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Introduction

Recent advances have brought out the importance of identifying clusters or com-
munities in networks in various branches of science such as sociology (groups
of friends in social or colleagues in collaborative networks), medicine (patients
with similar disease in diagnostic systems) or biology (metabolic networks, gene
maps). This topic is very popular in research but can also bring economical ben-
e�ts to technological domains (tra�c in the Internet, power grids) and business
by the opportunity of improving customer targeting strategies or minimizing
distribution expenses.

The demand for improvements motivate applied mathematicians to develop
better algorithms for community detection. There are di�erent approaches known
to the problem [4][5][6]. This problem in a generalised form is the topic of cluster
analysis [1][3].

The goal of this thesis is to explore some algorithms from both domains. Also
create an application which will implement those algorithms and which will let
us to experiment with them.

The �rst chapter contains de�nitions, the second contains used measure func-
tions and metrics. The compared algorithms are described in the third chapter.
The implementation aspects of this work are presented in the fourth chapter.
The next chapter is a user's manual for the Clusterer application. The algo-
rithms are compared in the seventh chapter. The last chapter is the conclusion
and suggestions for further work.
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Chapter 1

Preliminaries

In this chapter we de�ne necessary conceptions such as graph, community, cluster
arrangement and cluster analysis.

1.1 Graph

"A graph is an abstract representation of a set of objects where some pairs of
objects are connected by links. The interconnected objects are represented by
mathematical abstractions called vertices, and the links that connect some pairs
of vertices are called edges."[18]

Let G = (V;E) be a graph, where the set of vertices V = fv1; v2; : : : ; vng
and the set of edges E � ffa; bgja; b 2 V; a 6= bg. By dist(u; v) we denote the
length of the shortest path containing vertices u and v. We de�ne dist(u; v)
to be in�nity if no such path exists. G is associated with its distance matrix
D : Dij := dist(i; j) and its adjacency matrix A : Aij = 1 () Dij = 1,

Figure 1.1: an example of a graph
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otherwise Aij = 0. We denote the class of all graphs by G. Figure 1.1 shows an
example of a graph.

1.2 Community

A Cluster, usually denoted by C, is a subset of vertices. We denote the class
of all clusters of a graph by C. The size of a cluster C is denoted by jCj. A
Community is a cluster satisfying the condition of community:

"...the network divides naturally into groups of nodes with dense connections
internally and sparser connections between groups."[17]

Note that there is no single precise de�nition of community. More precise
de�nitions are in section 3.5.

An example of a graph with community structure is shown in 1.2.

Figure 1.2: An example of a graph with a community structure [17]

1.3 Cluster Arrangement

A cluster arrangement K is a partition of the vertices of a graph into clusters
C1; C2; : : : Ck:

K = fC1; C2; : : : ; Ckg

where k is the size of the cluster arrangement. We denote the class of all cluster
arrangements of a graph by K.
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1.4 Cluster Analysis

Classical cluster analysis is a tool for disjunctive division of a set of vectors from
metric space into classes (clusters). For the purposes of this thesis, the domain
had to be changed to the space of graphs and the range to the space of cluster
arrangements of graphs.
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Chapter 2

Metrics and Energy Functions

To evaluate the quality of a cluster arrangement, two energy functions and one
metric are used. Recall that distances between two vertices u and v are available
by Duv, giving the length of the edge e = fu; vg.

2.1 Cluster Energy Function

Energy function, denoted by E, is a function C ! R
+. These functions are used

for expressing the dispersion (deviation, distance from each other) of vertices in
the cluster. Some of the methods used for calculating cluster energy of C are:

� sum of all distances between vertices of C.

E(C) =
X
u;v2C

Duv

� sum of all distances squared

E(C) =
X
u;v2C

D2
uv

� average distance = sum of all distances over size of the cluster

E(C) =
1

jCj

X
u;v2C

Duv
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� average distance squared = sum of all distances squared over size of
the cluster

E(C) =
1

jCj

X
u;v2C

D2
uv

All these energy functions give us the information how dispersed the vertices
are. For a given number of vertices, members of a lower energy cluster are better
concentrated and such cluster is usually a better result of the cluster analysis.

