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Abstract

The purpose of our thesis is to build a contrarian trading strategy that would maxi-

mize growth rate of our wealth. In the first part, we derive the strategy by algebraic

means. In particular, we exploit that growth maximization is equivalent to period by

period maximization of log wealth. We approximate the log optimal portfolio by a

mean-variance efficient portfolio and specify the first and second conditional moment

by a dynamic econometric model. In the second part, we discuss deficiencies of our

strategy and use Monte Carlo simulations to create a modification that should per-

form better. In the final part, we demonstrate viability of the strategy on historical

data. Assuming unlimited leverage and mild transaction costs, the strategy was able

to generate annual geometric mean return close to 24%.
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Keywords Portfolio Choice; Investment Decisions
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Abstrakt

Účelem práce je vytvořit obchodńı strategii, která by využ́ıvala jevu ”contrarian

profitability”. Prvńı část práce se věnuje samotnému odvozováńı strategie. Nejprve

využijeme faktu, že strategie maximalizuje r̊ust, právě pokud v každé periodě max-

imalizuje logaritmus hodnoty našeho bohatstv́ı. Poté log-optimálńı portfolio aprox-

imujeme portfoliem, které lež́ı na efektivńı hranici (termı́n z oblasti moderńı teorie

portfolia). Prvńı a druhé podmı́něné momenty specifikujeme pomoćı dynamického

ekonometrického modelu. V druhé části prodiskutujeme nedostatky naš́ı strategie

a pomoćı Monte Carlo simulaćı ji modifikujeme. V závěrečné části demonstrujeme

životaschopnost strategie na historických datech. Za předpokladu neomezené páky a

rozumných transakčńıch náklad̊u jsme byli schopni dosáhnout pr̊uměrného ročńıho

zhodnoceńı kolem 24%.
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Kĺıčová slova Výber portfolia; Investičńı rozhodováńı
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Chapter 1

Introduction

Since the early 1980’s, a number of financial institutions have engaged in quan-

titative trading strategies that became later known as contrarian trading. The

defining feature of these strategies was simultaneously opening long positions

in stocks that had performed poorly in the past and shorting stocks that had

performed well (selling past winners and buying past losers). Portfolios con-

structed in such a manner were rebalanced in short time intervals, usually

ranging from minutes to days. Moreover, contrarian strategies were almost

invariably market neutral. According to first-hand accounts, those strategies

were able to generate excess risk adjusted returns (see for example Pole 2007;

Thorp 2003). For obvious reasons, a detailed description of strategies used by

practitioners was never revealed. The topic of contrarian profitability received

some limited academic attention (for example Lehmann 1990; Lo & MacKinlay

1990a; Avellaneda & Lee 2008). The existing literature follows a bottom-up

approach; i.e., haphazard trading rules are presented without any assertion of

optimality for purely demonstrative purposes.

The purpose of this Bachelor Thesis is to build a contrarian trading strategy

that would be able to replicate the windfall generated by the contrarian strate-

gies in the past three decades. In comparison to the existing literature, we have

chosen a top-down approach. We started by setting an objective measure of

optimality - maximization of the growth rate of wealth - and derived the trad-

ing rules from there. For convenience, we have worked within a discrete time

framework. While our effort to build the strategy has met with success, we

consider the insight gained in the process to be much more valuable than the

resulting strategy itself. In particular, we would like to highlight the discussion

of problems linked to using a mean-variance efficient portfolio as a proxy for
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the growth optimal portfolio.

The rest of the thesis is structured as follows: In Chapter 2, We provide

the motivation behind growth maximization and derive a trading strategy that

is approximately optimal under some idealized assumptions. In Chapter 3, we

comment on the practical limitation of our strategy and perform Monte Carlo

simulation as a means of finding a modification that might perform better. In

Chapter 4, we demonstrate our strategy on the historical returns of selected

stocks. Chapter 5 concludes the thesis by summing up the results and indi-

cating possible ways of improving our strategy. In order to allow the reader to

fully focus, we have decided to keep the thesis as short as possible. For this

reason, we have moved all non-essential material into the Appendix. Among

other things, the Appendix contains derivations of formulae, proofs of various

claims and detailed reasoning behind the selection of stocks used in Chapter 4.

Source code of the simulations described in the thesis will be made available

on request.



Chapter 2

The objective and approximate

solution

We will begin by explaining why we have chosen growth maximization as our

objective. We will proceed by introducing a general framework, notations and

assumptions about institutional setting of the market as well as assumptions

about return process. Finally, we will derive a strategy that (approximately)

fulfills our objective.

2.1 Objective

Economic theory dictates that the relevant criterion that defines the best strat-

egy is the maximization of a subjective utility function of wealth. While useful

in theory, utility function is an elusive concept that is of little practical help

when faced with investment decisions. To quote (Roy 1952):

”In calling in a utility function to our aid, an appearance of gen-

erality is achieved at the cost of a loss of practical significance,

and applicability in our results. A man who seeks advice about

his actions will not be grateful for the suggestion that he maximize

expected utility.”

In the late 1950’s Kelly (1956) and Latane (1959) proposed an alternative

approach that later developed into the so called growth optimal portfolio theory.

The cornerstone of this approach is not maximization of the subjective utility

function but rather finding a strategy that maximizes the growth rate of wealth

in the sense that, in the long run, it almost surely leads to more wealth than

any other strategy.
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This approach is especially appealing for short-term speculative strategies.

To see why, realize that a short rebalancing interval implies a large number of

periods in which the strategy will be applied. With a large number of periods,

we can expect the limiting property to translate into actual results. Since

developing a short-run speculative strategy is our exact goal, we have opted to

take growth maximization as our objective.

In the majority of cases, the contrarian trading strategies used by practi-

tioners were market neutral (Pole 2007). In other words, portfolios based on

the strategies were ex ante designed to be uncorrelated with the market. In

the process of building the strategy, we will retain this requirement. Doing so

allows us to isolate gains stemming from contrarian profitability from market

returns. For simplicity, we will use dollar neutrality (size of long positions is

equal to size of short positions) as a proxy for market neutrality.

2.2 Framework

2.2.1 Time setting

As was pointed out in the introduction, the derivation will be conducted within

a discrete time framework. We denote the number of periods in which we will

be carrying out the strategy by T . For now, the length of a period is left

unspecified. Decision point τ represents the end of period τ . ψτ will denote

the information set available at decision point τ . In our case, it will contain

the realized return from before and in the period τ .

2.2.2 Stocks, general characteristics

We denote the number of stocks of interest by n. We will only consider cases

n ≥ 2. In line with Hakansson & Ziemba (1995), we will assume perfect

markets. This assumption embodies the following:

� There are no trading costs or taxes. (This assumption will be partially

dropped in the last chapter.)

� The investor has no price impact. (This assumption will be partially

dropped in the last chapter.)

� Any stock could be sold short.
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� The investor has full use of funds obtained via short selling. (This as-

sumption will be partially dropped in the last chapter.)

� Stocks are infinitely divisible; i.e., the invested amount can be any real

number.

In order to simplify the analysis, we will also assume that the riskless rate of

interest is zero.

2.2.3 Stocks, return process

Let rτ,i be the simple rate of return of the stock i from time τ − 1 to time τ .

Formally:

rτ,i =
Pτ,i − Pτ−1,i

Pτ−1,i
,

where Pτ,i is the price of stock i at time τ . The use of simple returns (in contrast

to continuously compounded log returns) is required by the upcoming sections.

The vector of returns at period τ is defined as: rτ = (rτ,1, rτ,2, ..., rτ,n)′. In the

subsequent text the term rate of return will be replaced by the shorter term

return.

For convenience we will assume that the return process started in the infi-

nite past and that the conditional second moments are finite in every period.

Additional assumptions about the return process will be introduced later in

this chapter.

To simplify the notation later on, we will denote the conditional expected

return and variance of an individual stock i by:

µτ,i = E[rτ,i|ψt−1],

σ2
τ,i = var[rτ,1|ψt−1].

Furthermore, we will denote the conditional variance-covariance matrix and

vector of conditional expected returns by

µτ = E[rτ |ψt−1],

Στ = var[rτ |ψt−1].
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Next, we need a few assumptions that will guarantee the existence and

uniqueness of the solution of optimization problems we encounter later. In

particular we will assume:

� There are no arbitrage opportunities. Formally, in every period there is

no wτ such that wτ
′ι = 0 and P[w′τrτ > 1|ψτ ] = 1. This assumption

prevents us from generating riskless profit without any investment.

� Στ has rank n. With the first assumption in place, this assumption only

excludes existence of stocks that has same return almost surely.

� The conditional expected return of at least one stock differs from the

others, formally ∀k ∈ R : P[µτ = kι] = 0.

