
Charles University in PragueFaulty of Mathematis and PhysisBACHELOR THESIS

Ji°í Mar²ík
Fast and Trainable Tokenizerfor Natural LanguagesInstitute of Formal and Applied LinguistisSupervisor of the bahelor thesis: RNDr. Ond°ej Bojar, Ph.D.Study program: Computer SieneSpeialization: General Computer SienePrague 2011

Dediated to the work of Béla Tarr.

I delare that I arried out this bahelor thesis independently, and only with theited soures, literature and other professional soures.I understand that my work relates to the rights and obligations under the AtNo. 121/2000 Coll., the Copyright At, as amended, in partiular the fat thatthe Charles University in Prague has the right to onlude a liense agreementon the use of this work as a shool work pursuant to Setion 60 paragraph 1 ofthe Copyright At.In date signature

Název práe: Ryhlý a trénovatelný tokenizér pro p°irozené jazykyAutor: Ji°í Mar²íkKatedra: Ústav formální a aplikované lingvistikyVedouí bakalá°ské práe: RNDr. Ond°ej Bojar Ph.D.Abstrakt: V této prái p°edstavujeme systém pro dezambiguai hrani mezi to-keny a v¥tami. Charakteristikým znakem programu je jeho zna£ná kon�gurova-telnost a v²estrannost, tokenizér si dokáºe poradit nap°. i s nep°eru²ovaným £ín-ským textem. Tokenizér pouºívá klasi�kátory zaloºené na modeleh s maximálníentropií, a jedná se tudíº o systém strojového u£ení, kterému je nutné p°edloºitjiº tokenizovaná ukázková data k trénování. Program je dopln¥n nástrojem prohlá²ení úsp¥²nosti tokenizae, oº pomáhá zejména p°i ryhlém vývoji a lad¥nítokeniza£ního proesu. Systém byl vyvinut pouze za pomoi multiplatformníhknihoven a p°i vývoji byl kladen d·raz zejména na efektivitu a správnost. Ponezbytném p°ehledu jinýh tokenizér· a krátkém úvodu do teorie model· s ma-ximální entropií se v¥t²ina textu práe zabývá vlastní implementaí tokenizéru avyhodnoením jeho úsp¥²nosti.Klí£ová slova: tokenizae, segmentae, maximální entropie, p°edzpraování textu
Title: Fast and Trainable Tokenizer for Natural LanguagesAuthor: Ji°í Mar²íkDepartment: Institute of Formal and Applied LinguistisSupervisor: RNDr. Ond°ej Bojar Ph.D.Abstrat: In this thesis, we present a data-driven system for disambiguatingtoken and sentene boundaries. The implemented system is highly on�gurableand versatile to the point its tokenization abilities allow to segment unbrokenChinese text. The tokenizer relies on maximum entropy lassi�ers and requiresa sample of tokenized and segmented text as training data. The program isaompanied by a tool for reporting the performane of the tokenization whihhelps to rapidly develop and tune the tokenization proess. The system was builtwith multi-platform libraries only and with emphasis on speed and orretness.After a neessary survey of other tools for text tokenization and segmentation anda short introdution to maximum entropy modelling, a large part of the thesisfouses on the partiular implementation we developed and its evaluation.Keywords: tokenization, segmentation, maximum entropy, text preproessing

ContentsIntrodution 31 A Survey of Other Solutions 51.1 RE . 51.2 MxTerminator . 51.3 Riley . 61.4 Satz . 71.5 Punkt . 81.6 Chinese Word Segmentation . 92 Maximum Entropy Modelling 112.1 Maximum Entropy Models . 112.2 Available Implementations . 133 Implementation 153.1 Overview of the System . 153.1.1 TextCleaner . 153.1.2 RoughTokenizer . 153.1.3 FeatureExtrator . 163.1.4 Classi�er . 163.1.5 OutputFormatter . 173.1.6 Enoder . 173.2 Modes of Exeution . 173.2.1 Training . 173.2.2 Tokenization . 183.2.3 Evaluation . 193.2.4 Preparation . 193.3 Rough Tokenization . 203.3.1 Regular Expression Libraries 203.3.2 Lexial Analyzer Generators 223.3.3 The Solution . 223.3.4 Tehnial Implementation 243.4 Classi�ation . 243.5 Parallelism . 263.5.1 The Pipeline . 273.5.2 The Input/Output Threads 274 Evaluation 294.1 The Auray of the System . 294.1.1 Chinese Word Segmentation 294.1.2 Tokenization of Czeh and English 314.2 The Speed of the System . 344.2.1 Parallel Proessing . 344.2.2 Initialization Costs . 37Conlusion 391

A User Doumentation 40Bibliography 44

2

IntrodutionThe goal of this thesis was to provide a fast implementation of a system for dis-ambiguating token and sentene boundaries and to evaluate the implementationboth in terms of its auray and its speed.Token and sentene boundary disambiguation may seem trivial at �rst, and itusually is, but in some oasions it might turn out to be quite omplex. Considerthe following ases:(1) On Friday, the 22nd, at around 2 a.m. Dr. T. Adams �nished the prelimi-nary examination.(2) The �eld tests were to begin on Friday, the 22nd, at around 2 a.m.Dr. T. Adams �nished the preliminary examination the night before.(3) "314 159.26$, about half of the yearly budget, was spent on o�e rede-oration!", protested the disgruntled employee of Vanity, S.p.A.Even as I was typesetting these examples in LATEX, I had to expliitly marksome of the periods in the above examples as not being sentene boundaries, asLATEX likes to insert slightly larger spaes after sentene terminators (so alledFrenh spaing). The heuristi used by LATEX is very simple: if a word-�nalpotential sentene terminator (a period, a question mark or an exlamation mark)follows a apital letter, then it is most likely a part of an abbreviation (or aninitial) and so it does not mark the end of a sentene1 [4℄.Suh a simple system runs into problems in the examples given above, aswe an see that abbreviations do not neessarily end with apital letters andon top of that, a period may serve both as part of an abbreviation and as asentene terminator. Examples 1 and 2 also show us that the ontext neededto disambiguate the sentene boundary may be quite far from the boundary inquestion.While getting the size of a spae orretly down to the last millimeter isertainly a noble goal, there are also some important uses for a more reliablesegmenter and tokenizer. When text is being proessed and parsed by automatitools, a ommon �rst step is to divide the text into tokens and sentenes. Alot of the tools that then work with these tokens assume they are orret andtry to analyze them further. As a lot of these tools are getting more and moreaurate, it is important we step up the quality of the tokenization proess, sothat the system's quality is not determined by something as basi as tokenizationand segmentation of input.1A more intuitive approah might be to hek the ase of the following, not the preeding,word. 3

In the last 20 years, the problem started getting some reognition and severalsystems were demonstrated. This thesis does not aim to reate a new system fortokenization. This work is based on an already existing tokenizer implementedby Ond°ej Bojar during the onstrution of the UMC 0.1 Czeh-Russian-EnglishMultilingual Corpus [15, 10℄.A key feature of the original tokenizer is its strit segregation of language-dependent knowledge into on�gurable �les. The new implementation expandson this idea and assumes next to nothing about the language being proessedexept that the sentene and token boundaries are disambiguated by a limitedontext window desribed by binary prediates expressed as regular expressions.The tokenizer thus o�ers a great deal of ustomizability and a lot of e�ort hasbeen put into ensuring that the tokenizer will behave as expeted and that thebehaviour is easy to understand without diverging too muh from the original.Performane, being the motivation behind the urrent implementation, wasalso important. Both the original and the new tokenizer rely on a C++ toolkitwhih handles the mehanis of mahine learning [16℄. However, the originalimplementation, being written in Perl, had to aess the funtionality through aommand-line interfae passing data through �les. The new implementation willhave the bene�ts of using the C++ API diretly. Where the old implementationused regular expressions to partition the input and detet potential token andsentene boundaries, the new implementation uses a lexial analyzer generator[26℄ to generate fast C++ ode, ompile it and load it at runtime. The newimplementation also bene�ts from the multiple CPUs found on modern omputersand uses a high-level parallelism library [3℄ to perform the various time-onsumingtasks of tokenization in parallel.In Chapter 1, we will look at other systems whih tried to takle the prob-lem and ompare them to our tokenizer. In Chapter 2, a brief overview of themaximum entropy method of mahine learning will be given. Chapter 3 will fa-miliarize us with the implementation of the tokenizer. Finally, in Chapter 4, weevaluate the speed and auray of the tokenizer on several datasets.

4

1. A Survey of Other SolutionsIn this hapter we present an overview of existing systems designed to disam-biguate sentene and token boundaries. We examine systems based both onhand-written rules and systems using mahine learning methods suh as maxi-mum entropy models and deision trees. Next, we look at a system that uses partof speeh data to disambiguate sentene boundaries and another system whihuses olloation detetion tehniques. Finally we desribe a state-of-the-art Chi-nese word segmenter. For eah of these systems, we desribe how our tokenizeran be used to express the same ideas about sentene and token boundary dis-ambiguation.1.1 REThe system [13℄ referred to as RE in [14℄ is an example of a purely rule-basedsystem. It does not need any training data, but instead it relies on expliitlinguisti knowledge suh as lists of abbreviations and ustom regular expressions.The RE system in partiular works by sanning the input text for periods andthen inspeting the tokens surrounding it. If the surrounding tokens do not matha ombination of the user's regular expressions, the period is marked as a senteneboundary.Our tokenizer also allows the user to de�ne regular expressions against whihneighboring tokens will be heked (not only neighboring tokens, a token at anydistane an be examined, whih an be important as we saw in the introdu-tion). The ruial di�erene between the RE system and our tokenizer is that theoutomes of all these regular expression tests are not expliitly mapped to the dis-ambiguation of the potential boundary by the programmer or the user. Instead,our system relies on already tokenized data from whih it learns how to ombinethe outomes of these regular expression tests into a tokenization deision.1.2 MxTerminatorContrary to RE, MxTerminator [24℄ is a supervised mahine-learning system.This means that the tool has to be supplied with already tokenized data fromwhih the lassi�er infers the logi behind tokenization. The lassi�er in thisase is based on maximum entropy models, the same mathematial foundationon whih our system is built.The MxTerminator sans the text for a list of potential sentene terminators5

and presents the lassi�er with features of the neighboring tokens. The hard-oded features inlude the word ontaining the potential sentene terminator,the words preeding and following it, the presene of partiular haraters in theurrent word and whether the urrent word is a honori� or a orporate designator(e.g. Corp.). All of these are easily expressed using regular expressions and listsof tokens and so it should be quite easy to produe a system very similar toMxTerminator using a spei� on�guration.There is also a more general version of the MxTerminator whih does not relyon preompiled lists of honori�s and other abbreviations. In this version, theMxTerminator �rst sans the training data and searhes for words ontaining aperiod whih does not serve as a sentene terminator. The features passed to themaximum entropy lassi�er then onsist only of the trigram of words ontainingthe potential sentene terminator and values desribing whether the individualwords belong to the abbreviations indued from training data in the previousstep. With our tokenizer, the user is free to san the data ahead and store theindued abbreviations in a �le. The tokenizer an then be on�gured to use the�le as a de�nition for the indued abbreviation feature.1.3 RileyRiley [25℄ uses a method of lassi�ation di�erent from the MxTerminator. In-stead of using a maximum entropy lassi�er, he builds a regression tree. Thefollowing features are used to disambiguate the period (let a be the word on-taining the period in question and b the following word):
• Probability of a ourring at the end of a sentene
• Probability of b ourring at the beginning of a sentene
• Length of a
• Length of b
• Case of a
• Case of b
• Any puntuation after the period
• Abbreviation lass of aA training dataset the size of approximately 25 million words was used toestimate the probabilities of individual words ourring near sentene boundaries.6

