomial is the only polynomial with this minimalization
property.

Proof. Assume, for contradiction, that there exists p(x) ∈ Mn such that

|p(x)| < |21−nTn(x)| ∀x ∈ [−1, 1].

Specially, using (1.5.1) we can write

p(x̂0) < 21−nTn(x̂0)

p(x̂1) > 21−nTn(x̂1)

p(x̂2) < 21−nTn(x̂2)

...

We see that the polynomial

R(x) = p(x)− 21−nTn(x)

must change the sign in every interval (xk, xk+1), k = 0, . . . , n − 1. From the
continuity of R(x) there is at least one root on every (xk, xk+1) and thus the
polynomial R(x) has at least n roots. However, being a difference of two monic
polynomials of degree n, the polynomial R(x) must have degree less then n.
Consequently, R(x) ≡ 0 which is a contradiction.

The uniqueness of the polynomial 21−nTn can be proved in similar way. The
only difference is that one must handle with the situation that R(x) may have
some zeros in some of the extreme points x̂k.
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The previous theorems showed the minimalization property of the Chebyshev
polynomials among the class of monic polynomials. However, as we will see
several times in this thesis, many problems lead to the minimalization among
the class of polynomials which satisfy some constraint condition. Typically, the
polynomials have prescribed certain value at some given point ξ.

From now on consider given point

ξ /∈ [−1, 1]

and a constrain condition
p(ξ) = 1 (1.5.10)

and define the set of polynomials

Πξ
n ≡ {p(x); deg p = n, p(ξ) = 1} .

The set Πξ
n is a set of polynomials of degree n with prescribed value 1 at given

point ξ.

Theorem 1.18 (Minimalization property III.). See e.g. [34, Theorem 5.1]. The
scaled Chebyshev polynomial

Tn(x)

Tn(ξ)

minimizes the maximum norm ∥·∥∞ among the polynomials of degree n which
satisfy the condition (1.5.10), i.e.,

Tn(x)

Tn(ξ)
= arg min

p∈Πξ
n

∥p(x)∥∞ . (1.5.11)

The scaled Chebyshev polynomial is the only polynomial with this minimalization
property.

Proof. The proof is analogous to the proof of Theorem 1.17. For contradiction
we suppose that there exists p ∈ Πξ

n with smaller norm. The polynomial

R(x) = p(x)− Tn(x)

Tn(ξ)

has degree n. On the other hand, both polynomials satisfy the condition (1.5.10)
and thus R(ξ) = 0. The polynomial R(x) of degree n has n + 1 roots and thus
R(x) ≡ 0 which gives the result.

To sum up, if we specify some constraint condition in order to be able to com-
pare the polynomials, then the scaled Chebyshev polynomials have the smallest
maximum norm on the interval [−1, 1]. Since

max
x∈[−1,1]

|Tn(x)| = 1,

we can write ∥∥∥∥Tn(x)

Tn(ξ)

∥∥∥∥ =
1

|Tn(ξ)|
.

As a consequence of the minimalization property from the last theorem we
have the following maximalization property of the Chebyshev polynomials.
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Corollary 1.19 (Maximalization property). The Chebyshev polynomial Tn has
in every point ξ /∈ [−1, 1] the largest magnitude among the polynomials of degree
n and of comparable maximum norm, i.e.,

|Tn(ξ)| > |p(ξ)|, ∀ξ /∈ [−1, 1], ∀p ∈ Ωn, where (1.5.12)

Ωn ≡ {p(x); deg p = n, ∥p∥∞ = 1} (1.5.13)

Proof. Theorem 1.18 implies that for arbitrary polynomial p(x) ∈ Ωn we have
inequality ∥∥∥∥p(x)p(ξ)

∥∥∥∥ > ∥∥∥∥Tn(x)

Tn(ξ)

∥∥∥∥ .
The polynomials Tn(x), p(x) lie in Ωn and thus their maximum norm are equal
to 1. Consequently;

1

|p(ξ)|
>

1

|Tn(ξ)|
,

which gives the result.

We enclose the review of the properties of the Chebyshev polynomials with
the statement about approximation of monomial by polynomials of lower degree;
see [3, p. 201].

Corollary 1.20 (Best approximation of xn by the polynomial of lower degree).
Let Pn−1 be a set of all polynomials of degree less or equal to n − 1. Consider
following minimax problem:

min
p∈Pn−1

∥xn − p(x)∥[−1,1] .

The unique solution is given by polynomial

p̂(x) ≡ xn − Tn(x).

Proof. Since deg(xn− p(x)) = n, we want xn− p(x) = Tn(x), because Tn(x) is a
solution of minimax problem.

∥p̂(x)− xn∥ = ∥Tn(x)∥ = min
p∈Πn

∥p(x)∥

Remark 1.12. So far, all results were formulated for the interval [−1, 1]. How-
ever, arbitrary interval [a, b] can be linearly transformed on [−1, 1] by function

x 7−→ 2x− b− a

b− a
,

so all previous result can be easily reformulated for general [a, b]. For example,
let ξ /∈ [a, b]. Then Theorem 1.18 gives

Tn

(
2x−b−a
b−a

)
Tn

(
2ξ−b−a
b−a

) = arg min
p∈Πξ

n

max
x∈[a,b]

|p(x)|. (1.5.14)

For arbitrary interval [a, b] we can define the maximum norm on the space of
polynomials P

∥p∥∞ = max
x∈[a,b]

|p(x)|, p ∈ P

The problem of minimalization of the maximum norm ∥·∥∞ over some subspace
(e.g. Πξ

n, Mn) is in the literature often called minimax problem. The Chebyshev
polynomials are said to have minimax property (e.g. see [3]).
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1.6 Quadrature rules

Definitions and theorems in this section are from [20, Chapter 3], complex expo-
sition can be found in [4]. Quadrature rules represents one of the most important
methods of numerical integration. They are based on the simple idea that the
integral is approximated by a linear combination of the values of the integrand,
i.e., ∫ b

a

f(λ) dω(λ) ≈ w1f(λ1) + w2f(λ2) + . . .+ wnf(λn)

Definition 1.13 (Quadrature rule). Consider distribution function ω(λ) on the
interval [a, b]. If f is Riemann-Stieltjes integrable function (e.g. f is continuous
on [a, b]), then we can write its integral as

Iω(f) ≡
∫ b

a

f(λ) dω(λ) =
n∑
i=j

wif(λi) +Rn(f), (1.6.1)

where λi, . . . , λn ∈ (a, b) are distinct points called nodes and w1, . . . , wn are called
weights of the n-point (mechanical) quadrature rule

Inω(f) ≡
n∑
i=1

wif(λi).

The term Rn(f) is called a remainder or error of the quadrature rule.
When the remainder is equal to zero, the quadrature rule is called exact. We

say that the quadrature rule has algebraic degree of exactness m if Rn(λ
k) = 0

for k = 0, . . . ,m and Rn(λ
m+1) ̸= 0.

There are several approaches, how to choose the nodes and the weights of the
quadrature rule (see [4]) but we will not discuss them here. In this thesis we will
deal only with the Gauss-Christoffel quadrature rules because of its relationship
with the Jacobi matrices (see Theorem 1.22) and consequently with the Lanczos
method and the algorithm of conjugate gradients as will be exploited in detail in
Section 3.4.

Definition 1.14 (Lagrange form of the interpolatory polynomial). For given
function f and n distinct points λ1, . . . , λn, the polynomial Ln of degree n is
called interpolatory if

Ln(λi) = f(λi), i = 1, . . . , n.

It can be shown that this polynomial is determined uniquely and it can be written
in Lagrange form as

Ln(λ) =
n∑
j=1

f(λj)lj(λ), where

lj(λ) =
n∏
i=1
i̸=j

λ− λi
λj − λi

.
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The polynomial lj(λ) can be also written as

lj(λ) =
qn(λ)

q′n(λj)(λ− λj)
, where (1.6.2)

qn = (λ− λ1)(λ− λ2) . . . (λ− λn). (1.6.3)

Definition 1.15 (n-point interpolatory quadrature). Given the n distinct nodes
λi, . . . , λn ∈ (a, b), the n-point interpolatory quadrature for approximating
the Riemann-Stieltjes integral is defined by

Inω(f) =
n∑
j=1

wjf(λj), where

wj =

∫ b

a

lj(λ).

Note that the weights are uniquely determined by the nodes. It can be shown
that the algebraic degree of exactness of the n-point interpolatory quadrature
rules is at least n − 1 for arbitrary choice of the nodes λ1, . . . , λn. However, for
the special choice of the nodes λ1, . . . , λn, the algebraic degree of exactness can
be even higher.

Definition 1.16 (Gauss-Christoffel quadrature rule). Consider positive integer
n < n(ω), the n-point Gauss-Christoffel quadrature rule is interpolatory quadra-
ture with algebraic degree of exactness equal to 2n− 1.

As it is stated in the next theorem, this quadrature exists. On the other
hand, it can be shown that it is impossible to create a quadrature rule of higher
algebraic degree of exactness (consider a square of polynomial qn with roots at
the nodes of the quadrature).

Theorem 1.21 (Nodes and weights of the Gauss-Christoffel quadrature). [20,
Lemma 3.2.5] Consider positive integer n < n(ω), an n-point quadrature rule is
the Gauss-Christoffel quadrature rule if and only if it is an interpolatory quadra-
ture with the n nodes given by the roots of the monic orthogonal polynomial ψn(λ).

The weights of the Gauss-Christoffel quadrature can be computed using the
monic orthogonal polynomial ψn(λ) (see (1.6.2))

wi =

∫ b

a

ψn(λ)

ψ′
n(λi)(λ− λi)

dω(λ)

The weights w1, . . . , wn are called Christoffel numbers and it can be shown
that they are strictly positive.

Since the roots of the orthonormal polynomial φn(λ) determine the nodes of
the n-point Gauss-Christoffel quadrature rule as well as the eigenvalues of the
Jacobi matrix Tn, we can observe a deep connection between the Jacobi matrices
and the Gauss-Christoffel quadrature rules, see the following theorem.

Theorem 1.22 (Gauss quadrature and Jacobi matrix). [20, Theorem 3.4.1] Con-
sider distribution function ω(λ) defined on [a, b] and positive integer n < n(ω).
Let φ0(λ), φ1(λ), . . . , φn(λ) be the orthonormal polynomials associated with the
inner product ⟨·, ·⟩ω given by ω(λ).
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Denote by θ1, . . . , θn the eigenvalues and by z1, . . . , zn the corresponding eigen-
vectors of the Jacobi matrix Tn given by the three-term recurrence (1.3.3).

Denote by λ1, . . . , λn ∈ (a, b) the nodes and by w1, . . . , wn the weights of the
n-point Gauss-Christoffel quadrature associated with ω(λ).

Then
θi = λi, (zi, e1)

2 = wi, for i = 1 . . . , n.

As a consequence, the eigenvalues of the Jacobi matrix Tn are distinct and the
first components of its eigenvectors are nonzero.

The proof of Theorem 1.22 is not trivial and it can be done for example with
use of the Lanczos algorithm. We mention it here just to sum up the relationship
between Jacobi matrix and Gauss-Christoffel quadrature. Logically, the theorem
should be written in Section 3.4.

It is worth to note that every quadrature rule with the nodes λ1, . . . , λn ∈ (a, b)
and positive weights w1, . . . , wn can be written as the Riemann-Stieltjes integral
for the piecewise constant distribution function ω(n)(λ) (see (1.2.1)), i.e.,∫ b

a

f(λ) dω(n)(λ) =
n∑
i=1

wif(λi), where (1.6.4)

ω(n)(λ) =


0 if a ≤ λ < λ1∑i

j=1wj if λi ≤ λ < λi+1, i = 1, . . . , n− 1∑n
j=1wj if λn ≤ λ < b

(1.6.5)

19



2 Iterative methods for solution
of linear systems

The solution of large linear systems of the form

Ax = b, (2.0.1)

where A ∈ RN×N is a regular matrix and b ∈ RN is a given right-hand side vector,
represents one of the most important problems of numerical mathematics. With
the importance of the problem corresponds enormous effort of numerical mathe-
matics to design methods which would be able to solve this problem satisfactorily.
Through the history, several main approaches were developed.

Direct methods, like LU factorization, are very robust, i.e., they are applicable
on many different types of matrices. They are convenient for small and dense
matrices. However, they are impractical for large and sparse matrices as they do
not preserve the sparsity and have enormous memory requirements consequently.

Iterative methods generate a sequence of approximate solutions which con-
verge to the exact solution. The computation of approximations is essentially
based on matrix-vector multiplication and thus it is not essential to store the
matrix A. Iterative methods require fewer storage and often also fewer opera-
tions then direct methods. We will introduce two main approaches of iterative
methods, stationary iterative methods and methods based on Krylov subspaces.
Modern multi-grid methods are not included, they are beyond the scope of this
thesis.

2.1 Stationary iterative methods

The first ideas of stationary iterative methods for solving linear systems appeared
in works of Gauss, Jacobi or Seidel in the 19th century. Term stationary means
that the process of generating new approximation does not depend on the itera-
tion step. An important contribution in the field of stationary iterative methods
was made by Young in his PhD thesis [35]. He introduced successive overre-
laxation method (SOR) which become superior among other stationary iterative
methods.

Concept of matrix splitting is a nice approach which includes all methods men-
tioned above. It allows to study necessary and sufficient conditions for conver-
gence and to compare different methods. A lot of mathematicians were interested
in analysis of the stationary iterative methods. Nice and well written analysis
can be found in [34, 36] or in [13]. The following summary of known results is
foremost based on [34], several interesting ideas and comments can be found in
[26].

2.1.1 Derivation of several stationary iterative methods

In this section we follow [26, Chapter 4], the convergence analysis is based on
the results from [34] and [26]. Consider the linear system (2.0.1) for the regular
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matrix A with nonzero elements on the main diagonal. The stationary iterative
methods generate approximations xn = (ξ

(n)
1 , . . . , ξ

(n)
N ) from the iterative scheme

Mxn+1 = Lxn + b, (2.1.1)

where
A =M − L (2.1.2)

is the splitting of the matrix A. It is necessary to construct splittings such that
the matrix M is regular and easy to invert. Suppose that the sequence {xn}∞n=0

converges. Then it is easy to see that its limit x̂ is a solution of the problem
Ax = b. We will define several possible techniques of splitting and review the
properties of the associated iterative schemes.

Consider decomposition A = D − E − F , where D is a diagonal matrix, and
E and F are, respectively, strictly lower and strictly upper triangular matrices.

Since D is a regular matrix, we can define following stationary iterative meth-
ods:

Jacobi method

Matrix splitting:
M ≡ D, L ≡ E + F

Matrix notation:
xn+1 = D−1(E + F )xn +D−1b, (2.1.3)

Notation for elements:

ξ
(n+1)
i = −

N∑
j=1
j ̸=i

ai,j
ai,i

ξ
(n)
j +

bi
ai,i

. (2.1.4)

The Jacobi method is very simple and easy to implement on a computer. It is
necessary to save two vectors. The elements of xn+1 are computed independently
of each other which makes the Jacobi method convenient for parallel computing.
Since it holds that

(b− Axn)i = bi −
N∑
j=1
j ̸=i

ai,jξ
k
j − ai,iξ

k
i ,

we see that (2.1.4) corrects the i-th component of the residual.

Gauss-Seidel method

Matrix splitting:
M ≡ D − E, L ≡ F

Matrix notation:
xn+1 = (D − E)−1Fxn + (D − E)−1b, (2.1.5)

Notation for elements:

ξk+1
i = −

i−1∑
j=1

ai,j
ai,i

ξk+1
j −

N∑
j=i+1

ai,j
ai,i

ξkj +
bi
ai,i

. (2.1.6)
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The only difference between the Jacobi and the Gauss-Seidel method is that the
Gauss-Seidel method uses the first i− 1 previously computed components of the
new approximation to compute the i-th component. Only one vector needs to
be stored. For completeness’ sake we add that this type of Gauss-Seidel method
is called the forward Gauss-Seidel method. The backward variant is defined by
M ≡ D − F,L ≡ E and has analogous properties.

Successive Overrelaxation (SOR) method

The SOR approximation xn+1 is a weighted mean of the approximation x̂k+1 from
the Gauss-Seidel method and the SOR approximation xn from the previous step,
i.e.,

xn+1 = ωx̂k+1 + (1− ω)xn,

where ω ∈ R is a relaxation parameter. After some manipulation we can write
the SOR method using the concept of matrix splitting.
Matrix splitting:

M ≡ 1

ω
(D − ωE), L ≡ 1

ω
((1− ω)D + ωF )

Matrix notation:

xn+1 = (D − ωE)−1(ωF + (1− ω)D)xn + ω(D − ωE)−1b, (2.1.7)

Notation for elements:

ξk+1
i = ξki + ω

(
−

i−1∑
j=1

ai,j
ai,i

ξk+1
j −

N∑
j=i+1

ai,j
ai,i

ξkj +
bi
ai,i

− ξki

)
. (2.1.8)

As in the Gauss-Seidel method, only one vector needs to be stored and both
forward and backward variants can be defined. Symmetric SOR (SSOR) is a
method which combines these two approaches. One step of SSOR involves one
step of each forward and backward SOR. Selecting ω = 1 shows that the Gauss-
Seidel method can be considered as a special case of the SOR method.

2.1.2 Analysis of convergence

Using (2.1.1) we can write the iterative scheme

xn+1 = Gxn + g, where (2.1.9)

G ≡M−1L, g ≡M−1b (2.1.10)

Definition 2.1 (Convergent iterative scheme). Iterative scheme (2.1.9) is called
convergent if and only if the sequence of approximations {xn}∞k=0 converges to the
solution of linear system (2.0.1) for every initial approximation x0.

Since every two norms on finite dimensional spaces are equivalent, it is un-
necessary to define in which norm we measure the convergence.

Theorem 2.1 (General convergence result). Iterative scheme (2.1.1) is covergent
if and only if ρ(G) < 1.
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Proof. Let ρ(G) < 1. Then from Theorem 1.1 there exists matrix norm ∥·∥M
generated by some vector norm ∥·∥V , that ∥G∥M < 1. Then from (2.1.9) and the
identity x̂ = Gx̂+ g for the solution x̂ we get

∥xn+1 − x̂∥V = ∥G(xn − x̂)∥V = · · · (2.1.11)

=
∥∥Gk+1(x0 − x̂)

∥∥
V
≤
∥∥(x0 − x̂)

∥∥
V
∥G∥k+1

M

k→∞−→ 0 (2.1.12)

and thus {xn}∞k=0 converges to the solution x̂ independently on the initial approx-
imation x0.

Conversely, let ρ(G) ≥ 1. Then there exists eigenvalue λ ∈ C and eigenvector
y ∈ Rn such that |λ| ≥ 1. Then for the special choice x0 = x̂+ y we get

∥xn+1 − x̂∥ =
∥∥Gk(x0 − x̂)

∥∥ =
∥∥Gky

∥∥ =
∥∥λky∥∥ =

∣∣λk∣∣ · ∥y∥ ≥ ∥y∥ ∀k.
So we have found x0 for which the scheme does not converge. That means, that
(2.1.1) is not convergent.

As it will be stated in Section 2.1.4 the rate of the convergence of different
iterative schemes can be compared only assymptoticaly, via the spectral radius.
Smaller spectral radius means more rapid convergence.

Denote matrices G corresponding to the matrix splitting in the Jacobi and
the SOR method as

GJ ≡ D−1(E + F ), Gω ≡ (D − ωE)−1 (ωF + (1− ω)D) . (2.1.13)

Perron-Frobenius theory of nonnegative matrices and theory of regular splitting
allows to formulate some results about the Jacobi and Gauss-Seidel methods. We
present brief summary of the most important results.

Theorem 2.2. Let GJ ≥ 0. Then the Jacobi method converges if and only if the
Gauss-Seidel method converges. In that case, the Gauss-Seidel method converges
faster.

This result is a consequence of the Stein-Rosenberg theorem (see [34, Theorem
3.8]) from 1945 and it can not be generalized. There are matrices, for which
converges only one of these methods. In addition, the Jacobi method can be
faster than the Gauss-Seidel method, even if both of them are convergent.

Theorem 2.3 (Convergence of diagonally dominant matrices). Let A be irre-
ducibly or strictly diagonally dominant matrix. Then both Jacobi and Gauss-
Seidel method defined above are convergent.

