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Katedra: Matematicko-fyzikálńı fakulta
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1. Introduction

In this work we study biological processes which can be described in terms of

reaction and diffusion. In particular, we consider a system of components whose

state is modified by chemical reactions and whose movement is governed by diffu-

sion. Processes described by these mechanisms play an important role in biology.

The applications of reaction-diffusion processes are both numerous and diverse.

We have included an overview of a few of specific examples below.

A well known reaction-diffusion process is pattern formation. In 1952, Alan Tur-

ing, the same man who deciphered the Enigma code, suggested that under certain

conditions chemicals can react and diffuse in such a way as to produce spatial

patterns. Nearly 40 years after the Turing hypothesis, the experimental evidence

of patterns was discovered. Pattern formation mechanisms have been used to de-

scribe many different phenomena, such as pigmentation patterning in mammalian

coat [1] or the pattern formation of follicles in the skin of mice [12]. Moreover,

they play an important role in developmental biology and embryology.

Another example of application can be found in bacteriology. For instance

reaction-diffusion mechanisms participate in a signal transduction in E. coli chemo-

taxis [15, 47, 48]. Bacterial chemotaxis is a movement of bacteria in response to

changes in extracellular signal molecules. Thanks to this, bacteria can find food

by swimming towards the highest concentration of food molecules, or avoid nox-

ious environment. The transformation of the signal from receptors at the bacterial

membrane to motors governing its movement occurs through signalling pathways.

This process is called signalling transduction.

D. Fange and J. Elf [16] used a reaction-diffusion model to model the division of

E.Coli . These elongated bacteria divide symmetrically in two parts to ensure

that both newly formed daughter cells contain a copy of the chromosome. The

symmetry of the division is ensured by so called Min proteins. They oscillate back

and forth between the cell poles to help the parental bacterium find its middle

before cell division.

In a recent model, reaction-diffusion mechanisms were used to simulate signalling

pathways of mitogen-activated protein kinases (MAPKs) [13]. MAPKs are en-

zymes that are involved in a wide range of cellular processes such as the regulation

of gene expression, mitosis1, cell differentiation, and proliferationCell prolifera-

tion is the increase in cell number as a result of cell growth and division., but also

1Mitosis is a process of cell division which results in the production of two daughter cells

from a single parent cell. The daughter cells are identical to one another and to the original

parent cell.
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program cell death2. The MAPK signalling pathway is a chain of proteins in the

cell that transfers a signal from a receptor on the surface of the cell to the DNA

in the nucleus of the cell. A mutation of any protein in this pathway is an initial

step in the development of many cancers. Drugs that reverse these mutations are

investigated as cancer treatments [14].

1.1 Mathematical Modelling of Reaction-Diffusion

Processes

A traditional approach for the simulation of reaction diffusion processes is to

characterize each chemical species by its concentration and then describe the

time evolution of these concentrations by a system of partial differential equa-

tions (PDEs). An advantage of this deterministic approach is that for solving and

modelling of PDEs we can choose from extensive set of analytical and numerical

tools [6, 21].

However, the situation is much more delicate when we take into account biolog-

ical systems. In this case, there may be relatively low number of some chemical

species; for instance often only one or two mRNA molecules of a particular gene

are presented in a cell [22]. In such a situation, we cannot properly define concen-

tration and thus the deterministic models become inaccurate. Instead of concen-

trations, we characterize the system by the number and position of molecules and

instead of continuum-based deterministic models we will use discrete stochastic

models [6]. Thus, the stochastic-based models provide a much more detailed de-

scription of the system as their deterministic opposites do. In this thesis we study

two stochastic simulation algorithms (SSAs) for chemical reactions.

From the molecular point of view, we can intuitively accept the fact that chemical

reactions involving two or more reactants occur when reacting molecules collide.

It means molecules that are separated by a smaller distance have a higher chance

to react as remote molecules. On the other hand, not each collision need to

be necessary followed by reaction. This is caused by reaction-activation energy.

Sometimes molecules can react, only if they collide in a certain way, for instance if

corresponding sites on the surface of molecules meet[1, 26]. This is incorporated

in both presented SSAs by assigning a certain probability to the occurrence of

chemical reactions.

The first presented SSA, belongs to the class of Compartment-based models [6, 54].

As the name suggests, in this approach we divide the domain in imaginary com-

2The term programmed cell death was introduced in 1964, proposing that cell death during

development is not of accidental nature but follows a sequence of controlled steps leading to

locally and temporally defined self-destruction [52].
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partments. To simulate chemical reactions, it is postulated that only molecules

within the same compartment may react. Diffusion is then modelled as a jump

process between neighbour compartments [6]. This approach is used in the RD

simulator [23, 46].

The second presented SSA belong in the class of Molecular-based models. Here

we assume that particles evolve according to Brownian motion. Diffusion is then

described by a system of stochastic differential equations. Diffusing molecules

can collide only if their centres are separated by the distance less then the sum

of their radii. If this is the case, then the chemical reactions occurs with cer-

tain probability [5, 6, 7]. A variant of this approach is used in Smoldyn package

[34, 36].

This dissertation is ordered as follows. In Chapter 2, we explain modelling

of the chemical reactions in well-stirred system, using the deterministic and the

stochastic approach. Then, in Chapter 3, we focus on a special reaction-diffusion

mechanism, the formation of Turing pattern. We present necessary and sufficient

conditions under which reaction-diffusion processes produce Turing patterns. In-

teresting properties and application of Turing patterns with the use of determin-

istic approach is presented. Then we proceed to the stochastic approaches, which

allows us to observe special phenomena in the Turing patterns formation, which

can not be captured by the deterministic models. In Chapter 4, we introduce the

compartment-based SSA. The molecular-base SSA is presented in Chapter 5.
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2. Deterministic and stochastic

models of well-stirred chemical

systems

In this chapter, we introduce a chemical system which is used in this dissertation

to illustrate our results. We will use it to explain deterministic and stochastic

approaches to modelling reaction-diffusion processes.

2.1 Illustrative Model

We will consider a system of three chemical species A, B and C which are subjects

to the following chemical reactions

A+ A
k1
−→
←−
k2

B (2.1)

B + C
k3→ B + A (2.2)

∅ k4→ A (2.3)

A
k5→ ∅ (2.4)

∅ k6→ C, (2.5)

where ki, i = 1, 2, . . . , 6, are positive reaction rate constants. Presented chemical

reactions can be interpreted as follows. The first chemical reaction is reversible

dimerisation. It simply means that two molecules of A can react to produce one

molecule of B but also one molecule of B can dissociate to produce two molecules

of A. Therefore the reaction (2.1) effectively describes two reactions, the forward

reaction

A+ A
k1→ B (2.6)

and backward reaction

B
k2→ A+ A. (2.7)

The reaction (2.2) describes catalysed izomerisation, i.e change of one molecule

to another with the use of a catalyzator. Most enzymatic1 reactions occurs at

1Enzymes are proteins that catalyse chemical reactions. In enzymatic reactions, the

molecules at the beginning of the process are called substrates, and they are converted into

different molecules, called the products. Almost all processes in a biological cell need enzymes

to occur at significant rates.
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this manner.

The reactions (2.3) and (2.5) represent a production of molecules of A and C,

respectively. The symbol ∅ denotes chemical species which are of no further in-

terest and which do not react with chemicals A, B and C.

Finally, the reaction (2.4) describes degradation of A molecules. Molecules can

not just disappear from the system, but they can convert to molecules of other

type which are out of our interest, therefore we denote them as ∅.