2.2 Cluster-Cluster Distance Metric

Cluster-Cluster distance metric (C-C distance), denoted by M , is a function
C � C ! R

+. It de�nes the distance between two clusters. To be considered a
metric, the distance function has to meet the metric axioms:

� axiom of non-negativity: M(C1; C2) >= 0

� axiom of identity: M(C1; C2) = 0 () C1 = C2

� axiom of symmetry: M(C1; C2) =M(C2; C1)

� triangle inequality: M(C1; C3) <=M(C1; C2) +M(C2; C3)

Here are some commonly used C-C distances:

� Single linkage[11], also known as the nearest neighbour method. Two
clusters are as far away as the nearest pair of vertices, each being from a
di�erent cluster.

M(C1; C2) = min
i2C1;j2C2

fDijg

� Complete linkage[12], also known as the furthest neighbour method.
Two clusters are as far away as is the furthest pair of vertices, each being
from a di�erent cluster.

M(C1; C2) = max
i2C1;j2C2

fDijg
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� Average linkage[1]. The distance of two clusters is the average distance
of a pair of vertices, each from the di�erent cluster. (The used average can
be either arithmetic or geometric.)

M(C1; C2) =

P
i2C1;j2C2

Dij

jC1jjC2j

� Centroid (Representative, Median) linkage. Given a representative
object for a cluster (centre of gravity, median, other), the distance of two
clusters can be expressed as the distance of their representatives, denoted
by repr.

M(C1; C2) = Drepr(C1);repr(C2)

Originally[9], this method used gravity centres. However, without an em-
bedding in a space to calculate them, the representative has to be chosen al-
ternatively. In this application, the vertex with the lowest average distance
to all other vertices in the cluster is selected, considered the median [10].

� Average connection The distance between two clusters it the fraction of
the number of edges that connect them and the maximal possible number
of interconnecting edges (each pair of vertices from distinct clusters)

M(C1; C2) =
1

jC1jjC2j

X
i2C1;j2C2

Aij

This metric uses the adjacency matrix instead of the distance matrix.

� Energy addition The distance between two clusters is the di�erence be-
tween the energy of the union C3 = C1 [C2 and the sum of energies of the
compared clusters.

M(C1; C2) = E(C3)� E(C1)� E(C2)

This metric uses a selected energy function.

There might be an unweighted graph on input. The axioms are the reason why
it may be necessary to correct the graph to get sensual results. The correcting
process sets the length of each edge to the length of the shortest path between
the end vertices
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2.3 Cluster Arrangement Ranking

Cluster arrangement ranking functions, denoted by rank(K), may depend on the
cluster energy function and the distance metric chosen. Here are some commonly
used ranking functions:

� Average energy times average distance

rank(K) =
1

jKj3

X
C2K

E(C)
X

C1;C22K

M(C1; C2)

� Average energy squared times average distance

rank(K) =
1

jKj3
(
X
C2K

E(C))2
X

C1;C22K

M(C1; C2)

� Sum of energies over sum of distances

rank(K) =

P
C2K E(C)P

C1;C22K
M(C1; C2)

� Sum of energies over number of clusters

rank(K) =

P
C2K E(C)

jKj

� Modularity[7] is the di�erence between the number of edges within clus-
ters and the expected number of such edges.

rank(K) =
1

2m

X
C2K

X
i;j2C

�
Aij �

deg(i)deg(j)

2m

�

where m = jEj is the number of edges and deg(i) is the degree of a vertex
i. Unlike other rank methods, it uses the adjacency matrix A.
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Chapter 3

Algorithms

In this chapter, we review algorithms implemented in our application. Algorithms
3.1, 3.2, 3.3 and 3.4 are from classical cluster analysis. Algorithms 3.5 and 3.6
are speci�cally created for the problem of identifying communities in networks.

Algorithms from classical cluster analysis had to be modi�ed to work with
graphs. In description of each algorithm, the speci�c modi�cations are described.
However, they still use distance matrix which contains the distances between
each pair of vertices. An unweighted graph with only adjacency matrix can be
completed and distances between its vertices can be corrected to the length of
the shortest path between certain pair of vertices.

3.1 AGLO - Agglomerative Algorithm

This algorithm was proposed in [15]. It creates a hierarchic cluster arrangement
system based on proximity of clusters. In each step, the algorithm merges the
two nearest clusters, C1; C2 into one, C3 = C1 [ C1, making the new cluster
arrangement smaller by one cluster. Ends with k = desired number of clusters.