2.2.4 Portfolio, wealth

wτ,i will denote the net position in stock i held in the period t. wτ,i < 0

corresponds to selling short. For example, wτ,i = 100 means that our holding

of stock i during the period τ are worth 100. Let wτ = (wτ,1, wτ,2, ..., wτ,n)′.

Since a portfolio is uniquely defined by a vector of position sizes, we will be

using the two terms interchangeably.

We will denote total conditional expected portfolio return and total condi-

tional portfolio variance by

µτ,p = E[w′trτ |ψt−1],

σ2
τ,p = Var[w′τrt|ψt−1].

Keep in mind that both µτ,p and σ2
τ,p are a function of wτ .

Vτ will denote our wealth (or capital - the two words will be used synony-

mously) at the decision point t. V0 will represent our starting wealth. Therefore,

the formula that relates portfolio weights, returns and capital at any period is

Vτ = Vτ−1 + w′ττ t. Intuitively, our wealth at the end of period τ is the sum

of the wealth of the previous period and the rate of return of all stocks under

consideration multiplied by our position in the particular stock.
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2.3 Solution

To help the reader anticipate the solution to the problem outlined earlier, we

provide a short summary of steps taken. Each step listed below corresponds to

a separate subsection.

1. We will restate the problem of growth maximization as a problem of

period-by-period maximization of log wealth.

2. We will derive an approximation of our objective function and show that

under this approximation, the portfolio of our interest must necessary lie

on an efficient frontier as understood by the modern portfolio theory.

3. We will formalize the problem of finding the efficient frontier and derive

a closed form solution under the dollar neutrality constraint.

4. We will use the previous two results and identify the point at the efficiency

frontier, where the approximation for our objective function is maximized.

5. We will use our belief about the behavior of the return process to specify

functional forms of conditional moments used in the previous steps. At

this point, we will also comment on estimation of the parameters entering

the functional forms.

2.3.1 Growth rate maximization corresponds to period-by-

period maximization of log wealth

Our goal is to find a strategy that optimizes the growth rate of our wealth in the

sense that it almost surely leads to more capital than any other strategy in the

long run. Because the formalization of the previous requirement would require

us to introduce a disproportionate amount of new concepts, we have decided to

omit it and proceed directly to the first important observation: According to

Algoet & Cover (1988), a strategy maximizes the growth rate of wealth if and

only if it sequentially maximizes the expected logarithmic wealth conditional

on information set available at the relevant decision point. Formally, we are

required to solve:

Maximize:

E[log(Vτ )|ψτ−1]. (2.1)
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Subject to:

w′τι = 0,

sequentially at each decision point τ −1 for all τ ∈ {1, ..., T}. (ι denotes a unit

vector.)

Because Vτ−1 is already determined at the decision point τ −1, the problem

can be equivalently stated using the objective function:

E[log(
Vτ
Vτ−1

)|ψτ−1]. (2.2)

The following paragraph does not constitute a part derivation. Rather it

aims to provide some intuiting behind the first result. By the properties of the

logarithmic function, we have

log(
Vτ
Vτ−1

) ≈ Vτ − Vτ−1
Vτ−1

for small changes of Vτ . Note that the right side is a commonly used expression

of the growth rate. In light of this realization the first result is intuitive;

maximization of long term growth is equivalent to maximization of the growth

rate period by period.

2.3.2 Approximation of the objective function

Maximizing the objective function (2.2) would require us to specify the distri-

bution of rτ conditional on ψτ−1. Even if we specify the conditional distribu-

tion, the optimization would be difficult because it would involve an evaluation

of some non-trivial multiple integral. Consequently, we are forced to find a

suitable approximation of (2.2). Doing so is the purpose of this section.

We will resort to the so called approximation by the first two moments. The

approximation is partially based on the work Thorp (1997) and Pulley (1983).

The idea behind the approximation is the following: Consider a portfolio wτ

with an expected return E[wτrτ |ψτ−1] and variance var[wτrτ |ψτ−1]. Next,

consider a finite sequence of bets on results of tosses with a biased coin such

that the expected profit of the sequence of such bets is equal to the expected

profit of our portfolio and the variance of profit resulting from such bets is

equal to the portfolio variance. In our approximation, we will replace the
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original portfolio with a sequence of such bets and compute the value of the

objective function. Finally, we observe what happens if we let the lengths of

the sequence M → ∞ while keeping the overall return and variance constant.

(Heuristically, we consider longer and longer sequences of smaller and smaller

bets.)

We will now carry out the procedure step by step. Firstly we define a finite

sequence of independent random variables y1, ..., yM in the following way:

P[ym =
µτ,p
M

+
σ2
τ,p√
M

] =
1

2
,

P[ym =
µτ,p
M
−

σ2
τ,p√
M

] =
1

2
.

In light of the heuristic description provided above, ym represents the result of

a bet on the mth coin toss. Note that

var[
M∑
m=1

ym] = σ2
τ,p,

E[
M∑
m=1

ym] = µτ,p.

In other words, both the variance and expected return of the sum of the vari-

ables y1, ...yM correspond to the conditional moments of the portfolio. We now

replace the portfolio return with the return of the series of the bets on the coin

tosses:

Vτ
Vτ−1

|ψτ−1 =
Vτ−1 +w′τrτ

Vτ−1
|ψτ−1

≈ Vτ−1 +
∑M

m=1 ym
Vτ−1

= 1 +
M∑
m=1

ym
Vτ−1

.

If we assume that both values y1, ...yM can attain are sufficiently small, we can

approximate the above expression:

1 +
M∑
m=1

ym
Vτ−1

≈
M∏
m=1

(1 +
ym
Vτ−1

).
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Our original interest lies in:

E[log(
Vτ
Vτ−1

|ψτ−1)].

With the help of the previous approximation and some elementary algebra, we

obtain:

E[log(
Vτ
Vτ−1

|ψτ−1)] ≈ E[log(
M∏
m=1

(1 +
ym
Vτ−1

))]

= E[
M∑
m=1

log(1 +
ym
Vτ−1

)],

=
M∑
m=1

E[log(1 +
ym
Vτ−1

)].

From the definition of ym:

M∑
m=1

E[log(1 +
ym
Vτ−1

)] =
M∑
m=1

(
1

2
log(1 +

µτ,p
Vτ−1M

+
στ,p

Vτ−1
√
M

)+

+
1

2
log(1 +

µτ,p
Vτ−1M

− στ,p

Vτ−1
√
M

)

)
.

Now, let us define gM(µτ,p, στ,p) as:

gM(µ, σ) =
M∑
m=1

(
1

2
log(1 +

µτ,p
Vτ−1M

+
στ,p

Vτ−1
√
M

)+

+
1

2
log(1 +

µτ,p
Vτ−1M

− στ,p

Vτ−1
√
M

)

)
.

Expanding gM(µ, σ) into a bivariate Taylor series around (0, 0) yields:

gM(µτ,p, στ,p) =
µτ,p
Vτ−1

−
σ2
τ,p

2V 2
τ−1

+ o(
1√
M

).

For details, please refer to Section A.1. Finally, by letting the number of sub-

period M →∞ we obtain:

E[log(
Vτ
Vτ−1

|ψτ−1) ≈ g∞(µτ,p, στ,p) =
µτ,p
Vτ−1

−
σ2
τ,p

2V 2
τ−1

.
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A simple examination of the above result reveals that gM(µτ,p, στ,p) is increasing

in expected portfolio return µτ,p and decreasing in the portfolio variance στ,p.

This result implies that the portfolio that maximizes gM(µτ,p, στ,p) must have

maximum expected return for a given amount of variance.

2.3.3 Identifying the efficient frontier

In the previous section, we have shown that the sought portfolio must have

maximum expected return for a given amount of variance. Finding the set of

such portfolios is the central topic of this subsection. As per our objective, we

will require those portfolios to be dollar neutral.

The problem under consideration, yet with slightly different constraints

and parameterization, was first introduced by Markowitz (1952) in an at-

tempt to develop both a normative and positive strategy of portfolio selection.

Markowitz named the set of all such portfolios the efficient frontier and the

process of finding the set mean-variance optimization. We will be using this

nomenclature (with a slight modification) throughout the thesis.

For a given positive level of portfolio conditional variance σ2, the problem of

finding a portfolio with maximum expected return can be formalized as follows:

Maximize:

w′τµτ .

Subject to:

w′τΣτwτ = σ2,

w′τι = 0.