2.2 Deterministic Simulation of Chemical Reac-

tions

In the deterministic approach for the simulation of chemical reactions, we describe

each chemical species by its concentration. In particular, we will denote the

concentrations of chemical species by corresponding lower-case letters

a = [A], b = [B], c = [C],

where the symbol [ ] traditionally denote concentration [1]. Then applying the

Law of Mass Action, which says that the rate of a reaction is proportional to

the product of the concentrations of the reactants, to the system (2.1)− (2.5) we

obtain a system of ordinary differential equations (ODEs):

d a

d t
= −k1a

2 + k2b+ k3bc + k4 − k5a ,

d b

d t
= k1a

2 − k2b , (2.8)

d c

d t
= −k3bc+ k6.

To complete the mathematical formulation we endow the system (2.8) with initial

conditions

a(0) = a0, b(0) = b0, c(0) = c0. (2.9)

The solution of the system (2.8) - (2.9) describes the concentration of chemical

species as a function of time. As in any reaction kinetics problem we are only con-

cerned with non-negative concentrations. The solution of (2.8) - (2.9) is plotted

in the Figure 2.1 as a dash line. More precisely, for the reason of a comparison

of the deterministic and the stochastic approach, we plot numbers of molecules

of chemical species A, B and C, within some fixed volume ν with concentrations

a(t), b(t) and c(t), respectively, defined as

Ā(t) = a(t)ν, B̄(t) = b(t)ν, C̄(t) = c(t)ν.
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Multiplying (2.8) - (2.9) by volume ν, we obtain that the time evolution of Ā(t),

B̄(t) and C̄(t) is governed by the system of ODEs:

d Ā

d t
= −k1Ā

2

ν
+ k2B̄ +

k3B̄C̄

ν
+ k4ν − k5Ā

d B̄

d t
=

k1Ā
2

ν
− k2B̄ (2.10)

d C̄

d t
= −k3B̄C̄

ν
+ k6ν.

with initial conditions

Ā(0) = a0ν, B̄(0) = b0ν, C̄(0) = c0ν. (2.11)

The solution of (2.10)− (2.11) with initial conditions Ā(0) = 20, B̄(0) = 40 and

C̄(0) = 4 is plotted as a dash line in Figure 2.1 presented at the end of this

chapter.

Remark. (Rescaling of reaction rates)

Comparing the equations (2.8) and (2.10) we see that both of them are represented

by the same system of ODEs, but the reaction rates are different. For instance

the reaction rate k1 in (2.8) corresponds to the reaction rate k1/ν in (2.11). This

will be very important in Chapter 4 and 5.

2.3 Stochastic Simulation of Well-Stirred Sys-

tems

In stochastic simulations we characterise each chemical species by the number of

molecules. Let us consider a system of N ≥ 1 chemical species Ai, i = 1, . . . , N ,

which react through M ≥ 1 chemical reactions Rj, j = 1, . . . ,M . We denote by

Ai(t) the number of molecules of chemical species Ai at time t. Then the state

of the system at a given time t is specified by a vector of states

x ≡ x(t) = [A1(t), . . . , AN(t)].

For example, for the illustrative model (2.1)−(2.5), we have x(t) = [A(t), B(t), C(t)].

To simulate the system of chemical reactions, we would like to describe the evolu-

tion of x(t) from some given initial state x0. The state of the system is modified

by chemical reactions, so we assign to each chemical reaction Rj a vector vj ∈ RN

whose i-th component vji describes a change in number of molecules Ai caused

by one reaction Rj. For example, for the reaction (2.6) we have

v1 = [−2, 1, 0].
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Since the vector of states is a jump-type Markov process on the non-negative N -

dimensional integer lattice, we would like to derive a time evolution equation for

the conditional probability P (x, t |x0, t0), i.e. the probability that the system is

in the state x at time t given that it was in state x0 at time t0. Such an equation

is called a Chemical Master equation.

2.3.1 Chemical Master Equation

As we already know, in a stochastic approach, the system is characterised by

number of molecules. From a molecular point of view, we can intuitively accept

that chemical reactions involving two or more reactants occur when reacting

molecules collide. If we assume the system is well-stirred in some fixed volume

with constant temperature, then every pair of reacting molecules have the same

probability to react in the infinitesimal small time interval [t, t+ d t).

Under these assumption it can be shown that for each chemical reaction, Rj,

there will exist a well-defined function αj called a propensity function [8].

Definition 1. (Propensity function)

Let us consider that the state of the system at time t is given by the vector x(t).

Then the propensity function αj(x(t)) of chemical reaction Rj is defined as a

such function that the probability of occurrence of one reaction Rj in the next

infinitesimal time interval [t, t + d t) is equal to αj(x(t)) d t.

For instance, the propensity function of the chemical reaction (2.2), in the

system with some fixed volume ν is defined as

α = B(t)C(t)k2/ν. (2.12)

To derive the formulae (2.12) we can proceed as follows. We assume the system

is well-stirred, i.e. each pair of molecules B and C have the same probability to

react in the time interval [t, t+ d t). This probability is equal to k2dt/ν. The

number of all pairs of molecules B and C is equal to the product B(t)C(t). Thus

the probability that one reaction (2.2) occurs in time interval [t, t+ d t) is equal to

B(t)C(t)k2 d t/ν = α(x(t)) d t. In Table 2.1 we present the propensity functions

of the chemical reactions from the illustrative model (2.1)− (2.5).

To derive a general form of chemical master equation, let us consider a well-stirred

thermally equilibrated chemical system consisting of N ≥ 1 chemical species Ai,

i = 1, . . . , N , which react through M ≥ 1 chemical reactions Rj , j = 1, . . . ,M

inside of some volume ν. To describe the evolution of probability P we choose a

time step d t so small that the probability that two or more reactions occur in

time interval [t, t + d t) is negligible compared to the probability that only one

reaction takes place. Then we can write the probability of the system being in

state x at time t + d t as a sum of the probabilities of all mutually exclusive

9



Table 2.1: The propensity functions of chemical reactions from the illustrative

model.

chemical reaction propensity function α

∅ k→ A kν

A
k→ ∅ A(t)k

B + C
k→ B + A B(t)C(t)k/ν

A+ A
k→ B A(t) (A(t)− 1) k/ν

ways in which that can happen via either zero or one reaction in time interval

[t, t + d t):

P (x, t + d t |x0, t0) = P (x, t |x0, t0)

[
1−

M∑

j=1

αj(x(t)) d t

]

+
M∑

j=1

[P(x− vj, t |x0, t0)αj(x(t)) d t] .

After a few simple algebraic rearrangements and by passing the limit d t → 0 we

obtain the so-called Chemical master equation

∂

∂t
P(x, t |x0, t0) =

M∑

j=1

[αjx(t)P(x− vj, t |x0, t0) (2.13)

− αjx(t)P(x, t |x0, t0)].

For example, if we consider the illustrative model (2.1) − (2.5) is in the state

x = [A,B,C] within fixed volume ν, then the chemical master equation is

∂P (A,B,C)

∂t
= P (A+ 2, B − 1, C)

[
(A+ 2)(A− 1)k1/ν

]

+ P (A− 2, B + 1, C)
[
(B + 1)k2

]

+ P (A− 1, B, C + 1)
[
B(C + 1)k3/ν

]

+ P (A− 1, B, C)
[
k4ν
]
+ P (A+ 1, B, C)

[
(A+ 1)k5

]

+ P (A,B,C − 1)
[
k6ν
]

− P (A,B,C)
[
A(A− 1)k1/ν +Bk2 +BCk3/ν + k4ν + Ak5 + k6ν

]
,

where P (A,B,C) ≡ P(A,B,C, t|A0, B0, C0, t0).

In principle, we obtain all the information about the system by solving the chem-

ical master equation. But the exact analytical solution can rarely be obtained in
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practice, therefore we turn our efforts to computer - oriented numerical method.

In the following section we present a numerical method proposed by D. Gillespie

in 1976 [25].