Kk+1 ! Kk = (Ki n fC1; C2g) [ C3

Pseudocode:

K := set of clusters, containing a single vertex each
while jKj > k do
c1; c2  the closest clusters
Merge the c1; c2 into c3.
delete c1; c2 from K

14



add c3 to K
end while
return K

� Straight idea, simple implementation.

� Stable, resistant to extreme instances.

This algorithm does not need to be signi�cantly modi�ed for working with
graphs. It does not even require the energy function because it only merges
the nearest clusters regardless of their size (unless the implementation of C-C
distance needs it).

3.2 DIVI - Divisive Algorithm, MacNaughton-

Smith

This hierarchic divisive clustering algorithm was proposed in [8]. Like the ag-
glomerative algorithm, it creates a hierarchic system of cluster arrangements,
but in the reversed order. In each iteration, it tears the cluster with the high-
est energy (but with more than one vertex) into two. Ends when the required
number of clusters is met (or all clusters have only one vertex). Pseudocode:

K := set with one cluster containing all n vertices
while jKj < k do
U  the biggest cluster
if jU j > 1 then
W  the furthest vertex
select u 2 U with the highest q=(distance from the rest of U) - (distance
from W )
while q[u] > 0 do
move u from U to W
u vertex from U with highest q

end while
end if

end while
return K

15



This algorithm starts with one cluster containing all n vertices and ends with
k � n clusters. In each step, one cluster is divided into two, therefore there are
n� k iterations.

� Stable.

	 Sensitive to distant elements which a�ect the initial phase of tearing.

This algorithm uses both the energy metric (for selection of the most con-
venient cluster to divide) and the C-C distance (for decision whether to keep
moving vertices to the new cluster or stop).

3.3 K-means Algorithm - Forgy (Jancey)

This non-hierarchic optimising algorithm, proposed in [13], does not build up
or divide down through a giant structure. It uses a given invariable number of
clusters to converge to a solid state. To operate, clusters need to be given repre-
sentatives. If elements were presented as vectors, centroids could be calculated
as a gravity centres. Since there is no metric space to work in, a typical element
for a representative is selected. It shall be the vertex with the lowest average dis-
tance to all other vertices in its cluster, the median. The algorithm pseudocode
for k = a given number of clusters:

K := set of k clusters.
for i := 1! k do
add a random (but distinct from previous) vertex to the i-th cluster.
set the median of the cluster to that vertex.

end for
repeat
for i :=1 ! n do
C1  the cluster containing i.
C2  the cluster whose median is the closest to i.
if C1 6= C2 then
move i from C1 to C2.

end if
end for
for C = 1! k do
recalculate the median of C-th cluster.

end for
until no vertex is moved in the loop

16



return K

� Simple idea and easy implementation.

� Vertices may move between clusters.

� Converges typically in just few steps.

	 Dependent on mean representation.

	 May not give the global extreme, only local.

	 Strongly dependent on random initialisation.

Note on the Jancey method[14]:
Jancey method[1, p.141] is similar to the Forgy, the only di�erence is the cor-
rection of the centroid. Where Forgy always uses the current gravity centre for
a representative, Jancey calculates it as the point reection of the former rep-
resentative by the current gravity centre. These operations with vectors are not
available in the graph version. Therefore, both methods meld during graph con-
version.

3.4 Wishart Algorithm (MacQueen, McRae)

A non-hierarchic clustering algorithm based on K-Means, proposed in [16]. The
main di�erence from K-Means is that the modi�ed clusters recalculate their
representatives in each step of assigning vertices to clusters, so there is a strong
result dependence on the order of vertices inside clusters (or the structure iter-
ated through).

Pseudocode:

K := set of k clusters.
for i := 1! k do
add a random (but distinct from previous) vertex to the i-th cluster.
set the median of the cluster to that vertex.

end for
repeat
for i := 0! n do
C1  the cluster containing i.

17



C2  the cluster whose median is the closest to i.
if C1 6= C2 then
move i from C1 to C2.
recalculate the median of C2.

end if
end for

until no vertex is moved in the loop
return K

� Converges in few steps.

	 Strongly dependent on initialisation and order in vertex container.

3.5 Girvan-Newman Betweenness Algorithm

This algorithm, proposed in [4], identi�es communities in complex networks using
the edge betweenness and a de�nition of community. Betweenness of an edge e,
denoted by btwns(e), is the number of shortest paths between all pairs of vertices
that include e.

btwns(e) = jfsij : e 2 sij; i; j 2 V gj

where sij � E is the shortest path between vertices i; j.