Thanks to suh detailed information, the system was found to perform notablywell.The �rst two features used in the regression tree have a natural ounterpartin the maximum entropy model. When the text of a token is being passed to themaximum entropy lassi�er during training, it estimates a parameter for eah typeof token enountered and eah possible outome (no boundary, token boundary,sentene boundary). What this parameter does, basially, is that it desribes andretains in the model the probability of enountering a spei� type together witha spei� outome. The equivalent of a probability of a ertain type ourringnear the sentene boundary would therefore be the maximum entropy model'sparameter orresponding to the event of that type appearing together with thesentene boundary outome.As for the length features, the maximum entropy toolkit we employed uses amore general form of a maximum entropy feature whih allows for real featurevalues instead of only binary values (the only suh feature supported by ourtokenizer is the length of a token). The remaining parameters an be desribedby binary features de�ned as regular expressions supplied by the user.1.4 SatzThe Satz system [21℄ is another supervised mahine-learning system for senteneboundary disambiguation. It is very unique in that it does not rely on the su-per�ial harateristis of the shape of the surrounding tokens. Instead, it passesto the underlying lassi�er the probability distribution of parts of speeh for ev-ery token within the ontext of the potential sentene boundary. It is thereforeneessary to supply a lexion giving the part of speeh distribution. If a wordis not part of any lexion, a series of heuristis try to guess a safe probabilitydistribution given the word's su�x, ase, internal puntuation et... Thanks tothe generalization provided by the part of speeh ategories, the system requiredrelatively small amounts of training data to ahieve solid performane.In our system, the user is limited to de�ning binary features and so pass-ing the probability distributions to the lassi�er would be out of the question.However, the authors of the Satz system performed an experiment wherein theyreplaed the non-zero probabilities with ones (basially swithing from part ofspeeh probabilities to �ags indiating if a given part of speeh is possible). Theresults of this experiment showed that the resulting system was trained fasterand performed better than the original. Lukily our tokenizer allows the user toeasily de�ne binary features using lists of tokens, i.e. lexions. The only problemwould be the heuristis employed with out of voabulary words. While all of7

them an be easily expressed as regular expressions in our system, there is yet nomehanism to make the tokenizer treat a part of speeh found in a lexion anda part of speeh guessed by a regular expression heuristi as the same featurewhih inhibits generalization.1.5 PunktThe Punkt system [14℄ is an example of an unsupervised mahine-learning system.This means that Punkt does not need manually tokenized data for training, itlearns from raw untokenized text. The data Punkt atually uses for training isthe text to be tokenized and so besides the obvious advantage of not having tomanually annotate data, the Punkt system does not have to be afraid of di�erenttext domains and genres.The Punkt system proesses the input in multiple stages. In the �rst stage, ittries to determine whih period-terminated words are abbreviations. A likelihoodratio is assigned to every suh token type in the text desribing the strength ofthe olloational tie between the type and its terminating period. A olloationbetween a type and a following period is taken as evidene that the type is anabbreviation type. This olloational sore is further penalized by the lengthof the type and multiplied by the number of token-internal periods. Finally, atype's abbreviation likelihood is also exponentially penalized for eah instanenot followed by a period (so that ommon verbs in head-�nal languages are notpiked up as abbreviations). All types that sore higher than a set threshold areonsidered abbreviations.After the abbreviations have been determined, every period not followingan abbreviation, an initial or a number is marked as a unambiguous senteneboundary. Now that some sentene boundaries have already been disambiguated,the system studies the input again to infer e.g. frequent sentene starters, whihare types whih form olloations with preeding sentene boundaries. The restof the periods are disambiguated in the seond stage whih examines the spei�tokens and their ontexts. Disambiguation may ome from the orthographiheuristi whih examines the ase of the following token with respet to how oftenits type ourred lower-ase and upper-ase both at the start of a sentene andmid-sentene. The orthographi heuristi is very robust and takes into aountthat many words are written with upper-ase �rst letters even mid-sentene (suhas proper nouns and German nouns). The seond stage also uses the olloationaltie between the types surrounding the period and whether the following type isa frequent sentene starter as evidene against, resp. for, a sentene boundary.Punkt also demonstrates its language independene by giving remarkable re-8

sults on 11 di�erent languages, all without the need to provide annotated data orperform lengthy parameter tweaking. Emulating Punkt's behaviour using our to-kenizer would be nearly impossible, as it would neessarily lose its independeneon available annotated data and its ability to train from the input before tokeniz-ing it. On the other hand, our system is able to perform nontrivial tokenizationtasks (suh as Chinese word segmentation) on top of the sentene boundary dis-ambiguation. It is due to the fat that the Punkt system was designed to solvea very spei� problem using linguisti knowledge ommon to a lot of languages.Our tokenizer is very general, permitting the user to tokenize and segment thetext in basially any way that is learnable through binary features expressed withregular expressions or lexions.1.6 Chinese Word SegmentationSeveral attempts at Chinese word segmentation were made using a maximum en-tropy lassi�er. The one developed by Jin Kiat Low, Hwee Tou Ng and WenyuanGuo in 2005 [17℄ ranked amongst the highest in the Seond International ChineseWord Segmentation Bakeo� [12℄. It lassi�es eah harater as either a single-harater word or as a �rst, intermediate or last harater of a multi-haraterword. The basi set of features passed to the lassi�er is:1. Cn(n = −2,−1, 0, 1, 2)2. CnCn+1(n = −2,−1, 0, 1)3. C−1C14. Pu(C0)5. T (C−2)T (C−1)T (C0)T (C1)T (C2)

Cn refers to a harater at a position relative to the urrent one, Pu is aprediate heking whether a harater is a puntuation symbol and T is a fun-tion assigning a harater lass to haraters. The 4 used lasses are numbers,dates (symbols for �day�, �month� and �year�), English letters and others. Featuretemplates 2, 3 and 5 use onjuntions of features, whih means that for all thepossible ombinations of values, there is a maximum entropy feature and its or-responding parameter. It was this lassi�er whih motivated the implementationof onjuntion features in our tokenizer.The Chinese word segmenter relies on even more features derived from searh-ing the text for words in a lexion of known words. In our tokenizer, it would be9

quite ompliated to hek for these words due to the fat that every position isa potential token boundary. This means that the preliminary rough tokens, onwhih user-de�ned prediates are tested, are exatly one harater long. Howev-er, this improvement to the Chinese word segmenter is not that ruial. A biggerissue might be the fat that the Chinese word segmenter trains a lassi�er topredit the role of a harater in a single or multi harater word, whereas ourlassi�er predits whether potential token boundaries are real token boundaries(this means that during training the set of features for maximum entropy is quitedi�erent).

10

2. Maximum Entropy ModellingIn this hapter we present the priniples of maximum entropy modelling, howmaximum entropy models relate to exponential models and how a maximumentropy model is indued from data. We also disuss whih implementations ofthe tehnique are available and whih one was used in our system.2.1 Maximum Entropy ModelsWe want to onstrut a probabilisti model whih gives us a probability p(a, b) ofan outome1 a ourring with ontext b. We want this model to be very lose tothe observed training data, meaning that the data's probability given our model
p is high.However, we do not want the maximum likelihood model beause we are awarethat the observed data does not over all the possible situations. Instead, we wanta model that shares only some important properties with the observed data. Weexpress these properties as binary funtions on the spae of events E and we allthese funtions features2. In most implementations, inluding ours, these binaryfeatures are restrited to the following form

f(a, b) =

1 if a = o and φ(b)

0 else (2.1)where o is an outome and φ is a ontext prediate. We want the onstrutedmodel p to share the expeted values of these feature funtions with the empirialdistribution p̄. This means that we want the probability of f(a, b) being 1 to bethe same in both distributions.Let us say we have hosen several suh features we want retained in our model,now we need to selet some model from the set of omplying models. This is thepoint where the maximum entropy priniple omes into play. The basi idea ofthe maximum entropy priniple was niely hinted at by Laplae in his �Prinipleof Insu�ient Reason� [8℄:When one has no information to distinguish between the probabilityof two events, the best strategy is to onsider them equally likely.1The terminology used in omputational linguistis often lashes with the one used in prob-ability theory. What is in probability theory usually known as an outome is here referred toas an event. These events are pairs of ontexts and outomes, where the ontext is the data wehave available when we want a predition and the outome is what we want to predit.2The term features is also ommonly used in mahine learning to denote a part of the ontext.When it will be important to di�erentiate these two meaning in other parts of the work, theterm maximum entropy features will be used to refer to the features de�ned here.11

We would like to have a distribution whih onforms to the requirementsimposed by the features but is otherwise unbiased, it is as lose to uniform aspossible without violating the features' requirements. A standard measure of theuniformity of a distribution is entropy
H(p) = −

∑

x∈E

p(x) log p(x) (2.2)We would like to �nd a distribution whih adheres to the features' onstraintsand maximizes entropy. It an be shown [8, 23℄ that suh a distribution is of thefollowing form
p(x) = π

k
∏

j=1

α
fj(x)
j (2.3)where fj for j ∈ {1, . . . , k} are the features we want to retain and 0 < αj, π <

∞. More interestingly, the maximum entropy model adhering to the features'onstraints is equal to the maximum likelihood model having the shape of 2.3(we all suh models exponential models).Given the set of features we want to retain in our model, we an now employan unrestrited optimization algorithm to �nd the parameters of the exponentialmodel whih maximize the likelihood of the training data.One we wrap our minds around the de�nition of an exponential model andrestrain ourselves to the features from 2.1, we an easily imagine what happenswhen prediting an outome given a ontext (i.e. evaluating the probabilities ofthe ontext appearing with all the possible outomes). For eah feature fj of theshape 2.1, the probability of an outome is multiplied by αj if and only if thefeature's prediate φ holds for the urrent ontext and the outome whih we areevaluating is equal to the feature's desired outome o (then the feature funtion'svalue is 1). So, for eah pair of a prediate φ whih holds for the given ontext andan outome o whih forms a feature fj with the prediate as in 2.1, the prediatevotes either for or against the outome o depending on the value of αj. Thevalue of αj , estimated from the training data, is higher if the ontext prediate
φ usually implies that we will see the outome o and lower in the opposite ase.In pratie, the features (in the mahine learning sense of the word) beingpassed to the maximum entropy lassi�er are the prediates whih hold for theontext in question. The lassi�ed outome is the one voted the most by theabove proess.