Definition 2.2 (Regular splitting, weak regular splitting). Consider splitting
A =M − L.
It is called regular if M is regular, M−1 ≥ 0 and N ≥ 0.
It is called weak regular if M is regular, M−1 ≥ 0 and M−1N ≥ 0.

Theorem 2.4 (Convergence of (weak) regular splittings). Let A =M −L be the
regular or weak regular splitting.
Then ρ(M−1L) < 1 if and only if A is regular and A−1 ≥ 0.

Theorem 2.5 (Comparison of rate of asymptotic convergence). Let A = M1 −
L1 = M2 − L2 be two regular splittings, where A−1 ≥ 0. If at least one of the
following: L2 ≥ L1 ≥ 0, M−1

1 ≥M−1
2 is true, then holds

1 > ρ(M−1
2 L2) ≥ ρ(M−1

1 L1) ≥ 0.

For strict inequalities in assumptions we get strict inequalities in the result.
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2.1.3 Analysis of SOR

The SOR method defined in (2.1.7) is a special case of more general concept of
the relaxation methods. Specially, there is a lot of variants of the SOR method
which are based on the block partitioning of the matrix A. Varga’s analysis
based on p-cyclic and ”consistently ordered” matrices. Young’s analysis is based
on consistently ordered matrices and on matrices with Property A. There is a
difference between Varga’s and Young’s definition of consistently ordered matrix;
see [36, Section 5.8] or [26, Section 4.2.5] for details. However, in our summary
we will focus only on the basic SOR method. In this case, the matrix A has
Property A if and only if it is 2-cyclic and the main result Theorem 2.9 and
its consequences are the same for both approaches. Full-scale exposition can be
found in [34] or [36].

Theorem 2.6 (Kahan (1958)). Consider Gω defined in (2.1.13). Then

ρ(Gω) ≥ |ω − 1| ∀ ω ∈ C.

Consequently; for the convergent SOR scheme the relaxation parameter ω lies in
the open interval (0, 2).

Theorem 2.7 (Ostrowski (1954)). Consider symmetric matrix A with decompo-
sition A = D−E−ET where D is symmetric and positive definite and (D−ωE) is
nonsingular for any ω ∈ [0, 2]. Then we can define Gω analogously as in (2.1.13)
and it holds that ρ(Gω) < 1 if and only if A is positive definite and ω ∈ (0, 2).

It is worth to notice that E need not to be triangular and D need not to be
diagonal as in the standard SOR method.

Corollary 2.8 (Convergence of SOR for SPD matrices). Consider symmetric
matrix A with positive elements on diagonal and let ω ∈ (0, 2). Then the SOR
method is convergent if and only if A is positive definite.

Definition 2.3 (Consistent ordering (Young)). The matrix A = (ai,j) of order
N is consistently ordered if for some t there exist disjoint subsets S1, . . . , St
of W = 1, . . . , N such that

∑t
k=1 Sk = W and such that if ai,j ̸= 0 or aj,i ̸= 0,

then j ∈ Sk+1 for j > i and j ∈ Sk−1 for j < i where Sk contains i.

Theorem 2.9 (Connection between eigenvalues of SOR and Jacobi matrices).
[26, Theorem 4.7] Let A be a consistently ordered matrix with positive elements
on diagonal and let ω ̸= 0. Consider equation

(λ+ ω − 1)2 = λω2µ2. (2.1.14)

Then holds: µ ∈ σ(GJ) and λ satisfies (2.1.14) ⇒ λ ∈ σ(Gω)
Conversely: λ ∈ σ(Gω), λ ̸= 0 and µ satisfies (2.1.14) ⇒ µ ∈ σ(GJ).

Substituting ω = 1 in (2.1.14) gives

λ = µ2

which implies that ρ(G1) = ρ2(GJ) and thus the Gauss-Seidel method has better
asymptotic rate of convergence then Jacobi method and we know even the ratio
of the convergence rates.

This theorem allows to compute an optimal value of the relaxation parame-
ter ω.
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Theorem 2.10 (Optimal parameter in SOR). Consider GJ defined in (2.1.13)
of a consistently ordered matrix A. Then ωopt defined as

ωopt =
2

1 +
√

1− ρ2(GJ)
= 1 +

(
ρ(GJ)

1 +
√
1ρ2(GJ)

)
(2.1.15)

satisfies that
ρ(Gω) > ρ(Gωopt) = ωopt − 1.

The last results show that for consistently ordered matrix with nonzeros on
the main diagonal the SOR method should be preferred among other stationary
iterative methods since it has better asymptotic rate of convergence.

2.1.4 Properties of the asymptotic convergence

In this part we follow [32, Section 9.1.1]. The analysis of the stationary iterative
methods is based on the spectral radius of the matrix G defined by (2.1.9). For
the error of the k-th step of the iterative process it is possible to write

∥en∥
∥e0∥

≤
∥∥Gk

∥∥ ≤ ∥G∥k (2.1.16)

and we see that the convergent iterative scheme (ρ(G) < 1) ensures the asymptot-
ic convergence. The rate of this asymptotic convergence is given by the spectral
radius. Although it holds (see e.g. [32, Section 1.7]) that

lim
k→∞

∥∥Gk
∥∥1/k = ρ(G), (2.1.17)

the main trouble of all stationary iterative methods is that it can happen that

∥G∥ > 1 > ρ(G).

The limit (2.1.17) justifies that

∥en∥
∥e0∥

≈ ρ(G)k

for large k, but for smaller k it is more convenient to use

∥en∥
∥e0∥

≤ ∥G∥k ,

where ∥G∥k can be greater then 1.
The information about the spectral radius gives no control of the behaviour of

the iteration process at first iterations. Thus the convergence can be very poor.
It can even happen that the convergence curve consists of two parts. The norm
of the error can be increasing until it reaches the second, asymptotic, part of the
convergence curve, where the norm decreases linearly with the rate given by the
spectral radius ρ(G).
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2.2 Chebyshev semi-iterative method (CSI)

The idea of the CSI method is to accelerate the convergence of the iterative
scheme (2.2.1) using more information in generating new approximation. We will
show that this acceleration results in strictly decreasing norm of the error. In
this section we will follow [34, Section 5.1].

As we have seen in previous chapter, stationary iterative methods can be
written in the form

xn+1 = Gxn + g, (2.2.1)

where G is n× n matrix with ρ(G) < 1. We will assume that convergent matrix
G is symmetric.

2.2.1 Derivation of the CSI method

Let x0, . . . , xn be approximations based on some stationary iterative method of
the form (2.2.1). We can define new approximation as a linear combination of
approximations x0, . . . , xn, i.e.,

x̃n =
n∑
j=0

αj(n)xj. (2.2.2)

Approximation x̃n is determined by the coefficients αj(n) and our goal is to set
these coefficients to speed up the convergence.

We want to build a consistent method, i.e., a method in which the substitution
of the exact solution to the iterative scheme give no error. Thus we impose
restriction

n∑
j=0

αj(n) = 1 (2.2.3)

on coefficients.
If we denote errors of approximations as ẽn = x̃n − x̂ and en = xn − x̂ and if

we use the restriction (2.2.3) we can write

ẽn =
n∑
j=0

αj(n)xj −
k∑
j=0

αj(n)x̂ =
k∑
j=0

αj(k)ej

and using the identity en = Gne0 we finally have

ẽn = pn(G)e0, where pn(λ) =
n∑
j=0

αj(n)λ
j. (2.2.4)

The restriction (2.2.3) implies that pn(1) = 1. The ratio of errors is bounded by
the norm of pn(G), i.e.,

∥ẽn∥
∥e0∥

≤ ∥pn(G)∥ . (2.2.5)

In order to minimize the norm of the error in the n-th step, we must solve the
problem

min
p∈Π1

n

∥pn(G)∥ , (2.2.6)
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where Π1
n is a set of polynomials of degree n satisfying the restriction (2.2.3).

Cayley-Hamilton theorem tells that qN(G) = 0, where qN is a characteristic
polynomial of matrix G and thus we have convergence in at most N steps.

We assume that G is symmetric and thus we can obtain the identity

∥pn(G)∥ = ρ(pn(G)) = max
1≤i≤N

|pn(λi)|, (2.2.7)

where −1 < λ1 ≤ · · · ≤ λN < 1 are the eigenvalues of the convergent matrix G.
In general we have no additional information about the spectrum of G and

thus we maximize over interval instead of over a discrete set of points. To sum up,
in order to make the relative error as small as we can, we deal with the problem

min
p∈Π1

n

max
x∈[a,b]

|p(x)|, (2.2.8)

where a, b are bounds for the smallest and the largest eigenvalue.
This is a well-known minimax problem, which has on interval [−1, 1] solution

given by Chebyshev polynomials. All we have to do is to transform interval
[a, b] onto [−1, 1] and to normalize the Chebyshev polynomial in order to satisfy
condition pn(1) = 1, remember (1.5.14). Hence we get

p̃n(x) =
Tn(

2x−b−a
b−a )

Tn(
2−b−a
b−a )

(2.2.9)

as a solution of our problem (2.2.8). Theorem 1.18 and Remark 1.12 implies
that p̃n(x) is a unique solution among all polynomials pn of degree n satisfying
pn(1) = 1.

Assume the knowledge of the spectral radius ρ(G) and set ρ ≡ ρ(G) = b = −a.
Then (2.2.9) becomes

p̃n(x) =
Tn(

x
ρ
)

Tn(
1
ρ
)
. (2.2.10)

Finally, using (2.2.10), the three term recurrence in Theorem 1.13, (2.2.4), defi-
nition of n-th error and the identity (I − G)x = g we can derive the Chebyshev
semiiterative method (CSI) with respect to iterative scheme (2.2.1):

x̃n+1 = ωn+1(Gx̃n − x̃n−1 + g) + x̃n−1, (2.2.11)

where

ωm+1 :=
2Tm(1/ρ)

ρTm+1(1/ρ)
= 1 +

Tm−1(1/ρ)

Tm+1(1/ρ)
, (2.2.12)

where the second equality can be proved.
Although x̃n+1 is defined as a sum of n + 1 approximations, we have shown

it is enough to store two previous approximations x̃n and x̃n−1, we even do not
need to compute x0 . . . xn+1.

2.2.2 Characteristics and properties of CSI

Theorem 2.11 (Decay of ∥p̃n(G)∥). Polynomials defined in (2.2.10) have strictly
decreasing matrix norm with increasing n.
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Proof. Eigenvalues of symmetric matrix are real and G is convergent, so there
exists i such that |λi| = ρ. In addition, from definition of the Chebyshev polyno-
mials we know that |Tm(±1)| = 1 and thus using (2.2.7) and (2.2.10) gives

∥p̃m(G)∥ = max
1≤i≤N

∣∣∣∣Tm(λi/ρ)

Tm(1/ρ)

∣∣∣∣
=

1

Tm(
1
ρ
)
.

Definition of the Chebyshev polynomials outside the interval [−1, 1] now implies
the result, ∥p̃n(G)∥ is decreasing for increasing n.

The parameters of the CSI method can be also computed using following
relations:

ωn+1 =
1

1−
(
ρ2ωn

4

) , n ≥ 2, ω1 = 1, ω2 =
2

2− ρ2
.

We have presented method whose convergence is not based only on the spectral
radius. In contrast with stationary iterative methods we have control of the
behaviour in every step and the norm of the error is decreasing in every step.

In the case when G = GJ , i.e., when the iterative scheme (2.2.1) corresponds
to the Jacobi method and it is consistently ordered, it is possible to relate the
CSI method with the optimal parameter ωopt from the SOR method. It can be
shown that

∥p̃n(G)∥ =
2(ωopt − 1)n/2

1 + (ωopt − 1)n

ρ(p̃n(G))
n→∞−→

√
ρ(Gωopt) =

√
ωopt − 1

lim
n→∞

ωn = ωopt.

2.2.3 Comparison of SOR and CSI

The SOR and the CSI method can be considered as very similar methods. The
CSI method requires storage of two vectors, the SOR method needs just one
vector to be stored. Although the methods are based on different assumptions, it
is possible to modify the problem in order to compare them. The comparison of
those methods was done by Golub and Varga in 1961. The paper can be found
in [7] and we follow it here. For more details see also [34, Section 5.2].

Consider simple iterative method

xn+1 = Gxn + g

with convergent and symmetric matrix G. We know that under these assumptions
the CSI method can be defined. We know that the rate of convergence of the
CSI method is determined by polynomial p̃m(x), shifted and scaled Chebyshev
polynomial.
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In order to be able to apply the results of SOR analysis we consider expanded
linear system (

x
y

)
=

(
0 G
G 0

)(
x
y

)
+

(
g
g

)
Solution of this linear system is the same for x and y and it is also the solution
of the original problem. Matrix

J =

(
0 G
G 0

)
has the same spectral radius as the original matrix and is cyclic and consistently
ordered. Thus we can apply the results of the SOR theory and determine the
optimal relaxation parameter

ωopt =
1√

1− ρ2(G)
.

Now we see that the class of matrices convenient for the SOR method is larger
than it seemed before. However, we must solve problem of double dimension
which might be a serious limitation.

Defining z2n = xn, z2n+1 = yn we obtain iterative scheme of form:

zn+1 = ω(Gzn − zn−1 + g) + zn−1, (2.2.13)

where ω is the relaxation parameter.
We see that (2.2.13) has the same form as (2.2.11). The only difference is

that relaxation parameter is constant for this method. It is easy to see that error
of this method is again determined by some polynomial rn(G) and initial error
e0. It holds that ∥rn(G)∥ > ∥p̃n(G)∥ for all n ≥ 2. However limn→∞ ∥rn(G)∥ =
limn→∞ ∥p̃n(G)∥. That means, that CSI method should be preferred, since it
reduce error more effectively. Requirement of storage of additional vector is not
substantial. The asymptotic rate of convergence is not improved.

As it is showed in [34, Section 5.3], similar results can be obtained in the case,
where symmetric and convergent matrix G can be written as

G =

(
0 F
F T 0

)
In this case there is no problem in defining SOR. Detailed analysis of the CSI
method reveals some cyclic character and thus we obtain so-called cyclic Cheby-
shev semiiterative method. The comparison of these methods gives the same
results. The asymptotic rate of convergence is the same for both methods, but
cyclic CSI reduces the norm of error more effectively.

2.3 Iterative methods based on Krylov subspaces

Krylov subspace methods represents one of the most important techniques for
solving large linear systems with matrix of coefficients A ∈ RN×N . In many ap-
plications we do not have A explicitly and the only operation which is easy to
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execute is a matrix-vector multiplication. Krylov subspace methods are conve-
nient for such problems. In addition, they can be characterized by projection
process and thus, assuming exact arithmetic, they find a solution in at most N
steps.

In this section we follow especially [20, Chapter 2], for comparison see e.g.
[26, Chapter 5–7]. We will describe general projection framework and see, how
Krylov subspaces come naturally to play.

2.3.1 Approximation by projections

Let A ∈ RN×N , b ∈ RN . General projection method constructs a sequence of
approximations given by

xn ∈ x0 + Sn, rn ⊥ Cn (2.3.1)

where x0 is the initial approximation and Sn is a subspace of dimension n called
search space. Since we have n degrees of freedom to determine xn, we need n
constraints. These constraints are imposed as orthogonality conditions on residual
rn = b − Axn. Residual must be orthogonal to the n-dimensional subspace Cn
which is called constraints space.

There exists vector zn ∈ Sn such that we can write

xn = x0 + zn

e0 = en + zn

r0 = rn + Azn,

where en = x− xn is the error of the approximation.
Projection process is called to be well defined if search and constraints spaces

satisfy
RN = ASn ⊕ C⊥

n . (2.3.2)

Because of (2.3.2) there is uniquely defined decomposition of initial residual r0 =
r0|ASn + r0|C⊥

n
. Then Azn = r0|ASn is a projection of r0 on ASn orthogonal to C⊥

n .
Let columns of matrices Sn and Cn creates basis of spaces Sn and Cn. Then

for n-th approximation holds

xn = x0 + Snyn. (2.3.3)

After some manipulation and using orthogonality condition CT
n r0 = 0 we see that

yn is uniquely defined as solution of n dimensional problem

yn = (CT
nASn)

−1CT
n r0. (2.3.4)

Invertibility of (CT
nASn) is equivalent to condition (2.3.2). Therefore, generating

approximations xn can be understood as solving smaller - projected - linear system
for yn.

Residual can be expressed as

rn = (I − Pn)r0

Pn = ASn(C
T
nASn)

−1CT
n .
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Since P 2
n = Pn, Pn represents a projector. For ASn = Cn we call it orthogonal

projector, for ASn ̸= Cn we consider it as oblique projector. This terminology is in
agreement with [20], but differs from that in [26]. Reasons for this terminology
are commented in [20]. Following observation will give us reason to consider
Krylov subspaces to be the search spaces.

Lemma 2.12. Suppose (2.3.2), r0 ∈ Sn and ASn = Sn. Then rn = 0.

Proof. r0 = rn + Pnr0 represents a decomposition of r0 into Pnr0 ∈ ASn and
rn ∈ C⊥

n . From the assumptions we get r0 = Pnr0 which implies rn = 0.

Definition 2.4 (Krylov subspace). Let A ∈ RN×N , v ∈ RN . The subspace

Kk(A, v) = span(v, Av,A2v, . . . , Ak−1) (2.3.5)

is called Krylov subspace.

There exists uniquely defined d ≤ N such that v, Av, . . . , Ad−1v are linearly
independent and Adv can be expressed as a linear combination of that d indepen-
dent vectors. It can be shown, that Kd(A, v) = Kk(A, v) for every k ≥ d and that
Kd(A, v) is A-invariant for a regular matrix A. It follows quite easily that this
integer d equals to the grade of v with respect to A which is defined as a degree
of minimal polynomial of v with respect to A, i.e., it is a positive integer d such
that there exists a polynomial p of degree d satisfying

p(A)v = 0

and such that there is no polynomial of lower degree with this property.

Corollary 2.13. Let A be a regular matrix, set Sn = Kn(A, r0) and suppose that
(2.3.2) holds. Then rd = 0 and we have found an exact solution in d iterations.

Proof. Because of linear independence of r0, Ar0, . . . , A
d−1r0 holds

r0 ∈ S0 ⊂ S1 ⊂ . . . ⊂ Sd = ASd,

where the last equality results from theA-invariancy of Krylov subspaceKd(A, r0).
Now we see that assumptions of Lemma 2.12 are satisfied, so rd = 0, i.e.,
Axd = b.

Theorem 2.14 (Sufficient condition for well defined projection process). Suppose
that A is symmetric and positive definite and that Cn = Sn. Then

RN = ASn ⊕ C⊥
n ,i.e.,

the projection process is well defined.

Proof. Since the subspaces ASn and Sn have dimensions n andN−n it is sufficient
to show that the subspaces have trivial intersection. Consider z ∈ ASn ∩ S⊥

n .
Then there exists y ∈ Sn such that z = Ay. However, because z lies also in the
orthogonal complement of Sn, it holds that

0 = yT z = yTAy.

The matrix A is SPD and thus y = 0 which implies that also z = 0 and the proof
is complete.
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3 Method of Conjugate
Gradients (CG)

Method of Conjugate Gradients is one of the best known iterative methods for
solving systems of linear equations

Ax = b (3.0.1)

with symmetric and positive definite (SPD) matrix A ∈ RN×N and the right-
hand side b ∈ RN . The CG method is optimal in a sense that it minimizes the
energy norm of the error over given Krylov subspace. As other Krylov subspace
methods, the algorithm does not require storage of A.

The method was introduced by Hestenes and Stiefel [14] in 1952 and the au-
thors were from the very beginning aware of very interesting interconnections
between the method of conjugate gradients and other areas of mathematics. The
original paper reveals the relationship to continued fractions, orthogonal poly-
nomials, Riemann-Stieltjes integral and the Gauss-Christoffel quadrature. They
also understood that rounding errors influence the theoretical properties of the
CG method and thus they formulated it as an iterative method, although it
ideally gives the solution in finite number of steps.

There is a vast literature about the method of conjugate gradients. The expo-
sition of this chapter is based mainly on [20, 21] and many interesting comments
and results can be found in [31, 8, 26].