Let us first discuss the existence of the solution. For any given σ2, the set

of portfolios (when speaking about a portfolio, we are speaking about some

wτ ∈ Rn) that satisfy all constraints is nonempty, closed and bounded. While

the first two properties are obvious, the third one is a bit trickier to prove (the

proof is provided in Section A.2). The objective function is a scalar product

and as such is continuous. Therefore, the existence of a solution follows from

theorem 4.16 in Rudin (1976).

With this knowledge in mind, we can rigorously define the efficient frontier

as the set of solutions to the above problem for all nonnegative σ2. (We realize

that our definition slightly differs from how the efficient frontier is understood

in the modern portfolio theory literature.) In light of this definition, we can
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restate the conclusion of the previous section: The portfolio that maximizes

gM(µτ,p, στ,p) must lie on the efficient frontier. The situation is depicted in

Figure 2.1.

Figure 2.1: Efficient frontier and g∞

Efficient frontier

Values of g∞ on the efficient frontier

Graph of g∞

Set of available portfolios

Achievable positive values of g∞

σ2
τ,p

µτ,p

g ∞

Source: author’s computations.

The next step is to a derive closed form solution of the above optimization

problem. The problem can be solved by means of Lagrange multipliers (for

details, please refer to Section A.3). The solution parameterized by σ is given

by

wτ =
σ√
K

Σ−1τ (µτ − Lι), (2.3)

where L and K are given by

L = (ι′Σ−1τ ι)
−1(ι′Σ−1τ µτ ),

K = (µτ − Lι)′Σ−1τ (µτ − Lι).

An important observation is that the optimal positionswτ of the mean-variance

efficient portfolios for σ2 are linear in σ. Consequently, the relative positions
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sizes in portfolio on the efficient frontier do not depend on the selected level

of portfolio variance. In other words, movement alongside the efficient fron-

tier corresponds to changes in total (absolute) size of the investment, not the

relative position sizes.

Before we proceed, consider the expected return of the mean-variance effi-

cient portfolio. The expected return is given by

w′τµτ =
σ√
K
µ′τΣ

−1
τ (µτ − Lι). (2.4)

It is easy to see that the expected conditional portfolio return is linear in σ as

well.

2.3.4 Which portfolio from the efficient frontier is the best?

We have previously derived an approximation of our objective function and

found that the portfolio that maximizes that approximation lies on the efficient

frontier. Furthermore, we have derived a closed form expression for the efficient

frontier as a function of σ. Our current task is to select the best portfolio

(in terms of our approximation) from the efficient frontier. Because we have

parameterized the efficiency frontier by σ, our task comes down to choosing the

right value of σ. Heuristically, we have already determined relative position

sizes and what remains to be done is to determine absolute position sizes (the

size of total absolute investment).

First step is to express the approximation gM(µτ,p, στ,p) as a function of σ

only. Our original formula was:

g∞(µτ,p, στ,p) =
µτ,p
Vτ−1

−
σ2
τ,p

2V 2
τ−1

.

By substituting (2.4) for the portfolio expected return µτ,p and σ2 for portfolio

variance σ2
τ,p, we arrive at

g∞(σ) =
σ

Vτ−1

√
K
µ′τΣ

−1
τ (µτ − Lι)−

σ2

2V 2
τ−1

.

The next step is to maximize the above expression with respect to σ. Be-

cause the expression is a negative quadratic function in σ, both the necessary

and the sufficient condition for global maximum can be obtained by taking the
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Figure 2.2: Optimal portfolio

Efficient frontier

Set of available portfolios

Optimized portfolio

Optimized value of g∞

σ2
τ,p

µτ,p

g ∞

Source: author’s computations.

first derivative and setting it equal to 0:

∂g∞(σ)

∂σ
=

1

Vτ−1

√
K
µ′τΣ

−1
τ (µτ − Lι)−

σ

V 2
τ−1

!
= 0.

Solving with respect to σ in turn yields:

σ =
Vτ−1√
K
µ′τΣ

−1
τ (µτ − Lι).

Finally, we can insert the expression for variance into our expression for weights

(2.3) to obtain:

wτ =
Vτ−1
K

(µ′τΣ
−1
τ (µτ − Lι))Σ−1τ (µτ − Lι), (2.5)

which concludes the search for (approximately) optimal position sizes. The

result is illustrated in Figure 2.2
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2.3.5 Specifying the functional form of conditional expected

return and variance

Until now, we have been operating with the conditional expected return µτ

and conditional variance-covariance matrix Στ without any further specifica-

tion. What remains to be done is to use our knowledge of contrarian prof-

itability (buying losers and selling winners generates excess profits) to find

a suitable functional form of the conditional expected return and to use well

known facts about the behavior volatility to find a functional form of the condi-

tional variance-covariance matrix. After we have specified the functional forms,

we will discuss the estimation of the parameters that enter it.

Note that the specification of the conditional expected return captures our

edge over the market and consequently is crucial for our success. Without a

viable specification, all other work would be done in vain. The only reason why

it is buried deep within the chapter rather than having a prominent place is

our desire to present topics in a top-down manner.

In searching for the functional forms of the conditional expected return

and conditional variance-covariance matrix, we will take advantage of well-

known econometric models (or perhaps we can say that our model of the return

process is stated in econometric terms). In particular, the conditional expected

return will be specified by a simple linear regression model while the conditional

variance-covariance matrix will be specified by a multivariate GARCH model.

Modeling the vector of conditional mean returns

Our objective is to find a suitable functional form of the conditional expected

return. As we have already revealed, the conditional expected return will be

specified by a linear regression model. Our choice of regressors is motivated

by Lo & MacKinlay (1990a). Lo & MacKinlay (1990a) proposed a contrarian

strategy which dictated position sizes:

wτ,i =

(
1

n

n∑
j=1

rτ−1,j

)
− rτ−1,i.

Expressed in words, positions in stock i is determined by the difference be-

tween the average return of all stocks and the return of stock i in the previous

period. As documented by Khandani & Lo (2007), this simple strategy is able

to generate excess risk adjusted profits. If we assume that the profitability was
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not a fluke, we can conclude that the deviation from average return is able to

predict future returns (For detailed treatment, please see A.4).

Having provided the motivation behind the choice of regressors, we can now

present the regression equations for individual stocks:

rτ,1 = β1dτ−1,1 + ετ,1,

rτ,2 = β2dτ−1,2 + ετ,2,
...

rτ,n = βndτ−1,n + ετ,n,

where

dτ−1,i = rτ−1,i −
1

n

n∑
j=1

rτ−1,j.

Of course, we assume that the errors are uncorrelated with the regressors.

Other assumptions about the behavior of the errors will be given in the next

subsection.

The corresponding functional form of conditional expected return is then:

µτ,1 = β1dτ−1,1,

µτ,2 = β2dτ−1,2,
...

µt,n = βndτ−1,n.

(2.6)

We have decided to exclude the intercept from the model. The reason is the

following: If the intercept was included, the strategy would have systematically

assigned more positive weight to the stocks with a high unconditional expected

return. Consequently, the long-term return of those stocks and our strategy

would have been correlated. Assuming that stocks with a high unconditional

expected return are also stocks with high betas in the sense of Capital Asset

Pricing Model, this would defy our goal of separating the long-term return of

the market from the long-term return of our strategy.

Modeling the conditional variance - covariance matrix

The next task is to find a functional form of conditional variance-covariance

matrix. This corresponds to specifying the process that generates disturbances
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in the previous model. In formal terms, if we put

ετ =


ετ,1

ετ,2
...

ετ,n


then we can write,

ετ = Σ1/2
τ vτ , (2.7)

where vt,i is white noise with variance equal to unity and Σ1/2
τ is the lower

triangular component of the Cholesky decomposition of Στ .

Stock returns are known to display volatility clustering (Cont 2001). Conse-

quently, we will require the specification of the conditional variance-covariance

matrix to capture this phenomenon. If we were dealing with a univariate time

series, our task would be simple as we would resort to a basic model from

GARCH class. Unfortunately there is no straightforward generalization of

GARCH into the realm of multivariate time series and hence, further discussion

is called for. We will restrict ourselves to models that only contain a single lag

as those models are deemed to be sufficient (Engle 2001).

There are three well known problems inherent to general multivariate GARCH

models (Silvennoinen & Terasvirta 2008). The first of these is an excessive

number of parameters, the majority of which lack an economic interpretation.

Excessive number of parameters results in overfitting. The second problem,

partially linked to the first one, is that the resulting variance-covariance ma-

trix is not by construction positive definite. Consequently, we need to impose

restrictions. Third problem, linked to the first two, is that with a larger number

of parameters and restricted parameter space, estimation becomes difficult and

computationally demanding. Our aim is to find a model that does not suffer

from these three shortcomings.

