
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Vladimı́r Matěna

Qt HDD benchmark

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Lukáš Marek

Study programme: Informatics

Specialization: Programming

Prague 2011

Thanks to:
Supervisor of this thesis who helped me with application development, espe-

cially the benchmarking code.
My grandfather who did the language correction of this text.

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In. date............ signature

Název práce: Qt HDD benchmark

Autor: Vladimı́r Matěna

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoućı bakalářské práce: Mgr. Lukáš Marek, Katedra distribuovaných a spolehlivých
systémů

Abstrakt: Tato práce se zabývá měřeńım výkonnosti zař́ızeńı pro ukládáńı dat.
Jej́ı účel je poskytnout program pro měřeńı výkonnosti takových zař́ızeńı s grafickým
rozhrańım v prostřed́ı Linuxu. Grafické rozhrańı se snadno použ́ıvá a zobrazuje
výsledky měřeńı v reálném čase. Nav́ıc bylo několik běžných zař́ızeńı otestováno
t́ımto programem. Zaj́ımavé výsledky byly krátce popsány stejně jako faktory,
které je ovlivnily. Obecné faktory ovlivňuj́ıćı výsledky v prostřed́ı Linuxu byly
také popsány.

Kĺıčová slova: srovnáváńı, pevný disk, grafický

Title: Qt HDD benchmark

Author: Vladimı́r Matěna

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Lukáš Marek, Department of Distributed and Dependable
Systems

Abstract: This thesis deals with data storage device benchmarking. Its purpose is
to provide storage device benchmarking application with graphical user interface
for Linux environment. The graphical interface is simple to use and displays
results in real-time. Moreover a few common device benchmarking was done with
application developed. The interesting results were briefly described as well as
factors influencing them. Also general factors impacting results measured within
the Linux environment were described.

Keywords: benchmarking, data storage, graphical

Contents

Introduction 2

1 Problem analysis 4
1.1 Project specification . 4
1.2 Detailed problem definition . 7

1.2.1 Benchmarking . 7
1.2.2 Factors impacting results 10

1.3 Comparison with existing implementations 10

2 Documentation 11
2.1 User documentation . 11

2.1.1 Starting application . 11
2.1.2 User interface . 12
2.1.3 Basic usage . 14
2.1.4 Limitations . 14
2.1.5 Advanced usage . 16

2.2 Programmer documentation . 18
2.2.1 Building application . 18
2.2.2 Basic ideas and solutions 18
2.2.3 Device access, cache disabling 20
2.2.4 Known problems in implementation 21

3 Results 23
3.1 Media caching layers . 23
3.2 Linux I/O layers . 24

3.2.1 Virtual filesystem . 24
3.2.2 Real filesystem . 25
3.2.3 Page cache . 25
3.2.4 I/O Scheduler and drivers 25

3.3 Description of results measured 26
3.3.1 Device comparison . 26
3.3.2 Reproducibility of results 30
3.3.3 Interesting results . 31

Conclusion 33

Bibliography 35

List of Figures 36

Glossary 37

Acronyms 38

Appendices 39

1

Introduction

Problem definition

The purpose of this thesis is to provide easy to use hard drive benchmark with
a Graphical user interface (GUI) providing real-time feedback. The benchmarks
should be easy to use and should produce reproducible results. Currently there
is a lack of such tools for Linux desktop, so Linux desktop was selected as target
environment. Although Linux is primary target, some multi-platform readiness is
desired. Therefore Qt graphical framework is intended to be used. Moreover, this
thesis should provide description of both hardware and software factors impacting
hard drive performance on Linux platform. This part focuses on caching layers
and their possible impact on measured results.

The program should provide basic functions for benchmarking both raw drive
performance and filesystem performance. Raw hard drive performance bench-
marks should cover seek time and raw transfer speed. Filesystem benchmarks
should focus on reading and writing single file and manipulating huge structures
of files and directories. All operations done should be safe for data stored on
device. Hence benchmarking raw device write is not intended.

Hard drive performance is bottleneck to desktop systems. Because of this
operating system tries to improve storage performance by caching and not syncing
changes to device. It is desired to limit impact of such optimization provided by
operating system and not device itself as much as possible.

Graphical user interface should be easy to use and should provide real-time vi-
sualization of running benchmark. Qt framework does not provide direct support
for dynamically changing graphs, nor any of its extensions provides this feature.
Therefore implementation requires building such functionality on the top of more
general resources provided by Qt.

2

What was done and how

A software called HDDTest was implemented using Qt graphical framework. Four
raw device benchmarks and three filesystem benchmarks were implemented. Raw
device benchmarks contain: device seek time, continuous read transfer speed,
blocked read transfer speed and continuous read by block transfer speed testing.
Filesystem benchmarks count: single file read and write transfer speed, directo-
ry structure build/read/destroy time testing. Detailed benchmark description is
located in Project specification section. The whole device access code was en-
capsulated in a single class, so it can be altered easily in the case of porting
code to another platform. In spite of this, only Linux environment is supported.
Results measured can be stored to a file in Extensible Markup Language (XML)
format and loaded later. A simple system for displaying dynamic graphs was
implemented on the top of the QGraphicsView object.

Graphical interface was built on the Qt framework. Real-time updating graphs
were implemented as wrapper around QGraphicsView object provided by Qt.
Three graph types were implemented: line graph, bar graph and dot graph.
All graph support real-time rescaling and updating. Updates are performed by
continuous pooling of data structures filled by benchmark running in separate
thread. Reference result data loading was implemented, so graph composed of
two sets of results or one set of results and running benchmark data can be shown.
Export to image function was implemented in order to simplify result publication.

When software was finished a small set of devices was tested. Devices test-
ed contain laptop hard drive, desktop hard drive, Secure Digital (SD) card and
Universal Serial Bus (USB) flash drive. Some of results were included in this the-
sis to provide example of what HDDTest can do. Some interesting results were
included with a brief description.

Document structure

Problem analysis

Deals with detailed software description, description of its features and compari-
son with similar projects. It also covers changes made to specification reflecting
results provided by development version of the software.

Documentation

Contains user and programmer documentation. User documentation describes
all program functions and contains instructions how to use it. Programmer docu-
mentation contains description of program structure with remarks on constructs
used and possible alternative solutions. It also includes all information needed
for code extension.

Results

Deals with results measured on various devices and possible impact of caching on
this results as well as caching levels in general.

3

1. Problem analysis

1.1 Project specification

This section describes goals set before actual implementation started and changes
made to initial goals when first development builds were tested. For reasons
behind this decisions taken see Detailed problem definition section.

The task is to develop an application which will provide user friendly bench-
marks of Hard disk drive (HDD). Target platform for this application is GNU/Lin-
ux. Graphical environment of the application will be created using Qt libraries.
The application will provide both raw hardware performance benchmarks and
filesystem benchmarks. It should be easy to control the application and the
benchmarks should be non-destructive to data stored on device. The measured
result should be visualized in real-time.