Split degree: Let C be a cluster and let v 2 C. The degree deg(v) =
P

u2V Auv

can be split into two contributions: deg(v) = degIN(v) + degOUT (v), where
degIN(v) is the number of adjacent vertices in C, degOUT (v) is the number of
connections to the rest of the graph.

Community can be used with two de�nitions:

Strong Sense Cluster C is a strong community if

degIN(v) > degOUT (v);8v 2 C:

In a strong community, each vertex has more connections within the com-
munity than with the rest of the graph.

Weak Sense Cluster C is a weak community ifX
8v2C

degIN(v) >
X
8v2C

degOUT (v):
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In a weak community, the sum of degrees within the community is larger
than the sum of degrees with the rest of the graph.

The algorithm removes the edge with the highest betweenness from the graph
in each step. When a component breaks down into two, the partition is then an-
alyzed and the valid communities in the selected sense are noted. The algorithm
ends when a required number of communities is reached or no edges remain.

Unlike other algorithms described in this thesis, this algorithm does not di-
vide vertices into communities. It �nds communities and separates single vertices
that are not in a communtity. Results contain clusters that show community
structure and clusters with single vertices. This fact complicates cluster arrange-
ment ranking with otherwise useful functions.

Pseudocode:

while jEj > 0 ^ k > #of communities in G do
calculate betweenness for each edge
remove edge with the highest betweenness from E

if the number of components increased then
K  component arrangement of G
check if the components are communities

end if
end while
return K

3.6 Pons-Latapy Algorithm Using RandomWalks

The progress of this algorithm, proposed in [6], is similar to AGLO from 3.1, but
before agglomerating, it computes the transition matrix and during its work the
algorithm uses its own instance of cluster-cluster distance metric considering the
probability of being visited by a random walk.

For this algorithm, the degree d(i) =
P

j Aij (using a di�erent notation for
on purpose) of the vertex i is the number of its neighbors (including itself). Let
us consider a discrete random walk process (or di�usion process) on the graph
G. At each time step, a walker is on a vertex and moves to a vertex chosen
randomly and uniformly among its neighbors (including itself, thus staying).
The sequence of visited vertices is a Markov chain, the states of which are the
vertices of the graph. At each step, the transition probability from vertex i to
vertex j is Pij =

Aij

d(i)
. This de�nes the transition matrix P of the random walk.
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The process is driven by the powers of P : the probability of going from i to j

through a random walk of length t is (P t)ij. In the following, this probability
will be denoted by P t

ij [6]
The cluster-cluster distance metric is formulated as follows:

M(C1; C2) =

vuutX
u2V

1
jC1j

P
i2C1

P t
iu �

1
jC2j

P
i2C2

P t
iu

d(u)

Pseudocode:

P := transition matrix for G, powered to t.
K := set of n clusters, containing a single vertex each
while jKj > k do
C1; C2  the closest clusters chosen by the Random Walk cluster-cluster
distance
C3  C1 [ C2

delete C1; C2 from K

add C3 to K
end while
return K

Authors of [6] suggest choosing t with O(log(n)). Too high values of t tend to
only refer to d(j) for P t

ij, too small values of t do not carry enough information
about the network topology.
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Chapter 4

Implementation

The application is programmed in Java 6 [20], Eclipse IDE [19] was used during
development. The application uses Swing GUI libraries. Java was chosen for its
compatibility with multiple platforms.

4.1 Architecture

The application runs the main class, Clusterer, whose method main(String[])

creates the GUI and allows the user to move through the work ow 5.2. The sys-
tem of classes is shown in scheme 4.1. For easier access, class Clusterer is never
instantiated and has static variables for maintaining data (graph and cluster
arrangement), implementations of analysis methods (algorithms, functions and
metrics) and all present types of output (graphics, additional graphics, log and
alternative results).