2.3.2 Gillespie Algorithm

Although the chemical master equation provides the exact description of the

time evolution of the system, it can only be solved in simple cases. If the system

involves more then a few chemical species and chemical reactions the mere for-

mulation of the chemical master equation is impractical. Therefore we introduce

a simulation method, called the Gillespie algorithm [25], which is equivalent to

solving the master equation, however this equation itself is never explicitly used.

The Gillespie algorithm is a simple computational method which does not try to

solve the master equation numerically, but instead it numerically simulate the

same Markov process that master equation describes analytically.

This algorithm can be explain as follows. Let us consider a well-stirred thermally

equilibrated system of N ≥ 1 chemical species Ai, i = 1, . . . , N , in some fixed vol-

ume ν, which are subject to M ≥ 1 chemical reactions Rj, j = 1, . . . ,M . For each

reaction Rj we denote the corresponding propensity function as αj , j = 1, . . . ,M ,

i.e. for simplicity we would omit the dependence of propensity function on the

state of the system.

Then at every given time, we ask two questions: At what time does the next

reaction occur? And which reaction is it? To answer these questions we define

the reaction probability density function P (τ, j) such that

P (τ, j) d τ ≡ the probability at a time t that the next reaction will

occur during the time interval [t + τ, t+ τ + d τ) and it

will be an Rj reaction.

It means that P (τ, j) is a joint probability function on the space of the continuous

variable τ ∈ [0,∞) and the discrete variable j ∈ {1, 2, . . . ,M}. Let us denote

P0(τ) the probability at time t that no reaction will occur in the time interval

[t, t+τ). Then P (τ, j) can be computed as a product of P0(τ) and the probability

that one reaction Rj will occur in interval [t+ τ, t + τ + d τ):

P (τ, j) d τ = P0(τ)αj d τ. (2.14)

To compute P0(τ), imagine the interval [t, t + τ) is divided into K subintervals,

each of length ε = τ/K. Then using the definition of the propensity function we

obtain the probability that no reaction R1, . . . , RM takes place in [t, t+ ε). This

probability is

1−
M∑

k=1

αkε+ o(ε).
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This is also the subsequent probability that no reaction occurs in [t + ε, t + 2ε)

and then in [t+ 2ε, t+ 3ε) and so on. Therefore P0(τ) can be written as

P0(τ) =

[
1−

M∑

k=1

αkε+ o(ε)

]K

=

[
1−

M∑

k=1

αkτ/K + o(1/K)

]K
.

This is true for any K > 1, and in particular it is true for K → ∞, therefore we

can write

P0(τ) = lim
K→∞

[
1−

(
M∑

k=1

αkτ + o(1/K)K−1

)
/K

]K
.

Then using the standard limit formula for the exponential function we obtain

P0(τ) = exp

[
−

M∑

k=1

αkτ

]
. (2.15)

Remark. It may seem that the easier way of deriving the formula (2.15), is to

multiply M individual probabilities exp(−αkτ), corresponding to non-occurrence

of each chemical reaction Rk in the time interval [t, t + τ). However this is not

a correct approach, because exp(−αkτ) is the probability that the reaction Rk

will not occur in [t, t+ τ) only in the absence of all other reactions involving Rk

reactants.

If we denote the sum of all propensity functions as

α0 =
M∑

k=1

αk.

then the reaction probability density function can be expressed as

P (τ, j) = αj exp[−α0τ ], (2.16)

for 0 ≤ τ < ∞ and 1 ≤ j < M . For all other values τ and j, P (τ, j) is zero.

Our goal is to find τ such that if the system is in time t, then t + τ is the time

when the next reaction takes place. If we denote P1(τ) the sum of P (τ, j) over

all j-values

P1(τ) =

M∑

j=1

P (τ, j), (2.17)

then P1(τ) d τ is the probability at the time t that the next reaction will oc-

cur during the time interval [t+ τ, t+ τ + d τ) irrespectively of which reaction it

might be. Substituting (2.16) into (2.17) we obtain

P1(τ) =

{
α0 exp(−α0τ) for 0 ≤ τ < ∞,

0 otherwise.

12



Then the corresponding probability distribution function is

F (τ) = exp[−α0τ ]. (2.18)

Since τ ∈ [0,∞) is a random number distributed according to probability den-

sity function P1(τ), then F (τ) is a random number uniformly distributed in the

interval (0, 1). To find τ we can generate a random number, denote r1, uniformly

distributed in the unit interval. Then putting F (τ) = r1 and solving (2.18) for τ

we obtain that

τ =
1

α0
ln

[
1

r1

]
, (2.19)

where we replace the random variable 1−r1 by the statistically equivalent random

variable r1 for simplicity.

Now when we know the time when the next reaction occurs, we would like to

know which one it is. Since the reactions partition the interval (0, 1) according to

the size of their propensity functions, we can decide which reaction has occurred

at time t + τ by generating second random number r2, uniformly distributed in

(0, 1), and deciding in which partition r2 lies. So we say Rj is the reaction that

occur in t+ τ , if j is the integer for which [7, 54]

r2 ≥
1

α0

j−1∑

k=1

αk and r2 <
1

α0

j∑

k=1

αk. (2.20)

Thus the Gillespie algorithm may be outlined as follows:

13



THE GILLESPIE ALGORITHM

1. Initialisation: set time t = 0, specify the initial number of

molecules of each chemical species and define a stopping

time tSTOP .

2. Generate two random numbers r1 and r2 uniformly dis-

tributed in (0, 1).

3. For each chemical reaction compute the propensity func-

tion αi, i = 1, . . . ,M . Compute the sum of all propensity

functions

α0 =
M∑

k=1

αk.

4. Compute the time when the next chemical reaction occurs

as t + τ where

τ =
1

α0
ln

[
1

r1

]

5. Use the random number r2 to decide which reaction takes

place at time t+τ . It means, find such j that the condition

(2.20) holds.

6. Let the reaction Rj occurs, i.e. update the number of

molecules of those chemical species which involved in reac-

tion Rj .

7. Set t = t+ τ and continue with the step 2 until t > tSTOP .

One realisation of the Gillespie algorithm corresponds to a random evolution of

the system governed by the chemical master equation. Thus, by repeating the

execution of the algorithm, starting from the same initial state and proceeding

to the same time t, an average that corresponds to the solution of the master

equation will be obtained.

Let us consider the illustrative model (2.1)−(2.5) in the domain with volume ν =

10 µm3 and initial state given by A(0) = 20, B(0) = 40 and C(0) = 4. We choose

the rate constants as follows: k1 = 1 µm3sec−1, k2 = 1 sec−1, k3 = 2 µm3sec−1,
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Figure 2.1: Stochastic simulation of the system of chemical reactions (2.1)− (2.5)

for A(0) = 20, B(0) = 40, C(0) = 4 and for reactions rates specified above.

On the first three figures we plot A(t), B(t) and C(t) respectively, given by five

realisations of the Gillespie algorithm, as solid lines. Each color corresponds to

one realisation. The solution of the system of ODEs (2.10) − (2.11) is plotted

in the same figures as the dash line. In the last figure we plot the stationary

distribution of molecules of A, obtained by long time simulations of the Gillespie

algorithm.

k4 = 1 µm−3sec−1, k5 = 2 sec−1 and k6 = 3 µm−3sec−1. In the figure 2.1 we

present five realisations of the Gillespie algorithm of this model. We plot number

of molecules as a functions of time as a solid lines. In the same figure we plot

the deterministic solution of (2.10)− (2.11) as a dashed line. We can see that the

stochastic solution fluctuates around the deterministic one.

Remark. The Gillespie algorithm is a simple and efficient method for simulation

of chemical reactions, but it may become computationally intensive if we consider

a system with large numbers of chemical reactions. In such case we can increase

its efficiency as follows. At the beginning of the simulation we compute the

propensity functions of all reactions. We assume that in one time step only one

reaction takes place, therefore in the third step of the algorithm it is enough to

compute only those propensity functions which are changed by a reaction selected

in previous time step [7].
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Remark. Both presented stochastic approaches, chemical master equation and

Gillespie algorithm, are based on the assumption that the system is well-stirred.