There are several applications offering similar functions as this, but especially
those coming from GNU/Linux environment are too sophisticated and compli-
cated for desktop user. Most of them are command-line based providing no or
very little callback to user. Those applications provide too many options which
discourage less advanced users and disable results taken with different settings
from being compared. This project aims at filling the gap and providing user
friendly application with minimum settings.

Seek benchmark

Benchmarks speed of seeking given position on HDD. The benchmark consists of
1000 timed seeks to pseudo-random positions on drive. Positions are generated
with stable seed to ensure the same behaviour every time benchmark is run on
the same device. One byte is read from every position to ensure driver really
accessed data at selected position. Initial intend was to show minimal maximal
and average access times but later it came clear that it would not fit the graphical
interface. Therefore, only average access time is explicitly displayed as minimum
and maximum values are easy to guess from graph. The benchmark contains a
dot graph showing seek length on horizontal axis and seek time on vertical axis.
This graph should be updated as new seeks are being performed.

Read - random benchmark

This benchmark reads blocks of different sizes from random position on drive.
Block sizes are powers of two from 512 bytes to 1 megabyte. Initial intention
was to read 100 megabytes using each block size, but doing so takes too long.
Reading 100 megabytes split into small blocks makes drive to perform a lot of
seeks. That caused this benchmark to take several hours on average laptop drive.
Finally, reading 100 blocks of each size was chosen. Benchmark run time was
reduced to a few minutes and results seem to be the same. The results are shown
in bar graph where every bar represents one block size. Every bar shows average
transfer speed and read progress for given block size. To save space in GUI this
benchmark was renamed to ”Random”.

4

Read - continuous benchmark

Purpose of this benchmark is to measure read transfer speed. Transfer speed is
shown in graph where horizontal axis is drive position and vertical axis is transfer
speed. Read operation is divided into blocks. Block should be large enough not
to lower the transfer speed. Benchmark should read 4 gigabytes. Block size
was intended to be 100 megabytes, but later tests proved that even 1 megabyte
blocks have little effect on transfer speed. So 4 megabyte blocks were chosen as
they provide smoother graphs than 100 megabyte blocks. This benchmark was
renamed to ”Continuous” in order to save some space in GUI.

Block benchmark

This benchmark was added to specification later. It is similar to read - ran-
dom benchmark. Benchmark reads blocks of different sizes from drive but with-
out seeking. Block sizes are powers of two from 512 bytes to 1 megabyte. 100
megabytes are read using each block size. Results are shown in bar graph where
every bar represents one block size. Every bar shows average transfer speed and
read progress for given block size. Purpose of this benchmark is to show how
splitting read operation into small blocks affects performance.

R/W file benchmark

This benchmark measures read and write file transfer. It creates a file and writes
one gigabyte into it. Then whole file is read again. Results are shown in graph
where horizontal axis represents file position and vertical axis transfer speed.

File hierarchy benchmark

This is filesystem benchmark focusing on working with directory structure. It
creates directory structure containing 1000 directories and 1000 files. Structure
is pseudo-random but every time the same. Results are displayed by bar graph
containing two bars. The first shows build time and the second shows time needed
to delete the structure. The whole structure should be placed every time in the
same place in filesystem to ensure result reproducibility. This benchmark was
renamed to ”Structure” in order to save space in GUI.

Small files benchmark

Benchmarks working with small files within large directory structure. First struc-
ture of 1000 directories is created. Then 1000 files are created within this struc-
ture. Files have sizes of 1 kilobyte to 10 kilobytes. Then all files are read in
pseudo-random order. Finally, the whole structure is deleted. Bar graph is dis-
playing time for these operations: Directory structure build, file write, file read,
structure delete.

5

Info

Application should provide way how to get information about hardware being
tested and software used. This information should be stored with tested data for
future comparison.

6

1.2 Detailed problem definition

This section describes what is goal of this thesis in detail. The solutions chosen
and reasons for this solutions are discussed. The problem is divided into two
parts: HDD benchmark and Factors impacting measured results.

1.2.1 Benchmarking

The main goal of this thesis is to provide graphical HDD benchmark for Linux
desktop. The benchmark software should be simple enough to be useful for an
average user. It should provide minimum settings and results should be presented
via graphical interface in real-time.

Benchmarks

should definitely contain random access and continuous read speed as these two
are basic drive parameters. Even when modern drives contain technologies that
make those two parameters a bit less important, they remain to be a measure
by which many people judge drive performance. Continuous read speed gives
estimation of overall drive transfer speed. Random access shows how the drive
can deal with transfers consisting of a lot of small blocks. Unfortunately write
versions of this two benchmarks cannot be included due to the fact that writing
directly to drive would harm data on it. Even when it is possible backup data
being overwritten, it is too risky especially in case of power failure. Moreover,
standard rotating platters drives usually have equal read and write performance.
This is unfortunately not true for Solid state drive (SSD). Those have big blocks
that have to be erased before they are written. And the situation is also getting
complicated by controllers doing wear levelling. These features make their write
performance unpredictable and hard to guess from read performance. In addi-
tion, two more raw device benchmarks covering advanced drive behaviour should
be present. These benchmarks should show how the drive behaviour changes de-
pending on block size used for operation. Both benchmarks read blocks of several
sizes from device. First benchmark called ”Random” reads blocks of given size
from random positions on device. The second one, called ”Block”, reads blocks
of given size one by one without seeking between reads. The Block benchmark
usually shows results similar to read transfer speed even when blocks sizes are as
small as 512 bytes. The results of this benchmark are intended to be compared
with the results of ”Random” benchmark. The results of the ”Random” bench-
mark of flash memory based devices show that some block sizes causes drive to
behave much faster than others. Drives based on rotating platters show results
depending on seek time needed to access block and continuous read speed by
which the block is read.

Also benchmarks testing filesystem should be contained. Read and write file
transfer speed should be benchmarked as they determine, how fast will the large
file transfers to/from the device be. File access speed depends on device access
speed and filesystem, especially on its type, setting and fragmentation. Results
of this test are hard to reproduce as file can every time be divided into different
blocks due to free space fragmentation. Even when comparison of this results

7

between drives is limited this benchmark shows transfer speed of daily tasks as
file copying between devices or large file reading and writing.

Another thing that can be tested in filesystems is how they behave when deal-
ing with a large directory structure. These benchmarks simulate tasks such as
starting applications, copying or compressing directory structures and all other
tasks that depend on reading a lot of small files. Two benchmarks should be pro-
vided. The first for working with directory structure and the second for working
with small files. The first one called ”Structure” consists of creating directory
structure and deleting it. It shows how fast the filesystem can create and delete
directories and files. The second benchmark called ”Small Files” also creates di-
rectory structure, but then it writes small files into it. When files are written,
it reads them and finally deletes whole structure. These benchmarks seem to be
pretty sensitive on caching as many filesystems perform cached reads of small
files and keep directory structure in memory instead of syncing it to device. Even
when minimizing those effects in not every time possible those benchmarks can
give insight in how different filesystems or devices handle small files and large
directory structures.