Our preferred approach (discussed for example in Silvennoinen & Terasvirta

2008) is to decompose the conditional variance-covariance matrix Var[rτ |ψτ−1]
into a conditional correlation matrix and conditional variances. The two can

then be modeled separately. Modeling the correlation matrix and variances

separately makes it extremely easy to make the resulting variance-covariance

matrix positive definite. Moreover, the parameters in this class of models usu-

ally have an intuitive interpretation. Finally, as will be shown later in more
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detail, we can estimate parameters of the model equation by equation.

We opted to use the most basic model of this class called Constant Con-

ditional Correlation (CCC) (introduced by Bollerslev 1990). As the name im-

plies, the cornerstone of the model is the assumption that the correlation ma-

trix is constant over time. Hence the conditional variance-covariance matrix

Var[rτ |ψτ−1] can be decomposed as follows:

Στ = DτPDτ ,

where P is the time-invariant correlation matrix

P =


1 ρ1,2 . . . ρ1,n

ρ2,1 1 . . . ρ2,n
...

...
. . .

...

ρn,1 ρn,2 . . . 1


and Dτ is a diagonal matrix of conditional standard deviations of returns of

individual stocks:

Dτ =


στ,1 0 . . . 0

0 στ,2 . . . 0
...

...
. . .

...

0 0 . . . στ,n

 .

Individual conditional variances are then modeled by a GARCH(1,1) as

σ2
τ,1 = α1,0 + α1,1ε

2
τ−1,1 + γ1σ

2
τ−1,1,

σ2
τ,2 = α2,0 + α1,2ε

2
τ−1,2 + γ1σ

2
τ−1,2,

...

σ2
τ,n = αn,0 + α1,nε

2
τ−1,n + γ1σ

2
τ−1,n.

The model has very appealing properties. The number of parameters grows at

rate n2. All parameters have straightforward interpretation and Στ is positive

definite by construction. This concludes our search for a model of conditional

variance.
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Estimation

We have already specified the functional form of the conditional expected return

and conditional variance-covariance matrix. What remains to be done is to

estimate parameters that enter the specifications. In particular, we need to

estimate:

� The matrix of time-invariant correlations P

� The regression equations coefficients βi for all i ∈ {1, ...n}

� The GARCH coefficients αi,0, αi,1, γi for all i ∈ {1, ...n}

If the (simple) returns of our stocks were (conditionally) jointly normal, we

could efficiently estimate all the parameters by means of maximum likelihood

(Bollerslev 1986). Unfortunately, as suggested by Bera & Higgins (1993), the

assumption of conditional normality is hard to justify in practice. Moreover,

there is no consensus on the actual (conditional) distribution of stock returns

and hence any attempt to construct a likelihood function for such a distribution

would probably be misguided.

Our strategy will be to assume that the conditional distribution actually is

conditionally normal and conduct the estimation under this assumption. As de-

scribed by Bera & Higgins (1993), under relatively mild additional assumptions,

the estimation procedure will be consistent even if the conditional distribution

is misspecified (is not normal). (We have decided to omit those assumptions

from the text as we believe they do not add any value to the discussion). Such

an estimator is called the quasi-maximum likelihood.

If we denote the number of observations by S, s ∈ {1, ..., S} The maximum

likelihood function takes the form:

L =
S∏
s=1

(2π)−n/2|Σs|−1/2 exp

(
−1

2
ε′sΣsεs

)
.

Because of the recurrent nature of the maximum likelihood function, nu-

meric methods are needed in order to obtain the parameter estimates. Given

the large number of parameters and the iterative nature of numeric methods,

estimation becomes computationally demanding. This is inconvenient, because

we plan to devote the next chapter to Monte Carlo experiments. Consequently,

we are forced to tweak the estimation method. In particular, we will exploit

the fact that CCC specification allow us - at the cost of a small efficiency loss -
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to estimate the GARCH and regression parameters equation by equation, and

estimate the matrix of time-invariant correlations by its sample equivalent.

Starting with the estimation of GARCH and regression parameters, the

likelihood for stock i takes the form:

L =
S∏
s=1

(2πσ2
s,i)
−1/2 exp

(
−
ε2s,i

2σ2
s,i

)
.

The estimation of the time-invariant correlation matrix is straightforward.

The formula for sample correlation coefficient between stocks i and j is given

by

ρi,j =
1

S−1
∑S

s=1(rs,i − r̄s,i)(rs,j − r̄j)√
1

S−1
∑S

s=1(rs,j − r̄j)2
√

1
S−1

∑S
s=1(rs,i − r̄i)2

,

where

r̄i =
1

S

S∑
s=1

rs,i.

As was already mentioned, solving the maximum likelihood requires usage of

numeric methods. Without further inquiring into the topic, we have opted to

use the Quasi-Newton method as it is the default option in the software of our

choice (MATLAB).



Chapter 3

Deficiencies of our solution and

their partial remedy

In the previous section we laid out a trading strategy that aims to maximize

growth. The optimality (in the sense of expected growth maximizing property)

of the proposed strategy relied on assumptions about the properties of the

return process, the accuracy of our approximations and prior knowledge of the

parameters of our econometric model. Because none of the above is likely to

be met in practice, the strategy will suffer from deficiencies.

Those deficiencies form the content of this chapter. We begin by providing

a general discussion of the deficiencies and their interaction. We then perform

Monte Carlo simulations on artificial time series in order to find a modification

of our strategy that might perform better. The reader can consider this chapter

to be a descent from the realm of slick theory to the realm of crude reality.

3.1 Deficiencies

In this section we will provide a general discussion of the deficiencies. We

will start by explaining why our forecast of conditional expected return and

variance are likely to be incorrect. Next we will discuss how the inaccuracy in

the forecasts interacts with mean-variance optimization and how it influences

our portfolio selection. Finally, we will discuss the effect of approximations

used in Subsection 2.3.2.
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3.1.1 Incorrect forecasts

First, the forecast conditional expected return and variance-covariance matrix

might be incorrect, because the proposed functional form of the conditional

moments is (very) likely to be misspecified (the true functional form of the

conditional moments is likely to differ from the one we used). (Of course,

all probabilistic models are to some extent misspecified. From the theoretical

standpoint, the issue of misspecification can by bypassed by working in the

linear projection framework (Hansen 2000). We have decided not to do so in

order to keep the discussion simple.)

Second, even if we are somehow able to guess the correct functional form

of conditional moments, we still need to estimate the parameters that enter

it. Because the parameter estimates will be invariably laden with estimation

errors, the accuracy of our forecasts will be compromised. In reality, we can

expect to experience both problem - we will be using a misspecified model

whose (projection) coefficients will be laden with estimation errors.

Finally, the return process might not be stationary, that is both the func-

tional form of the conditional moments and the parameters might change over

time. In the realm of financial markets, the non-stationarity might be at-

tributed to institutional changes of the marketplace (regulations), technologi-

cal changes and adaptive behavior of market participants (Lo 2005). Again, it

is probable that we will experience non-stationarity along with the two initial

problems. In the subsequent text, we will resort to the rolling window estima-

tion. At this point we reveal that we do so to deal with the non-stationarity of

the return process.

3.1.2 Mean-variance optimization bias

We have just shown that the forecast conditional moments are likely to be

incorrect; i.e., for some assets, the forecast conditional expected return (or

variance) becomes larger than the true (unobservable) conditional expected

return while for others it becomes smaller. As was noted by Michaud (1989),

the forecast errors interact with the mean-variance optimization. In particular,

mean-variance optimization cannot distinguish between a situation where high

forecast expected return reflects the true expected return and situations where

a high forecast expected return is due to error. (The same holds for forecast

variances.) Consequently, the mean-variance optimization routine tends to

favor assets with an upward error in forecast expected return and a downward
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error in forecast variance. This feature of mean-variance optimization is known

as error maximization property. An obvious consequence of error maximization

is that estimated efficient frontier will be biased upwards in the sense that

that the portfolios on the estimated efficient frontier will have overestimated

expected return and underestimated variance (Broadie 1993; Ceria & Stubbs

2006).

Error maximization adversely affects our investment decision both at the

level of the relative representation of the assets in the portfolio and at the level

of the size of total (absolute) investment. The effect on relative representation is

apparent from the previous paragraph and does not warrant further discussion.

The effect on total (absolute) value of the portfolio is a bit trickier and will

be discussed in more detail. Recall the size of total investment was chosen to

maximize the expression g∞ of the form (kτστ,p)/Vτ−1 − σ2
τ,p/2V

2
τ−1, where kτ

represented the estimated trade-off between the conditional expected portfolio

return and the conditional portfolio variance of the portfolio on the efficient

frontier. As indicated in the previous paragraph, the estimated value of kτ

is destined to suffer from upward bias. Turning to the routine presented in

Subsection 2.3.4, overestimated kτ in turn implies that optimized value of σ

will be too large, which in turn implies that the suggested position sizes will

be too large in absolute value as well (overbetting).