12

2.2 Available ImplementationsThere are several notable implementations of maximum entropy estimators avail-able. The one we hose for our tokenizer was the Maximum Entropy ModelingToolkit for Python and C++ written by Zhang Le [16℄. The toolkit o�ers a nie,lean API with whih we are able to feed training events to the estimator andthen launh a training proedure whih �nds the optimal parameters. The re-sulting model an be easily saved to a �le and loaded later. The API is ompletewith funtions for evaluating the probabilities of (context, outcome) pairs andderived onveniene funtions for prediting outomes from ontexts. The sup-ported parameter estimation algorithms inlude GIS and L-BFGS. The L-BFGSimplementation provided by Jorge Noedal is written in Fortran with large saledatasets in mind. When the various algorithms for estimating the parametersof a maximum entropy model were evaluated, L-BFGS learly outperformed theGIS, IIS, gradient and onjugate gradient algorithms [18℄.Other implementations were ontemplated. However, they would require moree�ort to integrate seamlessly into our tokenizer. The main reason behind this isthat the above-mentioned toolkit is the only one supplying a C++ API. Theother toolkits only have either ommand line interfaes or are written in di�erentlanguages. Of these toolkits, only a few o�er anything worth the e�ort.Our problem with the toolkits written in Python and Java (the most notablebeing NLTK [9℄ and the Stanford Classi�er [22℄) is that while prediting an out-ome of a potential boundary, we rely on the disambiguation of the preedingboundaries. This means that if we were to use NLTK or the Stanford Classi�erfor predition, we would have to swith from C++ to Java or Python to performthe disambiguation for every ambiguous boundary individually. This ould beworked around by using the toolkits only for training and then writing our ownimplementation of the exponential model's evaluate funtions.But even if we did integrate these alternative implementation, the Java im-plementations would have a hard time outperforming the Fortran L-BFGS im-plementation. The methods in SiPy might be more viable though.The only alternative solution whih looked intriguing is the Toolkit for Ad-vaned Disriminative Modeling (TADM) by Robert Malouf [19℄. The toolkitlaks an API and relies only on a ommand line interfae. This would meanthat during training the olleted events would have to be stored in a �le andTADM would have to be invoked using the system funtion. An implementationof an exponential model would then be needed inluding loading the model fromthe �le, evaluating the probabilities of events and prediting the most probableoutome. 13

However, if too muh time is spent estimating the model's parameters on amahine whih might bene�t from the PETS and TAO optimizations used inTADM, it might be worthwhile to hange the tokenizer to use TADM.

14

3. ImplementationIn this hapter we desribe the internal design of the tokenizer and provide ratio-nale for the hoies behind it. We explore the problem of rough tokenization moredeeply as it posed one of the biggest hallenges in building the system. Finally,we talk about the multi-threading tools whih were used to enable parallelism inthe tokenizer.3.1 Overview of the SystemThe data �ow between the various subsystems an be seen in Figure 3.1.3.1.1 TextCleanerAny input whih is read by the tokenizer is �rst proessed by the TextCleaner.This unit is responsible for deoding the stream of text and optionally removingXML markup and expanding HTML entities and harater referenes. Thesehanges to the input stream (referred to as utouts in the program) are onveyedto the OutputFormatter so that they an be undone in the output. This allowsthe tokenizer to proess XML marked up ontent as if it was plain text. The XMLmarkup thus annot be broken by and does not interfere with the tokenizationproess.3.1.2 RoughTokenizerThe RoughTokenizer's goal is to examine the leaned input stream and identifyboth unambiguous and ambiguous token and sentene boundaries. It does so by

Figure 3.1: Data �ow in the entire system15

splitting the text into what we all rough tokens. In the simplest ase, roughtokens are the whitespae delimited words of the text (the term word will beused to mean a maximal subsequene of nonwhite haraters). However, the useran write regular expressions to de�ne ertain points within and between thesestrings of nonwhitespae haraters whih may split them up into what end upbeing the rough tokens. These user-de�ned points are alled deision points andthey represent the ambiguous token/sentene boundaries.There are three types of deision points. There is the MAY_SPLIT, whihours within words and signals a potential token boundary. Then there is theMAY_BREAK_SENTENCE, whih ours before and after ertain haratersand marks a potential sentene boundary. MAY_SPLIT and MAY_BREAK_-SENTENCE are the deision points whih split words into rough tokens. Thethird type of deision point is MAY_JOIN whih ours between words and turnsthe spae between them from a token boundary to a potential token boundary,making it possible for the two words to join into a single token.The rough tokenizer detets all deision points in the text and produes astream of disrete rough tokens with metadata about surrounding whitespaeand deision points.3.1.3 FeatureExtratorThe rough tokens produed by the RoughTokenizer are tagged with user-de�ned properties in the FeatureExtrator. These prediate properties arede�ned either using regular expressions or lists of rough tokens. In the ase ofa regular expression, a rough token is said to have the property the expressionde�nes if and only if the regular expression mathes the entire rough token. Whena property is de�ned using a token list, a rough token is said to have the propertyif and only if it is on the list.Beause the task arried out by the FeatureExtrator is a ontext freefuntion of a single rough token's ontents, multiple FeatureExtrators anrun simultaneously, eah proessing a di�erent part of the token stream.3.1.4 Classi�erThe Classi�er is the interfae to the Maximum Entropy Toolkit. It sans therough token stream for deision points and ollets evidential properties fromthe tokens in the surrounding ontext. When the tokenizer is being trained, theClassi�er also reads in an annotated version of the input and aligns it with therough tokens (the annotated versions have one sentene per line with the tokensdelimited by spaes). It then bundles the values of the properties in the ontext16

with the orret outome inferred from the annotated data and sends them bothto the Maximum Entropy Toolkit for training.When a model is already trained and the tokenizer is tokenizing other data,it queries the model for a predited outome given the ontext and uses the out-ome to annotate the rough tokens. The rough tokens are then proessed by theOutputFormatter whih implements the token and sentene breaks preditedby the model.3.1.5 OutputFormatterAfter all the token and sentene boundaries have been disambiguated by the Clas-si�er, it is up to the OutputFormatter to onvert the stream of rough tokensinto plain text where token boundaries are represented by spaes and senteneboundaries by line breaks. It is also the duty of the OutputFormatter to undothe hanges done by the TextCleaner, whih means that XML is reinserted in-to the proper plaes and former HTML entities and harater referenes replaetheir expanded ounterparts.3.1.6 EnoderThe Enoder reeives the text output by theOutputFormatter and transodesit from the internal (UTF-8) enoding to the target enoding. In addition tohanging the oding of the haraters, the Enoder and the TextCleaner alsoserve as additional bu�ers for I/O operations so that the threads whih run thepipeline from RoughTokenizer to OutputFormatter are less likely to stall onI/O.3.2 Modes of ExeutionThe tokenizer has to be trained on annotated data, it has to be able to usethat training to tokenize new input and it should also provide aurate feedbakon its performane when developing and evaluating a tokenization sheme (atokenization sheme is a set of on�guration �les ontrolling the ation of theRoughTokenizer, the FeatureExtrator and the Classi�er). The tokenizerthus has a few di�erent setups for performing these varied tasks.3.2.1 TrainingWhen running in the training mode, the tokenizer leans the input, identi�es de-ision points signalling potential token and sentene boundaries, tags the rough17

Figure 3.2: Data �ow of the system in the training and evaluation on�gurationstokens with the user's properties and sends them to the Classi�er. The Classi-�er aligns this stream of rough tokens with the annotated text. For eah deisionpoint, the properties of the tokens within ontext and the outome inferred fromthe aligned data are sent to the Maximum Entropy Toolkit to serve as trainingdata. After all the input �les have been proessed and the training examplesolleted, the maximum entropy model is omputed and stored in a �le for lateruse.There is no output proessing in the training mode as the only output pro-dued, apart from the saved maxent model �le, are warning messages about to-ken and sentene boundaries found in the annotated version whih are not evenmarked as potential boundaries in the raw input. This is a signal to the user thathe should perhaps modify the tokenization sheme to aount for more possibleboundaries or to hek his annotated data. The setup of the system an be seenon Figure 3.2.3.2.2 TokenizationAfter a model has been trained, the tokenization mode beomes available. In thismode the text is leaned, onverted into rough tokens and tagged with properties.The Classi�er has the trained model loaded and predits the outome (senteneboundary, token boundary or no boundary) for every deision point given itsontext. This outome is used to resolve the MAY_SPLIT, MAY_JOIN andMAY_BREAK_SENTENCE ambiguities and the disambiguation is stored inthe relevant rough token's metadata. These annotated tokens are then printedthrough the OutputFormatter and enoded with the Enoder. See the setupof the system of this mode on Figure 3.3.
18