The whole benchmarking process should not harm data on device as users
are expected to run them on daily use systems. Benchmarks should not provide
many settings. This allows user interface to be simple and results to be simply
comparable. It also requires benchmarks to be designed well to fit large, small,
slow, fast, rotating platters based and solid state drives. Benchmarks should take
reasonably long on wide range of devices. New results data should be gathered fast
enough to be displayed smoothly by graphic interface. For some benchmarks it is
a compromise between getting smooth data and getting precise data. The initial
plan was to use bigger block sizes for some continuous reading tests, but later was
discovered that performance penalty of using smaller blocks is not so significant.
Moreover, using smaller block improved user experience a lot. Changes done to
benchmarks are described in Project specification section.

User interface

should provide easy ways for an average user to run benchmarks. It is important
not to give user too many options. Nevertheless, some controls for basic functions
are needed. User should be allowed to pick device to test or saved results to
display. Moreover, it should be possible to select secondary saved results that
will be displayed as reference to primary results. It was decided that these two
selections will be implemented by comboboxes distinguished by colour. The users
should also be allowed to select a benchmark. This was implemented by dividing
window into two parts. The upper part of the widow consisting of two comboboxes
and button for saving results are common to all benchmarks. The rest of the
window is organized by tabs with headers shown on the left side of the window.
Each tab contains benchmark results, progress, start/stop button and button for
exporting graph as image.

The results should be displayed by graphs. The graph should be updated when
benchmark is running. When reference results are loaded graph should display
both result sets merged and distinguished by colour. Graph updates should be
frequent enough not to let user think the program has hung. It also requires
benchmarks to provide new data that can be displayed. The desired effect was

8

achieved by pooling benchmark results 10 times per second. This refresh rate
seems to be enough to provide responsive graphs that worth user attention when
test is running. Results for current device and reference results were distinguished
by colours used in comboboxes. Where more colours are needed the primary
colour is mixed with another one. The resulting colour scheme is described by
legend in order to simplify results interpretation.

One of the most important things about GUI was choosing graphical frame-
work that would fit project needs. As implementation for GNU/Linux was re-
quired the choice was between GTK and Qt. Both frameworks provide rich offer
of functions to satisfy basic needs of this project. From the functional point of
view the functions simplifying graph implementation were the most important.
Unfortunately both frameworks do not provide direct implementation of graphs
needed by this application. Therefore it was needed to implement graph on the
top of something more general. Qt provides a slightly better universal graphic
drawing system then GTK. Moreover, Qt is truly multi-platform so future porting
to another platform would be much easier then with GTK. Evaluating this ben-
efits Qt was chosen. Later using K Desktop Environment (KDE) libraries that
base on the Qt was evaluated, but using KDE would not simplify implementation
a lot and porting to other platforms would get complicated.

Device access

is another problem that needs to be resolved. The application should be able to
enumerate devices and gain access needed by benchmarks to them. The Linux
system contains a lot of block devices capable of being benchmarked, but just few
are real hardware. Showing all block devices could make user confused. Therefore
it was decided to limit list of devices to those found in ”/dev/disk/by-path/”.
This path contains symbolic links to devices as they are connected to the system.
Using targets of these links effectively limits list of all block devices in ”/dev” to
those being really connected to system and filtering out virtual ones. This list
should be suitable for most users. If somebody wants to benchmark some exotic
device not being listed the GUI still allows to type custom path to device.

Device access is realized by opening block device like a regular file. This
method is sufficient for all operations needed by benchmarks.

The biggest challenge of device access is to limit influence of optimizations
done by operating system. Those optimizations are caching device content and
lazy writes. The first optimization causes repeated tests to be much faster and
the second makes directory structure changes instant. In the final implementation
effect of caches is limited by dropping caches before benchmark or its part. And by
giving advice to operating system not to cache data being written. Lazy writes are
limited by calling ”sync” after every filesystem operation and counting sync call
time to this operation. This countermeasures are not effective every time. Some
filesystems like New Technology File System (NTFS) seem to do some caching
that cannot be disabled in this way. Another problem is that dropping caches
requires privileges that user running benchmarks does not have to have. In this
case warning is shown to inform user that results can be affected by caching.

Another approach would be to remount filesystem with sync option and open
raw device in sync file mode. Remounting filesystem with sync seems to work
but it would interfere with the system a lot. Therefore remounting with sync

9

option was denied in order no to get user in trouble while running benchmark on
root filesystem. Opening device with O SYNC and O DIRECT flags could limit
cache effect a lot. But this method causes some operations with device to fail.
Unfortunately, those operations are required by benchmarks.

1.2.2 Factors impacting results

Ideal benchmark would measure directly performance of the device without influ-
ence of other systems. Unfortunately, real benchmark can only try to limit such
influence. Results can be influenced by caches and buffers provided by operating
system. This influence is limited by dropping caches, but some filesystems seem
to ignore such commands. It is hard to judge whether throughput is limited by
device itself or the rest of the system is becoming a bottleneck. The GUI can
take too much Central processing unit (CPU) power and cause benchmark to run
slower. Moreover, another process in the system can consume resources needed
by benchmark to achieve optimum results. Such processes can even use device
being benchmarked and cause benchmark to report degraded performance. Many
of this problems cannot be avoided or cannot be avoided without unacceptable
modifications of the system. Even with this problems on a reasonable fast system
a benchmark of non-system drive usually reports accurate results. When things
go wrong it can be detected from pikes on resulting graphs.

1.3 Comparison with existing implementations

This section briefly describes two hard drive benchmarking tools. Both of them
run on Windows platform. These two were selected among others as their features
are similar to the software developed as part of this thesis.

HD Tach

HD Tach is software similar to the subject of this thesis. It also provides basic
benchmarks as sequential read speed and writes, random access, interface burst
and CPU usage. The results are presented in graph, but the graph is not displayed
as the results are being picked. The software first performs all tests and show
their progress and then a graph with the results is displayed. The usage is simple
as there are just a few options besides drive selection. [5]

HD Tune

HD Tune is also more feature rich than subject of this thesis. It has a lot
of features containing transfer speed and random access benchmarks with the
same real-time result presentation as done by HDDTest which is subject of this
thesis. It also has many features HDDTest does not have as error scanning,
Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T) status reading
and secure erase. [6]

10

2. Documentation

2.1 User documentation

This section describes HDDTest user interface, common tasks and some extended
usage examples.

2.1.1 Starting application

HDDTest require Qt libraries to work. It should work with any recent Qt release,
but the application is tested with version 4.7.3.

HDDTest application expects symbolic links to devices to be in ”/dev/disk/by-
path”. If the system does not contain this folder or it does not contain such links
the user will be unable to pick device to be tested easily from combobox, but he
can still benchmark device by typing the whole path.

The application needs to access the devices being benchmarked. On a usual
Linux system users are not allowed to access devices directly. Even when the
benchmark starts it may happen that it will not work correctly. Results mea-
sured without full access to device may be incorrect. In order to eliminate these
problems run the application with administrator privileges. This can be achieved
by several ways. To do this sudo or kdesu needs to be installed. It is possible to
run HDDTest with elevated privileges with one of these commands.