3.1 Derivation of CG through the minimaliza-

tion of functional

There exist several approaches, how to derive the method of conjugate gradients.
Here we will use that one which is based on the minimalization of the quadratic
functional

F (x) =
1

2
x∗Ax− x∗b (3.1.1)

and we follow [20, Section 2.5.3 ]. For the SPD matrix A is the minimalization
of (3.1.1) equivalent to the solution of the equation

∇F (x) = Ax− b = 0.

Because A is SPD, we can define an inner product

(x, y)A := xTAy (3.1.2)

and associated norm (called A-norm or energy norm)

∥x∥A :=
√

(x, x)A.

Vectors which are orthogonal with respect to the inner product (·, ·)A will be
called A-orthogonal in the following text.
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Let x be the minimum of the functional (3.1.1). For arbitrary approximation
xn we can write

F (xn) =
1
2
(xn, xn)A − xTnb

= 1
2
∥x− xn∥2A − 1

2
∥x∥2A + (xn, x)A − xTnb

= 1
2
∥x− xn∥2A − 1

2
∥x∥2A + xTn (Ax− b)

= 1
2
∥x− xn∥2A − 1

2
∥x∥2A .

That demonstrates the fact that the minimalization of the functional F (y)
over some subspace S is the same as the minimalization of the energy norm ∥.∥A
of vector x− y over the same subspace S. This it is more convenient to measure
the distance of the approximation xn to the solution x in the energy norm rather
then in the Euclidean norm.

As we have an approximation xn, it is natural to create next approximation
in a form

xn+1 = xn + αnpn, (3.1.3)

where pn is carefully chosen direction vector and the coefficient αn is settled to
minimize ∥x− xn+1∥A along the line x− xn − αpn. Using properties of the inner
product we can write

∥x− xn+1∥2A = ∥x− xn∥2A − 2α(A(x− xn), pn) + α2(Apn, pn)

and derivation with respect to α determines the point of extreme

αn =
(rn, pn)

(pn, pn)A
, (3.1.4)

where rn = A(x − xn) is the residual. From the equation (3.1.3) follow the
formulas for the residuals and for the errors en = x− xn

rn+1 = rn − αnApn (3.1.5)

en−1 = en + αn−1pn−1 (3.1.6)

Immediate consequence of the choice of the parameter αn is the orthogonality
between the residual and the direction vector, i.e.,

(rn+1, pn) = (rn − αnApn, pn) = (rn, pn)−
(rn, pn)

(pn, pn)A
(pn, pn)A = 0. (3.1.7)

Geometrically, it says that the gradient of F (x) at xn+1 is orthogonal to a surface
of such y that F (y) = F (xn+1). Direction vector pn is a tangent of this surface.

For better insight into the CG method it is useful to use (3.1.5), definition of
αn (3.1.4), identity rn = Aen and the definition of the inner product (3.1.2) to
write

en = en−1 −
(en−1, pn−1)A
(pn−1, pn−1)A

pn−1. (3.1.8)

Now we see that the error en can be viewed as the A-orthogonalization of the last
error vector en−1 against the direction vector pn−1. The A-orthogonality of the
components en and αn−1pn−1 can be shown easily by a computation or we can
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refer to general properties of projections on Hilbert spaces. The A-orthogonality
allows us to use the Pythagorean Theorem

∥en−1∥2A = ∥en∥2A + α2
n−1 ∥pn−1∥2A (3.1.9)

The repetitive use of the equation (3.1.6) gives the expansion

e0 = en +
n∑
j=1

αj−1pj−1 (3.1.10)

which says that the error of the initial approximation is approximated by a linear
combination of the direction vectors {pj}k−1

j=0 . Error of this approximation is
expressed by the error en. The repetitive use of the equation (3.1.9) gives

∥e0∥2A = ∥en∥2A +
n−1∑
j=0

α2
j ∥pj∥

2
A . (3.1.11)

It is worth to notice that this identity does not follow from the expansion (3.1.10),
we do not know anything about the inner products (pi, pj)A of {pj}k−1

j=0 , yet. Also
it should be stressed that the expansion (3.1.10) and the identity (3.1.11) holds
for arbitrary choice of {pj}n−1

j=0 .
Now we will derive, how to choose the direction vectors pn. In a method

of the steepest descent, the choice is pn ≡ rn, so in every step we search for
the next approximation in a direction of the steepest descent (−∇F (xn)). The
convergence of this method is guaranteed but can be very poor. The main reason
for the poor convergence is that in every step we use the information only from
the last iteration and thus we minimalize just over one-dimensional subspace. In
order to minimalize over subspaces of larger dimension, the direction vector pn
must combine information from several iteration steps. Very simple choice is to
add an information about the previous direction vector pn−1 and to compute

pn = rn + βnpn−1. (3.1.12)

We have added as little as we can, but we will see that it is good enough.
The iteration process can stop only if pn = 0 or αn = 0. Independently on the

choice of the parameter βn, the orthogonality between pn−1 and rn (see (3.1.7))
gives

(pn, rn) = (rn, rn) = ∥rn∥2 (3.1.13)

and in both cases of possible breakdown we finally get (rn, rn) = 0 which is
equivalent to rn = 0. That ensures, that the iteration process will stop if and
only if we have found an exact solution.

For a moment let assume, that {pj}n−1
j=0 are A-orthogonal. Then

en = e0 −
n∑
j=1

αj−1pj−1 (3.1.14)

represents the A-orthogonal decomposition of the initial error e0. Consequently,
∥en∥A is minimal over all possible approximations xn in the n-th dimensional
subspace generated by the direction vectors p0, . . . , pn−1, i.e.,

∥x− xn∥A = min
y∈x0+span{p0,...,pn−1}

∥x− y∥A . (3.1.15)
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Moreover, the A-orthogonality of the direction vectors implies that pN = 0 and
thus the iteration process finds the exact solution in at most N steps. This result
is important, however, the same importance should be given to the fact that this
result assumed exact arithmetic. In practical computations it is sometimes nec-
essary to run more iterations to attain sufficient accuracy of the approximation.
For the details of the numerical behaviour of the CG method see Section 3.7 and
references given there.

We have seen that for the A-orthogonal vectors pi the iteration process in
the n-th step minimizes the energy norm over n-dimensional subspace. However,
there is only one degree of freedom, the coefficient βn, so we can ensure the A-
orthogonality just between two vectors. We will determine βn in order to get
(pn, pn−1)A = 0. From the definition of the direction vector pn it is easy to see
that

βn = − (rn, pn−1)A
(pn−1, pn−1)A

. (3.1.16)

The elegance of the CG method lies in the fact that this local A-orthogonality
implies the global A-orthogonality; see the following theorem.

Theorem 3.1 (Properties of rk, pk defined in CG). For an iterative process de-
fined above holds that

(pk, pj)A = 0 for j ̸= k

(rk, rj) = 0 for j ̸= k

Proof. Proof is based on induction and can be found in many publications. We
can refer to the original paper of Hestenes and Stiefel [14, Theorem 5:1].

Thus we see, that with the coefficients βk given by (3.1.16) the assumption
of A-orthogonality is satisfied and thus the minimalization property (3.1.15) is
guaranteed. Finally, using (3.1.5) and (3.1.13) we can express the coefficients αk
and βk in a form which is more convenient for the practical computation.

αk =
(rk, pk)

(pk, pk)A
=

∥rk∥2

∥pk∥2A
(3.1.17)

βk = − (rk, pk−1)A
(pk−1, pk−1)A

= − r∗kApk−1

p∗k−1Apk−1

= −r
∗
k(rk−1 − rk)

αk−1

αk−1

p∗k−1(rk−1 − rk)
= − (rk, rk−1 − rk)

(pk−1, rk−1 − rk)
=

∥rk∥2

∥rk−1∥2
(3.1.18)

Combining the equations (3.1.3), (3.1.12), (3.1.17) and (3.1.18) gives the imple-
mentation of the CG method stated in Algorithm (1).

Algorithm (1): The CG method

Input: SPD matrix A ∈ RN×N, vector b ∈ RN, initial approximation

x0, stopping criterion.

Output: Approximation xn of the exact solution of Ax = b.

Initialization: r0 = b− Ax0, p0 = r0.
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For k = 1, 2, . . .

αk−1 =
(rk−1, rk−1)

(rk−1, rk−1)A

xk = xk−1 + αk−1pk−1

rk = rk−1 − αk−1Apk−1

Stop when the stopping criterion is satisfied.

βk =
(rk, rk)

(rk−1, rk−1)

pk = rk + βkpk−1

(3.1.19)

End

3.2 CG viewed through the projection process,

connection to the Krylov subspaces

If not specified differently, we assume here and in the following sections that
CG computation does not stop in iterations 1, . . . , n. The relation between CG
and Krylov subspaces is mentioned in many publications (see e.g. [20]) and the
following lemma is often left as an easy exercise.

Lemma 3.2. The residuals r0, . . . , rn form an orthogonal basis of the Krylov
subspace Kn+1(A, r0) and the direction vectors p0, . . . , pn form an A-orthogonal
basis of the Krylov subspace Kn+1(A, r0).

Proof. Because of the orthogonality (resp. A-orthogonality) of the residuals (resp.
directions vectors), the vectors r0, . . . , rn (resp. p0, . . . , pn) are linearly indepen-
dent and thus the linear span of these polynomials is a subspace of dimension
n+1. Consequently, in order to show that the vectors form a basis of the Krylov
subspace Kn+1(A, r0) it is sufficient to show that

rk (resp. pk) ∈ Kk+1(A, r0), k = 0, . . . , n, (3.2.1)

since it is obvious that Kk+1(A, r0) ⊂ Kn+1(A, r0) for k ≤ n. Relations (3.2.1)
can be easily proved using induction and the definitions of the residual rk and the
direction vector pk. For k = 0 the relation (3.2.1) is satisfied trivially. Assume
that rk−1, pk−1 ∈ Kk(A, r0). Then Apk−1 ∈ AKk(A, r0) ⊂ Kk+1(A, r0) and thus

rk =

∈Kk(A,r0)︷︸︸︷
rk−1 −

∈Kk+1(A,r0)︷ ︸︸ ︷
αk−1Apk−1 ∈ Kk+1(A, r0).

Consequently,

pk =

∈Kk+1(A,r0)︷︸︸︷
rk −

∈Kk(A,r0)︷ ︸︸ ︷
βkpk−1 ∈ Kk+1(A, r0).

Because the Krylov subspace Kn+1(A, r0) has dimension n + 1, we have proved
that

span(r0, . . . , rn) = Kn+1(A, r0) = span(p0, . . . , pn). (3.2.2)
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This observation allows us to rewrite some of the equations from the derivation
of CG in a language of Krylov subspaces. From the definition of the approxima-
tion xk+1 (see (3.1.3)) and the last lemma it is obvious that

xk+1 ∈ x0 +Kk+1(A, r0). (3.2.3)

The minimalization property (3.1.15) gives

∥x− xk+1∥A = min
y∈x0+Kk+1(A,r0)

∥x− y∥A , i.e., (3.2.4)

the approximation xk+1 minimizes the energy norm of the error over the Krylov
subspace Kk+1(A, r0). The last lemma also allows to express the orthogonality of
the residuals as

rk+1 ⊥ Kk+1(A, r0), ∀k ≤ n. (3.2.5)

These results goes hand in hand with the general projection method defined in
Subsection 2.3.1 used for the symmetric and positive definite matrix A with the
Krylov subspaceKk(A, r0) considered as the search and constraint space (compare
(3.2.3) and (3.2.5) with (2.3.1)). From Theorem 2.14 we know, that the projection
process is well defined.

3.3 Relationship between CG and the Lanczos

algorithm

The Lanczos and Arnoldi algorithms are often used in methods which com-
pute approximations of some eigenvalues of the matrix A and they are tools
for computing orthonormal basis of Krylov subspaces Kk(A, v). The naive basis
v, Av,A2v, . . . , Ak−1v is typically poorly conditioned, and in practical compu-
tation, the vectors eventually become linearly dependent. Recall the classical
power method – method for approximation of the eigenvector corresponding to
the eigenvalue with the largest absolute value.

The Lanczos and CG algorithms are closely linked. We will show that the
Lanczos algorithm can be viewed through the projection process and thus that
it also determines the CG approximations. We will also derive formulas between
the coefficients of both algorithms. We will also mention that the CG method
can be even derived from the Lanczos algorithm; for details see [20, Section 2.5],
[26, Section 6.7] or [10, Section 9.3].

The exposition about the Lanczos and Arnoldi algorithms is based on [20,
Section 2.4], introduction to the Lanczos method and the explanation of the
relationship between CG and Lanczos algorithm is based on [21].

The Arnoldi algorithm

The Lanczos algorithm was introduced by Cornelius Lanczos in 1950, the Arnoldi
algorithm was introduced later, in 1951 by Walter E. Arnoldi. However, for the
purposes of the exposition it is more convenient to describe the Arnoldi algorithm
first.

The Arnoldi algorithm can be viewed as the Gram-Schmidt orthogonalization
process applied to natural basis of Krylov subspace (v, Av,A2v, . . . , An−1v). It
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starts with vector v1 = v/ ∥v∥ and in the k-th step, the vector vk is generated as
the orthogonalization of the vector Avk−1 against previous vectors v1, . . . , vk−1.

Orthogonality of the vectors v1, . . . , vk can be easily proved by induction as
well as the fact that they generate Kk−1(A, v). Since each vector is normalized,
vectors v1, . . . , vk create an orthonormal basis of the Krylov subspace Kk−1(A, v).
The orthogonalization process can terminate only if

Avd ∈ span (v1, v2, . . . , vd) ,

which means that span (v1, v2, . . . , vd) become A-invariant. Since

span (v1, v2, . . . , vd) = Kd−1(A, v),

we see that d is the grade of v with respect to A.
Let Vk ≡ [v1, . . . , vk] be a matrix with vectors v1, . . . , vk as a columns and let

Hk ≡


h1,1 h1,2 . . . h1,k
h2,1 h2,2 . . . h2,k

. . . . . .
...

hk,k−1 hk,k


be an upper Hessenberg matrix of coefficients. We can rewrite the Arnoldi algo-
rithm in terms of matrices. After k steps of the Arnoldi algorithm we have

AVk = VkHk + hk+1,kvk+1u
T
k , (3.3.1)

where uk represents the last column of the k-dimensional identity matrix. Multi-
plication of (3.3.1) with V T

k from the left gives

V T
k AVk = Hk (3.3.2)

The Lanczos algorithm

Now suppose that A is symmetric. Since

(Hk)
T = (V T

k AVk)
T = V T

k A
T (V T

k )T = V T
k AVk = Hk,

upper Hessenberg matrix Hk must be also symmetric and thus tridiagonal. It
means, that to ensure orthonormality of the vectors vi it is sufficient to orthogo-
nalize just against two previous vectors. The matrix formulation of the Lanczos
algorithm stays as following:

AVk = VkTk + δk+1vk+1u
T
k , k = 1, 2, . . . , d− 1 (3.3.3)

AVd = VdTd (3.3.4)

where

Tk ≡


γ1 δ2
δ2 γ2 δ3

. . . . . . . . .

δk−1 γk−1 δk
δk γk


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is a Jacobi matrix.
Orthonormality of the vectors vi in terms of matrices gives

V T
k Vk = Ik, k = 1, . . . , d (3.3.5)

V T
k vk+1 = 0 (3.3.6)

and (3.3.2) transforms into
V T
k AVk = Tk. (3.3.7)

Vectors v1, . . . , vd are called Lanczos vectors and we see that they satisfy a three-
term recurrence

δk+1vk+1 = Avk − γkvk − δkvk−1. (3.3.8)

The Lanczos method

The Lanczos method computes the approximation of a few dominant eigenvalues
of the matrix A. It uses the Lanczos algorithm to construct the matrix Tn and
then it computes the eigenvalues and eigenvectors of Tn. The eigenvalues of Tn
are called Ritz values and they approximate the eigenvalues of A. We know that
the eigenvalues of Jacobi matrix are distinct (see Theorem 1.9 and Theorem 1.12)

and thus we can denote the eigenvalues of Tn as θ
(n)
1 < θ

(n)
2 < · · · < θ

(n)
n . The

approximation of the eigenvectors can be easily computed as Vnz
(n)
i where z

(n)
i =

(ζ
(n)
i,1 , ζ

(n)
i,2 , . . . , ζ

(n)
i,n ) is the corresponding normalized eigenvector of the matrix Tn.

The vectors x
(n)
i ≡ Vnz

(n)
i are called Ritz vectors.

The multiplication of the equation (3.3.3) from the right by the eigenvector

z
(n)
i gives

Ax
(n)
i − θ

(n)
i x

(n)
i = δn+1u

T
nz

(n)
i vn+1 (3.3.9)∥∥∥Ax(n)i − θ

(n)
i x

(n)
i

∥∥∥ = δn+1

∣∣∣ζ(n)i,n

∣∣∣ , (3.3.10)

where ζ
(n)
i,n is the last component of the eigenvector z

(n)
i . We know that the

symmetric matrix A can be decomposed as A = QΛQT , where Q is a unitary
matrix with eigenvectors qj in a columns and Λ = diag(λ1, . . . , λN) is a diagonal
matrix of eigenvalues. Using this spectral decomposition in (3.3.10) allows to
obtain the inequality; see e.g. [21, Section 2.1].

min
j=1,...,N

∣∣∣λj − θ
(n)
i

∣∣∣ ≤ δn+1

∣∣∣ζ(n)i,n

∣∣∣∥∥∥x(n)i

∥∥∥ . (3.3.11)

The norm of the Ritz vectors x
(n)
i is in exact arithmetic equal to one and thus we

see that the quantity δn+1|ζ(n)i,n | determines how well the Ritz value θ
(n)
i approxi-

mates some eigenvalue of the matrix A.

Theorem 3.3 (Persistence Theorem). Let n < t. Then,

min
j

∣∣∣θ(n)i − θ
(t)
j

∣∣∣ ≤ δn+1|ζ(n)i,n |. (3.3.12)
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The Persistence Theorem was proved in [24] and implies that for every t > n

there is an eigenvalue of the associated Jacobi matrix Tt close to θ
(n)
i within

δn+1|ζ(n)i,n |, we say that eigenvalue θ
(n)
i is stabilized to within δn+1|ζ(n)i,n |. Small

δn+1|ζ(n)i,n | is thus a criterion for the fact that some eigenvalue of A has been well
approximated.

3.3.1 Lanczos algorithm as a solver and equivalence with
CG

Using the Lanczos algorithm as a solver of linear systems goes hand in hand with
the general principal of projection process; see Subsection 2.3.1. Let the matrix
A be symmetric and positive definite and let the Krylov subspace Kk(A, r0) be
the search space Sk and also the constraints space Ck.

In compliance with (2.3.1) we can write

xk ∈ x0 +Kk(A, r0)

rk ⊥ Kk(A, r0).

Since columns of the matrix Vk represent a basis of Kk(A, r0), (2.3.3) and (2.3.4)
gives

xk = x0 + Vkyk (3.3.13)

V T
k AVkyk = V T

k r0.

From the identity (3.3.7) and the orthogonality of {vi}ki=1 (have in mind that
r0 = v1 ∥r0∥) we finally have

Tkyk = ∥r0∥u1. (3.3.14)

To sum up, the k-th approximation xk can be obtained by solving smaller (pro-
jected) problem (3.3.14) for yk and computation of xk from (3.3.13).

In Section 3.2 we have shown, that the CG can be viewed as the projection
process. The search and constraints spaces are the same as in the projection
process determined by the Lanczos algorithm. Well defined projection process is
unique and thus the CG approximation xk is also determined by the solution of
the problem (3.3.14) and by the equation (3.3.13).

For the SPD matrix A and the initial residual r0, the CG algorithm determines
the same Jacobi matrix Tn as the Lanczos algorithm applied to the initial vector
r0/ ∥r0∥.