4.2 Data Implementation

Our basic data structure is a graph. Graphs are implemented as instances of
Graph containing a data structure, which represents BOTH the distance matrix
D and the adjacency matrix A. This data structure is stored in an instance
of DistanceMatrix which actually contains only the lower triangle half of the
matrix because the entire square matrix would contain duplicate information
due to symmetry of distance relation. Data in DistanceMatrix are stored in
triangle array float[][]. Values Aij and Dij are accessed by functions boolean
isEdgeAdjacent(int i,int j) and float getDist(int i,int j) in Graph,

21



Figure 4.1: The scheme of classes

where i; j are indices of vertices.
Graphs may also contain a set of points in space, represented by an instance

of DataSet. The data structure of this class is Vector<Point>, where Point is
the representation of a point in space. The DataSet can not be processed on its
own, therefore bringing it into the application will create a Graph, which is later
processed.

4.3 Interfaces

Four interfaces are used in this application: IAlgorithm for implementation of al-
gorithms, ICARank for implementations of cluster arrangement ranking functions,
ICCDist for cluster-cluster distance metrics and IEnergy for energy functions.
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These interfaces allow the application to work independently on the selected
implementations.

Classes that implement each interface are:

� IAlgorithm Classes that implement this interface are implementations
of clustering or community detection algorithms. This interface de�nes
two methods: ClusterArrangement getResult(Graph), which is meant
to run the entire algorithm and return the result with the highest rank;
and ClusterArrangement getResult(Graph, int), which returns a re-
sult with the speci�ed number of clusters.

Class GenericAlgorithm is actually the only implementor of IAlgorithm.
It was created to reduce duplicate code but with further development.
This class is kept in the project for the case of necessary code inser-
tions. All algorithms now extend this class and override absctract methods
ClusterArrangement calculateResult(Graph) and ClusterArrangement
calculateResult(Graph, int), which actually perform the algorithm.

Names of all classes extending GenericAlgorithm and therefore imple-
menting IAlgorithm begin with "Alg *".

� ICARank This interface is implemented by cluster arrangement ranking
functions. It de�nes only one method, float rank(ClusterArrangement),
which returns the rank of the given ClustererArrangement. This method
is meant and allowed to statically access Clusterer.ene and Clusterer.ccd,
which are variables for selected energy function and cluster-cluster dis-
tance.

Names of all classes implementing this interface begin with "CARank *".

� ICCDist This interface is implemented by cluster-cluster distance metrics.
It de�nes only one method, float dist(Cluster, Cluster), which re-
turns the cluster-cluster distance of entered clusters. This method may
statically access Clusterer.ene.

Names of all classes implementing this interface begin with "CCDist *".

� IEnergy This interface is implemented by cluster energy functions. It de-
�nes only one method, float calc(Cluster), which returns the energy
of the entered cluster.

Names of all classes implementing this interface begin with "Energy *".
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Chapter 5

User's manual

5.1 System requirements and installation

System requirements:

� OS with GUI

� Java 1.6

Installation and Running:

� Using Subversion + Ant

{ checkout with command
svn co https://clusterer.svn.sourceforge.net/svnroot/clusterer

clusterer

{ build and run with Ant by command
ant -f "clusterer/build.xml" Clusterer

� Using a JAR archive

{ download the JAR from
http://sourceforge.net/projects/clusterer/files/

{ Either run it as an application

{ Or Java it with command
java -cp "Clusterer.jar" com.sf.clusterer.Clusterer

User can download the testing data
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� as an archive from sourceforge
http://sourceforge.net/projects/clusterer/files/

� individually from reference [21]
http://www.cc.gatech.edu/dimacs10/archive/clustering.shtml

5.2 Work Flow

This is the idea of how work with Clusterer should look like:

1. Obtain Data

� Generate 5.4

� Load from a �le 5.5

2. Perturb data? 5.6.1

3. Correct data 5.6.2

4. Select an Algorithm, Cluster Arrangement ranking function, Cluster-Clsuter
distance metric and an Energy function.

5. Run an analysis 5.7

6. Browse results 5.8.4

5.3 GUI

The application has a simple and user-friendly GUI. All tasks can be performed
by clearly named buttons, all selections are made in combo boxes and the main
actions are also available from the menu. All items in the window have a tooltip
comment. See a screensot in �gure 5.1.

5.4 Data Generating

It is possible to generate input data with some random properties. However,
these random data are not suitable for community detection algorithms because
the randomness is applied to edge distances, not edge existence. However, these
data
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Figure 5.1: Overview of the GUI main window

Using two text �elds, you can select the number of nodes and clusters. All the
clusters will be the same size (total amount of data is moduled by the number
of clusters).

It is possible to either generate a graph (see 5.4.1) or a DataSet (see 5.4.2).