Listing 2.1: Running HDDTest with sudo

sudo /path/ to /HDDTest

or

Listing 2.2: Running HDDTest with kdesu

kdesu /path/ to /HDDTest

When the application is run without sufficient privileges two things may happen.
The benchmark can stop with error as device cannot be accessed or a warning
will be shown as caches cannot be disabled without sufficient privileges.

11

2.1.2 User interface

User interface tries to be straightforward. Its central area contains selected bench-
mark (5). There are tabs with benchmark selection on the left of the screen (4).
Device selection combobox is placed top left (1). Reference device combobox is
placed top right (2). This is where overlay results for comparison are selected. A
button for saving all results for current device is placed in the top left corner (3).

Figure 2.1: Application graphical interface

Figure 2.2: Device selection in detail

The top left combobox allow to
pick device to be tested as well as saved
results from current directory. When
the desired device is not listed the us-
er can type direct path to such a de-
vice. The path written manually in the
combobox needs to be confirmed by
pressing enter. Moreover, a file open
dialog can be opened by corresponding
option in combobox to choose saved re-
sults from filesystem. The top right
combobox is like the left one but it
works only with saved results. The
both sets of results measured or loaded
are displayed at the same time distinguished by colour. Current results or results
loaded by left combobox are red or red-green when more colours were needed.

12

Results loaded from right combobox are blue or blue-green when more colours
were needed. The reference results can be changed even while the benchmark is
in progress.

The button placed in the top left corner with diskette icon is used to save
current results measured (those displayed in red). This button opens file save
dialog. The results are saved to file in the XML based format. Saved results can
be viewed by HDDTest itself or processed by any XML processing software or
script.

The benchmarks can be accessed by tabs on the left side of the window. The
first tab shows information about selected device. The information tab is followed
by four raw device benchmarks. The filesystem used does not affect the results
of raw device benchmarks.

The ”Random” benchmark is supposed to show how the device handles small
blocks. The benchmark called ”Cont” reads large blocks sequentially and displays
sequential transfer speed. The ”Block” benchmark reads small blocks sequential-
ly. Usually device performs equally on every block size in ”Block” but in some
situations it can happen that some sizes are preferred. The last raw benchmark
is ”Seek”. It benchmarks access speed. The raw benchmarks are followed by
filesystem benchmarks.

The filesystem used does matter a lot in this benchmarks. First one is ”R/W
file”. It writes and reads large blocks sequentially to and from file resulting in
transfer speed graph. The last two benchmarks operate with structure of small
files. Different operations as creating, reading, writing and deleting of files and
directories are performed pseudo randomly.

Technical details of all benchmarks such as sizes and counts of blocks can be
displayed with info button placed bottom right.

Figure 2.3: Seeker benchmark controls

All benchmarks look similar. They consist of a graph area where the results
are displayed, progress bar at the bottom and three buttons placed bottom right.

13

The Info button displays benchmark description. The Export button exports
graph area of the benchmark as an image and opens file save dialog to save it.
The last button is used to start the benchmark if it is not running or stop it
otherwise.

2.1.3 Basic usage

This is a step by step guide how to compare performance of the two devices. Be-
fore benchmarking the devices please consult Starting application chapter, make
sure devices being tested are not used and mount filesystems on devices wanted
to pass the filesystem benchmarks.

After starting the application please select first device from left(red) combobox.
If a filesystem is going to be benchmarked the selected partition has to be mount-
ed. If everything works and the application was started with sufficient privileges
no warning should have occurred. The information tab should display informa-
tion about device selected. Some devices cannot be identified but at last size
should be displayed and match device or partition size.

When device is selected the benchmarks can be run on it. When a tab is
opened with the wanted benchmark, it can be run by pressing the start button.
The button disables itself and changes its text to ”Starting”. It can stay like
this for a few seconds before device is flushed and caches dropped. Then text
changes to ”Stop” and button is enabled again. The benchmark is running and
the results should be displayed as process progresses. Once progress reaches 100%
the button changes to ”Start” again and the benchmark can be run again.

Once all desired benchmarks have been done the results can be saved using
button with diskette icon placed top left.

When results are saved the second device can be benchmarked. The process is
all the same as with the first device. Once first device is finished just select another
from left(red) combobox. All unsaved information about first device are forgotten
when another device is chosen. Before or during benchmarking of the second
device results saved first time can be selected to be displayed simultaneously.
This can be done by selecting saved results from right (blue) combobox. Newly
saved results are not displayed and have to be open by selecting ”launch file open
dialog” option in blue combobox.

Raw device tests just read from device thus do not change data on it. Despite
of this filesystem benchmarks read and write to files. HDDTest creates directory
”tmp/hddtest.temp.dir” on filesystem being benchmarked. Once benchmarking
is finished ”hddtest.temp.dir” can be removed.

Listing 2.3: Removing HDDTest temp

cd /path/ to / dev i c e / root
rmdir tmp/ hddtest . temp . d i r

2.1.4 Limitations

While in most cases benchmarks work as desired it may happen they will not.
Under some situation it may happen the benchmarks do not work correctly or not
at all. In most cases this is caused by running HDDTest without access rights to

14

devices which causes device access to fail and end with an error. The access can
also fail because of device being too small for benchmark. It can also happen that
rights are sufficient to access device but not to drop caches. In such situations
a warning is displayed. Running benchmarks when such warning is displayed is
not recommended as results will most probably be inaccurate.

Figure 2.4: Failed benchmark when caches were not dropped. The NTFS driver
cached last bytes written and satisfied read requests with them much faster than
the device would be able.

It can also happen that a filesystem caches data and does not respects cache
empty commands. In such situations no warnings or errors are displayed as this
cannot be detected. Such problems are visible from results. For example on figure
2.4.

15

2.1.5 Advanced usage

Even when HDDTest tries to be simple to use for user and does not contain
a lot of options, it can be used to do something more than just what it was
designed for. Instructions below are just tips and should not be followed without
understanding.

Benchmarking file

HDDTest can be made to benchmark a file with its raw device tests. It just
needs the system to pretend that the file is block device. Assuming the losetup is
available on the system, the first loop device is not used and the file that should
be used is located at ”/testfile”. All commands should be used with appropriate
user privileges.

Listing 2.4: Setting up loop device

lo se tup /dev/ loop0 / t e s t f i l e

Now file can be benchmarked by typing ”/dev/loop0” in device selection combobox
in HDDTest. Once finished, loop device should be detached.

Listing 2.5: Unsetting up loop device

lo se tup −d /dev/ loop0

Testing system latency

Sometimes it is not sure what the bottleneck actually is, whether it is device
itself or the rest of the system. Some interesting values that help to understand
this situation can be gained by running benchmarks on a ram-disk. Many Linux
distributions come with 16MB ram-disk located at /dev/ram0. Benchmarks can
be run on such device by typing ”/dev/ram0” in device selection combobox.
Please note that many benchmarks will refuse to work on such a small device.
Interesting results can be gained from ”Cont” and ”Seek” benchmarks.