If this is not true then the stochastic formulation of chemical kinetics would not be

valid. However in such a situation we can not expect that the usual deterministic

formulation would be valid either, because it presupposes uniform concentrations

for all chemical species. In this case we need to consider a molecular-based

approach where the positions and the velocities of all the molecules are accounted.

This approach is presented in Chapter 5.
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3. Spatial Pattern Formation

with Reaction Diffusion Systems

3.1 Role of Turing Patterns in Biology

In 1952, Alan Turing suggested that under certain conditions, chemicals can react

and diffuse in such way as to produce spatial patterns of chemical or morphogen1

concentration. This assumption plays an important role in developmental biology

and embryology. Here pattern formation is used to describe mechanisms by which

initially homogeneous tissue develop in a spatially and functionally differentiated

structures. Despite the ubiquity of the patterns it is still unknown how they

are laid down. Therefore an understanding of the pattern formation is without

question one of the major fundamental scientific challenges.

In recent years considerable progress has been made on several different fronts.

For instance, formation mechanisms in limb bud development [20], pigmentation

patterning in mammalian coats [1] or formation of skin follicules of mice [12] have

been explained. Nowadays the role of pattern mechanisms in the development of

a model for the regulatory network that governs lung or ureteric duct branching

[19] is studied.

In this chapter we will study the mechanism responsible for pattern formation.

More precisely, we will consider the illustrative three-component system for which

we derive necessary and sufficient conditions under which patterns are laid down.

We present these conditions in a greater generality.

3.2 Reaction Diffusion (Turing) Mechanisms

Let us consider a general reaction-diffusion system of n ≥ 1 components. We

denote by u = (u1, u2, . . . , un) a vector of concentrations of chemical species.

Then the reaction diffusion mechanisms of this system is described by n reaction-

diffusion equations:

∂uj

∂t
= Dj∆uj + fj(u) (3.1)

j = 1, . . . , n, defined in the time-space cylinder QT = Ω × (0, T ), where T > 0

and Ω ⊂ RN , (N = 1, 2, 3) is a bounded domain. Here ∆ denotes the Laplace

1A morphogen is a substance that induces different cell fates in a concentration dependent

manner. It is especially important in development because emission of a morphogen from a

source can lead to the formation of different cell types in a defined spatial relationship to the

source and to each other.
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operator, Dj is the diffusion coefficient of the j-th species and fj is a reaction

term, i.e the term which takes into account chemical reactions which modify the

concentration of the species uj. To complete the system we equip equation (3.54)

with initial conditions

uj(x, 0) = uj0(x), j = 1, . . . , N (3.2)

and boundary conditions:

n · ∇uj |∂Ω×(0,T )= 0, j = 1, . . . , N (3.3)

where n is the unit outward normal to ∂Ω. A reason why we consider the zero

flux boundary conditions is that we are interested in self-organisation of patterns

and the zero flux conditions imply no external input. Then we can define patterns

as follows.

Definition 2. [11] Patterns are stable, time-independent, spatially heterogeneous

solutions of the system of equations (3.54)-(3.3).

We say that the reaction-diffusion system produces Turing patterns if it fulfils

the condition of diffusion-driven instability, also referred as Turing instability.

Definition 3. A diffusion-driven instability occurs when a homogeneous steady

state, stable to small spatial perturbation in the absence of diffusion goes unstable

when diffusion is present.

This conditions may be a bit surprising because diffusion is usually considered as

a stabilising process. To see intuitively how diffusion can be destabilising consider

following, a bit unrealistic, but illustrative example presented in [1].

Example. Let us consider a field of dry grass where a large number of grasshop-

pers live. They have the ability to produce moisture by sweating when they get

warm. Now suppose that we set a fire at some point and that the flame front

starts to spread. This should be described as a system of two chemical species,

the fire, which acts as an activator, and the grasshoppers, which behave as an

inhibitor. If there is no moisture in the system, then the fire would spread over

the whole field and would result in a uniform charred area.

However if we assume that grasshoppers can produce enough moisture to dampen

the grass so that when the fire reaches such pre-moistened area the grass will not

burn, we can describe pattern formation as follows. We know that the fire spread

in the domain, so we can assume that it diffuses with some diffusion coefficient

denote DF . When the grasshoppers ahead of the flame front feel it is coming

they move quickly ahead of it, it means they diffuse with some diffusion coeffi-

cient DG. We will assume that DG is larger than DF , otherwise the grasshoppers
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do not have a chance to survive, and we again obtain a uniform charred area.

When the grasshoppers run away, they sweat and so produce enough moisture

to prevent the fire spreading into the moistened area. In this way the charred

area is restricted to a finite domain which depends on the diffusion coefficients of

reactants and other reaction parameters.

If, instead of a single initial fire, there wes a random scattering of them, then this

process would result in a final spatially heterogeneous steady state distribution

of charred and uncharred areas in the field and a spatial distribution of grasshop-

pers, since the above scenario takes place around each fire. If both reactants

diffused at the same speed, no such pattern formation could occur. Therefore

one of the necessary conditions for existence of Turing patterns is that at least

one of the diffusion coefficients must be different.

Before we proceed to the derivation of the necessary and sufficient conditions

under which Turing instability will arise, let us summarise some useful statements

and notations.

Consider a square (n × n) matrix A. Let 1 ≤ i1 < i2 < · · · < ip ≤ n, (1 ≤
p ≤ n) be distinct indices from the set 1, 2, . . . , n. We denote by Ai1i2...ip the

square submatrix obtain from A by taking exactly the rows and the columns of

indices i1, i2, . . . , ip and its determinant would be denoted by △i1,i2,...,ip. To derive

the conditions for the Turing instability, it is useful to know the Routh-Hurwitz

criterion, which provides necessary and sufficient stability conditions.

Theorem 1. (Routh-Hurwitz criterion)

Let A be a square (n× n) matrix with a characteristic polynomial

P (λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an,

where the coefficients ai are real constants, i = 1, . . . , n given by:

a1 = −
∑

1≤i≤n

△i ; a2 =
∑

1≤i,j≤n

i<j

△i j ; . . . ; an = (−1)n△1,2,...,n . (3.4)

Using these coefficients we define n Hurwitz matrices as follows:

H1 = (a1), H2 =

(
a1 1

a3 a2

)
, H3 =




a1 1 0

a3 a2 a1

a5 a4 a3




and

Hn =




a1 1 0 0 . . . 0

a3 a2 a1 1 . . . 0

a5 a4 a3 a2 . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . an



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where aj = 0 if j > n. Then the following statement is true. All of the roots of

the polynomial P (λ) are negative or have negative real part iff the determinants

of all Hurwitz matrices are positive:

detHj > 0, j = 1, 2, . . . , n. (3.5)

It means we can say a matrix is stable if the conditions set by above criterion

are fulfilled. For the proof of the Routh-Hurwitz criterion please see [28].

Remark. For polynomials of degree n = 2, 3, 4, the Routh-Hurwitz criteria are

n=2: a1 > 0 and a2 > 0

n=3: a1 > 0, a3 > 0 and a1a2 > a3

n=4: a1 > 0, a3 > 0, a4 > 0 and a1a2a3 > a23 + a21a4.

Definition 4. Let A be a square (n × n) matrix. We say that A is s-stable if,

for any minor △j1,j2,...,jq of order q, 1 ≤ q ≤ n, we have

sgn(△j1,j2,...jg) = (−1)q. (3.6)

This means that the matrix A is s-stable if each of its subsystems is stable.

Theorem 2. (Descartes Sign Rule)

Let p(x) =
∑m

i=0 aix
i be a polynomial with real coefficients such that am 6= 0 .