Figure 3.3: Data �ow of the system in the tokenization and preparation on�gu-rations3.2.3 EvaluationWhen tweaking and developing a tokenization system (the seleted training data,the on�gured parameters in the tokenization sheme) it is vital to have feedbakon the shortomings of your system. The evaluation mode was designed just forthis purpose. It works in a way similar to the training mode (see Figure 3.2).The Classi�er aligns the rough tokens with the annotated text and extrats theontextual properties from the tokens and the true outome from the annotateddata. However, instead of reording them it uses an already trained model andqueries it for its predited outome. The tokenizer then outputs both the trueand the predited outome along with the ontextual properties.Another tool an then be used to analyze the tokenizer's output and examinethe results and errors of the trained model. An example of suh a tool would bethe inluded Python sript analyze.py, whih sans the evaluation's output andreports the auray, preision, reall and F-measure of both sentene and tokenboundary detetion.This log of outomes and ontexts an be written out when using any of theavailable modes but only the evaluation mode has aess to both the true out-omes from the annotated data and the outomes predited by the probabilistimodel.3.2.4 PreparationThe preparation is the last and least essential mode of the tokenizer. It is similarto the tokenization mode (see Figure 3.3), but instead of querying the probabilis-ti model for an outome, the Classi�er simply on�rms all potential boundaries(MAY_SPLIT beomes a token boundary and MAY_BREAK_SENTENCE be-19

omes a sentene boundary). This produes a �le in whih an annotator only hasto remove spaes and line breaks, where inappropriate, to get the orret anno-tation.An advantage to using this mode might be that when the user does not demandthe logging of ontexts as in the evaluation mode, the time-ostly FeatureEx-trator and Classi�er an be replaed with a SimplePreparer, whih onlyremoves the ambiguities in the above-mentioned way.3.3 Rough TokenizationOne of the �rst problems enountered when designing the tokenizer was the im-plementation of rough tokenization. The task of rough tokenization is to take thede�nitions of deision points and then to be able to detet all suh points in anygiven input.The possible positions for a MAY_SPLIT deision point are de�ned by pairsof regular expressions: a position is to be marked as a MAY_SPLIT point ifand only if the �rst expression (pre�x) mathes some of the haraters leadingto the position and the seond expression (su�x) mathes some of the haratersfollowing it. MAY_JOIN deision points are de�ned almost the same way, exeptthat the haraters following the position of a MAY_JOIN must start with astring of blank haraters and then ontinue with the string mathed by theregular expression. MAY_BREAK_SENTENCE points, on the other hand, arede�ned simply by two sets of haraters. If a position follows a harater fromthe �rst set or preedes a harater from the seond set, then that position is aMAY_BREAK_SENTENCE. See Figure 3.4 for an example.3.3.1 Regular Expression LibrariesThe referene implementation of the trainable tokenizer written in Perl used adisjuntive regular expression to math the pre�x of the unproessed input. Ouroriginal idea was to use PCRE [6℄ or some other regular expression implementa-tion [11, 7℄ to write a similar algorithm.The naive approah might have us trying to searh for the possible su�xes ofMAY_JOINs and MAY_SPLITs whih are preeded by their respetive pre�xes.Soon we would learn that �nding one deision point may lok us out of �ndinganother one. For example, given the string abd and MAY_SPLIT regular ex-pression pairs a - b and b - , we math the b aording to the leftmost longestmath onvention properly registering the MAY_SPLIT between a and b, butwe lose the opportunity to �nd the MAY_SPLIT between b and .20

The 10 000$ upgrade to 2.0 wasn't worth it.

MAY_SPLIT between

[a-zA-Z0-9] \.

.

[0-9][0-9]

MAY_JOIN between

MAY_BREAK_SENTENCE after

was n't

Figure 3.4: An example sentene marked with deision points. The de�nition ofthe deision point plaement is desribed below the sentene. The sitting wedgetriangle represents a MAY_SPLIT, the upside triangle marks a MAY_JOIN anda irle marks a MAY_BREAK_SENTENCE position. The whitespae and thedeision points divide the text into rough tokens.If we try to searh for eah of these pairs of regular expressions individually,we might still miss some points as demonstrated by the following example. Letthe string in question be abab and the MAY_SPLIT regular expression pair a -b(ab)*. Any attempt to searh for the su�x b(ab)* would yield the bab substringdue to the leftmost longest math onvention (and never just the �nal b, whihmeans that position will not trigger a MAY_SPLIT). There are solutions to thisproblem suh as modifying the user's regular expression, modifying the regularexpression mathing funtion or searhing for the su�x from every position inthe text, but they are all either di�ult or ine�etive.We do not want to be pathing the user's regular expressions beause we wouldprobably have to restrit ourselves to a narrower set of regular expressions andeven then it would have been hallenging to atually implement suh a systemand prove its orretness. Writing our own regular expression mathing engineis also out of the sope of this work. The third option on the list, searhing forthe su�x (or pre�x) from every position in the text, seems like a performanekiller. Performane-wise speaking, during the planning phase of development,prototypes of the naive method of regular expression rough tokenization wereimplemented using both Boost.Regex and PCRE. The average time spent on a10 MB �le with a redible set of splitting and joining rules (breaking English on-trations apart, separating words from puntuation et...) was over 10.8 seondsfor Boost.Regex and over 4.9 seonds using PCRE. The tests were performed ona development laptop with the Intel Core 2 Duo T7500 proessor.
21

3.3.2 Lexial Analyzer GeneratorsDuring the initial planning, there was another interesting proposal for handlingrough tokenization whih motivated the early prototypes.The goal of rough tokenization is to san large volumes of text and detetpatterns desribed by regular expressions. This kind of problem has been alreadysolved many times using lexial analyzer generators suh as �ex. These tools takerules, whih are pairs of regular expressions and ations written as ode. Thelexial analyzer generator then reates a program from these rules whih reads astream of text and tries to math a pre�x of the yet unmathed input with theseregular expressions and reats to the mathes with the supplied ations. Moreadvaned tools enable the de�nition of several analyzer modes with di�erent rulesand enables the ations to swith between them.The lexial analyzer generator seleted for our tokenizer was Quex [26℄. Itsmost important feature is that it is able to work on Uniode ode points insteadof single-byte haraters and that it uses libionv and ICU to proess text in anyenoding. Quex an also be very fast beause it does not enode the resulting au-tomaton into a table whih drives some general program, but instead it generateslow level C++ ode whih mimis the behaviour of the automaton.The naive way of rough tokenization presented in Subsetion 3.3.1 was imple-mented in a prototype to evaluate the performane bene�ts stemming from theuse of ompiled lexers generated by Quex. When run with the same tokenizationrules and on the same data as the rough tokenizers in Subsetion 3.3.1, the Quexgenerated lexer �nished on average in a little over 0.9 seonds. But the generatedlexer was making the same mistakes as the �rst approahes using regular expres-sions. As we grew to know more of the funtionality available to us in Quex andthe spei�s of its operation, we were able to arrive at a lexer whih detets everypossible deision point and does so in about 1.9 seonds on the same data setwith whih we tested the other methods. The details of this �nal method arepresented in Subsetion 3.3.3.3.3.3 The SolutionMany of the observations about the task at hand made in Subsetion 3.3.1 stillhold when designing a Quex generated lexer. The �nal implementation proessesthe input one harater at a time. At eah position in the text, rules for mathingthe su�xes of possible MAY_SPLITs and MAY_JOINs are in play. Eah of theserules has a ondition in Quex that the preeding text must math the pre�x of therespetive MAY_SPLIT or MAY_JOIN rule. The MAY_BREAK_SENTENCErules are implemented in a similar way as their de�nitions are basially speial-22

The 10 000$ upgrade to 2.0 wasn't worth it.

1. match \. for MAY_SPLIT,

 if preceded by [a-zA-Z0-9]

2. match n't for MAY_SPLIT, if preceded by was

3. match [:space:]*[0-9] for MAY_JOIN,

 if preceded by [0-9]

4. match anything for MAY_BREAK_SENTENCE,

 if preceded by the "." character

current position

position after

matching "."

Quex rules:

Figure 3.5: An example of real-world implemented rough tokenization for thedeision points de�ned in Figure 3.4. The generated Quex lexer is at the signi�edposition in the input. Given its position, the lexer takes into onsideration onlyrules 1 and 3, as these are the only rules whose preonditions have been met.Rule 1 an math the input at the urrent position and so a MAY_SPLIT isannouned and the word read so far (�2�) is reported as a rough token. The lexernow automatially advanes by the length of the mathed string, but we manuallystep bak to the original position in hope of �nding more deision points at theurrent position and the positions within the mathed string. When no furtherdeision points are to be found at the urrent loation (as is the ase here), wemove one harater ahead.izations of the MAY_SPLIT and MAY_JOIN de�nitions (single haraters forpre�x or su�x instead of regular expressions). An example of suh Quex rulesan be seen on Figure 3.5.When the lexer mathes the su�x of a deision point rule, it sends the lastharaters read sine the last deision point or whitespae as a rough token andsignals the deision point. Quex would now automatially advane our position inthe text right behind the mathed su�x, but we override this behaviour and movebak to the position of the newly found deision point so other deision pointsmay be found. This alone would ause an in�nite loop and so upon returningto the original position we also srath the deteted deision point from the setof appliable rules. If another deision point is found, we do the same untilwe �nd all types of deision points at the urrent loation or none of the rulesmath anymore. In that ase, the lowest priority ation takes plae whih readsanother harater from the stream and starts looking for deision points at thenext position.This srathing out of rules is implemented using 8 di�erent modes for all thedi�erent sets of deision points we might be looking for. We start at the topmostmode where we are looking for any of the 3 possible deision points. If one ofthem is found, we ontinue at the same loation in a mode whih looks for the23

remaining 2 possible deision points. In the �nal implementation, there is alsoa demand for unexpanded HTML entities to be treated as single rough tokens.This demand is met by adding another variable to the state of the lexer (whetherwe are about to read an entity) whih results in the 16 modes seen in the urrentimplementation.The rough tokenizer thus sans for a regular expression math starting fromevery possible position within the text, whih leads to the worst ase time of
O(n2), where n is the length of the text. It is however reasonable to assume thatthe regular expression mathing at any position will never have to proess morethan a few haraters and an thus be regarded as a onstant fator irrelevant ofthe data being proessed. This gives us a linear time omplexity, whih is notunexpeted given that we do a single pass over the text with only some small andlimited loal omputation and very little state.3.3.4 Tehnial ImplementationIn the �nished appliation, the regular expressions whih de�ne the plaement ofdeision points are read from user-written on�guration �les. A Quex soure �leontaining modes for deteting all of the deision points referened by the user isthen output to a temporary �le. CMake [1℄ is invoked to probe the user's systemfor the ompiling essentials, to generate a projet for the user's preferred buildsystem and to write the ommand needed to start the build to a �le. This �le isread and the ommand within it is run, whih exeutes Quex on the generatedsoure �le and then ompiles the result into a shared module. This proess istherefore platform-agnosti as it doesn't rely on a spei� C++ ompiler or buildsystem and uses only CMake and Quex whih are multi-platform and are requiredto build the tokenizer itself.This ompiled shared module is then loaded using the libtool's dynami load-ing library [2℄ whih is a wrapper for the platform-spei� dynami loading fun-tions. The tokenizer traks the set of �les used to generate the rough tokenizeralong with their timestamps and only regenerates and reompiles it when hangeshave been made.3.4 Classi�ationAfter the RoughTokenizer onverts the stream of text into rough tokens anno-tated with MAY_SPLIT, MAY_JOIN and MAY_BREAK_SENTENCE points,the FeatureExtrator goes next. For eah rough token in the token stream, itmathes the token against a series of regular expressions and word lists whih24