5.4.1 Generating a Graph

Each cluster is generated as a separate graph and is connected to the result
Graph by a set of Edges, again randomly generated, but with doubled maximal
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Figure 5.2: The data generating section of GUI

length.
Since this weighted graph is very probably not meeting the metric require-

ment, especially the triangle inequality, it has to be corrected before an analysis
can be performed.

5.4.2 Generating a DataSet

The points are put into a plain (2D). This dimension was chosen for its ease of
visualisation and imagination.

Points within a cluster randomly �ll a square in plain. Each cluster has a
randomly generated o�set. Once the DataSet is generated, a graph is created,
using all the points from DataSet as vertices and adding the complete set of
edges, whose length is set to Euclid distance of the endpoints of each edge.

5.5 Data Loading

There are various ways to represent data, which is the reason for multiple sup-
ported �le formats. The application is able to load a data �le in these formats:

own DataSet format: *.ds
�rst line: <dimension of data>
remaining lines: f<data coordinates>*dimensiong

PAJEK Graph format: *.net
Vertices section: \*Vertices" <#vertices>
vertex info: <index> <name> "ic" <fg color> "bc" <bg color>
Edges section: \*Edges"
edges: <index1> <index2> <weight> "w" <width> "l" <label>
NOTE: gives weight instead of length. length := e�weight is applied here.
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Incidence list format: *.graph
�rst line: < #vertices> <#edges>
on line i+1, there are indices of vertices incident to i, separated by space.
NOTE: may (and usually does) contain duplicate edges.

DIMACS Graph format: *.gr, *.col
comments: "c" <comment until end of line>
directory line: "p edge" < #vertices> < #edges>
edge line: "e" <index1> <index2> [<length>]
NOTE: default choice. In the opinion of author of this thesis, this format
is the best.
NOTE: if length is not present, assumed to be =1.

DIMACS modi�ed format for Cluster Arrangement: *.ca
contains also a graph in DIMACS format.
directory line: "p ca" < #vertices> < #edges> < #clusters>
edge lines
cluster lines: "k" findices of vertices belonging to k-th clusterg

To load data from a �le, press the Load button or select the Open option from
the menu (Ctrl+O). See �gure 5.3

5.6 Adjusting the Data

Before any real work begins, adjusting the data may be necessary; see �gure 5.4.

5.6.1 Perturbation

If a Graph or a DataSet is acquired, it may come handy to be able to perturb
the data (move Points/change the Edge length a bit). For that, there is the
Perturb command button. With the perturb range, the maximal ratio the Edge
length may be increased or decreased is controlled. If a DataSet is present, the
coordinates of Points will be perturbed within the range value.
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Figure 5.3: The loading �le chooser triggered by clicking the Load button.

Figure 5.4: The data adjusting section of GUI.
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5.6.2 Edge Length Correction

If a Graph is generated from a DataSet, its edge lengths are correct. Generated
or Graph loaded from a �le might need be corrected. This procedure adds an
Edge, where it is missing and sets its distance to the length of the shortest path
found in the Graph.

5.7 Analysis

Select a combination of algorithm, ranking, distance and energy from the corre-
sponding combo boxes, put in the required number of clusters in the result and
press the Analyze button.

To prematurely terminate a running analysis, push the Break button (red if
any analysis is running).

After an analysis �nishes, the result and usually other cluster arrangements
are available to display. The selection can be made by clicking on an item in
Alternatives Frame refalternatives or in the Alternatives Combo Box, which can
be also browsed by arrows.

5.8 Visualisation

5.8.1 Graphics

There are two ways to visualise the data. If a DataSet is present, it can be
projected to each pair of axis within its dimensionality. Therefore, the result
visualisation is a scatter plot matrix [2]. For this option, select the value DATA
in the visualisation combo box. See �gure 5.5.

If the DataSet is not present, we can always apply the RING visualisation
as shown in �gure 5.6. The vertices are printed in a circle (\ring"; ellipse if the
frame is not a square), the edges are painted between them with their darkness
and width respective to their relative shortness. To hide some of the (long thus
least important) edges, use the visibility slider.

5.8.2 Log

To view text output from the running process, toggle the Log. Each log entry
contains a time stamp.
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Figure 5.5: Sample DataSet painted in a data mode

Figure 5.6: Sample graph painted in a ring
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Figure 5.7: An example of Info Frame showing a generated graph with two distant
clusters.