The situation is depicted in Figure 3.1. The curve Estimated efficient fron-

tier represents the set of portfolios obtained by using the forecast conditional

moments and optimized position sizes (position sizes obtained by plugging

forecast conditional moments into the mean-variance optimization routine).

I.e., estimated efficient frontier represents the set of portfolio we think we ob-

tain by mean variance optimization. True frontier (unobservable) is obtained

by using optimized position sizes (position sizes obtained by plugging forecast

conditional moments into the mean-variance optimization routine) and true

conditional moment. I.e., the true frontier is the set of portfolios we really

obtain. Similarly, Optimized portfolio (estimated) represents the portfolio we

think we obtain by using the routine described in Chapter 2, while True port-

folio represents the portfolio we really obtain. The explanation of Optimized

value of g∞ (estimated) and True value of g∞ would go along the same lines.
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Figure 3.1: Effect of error maximization

Estimated efficient frontier

True frontier

Optimized portfolio (estimated)

True portfolio

Optimized value of g∞ (estimated)

True value of g∞

σ2
τ,p

µτ,p

g ∞

Source: author’s computations.

3.1.3 Effect of the approximations

In certain situations, the approximation by the first two moments presented

in Chapter 2 might perform poorly. In particular, the approximation might

fails when the return process displays high kurtosis. A detailed explanation

follows. High kurtosis implies a high (higher than under normal distribution)

probability of large gains and loses. Because the original objective function 2.2

treats losses and gains asymmetrically (is much more concerned with losses), it

would dictate a reduction of position sizes. When the approximation is used,

the high kurtosis is ignored and the reduction does not materialize. Hence, as

in the case of error maximization, we end up overbetting. For a more elaborate

treatment, please refer to Hakansson (1971).

A second case where our approximation might fail is when the conditional

moments of the portfolio return become too large relative to our capital. To see

why, remember that at one point, we have used
∑M

m=1
ym
Vτ−1
≈
∏M

m=1(1 + ym
Vτ−1

),

which corresponded to neglecting higher order terms of the product (second

expression). When the first two moments become too large, the higher order
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terms of the product stop being negligible and the approximation breaks down.

At this point, the direction of the resulting bias in the position sizes cannot be

determined.

3.2 Partial remedy

In the previous section we conducted a qualitative analysis of the possible

deficiencies in our strategy with a focus on incorrect forecast of moments and

error maximization property of mean-variance optimization. We concluded

that the original strategy will be overbetting in most situations. The purpose

of this section is to find a modification of the original strategy that counteracts

the overbetting problem.

The modification will be found by means of a Monte Carlo simulation. To

provide a brief overview, our plan is to create several modifications of the orig-

inal strategy, evaluate their performance on an artificial time series generated

in accord with our original model. The procedure will be repeated for several

combinations of parameter values of the original model (scenarios). The con-

cept of modification will be introduced first, next we will motivate our selection

of scenarios and describe the simulation procedure. Finally, simulation results

accompanied by a short commentary will be presented.

3.2.1 Modifications

Our original strategy dictates that in period τ position sizes are determined

by:

wτ =
Vτ−1
K

(µ′τΣ
−1
τ (µτ − Lι))Σ−1τ (µτ − Lι). (3.1)

By a modification, we will understand a strategy that dictates position sizes:

w(c)
τ = c · Vτ−1

K
(µ′τΣ

−1
τ (µτ − Lι))Σ−1τ (µτ − Lι), (3.2)

where the c is a scalar constant that is time invariant. In the upcoming simu-

lations, we will consider the following values of c

c ∈ {0.05, 0.100.15, ..., 1.9, 1.95, 2}.

This gives 40 strategies in total (the original strategy and 39 modifications).
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Figure 3.2: Possible benefit of modifications
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Source: author’s computations.

Our motivation behind introducing this sort of modification is following: In

the previous section, we have conjectured that the strategy will be overbetting

in most scenarios. If we are right, the modifications with c < 1 are likely to

outperform the original strategy. (The wealth would grow faster if we bet some

constant fraction of what is implied by the original strategy.)

Figure 3.2 depicts how our modification can partially counter the over-

betting problem stemming from the error maximization. Optimized portfolio

(estimated), True portfolio and True value of g∞ have the same interpretation

as in Figure 3.1. Modified portfolio (estimated) and Modified portfolio (true)

were obtained from Optimized portfolio (estimated) and True portfolio by mul-

tiplying position sizes by some c < 1. Modified value of g∞ (true) is the value of

function g∞ that corresponds to Modified portfolio (true). Note that Modified

value of g∞ (true) is larger than the original True value of g∞.
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3.2.2 Scenarios

As we have explained, our goal is to find a modification that would counteract

the overbetting problem. The optimal modification will of course depend on

the degree to which the original strategy is overbetting, which is in turn likely

to depend on parameters of the asset return model (the number of assets n,

constant correlation matrix P and αi,0, αi,1, βi and γi for each of the assets

1, ..., n). Hence, we are forced to conduct simulations for different combinations

of parameter values. This subsection explains our selection of combinations of

parameter values. To avoid verbosity, we will call a selection of parameter value

a scenario.

Naturally, we would like to cover as wide range of scenarios as possible.

Unfortunately, the simulations are demanding in terms of computational power,

which severely limits our options. To cope with this problem, we decided to

only consider the case of three assets (n = 3) and fix all parameters aside from

parameters that enter the specification of conditional mean (β1, ..., βn). The

second step is motivated by the findings of Chopra & Ziemba (1993), which

imply that the variation of parameters that enter the specification of conditional

variances and covariances will have a much smaller effect on the degree to which

the original strategy is overbetting compared with the variation of parameters

that enter the specification of the conditional mean.

The following considerations were taken into account when determining the

values of fixed parameters entering the specification of the conditional variance-

covariance matrix:

� Estimates of GARCH parameter estimates are very similar across ex-

changes and time frames (Akgiray 1989; Lamoreux & Lastrapes 1990;

Franses & VanDijk 1996). We will set:

∀i ∈ {1, ..., n} : αi,1 = 0.2, γi = 0.7

� Our choice of correlations will reflect the average daily correlation pre-

sented in Joshua M. Pollet (2010). Formally, we will set the time-invariant

correlation matrix to:

P =

 1 0.2 0.2

0.2 1 0.2

0.2 0.2 1


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� For the unconditional component of variance, we will put

∀i ∈ {1, ..., n} : αi,0 = 0.0001

The choice of unconditional component of variance does not matter. To

see why, realize that if we multiply αi,0 by some constant k for all i, the

set of available portfolios will not change.

This concludes our discussion of fixed parameters.

As we explained earlier, the only parameters which will vary between scenar-

ios are the parameters entering the conditional expected return specification.

We will now comment on our choices of parameters βi. Our first step is to fix

the βi between all stocks. That is, we fix:

β1 = β2 = ... = βn = β.

Again, this step is motivated by a lack of computational power and a lack of

guidelines according to which to choose relative values of β1, β2, ..., βn.

Next, realize that there is a relationship between values of parameter β and

a fraction of the explained variance (FEV) of return of any individual stock

(the fraction of the explained variance is the population equivalent of the R2

statistic). A detailed derivation of the relationship is provided in Section A.5.

Because considering various values of FEV is much more illustrative, we will

frame our choice of β1, ..., βn in terms choosing values of FEV.

The values of FEV were determined as follows. Initially, we considered the

interval [0.001, 0.1] and its partition given by points 0.001, 0.005, 0.01, 0.05

and 0.1. We conducted the simulation for the inner points and found out that

the constants corresponding to the best modifications lay far apart. We solved

the situation by refining the partition until the absolute difference between the

constants was no larger than 0.1. The process will be clear once we present the

table with the result.

Under our selection of parameters, the return process of all the assets is

weak-stationary (Detailed proof is provided in Section A.6). Stationarity im-

plies that both the unconditional expected return and unconditional variance

remain stable, which corresponds to the behavior of the return processes ob-

served in practice (We have deliberately avoided stating that real return pro-

cesses are stationary).

Finally, we need to specify the distribution of the white noise in Equa-
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tion 2.7. We opt for Gaussian white noise. While this choice is arbitrary, so

would be any other. The only advantage of this choice is that it makes sure that

the conditions required for consistent estimation mentioned in the Section 2.3.5

are met.

3.2.3 Simulation Procedure

We will now describe the simulation procedure in detail. Because of the hi-

erarchical structure of the simulation, we believe that the simulation is best

described in the form of a nested list. We will perform 100 simulations for each

scenario under consideration. A single simulation is performed as follows:

1. Generate a sample of length 1000+250 from the return process described

by our initial model.