are represented as one big binary searh tree. It marks for eah token whihregular expressions it mathed and in what word lists it was found. These user-de�ned regular expressions and word lists de�ne what we all �properties�, binaryprediates desribing the aspets of rough tokens relevant to token and senteneboundary disambiguation.This stream of tokens marked with deision points and user-de�ned propertiesthen enters the Classi�er. While the FeatureExtrator was driven by the �lesde�ning the individual properties used in the tokenization sheme, the Classi�eris driven by a single mandatory �le named �features�. In this �le, the user seletsthe features of rough tokens he deems important for the disambiguation. Theformat of the �le has the user speify a range of token o�sets followed by a listof relevant properties. The Classi�er will then look at the rough tokens atthe given o�sets from the deision point in question and hek for the status ofthe relevant properties evaluated by the FeatureExtrator (the o�set and theproperty's name are onatenated into a string and this string is used to namethe feature passed to the maximum entropy lassi�er). However, these propertiesdo not form the only features passed to the maximum entropy lassi�er:
• For every rough token within the ontext (the smallest possible range oftokens ontaining all the tokens at the o�sets mentioned in the �features��le), a feature is passed desribing whether the rough token was followedby whitespae, by a line break or by a paragraph break (multiple newlines).
• For every rough token in the ontext, any deision points whih were foundbetween the token and its suessor are passed as features desribing thetoken.
• For every rough token in the ontext preeding the token in question, thedisambiguation of all its deision points is passed as well, so the lassi�eran see its deisions from the immediate past.
• If several properties at several o�sets ombined together form ompelling ev-idene for disambiguation, the user an mark them as suh in the �features��le and all those properties' values will be onatenated into a large featurestring. This way, a single parameter an be trained for eah ombinationof the properties' values, whih an be used e.g. to train the tokenizer onspei� bigrams (that is the ase of the Chinese word segmenter evaluatedin Chapter 4).
• Apart from the user-de�ned regular expression and list properties, the usermay all on the prede�ned �%Word� and �%length� properties. The �rst25

�meta-property� generates a feature string ontaining the rough token'stext, enabling the tokenizer to train not only on the binary features buton unigrams and subsequently bigrams and other n-grams. The �%length�property is speial in that it passes a non-binary value to the maximumentropy lassi�er equal to the length of the rough token.
• For positions within the ontext whih lie past either end of the input (atthe beginning or at the end), an out-of-input feature is passed desribingthe missing token.A vetor ontaining all these feature strings is passed to the maximum entropylassi�er whih deiphers the feature names and maps them into the individualtrained parameters. It then evaluates the possible outomes and returns themost probable one. The possible outomes are JOIN, SPLIT and BREAK_-SENTENCE. The outome desribes the spae between the urrent rough tokenin question (the token at o�set 0) and its suessor. Depending on the whitespaebetween the token in question and its suessor, the deision points are disam-biguated (e.g. a MAY_SPLIT beomes a DO_SPLIT if it lies in a position wherethere did not use to be any whitespae and the tokenizer lassi�ed the positionas a SPLIT or BREAK_SENTENCE).3.5 ParallelismOne of the expliit goals when developing the tokenizer was performane. How-ever, apart from the rough tokenization and the probing of the tokens' properties(the user-de�ned regular expressions and token lists), the algorithms were quitestraightforward. What ould be tweaked, however, was the manner of their im-plementation and exeution.When the task of rough tokenization was isolated from the problem of lassi-fying the potential token and sentene boundaries, a produer/onsumer patternwas proposed to proess both tasks in parallel. As the design of the system be-ame more detailed, more of the tasks beame isolated and the original idea ofa produer/onsumer pattern hanged into the pipeline model seen in the ur-rent implementation. Deiding on the pipeline model also let us use librarieswhih o�ered high-level pipeline implementations. This meant we did not haveto implement the entire system from srath using threads and synhronizationprimitives. For the performane payo� of multi-threading, see Subsetion 4.2.1

26

3.5.1 The PipelineThreading Building Bloks [3℄, an open-soured library developed by Intel, wasused for implementing the pipeline. Compared to other multi-platformparallelismsolutions, TBB o�ers high-level algorithms and onstruts like the pipeline. Italso uses C++ lasses and methods to expose its funtionality instead of relyingon pragma diretives like the standardized OpenMP [5℄.The pipeline is onstruted by setting up an array of �lter objets. Eah ofthe �lter objets must override the invoation operator and must identify itselfas either a parallel or a serial �lter (parallel meaning that this �lter an be runsimultaneously on multiple points of data, serial meaning that the �lter proessesthe input one at a time). In the tokenizer, the RoughTokenizer, the Feature-Extrator, the Classi�er and the OutputFormatter are all elements of thispipeline (you an see the pipeline as the middle row in Figure 3.1 with Feature-Extrator being a parallel �lter). The TBB library invokes the �rst �lter, theRoughTokenizer, and passes its return value to the FeatureExtrator whihalso produes a value and so on...Originally, the values to be �owing through the pipeline were individual roughtokens, but the overhead would have been too big. The TBB library doesn't useone thread per pipeline element, instead it is more similar to one thread per value.This way the values are more likely to stay in the ahe of the urrent proessor.So it was settled that hunks of rough tokens would be the work units traversingthe pipeline. Initially, the idea was to have them statially sized, but sine theClassi�er an onsume more tokens than it produes and vie versa, the hunksare now dynami (e.g. when proessing the �rst hunk, the Classi�er annotannotate the �nal tokens as it has to wait for the next hunk whih will informit about the post-ontext of those �nal tokens).3.5.2 The Input/Output ThreadsInitially, the plan was for the pipeline to enapsulate all of the parts of the system.However, it would have been umbersome to implement the RoughTokenizerso that it is a funtion whih reeives a hunk of text, feeds it to the bu�erof the generated lexer, tries to tokenize the inomplete hunk of text and thensends the retrieved tokens along. The C++ Standard Library already o�ers awidely used and supported FIFO struture for transmitting ontinuous text, thestd::iostream. In its stringstream inarnation, it allows one agent to writetext to it using the standard output operators of C++ and then later anotheragent an use the standard input operators to read and parse its ontents. Suha standard mehanism would allow us to simply pass a pointer to this stream27

to the Quex lexer as if it were a �le handle and we would not have to troubleourselves with any string marshalling.A lass whih does just this, the pipestream, was implemented by AlexanderNasonov and published on the Boost mailing list in 2003 [20℄. However, it didn'tmeet with muh understanding on the list as people tended to assoiate the lass'name, pipe, with OS-level pipes. The pipestreams have been resurreted for thisprojet and they made writing the transfer of text between the TextCleaner,the Enoder and the parts of the TBB pipeline very simple.The pipestreams were used to onnet the TextCleaner and Enoder tothe TBB pipeline. The TextCleaner and the Enoder both have a do_workmethod whih does all the work. In the ase of the TextCleaner, it uses aQuex generated lexer to �nd XML markup and entities in the input �le. It op-tionally transforms these segments, reports them to the OutputFormatter andwrites the transformed input to an opipestream (an output pipestream). TheEnoder on the other hand reads from an ipipestream (an input pipestream),transodes the text read and writes it to the output �le. The use of pipestreamsto onnet the TBB pipeline world with the I/O world might also have a per-formane advantage, beause TBB pipelines are not optimized for I/O heavyoperations and perform badly when stalling on I/O. These input/output threads(those whih run the do_work methods) might derease the probability of apipeline thread waiting for I/O by �lling the pipestream bu�ers while working ona di�erent CPU.

28

4. EvaluationIn this hapter, we demonstrate the e�etiveness of the tokenizer with severaltokenization shemes and on several datasets. In the �rst setion, we study theauray of the tokenizer using di�erent tokenization shemes. In the seondsetion, we follow up with an analysis of the speed at whih it proesses data.4.1 The Auray of the System4.1.1 Chinese Word SegmentationTokenizing Latin-sript languages is not very hard. We an usually get by wellenough by splitting the text at whitespaes and at boundaries between di�erentlasses of symbols. Sometimes, we might want to be more spei� and try totokenize English ontrations as separate words. However, these problems arequite easy to solve when ompared to the task of tokenizing Chinese text. Theabsene of any spaes between words forbids the use of any simple heuristi andlinguistially empowered methods must be used.We took inspiration from the system for Chinese word segmentation presentedin Setion 1.6 [17℄ whih is also based on maximum entropy models. The basifeatures used in that system were ported to our formalism. The biggest di�erenebetween the systems is the fat that the original Chinese tokenizer lassi�edindividual haraters as being single-harater words or the beginning, middle orending haraters of a multi-harater word. However, the lassi�er used in oursystem is binary and it deides for eah harater boundary whether it forms atoken boundary or not.We were able to obtain the same data on whih the original tokenizer wasdeveloped, whih happen to be the training data for the Seond InternationalChinese Word Segmentation Bakeo� [12℄. The bakeo� was a ompetition hal-lenging omputational linguists to develop word segmentation systems for Chineseusing the supplied data for training. The provided data onsists of 4 datasets pro-vided by Aademia Sinia, City University of Hong Kong, Peking University andMirosoft Researh. Eah of these datasets adopts slightly di�erent tokenizationstandards and so we train and test our tokenizer on the datasets individually.Eah dataset omes with a training part and a testing part. We stritly usedonly the training part when developing our tokenizer and used the testing partonly at the end to evaluate our results. The only thing we knew about the test-ing data in advane was its size whih helped us hoose a reasonable size for ourheldout data. 29

Training data Testing dataDevelopment data Heldout data Testing dataAademia Sinia 39686533 1057344 942571City University 8283422 266247 240767Peking University 7008808 719430 718331Mirosoft Researh 16100177 791333 766786Table 4.1: The sizes of the individual parts of the bakeo� datasets in bytes.Number of iterationsAademia Sinia 420City University 873Peking University 708Mirosoft Researh 1053Table 4.2: The number of iterations spent training the maximum entropy modelon the individual datasets.First, we split our training data into a development part and a heldout part.We hose the size of the heldout data to be roughly as big as the testing data sowe ould trust our system's performane on it to be representative of our system'strue auray. The sizes of the partitioned datasets an be seen in Table 4.1.Initially, we set the event uto� of the maximum entropy trainer to 2 as in[17℄. However, we found out we get a sizable improvement in the auray ofthe trained tokenizer if we do not uto� events (i.e. set the event uto� to 1).We then experimented with training the tokenizer and testing it on the heldoutdata. Depending on how muh we onstrained training time, the tokenizer ouldeither be under-trained or over-�tted. The heldout data served as an independentindiator telling us how lose we are to the ideal balane between a detailed anda general model. Experimentation led us to restrain the number of trainingiterations to the values seen in Table 4.2 (the onsiderable size of the AademiaSinia ombined with the absene of the event uto� fored us to keep the numberof training iterations below 450 lest the training program hit the CPU time limitand terminate). We an see that the number of iterations spent in trainingto obtain the optimal model orrelates with the size of the dataset (with theexeption of the Aademia Sinia dataset, of ourse), beause a larger datasetusually means more bigrams and unigrams and thus more parameters to estimate.After we established the training parameters, we trained the system on theentire training data and heked its performane on the gold testing data. Theperformane of the development system on the heldout data and of the �nalsystem on the testing data an be seen in Tables 4.3 and 4.4.30