Relations between vectors and coefficients

Consider the sequence of the residuals {ri}ki=0 from the CG method and the
sequence of the Lanczos vectors {vi}k+1

i=1 from the Lanczos algorithm with starting
vector v = r0 and have in mind their properties:

span(r0, . . . , rk) = Kk(A, r0) span(v1, . . . , vk+1) = Kk(A, r0)

ri ⊥ rj, i ̸= j vi ⊥ vj, i ̸= j.
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Thus we can write

vk+1 ∈ Kk(A, r0) rk ∈ Kk(A, r0) (3.3.15)

vk+1 ⊥ Kk−1(A, r0) rk ⊥ Kk−1(A, r0). (3.3.16)

Since both vectors vk+1, rk lie in the same k-dimensional subspace and are or-
thogonal to the same (k− 1)-dimensional subspace and since the Lanczos vectors
are normalized we see that up to sign, the Lanczos vector is the normalized CG
residual. In order to determine the proper sign we compare the formula (3.3.8)
with the formula for rk from Algorithm (1). Since v1 = r0/ ∥r0∥, we finally get

vk+1 = (−1)k
rk
∥rk∥

(3.3.17)

The coefficients of the Lanczos algorithm can be expressed using the coeffi-
cients of the CG algorithm. In (3.3.8) we have seen that the Lanczos vectors vk+1

satisfy a three-term recurrence. Using the formulas from Algorithm (1) we can
express rk in a similar way.

rk = rk−1 − αk−1Apk−1

= rk−1 − αk−1A(rk−1 + βk−1pk−2)

− 1

αk−1

rk = Ark−1 −
1

αk−1

rk−1 +
βk−1

αk−2

(rk−2 − rk−1)

− 1

αk−1

rk = Ark−1 −
(

1

αk−1

+
βk−1

αk−2

)
rk−1 +

βk−1

αk−2

rk−2 (3.3.18)

Multiplication of (3.3.18) with (−1)k−1

∥rk−1∥
gives

1

αk−1

∥rk∥
∥rk−1∥

[
(−1)k

rk
∥rk∥

]
= A

[
(−1)k−1 rk−1

∥rk−1∥

]
−
(

1

αk−1

+
βk−1

αk−2

)[
(−1)k−1 rk−1

∥rk−1∥

]
− βk−1

αk−2

∥rk−2∥
∥rk−1∥

[
(−1)k−2 rk−2

∥rk−2∥

]
Finally, using (3.3.17) and

βk =
∥rk∥2

∥rk−1∥2

from Algorithm (1), we get

√
βk

αk−1

vk+1 = Avk+1 −
(

1

αk−1

+
βk−1

αk−2

)
vk −

√
βk−1

αk−2

. (3.3.19)

Comparison with (3.3.8) gives the formulas between coefficients

δk+1 =

√
βk

αk−1

γk =
1

αk−1

+
βk−1

αk−2

,

(3.3.20)
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where we set
δ0 = 0, γ−1 = 1.

Conversely, let Lk be a lower bidiagonal matrix with

√
βj

αj−1
, j = 1, . . . , k− 1 on

a subdiagonal and 1√
αj−1

, j = 1, . . . , k on the main diagonal. Then

Tk = LkL
T
k

and thus the coefficients in the CG algorithm can be obtained from the coefficients
of the Lanczos algorithm by the LU (Choleski) decomposition of the Jacobi matrix
Tk.

3.4 Relationship with orthogonal polynomials

and Gauss-Christoffel quadrature

In this section we follow [21, 31] and we will describe the relationship between
the CG and Lanczos algorithms and the sequence of orthogonal polynomials. We
know that the Lanczos algorithm generates the Jacobi matrix. The Theorem 1.8
implies that this Jacobi matrix defines monic polynomials which are orthogonal
to some inner product determined by some distribution function. We will define
this distribution function and use it to demonstrate the relationship between the
Lanczos algorithm and the Gauss-Christoffel quadrature.

Suppose that the Lanczos algorithm, applied to the symmetric matrix A and
the initial vector v1, does not stop in iterations 1, . . . , n, i.e., n is strictly small-
er then the grade of v1 with respect to A. We know that the Lanczos vec-
tors v1, . . . , vn+1 create an orthonormal basis of the Krylov subspace Kn+1(A, v1).
Thus we can write vector vk+1, k = 0 . . . , n in terms of a polynomial in the matrix
A applied to the initial vector v1, i.e.,

vk+1 = φk+1(A)v1, k = 0, . . . , n, (3.4.1)

where φk+1 is a polynomial of degree k. Substitution of (3.4.1) to the three-term
recurrence (3.3.8) gives a three-term recurrence for the polynomials φk:

δk+1φk+1(λ) = (λ− γk)φk(λ)− δkφk−1(λ) k = 1, . . . , n

φ1(λ) = 1

φ0(λ) = 0.

(3.4.2)

Assume now for simplicity that the symmetric matrix A has distinct eigenvalues
λ1 < · · · < λN and set numbers a, b such that the eigenvalues are enclosed in the
open interval (a, b). From the spectral decomposition A = QΛQT , where Q is a
unitary matrix with eigenvectors qj in a columns and Λ = diag(λ1, . . . , λN) is a
diagonal matrix of eigenvalues.

Using the orthonormality of the Lanczos vectors we can compute

δk,l = (vl, vk) = vTk vl = (φk(A)v1)
Tφl(A)v1

= vT1 Qφk(Λ)Q
TQφl(Λ)Q

Tv1

= (QTv1)
Tφk(Λ)φl(Λ)Q

Tv1

=
N∑
j=1

(v1, qj)
2φk(λj)φl(λj), k, l = 1, . . . , n+ 1

(3.4.3)
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where δk,l is the Kronecker’s delta.
Similarly as in (1.2.1) and (1.2.2) we can define nondecreasing piecewise con-

stant distribution function ω(λ) with at most N points of increase λ1, . . . , λN and
with weights given by the squared component of the vector v1 in the direction of
the invariant subspace determined by the eigenvector qj, i.e.,

ωj = (v1, qj)
2. (3.4.4)

Because the initial vector v1 is normalized to have unit norm, the sum of the
weights is equal to 1, i.e.,

N∑
j−1

ωj = 1. (3.4.5)

Define also the associated Riemann-Stieltjes integral∫ b

a

f(λ) dω(λ) ≡
N∑
j=1

ωjf(λj) = vT1 f(A)v1. (3.4.6)

Similarly as in Definition 1.8 define a mapping

⟨p, q⟩ω =

∫ b

a

p(λ)q(λ) dω(λ). (3.4.7)

Lemma 3.4. Mapping defined in (3.4.7) is an inner product on the subspace Pn

Proof. The polynomials φ0, φ1, . . . , φn+1 span the subspace Pn. The identity
(3.4.3) implies that φ1, . . . , φn+1 are orthonormal with respect to the mapping
⟨·, ·⟩ω. Thus for arbitrary polynomial p ∈ Pn holds that

⟨p, p⟩ω =

⟨
n∑
i=1

νiφi,
n∑
i=1

νiφi

⟩
ω

=
n∑
i=1

ν2i

and thus
⟨p, p⟩ω = 0 ⇐⇒ νi = 0 ∀i = 1, . . . , n⇐⇒ p = 0.

We have shown that the polynomials φ0, φ1, . . . , φn+1 are orthonormal with
respect to the inner product ⟨·, ·⟩ω on the subspace Pn. Thus we can use the results
of Section 1.3 and see that the roots of the polynomial φk+1 are the eigenvalues
of the Jacobi matrix Tk. Polynomials (−1)kχk, where χk is the characteristic
polynomial of the Jacobi matrix Tk, are the monic orthogonal polynomials.

Now we will reveal the relationship between the Lanczos algorithm and the
Gauss-Christoffel quadrature for approximation of the Riemann-Stieltjes integral.

Consider the symmetric tridiagonal Jacobi matrix Tn defined by the first n
steps of the Lanczos algorithm. Denote as In the ndimensional identity matrix
and let ui be its columns. Simple identity

TnIn = InTn, (3.4.8)
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can be considered as a matrix formulation of the Lanczos algorithm applied to
the matrix Tn and the starting vector u1. It is worth to note here that the
comparison with (3.3.4) gives that u1 is of grade n with respect to Tn. We know
that matrix Tn defines a sequence of polynomials φ1, . . . , φn. Using exactly the
same arguments as at the beginning of this section we can write

uk+1 = φk+1(Tn)u1, k = 0, . . . , n− 1. (3.4.9)

The polynomials are the same as in the first case because they are determined by
the same tridiagonal matrix Tn. It is worth to note that we know that the roots of
the polynomial φn+1 are the eigenvalues of the matrix Tn and thus the eigenvalues
are always distinct (also in the case when A has some multiple eigenvalues); see

Theorem 1.9. We denote them as θ
(n)
1 < θ

(n)
2 < · · · < θ

(n)
n . As a consequence of

the interlace theorem they are also enclosed in the open interval (a, b). Consider
the spectral decomposition of Tn

Tn = ZnΘ
(n)ZT

n ,

where Θ(n) is a diagonal matrix of eigenvalues θ
(n)
1 , . . . , θ

(n)
n and Zn is a unitary

matrix with normalized eigenvectors z
(n)
j in a columns.

Similarly as before we can define nondecreasing piecewise constant distribu-
tion function ω(n)(λ). We will show that it has exactly n points of increase

θ
(n)
1 , . . . , θ

(n)
n . The weights are given by the squared component of the vector u1

in the direction of the invariant subspace determined by the eigenvector z
(n)
j , i.e.,

ω
(n)
j = (u1, z

(n)
j )2. (3.4.10)

As before, ∥u1∥ = 1 gives
n∑
j=1

ω
(n)
j = 1. (3.4.11)

The associated Riemann-Stieltjes integral is defined as∫ b

a

f(λ) dω(n)(λ) ≡
n∑
j=1

ω
(n)
j f(θ

(n)
j ) = uT1 f(Tn)u1. (3.4.12)

The mapping

⟨p, q⟩ω(n) =

∫ b

a

p(λ)q(λ) dω(n)(λ). (3.4.13)

defines an inner product on the subspace Pn−1. It can be proved similarly as in
Lemma 3.4 using the identity (3.4.14)

δk,l = (ul, uk) = uTk ul = (φk(Tn)u1)
Tφl(Tn)u1

= uT1Znφk(Θ
(n))ZT

nZnφl(Θ
(n)))ZT

n u1

= (Znu1)
Tφk(Θ

(n)))φl(Θ
(n)))ZT

n u1

=
n∑
j=1

(u1, z
(n)
j )2φk(θ

(n)
j )φl(θ

(n)
j )

= ⟨φk, φl⟩ω(n) , k, l = 1, . . . , n

(3.4.14)
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Suppose that weight ω
(n)
j is zero. Consequently, the distribution function

ω(n)(λ) would have less then n points of increase and there would be a polynomial
ψ (defined to have roots at the points of increase) of strictly lower degree then
n such that ⟨ψ, ψ⟩ω(n) = 0 and thus the mapping ⟨·, ·⟩ω(n) would not be the inner
product on Pn−1.

Therefore we have shown that the distribution function ω(n)(λ) has exactly
n points of increase and that all weights given by (3.4.10) are strictly positive.
The polynomials φ1 = 1, φ2, . . . , φn+1 are orthogonal to each other with respect
to both inner products ⟨φk, φl⟩ω(n) and ⟨φk, φl⟩ω.

Since the polynomial φn+1 has the roots at the points of increase of the dis-
tribution function ω(n)(λ), it is obvious that ⟨φn+1, φn+1⟩ω(n) = 0. It is worth
to notice that even φn+1(Tn) = 0. It can be revealed from the three-term recur-
rence and the identity (3.4.8) but more elegant way is to use the Cayley-Hamilton
theorem (polynomial φn+1 is a multiple of the characteristic polynomial χn).

To sum up, the polynomials φ1, φ2, . . . , φn represents the sequence of orthonor-
mal polynomials with respect to the inner product ⟨·, ·⟩ω(n) on the space Pn−1 and
the uniquely defined polynomial φn+1 is orthogonal to them but ∥φn+1∥ω(n) = 0;
see also a discussion on p. 9.

The following theorem reveals the relationship between the Lanczos algorithm
and the Gauss-Christoffel quadrature rule.

Theorem 3.5. [21, Theorem 2.1] The Riemann-Stieltjes integral (3.4.12) defined
by the distribution function ω(n)(λ) given by the nodes and weights determined by
first n steps of the Lanczos algorithm applied to symmetric matrix A and v1
represents the n-th Gauss-Christoffel quadrature approximation of the Riemann-
Stieltjes integral (3.4.6) defined by the distribution function ω(λ) which is given by
the nodes and weights determined by the vector v1 and the spectral decomposition
of the matrix A.

Proof. Consider a polynomial ϕ(λ) of degree less then 2n. Then it is possible to
write

ϕ(λ) = φn+1(λ)ϕ1(λ) + ϕ2(λ) = φn+1(λ)ϕ1(λ) +
n∑
j=2

νjφj(λ) + ν1,

where ϕ1, ϕ2 are the polynomials of degree less then n. The orthogonality of the
polynomials 1, φ2, . . . , φn+1 gives∫ b

a

ϕ(λ) dω(n)(λ) =

∫ b

a

ν1 dω
(n)(λ) =

∫ b

a

ν1 dω(λ) =

∫ b

a

ϕ(λ) dω(λ)

Using the definitions (3.4.6), (3.4.12) we see that the previous theorem gives
the identity

vT1 ϕ(A)v1 = uT1 ϕ(Tn)u1, ∀ϕ ∈ P2n−1. (3.4.15)

Speaking about the CG algorithm, it is worth noticing the relationship between
the initial error and the Gauss-Christoffel quadrature. The identity

∥e0∥2A = eT0Ae0 = rT0 A
−1r0 = ∥r0∥2 vT1 A−1v1
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and the definition (3.4.6) give

∥e0∥2A = ∥r0∥2 vT1 A−1v1 = ∥r0∥2
∫ b

a

λ−1 dω(λ). (3.4.16)

The k-th error ek satisfies (see e.g. (3.1.10))

ek ∈ e0 +Kk(A, r0).

Since r0 = Ae0 we can write

ek ∈ e0 + span(Ae0, . . . , A
ke0),

and thus
ek = φ̂k(A)e0, (3.4.17)

where φ̂k(λ) is a polynomial of degree k which is equal to one at the origin.
Because of the identity rk = Aek it is also true that

rk = φ̂k(A)r0. (3.4.18)

Using the identity (3.3.17) between the Lanczos vectors and the CG residuals we
can write

φ̂k(A)r0 = rk = (−1)k ∥rk∥ vk+1 = (−1)k
∥rk∥
∥r0∥

φk+1(A)r0,

which implies that polynomials φ̂k and φk+1 are the same except the multiplica-
tion by scalar. Consequently, the condition φ̂k(0) = 1 gives

φ̂k(λ) =
φk+1(λ)

φk+1(0)
(3.4.19)

Notice that the assumption that A is SPD and the interlace theorem guarantees
that the roots of the polynomial φk+1 (resp. the eigenvalues of the Jacobi matrix
Tk+1) can not be smaller then λ1 > 0 and thus φk+1(0) ̸= 0.

The CG method is optimal in the sense that in the k-th step it minimalizes
the error over the k-th dimensional subspace. Now we see that associated quadra-
ture rule is also optimal. The Gauss-Christoffel quadrature rule has the highest
possible algebraic degree of exactness.

Conversely, consider SPD A and the initial residual r0. The Riemann-Stieltjes
integral (3.4.6) is defined uniquely as well as its Gauss-Christoffel approximations
for j = 1, . . . , N . We know that every quadrature rule can be considered as
the Riemann-Stieltjes integral for nondecreasing piecewise constant distribution
function (see Section 1.6). Thus we have uniquely defined distribution functions
ω(j)(λ) which uniquely determine the Jacobi matrices Tj. Because of the equiv-
alence between the projection process defined by the Lanczos algorithm and the
method of CG, the Jacobi matrix together with (3.3.14) and (3.3.13) uniquely
determine the CG approximation xj.

3.5 Matching moments and model reduction

Matching moments model reduction represent an important topic in numerical
mathematics. We show in this section that CG and Lanczos method can be
considered as that kind of model reduction. We follow [29] and [20, Sections 3.1
and 3.7].
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3.5.1 Stieltjes moment problem

In this section we will deal with the problem of moments and its relationship to
the Krylov subspace methods. The problem of moments was firstly formulated
by Stieltjes, for more details see [20, Section 3.1 and Historical note 3.3.5]. In
the version of simplified Stieltjes moment problem we deal with the distribution
function ϖ(λ) with N points of increase a < λ1 < · · · < λN ≤ b and with positive
weights ϖi such that

∑N
i=1ϖi = 1.

For given n ≥ 0 we want to determine distribution function ϖ(n) on [a, b]

with n points of increase a < λ
(n)
1 < · · · < λ

(n)
n ≤ b and with positive weights

ϖ
(n)
1 , . . . , ϖ

(n)
n such that

∑n
i=1ϖ

(n)
i = 1 in order to match the first 2n moments

of ϖ(n)(λ) with the first 2n moments of the original distribution function ϖ(λ),
i.e., ∫ b

a

λk dϖ(n)(λ) =

∫ b

a

λk dϖ(λ), k = 0, . . . , 2n− 1. (3.5.1)

We know that the Riemann-Stieltjes integral given by the distribution function
ϖ(n)(λ) can be interpreted as a quadrature rule of the integral given byϖ(λ). This
means that the solution of the simplified Stieltjes moment problem determines an
n-point quadrature rule which is exact for all polynomials up to degree 2n−1, i.e.,
it determines the uniquely defined Gauss-Christoffel quadrature rule. Conversely,
the distribution function given by the Gauss-Christoffel quadrature rule gives a
solution of the simplified Stieltjes moment problem.

Thus the Gauss-Christoffel quadrature can be viewed as a model reduction
of the original model represented by the distribution function ϖ(λ) (N points of
increase) to the reduced model represented by the distribution function ϖ(n)(λ)
(n points of increase). This model reduction matches the first 2n moments.

Using the Lanczos algorithm and its relationship with the Gauss-Christoffel
quadrature it is possible to formulate the problem of moments in terms of matri-
ces. With the same setting as in Section 3.4 we can express the moments of the
Riemann-Stieltjes integral (3.4.6) in a language of linear algebra,∫ b

a

λk dω(λ) = vT1 A
kv1, k = 0, 1, . . . . (3.5.2)

We know that the Lanczos algorithm applied to A and v1 gives in the n-th step
the Jacobi matrix Tn and we can construct the associated distribution function
ω(n)(λ). The first 2n moments can be expressed in a similar way,∫ b

a

λk dω(n)(λ) = uT1 T
k
nu1, k = 0, . . . , 2n− 1. (3.5.3)

In the previous section we have shown that the Lanczos algorithm can be for-
mulated in terms of Gauss-Christoffel quadrature approximations given by the
distribution function ω(n)(λ) to the original Riemann-Stieltjes integral given by
the distribution function ω(λ). Thus the Lanczos algorithm generates the se-
quence of distribution functions which are solutions of the simplified Stieltjes
moment problem and the matching property can be written as

uT1 T
k
nu1 = vT1 A

kv1, k = 0, . . . , 2n− 1. (3.5.4)

47



The Lanczos algorithm can be viewed as a model reduction of the original
problem represented by A, v1 to the reduced model represented by Tn, u1. This
model reduction matches the first 2n moments.

With A SPD we can use the results about the equivalence between CG and
Lanczos algorithms. From Subsection 3.3.1 we know that the approximation xn
generated by the CG method is also uniquely determined by formulas

xn = x0 + Vnyn, Tnyn = ∥r0∥u1. (3.5.5)

Thus the CG approximation xn can be considered as a result of the model reduc-
tion of the original problem Ax = b to the reduced model Tnyn = ∥r0∥u1. This
model reduction matches the first 2n moments.

3.5.2 Vorobyev moment problem

The Krylov subspace methods are useful also for solving linear systems with non-
symmetric matrices. These methods can be also described as a model reduction
with some matching property. However, the interpretation of moment match-
ing which uses the Gauss-Christoffel quadrature involves the extension of the
Gauss-Christoffel quadrature to the complex plane which include some nontrivial
assumptions.

An operator formulation of the problem of moments suggested by Vorobyev
allows to describe the moment matching property without any further assump-
tions. Unfortunately, the works of Vorobyev are not well known yet. In compli-
ance with the main focus of this thesis, we will illustrate the Vorobyev moment
problem for the symmetric matrix A. We will show that in this case the operator
formulation of the problem of moments is equivalent to the formulation of the
simplified Stieltjes moment problem. For more details about the application of
the Vorobyev moment problem to the non-symmetric Krylov subspace methods
see [20, Section 3.7] or [29] and references given there.