2. Fix the starting wealth. (For example by setting it equal to 1)

3. Evaluate the performance of the original strategy. To do so, perform the

following steps starting at t = 251

(a) Forecast the conditional expected return and variance-covariance.

The estimation of parameters is performed on a rolling window of

past 250 observations.

(b) Determine the position sizes according to the rule derived in the

second chapter.

(c) Evaluate the portfolio return and update our wealth.

(d) Increase t by one and repeat the last three steps until t = 1250 is

reached.

4. Evaluate the performance of all modified strategies. This is done in the

same manner as evaluating the performance of the original strategy with

the obvious difference in the step where position sizes are set.

5. Compare the level of end wealth of all 40 strategies (the original strategy

and 39 modifications). Record the strategy that yields the highest wealth

in the terminal period.

The number of periods (1000) and the number of simulations (100) reflect

our limited computational power. The length of the estimation window reflects

the number of trading days in a year (if one period corresponds to a trading
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day) or the approximate length of a business cycle (if one period corresponds

to a week).

3.2.4 Identifying the best modification

This subsection describes how we identify (more precisely estimate) the best

modification (in terms of growth) corresponding to any particular scenario.

Because we fear that treating the matter in a formal (probabilistic) way would

cause confusion, we have decided to keep the discussion on a predominantly

intuitive level.

We have already explained that the output of a single simulation is a mod-

ification (represented by a number from {0.05, 0.10 0.15, ..., 1.9, 1.95, 2}) that

yielded the highest terminal wealth (after 1000 periods). If we assume that

1000 periods are enough for limiting properties to kick in, we can conclude

that the modification that yielded the highest terminal wealth is also the one

that asymptotically maximizes growth in the scenario under consideration.

For every scenario, we are, however, not conducting a single simulation

but rather a series of 100 simulations. Because the 100 simulations are based

on time series with a random element, the modifications yielding the highest

terminal wealth might (and will) differ between the 100 simulations. Hence,

our task is to aggregate the modifications yielding the highest terminal wealth

corresponding to those 100 simulations in a meaningful way. We have decided

to do that by picking the modification that yielded the highest terminal weight

the most often. (In probabilistic terms this would correspond to estimating the

best modification by the modus of our sample).

The reader might ask why we conducted 100 simulations (each of which

contained 1000 periods) instead of conducting one long simulation that was

100 000 periods long. We opted for 100 individual simulations, because we

wanted to keep track of the dispersion of individual results.

3.2.5 Results

Table 3.1 and Figure 3.3 summarize the estimates of the best modification of

the scenarios corresponding to various values FEV. The values of β matching

with the values of FEV are also presented.

Before we proceed, let us shortly comment on the results. First of all,

in all the scenarios considered, the coefficient c corresponding to the optimal

modification is lower than one. This corresponds to our earlier conjecture that



3. Deficiencies of our solution and their partial remedy 31

Table 3.1: Best modification for given fraction of explained variance

FEV (R2 equivalent) Value of β Best modification (c)

0.1 0.41 0.45
0.05 0.3 0.55
0.03 0.23 0.6
0.01 0.13 0.7
0.007 0.11 0.6
0.005 0.096 0.5
0.003 0.074 0.4
0.002 0.061 0.35
0.00175 0.057 0.25
0.0015 0.053 0.15
0.001 0.043 0.05

Source: author’s computations.

the original strategy will in general be overbetting. Moreover, the overbetting

problem seems rather severe since in most scenarios the original strategy would

be more than twice the amount suggested by the modification identified on the

basis of a simulation.

Secondly, for small values of FEV, the coefficient corresponding to the op-

timal modification is extremely small. That implies that the original strategy

breaks down. We believe the phenomenon can be attributed to error maximiza-

tion. In particular, we believe that the strategy breaks down because the errors

in the forecasts of the conditional expected returns become too large relative

to the true values of the conditional expected returns.

Thirdly, note that as the FEV starts to increase, the coefficient correspond-

ing to the optimal modification starts getting closer to one, which implies that

the best modification starts to converges towards the original strategy. Again,

we believe this can be attributed to error maximization. In this case, the errors

in the forecasts of the conditional expected returns starts getting smaller rela-

tive to the true values of the conditional expected returns as the FEV begins

to increase.

Finally, at some point (FEV = 0.01) the coefficient corresponding to the

best modification starts to decline again. We believe that the decline is linked

to the poor functioning of the second approximations discussed in the Subsec-

tion 3.2.1.
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Figure 3.3: Simulation results
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Chapter 4

Practical demonstration

In the previous two chapters we have derived and tweaked a growth maximizing

contrarian trading strategy. The purpose of this chapter is to demonstrate its

viability by applying it to the historical returns of three selected stocks. We

will begin by explaining how the tweaked strategy will be applied. Next, we

will comment on our stock selection. Finally, we will present and discuss the

results.

4.1 Application

In Chapter 3 we determined modification of the original strategy suitable for

some idealized scenarios. The purpose of this subsection is to explain how we

use the modifications to determine the position sizes in practice. We believe

that the procedure is best presented as a list. At every decision point, position

sizes will be determined as follows:

1. Use the rolling window of the past 250 observations to estimate the model

parameters by the method described in Chapter 2.

2. Forecast the conditional expected return and conditional variance-covariance

matrix.

3. Compute the estimates of FEV (R2) for each stock. Take the median

value. Determine the best modification using the median value and spline

of the results obtained in Chapter 3.

4. Use the previously determined modification and the estimates of the con-

ditional expected return and variance-covariance to determine the posi-

tion sizes.
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4.2 Stocks and period length selection

Let us now comment on the stock and period length selection. We have se-

lected weekly returns of the stocks of the following three companies from the

oil and gas mining equipment and affiliated services sector traded on the US

stock exchanges: Schlumberger N.V, Baker Hughes Incorporated, Halliburton

Company. The stock were selected on the basis of economic reasoning rather

than data mining. Most importantly, the choice reflects our desire to avoid

spurious results due to non-synchronous trading. Detailed reasoning can be

found in Appendix B. Returns were computed using adjusted (for splits and

dividends) closing prices from the finance.yahoo.com database. Our data

sample ranges from April 1987 to April 2010. We have set the last data point

so that it corresponds to the date when first research regarding the thesis was

done, as it seemed to be the least arbitrary choice.

4.3 Results

Finally, we will present the results. As promised, we will partially drop the

assumptions about trading costs, market impact and about the availability

of proceeds shorts sales are available. That is, we will present both results

obtained under those assumptions and the results obtained after discarding

them. Drawing from Avellaneda & Lee (2008), we will accommodate the trad-

ing costs and market impact by introducing a fee of 0.1% of the traded volume.

To accommodate regulations regarding proceeds from short sales, we will cap

maximum leverage by two.

Table 4.1 contains annualized geometric mean returns when full proceeds

from short sales are assumed. Aside from the return achieved by applying the

strategy in the manner described in Section 4.1 (dynamic), we will also list the

returns of the original unmodified strategy and the returns achieved by betting

a constant fractions of what is suggested by the original strategy. The symbol

�implies that the strategy has lost all available capital.

The most striking observation is that if we applied the strategy in the

manner described in Section 4.1 and if we were able to bypass regulations

regarding proceed from short sales, we would achieve an outstanding annual

geometric mean return of 24% even after accounting for trading costs. To put

the number in a different perspective, if we started with an initial capital of

$20,000, our wealth would have exceeded $1,000,000 by the end of April 2010.
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Table 4.1: Annualized geometric mean return in %, unconstrained
leverage

Strategy Application No trading costs Trading costs 0.1

Dynamic 34.6 24
Original � �
Constant fraction (0.25) 23.4 20
Constant fraction (0.5) 29.4 23
Constant fraction (0.75) 9.8 �

Source: author’s computations.

On the other hand, is we applied the strategy in the original unmodified form,

we would have ended up bankrupt even if we had faced no transaction costs.

This result illustrates the deficiencies discussed in Chapter 3 and highlights the

usefulness of our modifications.

Table 4.2 contains annualized geometric mean returns when leverage is

capped by two. Again, we will also list the return achieved by the strategy

applied in the original form as well as returns the obtained by betting constant

fractions.

Table 4.2: Annualized geometric mean return in %, constrained lever-
age

Strategy No trading costs Trading costs 0.1%

Dynamic 10.4 6.6
Original 5.2 -0.9
Constant fraction (0.75) 6.1 0
Constant fraction (0.5) 6.7 1.4
Constant fraction (0.25) 7.3 2.5

Source: author’s computations.