Auray Preision Reall F-measureAademia Sinia 97.56% 97.89% 97.82% 97.86%City University 97.70% 98.05% 98.11% 98.08%Peking University 97.69% 98.29% 97.89% 98.09%Mirosoft Researh 97.67% 98.08% 98.02% 98.05%Table 4.3: The performane of the system trained on the development data whentokenizing the heldout data. Auray Preision Reall F-measureAademia Sinia 96.33% 96.13% 97.73% 96.92%City University 96.87% 97.42% 97.32% 97.37%Peking University 96.74% 97.85% 96.68% 97.26%Mirosoft Researh 97.95% 98.33% 98.06% 98.20%Table 4.4: The performane of the system trained on the entire training datawhen tokenizing the gold testing data.We were enouraged to see suh performane and out of uriosity proeededto sore our tokenizer using the same sript whih sored the ontestants in thebakeo� (Table 4.5). While our tokenizer does not perform as well as the originalword segmenter by Low, Ng and Guo [17℄, it ahieves a median performaneompared to the performane of the other bakeo� submissions. The result is quitepleasing, given that the all we needed to do was to write the feature de�nitionsinto a few �les and tweak some training parameters.4.1.2 Tokenization of Czeh and EnglishFor evaluating the auray of tokenizing Czeh and English text, four di�erentmethods were implemented. The Absolute Baseline relies on no other piee ofinformation than the urrent deision point and the whitespae following it tolassify boundaries. It is there to show the minimum possible line every tokenizershould pass.The Simple Tokenizer heks the potential sentene terminator and heksTrue Words Reall Test Words Preision F-measureAademia Sinia 0.933 0.919 0.926City University 0.934 0.934 0.934Peking University 0.923 0.933 0.928Mirosoft Researh 0.951 0.952 0.951Table 4.5: The sores assigned to our tokenizer by the o�ial soring sript ofthe Seond International Chinese Word Segmentation Bakeo�.31

CzEng - Czeh SegmentationA. Pre. Re. F-m.Absolute Baseline 80.08% 72.72% 99.06% 83.87%Simple Tokenizer 93.67% 92.38% 95.79% 94.06%Groomed Tokenizer 95.93% 95.26% 96.90% 96.07%Table 4.6: The sentene boundary disambiguation performane of the variousmethods for tokenizing Czeh on the CzEng sample.CzEng - Czeh TokenizationA. Pre. Re. F-m.Absolute Baseline 99.29% 99.29% 100.00% 99.64%Simple Tokenizer 99.26% 99.35% 99.92% 99.63%Groomed Tokenizer 99.36% 99.39% 99.97% 99.68%Table 4.7: The token boundary disambiguation performane of the various meth-ods for tokenizing Czeh on the CzEng sample.whether the following word starts with an upper-ase letter. It represents theoften too simple approah to tokenization.The English-only Satz-like [21℄ system uses only part of speeh data aboutthe surrounding tokens to predit a boundary.Finally, the Groomed Tokenizer is the tokenization sheme used in the originalreferene implementation, whih has been supplied with lists of abbreviations andlots of useful regular expressions.All systems were tested both on a sample of data from CzEng and, in the aseof the English tests, also on the Brown orpus. All datasets were divided intoequally large development, heldout and testing sets to be used as in Setion 4.1.1.As for the part of speeh data of the Satz-like system, lexions for eah part ofspeeh were extrated from the training setion of the Brown orpus for the Brownorpus exerise and from the entire Brown orpus for the CzEng exerise. Theresults of the trials an be seen in Tables 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11.CzEng - English SegmentationA. Pre. Re. F-m.Absolute Baseline 81.27% 67.50% 99.91% 80.57%Simple Tokenizer 95.21% 91.38% 96.81% 94.01%Satz-like System 94.87% 92.42% 94.57% 93.48%Groomed Tokenizer 97.08% 95.66% 96.90% 96.27%Table 4.8: The sentene boundary disambiguation performane of the variousmethods for tokenizing English on the CzEng sample.32

CzEng - English TokenizationA. Pre. Re. F-m.Absolute Baseline 95.31% 95.31 100.00% 97.60%Simple Tokenizer 95.27% 95.31% 99.95% 97.58%Satz-like System 96.84% 96.79% 100.00% 98.37%Groomed Tokenizer 95.99% 95.99% 99.98% 97.94%Table 4.9: The token boundary disambiguation performane of the various meth-ods for tokenizing English on the CzEng sample.
Brown SegmentationA. Pre. Re. F-m.Absolute Baseline 78.49% 62.83% 99.61% 77.06%Simple Tokenizer 96.47% 93.26% 97.30% 95.24%Satz-like System 99.31% 99.58% 98.52% 99.05%Groomed Tokenizer 99.31% 99.30% 98.80% 99.05%Table 4.10: The sentene boundary disambiguation performane of the variousmethods for tokenizing English on the Brown orpus.
Brown TokenizationA. Pre. Re. F-m.Absolute Baseline 82.71% 85.16% 88.74% 86.91%Simple Tokenizer 93.63% 94.12% 96.16% 95.13%Satz-like System 99.64% 99.62% 99.82% 99.72%Groomed Tokenizer 99.73% 99.72% 99.86% 99.79%Table 4.11: The token boundary disambiguation performane of the various meth-ods for tokenizing English on the Brown orpus.

33

While text from the CzEng dataset proves to be more di�ult to segmentthan text from the Brown dataset for all but the Baseline tokenizer, the Satz-likesystem's segmentation performane su�ers the most. This was not unexpetedas the Satz-like tokenizer relies on a lexion of part of speeh tags extrated fromparts of the Brown orpus. When the tokenizer was evaluated on the Brownorpus, the lexion was indued from the training and heldout datasets. Thisgave the tokenizer's lexion a 99.41% overage on the training dataset and a99.44% overage on the heldout dataset (the overage is not 100% as some of thewords ontaining dashes or apostrophes were broken into separate rough tokens);the overage on the testing dataset was 95.75%. On the other hand, when thetokenizer was evaluated on the CzEng dataset, the overage on the training,heldout and testing datasets was 95.80%, 95.95% and 95.66% respetively. Sinethe Satz-like tokenizer relies only on part of speeh data, this derease in thepart of speeh lexion's overage an be severely detrimental to the tokenizer'sperformane.The Simple tokenizer demonstrates a pretty high reall on sentene boundarydetetion. This an be attributed to the fat that its deisions are governedonly by the potential sentene boundary and the ase of the following word.Sine mostly every sentene will start with a apital letter, we an expet theSimple tokenizer to notie most of them. The Simple tokenizer an however beeasily misled by multi-part abbreviations and initials in names (e.g. �U.S.A.�, �M.Smith�). This explains why its preision is notieably lower than its reall.The Groomed tokenizer delivers a good performane on all the examineddatasets, whih goes to show that time spent developing a tokenization shemean indeed pay o�.4.2 The Speed of the SystemThe tokenizer proesses roughly 15000�60000 deision points per seond, whihamounts to 60000�250000 words or 300000�1300000 bytes in the ase of the Brownorpus. The performane varies greatly depending on the hosen tokenizationsheme and so in this setion, we will do the performane analysis for eah of thefour tokenization shemes presented in Setion 4.1.4.2.1 Parallel ProessingOne of the most important aspets of the tokenizer whih drove the design wasparallel proessing. In Chapter 3, we have seen how it enouraged us to dividethe tokenizer's duties to several autonomous subsystems. This design enabled us34

05
1015
2025
30

1 2 3 4 5 6 7 8 9 10Seondsspe
nttokenizin
gtheBrown
orpus

Maximum number of simultaneous work units

Groomed TokenizerSatz-like TokenizerSimple TokenizerBaseline Tokenizer

Figure 4.1: The e�et of maximum simultaneous work units on the performaneof the tokenizer. The plotted spent time is a median of 10 trials.to perform all the tasks in the pipeline in parallel using the pipeline lass fromthe Threading Building Bloks library [3℄. To measure the impat this designhoie made on performane, we ran the tokenizer on the entire Brown orpuswhile restriting the maximum number of pipeline stages allowed to run at thesame time. The results are plotted in Figure 4.1. The Baseline and Groomedtokenizers speed up by 20%�24%, while the Simple and Satz-like tokenizers gaina speedup of 44%.To investigate the reason why the di�erent tokenization shemes gain a dif-ferent speedup and where we should optimize further to improve the proessingtime, we measure the workload of the di�erent pipeline stages. We restrit themaximum number of simultaneous work units in the pipeline to 1, to ensure thatonly one an use the CPU at a time. In eah of the stages we measured the totaltime spent proessing the stream of data. The averaged results an be seen inTable 4.12.From the data, we an see that the workload is more balaned in the Sim-ple and Satz-like tokenizers, while in the Baseline and Groomed tokenizers, theRoughTokenizer, resp. the Classi�er, spend more time than all of the other stagesombined. This means that when using the Baseline or Groomed tokenizer, onethread will be working in the RoughTokenizer, resp. the Classi�er, leaving theother threads very little work to do, whih leads to only a small speedup fromthe original senario with one thread. 35