The symmetric matrix A ∈ RN×N can be viewed as a linear operator on RN .
As before, suppose that columns of Vn represent the orthonormal basis of the
n-dimensional Krylov subspace Kn(A, v1). The mapping

Qn ≡ VnV
T
n : RN −→ Kn(A, v1)

represents the orthogonal projector onto Kn(A, v1).
Vorobyev’s formulation of the moment problem can be in our case written as

follows: Given A and v1 we wish to construct a linear operator An defined on the
Krylov subspace Kn(A, v1) such that

Anv1 = Av1

A2
nv1 = A2v1

...

An−1
n v1 = An−1v1

Annv1 = QnA
nv1,

(3.5.6)

It can be easily shown that equations (3.5.6) determine the operator An
uniquely and that the solution is given by the orthogonally projected restriction
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of the operator A on K(A, v1), i.e.,

An = QnAQn.

Now we will see that the solution of the Vorobyev moment problem gives the
same matching property as (3.5.4). Since

vT1 A
kv1 = vT1 QnA

kQnv1 = uT1 V
T
n A

kVnu1 = uT1 T
k
nu1, (3.5.7)

we must show that

vT1 A
kv1 = vT1 A

k
nv1, k = 0, . . . , 2n− 1. (3.5.8)

The identity is trivial for k = 0 and for k = 1, . . . , n − 1 it is an immediate
consequence of (3.5.6). Since Qn is a projector, multiplication of the last row of
(3.5.6) by Qn implies that

Qn(A
nv1 − Annv1) = 0 (3.5.9)

Since Qn projects orthogonally onto Kn(A, v1), the vector Anv1 − Annv1 must be
orthogonal to all of its basis vectors and thus the use of (3.5.6) and of symmetry
of A,An gives

vT1 A
j(Anv1 − Annv1) = vT1 A

j
n(A

nv1 − Annv1) = 0, j = 0, . . . , n− 1 (3.5.10)

which gives the result.
Summarizing, the matrix formulation of the matching property can equiva-

lently represent Stieltjes and Vorobyev moment problem.

3.6 Convergence of CG, estimates of the energy

norm

In this section we will review several results about the convergence of the CG
method and express several error bounds. We will see that the relationship of the
CG method with the Lanczos algorithm and the Gauss-Christoffel quadrature is
not interesting only theoretically but that it allows to compute interesting error
bounds.

Since the CG method gives in exact arithmetic the solution in at mostN steps,
it is not very meaningful to speak about the convergence in the asymptotic sense.
In many applications, the approximate of the solution of satisfactory accuracy
can be attained in a few steps. It is this what we have in mind when speaking
about convergence and convergence behaviour. We care about a decrease of the
error from the very beginning of computation.

Now we will review the classical upper bound based on the Chebyshev poly-
nomials, we will follow [32, Section 8.2]. We know (see (3.1.15) and (3.2.4)) that
the CG method minimizes in the k-th step the energy norm of the error over the
k-dimensional Krylov subspace K(A, r0), i.e.,

∥x− xk∥A = min
y∈x0+Kk(A,r0)

∥x− y∥A . (3.6.1)
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Let us also repeat (see (3.4.17) the polynomial expression of the error ek = x−xk
and the residual rk,

ek = φ̂k(A)e0, rk = φ̂k(A)r0, φ̂k(λ) ∈ Π0
k, (3.6.2)

where Π0
k is the set of the polynomials of degree k with value 1 at the origin.

Using the identity Ae0 = r0 and the spectral decomposition A = QΛQT we
can express the energy norm of the error as

∥ek∥2A = ∥φ̂k(A)e0∥2A = min
φ∈Π0

k

∥φ(A)e0∥2A = min
φ∈Π0

k

∥φ(A)r0∥2A−1

= min
φ∈Π0

k

N∑
i=1

(r0, qi)
2φ

2(λi)

λi
.

(3.6.3)

Thus we see that the rate of the convergence of CG is determined by two factors:
by the size of the components of the initial residual in the direction of the in-
variant subspaces determined by the eigenvectors and by the distribution of the
eigenvalues of A.

Let us focus on the estimate of the right side in (3.6.3). Since

∥φ(A)e0∥A =
∥∥φ(A)A1/2e0

∥∥ ≤ ∥φ(A)∥
∥∥A1/2e0

∥∥ = ∥φ(A)∥ ∥e0∥A

and
∥φ(A)∥ = ∥φ(Λ)∥ = ρ(φ(Λ)) = max

i=1,...,N
|φ(λi)|

we can write that

∥ek∥A
∥e0∥A

≤ min
φ∈Π0

k

∥φ(A)∥ ≤ min
φ∈Π0

k

max
i=1,...,N

|φ(λi)| . (3.6.4)

A standard way to analyze the minimax problem (3.6.4) is to substitute the
discrete set of the eigenvalues by an interval which includes all eigenvalues, i.e.,

∥ek∥A
∥e0∥A

≤ min
φ∈Π0

k

max
λ∈[λ1,λN ]

|φ(λi)| . (3.6.5)

The minimax problem in (3.6.5) has the unique solution given by the shifted and
scaled Chebyshev polynomials (see Remark 1.12) and thus it is possible to write

∥ek∥A
∥e0∥A

≤
∣∣∣∣Tk

(
λN + λ1
λN − λ1

)∣∣∣∣−1

.

After some manipulation (see e.g. [26, Theorem 6.6]) we can write the well known
upper bound

∥ek∥A
∥e0∥A

≤ 2

(√
κ− 1√
κ+ 1

)k
, (3.6.6)

where κ = λN/λ1 is the condition number of the matrix A.
Although this upper bound is well known, it was not always understood cor-

rectly. The inequality (3.6.6) implies that if the matrix A is well conditioned (the
condition number κ is close to 1), the convergence of CG is very rapid. Howev-
er, large condition number does not imply poor convergence. The upper bound
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(3.6.6) is often very pessimistic. That is because the upper bound (3.6.6) is based
only on the information about the extreme eigenvalues λ1, λN but we know that
the rate of convergence is determined by the distribution of all eigenvalues. It
often happens that after a few iterations the rate of convergence accelerates. This
phenomenon is called superlinear convergence we will and it will be explained in
Subsection 3.6.2.

3.6.1 Estimates of the energy norm

Several interesting estimates of the energy norm are based on the relationship
between the CG and the Gauss-Christoffel quadrature and its modifications like
Gauss-Radau or Gauss-Lobato quadrature rules; see e.g. [8, Chapter 12]. Special-
ly, it can be proved that the scaled squared energy norm of the error in the n-th
step is the remainder of the n-point Gauss-Christoffel quadrature for function
λ−1 with the distribution function ω(λ) defined in Section 3.4, i.e.,

∥en∥2A
∥r0∥2

= (T−1
N )11 − (T−1

n )11, (3.6.7)

where the identities∫ b

a

λ−1 dω(λ) = (T−1
N )11,

∫ b

a

λ−1 dω(n)(λ) = (T−1
n )11 (3.6.8)

follow from (3.4.16), the identity AVN = VNTN and the definition (3.4.12). The
identity (3.6.7) was probably known to Stieltjes and it was proved by several
authors in different ways; for an elegant proof see e.g. [8, Theorem 12.1] or [9].

Since at iteration n we do not know (T−1
N )11, the formula (3.6.7) cannot be

used directly as the estimate of the norm of the error. However, subtraction
of (3.6.7) for the iteration n from (3.6.7) for the iteration n + d eliminates the
unknown (T−1

N )11 and we get

∥en∥2A = ∥en+d∥2A + ∥r0∥2
(
(T−1

n+d)11 − (T−1
n )11

)
, (3.6.9)

where d is some given positive integer. Recall that the energy norm of the error
is strictly decreasing. If d is chosen such that

∥en∥2A ≫ ∥en+d∥2A (3.6.10)

then neglecting ∥en+d∥2A gives the lower bound of ∥en∥2A

ηn,d = ∥r0∥2
(
(T−1

n+d)11 − (T−1
n )11

)
. (3.6.11)

The difference (T−1
n+d)11 − (T−1

n )11 can be computed by the CGQL algorithm; see
[8, p. 205–207]. Modifications which use the Gauss–Radau or Gauss–Lobato
quadrature rules allow to obtain also the upper bound of the energy norm of the
error.

Another estimate of the energy norm of the error is based on the identity

∥ek∥2A − ∥el∥2A =
l−1∑
i=k

αi ∥ri∥2 , 0 ≤ k < l ≤ N (3.6.12)
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which was revealed already in the original paper by Hestenes and Stiefel (see [14,
relation (6:2)]). The possibility of using of (3.6.12) as a stopping criterion was
emphasized in [31]. The derivation of the identity (3.6.12) is easy and it uses
only the local orthogonality, for the details see [31, Section 3 and 4]. Similarly as
before we can consider positive integer d and write

∥en∥2A = ∥en+d∥2A +
n+d−1∑
i=n

αi ∥ri∥2 . (3.6.13)

Under the assumption (3.6.10) we get the reasonably tight lower bound

νn,d =
n+d−1∑
i=n

αi ∥ri∥2 . (3.6.14)

It is worth noticing that this bound is very simple and it uses the quantities which
are at our disposal during the run of the CG algorithm.

The choice of the positive integer d in order to get tight lower bounds ηn,d, νn,d
represents difficult open problem. Usually, the larger d, the better is the estimate.
On the other hand, it is necessary to run more iterations of the CG algorithm.

In the next section it will be stressed that the theoretical properties of the
CG are substantially influenced by rounding errors in the practical computations.
Here we would like to stress that rounding errors might play a significant role
also in the application of any bounds derived assuming exact arithmetic. The
bounds estimate quantities which might be orders of magnitude different from
their exact arithmetic counterparts. Without rigorous analysis of the bounds in
finite precision (FP) arithmetic there is no justification that the estimates will
work in the practical computation.

The numerical stability of the bounds based on the Gauss–Christoffel (the
bound ηn,d), Gauss–Radau and Gauss–Lobato quadrature rules was with some
limitations justified in [9]. The numerical stability of the bound νn,d was ex-
plained in [31, Sections 7–10]. In Chapter 4 we will give an example of the upper
bound derived assuming exact arithmetic which does not work in finite precision
arithmetic and we will explain why it is so.

3.6.2 Superlinear convergence

The superlinear convergence of the CG computations can be explained via the
convergence of the Ritz values to the eigenvalues of A. We know from the previous
subsection that the energy norm of the CG error is connected with the remainder
of the Gauss–Christoffel quadrature and it is easy to see that (3.6.7) can be also
written as

∥en∥2A
∥r0∥2

=
N∑
j=1

(z
(N)
j )

λj
−

n∑
i=1

(z
(n)
i )

θ
(n)
i

. (3.6.15)

This identity reflects that there is a relationship (although complicated) between
the norm of error and the convergence of Ritz values. Another expression of that
relationship is given in the following theorem.

52



Theorem 3.6. [21, Theorem 3.3] For all k, there exists ϑn ∈ [λ1, λN ] such that
the energy norm of the error is given by

∥en∥2A =
∥r0∥2

ϑ2n+1
n

N∑
i=1

(
ωi

n∏
j=1

(λi − θ
(n)
j )2

)
, (3.6.16)

where ωi = |(v1, qi)|2.

This theorem shows that the convergence of Ritz value to some eigenvalue of
A implies elimination of the component of the initial residual which lies in the
direction of the corresponding eigenvector. In other words,

“ . . . as soon as one of the extreme eigenvalues is modestly well ap-
proximated by a Ritz value, the procedure converges from then on
as a process in which this eigenvalue is absent, i.e., a process with a
reduced condition number”[33, p. 51].

Convergence analysis based on potential theory

The minimax problems like in (3.6.4) or (3.6.5) can be also analyzed using the
methods of potential theory. Indeed, the relationship between potential theory
and the Krylov subspace methods were observed by several authors; see e.g.
[5, 17].

Mathematically rigorous introduction to potential theory is beyond the scope
of this paper and thus we limit only to some comments about the usefulness of
analysis based on potential theory.

As it is demonstrated in [17], potential theory can give interesting results
about the minimax problem over the discrete set as in (3.6.4). Potential theory
can tell us which eigenvalues are very well approximated by the zeros and which
are not. It can give an improved asymptotic convergence factor [17, Section 9]
which corresponds with the superlinear convergence of CG.

However, there are many assumptions which limit the practical use of this
results. The improved asymptotic convergence factor is valid only in asymptotic
sense which means that both dimension of the problem and the number of carried
iterations must be very large. It also depends on certain asymptotic distribution
of eigenvalues.

3.7 Analysis of rounding errors

This section is based on nice and well written review paper [21] and on [31, Sec-
tion 5]. In the previous sections we have described a method with interesting
theoretical properties and we have revealed the relationship of the CG method to
the Lanczos algorithm, the orthogonal polynomials, the Riemann-Stieltjes inte-
gral and the Gauss–Christoffel quadrature. However, in practical computations it
is necessary to consider the effects of rounding errors. Without rigorous analysis
and justification it is not possible to be sure that any of the identities, formulas
or theoretical properties derived in exact arithmetic holds also in finite precision
arithmetic.
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It has been known since the introduction of the Lanczos algorithm that the
numerical behaviour can be strongly affected by rounding errors and that it does
not fulfill its theoretical properties. In particular, the global orthogonality of the
Lanczos vectors is typically lost after a few iterations. As a consequence of the
loss of orthogonality, the elements of the computed Jacobi matrix may differ by
several orders of their exact arithmetic counterparts. In addition, the multiple
approximation of the dominant eigenvalues appear and thus the approximation of
the other eigenvalues is delayed. Moreover, there is no guarantee that the norm
of the Ritz vector x

(n)
i = Vkz

(n)
i is close to one. It can even numerically vanish

and thus it is not clear whether a small value of δn+1|ζ(n)i,n | means convergence of
the Ritz value to any eigenvalue of A as (3.3.11) suggests.

The residual vectors in the CG lose their orthogonality similarly as the Lanczos
vectors do. Since in exact arithmetic the rate of the convergence depends on
how well the eigenvalues of A are approximated by the eigenvalues of Tn (see
Subsection 3.6.2), we may expect the same in finite precision. The appearance of
the multiple copies of dominant eigenvalues then cause a delay in CG convergence.

3.7.1 Paige’s analysis and its consequences

Despite the loss of orthogonality, i.e., the invalidity of the fundamental principle
of the Lanczos method, the Lanczos method gives surprisingly reasonable results.
However the serious loss of orthogonality caused that the Lanczos method was
neglected by the numerical analysts for more than 20 years. This was changed
in 1970s by works of Chris Paige (see e.g. [25] or [24]). He presented rigorous
mathematical analysis of rounding errors in the Lanczos algorithm which allows to
understand the numerical behaviour of the Lanczos method. Despite the common
wisdom of that time, he clarified that the Lanczos method can be used as a reliable
and efficient numerical tool for computing highly accurate approximations of
dominant eigenvalues of large sparse matrices.

Since the detail exposition of his work is far beyond the scope of this thesis,
we just give the summary of the most important results:

• Small δn+1|ζ(n)i,n | really implies that θ
(n)
i is close to some eigenvalue of A,

regardless the size
∥∥∥x(n)i

∥∥∥, i.e., that the last elements of the eigenvectors of

the computed Tn indeed reliably tell us how well the eigenvalues of A are
approximated by Ritz values.

• Until δn+1|ζ(n)i,n | is very small, the scalar product of vn+1 and the Ritz vector

x
(n)
i is small. In combination with the first point it says that the orthog-

onality can be lost only in directions of converged Ritz values. In other
words, vn+1 does not exhibit any substantial loss of orthogonality to Ritz
vectors. And if so, then it must be Ritz vector associated with converged
Ritz value.

• In contrast to this, there is no proof that the convergence of Ritz value is
necessary accompanied by the loss of orthogonality. The relation between
loss of orthogonality and the convergence of Ritz values is not equivalence
but only implication where the sufficient condition is the loss of orthogo-
nality and the necessary condition is the convergence of Ritz value.
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• Until the loss of orthogonality the numerical behaviour of the Lanczos al-
gorithm is nearly the same is the same as of the Lanczos algorithm with
full reorthogonalization. Within the small inaccuracy, the computed Ritz
values all lie between extreme eigenvalues of A. The last statement justifies
the use of upper bound (3.6.6) also in finite precision arithmetic.

3.7.2 Backward-like analysis of Greenbaum

Another fundamental step in the analysis of the numerical behaviour of the Lanc-
zos and CG methods was made in 1989 by Anne Greenbaum; see the original
paper [11]. She has proved that for given number of iterations k, the behaviour
in the first k steps of the finite precision Lanczos and (with a small inaccuracy)
CG computations is identical to the behaviour of exact Lanczos and CG compu-
tations applied to a particular matrix Ā(k). Matrix Ā(k) has more eigenvalues
than A, but these eigenvalues all lie within tiny intervals about the eigenvalues
of A. In addition, in [28, Theorem 4.2] it is proved that for any eigenvalue λ of
A for which the corresponding eigenvector has a non-negligible component in the
starting vector (in the Lanczos algorithm) or in the initial residual (in the CG
algorithm), the matrix Ā(k) has at least one eigenvalue close to λ.

In [12], a joint work of the authors of [11] and [28], it is numerically demon-
strated that the behaviour of finite precision Lanczos and CG computations is
very similar to the behaviour of exact Lanczos and CG computations applied
to matrix Â which has many eigenvalues clustered in tiny intervals about each
eigenvalue of A. In comparison with matrix Ā(k), the matrix Â does not depend
on the number of iterations. For detail explanation see [21, Section 4.3, Section
5.2], [31, Section 5] or original papers [11, 28, 12].

3.7.3 Consequences to the CG method

In exact arithmetic there is no difference between computed elements of Jaco-
bi matrix Tn by the Lanczos algorithm or by the CG algorithm and identities
between coefficients (3.3.20). In the finite precision arithmetic, these elements
are generally different but it is known (see e.g. [21, Theorem 5.1]) that these
differences are small and thus the relationship between the CG and Lanczos al-
gorithms is preserved except small inaccuracy. As we stated in the previous
section, the relation between energy norm of the error and the remainder of the
Gauss-Christoffel quadrature (3.6.7) is also preserved up to small inaccarucy.

As a consequence of the analysis by Greenbaum we can study the numerical
behaviour of the CG method through the analysis of exact computations applied
to different problem. Thus not only CG in exact arithmetic but also CG in
finite precision can be related to Riemann-Stieltjes integral and Gauss-Christoffel
quadrature as before, related distribution function has more points of increase
and they are clustered.

The loss of orthogonality between residual vectors implies that the computed
Krylov subspaces do not have their full dimension and thus there is a delay of
convergence in CG computations. Using the results of Greenbaum, it is possible
to reveal that these rank deficiencies are determined by the number of multiple
copies of the original eigenvalues.
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Consequently, it is convenient to measure the difference between exact and
FP arithmetic horizontally, i.e., it is convenient to compare the number of needed
iterations for given level of accuracy.

3.8 Comparison of CSI and CG

In this section we would like to compare the CSI and CG methods and to show
the principle difference between stationary iterative methods and Krylov subspace
methods. Results presented in this section are from [8, Section 5.5].

The CSI method was derived from the basic iterative scheme xn+1 = Gxn+g,
where G is a result of matrix splitting. In order to be able to compare the
methods, we will consider simple splitting G = I − A. Then both methods for
solving the linear system Ax = b with a SPD matrix A can be written as

xn+1 = xn−1 + ωn+1(δnrn + xn − xn−1), (3.8.1)

where parameters ωn+1, δn depend on the given method.
Both methods give in exact arithmetic solution in at most N steps. The CSI

method has the advantage that it does not require computing any inner products
during the iterations. This can be important for parallel computing. On the other
hand, for the use of the CSI method we need to have estimates of the extreme
eigenvalues of the matrix of coefficients. However, the main difference between
methods is that CG takes into account the distribution of all eigenvalues (see
(3.6.3)) but the CSI method takes into account only information about extreme
eigenvalues (see (2.2.8)).

The minimax problem (3.6.4) in the CG method is considered over a discrete
set of points, whereas the minimax problem (2.2.8) in the CSI method is over
the entire interval. From that point of view we can consider the convergence
rate of the CSI method as an estimate (due to the superlinear convergence often
very pessimistic) of the convergence rate of the CG method which shows the
superiority of CG over the CSI method.