Benchmarking remote share

The same idea as used when Benchmarking file can be used to benchmark file
located on remote share. Assuming share is located at ”/mnt/share”, first loop
device is unused, losetup and dd utilities are present.

Listing 2.6: Benchmark remote file

cd /mnt/ share
dd i f =/dev/ zero o f =./ f i l e . 2G bs=1M count=2k
lo se tup /dev/ loop0 /mnt/ share / f i l e . 2G

Now file on share can be benchmarked using raw device benchmarks by typing
”/dev/loop0” in device selection combobox. When benchmarking is finished loop
can be unset and file deleted.

16

Figure 2.5: RAM device random blocks benchmark. Limitations of system can
be seen. Now it is clear that it makes no sense to benchmark any faster device
as its performance would be limited.

Listing 2.7: Cleanup after benchmarking remote file

lo se tup −d /dev/ loop0
rm /mnt/ share / f i l e . 2G

17

2.2 Programmer documentation

This section explains how to build HDDTest application, how it works and how
to extend it.

2.2.1 Building application

To successfully build HDDTest application several tools are required. To compile
code g++ is needed. Build was tested with GNU Compiler Collection (GCC)
version 4.5.2. HDDTest uses Qt libraries, so development version of Qt libraries
is required. It was tested with version 4.7.3. To carry off build process qmake
tool is needed, tested with version 2.01a. Exact versions of tools specified above
are not required. During development the tools were upgraded several times thus
sources are most probably compatible with previous versions. Versions specified
should be used only when installed versions do not work.

A clean Ubuntu 10.04 installation required these packages to be installed:
qt4-qmake, libqt4dev, g++.

Application was developed with use of Qt Creator IDE and project description
file is included with sources. Building application with Qt Creator IDE is quite
simple. Opening the project and hitting Ctrl+r is enough. When the Qt Creator
IDE is not available the application can be built using command line tools. To
build application this way run the shell interpreter in source root directory and
type the following commands.

Listing 2.8: Building HDDTest from commandline

make c l ean
qmake −Wall CONFIG+=debug hddtest . pro
make

Typical build should not throw any warnings and should result in hddtest
executable. The whole build process was tested on up-to-date 64bit Gentoo linux
system and 32bit Ubuntu 10.04 Lucid Lynx.

2.2.2 Basic ideas and solutions

Classes

Classes in the project copy separated functional parts of the application. There
are simple classes for the main application window called ”HDDTestWidget” and
random number generator called ”RandomGenerator”. Basic primitives used by
benchmarks were also moved to separated classes for file and device access called
”File” and ”Device”.

Every benchmark has its own class which covers both benchmarks GUI and
benchmark process itself. Benchmark classes are based on a class common to all
benchmarks. The class is called ”TestWidget”. It handles GUI elements that are
common to all benchmarks, graph drawing and benchmark state changes.

There are more helper classes described in generated Doxygen documentation
that are not important to understand basic principles of the application.

18

Qt

Qt framework is used to handle application GUI and everything that Qt libraries
can handle in order to make application depend more on Qt than Linux specific
things. Only raw device access used by benchmarks was done as low-level as
possible because it is not sure how Qt handles it internally.

The most interesting part of GUI is graph drawing. All the graphs and mea-
sures are drawn by HDDTest itself. Graph primitives are implemented in Test-
Widget class and provided to benchmark classes. Graph drawing is done via
QGraphicsView object. QGraphicsView provides drawing geometrical primitives
and fonts [4]. Graph primitives are based on those QGraphicsView provides.
QGraphicsView also supports scaling and anti aliasing which is used to smooth
graphs.

File and Device classes

These two classes provide basic functions needed by benchmarks. Provided func-
tions are mostly wrappers to file read and write functions. Wrappers do not
care about data being transferred. Instead of this only sizes and times are im-
portant. Methods of this classes are used exclusively by benchmarks and device
enumeration in main application window. Even when moving code to benchmark
functions would be possible, the code was left separated.

Device and file access and enumeration code was moved to this separated
classes in order to make application ready for supporting multiple platforms in
future. Separating this code could also help when low-level access code needs to
be changed because of bugs. Also the benchmark functions are much more simple
when not including time measurement calls.

TestWidget class

TestWidget class implements common code from all benchmarks and graph draw-
ing code. This class has three basic functions. The first one is to provide callback
to benchmark GUI elements. The second one is to start and stop the test in
separate thread. The third is to provide graph drawing.

The actual benchmarks are classes derived from TestWidget class which im-
plement a few methods specific to them. When benchmark is started a benchmark
specific method containing benchmarking code is run in separate thread and an-
other benchmark specific method is called periodically to redraw the results in
graph. The graph drawing method uses basic graph parts provided by base Test-
Wiget class such as Bar graph, Line Graph and more support elements.

Benchmark specific classes

Every benchmark has its own class that contains its GUI handling and benchmark
function. Benchmark class also defines class that holds results in benchmark spe-
cific way. This class is based on TestWidget class. Benchmark class implements
several virtual methods defined by TestWidget. These methods define benchmark
specific behaviour. Every benchmark defines TestLoop method which contains

19

benchmark code. InitScene, UpdateScene and GetProgress methods that han-
dles GUI specific things. And WriteResults, RestoreResults and EraseResults to
handle results in benchmark specific way.

2.2.3 Device access, cache disabling

For a benchmark, getting as close to hardware as possible is very important.
Accessing devices as files was chosen as it proved to work in every situation
tested. There are more ways how to access device than this but others would
limit benchmarks or make them more complicated.

Listing 2.9: Sample opening and reading device

fd = open (”/ dev/ sda ” , O RDONLY | O LARGEFILE) ;
p o s i x f a dv i s e (fd , 0 , 0 , POSIX FADV DONTNEED) ;
read (fd , bu f f e r , b u f f e r s i z e) ;
c l o s e (fd) ;

A more accurate benchmarks would use O SYNC operation while opening the
device but it would cause device access to stop working under some circumstances.
The HDDTest application is intended to be run by users not understanding things
behind on many different systems so reliability is very important. Moreover
results measured with and without this option do not differ a lot. All the raw
device access primitives used by benchmarks are implemented in Device class and
C functions like open, read, write and lseek64 are used to build them.

Higher level access to filesystem uses Qt classes to access filesystem. In this
case Qt was used because it provides simple way to do the job and seems to be as
fast as ”native” approach. Even when simple constructions were used filesystem
access code was encapsulated in File and Device classes in order to be altered
easily if needed.

There are several problems with operating system caching and buffering data
being read and written. There are problems with raw device access and problems
with filesystem.