Baseline Simple Satz-like GroomedRoughTokenizer 3.06 3.06 3.09 3.18FeatureExtrator 0.28 0.67 2.49 5.13Classi�er 1.11 2.19 5.12 14.22OutputFormatter 0.72 0.70 0.71 0.71Table 4.12: Time (in seonds) spent in the various pipeline stages when tokenizingthe Brown orpus. In order to measure these values, the pipeline has been set upto run only one stage at a time. The tabled time is an average of 10 trials.Baseline Simple Satz-like GroomedWidth of ontext 1 2 7 17Number of user-de�ned properties 0 1 37 32Number of possible features per deision 6 13 311 673Average number of features per deision 1.53 3.98 21.04 75.38Table 4.13: The fators whih de�ne the omputational omplexity of the Clas-si�er stage. The average number of features per deision was measured on theBrown orpus.We an also see that the omplexity of rough tokenization and output proess-ing is the same with all the tokenization shemes, whih was to be expeted asthere are next to no di�erenes in these stages between the ontesting tokenizers.The FeatureExtrator's workload sales with the number of regular expressionproperties and list properties as expeted (the data also shows that the multi-ple list properties used for the part of speeh lexion in the Satz-like tokenizerare faster to hek than the individual regular expressions used in the Groomedtokenizer).The most important fat we an glean from the results, however, is that inthe more omplex tokenizers, the Classi�er is the bottlenek. The Classi�er isthe subsystem responsible for heking the ontext surrounding eah deisionpoint, produing a list of strings desribing the features of the rough tokens inthe ontext and onsulting the maximum entropy model for a disambiguation.The distinguishing fators whih de�ne the omputational omplexity of theClassi�er are listed in Table 4.13. The Classi�er iterates over the rough tokens inthe ontext. Eah rough token is heked for the mandatory properties (whites-pae between tokens, presene of deision points) and strings representing thefeatures are reated. The rough tokens at spei� o�sets are also heked forthe user-de�ned properties and strings desribing these features are generated aswell. This vetor of features is then deiphered by the maximum entropy toolkit.Eah feature name is mapped to a fator and the fators are added up for eahindividual outome. The outome with the highest probability is then seleted.36

Baseline Simple Satz-like GroomedInitialization 0.002 0.03 0.30 0.11Proessing 4.473 4.86 8.12 19.59Total 4.475 4.88 8.42 19.70Table 4.14: Time (in seonds) spent tokenizing the Brown orpus using the 4tokenization shemes presented. Initialization is the time spent before the pipelineis run. The tabled time is an average of 10 trials.The amount of work needed to handle the built-in mandatory probabilities islinear with respet to the width of the ontext.The rest of the time is spent heking for the user-de�ned properties andgenerating feature strings (a string ontaining the o�set, name and value of afeature). Assuming the names of user-de�ned properties are bound by someonstant, the worst ase time spent doing this is linear to the produt of theontext's width and the number of user-de�ned properties. However, at someof the o�sets in the ontext, some of the properties might not be requested bythe user or might simply not hold for the rough token in question. We let thetokenizers log the deision points and the features desribing them and measuredhow many feature strings per deision are atually generated and proessed bythe maximum entropy library (the values are listed in Table 4.13). This fator ismost indiative of the workload of the Classi�er.As the Classi�er has been identi�ed as a bottlenek of the pipeline, any at-tempts at optimizing the performane of the tokenizer should be performed there.The amount of time spent in the maximum entropy library is only 15%�23% ofthe entire time spent in the Classi�er. Improving the string manipulation andfeature representation thus seem to be sensible plaes to look at. In the ase ofthe Groomed tokenizer, more speed ould be gained by ulling the number offeatures or narrowing the ontext.The bottlenek issue might also be worked around by dividing the input andproessing multiple segments at the same time. The Classi�er would still be thebottlenek, but several instanes of the pipeline (and therefore the Classi�er)would run at the same time (e.g. on di�erent paragraphs).4.2.2 Initialization CostsA neessary part of proessing data with the tokenizer is the exeution and ini-tialization of the tokenizer itself. We were interested in how long the initializationtakes in omparison to the proessing of input. We measured the time spent inboth these stages and listed our measurements in Table 4.14.37

Baseline Simple Satz-like GroomedSize of data 530 36500 269000 35500Table 4.15: Volumes of data (in bytes) whih take the same time to proess usinga given tokenization sheme as it takes to initialize the tokenization sheme.It an be seen that when proessing large quantities of data, the initializationosts are negligible. However, it is quite probable that the tokenizer will beused to proess smaller �les. For example, the entire Brown orpus has 6MB ofdata, but it is distributed as a set of �les about 11KB small. To express theost of initialization in more useful terms, we found the volume of data that thetokenizer an proess within the amount of time spent to initialize it (Table 4.15).The data shows that when using the Simple or the Groomed tokenizer, it wouldtake four times as long to proess the Brown orpus if we were to initialize thetokenizer before proessing eah �le. When using the Satz-like tokenizer or anyother tokenization sheme based on large lexions, the initialization osts are evenbigger.The expeted ost in initialization time is mitigated by the ability to run thetokenizer on bathes of �les. The tokenizer an look for �les to be proessed inlists of �le paths stored in �les or passed through the standard input. The resultsare written to �les whose paths are found by applying a user-spei�ed regularexpression replaement string on the original �les' paths.All the tokenization shemes presented in this hapter were trained and testedusing this way of exeution. If large volumes of small �les are to be proessedusing the tokenizer, these bath failities are essential as they make the dauntingost of initialization marginal (as in Table 4.14).The �le lists interfae also presents another opportunity for further paralleliza-tion. If the input is already spread into small �les, the �les in the �le lists ouldbe proessed simultaneously by di�erent instanes of the pipeline. Something likethis is also quite easy to implement on the user's side, where the user an dividethe �les to be proessed into a number of �le lists appropriate for the number ofCPUs and amount of memory available to him and exeute the tokenizer on eahof the �le lists simultaneously.

38

ConlusionWe have presented a data-driven system for tokenizing and segmenting text.We have demonstrated the system's versatility by ombining methods based ondi�erent tehniques suh as morphologial ditionaries, regular expressions andexeption lists. The system proved its universal appliability in being able to atboth as a sentene boundary disambiguator for languages suh as English andCzeh and as a word segmenter for languages whih do not use whitespae suhas Chinese. We have also pointed to the fat that the program relies only onmulti-platform programs and libraries. While it has not been tested on Windowsor MaOS yet, are was taken at every step to ensure it would be a smoothtransition (ICU an be used instead of libionv for harater ode onversion,CMake is used for building, OS-spei� matters are aessed via Boost only. . .).We measured the auray, preision, reall and F-measure of the token andsentene boundary disambiguation. The tests were exeuted with several verydi�erent tokenization shemes and on several datasets in multiple languages. Wealso measured and analyzed the tokenizer's speed and identi�ed the bottlenekwhih should serve as an avenue for further optimization.The natural next step would be to invent and experiment with new ways andfeatures for tokenizing and segmenting text. The system o�ers fast feedbak onthe auray of the user's tokenization shemes and is helpful in pointing outpositions in the text whih are yet to be overed by rules for inserting deisionpoints. Another possible elaboration might be to hange the maximum entropytraining bak-end to the Toolkit for Advaned Disriminative Modelling or someother alternative.

39

A. User Doumentationtrtok - a fast and trainable tokenizer for natural languages--Trtok is a very universal performane-oriented tokenizer for proessingnatural languages. It reads text and tries to orretly detet senteneboundaries and divide the text into tokens.Trtok does not implement any speifi heuristi to perform these tasks,instead it lets the user define rules for potential joining and splitting ofwords into tokens and sentenes. The final deision whether to split or joinwords and whether to break sentenes is left to a onditional probabilistimodel whih is trained from user-supplied annotated data. The way the trainerunderstands the data an be extensively ustomized by the user who an definehis own features and speify whih features are signifiant for what tokens.1) Tokenization shemes-----------------------The user might want to use trtok for proessing more than 1 language or forproessing 1 language in many ways. These different ways of tokenization aredesribed by "tokenization shemes". Their definitions reside in the"shemes" subdiretory of the installation diretory. Every folder inside"shemes" defines a single tokenization sheme by way of variousonfiguration files.Tokenization shemes may be nested to represent a sort of sheme inheritanewhere a sheme inherits all the onfiguration files of its anestors unlessit redefines them by having a onfiguration file of the same name.a) Rough tokenization rulesFiles with a .split file extension must ontain pairs of whitespaedelimited regular expressions. When tokenizing the input, every position inevery word where the prefix leading to the position mathes the firstexpression and the suffix following it mathes the seond expression ismarked as a potential token split and the word is split into two temporaryrough tokens.Files with a .join extension have the same syntax, but they desribe twospans of text whih may be potentially joined into a single token if foundseparated by whitespae.Files with a .begin and a .end extension list haraters before whih, resp.after whih, a potential sentene break is to be marked (and if thispotential sentene break ours within a word, the word is split into tworough tokens). If the newline harater is to be a potential sentenebeginning or ending harater, an empty line is expeted in either a .beginfile or a .end file.The grammar of the regular expressions in .split and .join files is the oneused by Quex and desribed in detail athttp://quex.soureforge.net/do/html/usage/patterns/ontext-free.html.The .split and .join files may ontain omments whih are lines that beginwith the # symbol. 40

b) User-defined propertiesFiles with a .rep extension ontain a single regular expression from thefamily of expressions allowed in PCRE (see pre.org). A rough token ismarked as having this property if it an be mathed to the regularexpression.Files with a .listp extension define properties using lists of token types.If a rough token's text is exatly the same as a line from a .listp file,then that rough token is marked as having the property defined by that.listp file.) Feature seletionEvery tokenization sheme must have a file named "features". For eah roughtoken in the viinity of the potential split/join/sentene break, itspeifies whih features are important for the deision.A typial line starts by delaring a set of interesting offsets (0 is therough token preeding the deision point, -1 the one before it, +1 the oneafter it, et...). These offsets are separated by ommas and intervals anbe used for onveniene (e.g. -4,-2..+2,5 selets -4,-2,-1,0,1,2,5).After the offsets omes a olon and a omma separated list of properties.The property names are the filenames of their definitions without theextensions and they are limited to the ommon identifier harater set[a-zA-Z0-9_℄. The line is losed with a terminating semiolon.Apart from these simple features, it is possible to ask for ombinedfeatures whih bundle the value of different properties of tokens atdifferent offsets into a single feature value. These are defined on theirown line and are enlosed in parentheses. Inside the parentheses is a "^"separated list of offset:property pairs. If a ombined feature takesproperties from a single token only, the parenthesized expression anappear on the right-hand side of a typial line instead of a simpleproperty name and the offsets within its definition are omitted.Apart from the user-defined properties from the .rep and .listp files, thetokenizer defines the non-binary property "%length" whose value is thelength of the rough tokenizer and the meta-property "%Word" whih generatesa property for eah rough token type.Example:-2..+2: %Word;-5..5: upperase, abbreviation, (starts_with_number ^ ends_with_period);(0:fullstop ^ 1:initial)d) Maxent training parametersMore ontrol over the proess of training the probabilisti model an behad by manipulating the "maxent.params" file. This file is an INI-styleonfiguration file whih lets the user set the following parameters, whihget passed diretly to the training toolkit.event_utoff=<int> All training events whih our lesstimes than event_utoff are ignored. Default 1.41