The superiority of the CG method can be also explained by the orthogonality.
As a consequence of orthogonality of direction vectors the n-th CG approximation
minimizes the energy norm of error over n-dimensional subspace. The CSI method
does not satisfy any orthogonal criterion and consequently does not satisfy such
strong minimalization property.

Difference between stationary iterative and Krylov subspace methods

Orthogonality is a key idea of all Krylov subspace methods. As a consequence,
Krylov subspace methods find solution in at most N steps in exact arithmetic. In
addition, orthogonal conditions can be often reformulated into some statements
about optimality of computed approximations. Krylov subspace methods search
for approximation in Krylov subspaces which naturally extracts the information
about the behaviour of system matrix and thus they go insight the structure of
problem.

Conversely, stationary iterative methods do not exhibit any optimality prop-
erties. The concept of matrix splitting can not in principle extract dominant
information contained in the matrix of coefficients. On the other hand, they are
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typically easy to derive and implement. However, their convergence to solution
is only asymptotically which may cause a lot of problems; see Subsection 2.1.4.

The difference between Krylov subspace methods and stationary iterative
methods is fundamental. Krylov subspace methods try to extract as many infor-
mation about the behaviour of the system as possible and then they use these
information to generate approximation with some kind of optimal property.

3.9 Preconditioning

In solving real world problems, the convergence of iterative methods may be
very poor and preconditioning is necessary in order to attain convergence in a
reasonable amount of time. Roughly said, preconditioning transforms the orig-
inal linear system into another system which has more favorable properties for
iterative solution. A preconditioner is a matrix which performs such transforma-
tion. Preconditioning, as it is understood nowadays, tries to improve the spectral
properties of the matrix of coefficients. We understand that it represents a fun-
damental and unavoidable part of practical computations. However, this thesis is
not focused on the analysis of preconditioners or preconditioned systems and thus
we present only the main ideas of preconditioning. These ideas are applicable not
only to CG algorithm. This section is based on a well written survey [1] and on
[26, Chapters 9 and 10].

Consider linear system Ax = b and assume thatM is a regular matrix which in
some sense approximates the matrix A. The preconditioner M should be chosen
such that it is easy to solve linear systems Mx = b because they must be solved
in every iteration of all preconditioned algorithms. It is possible to precondition
the system from the left, from the right or we can split the preconditioner, i.e.,

M−1Ax =M−1b (3.9.1)

AM−1y = b, x =M−1y (3.9.2)

M−1
1 AM−1

2 y =M−1
1 b, x =M−1

2 y, M =M1M2. (3.9.3)

There are two main approaches to constructing preconditioners. The appli-
cation-specific approach is popular mainly in the applications involving PDEs
and it construct preconditioners convenient for a narrow class of problems. The
construction of such a preconditioner often requires knowledge of the original
PDE problem. These preconditioners may be very effective but typically only on
very small class of problems and they may be also very sensitive to the details
of the problem. Conversely, purely algebraic methods are universally applicable
and they use only information contained in the matrix A. They are not optimal
to any particular problem but they are often easier to develop. We restrict our-
selves to algebraic preconditioners and we mention basic principles of two main
approaches. For more detailed review see [1] and for extensive exposition about
preconditioning see [26, Chapters 9–12].

Incomplete LU factorization methods

Gaussian elimination applied to sparse matrices usually cause serious fill-in of
factors L and U . However, if we impose some constraint on the level of fill-in we
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can obtain quite powerful preconditioners in the form M = L̄Ū , where L̄ and Ū
are incomplete LU factors.

Which nonzero elements of the LU factorization will be omitted to avoid fill-in
is based on several different criteria, such as position, value, or their combination.

First possibility is to prescribe directly a set of elements which can be filled-
in. This family of preconditioners is called ILU. If the set of prescribed nonzero
elements is the same as a structure of nonzeros of A then we obtain method of
no-fill ILU factorization (ILU(0)). However, no-fill preconditioners are often very
poor approximations of A and thus preconditioners with some additional fill-in
are often constructed. The idea of preconditioner ILU(p) is to add an information
about level of fill to every element processed by Gaussian elimination. Then there
is some criterion which computes the level of fill and all elements with larger
level of fill than p are discarded. ILU(1) is the most common variant and the
structure of nonzeros is given by the nonzeros of product of the factors L and U
from the ILU(0). These preconditioners ignore numerical values which may cause
difficulties in many applications.

Another possibility is to discard elements which are smaller than prescribed
value of drop tolerance τ . However, it is difficult to choose a good value τ and
it is not possible to predict storage requirements. Thus it may be convenient to
combine both criteria. Preconditioner ILUT(τ, p) discard all elements which are
smaller than multiplication of τ with the Euclidean norm of the appropriate row
and from the remaining nonzeros keep p largest ones.

Sparse approximate inverses

The inverse of sparse matrix is usually dense but often with many small elements.
Thus the idea of preconditioning techniques based on sparse approximate inverses
is to explicitly compute sparse approximation of the inverse of A and use it as a
preconditioner M .

The main advantage of this approach is that it is easy to parallelize. These
techniques are also remarkably robust. There are many different techniques and
completely different algorithms for computing a sparse approximate inverse and
each of them has its weaknesses and strengths. Here we will mention only the
principle of Frobenius norm minimization approach, interested reader is referred
to [1] or [26, Section 10.5] for more information about sparse approximate inverse
technique.

Frobenius norm minimization technique is based on the solution of the con-
strained minimization problem

min
M∈S

∥I − AM∥F , (3.9.4)

where S is a set of sparse matrices and ∥·∥F denotes the Frobenius norm of a
matrix. Since

∥I − AM∥2F =
N∑
i=1

∥ui − Ami∥22 , (3.9.5)

we can compute the approximate inverse M by solving N independent linear
least square problems. That would be too costly but once S is given, using the
sparsity pattern of S allows to solve much smaller unconstrained least squares
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problems instead of original constrained least squares problems. Consequently,
the computation of M can be implemented efficiently.
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4 Numerical experiments

The idea of support preconditioning was inspired by the works of Axelsson and
Jennings (see e.g. [15]). The support preconditioning (see [2]) is a method of
preconditioning which aims at nearly linear time cost of the CG computations.
Analysis is based on the distribution of eigenvalues. The properties of the spec-
trum are used to propose upper bounds of the error in the CG computations (see
e.g. [27]), which are more explanatory than the classical linear bound based on
the minimax problem over the interval.

However, these works are based on exact arithmetic and they do not take
into account the effects of rounding errors. In the presence of large outliers, the
approach gets into significant troubles.

In our experiment we will illustrate that in finite precision arithmetic (FP)
the proposed estimates are in general useless. This statement can also be justified
from the proper theoretical analysis of FP computation. It should be noted that
Jennings in [15] observed during his FP computations some troubles. However,
at that time, the analysis of FP computations using CG was not yet developed
and it could not explain these troubles satisfactorily.

4.1 Theoretical background

4.1.1 Idea of the proposed upper bound

As before, consider a symmetric positive definite matrix A ∈ RN×N , right hand
side b and the problem Ax = b. Recall that

||ek||2A = min
p∈Πk

||p(A)e0||2A (4.1.1)

= min
p∈Πk

{
N∑
i=1

(r0, qi)
2

λi
p2(λi)

}
(4.1.2)

||ek||A
||e0||A

≤ min
p∈Πk

max
i=1,...,N

|p(λi)| ≤ (4.1.3)

≤ min
p∈Πk

max
λ∈[λ1,λN ]

|p(λ)|, (4.1.4)

where A = QΛQT and qi denotes the i-th column of Q. Set of polynomials p of
degree k and scaled to have value 1 at the origin is denoted as Π0

k.
Set ξ = 0, 0 < a < b and recall the solution of the classical minimax problem

(1.5.14) on the interval [a, b].

C
[a,b]
k (λ) = arg min

p∈Πk

max
λ∈[a,b]

|p(λ)|, (4.1.5)

where

C
[a,b]
k (λ) =

Tk

(
2λ− b− a

b− a

)
Tk

(
a+ b

a− b

) . (4.1.6)
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Polynomial Tk is the k-th Chebyshev polynomial of the first kind and C
[a,b]
k is the

Chebyshev polynomial shifted on the interval [a, b] and scaled to have value 1 at
the origin. Also have in mind that for a = λ1, b = λN the solution of the previous
minimax problem gives the classical upper bound for the rate of the convergence,

||ek||A
||e0||A

≤ 2

(√
κ− 1√
κ+ 1

)k
, (4.1.7)

where κ = λN/λ1 is the condition number of a matrix A.
The idea of the support preconditioning is to transform the spectrum of the

matrix to a spectrum, which has not necessarily significantly smaller condition
number, but which concentrates N −m eigenvalues in an interval of small condi-
tion number and remaining m eigenvalues are out of this interval. These eigen-
values are called outliers.

Proposed upper bounds are based on the polynomial Rm
k

Rm
k (λ) = C

[λ1,λN−m]
k−m (λ)

(
1− λ

λN−m+1

)
. . .

(
1− λ

λN−1

)(
1− λ

λN

)
. (4.1.8)

This polynomial is a product of the shifted and scaled Chebyshev polynomial of
degree k−m on the interval [λ1, λN−m] and a factor of degreem that is zero at each
of the outliers and less than one in magnitude at each of the other eigenvalues.

Figure 4.1: Illustration of the polynomial Rm
k from (4.1.8). Left: graphs of

C
[λ1,λN−m]
k−m (solid line) and of the linear polynomials with the roots at the out-

liers (dashed line). Right: a graph of Rm
k . Note, how steep is the polynomial near

the outlying roots.

From the construction of the polynomial Rm
k it follows that the error satisfies

||ek||2A ≤
N−m∑
i=1

(r0, qi)
2

λi

(
C

[λ1,λN−m]
k−m (λi)

)2
(4.1.9)

and the relative error satisfies

||ek||A
||e0||A

≤ max
λ∈[λ1,λN−m]

∣∣∣C[λ1,λN−m]
k−m (λ)

∣∣∣ . (4.1.10)

Using (4.1.6) we get

||ek||A
||e0||A

≤ 1∣∣∣∣Tk−m

(
λ1 + λN−m

λ1 − λN−m

)∣∣∣∣ (4.1.11)

61



and using the same arguments as in derivation of the bound (4.1.7) we get

||ek||A
||e0||A

≤ 2

(√
κN−m − 1

√
κN−m + 1

)k−m
, (4.1.12)

where κN−m = λN−m/λ1 can be substantially smaller than original κ. The smaller
κN−m indicates asymptotically more rapid convergence . This improvement is not
just for free. Note that in the k-th iteration we deal with Chebyshev polynomial
of degree k−m. There is a delay of m iterations which are necessary to zero out
the large outlying eigenvalues.

To sum up, since

max
i=1,...,N

|Rm
k (λi)| = max

i=1,...,N−m
|C[λ1,λN−m]

k−m (λi)| ≤ (4.1.13)

≤ max
λ∈[λ1,λN−m]

|C[λ1,λN−m]
k−m (λ)| ≤ (4.1.14)

≤2

(√
κN−m − 1

√
κN−m + 1

)k−m
,

the construction of the polynomial Rk
m and usage

max
i=1,...,N

|Rm
k (λi)| (4.1.15)

as an upper bound for the relative error computed in the energy norm gives a
significant improvement of the asymptotic rate of convergence.

All this is true, however, only in exact arithmetic. We will show and explain,
why this approach must fail in FP arithmetic.

4.1.2 Consequences of the backward-like analysis

Now we will prove that there is absolutely no reason to consider (4.1.15) as an
upper bound for the relative error computed in energy norm of finite precision
CG computations. Main ingredient for our explanation will be the results of the
backward-like analysis of Anne Greenbaum, see Subsection 3.7.2. For arbitrary
and fixed number of iterations k there exists matrix Ā(k) such that the behaviour
of FP CG computations applied on A is nearly identical with the behaviour of
exact CG computations applied on Ā(k). So it is the same to analyse suitability
of (4.1.15) for FP CG computations applied on A and for exact CG computations
applied on Ā(k). The upper bound (4.1.15) take into consideration the eigenvalues
of A but the matrix Ā(k) has many more eigenvalues. Now we see, that (4.1.15)
has nothing in common with the exact CG computations applied on Ā(k) because
it does not take into consideration all eigenvalues of Ā(k). Thus (4.1.15) is not
an upper bound for the exact CG computations applied on Ā(k) in general.

Since the first k iterations of FP CG computations applied on A can be viewed
as the first k iterations of exact CG computations applied on Ā(k), we have shown
that it can not be guaranteed that in the k-th iteration (4.1.15) gives an upper
bound for the relative error computed in energy norm of finite precision CG
computations.
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An appropriate upper bound must take into consideration all eigenvalues of
Ā(k) and thus

max
λ∈σ(Ā(k))

|Rm
k (λ)|, (4.1.16)

where σ(Ā(k)) is a spectrum of Ā(k), is the appropriate upper bound. However, in
the Section 4.3 we will demonstrate that clustered eigenvalues and the properties
of the Chebyshev polynomials cause that this upper bound is totally useless.

The unsuitability of (4.1.15) will be numerically demonstrated in the Section

4.3. In our numerical experiments we construct matrix Â with many eigenvalues
spread throughout tiny intervals about eigenvalues of A. In compliance with
[12], the behaviour of FP CG computations applied on A is very similar to the

behaviour of exact CG computations applied on Â and thus we can numerically
demonstrate the unsuitability of (4.1.15) using matrix Â instead of matrix Ā(k).

4.2 Description of the experiment

4.2.1 Quantities to be observed

Figures show comparison among the convergence of exact and finite precision
(FP) CG computations applied to diagonal matrices A specified in the next
subsection and the proposed upper bound of that convergence. The exact CG
computations is simulated by saving residual vectors and applying double full re-
orthogonalization at each iteration. The relative error computed in energy norm,
i.e., the A-norm of the error at each iteration divided by the A-norm of the initial
error

||x− xk||A
||x− x0||A

is plotted. The exact solution x is approximated using functions of Matlab
as x = A−1b. The approximation xk is computed using the routine cglan, this
routine allows to reorthogonalize residual vectors and thus it is used also for
simulation of exact CG computations. The convergence of FP CG computations
is plotted as a solid line, the convergence of exact CG computations is plotted as
dash-dotted line. The proposed upper bound

R(A, k,m) ≡ max
i=1,...,N

|Rm
k (λi)| (4.2.1)

from the inequality (4.1.10) is plotted as dots.
We will see that the proposed estimate is not an upper bound for the energy

norm of the relative error in FP arithmetic. In order to illustrate why it is so, we
will use the relationship between FP CG computations applied to linear system
Ax = b and exact CG computations applied to larger linear system Âx̂ = b̂, where
Â is a matrix with many eigenvalues spread throughout tiny intervals about the
eigenvalues of A. The construction of the matrix Â and the choice of the right
hand side b̂ is discussed in the next subsection. Exact CG computation of this
larger problem is also simulated by applying double reorthogonalization on the
residual vectors at each iteration of the CG algorithm (routine cglan). The

relative error computed in energy norm, i.e., the Â-norm of the error at each
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iteration divided by the Â-norm of the initial error

||x̂− x̂k||Â
||x̂− x̂0||Â

(4.2.2)

is plotted as a dotted line. The exact solution x̂ is approximated using functions of
Matlab as Â−1b̂. Similarly as x0, the initial approximation x̂0 is set as zero. In
analogy with (4.1.16) in Subsection 4.1.2, the polynomial Rm

k is used to generate
an upper bound for the relative error (4.2.2). This upper bound

R(Â, k,m) ≡ max
λ∈σ(Â)

|Rm
k (λ)|, (4.2.3)

where σ(Â) is a spectrum of matrix Â, is plotted as a dashed line.

4.2.2 Input data

We perform our experiments on a linear system with right hand side b of ones
and with diagonal symmetric positive definite matrix A ∈ RN×N . The initial
approximation x0 is set as zero. We deal with two different types of spectrum
of matrix A. However, both types are just slight modifications of a spectrum
designed in [28]:

Spectrum(N, λ1, λN , ρ)

Given λ1 and λN , we generate the inner eigenvalues by the formula

λi = λ1 +
i− 1

N − 1
(λN − λ1)ρ

N−i i = 2, . . . , N − 1.

For ρ = 1 the spectrum is distributed uniformly. For ρ < 1 the eigenvalues tend
to cumulate near λ1. Parameter ρ ∈ (0, 1] determines the non-uniformity of the
spectrum.

This type of spectrum is valuable for the analysis of convergence in finite
precision arithmetic, as was shown in [28].

Matrix01(n,m, λ1, λN , ρ1, ρ2)

This diagonal matrix has dimension N = n +m and its spectrum is created in
two steps. In the first step we distribute N eigenvalues in the interval [λ1, λN ]
using Spectrum(N, λ1, λN , ρ1).

In the second step we consider the m largest eigenvalues as outliers and let
them unchanged. Remaining n eigenvalues are redistributed using Spectrum-

(n, λ1, λN−m, ρ2).
Note that for ρ2 = ρ1 the second step does not change the distribution of the

eigenvalues and they are distributed just as in Spectrum(N, λ1, λN , ρ1).

Matrix02(n,m, λ1, λn, ρ, outa, outb)

This diagonal matrix has dimension N = n + m. The first n eigenvalues are
distributed using Spectrum(n, λ1, λn, ρ). Remaining m eigenvalues represent the
outliers and are distributed uniformly in the interval [outa, outb]. We consider the
case λn < outa. It allows us to denote these m eigenvalues as λn+1, . . . , λn+m. If
m = 1 then λn+1 = outa.
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blurring(exp, count)

In our numerical experiment we compare the finite precision CG computations
for Ax = b to the exact CG computation for Âx̂ = b̂ For a given matrix A
of dimension N we construct larger diagonal matrix Â of dimension N × count
with clustered eigenvalues about the eigenvalues of A (routine blur). The matrix

Â is uniquely defined by the parameters exp and count. The parameter count
determines the number of eigenvalues in each cluster. The eigenvalues in each
cluster are uniformly distributed in the tiny interval of width 2× 10−exp. We will
use a notation blurring(exp, count) to specify the matrix Â for given matrix A.

The right hand side

b̂ = (β̂1,1, . . . , β̂1,count, β̂2,1 . . . , β̂2,count, . . . , β̂n,1, . . . , β̂n,count)
T

is chosen as in [12]:

b̂i,1 = β̂i,2 = . . . = β̂i,count and
count∑
j=1

(β̂i,j)
2 = β2

i , for i = 1, . . . , n,

where b = (β1, . . . , βn)
T .

4.2.3 Technical details on realization

All experiments were performed on a personal computer using Matlab 7.11.
Routines which were used are listed below with short characterization. Detail
description is a part of the Matlab code; see also Appendix A.

main This routine sets all parameters which are necessary for the experiment,
calls subroutines to get results and plots them.

cglan This routine was taken over from the pack of software for [23]. It represents
the merits of the computation. It contains the CG algorithm for computing
an approximation xk. It is also possible to run CG algorithm with the
reorthogonalization of residual vectors, this variant is used for simulating
the exact CG computations. The original routine was modified in order to
get the relative error of the approximation computed in energy norm as an
output.

ortho poly This routine computes the values of the Chebyshev polynomials of
the first kind. It was downloaded from the web sites www.mathworks.com.

cheb on interval This routine computes the proposed upper bounds R(A, k,m)

and R(Â, k,m).

blur This routine is used to modify the original spectrum to a larger spectrum
with clusters of eigenvalues around the original eigenvalues. This modifica-
tion depends on how tight are the clusters and how many eigenvalues create
each cluster. The number of eigenvalues in each cluster is determined by the
variable count. The eigenvalues in each cluster are uniformly distributed
in the tiny interval of width 2 × 10−exp, where exp is a parameter of the
experiment. We will denote the modified matrix with clusters as Â.
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4.3 Computed results

Our observations are summarized in several points.

a) Delay of convergence in FP computation cause that the proposed estimate
is not in general an upper bound and that it can be totally useless. An
explanation is based on the results of the backward-like analysis presented
before.

b) Since there is a strong relationship between finite precision CG computa-
tions and exact CG computations applied to a matrix with clustered eigen-
values, we can try to use an upper bound derived for the latter problem in
order to attain an upper bound for the FP CG computations. However, this
upper bound is absolutely useless because after some number of iterations
it starts to grow very fast. This effect will be called blow-up.

c) The proposed estimate might be unsuitable also for small and well condi-
tioned problems, its unsuitability is a matter of the mathematical principle.
For larger problems the effect is typically more visible and the consequences
are more serious.

d) Violation of the validity of the proposed estimate can be observed also
for small numbers of outliers. Several examples with just one outlier are
plotted.

e) The proposed estimate does not reflect the distribution of the outliers at
all. On the contrary, finite precision computation is strongly affected by
the particular distribution of the outliers. This again illustrate, why is the
proposed estimate unsuitable.

f) Even a small change of the parameter of the distribution of the eigenvalues
inside the interval [λ1, λN−m] can cause a dramatic differences in the rate
of the CG convergence and thus influence the suitability of the proposed
estimate. This observation coincides with a sensitivity of FP CG to a small
change of the distribution of the eigenvalues, see [28].