Define v to be the number of variations in sign of the sequence of coefficients

am, . . . , a0. By ”variations in sign” we mean the number of values of n such that

the sign of an differs from the sign of an−1 , as n ranges from m down to 0. Then

the number of positive real roots of p(x) is either equal to v or is less than it by

a multiple of 2. Multiple roots of the same value are counted separately.

This means that a polynomial with real coefficients has at most v positive

roots. The exclusion of multiples of 2 is because the polynomial may have complex

roots which always come in pairs. Since the negative roots of the polynomial

equation p(x) = 0 are positive roots of the equation p(−x) = 0, the rule can

be readily applied to help count the negative roots as well. For the proof of the

Descartes sign rule please see [31].

Remark. Descartes sign rule can only be used to determine the sign of real roots,

it does not hold for the sign of the real part of a complex root. For example,

consider polynomial

p(x) = x4 + x2 − 2x+ 6. (3.7)

Number of variation in sign of p(x) is two. It means that this polynomial has

two or zero positive real roots. On the other hand number of variation in sign
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of p(−x) is zero, it means that there are no negative real roots. In this case the

Descartes rule implies that the system has two or four complex roots, but it tells

nothing about the stability. In this case the polynomial p(x) has four imaginary

roots, two with positive real part and two with negative real part.

3.3 Conditions for Diffusion-Driven Instability

The idea of the derivation of Turing instability conditions is quite simple. Let us

denote us the homogeneous steady state of (3.54) − (3.3). To prove the Turing

instability we first need to show that this solution is linearly stable as the solution

of a kinetic system:

∂uj

∂t
= fj(u), uj(0) = uj0 (3.8)

for j = 1, . . . , n. To study this we linearise the system (3.8) about the steady

state us, it means we set w = (u− us) and for |w| small we obtain,

wt = Aw, n · ∇w = 0, w(x, 0) = 0, (3.9)

where A = {aij}ni,j=1 is the Jacobian matrix associated with (3.8) at u = us, i.e.

aij =
∂fj
∂uj

(us), 1 ≤ i, j ≤ n. The system (3.9) is linear and so we look for a

solution in the form

w ∝ exp(λt),

where λ is the eigenvalue of A. The steady state w = 0 is linearly stable if all the

eigenvalues of A have negative real parts, because in this case the perturbation

w → 0 as t → ∞.

Once we would know that us is stable solution of (3.8), i.e. it is stable solution

of the system (3.54)− (3.3) without diffusion, we have to prove that it becomes

unstable when diffusion is present. So let us consider the full reaction-diffusion

systems (3.54)− (3.3) and linearise it about the steady state w = 0 to obtain

wt = Aw+D∆w , n · ∇w = 0 , w(x, 0) = 0, (3.10)

where D is matrix of diffusion constants defined as dij = Diδij , where δij is the

Kronecker delta. To solve this system of equations we first define W(x) to be

time-independent solution of a spatial eigenvalue problem defined by

∆W+ k2W = 0 in Ω, (3.11)

(n · ∇)W = 0 on ∂Ω, (3.12)

where k ∈ R is the eigenvalue of the above eigenvalue problem. Since Ω is bounded

domain in R
N the eigenfunctions of the Laplace operator form orthonormal basis
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in the Hilbert space L2(Ω).

For example if Ω = [0, a], then the solution of the eigenvalue problem (3.11) −
(3.12) is W ∝ cos(nπx/a), where n ∈ Z. In this case, the eigenvalue is k = nπ/a.

So, 1/k = a/nπ is a measure of the wavelike pattern and ω = 2π/k = 2a/n is the

wavelength in this example.

Since the system (3.10) is a linear problem, we look for its solutions w(x, t) in

the form

w(x, t) =
∑

k

bke
λtWk(x) , (3.13)

where Wk(x) is the solution of eigenvalue problem (3.11)− (3.12) corresponding

to the eigenvalue k. The constants bk are determined by a Fourier expansion of

the initial conditions in terms of Wk(x) and λ is the eigenvalue which determines

temporal growth. Substituting the form (3.13) into (3.10), using (3.11)− (3.12)

and cancelling eλt, we get for each k:

λWk = AWk +D∆Wk

= AWk −Dk2Wk.

It means the eigenvalues of the system (3.10) are also eigenvalues of the system

wt = Cw , n · ∇w = 0 , w(x, 0) = 0, (3.14)

where

C = A−Dk2. (3.15)

Therefore to prove the instability of the system (3.10) it is sufficient to show

instability of the simpler system (3.14).

Now we can finally derive the conditions for the Turing instability. The following

two theorems together provide necessary and sufficient conditions, set on the

matrix A, under which the Turing instability arise. In both of these theorems we

would follow the approach presented by Satnoianu at. all in [29].

Theorem 3. If the kinetic system (3.9) of the problem (3.54) − (3.3) is s-stable

then no Turing bifurcation is possible from the uniform steady state solution us

for any n ≥ 1.

Proof. We prove this theorem by induction on n. At first we show that if n = 1

then no Turing bifurcation is possible. Indeed, if n = 1 we have a single reaction-

diffusion equation of the form

∂u

∂t
= D∆u+ f(u). (3.16)
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Here u = u1 and D = D1. Let us denote by S the set {us > 0 | f(us) = 0} of all

homogeneous stable steady states of (3.16). Since us from this set are stable, we

have

f ′(us) < 0 (3.17)

for all us ∈ S. Now studying the stability of elements in the set S to the full

reaction-diffusion system (3.16), we find that the eigenvalues are given by

λ = −k2 + f ′(us). (3.18)

From (3.18) it is clear that Re(λ) < 0 for all real k. Therefore no Turing insta-

bility is possible in this case.

So our induction hypothesis is this: we take a system of n interacting species

such that every (n−1) dimensional subsystem is s-stable. We want to show that

then the whole system is s-stable. To do this, we need to show that the matrix

C defined by (3.15) is s-stable.

At first let us note that it is sufficient to prove this when only one of the diffusion

coefficients Di is non-zero, we choose it to be D1. See the remark following the

proof to see how this can be used to prove the general case with non-zero coeffi-

cients. So we need to show that if A is s-stable then the matrix C = A − dB is

s-stable, too. Here d = k2D1 > 0 and B is (n× n) matrix, such that bij = δ1,1.

Let us denote by λ1, λ2, . . . , λn the eigenvalues of matrix C. Then its character-

istic polynomial is of the form

Pn(λ) = λn + c1λ
n−1 + · · ·+ cn−1λ+ cn, (3.19)

where coefficients ci are given by:

c1 = d −
n∑

i=1

△i = d+ a1

c2 = −d

n∑

i=2

△i +
∑

1≤i<j≤n

△ij = −d

n∑

i=2

+ a2 (3.20)

...

cn = d(−1)n−1△2...n + (−1)n△12...n = d(−1)n−1△2...n + an,

where ai, i = 1, 2 . . . n, are coefficients of the characteristic polynomial associated

to the kinetic matrix A defined in (3.4). We assume that A is s-stable, i.e.

△i < 0 , △ij > 0 , . . . , sgn(△12...n) = (−1)n (3.21)

We also assume that d > 0. Thus ci is positive for each i = 1, . . . n. It means that

(3.19) is a polynomial of degree n with all coefficients real and positive. Then the
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Descartes sign rule implies that all real roots of (3.19) must be negative. However

P (λ) can also has complex roots. Therefore we will now analyse this possibility.

Let us remark that the coefficients ci defined in (3.20) are differentiable functions

of d > 0 with the property that

ci(0) = ai and ci(d) > ai

for all i = 1, . . . , n. Taking the derivative (denoted by ′) of each coefficient in turn

with respect to d we have

c′1 = 1 ; c′2 = −
n∑

i=2

△i ; . . . c′n = (−1)n+1△2 3...(n−1). (3.22)

From (3.21) we see that all these derivatives are positive.