Under the cap on leverage, the application of the strategy in the manner

described in Section 4.1 still beats any other manners of application, but the

total return is much lower (a meager 6.6%). Unlike when leverage was uncon-

strained, we can now make a meaningful comparison with the market portfolio.

If, at the starting date, we leveraged our initial capital to the maximum ex-

tent (2x leverage) to purchase a market portfolio (as represented by the S&P

500 index), we would have achieved an annualized geometric mean return of

about 9%. Hence, our strategy underperformed the market on average by about

2.4%. At this point we must emphasize that our strategy was not optimized for

trading costs and constrained leverage. Hence, better results can be achieved
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by doing so. Moreover, the strategy was designed as to be uncorrelated with

the market and therefore offers some diversification potential. For these two

reasons, we consider the results to be a success rather than a disappointment.



Chapter 5

Conclusion

Our goal was to develop a contrarian speculative trading strategy. We have

chosen growth maximization as opposed to maximization of a subjective utility

function as our guiding principle. Furthermore, we have required our strategy

to be market neutral (dollar neutral was used as a proxy).

We have tackled the problem as follows. First, we have exploited the fact

that growth maximization is equivalent to sequential maximization of the end

of period conditional expected logarithm of wealth. Next, we approximated the

log optimal portfolio by a mean-variance efficient portfolio. The specification of

the conditional expected return reflected our beliefs about the profitability of

contrarian strategies. In particular, we have specified the conditional expected

return as a linear function of derivation from the average return in the previ-

ous period. The conditional variance-covariance matrix was specified by the

Constant Conditional Correlation model from the Multivariate GARCH class.

The approach just described poses several shortcomings. In particular, the

use of approximation along with so called error maximization property of the

mean-variance optimization leads to overbetting in the sense of opening too

large position in absolute terms (too much leverage). Realizing that the prob-

lem could be partially countered by investing some fixed fraction of the amount

suggested by the original strategy (proportional reduction of all position sizes),

we went on to find the optimal size of the fraction in various scenarios by means

of Monte Carlo simulations.

Equipped with the simulation results, we evaluated the performance of the

strategy on historical data. Based on economic criteria, we chose weekly returns

of three firms active in oil mining equipment and affiliated services industry.

Over the period from 1987 to 2010, we were able to generate an annual geo-
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metric mean return of about 24% when no cap on leverage was assumed even

after accounting for mild transaction costs. When we capped the leverage by

two, the return shrunk to 6.6%.

While the results are satisfactory, we believe that the room for improvement

is still vast. Out of the long list of possible tweaks, we will mention only

those we consider the most promising. First, we believe that exploitation of

economic reasons behind contrarian profitability would allow us to create a

better specification of the conditional expected return. As for the specification

of the conditional variance-covariance matrix, Pollet & Wilson (2010) provides

evidence that correlations varies over time. Hence we should consider a model

that allows time variation in the conditional correlation matrix - perhaps the

Variable Correlations GARCH model introduced by Tse & Tsui (1999). When

it comes to the error maximization property and the resulting overbetting, the

ill effects could be partially neutralized by incorporating estimation errors into

the variance-covariance matrix or directly into the mean-variance optimization

procedure (Ceria & Stubbs 2006). Finally, better results could be obtained

by also incorporating the trading costs into the mean-variance optimization

routine as well.
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Appendix A

Mathematical background

A.1 Taylor series

We are interested in a Taylor expansion of:

gM(µ, σ) =
M∑
m=1
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around point. The general formula for expansion of bivariate function f(x, y)

around (x0, y0) is:
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Let us compute first few derivatives:
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Observe that higher order derivatives are o( 1√
M

) as taking additional derivatives

spawn higher powers of 1
M

. Substitution into the A.1 then yields the formula:

gM(µ, σ) =
µ

Vτ−1
− σ2

2V 2
τ−1

+ o(
1√
M

).

A.2 Boundedness

We need to prove that the set

{w ∈ Rn : w′Σw = σ2,w′ι = 0}

is bounded. Because

{w ∈ Rn : w′Σw = σ2,w′ι = 0} ⊂ {w ∈ Rn : w′Σw = σ2},

it suffices to show that

S = {w ∈ Rn : w′Σw = σ2}

is bounded. The proof will be done by contradiction. Let us assume that S is

not bounded. The rest of the proof can be done in the following steps:

(1) Because S is not bounded, there is a sequence of {wn}∞ such that for some

i: wi,n →∞ or wi,n → −∞.

(2) Στ is variance-covariance matrix and hence is positive semidefinite (see the-

orem 1.6 in Prášková 2007). The full rank assumption along with positive

semidefiniteness guarantees positive definiteness. Hence Σ has Cholesky

decomposition. We will denote the decomposition by U and U ′.

(3) Because the matrixU is lower triangular it follows that for some i: (w′nU)i →
∞ or (w′nU)i → −∞.

(4) Finally, (3) and w′nΣwn = w′nUU
′wn gives us w′nΣwn → ∞. That

cannot be, because wn ∈ S and therefore w′nΣwn = σ2 < ∞. Hence the

contradiction.
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A.3 Efficient frontier

Our task is to maximize:

w′τµτ .

Subject to:

w′τΣτwτ = σ2,

w′τι = 0.

The problem will be solved by means of the Lagrange multipliers method.

Lagrangian function will assume the form

L = w′τµτ −
1

2
λ1(w

′
τΣτwτ − σ2)− λ2(w′τι).

Note that we have premultiplied the first multiplier by 1/2 in order to simply

the derivation. Such an operation will not change the set of solutions.

Necessary conditions for a local maximum are:

∂L
∂wτ

= µτ − λ1Στwτ − λ2ι
!

= 0, (A.2)

∂L
∂λ1

= w′τΣτwτ − σ2 !
= 0, (A.3)

∂L
∂λ1

= w′τι
!

= 0. (A.4)

Consider the case λ1 = 0. That would imply:

∂L
∂wτ

= µτ − λ2ι
!

= 0.

Because all elements of vector λ2ι assume the same value, the system would

only have a solution if all elements of vector µτ assume the same value as well.

This is not possible as per one of our initial assumption.

Now, consider the case that λ1 6= 0. First, we solve the equation (A.2) for

wτ ,

wτ = (λ1Στ )
−1(wτ − λ2ι). (A.5)

Invertibility is guaranteed by the full rank assumption.

The next step is to substitute (A.5) into (A.4)

ι′(λ1Στ )
−1(µτ − λ2ι) = 0,
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and solve for λ2

λ2 = (ι′Σ−1τ ι)
−1(ι′Σ−1τ µτ ). (A.6)

For convenience, we denote

L = (µτ − Lι)′Σ−1τ (µτ − Lι).

Our next task is to deal with λ1. We substitute (A.5) into (A.3)

(
(λ1Στ )

−1(µτ − λ2ι)
)′

Στ

(
(λ1Στ )

−1(µτ − λ2ι)
)

= σ2,

and solve for λ1 to get

λ1 = ±
√

(µτ − Lι)′Σ−1τ (µτ − Lι)
σ

. (A.7)

We denote

K = (µτ − Lι)′Σ−1τ (µτ − Lι).

Finally, substituting (A.6) and (A.7) into (A.5) yields

wτ = ± σ√
K

Σ−1τ (µτ − Lι),

where one solution corresponds to position sizes that minimize the conditional

expected return and the other corresponds to position sizes that maximize the

conditional expected return.

Apparently, the solution that maximizes expected return is

wτ = +
σ√
K

Σ−1τ (µτ − Lι).

To see that, consider increasing the conditional expected return of asset i while

keeping conditional expected returns of other assets as well as the variance-

covariance matrix constant and observe what happens to relative weights.
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A.4 Predictive power of deviation from the aver-

age return

Our task is to show that deviation from average return in the previous period

is a meaningful choice of regressor. The in sample profitability claimed by

Khandani & Lo (2007) can be expressed as

T∑
τ=1

d′τ−1rt > 0.

By assuming that that same relationship holds in the population, we obtain:

E[d′τ−1rt|ψt] > 0. (A.8)

By substituting our specification into A.8, we obtain:

E[
n∑
i=1

dt−1,i(dt−1,iβi + εt)|ψt] > 0.

The above inequality in turn leads to:

n∑
i=1

E[d2t−1,i]βi > 0.

In other words, some of the coefficients βi must be nonzero and vt−1,i has

predictive power.