The problems with raw device access are quite easy to solve. This is caused by
the limitation of raw device benchmarks. Raw benchmarks are read only so only
problem with caching is that Linux kernel caches data in memory and satisfies
read requests with cached data. This behaviour is exposed when same benchmark
is run twice. The random sequence used by benchmarks is every time the same in
order to make results reproducible. The kernel caches all data being read during
the first pass and then the second pass is incredibly fast. This effect is effectively
removed by dropping system caches before every benchmarks or its separated
part. The only remaining problem is when the same data are hit twice during
one pass. This do not happen often so this problem is usually not noticeable from
results. To limit this effect an advice to kernel is given not to cache data. It is
only an advice but it seems working on tested systems. And even if it would not
work the results were not affected a lot.

The problems with access to files and filesystem is much more complicated as
it is read-write. The system is not only using cached data when reading, it also
accelerates writes to files by keeping changes in memory. The good thing is that
filesystem benchmarks are working in phases. And the results are shown only one

20

times per phase. To limit the cache effect a sync command is called and caches
are dropped before every phase. Doing so removes the problem while reading, but
writes seemed to be too fast. In order to avoid cache accelerated writes a final
sync was added behind every phase. The sync time is added to phase time in the
results. The sync before the phase ensures that non-synced data not belonging
to the benchmark are not synced at benchmark end.

The only benchmark not working in phases is File RW. In order to disable
write caching for this benchmark the benchmarked file is open with O SYNC flag.
Using this flag while working with raw device caused problems, but while used
on real files no problems were detected.

Listing 2.10: Example benchmark phase with cache prevention

Drop caches
Sync f i l e s y s t em
Take s t a r t timestamp
Do some timed job l i k e c r e a t i ng 1000 d i r e c t o r i e s
Sync f i l e s y s t em
Take end timestamp

Even when cache prevention mentioned above seems to work on many filesys-
tems, it looks at least Filesystem in userspace (FUSE) based filesystem do some
extra caching that cannot be disabled this way. This was noticed when using
NTFS and sometimes with Extended File Allocation Table (exFAT). Both of
them are using FUSE.

Error and warning handling

The application uses callbacks for reporting errors to user. Only errors and
warnings from device access are reported to user as they can influence results.
Other problems are silently ignored. When an critical error occurs during the
benchmark it is stopped and the user is notified. When a non-critical error
occurs a warning is displayed and benchmarks process continues.

2.2.4 Known problems in implementation

Device listing and identification

Devices are listed by scanning content of ”/dev/disk/by-path” directory. This
method relies on presence of link to the device in that directory. Some devices
that are suitable for benchmarking seem to be not present in this directory. More-
over, sometimes devices that cannot be benchmarked are present (usually optical
drives).

To solve this problem another source of available devices has to be used.
Recent Linux desktop systems use udisks for such purpose. Using udisks would
also improve ability to identify the device. Current identification based on ATA
command does not work as well as udisks would.

21

Random generator

To achieve reproducibility, the benchmarks that depend on random operations
have to perform pseudo-random operations with fixed seed. Current implemen-
tation uses standard random and srandom C function calls to obtain random
values. Even when seed is set every time the same random number generator can
differ system to system. This can cause that benchmarks can be a bit different
when C libraries change.

To obtain more stable benchmarks implementing simple fixed seed random
number generator in HDDTest code is needed.

Device access

Even when current device access code with cache prevention measures works
in most cases some improvement is possible. In some cases cache preventing
fails. See Device access, cache disabling. Using synchronous I/O is one of possible
solutions. This solution was not used as it caused other problems but maybe this
can be worked out.

22

3. Results

In this chapter some results measured with HDDTest application are presented.
To clarify measured results a description of both hardware and software caching
layers of tested devices is present.

3.1 Media caching layers

This section explains caching layers on media used to obtain results presented in
this chapter. The most results were captured with two devices. The first one is
notebook hard-drive with rotating platters TOSHIBA MK1652GSX. The second
one is USB flash drive Kingmax USB2.0 FlashDisk.

Kingmax USB2.0 FlashDisk

This device is a typical example of a flash based USB mass storage drive. Manu-
facturer do not provide much more information than storage capacity. From the
tests follows that the device does not have any detectable cache or write buffer.
Probing the device with hdparm reports write caching is not supported.

Listing 3.1: Testing write cache presence with hdparm.

hdparm −W /dev/sdb

/dev/sdb :
SG IO : bad/miss ing sense data , sb [] : f 0 00 05 00 00 00 00 0a

write−caching = not supported

From all the signs above it looks like this device does not have a cache of size
that can influence results.

TOSHIBA MK1652GSX

This is a standard notebook rotating platters drive. The hdparm command re-
ports 8MB write cache is present. Even when cache is present its effect seems
minimum.

Listing 3.2: Getting cache size with hdparm.

hdparm −I /dev/ sda | grep cache
cache / bu f f e r s i z e = 8192 KBytes

∗ Write cache

If the 8MB storage were be used to cache Seek benchmark traffic then second
pass of the benchmark would be much faster. This happens when OS caching
is not disabled. Assuming the cache would store the whole block which is 512
bytes in size. The whole Seek benchmark pass counting 1000 seeks would make
the cache to store 1000 blocks. This proves that the 8MB storage is not used this
way.

23

The benchmark with write cache enabled and disabled using hdparm shows
huge performance difference. This difference is present only when writing data
to the device. The improvement when cache is used is permanent even when
long burst is written. All the read only benchmarks do not show any significant
difference.

Looking at the beginning of the graphs there is a peak that indicates some
cache is being used. But multiple tests shows that those peaks are sometimes
positive and sometimes negative. So it is not clear what causes them.

Figure 3.1: TOSHIBA MK1652GSX Write cache impact. Red - cache enabled.
Blue - cache disabled

SSD drives

No real SSD drive was benchmarked. A benchmark of a CF card connected over
ATA interface had similar results as benchmark of USB flash drive.

SSD devices usually do wear levelling. This includes complicated systems
of mapping real blocks to virtual ones. It makes results of benchmarks unpre-
dictable. Moreover, some SSD drives include cache of significant size. [1] It is
unclear how this cache can affect results.

3.2 Linux I/O layers

There are many caching layer present in the Linux operating system. The layers
are presented one by one from user-space to device. Their caching effect on
benchmarks is discussed.

3.2.1 Virtual filesystem

Userspace applications talks to this layer. According to Linux Kernel documen-
tation [2] this layer provides cache for directories and inodes. This cache provides
fast directory lookup. This cache is not used by raw device benchmarks as they

24

do not use filesystem. This cache is used by filesystem benchmarks. There is
no need to disable this cache as most probably this cache can be provided to
all open directories and to every application used. Benchmarks simulating daily
filesystem usage should use this cache.

3.2.2 Real filesystem

There are many filesystems supported by the Linux kernel. There are even
many used by systems, this benchmarking software is expected to be running
on. Among others ext2, ext3, ext4, btrfs, XFS, ReiserFS. Every filesystem uses
a bit different strategy. Some of them are use cache to speed things up. There
are two different kinds of data to cache.

The first one is directory structure and data related to it. This cache is
usually small and does fit in Random access memory (RAM). It means that this
cache will most probably accelerate every operation done by user. The HDDTest
application is going to simulate daily system usage so it should use this cache
too.