To decide whether or not the matrix C has eigenvalues with positive real parts we

will use the following strategy. Consider C as a matrix with constant coefficients

of a linear n× n system of first order differential equations

d x

d t
= Cx, for x ∈ R

n, t > 0 and x(0) = x0.

The sign of real parts of the eigenvalues of C dictates the asymptotic behaviour

of the solutions. To quantify this behaviour we employ the method of steepest

descent. Namely we consider the equation P (λ(x)) = 0 with the root x taken to

be complex. The asymptotic dynamics as t → ∞ may be determined by looking

at the saddle points, i.e. points in the complex plain where

dλ

d x
= 0 .

From the equation for the characteristic polynomial we find

λ′
[
nλn−1 + (n− 1)c1λ

n−2 + . . . + cn−1
]
+ c′1λ

n−1 + c′2λ
n−2 + . . . + c′n = 0 .

Since λ′ = 0, the saddle points satisfy a polynomial equation of degree (n − 1)

with coefficients c′j, j = 1, . . . , n. It means that there are exactly n− 1 complex

values λj such that λ′ = 0 ⇒ λ = λj , j = 1, . . . , n − 1. Using equations (3.20)

and (3.22) we can see that the equation

c′1λ
n−1 + c′2λ

n−2 + . . . c′n = 0

corresponds exactly to the characteristic polynomial of the system with n − 1

species which is the subsystem of A with matrix A2...n. Then our induction

hypothesis implies that

Re(λj) < 0

24



for all j = 1, . . . , n − 1. Therefore we deduce that the function Re(λ(d)) is

maximal for λ = λj and therefore for all d > 0 we have

Re(λ) ≤ Re(λj) < 0

where λ = λ(d) is any solution of (3.19). So we have proved that the matrix C is

s-stable and therefore there is no Turing bifurcation.

Remark. The general case where all diffusion coefficients are non-zero may be

readily obtained by applying inductively the above proof to each coefficient in

turn. Indeed this can be achieved by realising that once A is s-stable than the

matrix C is s-stable, too. This may be generalised by considering each entry from

the main diagonal iteratively.

We now take matrix C as defined in (3.15), it means we will consider that all the

diffusion coefficients are non-zero. Our aim is to show that the condition from

Theorem 3 is optimal in the sense that if A is not s-stable, than we can tune the

diffusion coefficients so that the homogeneous steady state solution us undergoes

a Turing bifurcation for the full reaction-diffusion problem (3.54)− (3.3).

Theorem 4. If the kinetic system (3.9) of the problem (3.54) − (3.3) is stable

and contains an unstable subsystem, then Turing bifurcation is possible from the

homogeneous steady state solution us.

Proof. As in the previous proof, we define the characteristic polynomial associated

to the C by (3.19) where coefficients ci are now given by

cn = k2nD1D2 . . .Dn − k2n−2
∑

{i1,...,ip}=

{1,...,n}−{i}

△iDi1Di2 . . . Dip + (3.23)

+ k2n−4
∑

{i1,...,ip}=

{1,...,n}−{i,j}
i<j

△ij Di1 . . .Dip − · · · + (−1)n△12...n .

Based on the theorem hypothesis we deduce that there are distinct indices 1 ≤
i1 < i2 < · · · < ip ≤ n, (1 ≤ p ≤ n) taken from the set 1, 2, . . . , n such that

the corresponding subsystem is unstable. We also know that p < n because the

matrix A is stable by the hypothesis. To prove the existence of Turing bifurcation

in this case we show that we can choose the diffusion coefficients in such way that

the matrix C has a zero eigenvalue. Obviously this happens if cn becomes zero

for suitably chosen diffusion coefficients Di, i = 1, . . . , n. To do this we choose a

positive, small number ε and let

Di1 = Di2 = · · · = Dip = ε .
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Let q = n − p and denote by the remaining indices from the set 1, 2, . . . , n by

j1, j2, . . . , jq. From the equation (3.23) we can see that if all diffusion coefficients,

except one (Dj1 say) are equal to ε then we have

cn = (−1)n−1△J Dj1 + (−1)n△12...n + O(ε),

where J = {1, 2, . . . , n} r {j1}. We can always assume that △J is non-zero.

Otherwise all the minors of order (n− 1) would be zero, what would imply that

matrix A is a singular matrix. This contradicts the hypothesis that the matrix A

has eigenvalues with only negative real parts. Then it is clear that, independent

of the sign of △J , we can always find critical value δc(ε) > 0 such that choosing

Dj1 sufficiently close to δc(ε) will make cn take both negative and positive values

depending on whether Dj1 is less then, or equal to δc(ε), or greater than δc(ε).

Thus cn is exactly zero when Dj1 = δc(ε) and thus C has a zero eigenvalue. This

means that at δc(ε) there is a pitchfork bifurcation (with a zero eigenvalue) which

corresponds to a Turing bifurcation for the full reaction-diffusion system, and the

theorem is proved.

It means that the Theorem 3 provides the necessary and the Theorem 4 the

sufficient condition for the Turing bifurcation to occur in a general n-dimensional

reaction-diffusion system. Due to this we can decide whether the given system

can produce Turing patterns or not.

3.4 Turing Patterns in the Illustrative Chemical

System

In this section we apply our knowledge of pattern formation to the illustrative

model introduced in previous chapter. It means we will consider a system of three

chemical species A, B and C, which diffuse with diffusion constants Da, Db and

Dc and react according to (2.1) − (2.5). Then the reaction-diffusion mechanism

of this system is governed by following equations

∂a

∂t
= Da∆a− k1a

2 + k2b+ k3bc + k4 − k5a (3.24)

∂b

∂t
= Db∆b+ k1a

2 − k2b (3.25)

∂c

∂t
= Dc∆c− k3bc + k6 (3.26)

defined in the time-space cylinder QT = Ω × (0, T ), where T > 0 and Ω ⊂ RN ,

(N = 1, 2, 3), is the bounded domain. There the functions a, b and c : Ω×[0, T ] →
[0,∞) denote concentration of corresponding chemical species. To complete the

system we equip the above equations with the initial conditions

a(x, 0) = a0(x), b(x, 0) = b0(x), c(x, 0) = c0(x) for x ∈ Ω (3.27)
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and zero-flux boundary conditions

n · ∇a |∂Ω×(0,T )= 0, n · ∇b |∂Ω×(0,T )= 0, n · ∇c |∂Ω×(0,T )= 0. (3.28)

Then we can use Theorem 3 and Theorem 4 to find necessary and sufficient

conditions on the kinetic matrix A, defined in (3.9), under which there exits such

diffusion coefficients that the system (3.24)− (3.28) undergoes Turing instability.

However these theorems do not specify how to choose the diffusion coefficients.

This is the aim of the following theorem, where we derive necessary and sufficient

conditions on the whole reaction-diffusion system under which the illustrative

mode posses Turing instability.

At first we summarize the notation that would be used. For easier handling we

denote the reaction terms from (3.24)− (3.26) as

f(a, b, c) = −k1a
2 + k2b+ k3bc + k4 − k5a

g(a, b) = k1a
2 − k2b

h(b, c) = −k3bc + k6.

Let us denote by (as, bs, cs) the homogeneous steady state of (3.24)−(3.26). Since

g does not depend on c and h is independent of a, the Jacoby matrix A associated

to the system (3.24)− (3.26) is given by

A =




fa fb fc

ga gb 0

0 hb hc




(as,bs,cs)

. (3.29)

Here the indices a, b and c of functions f , g and h denote the partial derivative of

the function with respect to the corresponding index, for example fa :=
∂f
∂a
. From

now on we take the partial derivatives of f , g and h to be evaluated at the steady

state (as, bs, cs) unless stated otherwise. The sign of these derivatives would be

important in the following theorem, therefore let us summarise it at this place.