A detailed discussion and attempt of explanation is given in the following para-
graphs.

Point a) Using R(A, k,m) as an upper bound was justified assuming the ex-
act arithmetic. However, FP computation is affected by rounding errors and as
a consequence there is a delay of convergence. In order to reach some accura-
cy level, FP CG computation may need many more iterations then hypothet-
ical exact CG computation. In Figure 4.2 we plot the convergence of FP CG
and exact CG computations applied to diagonal matrices given by Matrix01-

(60, 12, 0.1, 1000, 0.7, 0.95) and Matrix02(24, 5, 1, 2, 0.9, 10, 50). There is a sig-
nificant difference between the FP (solid line) and the exact (dash-dotted line)
CG computations. The idea of using R(A, k,m) for m outliers is simple. The
more eigenvalues are considered as outliers, the smaller is the interval over which
the properly shifted and scaled Chebyshev polynomial is evaluated and conse-
quently the more strict is the decrease of the upper bound. On the other hand,
the degree of the Chebyshev polynomial decreases with increasing m. To show
how these estimates work, we plot R(A, k,m) for m = 0, . . . , 20 (dashed lines)
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in both figures. Note that there is a huge improvement in Figure 4.2 (right) of
the proposed upper bound for m = 5. That is because λ24 = 2 is much more
smaller than λ25 = 10 and thus the improvement of the active condition number
is substantial.

Figure 4.2: Matrices given by: left: Matrix01(60, 12, 0.1, 1000, 0.7, 0.95);
right: Matrix02(24, 5, 1, 2, 0.9, 10, 50). Last m = 0, . . . , 20 eigenvalues are con-
sidered as the outliers. We see that R(A, k,m) (represented by dashed lines) is an
upper bound for the exact CG algorithm (dash-dotted line) for all m. However,
for large m, it is not an upper bound for the FP CG algorithm (solid line).

We see that R(A, k,m) gives an upper bound for the exact CG computation
for all m and that for large k close to the size of the problem is the upper bound
more tight with increasing m. However, that is not the case with the FP CG
computation. We see that for more than 12 outliers for the first matrix and for
more than 5 outliers for the second one, the proposed estimate is no more an
upper bound for the relative error in finite precision computation.

In Subsection 4.1.2 we have proved that there is no guarantee that the proposed
estimate is an upper bound. Now we will explain, why in many cases the proposed
estimate is actually not an upper bound. The explanation is based on the rela-
tionship between the Lanczos method for approximation of the eigenvalues and
the CG algorithm for solving linear system. It is proved (see for example [21])
that, up to a small inaccuracy, the relationship holds also in FP computation.

Using a language of the Lanczos algorithm, the estimate R(A, k,m) can be
for well separated outliers interpreted as follows: If the first m steps are used for
approximation of the m largest eigenvalues, the further iterations deal with the
rest of the spectrum. Using a language of the CG algorithm viewed as Krylov
subspace method, the estimate is based on the fact (which is true in exact arith-
metic; see Subsection 3.6.2) that if the largest eigenvalues are well approximated,
the CG behaves in the subsequent steps as if they are not present in the problem.

However, as it is written in Section 3.7, the Lanczos algorithm in FP arith-
metic tends to generate multiple copies of the eigenvalues which were approxi-
mated earlier. As a consequence, there is a delay of convergence in the FP CG
computation. In other words we can not guarantee that we need onlym iterations
to deal with the outliers. We must take into account also the iterations in which
the multiple copies are repeatedly formed.
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The previous thoughts are relevant and tell us that we must be careful, but
we can not use them as quantitative arguments for proper analysis. However,
the backward-like analysis gives a theoretical background for our observations
and gives a mathematically rigorous arguments to prove the unsuitability of the
proposed upper bound R(A, k,m) as it is done in Subsection 4.1.2.

We have shown that there is no reason to relate the relative error of the FP
CG computations computed in the energy norm with the estimate R(A, k,m).
The problem is clearly fundamental. It is not a question of particular spectrum
of a matrix, it is a question of principle of behaviour of CG in finite precision
computations. Analysis of finite precision computations can not be based on
bounds derived for the behaviour of exact computations.

The unsuitability of R(A, k,m) is demonstrated also in the following figures
which are focused on some other specifics of our numerical experiment.

Point b) Consider matrix Â so that the exact CG computations for the larger

problem with Â can be used for the analysis of the FP computations of the original
problem with A. We know that R(Â, k,m) is an upper bound for the exact CG

computation for Âx̂ = b̂, but it is not a useful upper bound. Actually, after some
number of iterations a blow-up occurs. This blow-up is a consequence of the
clustered eigenvalues about eigenvalues of A. As it was shown in Figure 4.1.1,
polynomial Rm

k is very steep in the nearby of the outlying eigenvalues. Although

there is a small distance (approximately 10−exp) between eigenvalues λ̂ in the

cluster and the original eigenvalue λ, for increasing k |Rm
k (λ̂)| grows very fast for

λ̂ ̸= λ in the cluster around the original eigenvalue λ, because of the growth of
the Chebyshev polynomials Ts(ξ) with increasing s for ξ /∈ [−1, 1]. Consequently,

there will be a blow up of the upper bound R(Â, k,m).

Figure 4.3: Left: Matrix01(60, 12, 0.1, 1000, 0.7, 0.95), 12 largest eigenvalues
are considered as outliers, the matrix Â is given by blurring(12, 15). Right:
Matrix02(24, 5, 1, 2, 0.9, 10, 50), 5 outliers, blurring(14, 11). The proposed up-
per bound R(A, k,m) is plotted by dots, ”corrected” upper bound R(Â, k,m) as

dashed line, the FP CG as a solid line, the exact CG for Â as a dotted line and
the exact CG for A as a dash-dotted line.

In Figure 4.3 we show convergence of the same problems as in Figure 4.2.
In Figure 4.3 (left) , R(A, k,m) is plotted just for m = 7 (dots), to the plots
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of FP and exact CG computations we add plots of exact CG computations ap-
plied to Â (dotted line) and R(Â, k, 7) (dashed line). The matrix Â is given by
blurring(12, 15) which means that it has 11 eigenvalues uniformly distributed
throughout each of N tiny intervals of width 2×10−12 about the eigenvalues of A.
In Figure 4.3 (right), R(A, k, 5) is plotted, to the plots of FP and exact CG com-

putations we add plots of exact CG computations applied to Â and R(Â, k, 5).

The matrix Â is given by blurring(14, 11).

Point c) The aim of this paragraph is to show that the proposed estimate is
in general unsuitable for small problems as well as for large ones. Depending on
the distribution of the eigenvalues of A, the effect of rounding errors can be very
significant also for matrices with small condition numbers. For larger condition
numbers the unsuitability of an estimate is more obvious. Trying to attain some
level of accuracy, we can observe substantial difference between number of iter-
ations predicted by the upper bound R(A, k,m) and actually needed number of
iterations for the FP CG computations. We will plot four figures in Figure 4.4
and Figure 4.5 to see that the estimate R(A, k,m) can fail for 1) dimension n
small, condition number κ small, 2) dimension n large, condition number κ large,
3) dimension n small, condition number κ large, 4) dimension n large, condition
number κ small.

Figure 4.4: Left: Matrix02(24, 5, 1, 2, 0.9, 10, 50), blurring(14, 11), n = 29, κ =
50, 5 outliers. Right: Matrix01(92, 8, 0.1, 106, 0.3, 0.95), blurring(9, 61), n =
100, κ = 107, 8 outliers.

In Figure 4.4 (left) we plot the proposed upper bounds and the convergence of
CG computations applied to the matrix given by Matrix02(24, 5, 1, 2, 0.9, 10, 50).
That means that the first 24 eigenvalues are given by Spectrum(24, 1, 2, 0.9) and
5 eigenvalues are distributed uniformly in the interval [10, 50]. In spite of the fact
that this problem is very well conditioned (κ = 50), we see that there is a signifi-
cant delay of convergence and that for k > 12 the upper bound R(A, k, 5) can not
be used for the FP CG computation. The upper bound predicts that the com-
putation would converge to the level of accuracy 10−16 in less than 26 iterations
but the FP CG computation actually needs 30 iterations. The difference seems
negligible, but the upper bound undervalued the number of iterations by more
than 13%. The FP CG computation is compared to the exact CG computation
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applied to the matrix Â given by blurring(14, 11).
In Figure 4.4 (right) we plot the proposed upper bounds and the convergence of

CG computations applied to the matrix given by Matrix01(92, 8, 0.1, 106, 0.3, 0.95).
That means that 8 largest eigenvalues are distributed according to Spectrum-

(100, 0.1, 106, 0.3) and Spectrum(92, 0.1,≈ 60.5, 0.95) determines remaining 92
eigenvalues. This problem is poorly conditioned (κ = 107) and we see, that using
R(A, k, 8) as an upper bound for the FP CG computation is pointless. The upper
bound predicts that the computation would converge in less than ≈ 470 itera-
tions. However, the FP CG computation actually needs ≈ 650 iterations. If we
would stop the computation after 470 iterations we would have a relative error
of magnitude ≈ 10−9 which is greater by 7 orders than the norm of the relative
error predicted by R(A, k, 8). The matrix Â is given by blurring(9, 61).

Figure 4.5: Right: Matrix02(24, 3, 1, 2, 0.9, 106, 107), blurring(8, 11), n =
27, κ = 107, 3 outliers. Left: Matrix01(90, 10, 1, 100, 0.7, 0.95),
blurring(14, 11), n = 100, κ = 100, 10 outliers.

In Figure 4.5 (left) we plot the proposed upper bounds and the convergence of
CG computations applied to the matrix given by Matrix02(24, 3, 1, 2, 0.9, 106, 107),
so there are 24 small eigenvalues in the interval [1, 2] and 3 large eigenvalues uni-
formly distributed in the interval [106, 107]. This problem has small dimension
(N = 27) and is poorly conditioned (κ = 107). Again we see that the conver-
gence of the FP CG computation and R(A, k, 3) have nothing in common. The
estimate R(A, k, 3) converges in 24 iterations but FP computation actually needs
45 iterations. If we would stop the computation after 24 iterations we would have
a relative error of magnitude ≈ 10−8 which is greater by 8 orders than it was
predicted by R(A, k, 3). The matrix Â is given by blurring(8, 11).

In Figure 4.5 (right) we plot the proposed upper bounds and the convergence of
CG computations applied to the matrix given by Matrix01(90, 10, 1, 100, 0.7, 0.95).
It can be considered as a large (dimension N = 100) and well conditioned
(κ = 100) problem. As before, R(A, k, 10) is not an upper bound for the FP
CG computation and we can not use it in that way. The upper bound pre-
dicts that the computation would converge in less than 41 iterations but the
FP CG computation actually needs 55 iterations. The matrix Â is given by
blurring(14, 11).
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Point d) In all paragraphs in this section we are trying to emphasize that the
unsuitability of R(A, k,m) is in the principle of that estimate. We will introduce
two examples which will demonstrate that the estimate can fail even if we con-
sider only the largest eigenvalue as an outlier. That will again show, that the
unsuitability of proposed estimate is a matter of mathematical principle. The FP
CG computations do not behave as the exact CG computations and we can not
use the results of analysis for the exact CG also for the FP CG.

Figure 4.6: Comparison of R(A, k, 1) (dots) and the convergence of the FP
CG computation (solid line); only the largest eigenvalue considered as outlier.
Left: Matrix02(24, 1, 1, 2, 1, 100, 100), blurring(14, 3). Right: Matrix02-

(48, 1, 1, 5, 1, 107, 107), blurring(7, 20)

In Figure 4.6 (left) we plot the proposed upper bounds and the convergence of
CG computations applied to the matrix given by Matrix02(24, 1, 1, 2, 1, 100, 100).
This spectrum has 24 eigenvalues distributed uniformly in the interval [1, 2] and
the largest eigenvalue is set to be 100. Although it is a small and well conditioned
problem, we can see that delay of convergence between iterations 7 and 9 causes
that R(A, k, 1) is no more an upper bound to the FP CG computation. The

matrix Â is given by blurring(14, 3).
In Figure 4.6 (right) we plot the proposed upper bounds and the convergence of

CG computations applied to the matrix given by Matrix02(48, 1, 1, 5, 1, 107, 107).
It is a larger system than the previous one, the most important difference is
that the outlier is set to be very well separated from the rest of the spectrum
and is equal to 107. Using a language of the Lanczos algorithm, the multiple
copies of such a dominant eigenvalue are formed much more frequently. As a
consequence, the behaviour of the FP CG computation is completely different
from the behaviour of the exact CG computation and using R(A, k, 1) as an upper

bound to the FP CG is worthless. The matrix Â is given by blurring(7, 20).

Point e) Because the polynomial Rm
k has the roots at the outliers, the upper

bound R(A, k,m) does not depend at all on a distribution of the outlying eigen-
values. It depends only on their number which determines a delay of the estimate
based on the Chebyshev polynomials. On the contrary, FP computations do de-
pend on that distribution. In fact, the distribution of the outlying eigenvalues
can affect strongly the convergence of FP computations.
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In Figure 4.7 we plot the proposed upper bounds and the convergence of CG
computations applied to the matrix given by Matrix02(48, 5, 0.1, 10, 0.9, a, b).
Intervals [a, b] are set as following: In Figure 4.7 (top-left) is a = 20 and b =
30, in Figure 4.7 (top-right) is a = 5 × 105 and b = 5 × 105 + 2, in Fig-
ure 4.7 (bottom-left) is a = 105 and b = 5 × 105 and in Figure 4.7 (bottom-

right) is a = 106 and b = 5 × 106. The corresponding matrix Â is given
subsequently: top-left: blurring(12, 21), top-right: blurring(10, 21), bottom-
left: blurring(9, 15), bottom-right: blurring(9, 25).

Figure 4.7: Convergence of the CG computations for the matrix given by
Matrix02(48, 0.1, 10, 0.9, a, b), where a and b are set as: Top-left: a = 20, b = 30;
Top-right: a = 5 × 105, b = 5 × 105 + 2; Bottom-left: a = 105, b = 5 × 105;
Bottom-right: a = 106, b = 5× 106.

While the upper bound R(A, k,m) and the exact CG computation are not
affected by the changes of distribution of the outliers, the FP CG computation
is affected strongly. We can observe that the rounding errors have greater effect
for larger and more spread outliers. It is in a compliance with behaviour of the
Lanczos algorithm in FP arithmetic. The larger eigenvalue, the more multiple
copies will be formed and as a consequence there will be more serious delay of
convergence of FP CG computations. On the other hand, if the outliers are
concentrated around one point, the convergence is faster.

The insensitivity of the proposed upper bound to the distribution of the out-
liers give us another reason to deny R(A, k,m) as an upper bound for FP CG
computations.
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Point f) In the last paragraph we have shown the insensitivity of R(A, k,m) to
the distribution of the outlying eigenvalues. Now we will focus on the distribution
of the eigenvalues which are not outliers, i.e., which lies in the interval [λ1, λN−m].
We will see that only a small change of the parameter of their distribution can
cause a substantial difference of the convergence of FP computations. In [28]
it was shown that matrices with spectrum given by Spectrum(N, λ1, λN , ρ) are
very sensitive to the change of the parameter ρ. We will see (but it is not really
surprising) that their modification, matrices Matrix01(n,m, λ1, λN , ρ1, ρ2), are
sensitive as well. We will use this sensitivity to demonstrate the unsuitability of
the proposed upper bound R(A, k,m).

Figure 4.8: Matrix given by Matrix01(65, 7, 0.1, 105, 0.3, ρ2), where ρ2 is set as:
Left: ρ2 = 1; Right: ρ2 = 0.95. The matrix Â is given by blurring(10, 25) in
both cases.

In Figure 4.8 we plot the proposed upper bounds and the convergence of CG
computations applied to very similar matrices which differ just in the parameter
ρ2. The eigenvalues are given by Matrix01(65, 7, 0.1, 105, 0.3, ρ2). In Figure 4.8
(left) we set ρ2 = 1 and in Figure 4.8 (right) we set ρ2 = 0.95. Matrix Â was in
both cases constructed using parameters count = 25, exp = 10. It is obvious that
the estimate R(A, k,m) must be the same for both problems. On the contrary, we
see that the convergence of the FP CG computations is substantially different.
In order to reach the level of accuracy 10−16 it was sufficient to compute 150
iterations with ρ2 = 1. But for ρ2 = 0.95 we need over 270 iterations in order to
reach the same level of accuracy. Since the upper bound R(A, k, 7) is the same
for both problems, there is a significant difference in the suitability of the upper
bound R(A, k, 7). Its usage as an upper bound for the FP CG computations has
not serious consequences in the first case but in the second case it does.

Does this observation tell us something interesting about properties of FP
CG computations? It tells us that even a small change of the parameter of the
distribution inside the interval [λ1, λN−m] can have a great effect on how often
will be formed multiple copies of the largest eigenvalues. Actually, if there was
not such a strong connection and the small change was not affecting a frequency
of multiple copies, the upper bound would be as suitable as it was before that
change. That is because we know that the unsuitability of the proposed upper
bound goes hand in hand with a delay of convergence, i.e., with forming multiple
copies of eigenvalues approximated earlier.
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4.4 Conclusions of the numerical experiment

In our experiment we have studied an upper bound for CG computations which is
based on the composed polynomial Rm

k which is a product of factor with roots at
several largest eigenvalues (called outliers) and of the shifted and scaled Cheby-
shev polynomial on the interval which contains the rest of the spectrum, for
definition see (4.1.8). We have proved and numerically demonstrated that this
upper bound can not be used in finite precision CG computations. The reason
is that this upper bound was developed assuming an exact arithmetic and the
behaviour of finite precision CG computations is typically significantly different
from the behaviour of exact CG computations.

We have demonstrated that the problem is fundamental. The proposed upper
bound might be unsuitable also for small and well conditioned problems. The
problems can be observed also for systems, where only the single largest eigenvalue
is considered as an outlier. We have also illustrated several other weaknesses of
the proposed approach.

Theoretical background for our numerical experiment is formed by the back-
ward-like analysis introduced by Anne Greenbaum in 1989; see [11]. It allows
to analyse finite precision CG computations via exact precision CG behaviour
applied to a matrix with clustered eigenvalues. As a consequence, constructing
of the bounds must be based on polynomials which are small on the union of tiny
intervals containing the eigenvalues of original matrix. Although it was stressed in
several papers (see for example [21, Section 5.2]) this result is not widely accepted
and correctly understood. The correct approach was used by Notay in [22] where
the author present bounds of finite precision CG computations in the presence of
isolated outlying eigenvalues.

We would like to stress that using bounds and estimates derived assuming
exact arithmetic may be without appropriate analysis of rounding error very haz-
ardous. On the other hand, it should not be confusing that estimates convenient
also for practical computations presented in Subsection 3.6.1 were originally de-
rived assuming arithmetic. Their validity in finite precision computation is justi-
fied by rigorous and nontrivial mathematical proofs and observations which take
into account effect of rounding errors. Introducing an estimate based on ex-
act arithmetic without analysis of influence of rounding errors would be of little
practical use.
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5 Formulation of several open
problems

In this chapter we would like to introduce two open problems [30] which may
represent the topic of our further research.

5.1 Discontinuity in Krylov subspace methods

For a given positive integer N consider symmetric positive definite (symmetric)
diagonal matrix A ∈ RN×N with distinct eigenvalues. Without loss of generality
assume that the eigenvalues are given in ascending order and let us denote them
as λ1, . . . , λN . Let us define a diagonal matrix Λ of dimension N − 1 as matrix
A without the last column and row, i.e.,

A =

[
Λ 0
0 λN

]
.