The second one is cache of data stored in files. This is much different than
the first case. In most cases system RAM is not big enough to cache all data
user is working with. When filesystem usage is just a bit heavier the operations
tend to be accelerated by cache in the beginning. But very lazy to complete as
the cache is full somewhere in the middle of the operation. When benchmarking
a filesystem, a performance that can be kept all the time during the operation is
important. This means that HDDTest should try to disable such cache.

3.2.3 Page cache

A block device associated with real device uses buffer to cache requests to blocks
done by upper layer [3]. This caching impacts both filesystem and raw bench-
marks. The effect of this cache has been minimized by various measures in HD-
DTest code. There is no detectable effect on raw device benchmarks and very
limited effect on most filesystems.

3.2.4 I/O Scheduler and drivers

Schedulers mostly come into play when more processes are sharing access to one
device. There are more schedulers supported by Linux kernel. When device is
benchmarked it should not be used by any other application. If it is used exclu-
sively the scheduler should not impact results a lot. The benchmarks provided
by HDDTest are not threaded. This means they do not test device performance
when used by more threads. So the only thing that can happen when scheduler
comes into play is when some other application is using device while benchmark
is in progress. In this case result of benchmark is unclear. Benchmarks should
not be run on the device used by other processes in the system.

25

3.3 Description of results measured

This section describes some results measured with the HDDTest application. The
results are presenting both the features of the application and interesting be-
haviour of devices being tested. The set of the devices being tested is limited
because the topic of this thesis is benchmarking software and not comparing
devices.

Benchmarks were run on the Dell Vostro 1510 notebook with Intel(R) Core(TM)2
Duo T5670 @ 1.80GHz CPU and 4GB of RAM. Most benchmarks were run with
up to date 64bit Gentoo system. The results of internal hard drive on which the
Gentoo system resides were measured with System Rescue CD in order to make
sure nothing is using it.

3.3.1 Device comparison

There are results of a few benchmarks run with different devices in this subsection.
The expected values were measured. The results illustrate how HDDTest can be
used to compare device performance.

Figure 3.2: Comparison of TOSHIBA MK1652GSX (red) with KingMax 8G USB
flash (blue) in Seek. Flash disc is clear winner is Seek benchmark.

26

Figure 3.3: Comparison of TOSHIBA MK1652GSX (red) with KingMax 8G USB
flash (blue) in Continuous read. The continuous read speed performance of flash
drive is limited by USB 2.0 bus speed.

Figure 3.4: Comparison of TOSHIBA MK1652GSX (red) with KingMax 8G USB
flash (blue) in Random placed block read. Flash performance with different block
sizes is interesting.

27

Figure 3.5: Comparison of TOSHIBA MK1652GSX (red) with Maxtor 6 Y080P0
(blue) in Seek. It shows how rotation speed of platters impacts seek performance.
The Toshiba is 5400 RPM and the Maxtor is 7200 RPM.

Figure 3.6: Comparison of KingMax 8G USB flash (blue) and 8GB TakeMS
microSD (red) in Seek

28

Figure 3.7: Comparison of KingMax 8G USB flash (blue) and 8GB TakeMS
microSD (red) in continuous read

29

3.3.2 Reproducibility of results

These figures show how similar results measured by two passes of the same bench-
mark are.

Figure 3.8: Two passes of continuous read with the Toshiba MK1652GSX. Most
of the peaks on graph are the same.

Figure 3.9: Two passes of seek with the Toshiba MK1652GSX. The dots are
almost the same for both passes.

30

3.3.3 Interesting results

Two interesting things were found in the results. Even when discovering un-
common hardware behaviour is not the goal of this thesis, results showing this
behaviour were included. The description of the results is based on the bench-
mark results and basic knowledge of hardware. Most probably the things are
much more complicated than described here. The deep insight is beyond the
scope of this thesis.

The first interesting result was measured with TakeMS 8GB microSD card.
This media was used during development of the application for testing, so it was
benchmarked many times. Some places on the card are every time slower than
others. There is no pattern in distribution of such places. There are more possible
reasons for this behaviour. Maybe some blocks takes longer time to be read, or
more probably some blocks are bad and requests to them are mapped to spare
blocks. The mapping then causes degraded performance.

Figure 3.10: TakeMS microSD two passes - Continuous read. There are some
parts of the graph where transfer speed was a bit lower. Interesting thing is that
the parts are the same on both passes of benchmark. This means it is not a
random phenomenon. Most probably some of internal flash blocks are bit slower
than others.

The second interesting feature is demonstrated on KingMax 8GB USB flash
drive, even when it was present on other two flash based devices. The ”Random”
benchmark reads blocks of different sizes from random positions on device. Classic
rotating platters hard disc performs the better the bigger blocks are. It has to
perform time consuming seek to next block position every time new block is
being read. This causes almost linear dependence of transfer speed on block size,
when suboptimal block size is used. When this benchmark is run on flash based
device the situation is much different as seek times are much more smaller. Even
when performance of flash device in this benchmark is much better it also shows
degraded performance when blocks are small. The interesting thing is that reads
are getting slower with blocks from 1MB to 128KB, then restores to maximum
with 64KB blocks, and then getting slower again. This means that reading one

31

block of size 128KB is actually much slower than reading two 64KB blocks from
different positions.

This seems to be related to internal flash block sizes. The blocks are read
from random positions during the test. They are not aligned at all. When the
benchmark aligns block position at their size the results is different. The block
size at which the performance reverts back to maximum is not 64KB but 128KB
and the whole effect is not as huge as it used to be.

This supports the idea that differences in performance are caused by possible
relative positions between internal flash blocks and the benchmark blocks. If the
internal block size is 128KB then this happens: Blocks larger than 128KB crosses
internal blocks boundaries once or more times. 128KB blocks crosses it once with
exception of those aligned at 128KB(this happens rarely). 64KB blocks will hit
boundary in 50% of reads. Smaller blocks have even lower chance of hitting the
boundary. When a boundary is hit extra internal block needs to be read.

When benchmark reads a block, all internal blocks needed have to be read.
This means there is a smaller average overhead for really big blocks. Almost
100% chance of 100% overhead for 128KB blocks. And the bigger overhead the
smaller than 128KB the blocks are.

Figure 3.11: KingMax 8GB USB flash random block read shows interesting re-
sults. The performence do not follows the expectation that smaller blocks causes
overhead thus degrade speed. The block benchmark shows equal performance on
all block sizes when blocks are read continuously. This benchmark which reads
blocks from random locations seems to be slower on smaller block sizes as expect-
ed. But it seems to revert full speed on 64KB block size. This beahvoiur is the
same as with another USB flash and TakeMS micrSD card.

32

Conclusion

This thesis focused on three main targets. The first was implementing user friend-
ly hard drive benchmarking software called HDDTest. The second was providing
documentation in order to make the software easier to use by inexperienced users.
The third one was measuring some results with the software and describing what
is behind them in order to prove the software is usable. Even if documentation is
important and writing good documentation is a challenge the software itself and
measured results seem to be more interesting.