n_iterations=<int> How many iterations at most will theiterative method use. Default 15.method_name=lbfgs|gis Whih of the two methods L-BFGS or GISis to be used. L-BFGS is reommended. Default lbfgs.smoothing_oeffiient=<double> Sigma, the oeffiient in Gaussiansmoothing. Default 0 (no smoothing).onvergene_tolerane=<double> The model is regarded as onvergentwhen the relative differene between the log-likelihood of thesueeding models is < onvergene_tolerane. Default 1e-05.save_as_binary=false|true Whether to save the file in a binaryformat whih is faster to load and smaller if Maxent was ompiledwith zlib support. Default false.e) File lists and filename replaement regular expressionsFiles [prepare|train|heldout|tokenize|evaluate℄.[fl|fnre℄ are foronveniene only and are desribed later.2) Running the tokenizer------------------------a) Different ways of seleting inputThe first argument passed to the tokenizer selets its mode, whih an beeither "prepare", "train", "tokenize" or "evaluate". The seond argument isa path relative to the diretory "shemes" whih selets the tokenizationsheme to be used. The rest of the arguments are input files and options.Input files an be speified expliitly on the ommand line. More files anbe given using the -l (--file-list) option whih takes a path to a file andadds every line of it as another input file.When running in prepare mode or tokenize mode, an output file for eah filehas to be speified and when running in train mode or evaluate mode, a filewith the annotated version has to be speified. These seondary files areseleted by taking the input file's path and transforming it using a regularexpression/replaement string. The filename regular expression/replaementstring is speified using the -r (--filename-regexp) option. The stringslook like replaement ommands in sed, where the first harater an be anyASCII harater and that harater separates the regular expression fromthe replaement string and also terminates the entire string. Unlike sed,this speial harater annot be present anywhere else in the string (noesaping). The breed of regular expressions used here is the one supportedby PCRE, the replaement strings ontain the plaeholders \0, \1... for theentire mathed string, first aptured sequene...Example:trtok train en/simple/brown -l data/brown/train.fl -r "|raw|txt|"If no input file or file lists were given, a default file list named<mode_name>.fl, whih is part of the tokenization sheme, is used. If nofilename regular expression/replaement string is given, the one in the42

file named <mode_name>.fnre from the tokenization sheme is used. In bothases <mode_name> is expanded to either "prepare", "train", "tokenize" or"evaluate" depending on the urrent mode.If no input file or file lists were given and there are no default filelists defined by the tokenization sheme, then the tokenizer proesses thestandard input and writes to the standard output. This is, however, onlypossible for the "prepare" and "tokenize" modes. The standard input/outputombo an also be expliitly seleted by speifying the input file "-" onthe ommand line.b) Different modes of exeutionIn "prepare" mode, the tokenizer reads the input, splits it into roughtokens and then outputs it with all possible splits and sentene breaksperformed. This format might be handy for manual annotators who then onlyhave to join together parts of tokens and sentenes.In "train" mode, the tokenizer reads both the input and its annotatedversion. It uses the annotated data to get pairs of questions (values offeatures in a given ontext surrounding a deision point) and answers(whether the deision point is to beome a joining of tokens, a splittingof tokens or a sentene break). These pairs are then used to train theprobabilisti model and store it in a file under the "build" diretory.In "tokenize" mode, the tokenizer relies on the presene of an alreadytrained model and uses it to lassify every deision point in the inputfile and output the tokenized and segmented text.In "evaluate" mode, the tokenizer reads both the input and its annotationas in "train" mode, but now it also queries the trained model for anopinion and ompares it with the one found in the annotated data. Thetokenizer outputs a log of every ontext and both the predited and orretoutomes for later analysis. The "analyze" sript provided with trtok willlet you read this output and determine the auray of your system.) Different optionsIf you launh trtok with no ommand line arguments, you will get a summaryof all the supported ommand line options and their meaning. These inludeoptions for setting the enoding of the input and output files, options forontrolling the output (preserving the original tokenization, segmentationor paragraph division), the preproessing of input (if entities are to beexpanded for the duration of the tokenization and if they are to be keptexpanded in the output; if XML should be hidden from tokenization), optionsfor logging the ontexts and outomes to a third file and others.

43

Bibliography[1℄ CMake - Cross Platform Make.URL http://make.org/[2℄ GNU Libtool - The GNU Portable Library Tool.URL http://www.gnu.org/software/libtool/[3℄ IntelR© Threading Building Bloks 3.0 for Open Soure.URL http://threadingbuildingbloks.org/[4℄ LATEX WikiBook / Formatting.URL http://en.wikibooks.org/wiki/LaTeX/Formatting[5℄ The OpenMP API.URL http://openmp.org/wp/[6℄ PCRE - Perl Compatible Regular Expressions.URL http://www.pre.org/[7℄ re2 - an e�ient, prinipled regular expression library.URL http://ode.google.om/p/re2/[8℄ Berger, A.L., Pietra, V.J.D., and Pietra, S.A.D. A maximum en-tropy approah to natural language proessing. Computational linguistis,22(1):39�71, 1996.[9℄ Bird, S., Loper, E., and Klein, E. Natural Language Toolkit.URL http://www.nltk.org/[10℄ Bojar, O. Trainable Tokenizer v.0.1.URL http://ufal.mff.uni.z/euromatrixplus/downloads.html[11℄ Dawes, B., Williams, A., Prus, V., Henney, K., Järvi, J., Dimov,P., and Abrahams, D. et al. Boost C++ Libraries (�lesystem, thread,program_options, lexial_ast, ref).URL http://www.boost.org/[12℄ Emerson, T. Seond International Chinese Word Segmentation Bakeo�,2005.URL http://www.sighan.org/bakeoff2005/[13℄ Grefenstette, G. and Tapanainen, P. What is a Word, what is a Sen-tene?: Problems of Tokenisation. Citeseer, 1994.44

http://cmake.org/
http://www.gnu.org/software/libtool/
http://threadingbuildingblocks.org/
http://en.wikibooks.org/wiki/LaTeX/Formatting
http://openmp.org/wp/
http://www.pcre.org/
http://code.google.com/p/re2/
http://www.nltk.org/
http://ufal.mff.cuni.cz/euromatrixplus/downloads.html
http://www.boost.org/
http://www.sighan.org/bakeoff2005/

[14℄ Kiss, T. and Strunk, J. Unsupervised multilingual sentene boundary de-tetion. Computational Linguistis, 32(4):485�525, 2006.[15℄ Klyueva, N. and Bojar, O. UMC 0.1: Czeh-Russian-English MultilingualCorpus. In Pro. of International Conferene Corpus Linguistis, pp. 188�195. 2008.URL http://ufal.mff.uni.z/euromatrixplus/downloads.html[16℄ Le, Zhang. Maximum entropy modeling toolkit for Python and C++. 2004.URL http://homepages.inf.ed.a.uk/lzhang10/maxent_toolkit.html[17℄ Low, J.K., Ng, H.T., and Guo, W. A maximum entropy approah to Chi-nese word segmentation. In Proeedings of the Fourth SIGHAN Workshopon Chinese Language Proessing, vol. 1612164. Jeju Island, Korea, 2005.[18℄ Malouf, R. A omparison of algorithms for maximum entropy parame-ter estimation. In proeedings of the 6th onferene on Natural languagelearning-Volume 20, pp. 1�7. Assoiation for Computational Linguistis,2002.[19℄ Malouf, R., Baldridge, J., and Osborne, M. The Toolkit for AdvanedDisriminative Modeling, 2005.URL http://tadm.soureforge.net/[20℄ Nasonov, A. �Any interest in io-stream like pipe?� An implementation ofof pipestreams, 2003.URL http://lists.boost.org/Arhives/boost/2003/08/51289.php[21℄ Palmer, D.D. and Hearst, M.A. Adaptive multilingual sentene boundarydisambiguation. Computational Linguistis, 23(2):241�267, 1997.[22℄ Rafferty, A., Kleeman, A., Finkel, J., and Manning, C. StanfordClassi�er, 2007.URL http://nlp.stanford.edu/downloads/lassifier.shtml[23℄ Ratnaparkhi, A. A simple introdution to maximum entropy models fornatural language proessing. IRCS Tehnial Reports Series, p. 81, 1997.[24℄ Reynar, J.C. and Ratnaparkhi, A. A maximum entropy approah toidentifying sentene boundaries. In Proeedings of the �fth onferene onApplied natural language proessing, pp. 16�19. Assoiation for Computa-tional Linguistis, 1997.
45

http://ufal.mff.cuni.cz/euromatrixplus/downloads.html
http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html
http://tadm.sourceforge.net/
http://lists.boost.org/Archives/boost/2003/08/51289.php
http://nlp.stanford.edu/downloads/classifier.shtml

[25℄ Riley, M.D. Some appliations of tree-based modelling to speeh and lan-guage. In Proeedings of the workshop on Speeh and Natural Language,pp. 339�352. Assoiation for Computational Linguistis, 1989.[26℄ Shäfer, F.-R. Quex - Fast Universal Lexial Analyzer Generator.URL http://quex.soureforge.net/

46

http://quex.sourceforge.net/

List of Tables4.1 Bakeo� dataset sizes . 304.2 Number of training iterations for Chinese segmentation 304.3 Development performane of Chinese segmenter 314.4 Final performane of Chinese segmenter 314.5 Chinese Word Segmentation sores 314.6 Segmentation performane on Czeh 324.7 Tokenization performane on Czeh 324.8 Segmentation performane on English CzEng 324.9 Tokenization performane on English CzEng 334.10 Segmentation performane on Brown 334.11 Tokenization performane on Brown 334.12 Time spent in individual pipeline elements 364.13 Computational omplexity of the Classi�er stage 364.14 Time spent in individual initialization steps 374.15 Time spent initializing expressed as time spent proessing data . . 38

47

	Introduction
	A Survey of Other Solutions
	RE
	MxTerminator
	Riley
	Satz
	Punkt
	Chinese Word Segmentation

	Maximum Entropy Modelling
	Maximum Entropy Models
	Available Implementations

	Implementation
	Overview of the System
	TextCleaner
	RoughTokenizer
	FeatureExtractor
	Classifier
	OutputFormatter
	Encoder

	Modes of Execution
	Training
	Tokenization
	Evaluation
	Preparation

	Rough Tokenization
	Regular Expression Libraries
	Lexical Analyzer Generators
	The Solution
	Technical Implementation

	Classification
	Parallelism
	The Pipeline
	The Input/Output Threads

	Evaluation
	The Accuracy of the System
	Chinese Word Segmentation
	Tokenization of Czech and English

	The Speed of the System
	Parallel Processing
	Initialization Costs

	Conclusion
	User Documentation
	Bibliography