For a given positive integer p and a sufficiently small number δ let us define the
matrix Ap(δ) of dimension N + 2p as

Ap(δ) = diag (Λ, λN − pδ, λN − (p− 1)δ, . . . , λN + (p− 1)δ, λN + pδ) .

The matrix Ap(δ) has 2p + 1 eigenvalues clustered around λN in an interval of
width 2δ. Sufficiently small number δ means that

λN − pδ > λN−1

which secures that Ap(δ) has no multiple eigenvalues.
Let b ≡ (b−, β) ∈ RN be a vector such that the CG algorithm applied to A

and b converges to the exact solution exactly in N iterations. Let us define the
vector bp(δ) ≡ (b−, βsplit) ∈ RN+2p where βsplit is a vector of length 2p + 1 with
no zero component satisfying

∥βsplit∥2 = ∥β∥2 .

Denote as
kCG(Â, b̂) (5.1.1)

the number of CG iterations needed in exact arithmetic to reach the exact solution
of the problem Âx = b̂.

Formulation of the question Since Ap(δ) has N +2p distinct eigenvalues for
every δ ̸= 0 we know that kCG(Ap(δ), bp(δ)) = N + 2p. Since Ap(0) has only N
distinct eigenvalues which are the same as the eigenvalues of A (the eigenvalue λN
has the multiplicity 2p) we know that kCG(Ap(0), bp(δ)) = N . Thus we observe
some kind of discontinuity of Krylov subspace methods applied to Ap(δ), bp(δ),
in particular,

N + 2p = lim
δ→0

kCG(Ap(δ), bp(δ)) ̸= kCG(Ap(0), bp(δ)) = N. (5.1.2)
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5.2 Invariants of Krylov subspaces

Based on the results about the sensitivity of computing Jacobi matrices from the
knowledge of corresponding distribution function we formulate a question of some
kind of invariants of Krylov subspaces.

Consider symmetric matrix A ∈ RN×N with distinct eigenvalues and vector
b ∈ RN and their modifications Ã and b̃. Denote as λ1, . . . , λN the eigenvalues of
the matrix A and as λ̃1, . . . , λ̃N the eigenvalues of the matrix Ã. The matrix Ã
is a modification of the matrix A in the sense that it is also symmetric and its
eigenvalues are slightly perturbed, i.e.,∣∣∣λi − λ̃i

∣∣∣ < δ, i = 1, . . . , N,

where δ is sufficiently small prescribed real number. The vectors b and b̃ are close
to each other in a sense that∣∣∣βi − β̃i

∣∣∣ < δ, i = 1, . . . , N,

where βi and β̃i are, respectively, the i-th components of the vectors b and b̃.
Consider Krylov subspaces Kn(A, b) and Kn(Ã, b̃) where n is a positive integer

such that
n ≤ min{d, d̃},

where d (resp. d̃) is the grade of b (resp. b̃) with respect to A (resp. Ã). The
restriction on n ensures full dimension of our Krylov subspaces.

We would like to study the relationship between Kn(A, b) and Kn(Ã, b̃). The
difference between Krylov subspaces can in general grow exponentially in de-
pendence of the difference E = A− Ã. However, the relationship with Riemann-
Stieltjes integral and orthogonal polynomials shows that in some sense, the Krylov
subspaces Kn(A, b) and Kn(Ã, b̃) may have a lot in common.

Analogously as in Section 3.4 we define nondecreasing distribution function
ω(λ) (resp. ω(λ̃)) withN points of increase λ1, . . . , λN (resp. λ̃1, . . . , λ̃N) and with

weights given by decomposition of b (resp. b̃) in the basis given by normalized

eigenvectors of matrix A (resp. Ã). We know that there exist sequences of
polynomials which are orthogonal with respect to the Riemann–Stieltjes integrals∫
dω(λ),

∫
dω̃(λ). The recursion coefficients of associated orthogonal polynomials

compose tridiagonal matrices Tn and T̃n.
Using the results of the perturbation analysis about the sensitivity of com-

puting coefficients of orthogonal polynomials from the knowledge of piecewise
constant distribution function (see [23, Section 3]), we can conclude that the ma-

trices Tn and T̃n are for small δ close to each other. Specification of δ and of the
tightness of matrices Tn and T̃n is quite involved and we do not discuss it here;
for details see e.g. [19, 23]. On the other hand, these matrices are also result of
the Lanczos algorithm applied on A, b and thus they are strongly connected with
the Krylov subspaces Kn(A, b) and Kn(Ã, b̃) which can be very distinct.

In spite of the exponentially increasing difference between the Krylov sub-
spaces, it might be doable to reveal and express some invariants through the
analysis of the relationship between Krylov subspaces and corresponding tridiag-
onal matrices.
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Conclusion

This thesis was made with the intention to present coherent and solid theoretical
background of the CG method. We have revealed close link to the Lanczos
method and we have described interesting interconnections to Riemann-Stieltjes
integral or Gauss-Christoffel quadrature. We have pointed the main differences
between the CG method and the CSI method whose behaviour is determined by
the extremal properties of Chebyshev polynomials.

We have accented the influence of rounding errors and we have recalled the
main results of rigorous mathematical analysis of CG behaviour in finite precision
computations. We have emphasized that the analysis of estimates and bounds
must take into account effects of rounding errors and we have shown a failure of
one still quite popular approach.

In our thesis, mathematical objects defined in the first chapter were under-
stood as tools useful for the detailed insight into the properties of the CG method.
It is worth mentioning that this point of view can be reversed. For example, the
CG algorithm can be considered as a tool for computation of quadrature rules
(see e.g. [8]).

This bachelor thesis could serve as an introduction to the covered topics.
Especially it could be useful for students searching for the text which introduces
basic properties of CG algorithm in relation with other areas of mathematics.
We hope that reading of this thesis can help to convince the reader that making
links is good and that it often represents an important step toward the solution
of a problem. Thesis references to extensive literature where an interested reader
can find further details or more complex analysis.

77



Bibliography

[1] Benzi, M. Preconditioning techniques for large linear systems: A survey.
Journal of Computational Physics 182 (2002), 418–477.

[2] Boman, E. G., and Hendrickson, B. Support theory for precondition-
ing. SIAM J. Matrix Anal. Appl. 25, 3 (2003), 694–717 (electronic).
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List of Abbreviations

CG method of Conjugate Gradients
CSI Chebyshev semi-iterative method
CGQL Conjugate Gradient with Quadrature and Lanczos algorithm
FP finite precision
PDE partial differential equation
SOR successive overrelaxation method
SPD symmetric positive definite
SSOR symmetric SOR
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A Source code

main

function main(n,m,l1,ln,rho,exp,count,t,rho2orouta,outb)

% NAME:

% main - main program

% DESCRIPTION:

% Typing "main" without any parameteres you run

% numerical experiment with prescribed data.

% Result is one figure with different convergence curves.

% This numerical experiment ilustrates the behavior of CG in

% FP arithmetic

% INPUT:

% 2 different types of matrices are used, for more information

% see Section 4.2 of the thesis.

% matrix01

% N = n + m ... dimension of a matrix

% m ... number of eigenvalues which are left unchanged

% ... these eigenvalues represent outliers

% n ... number of eigenvalues whir are re-distributed

% l1 ... smallest eigenvalue

% ln ... largest eigenvalue

% rho,rho2 ... parameter which determines the distribution

% matrix02

% n + m ... dimension of matrix

% l1 ... smallest eigenvalue

% ln ... largest eigenvalue in the first part of spectrum

% rho ... parameter which determines the distribution

% outa, outb ... over this interval is distributed m eigenvalues

% m ... number of eigenvalues in interval [outa,outb]

%

% m ... number of eigenvalues which are considered as outliers

% count ... how many eigenvalues are in each cluster (we vote it odd)

% exp ... 2*10^(-exp) is a size of clusters

% t ... number of iterations which are executed

% OUTPUT:

% figure with 5 graphs, which indicates relative error,

% computed in energy norm

% USAGE:

% Call m-file BAT.m, where are the settings used in the thesis.

if (nargin==9)

matice=’matrix01’;

rho2=rho2orouta;

elseif (nargin==10 )

matice=’matrix02’;

outa=rho2orouta;

elseif (nargin==0)
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% some default setting

n=24;l1=0.1;ln=100;rho=0.4;m=4;exp=12;count=5;t=2*n;rho2=0.95;

matice=’matrix01’;

else

error(’Bad number of input parameters, see help’);

end;

% hhhhhh Setting an experiment hhhhhhhh

% hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

% construction of the matrix

if strcmp(matice,’matrix01’)

l=spectrum(n+m,l1,ln,rho);

l(1:n)=spectrum(n,l1,l(n),rho2);

elseif strcmp(matice,’matrix02’)

l=spectrum(n,l1,ln,rho);

l=[l,linspace(outa,outb,m)];

end;

%n=length(l);

% construction of the larger matrix

l2=blur(l,exp,count);

% hhhhhh Computing of the errors hhhhhhhh

% hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

w=ones(length(l),1)’;

% FP arithmetic on original problem

xw=[l’,w’];

[~,~,AN]=cglan(t,xw,0);

% exact arithmetic on original problem (2x reorthogonalization)

[~,~,exact_AN]=cglan(length(l),xw,2);

% exact arithmetic on larger problem (simulation of FP arithmetic)

w=ones(length(l2),1)’.*(sqrt(1/count));

xw=[l2,w’];

[~,~,ANlrg]=cglan(t,xw,2);

% estimate based on support preconditioning for original problem

est_er = cheb_on_interval(l,m,t,1);

% estimate based on support preconditioning for larger problem

est_error = cheb_on_interval(l2’,m,t,count);

% hhhhhh Plotting the results hhhhhhhh

% hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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figure; clf;

semilogy(abs(exact_AN),’-.’,’LineWidth’,2,’MarkerSize’,1);

hold on;

semilogy(abs(AN),’-’,’LineWidth’,2,’MarkerSize’,1);

hold on;

semilogy(abs(ANlrg),’.’,’LineWidth’,5,’MarkerSize’,7);

hold on;

semilogy(abs(est_er),’:’,’LineWidth’,3,’MarkerSize’,1);

hold on;

semilogy(abs(est_error),’--’,’LineWidth’,3,’MarkerSize’,1);

hold on;

axis([1 t 1e-16 1e6]);

set(0,’DefaultAxesFontSize’,16);

hold off;

BAT

% % ... This is a collection of settings, these settings creates

% % ... figures, which are described and analysed in the thesis.

% % ...

% % ... hhhhh Matrix01 hhhhhh

% % ... hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

% % ...

% % ... n + m ... dimension of a matrix

% % ... l1 ... smallest eigenvalue

% % ... ln ... largest eigenvalue

% % ... rho,rho2 ... parameter which determines the distribution

% % ... m ... number of eigenvalues which are left unchanged

% % ... ... these eigenvalues represent outliers

% % ... count ... how many extra eigenvalues are in each cluster

% % ... exp ... 2*10^(-exp) is a size of clusters

% % ... t ... number of iterations which are executed

% % ... main( n, m, l1, ln, rho, exp,count, t, rho2)

main(92,8,0.1,10^6,0.3,9,61,700,0.95);

...fig1.4b, paragraph c, file: num1 !!time consuming

main(90,10,1,100,0.7,14,11,60,0.95);

...fig1.5b, paragraph c, filne: num2

main(65,7,0.1,10^5,0.3,10,25,350,0.95);

...fig1.8a, paragraph f, file: num3

main(65,7,0.1,10^5,0.3,10,25,350,1);

...fig1.8b, paragraph f, file: num4

% ... hhhhh Matrix02 hhhhhh

% ... hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

% ...

% ... n + m ... dimension of matrix
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% ... l1 ... smallest eigenvalue

% ... ln ... largest eigenvalue in the first part of spectrum

% ... rho ... parameter which determines the distribution

% ... outa, outb ... over this interval is uniformly distributed

% ... ... /outcount/ eigenvalues

% ... m ... number of eigenvalues in interval [outa,outb]

% ... count ... how many eigenvalues are in each cluster

% ... exp ... 2*10^(-exp) is a size of clusters

% ... t ... number of iterations which are executed

% ... main( n, m, l1, ln, rho, exp,count, t, outa, outb, outcount)

main(24,5,1,2,0.9,14,11,30,10,50);

...fig1.4a, paragraph c, file: num5

main(24,3,1,2,0.9,8,11,50,10^6,10^7);

...fig1.5a, paragraph c, file: num6

main(24,1,1,2,1,14,3,25,100,100);

...fig1.6a, paragraph d, file: num7

main(48,1,1,5,1,7,20,60,10^7,10^7);

...fig1.6b, paragraph d, file: num8

main(48,5,0.1,10,0.9,12,21,220,20,30);

...fig1.7a, paragraph e, file: num9

main(48,5,0.1,10,0.9,10,21,220,5*10^4,5*10^4+4);

...fig1.7b, paragraph e, file: num10

main(48,5,0.1,10,0.9,9,15,220,10^4,5*10^4);

...fig1.7c, paragraph file: num11

main(48,5,0.1,10,0.9,9,25,220,10^5,5*10^5);

...fig1.7d, paragraph e, file: num12

cglan

function [ab,V,AN] = cglan(t,xw,reo);

%

% NAME:

% cglan - the CG-like implementation of the Lanczos algorithm

%

% DESCRIPTION:

% The conjugate gradient is used to implement the Lanczos

% algorithm. Given the discrete inner product whose nodes

% are contained in the first column, and whose weights are

% contained in the second column of the array xw, the cglan

% algorithm generates the first t recurrence coefficients "ab"

% and the corresponding lanczos vectors V. A reorthogonalization

% is possible.

% Algorithm is modified to compute the energy norm of the error

% (from known exact solution xacc).

%

% USAGE:

% [ab,V] = cglan(t,xw,reo);

% t ........... how many steps of cglan should be performed

% xw .......... two-column array, 1st column = nodes,
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% 2nd column = weights

% reo ......... how many times the new vector should be

% reorthogonalized against previous vectors, reo=0

% means without reorthogonalization

%

% OUTPUT:

% ab ..... reccurence coefficients after "t" steps of

% the Lanczos algorithm

% V ...... the corresponding lanczos vectors

% AN ..... the relative error of the k-th iteration,

% compuited in the energy norm

% ..... this routine can be easily modified to compute

% squared energy norm of the error of the k-th

% iteration, see lines 62, 63

%

% (c) Dianne O’Leary, Zdenek Strakos and Petr Tichy, 21.01.2007

% slightly modificated by Tomas Gergelits, 15.05.2011

%

n = length(xw(:,1));

ab = zeros(t,2);

r = sqrt(xw(:,2));

X = xw(:,1);

p = r;

x = zeros(n,1);

xacc = diag(X)\r;

inanormsq = xacc’*r;

gamma_old = 1.0;

delta_old = 0.0;

rr = r’*r;

rr0 = rr;

sgn = -1;

ab(1,2) = 1.0;

for j = 1 : t,

sgn = -sgn;

V(:,j) = sgn*r/sqrt(r’*r);

ap = X.*p;

gamma = r’*r/(p’*ap);

x = x + gamma*p;

r = r - gamma*ap;

AN(j) = sqrt(((xacc - x)’*r)/inanormsq);

% AN(j) = (xacc - x)’*r;

%
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rr_old = rr;

rr = r’*r;

delta = rr/rr_old;

%

for count = 1 : reo,

for k = 1 : j,

r = r - (V(:,k)’*r)*V(:,k);

end;

end;

%

p = r + delta*p;

%

alpha = 1/gamma + delta_old/gamma_old;

beta = delta/(gamma^2);

ab(j,1) = alpha;

ab(j+1,2) = beta;

%

delta_old = delta;

gamma_old = gamma;

end;

cheb on interval

function error = cheb_on_interval(lambda,outcount,t,cluster)

%

% NAME:

% ChebyshevOnInterval - computes the estimate

% defined in the thesis

%

% DESCRIPTION:

% This subroutine computes the estimate of the relative

% error which is concretized in the thesis

% Estimate is based on polynomial which is

% a multiplication of shifted and scaled

% Chebyshev polynomial of smaller degree

% and linear polynomials with the roots

% at the outlying eigenvalues.

% outcount .... number of outliers

%

% USAGE:

% lambda .. spectrum of the matrix

% t ....... for how many iterations should be estimates computed

%

% OUTPUT:

% error ... length of this vector is t, error(i) is an estimate

% of the relative error in the i-th iteration

% ... this subroutine can be easily modified to compute an

% estimate for squared energy norm of the error,

% see lines 55, 56
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%

lambda = lambda’;

n = length(lambda);

n_cheb = n-(outcount*(cluster));

a = lambda(1);

b = lambda(n_cheb);

% ... when computing the estimate for the original spectrum,

% it is unnecessary to compute terms which we know they are

% zero. It is good to do that because for large k, there

% would be computed inf*0 = NaN

if cluster ==1

l = lambda(1:n_cheb);

lin = ones(n_cheb,1);

else

l = lambda;

lin = ones(n,1);

end;

argument= (2*l-a-b)/(b-a);

for i=1:outcount

linear = (1-l/lambda(n_cheb+1+fix(cluster/2)+(cluster)*(i-1)));

lin = lin.*linear;

end;

e=0;

for k=outcount+1:t;

tr_Cheb = ortho_poly(1,argument,k-outcount)/ ...

ortho_poly(1,(-b-a)/(b-a),k-outcount);

if any(isnan(tr_Cheb))

tr_Cheb=tr_Cheb+Inf;

end;

p = tr_Cheb.*lin;

% e(k) = sum(p.^2./l); ... if computing absolute value of error

e(k) = max(abs(p));

end;

error = e’;

ortho poly

function pl=ortho_poly(kf,x,n)

% This is a code downloaded from the website of MIT.

% http://ceta.mit.edu/comp_spec_func/
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% ==========================================================

% Purpose: Compute orthogonal polynomials: Tn(x) or Un(x),

% or Ln(x) or Hn(x), and their derivatives

% Input : KF --- Function code

% KF=1 for Chebyshev polynomial (First kind) Tn(x)

% KF=2 for Chebyshev polynomial (Second kind) Un(x)

% n --- Order of orthogonal polynomials

% x --- Argument of orthogonal polynomials

% Output: PL(n) --- Tn(x) or Un(x) or Ln(x) or Hn(x)

% DPL(n)--- Tn’(x) or Un’(x) or Ln’(x) or Hn’(x)

% =========================================================

% The only improvement in this program is it accepts

% vector arguments for x

% make sure that x is a row or column vector and not a matrix.

[r,c]=size(x);

if r==1 | c==1

rowvec = 0;

if r==1

x=x’;

rowvec = 1;

end

else

error(’x must be a vector, and cannot be a matrix’);

end

lenx = length(x);

if n==0

if rowvec

pl = ones(1,lenx);

else

pl = ones(lenx,1);

end

else

pl = zeros(lenx,n);

a=2;

b=0;

c=1;

y0=1;

y1=2.*x;

% the i’th position in pl corresponds to the i’th term

% don’t bother storing pl = 1;

pl(:,1)=2.*x;
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if (kf == 1)

y1=x;

pl(:,1)=y1;

end

for k=2:n

yn=(a.*x+b).*y1-c*y0;

pl(:,k)=yn;

y0=y1;

y1=yn;

end

if rowvec

pl = pl(:,n)’;

else

pl = pl(:,n);

end

end

blur

function new_l = blur(lambda,exp,count);

%

% NAME:

% blur - creates spectrum with clusters

%

% DESCRIPTION:

% This subroutine creates a modification of the original

% spectrum. It creates clusters of eigenvalues in tiny

% intervals around original eigenvalues. Motivation is

% in backward-like analysis of computing CG and Lanczos

% algorithms in finite precision (see Greenbaum(1989),

% Greenbaum and Strakos (1992))

% USAGE:

% lambda ....... original spectrum

% outliers ..... number of eigenvalues around which

% will be clusters generated

% ..... clusters are made around largest eigenvalues

% exp .......... 2*10^(-exp) is a size of clusters

% count ........ how many eigenvalues are in every cluster

% OUTPUT:

% new_l .......... new (larger) spectrum with clusters

%

n = length(lambda);

l = zeros(n*count,1);

size = 10^(-exp);

90



ind=1;

for i=1:n

l(ind:ind+count-1)=linspace(lambda(i)-size,lambda(i)+size,count);

ind=ind+count;

end;

new_l=l;
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