Since we assume the concentrations and the reaction rates to be non-negative

numbers, we obtain that

sgn(A) =




−1 +1 +1

+1 −1 0

0 −1 −1


 . (3.30)

Now we can proceed to the theorem.

Theorem 5. (Conditions for Turing Instability for the Illustrative system)

The Turing instability of the system (3.24)− (3.28) occurs if the following condi-

tions hold:
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1) fa + gb + hc < 0

2) fb ga hc − fa gb hc − fc ga hb > 0

3) (−fa − gb − hc) (fa gb − fb ga + fa hc + gb hc) > (fb ga hc − fa gb hc − fc ga hb)

4) fa gb − fb ga < 0

5) Dc fa gb +Da gb hc +Db fa hc −Dc fb ga ≤ 0

6) And if there exists a time-independent solution W(x) of the eigenvalue problem

(3.11)− (3.12) with the eigenvalue k, within a finite range interval [k1, k2], such

that the polynomial satisfied y(k)=Ak6+Bk4+Ck2+D is true that y(k1) = 0,

y(k2) = 0, and y(k) < 0 for each k ∈ [k1, k2] ,where

A = DaDb Dc

B = – DaDc gb −Db Dc fa −DaDb hc

C = Dc fa gb +Da gb hc +Db fa hc −Dc fb ga

D = – fa gb hc − fc ga hb + fb ga hc.

Proof. To prove this theorem we have to show that the conditions 1)− 6) are in

accordance with conditions required by the definition of Turing instability. Part

1. Conditions 1)− 4).

Let us consider the system (3.24)−(3.26) without diffusion, i.e with zero diffusion

coefficients. Then after linearising about the steady state (as, bs, cs) we obtain

wt = Aw, n · ∇w = 0, w(x, 0) = 0,

where w = (a − as, b− bs, c− cs) and A is the Jacobian matrix given by (3.29).

According to Theorem 4, A has to be stable and need to contain an unstable

subsystem. The Routh-Hurwitz criteria states that the (3× 3) matrix is stable if

coefficients ai, i = 1, 2, 3 defined by (3.4), fulfil:

a1 > 0, a3 > 0, and a1 a2 > a3. (3.31)

If we compute the coefficients ai for the matrix A, according to the formulas (3.4),

and substitute them in (3.31) we obtain the conditions 1)− 3).

The matrix A contains an unstable subsystem if at least one of the submatrices:

Ai, i = 1, 2, 3 or Aij , 1 ≤ i, j ≤ 3, i < j is unstable. According to the Routh-

Hurwitz criteria this happens if at least one of the following conditions hold:

−△i < 0 for i = 1, 2, 3

−△i −△j < 0 for 1 ≤ i, j ≤ 3, i < j

△ij < 0 for 1 ≤ i, j ≤ 3, i < j
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Substituting the terms from the matrix A to the above formulas, we find that the

only condition that holds is △12 = fa gb − fb ga < 0. This is the conditions 4).

Thus the conditions 1) − 4) ensure that the homogeneous steady state is stable

without diffusion and that it is possible to find such diffusion coefficients for which

the system undergoes Turing instability. To finish the proof it remains us to show

that conditions 5) and 6) ensure instability of the steady state (as, bs, cs) when

the diffusion is present.

Part 2. Conditions 5)− 6).

Now we consider the full reaction-diffusion system (3.24)−(3.26) linearised about

the steady state:

wt = Aw+D∆w , in Ω (3.32)

n · ∇w = 0 on ∂Ω (3.33)

w(x, 0) = 0 x ∈ Ω , (3.34)

where D is the matrix of diffusion coefficients given by

D =




Da 0 0

0 Db 0

0 0 Dc


 .

As we explained in the previous section, since we assume the existence of the

eigenvalue vector W(x) of the eigenvalue problem (3.11)− (3.12), it is sufficient

to investigate the instability of the

wt = (A−Dk2)w in Ω ,

n · ∇w = 0 on ∂Ω ,

w(x, 0) = 0 x ∈ Ω .

Let us denote by λ the eigenvalues associated to the matrix C := A−k2D. Then

we would like to show that Re(λ(k)) > 0 for some k 6= 0. The case k = 0 is

already included in the Part 1 of this proof, because k = 0 removes diffusion

terms from our equations, thus the system (3.32) takes the form of (3.9). From

the following expression

det




Dak
2 − fa + λ −fb −fc

−ga Dbk
2 − gb + λ 0

0 −hb Dck
2 − hc + λ


 = 0

we obtain a characteristic polynomial associated to the matrix C given as:

P (λ) = λ3 + c1λ
2 + c2λ+ c3,
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where coefficients ci, i = 1, 2, 3, are defined by (3.23), namely

c1 = k2(Da +Db +Dc)− fa − gb − hc

c2 = k4(DaDb +DaDc +DbDc)− k2 [fa(Dc +Db) + gb(Da +Dc) + hc(Da +Db)]

+fa hc + gb hc + fa gb − fb ga

c3 = k6(DaDb Dc) + k4(−Db Dc fa −DaDc gb −DaDb hc) +

+k2(Dc (fa gb − fb ga) +Da gb hc +Db fa hc) + fb ga hc −
−fa gb hc − fc ga hb.

Then the Routh-Hurwitz criteria implies that matrix C is unstable if at least one

of the following conditions hold:

c1 < 0 , c3 < 0 or c1c2 < c3.

With the help of the conditions 1) − 3) and (3.30) we obtain that c1 and c2 are

always positive, moreover they imply that c1c2 > c3. Thus the only way as the

instability can be reached is if c3 < 0. In this case the Descartes sign rule implies

that the polynomial P (λ) has exactly one positive real root. Thus we need to

find conditions which ensure that c3 is negative. We rewrite c3 as

c3(k) = Ak6 +Bk4 + Ck2 +D ,

where coefficients A, B, C and D are defined in the conditions 6) of this theorem.

Conditions 1)− 3) and (3.30) implies that A, B and D are positive. Since A > 0

then c3(k) → ∞ for k → ±∞. In the Figure 3.1 we sketch c3 as the function of

k. Thus if c3 is negative for some k’s, there need to exists a local minimum kmin,

such that c3(kmin) < 0. Derivation of c3 with respect to k2 shows that

k2
min =

−B +
√
B2 − 3AC

3A
. (3.35)

Since k is considered to be real and non-zero we obtain that C ≤ 0. This corre-

sponds exactly to condition 5). Since c3(kmin) < 0 and c3(k) → ∞ for k → ±∞, it

is clear that there exit a finite range interval [k1, k2], such that c3(k1) = c3(k2) = 0

and c3(k) < 0 for k ∈ [k1, k2]. So the condition 6) is proved and so is the theo-

rem.

Remark. To check if the system (3.24) − (3.26) meets the condition 6) it is

sufficient to verify that the minimum of y(k) is negative, i.e

y(kmin) = 2B3 − 9ABC − 2(B2 − 3AC)3/2 + 27A2D (3.36)

where kmin is obtained from (3.35).
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Figure 3.1: A sketch of the coefficient c3 as the function of k.

Remark. Conditions 1), 2) , 3) and 5) imply that at least one of the diffusion

coefficients must be different. Indeed, if Da = Db = Dc then the condition 5)

gives

fa gb − fb ga + gb hc + fa hc ≤ 0.

However conditions 1), 2) and 3) imply that this expression is strictly positive.

Thus one cannot have a Turing instability with identical diffusion coefficients.

Remark. It is possible to find exact formulas for eigenvalues k1 and k2. They

can be found as roots of the polynomial y(k), but they are given by a complicated

expression from which little insight can be gained. To prove the Theorem 5 we do

not need to know these expressions, however one will need them to determine the

interval of possible wavenumbers. In such a case we recommend to use a numerical

software to find roots of y(k). However if someone prefers an analytical approach,

we present formulas for roots of y(k) in Appendix A.1.