For more information on this thesis you can contact the author of this thesis
vlada.matena@gmail.com.

Software

After a long development final versions of the HDDTest seem to be stable. Even
when not intensively tested on different Linux distributions and hardware the
benchmarks look to be safe to run. During early development just one incident
happened when a partition was overwritten due to bug in HDDTest code. The
problem was found and fixed, and measures were taken to make sure this will not
happen again.

The most interesting features of the application are its simplicity and interac-
tivity. These features are making HDDTest to be a good tool for an average user
to compare drive performance or check whether the drive is working optimally.
The lack of such a tool in the Linux environment was actually motivation for this
thesis. The live view of running benchmark should make benchmarking process
more interesting to user and simple graphs should explain drive performance in
a simple way.

Results

The results, even when measured with limited choice of hardware, demonstrate
intended usage of the software. Some interesting characteristics of tested devices
were found. In order to clarify the results on overview of hardware and software
layers dealing with I/O was included.

Possible extensions

There are several places where the HDDTest application can be extended or
improved. Among others these improvements seem to be important.

Using udisks to handle device enumeration and identification would give the
user better list of available devices. Moreover, identification of non ATA compli-
ant devices would be supported.

Also more work could be done on device access code in general. Some more
testing needs to be done in order to use best device access code available.

The matter that was not solved in this thesis is the way how to provide this
application to public. The current deployment method expects HDDTest to be

33

mailto:vlada.matena@gmail.com

built on the target system. This method is not acceptable for intended users of
this software. In order to provide application to endusers licensing problems need
to be resolved and packages for commonly used Linux distributions need to be
made.

34

Bibliography

[1] OCZ Vertex Plus Series SATA II 2.5” SSD

http://www.ocztechnology.com/ocz-vertex-plus-series-sata-ii-2-5-ssd.html

[2] The Linux kernel documentation - Virtual file system

http://www.kernel.org/doc/Documentation/filesystems/vfs.txt

[3] The Linux kernel documentation - Block device

http://www.kernel.org/doc/Documentation/block

[4] Qt documentation - QtGraphicsView

http://doc.qt.nokia.com/latest/qgraphicsview.html

[5] HDTach

http://www.simplisoftware.com/Public/index.php?request=HdTach

[6] HDTune

http://www.hdtune.com/

35

http://www.ocztechnology.com/ocz-vertex-plus-series-sata-ii-2-5-ssd.html
http://www.kernel.org/doc/Documentation/filesystems/vfs.txt
http://www.kernel.org/doc/Documentation/block
http://doc.qt.nokia.com/latest/qgraphicsview.html
http://www.simplisoftware.com/Public/index.php?request=HdTach
http://www.hdtune.com/

List of Figures

2.1 Application graphical interface . 12
2.2 Device selection in detail . 12
2.3 Seeker benchmark controls . 13
2.4 Example of failed benchmark . 15
2.5 RAM device random blocks benchmark 17

3.1 TOSHIBA MK1652GSX Write cache impact 24
3.2 Toshiba MK1652GSX and KingMax 8G USB flash in Seek 26
3.3 Toshiba MK1652GSX and KingMax 8G USB flash in Continuous 27
3.4 Toshiba MK1652GSX and KingMax 8G USB flash in Random . . 27
3.5 Toshiba MK1652GSX andMaxtor 6 Y080P0 in Seek 28
3.6 KingMax 8G USB flash and 8GB TakeMS microSD in Seek 28
3.7 KingMax 8G USB flash and 8GB TakeMS microSD in Cont . . . 29
3.8 Two passes with the Toshiba MK1652GSX - Cont 30
3.9 Two passes with the Toshiba MK1652GSX - Seek 30
3.10 TakeMS microSD slower blocks 31
3.11 KingMax 8GB USB flash - Random 32

36

Glossary

combobox Is a GUI element. It allows user to enter data to the application.
The data can be chosen from dropdown selection or entered directly into
editable field.. 8, 9, 11–14, 16

dd File copy utility. http://www.gnu.org/software/coreutils/. 16

GTK Cross platform widget toolkit for C programming language. 9

hdparm Commandline interface to kernel IDE and SATA APIs.
http://sourceforge.net/projects/hdparm. 23, 24

losetup A tool for controlling loop devices in Linux system. It is part of util-
linux package. ftp://ftp.kernel.org/pub/linux/utils/util-linux/.
16

QGraphicsView Is a GUI component provided by Qt which allows arbitrary
graphics objects to be rendered. [4]. 3, 19

Qt Cross platform application and user interface framework targeting on C++
programming language. 2–4, 9, 11, 18, 19, 37

ReiserFS General purpose journaled filesystem. 25

System Rescue CD Live Linux distribution http://www.sysresccd.org/. 26

udisks Storage daemon with support for PolycyKit and D-Bus. 21, 33

XFS High performance journaling filesystem. 25

37

http://www.gnu.org/software/coreutils/
http://sourceforge.net/projects/hdparm
ftp://ftp.kernel.org/pub/linux/utils/util-linux/
http://www.sysresccd.org/

Acronyms

ATA Advanced Technology Attachment. 21, 24

btrfs B-tree file system. 25

CF Compact flash. 24

CPU Central processing unit. 10, 26

exFAT Extended File Allocation Table. 21

ext2 Second extended filesystem. 25

ext3 Third extended filesystem. 25

ext4 Fourth extended filesystem. 25

FUSE Filesystem in userspace. 21

GCC GNU Compiler Collection. 18

GUI Graphical user interface. 2, 4, 5, 9, 10, 18–20, 37

HDD Hard disk drive. 4, 7

IDE Integrated development environment. 18

KDE K Desktop Environment. 9

NTFS New Technology File System. 9, 15, 21

RAM Random access memory. 25, 26

RPM Revolutions per minute. 28

S.M.A.R.T Self-Monitoring, Analysis and Reporting Technology. 10

SD Secure Digital. 3

SSD Solid state drive. 7, 24

USB Universal Serial Bus. 3, 23, 24, 27, 32

XML Extensible Markup Language. 3, 13

38

Appendices

The CD attached to this thesis contains source code of software called HDDTest
developed as part of this thesis, documentation generated from source code and
electronic version of this thesis.

The content of the CD is following:

hddtest - HDDTest source code with GIT repository included

documentation - Doxygen generated documentation

thesis.pdf - PDF version of this thesis

39

	Introduction
	Problem analysis
	Project specification
	Detailed problem definition
	Benchmarking
	Factors impacting results

	Comparison with existing implementations

	Documentation
	User documentation
	Starting application
	User interface
	Basic usage
	Limitations
	Advanced usage

	Programmer documentation
	Building application
	Basic ideas and solutions
	Device access, cache disabling
	Known problems in implementation

	Results
	Media caching layers
	Linux I/O layers
	Virtual filesystem
	Real filesystem
	Page cache
	I/O Scheduler and drivers

	Description of results measured
	Device comparison
	Reproducibility of results
	Interesting results

	Conclusion
	Bibliography
	List of Figures
	Glossary
	Acronyms
	Appendices