5.8.3 Info Frame

To show more information about the given Graph/ClusterArrangement, there
is the Info Frame. For a Graph, it demonstrates the Edge length distribution.
In the �rst diagram, there are (scaled) bars representing edge length sorted by
their length (in�nite edges are red and short). In the second diagram, there are
amounts of edges within a length range. For a cluster arrangement, the �rst
diagram shows the energies of clusters, the second shows the amounts of vertices
with speci�ed amounts of vertices. See an example in �gure 5.7

5.8.4 Alternatives Frame

When an analysis �nishes, there may be other interesting results to browse. To
view them in the order of appearance, toggle the Alternatives Frame. The avail-
able Cluster Arrangements are presented in a text form, with a bar representing
their relative ranking to the left. The result with optimal rank is painted in blue,
the currently selected result is painted in red. The set of alternative results is
cleared every time another analysis is run.
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Figure 5.8: Overview of fully shown GUI with a loaded graph and a complete
analysis.

5.9 Data and Results Storage

Graphs and Cluster Arrangements can be saved into a �le. Graphs are saved
in DIMACS format with the .gr extension. ClusterArrangements can be saved
using the extended DIMACS format into a .ca �le. Note that a ClusterArrange-
ment contains a Graph and so it does in the �le.

To save the data, press the Save button or select the Save item from the menu
(Ctrl+S). A saving dialog similar to loading (shown in �gure 5.3) will appear.
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Chapter 6

Algorithm Comparison

Algorithms were run on sample data, mostly downloaded from [21].

random walk sample - A sample graph used in [6]. 16 vertices, 28 edges.

karate - Zachary's Karate club. A network of friendships within 34 members
of a sports team. 78 edges.

dolphins - Network of frequent associations between 62 dolphins from Doubt-
ful Sound, New Zealand. 159 edges.

polbooks - A network of books about US politics, published around 2004 and
sold by Amazon.com. Edges represent 441 frequent copurchasing of 104 books.

football - American College football: network of games between 115 Division
IA colleges during regular season Fall 2000. 613 edges.

jazz - Jazz musicians network. List of 2742 edges of the network of 198 Jazz
musicians.

power - Power grid. Network representing the topology of the Western States
Power Grid of the US. 4941 vertices, 6594 edges.
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Table 6.1: First three algorithms.
karate polbooks

AGLO

DIVI

K-Means
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Table 6.2: Second three algorithms.
karate polbooks

Wishart

Girvan-Newman

Pons-Latapy
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Tables 6.1 and 6.1 show results with highest modularity of algorithms run
on graphs karate and polbooks. Note that it is hardly possible to objectively
evaluate the results when there is no exact de�nition and no single correct result.

On data karate three algorithms give similar results with four clusters. These
results seem natural and correct to the author of this thesis. Wishart algorithm
returned only two clusters but they also appear acceptable. Other results, chosen
by modulariy rank, do not seem to be useful.

On data polbooks, the results were more di�erent. Results algorithms with
previously good results seem to make sense in this case too. Since this graph is
larger than karate, it is hard to imagine the true structure and �nd the best
result.

Results of K-Means algorithm do not seem helpful and the algorithm seems
not to be suitable for community detection. Girvan-newman algorithm turned
out to be incompatible with modularity ranking function due to trash clusters.
On the other hand, more satisfying results were found while browsing alternatives
from this algorithm.

Results for other combinations of data, algorithms and other parameters are
not included because they would be too many. Fortunately, reader is given the
opportunity to try his own combination of settings.
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Chapter 7

Conclusion and Further Work

In the Clusterer application, six di�erent algorithms were implemented, all in
several versions. A parser for four �le formats of data, one for output. A mech-
anism for dual representation of graph, tools for generation, perturbation and
correction of data, a system of results evaluation, visualisation and browsing.

Implemented algorithms were run on several data of various types from dif-
ferent sources.

Further work on this project may include implementation of more algorithms
and ranking functions, a tool for comparison of two or more results with matching
percentage, a tool for generating unweighted graphs, a force based visualisation
and/or clustering algorithm, DataSet reconstruction for graphs to enable DATA
visualisation.
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Appendix A

CD Contents

� Electronic version of this text

� Eclipse Java project containing all the source codes and a build �le

� Runnable JAR �le with the application

� Testing data

� Generated Javadoc
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