A.5 Fraction of explained variance

We want to derive an algebraic relationship between β as understood in Sub-

section 3.2.2 and the fraction of the explained variance (FEV) of returns of

any individual asset. The derivation will be conducted under the assumption

that the process described by the model is stationary. We will firstly present a

stream of equalities and then provide comments. Before we begin, we denote:

N =


2
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3
−1

3

−1
3

2
3
−2

3
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−1

3
2
3
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 β 0 0
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Proceeding to the derivation:

FEVi = 1− var[εt,i]

var[rt,i]
(A.9)

= 1− var[εt,i]

var[εt,i] + (
∑∞

k=1(βN )kvar[εt](βN )k)ii
(A.10)

= 1− var[εt,i]

var[εt,i] + (
∑∞

k=1 β
2kNvar[εt]N )ii

(A.11)

= 1− 1

1 +
∑∞

k=1 β
2k(NPN)ii

(A.12)

= 1− 1

1 + β2

1−β2 (NPN)ii
(A.13)

=
β2(NPN)ii

1− β2 + β2(NPN)ii
. (A.14)

Equality A.9 is simply the definition of the fraction of the explained variance.

To obtain the equality A.10, we have rewritten our model in VAR form

(details are given in Section A.6). Next, we apply the law of total variance and

the stationarity assumption:

Var[rt] = E[var[rt|ψt−1]] + var[E[rt|ψt−1]]

= var[εt] + βNvar[rt]βN

= var[εt] +
∞∑
k=1

(βN )kvar[εt](βN )k.

To obtain equality A.11, we need to realize that β is a diagonal matrix with

all the elements on the diagonal attaining identical value and hence can be

replaced by a scalar of the same value. The equality follows once we rearrange

the order of multiplication and realize that N k = N .

Equality A.12 is obtained by dividing both the numerator and the denom-

inator by var[εt,i]. This step is possible because of the CC specification and

because in this particular case var[εt,i] is constant across all i.

Equality A.13 is obtained by summing the geometric series
∑∞

k=1(β
2)k.

Equality A.14 is obtained by algebraic manipulation.

A.6 Stationarity

We want to show that the return process specified in Chapter 2 is weak-

stationary under combinations of parameter values given in Subsection 3.2.2.
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This can be proved along the following lines:

(1) We show that the error process ετ is weak-stationary.

(2) We show that rτ is a filtration of ετ with absolutely convergent coefficients.

(3) With (1) and (2) in place, the stationarity follows from theorem 5.4 in

Prášková (2007).

Let us prove (1) and (2). To prove (1), we need to show that:

(a) First moments, and second moments and cross moments exist and are finite.

(b) For all i, j ∈ 1, 2, 3 and for all t, s ∈ Z it holds that cov[εi,t, εj,s] depends

only on t− s.

(c) For all i ∈ 1, 2, 3 and it holds that E[εi,t] is constant for all t ∈ Z.

To show (a), it is sufficient to show that var[εi,t] exists and is finite. If

we show the existence and finiteness of var[εi,t], the existence and finiteness

of second cross moments and first moments will follow from Holder inequality.

The existence and finiteness of var[εi,t] in turn follow from the observation that

for all i ∈ {1, 2, 3}, γi + α1,i = 0.9 and theorem A.1 in Bollerslev (1986). With

(a) in place, (b) and (c) follow from the model construction.

To prove (2), we will:

(a) Rewrite the original model as a restricted VAR using lag polynomial.

(b) Show that (I − βN )−1 =
∑∞

n=0 β
nNn.

(c) Define operator
∑∞

n=0 L
nβnNn and apply it to both sides

Starting with (a), the original model of the form

rt,1 = β1dt−1,1 + εt,1,

rt,2 = β2dt−1,2 + εt,2,

rt,3 = βndt−1,n + εt,n,

where

dt−1,i = rt−1,i −
1

3

3∑
j=1

rt−1,j
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can be rewritten as rt,1

rt,2

rt,3

 =

 β 0 0

0 β 0

0 0 β




2
3
−1

3
−1

3

−1
3

2
3
−2

3

−1
3
−1

3
2
3


 rt−1,1

rt−1,2

rt−1,3

+

 εt,1

εt,2

εt,3

 .

If we denote

N =


2
3
−1

3
−1

3

−1
3

2
3
−2

3

−1
3
−1

3
2
3

 ,

we can write:

rt = βNrt−1 + εt.

Note that β is scalar and hence it commutes with matrices. Using the lag

operator, we get:

(I − LβN )rt = εt.

To show (b), realize thatNn = N and for all values of β under consideration

βn → 0. Hence

βnNn → 0

and (b) follows from (theorem B.2 Lachout & Prášková 2005).

Moving to (c), with (b) at hand, we know that operator
∑∞

n=0 L
nβnNn is

well defined in the sense that
∑∞

n=0 L
nβnNnεt converges both almost surely

and in the quadratic mean. Applying the operator to both sides yields

rt =
∞∑
n=0

βnNnεt−n,

which concludes the proof of (2).



Appendix B

Stock selection and period length

selection

In this section, we will explain our selection of stocks and period length in more

detail. The selection process will reflect two principles: viability of the strategy

and validity of the results.

B.1 Stock selection

Viability of our strategy depends on our ability to forecast conditional expected

return, which in turn depends on our specification. Recall that we have speci-

fied the conditional expected return by a deviation from the average return in

the previous period. In conjunction with the results presented by Lo & MacKin-

lay (1990a), we believe that viability of our specification can be attributed to

two phenomena: overreaction and lead-lag relationship (returns of some stocks

tend to lead returns of other stocks). In turn, the lead-lag relationship can

be attributed to a difference in the speed of price adjustment after arrival of

information that has value implication between multiple stocks (Brennan et al.

1993).

Let us focus on the different speed of adjustment. The different speed of

adjustment can only exist if there is information with common value implication

to begin with. Hence, we will be looking for a set of stocks for which arrival of

information with common value implication is possible. Moreover, the higher

the frequency of arrival and the stronger the value implication, the better off we

are. Arrival of information with common value implications is frequent and the

value implication is strong in situations when profitability of the companies is
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exposed to common risk factors. Perhaps the most important factor is demand

for output. Demand for output of any given set of companies is a common risk

factor when the companies compete on the same market (from both product

and geographic perspective).

Let us shift our attention towards overreaction. The overreaction is trig-

gered by arrival of information with value information. As in the previous case,

the higher the frequency of arrival and the stronger the value implication, the

better off we are. While this requirement will not point out in any particular

direction, it would help us exclude certain sectors such as utilities.

The next requirement is driven by our desire to preserve validity of our

results. Several authors (for example Boudoukh et al. 1994) have argued that

the reported profitability of contrarian strategies might be caused by non-

synchronous trading. If this was true, the profitability would be spurious.

Non-synchronous trading is more pervasive for stocks whose traded volume is

small, which tends to be the case for small companies Lo & MacKinlay (1990b).

Hence, in order to mitigate the impact of non-synchronous trading on validity

of our results, we will only consider companies with large capitalization.

Finally, we will require the selected stocks to provide us with a sizable

sample of historical returns. (Of course, whether the sample is large enough

of not will also be influenced by our choice of period length). Again, the

requirement is motivated by desire to preserve validity. In particular, results of

simulation of historical performance based on a short sample might be dismissed

as a fluke.

Based on the criteria, we have selected the stocks of the following companies:

Schlumberger N.V, Baker Hughes Incorporated, and Halliburton Company. By

April 2011, the capitalization of the companies was approximately $120, $30

and $40 billion respectively. With respect to the firm size, the companies

belong to the first decile of all companies traded on the U.S. stock exchanges.

Moreover, all the companies have been listed since 1987, which gives us 23

years of historical returns. Finally, the companies are direct competitors in

the market for oil and gas mining equipment and affiliated services. Taking

the foregoing facts into account, we can conclude that the companies fulfill our

criteria.
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B.2 Period length

Even if we select stocks that are prone to overreaction and different speed of

adjustment, our specification of conditional expected return might fail if we

select inappropriate period length.

Moreover, the period length influences the transaction costs. This becomes

apparent once we realize that the portfolio is rebalanced in every period. Since

every rebalancing carries transaction costs, short period length would result in

excessive transaction costs.

Let us proceed to considerations regarding validity of our results. We have

already explained that validity of our results could be undermined by non-

synchronous trading. Non-synchronous trading is much more likely to occur if

the rebalancing period is short Lo & MacKinlay (1990b). Hence, in order to

preserve validity of our result, we should avoid rebalancing period that is too

short.

Taking in the foregoing considerations into account, we have chosen period

length of one week. Drawing from findings of Avellaneda & Lee (2008), our

specification of the conditional mean should be viable under this selection.

With regards to the sample size, 23 years of data and weekly returns guarantee

us over 1200 individual observation - a number we deem sufficient. Also, taking

into account the size of our companies, nonsynchronous trading in non-existent

when weekly data are considered. Finally, choice of weekly returns guarantees

sizable reduction of transaction costs when compared to daily returns.
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