Simulation of the illustrative model

Let us consider the illustrative model given by equations (3.24) − (3.28). We

choose reaction rate constants as follows k1 = 1 µm3sec−1, k2 = 1 sec−1, k3 =

2 µm3sec−1, k4 = 1 µm−3 sec−1, k5 = 2 sec−1 and k6 = 3 µm−3sec−1. Then

the homogeneous steady state is (as, bs, cs) = (2 , 4 , 0.375) µm2sec−1. We can

immediately see that the conditions 1)− 4) hold. The condition 5) implies

8Da + 48Db −Dc < 0.

Thus if we fix Da = 0.0001 µm2sec−1 and Db = 0.00001 µm2sec−1, then we

need to choose Dc > 0.0013 µm2sec−1. Using the condition (3.36) we obtain

Dc > 0.0128 µm2sec−1. It means the considered systems undergoes Turing in-

stability if Dc > 0.0128 µm2sec−1. We will analyse this model at first in a one

dimensional domain and then in two dimensions.
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One dimensional case:

Let us consider that the illustrative model (3.24)− (3.26) evolves in the interval

[0, 1] µm. In Figure 3.2 we plot numerically computed solution of this system for

different values of the diffusion coefficient Dc. As the initial condition we choose

the homogeneous steady state (as, bs, cs) with some small additive random noise.

This can be implemented as follows

(a0, b0, c0) = (as, bs, cs) + 0.01η,

where η is a random number uniformly distributed in the unit interval (0, 1).

The graphs of A (blue line), B (green line) and C (red line) are plotted at time

t = 1000 sec and can be practically considered as steady states. As we expected

no spatial patterns occur when Dc < 0.0128 µm2sec−1. If Da = Db = Dc then

we obtain the same results as for Dc = 0.01 µm2sec−1, therefore we do not plot

it there.
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Figure 3.2: Solution of equations (3.24) − (3.28) for Da = 0.0001 µm2sec−1,

Db = 0.00001 µm2sec−1 and Dc = 0.02 µm2sec−1 (left figure), resp. Dc =

0.01 µm2sec−1 (right figure), at t = 1000 sec with an initial condition being the

uniform steady state with small additional noise and with reaction rates specified

above. We plot A (blue line), B (green line) and C (red line) in the same picture.

If we solve equations (3.24) - (3.28) analytically in the general domain x ∈ [0, L],

t ∈ [0,∞) we find that the separable solution is of the form

w(x, t) =
∑

k

ck exp(λt) cos(kx),

where the sum is over the allowed values of k i.e.

k =
nπ

L
, n ∈ {1, 2, ...} , (3.37)

and ck is k-dependent in general but independent of t and x.
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Influence of the domain size

The equation (3.37) may bring us to an idea that the Turing instability is also

influenced by the size of the domain. More specifically, if the smallest allowed

value of k = π/L is such that

k =
π

L
> k2

then we cannot have the Turing instability. Thus for such small domains that

L < Lctit = π/k2, there is no pattern formation via the Turing mechanism. For

instance the illustrative model, with Dc = 0.02 µm2 sec1 and other parameters

defined above, undergoes the Turing instability for

k ∈ [k1, k2] = [32.2794 , 67.9955]

and the critical domain size is Lcrit = 0.04620 µm.

Number of Patterns

In the previous section, we mentioned that ω = 2π/k is a wavelength. It means

that for the given size of the domain we can find the corresponding number of

patterns. If we consider one dimensional domain of length L, then the number of

patterns, i.e peaks, is

n =
L

ω
=

Lk

2π
, for k ∈ [k1, k2]. (3.38)

Choosing k = k1 and k = k2 we obtain that possible number of patterns for the

system is given as n ∈ [k1L
2π

, k2L
2π

]. Since n is considered as a number of patterns

it seems reasonable to assume it as a positive integer. However as we can see on

the Figure 3.3 the system may produce just a part of a peak. If we, for instance,

define n = 0.5 × l, where l is positive integer, then we find that the possible

number of peaks for the illustrative model in the domain of length 1 µm is within

the interval n ∈ [5 , 10.5].

Robustness

Let us note that the systems with Turing instability are not robust enough. It

means that even a small change in the initial conditions may lead to qualitative-

ly different solutions. For instance, on Figure 3.3 we plot the one dimensional

solution of the system (3.24) − (3.28) for the same values of reaction rates and

diffusion coefficients. We simply change the generator of random numbers, it

means we slightly change the initial conditions. In the deterministic models, it

means models described by concentration, once the system reaches the state with
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Figure 3.3: Solution of Eqs. (3.24) - (3.28) with the initial condition being the

perturbed uniform steady state. In all three cases we use the same values for

diffusion coefficients and reaction rates. Different results are caused by the change

of the generator of random numbers, which corresponds to a small change in the

initial conditions. We plot A (blue line), B (green line) and C (red line) in the

same picture.

given number of patterns, it will stay there. As we will see in the following chap-

ters, the systems with small number of molecules may switch between states with

different numbers of peaks.

This model sensitivity to small perturbation might create the impression that

the Turing model is inappropriate when applied to robust pattern formation in

developmental biology. However the main characteristic of the development is

the growth. Crampin at al. [32] showed that the domain growth could be used

to select robustly certain types of patterns. Kondo and Asai [17] showed that

Turing mechanisms can correctly predict future patterns on the marine angelfish

skin. This pattern formation is different as then the one on the mammalian coat,

which enlarge proportionally during the body growth. This is contrary to the

patterns on the marine fish which maintain the space between the stripes by the

continuous rearrangement of the patterns.

Two Dimensional Case:

Let us assume that the system evolves in the two-dimensional domain [0, 0.5] µm×
[0, 0.5] µm with the following diffusion coefficients Da = 0.0001 µm2sec−1, Db =

0.00001 µm2sec−1 and Dc = 0.02 µm2sec−1. In Figure 3.4 we plot numerically

computed solution of this system with the initial condition being the perturbed
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Figure 3.4: Solution of Eqs. (3.24) - (3.28) in two dimensional domain with the

initial condition being the perturbed uniform steady state. In first three figure

is concentration of A, B and C, respectively, in a square domain [0 , 0.5] µm ×
[0, 0.5] µm. In last figure is concentration of C molecules in a narrow domain

[0 , 0.5] µm× [0, 0.1] µm.

uniform steady state. Concentrations are plotted at time t = 1500 sec and can be

practically considered as steady states. The system starts to evolve from the state

close to the homogeneous steady state and evolves till it reaches stable patterns.

On Figure 3.5 we present the evolution of concentration of A molecules. For

better illustration, please see attached movie called Turing.avi or download it

from http://tdo.sk/∼jana/Turing.avi.
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Figure 3.5: Evolution of the concentration of molecules of A. We solve equations

(3.24)− (3.28) with the initial condition being the perturbed uniform steady state

and plot the concentration of molecules of A at different times.

If we search for an analytical solution in the general domain [0, a]× [0, b] we

find that the allowed values of k2 are

k2
m,n =

[
m2π2

a2
+

n2π2

b2

]

and separable solution is

w(x, t) =

∞∑

m=0

∞∑

n=0

cl,m exp(λt) cos
(mπx

a

)
cos
(nπy

b

)
,

where cl,m is independent of t and x.

Influence of the domain size

Now we look how the size of domain influence on the formation of patterns in

the two-dimensional case. If the domain is long and thin, b ≪ a, we may have a

Turing instability if

k2
m,n =

[
m2π2

a2
+

n2π2

b2

]
∈
[
k2
1, k

2
2

]
.

Thus for b sufficiently small, this requires n = 0 and therefore no spatial variation

would develop in the y direction. This typically invokes striped patterns. In

Figure 3.4 in the right bottom we plot concentration of C molecules in narrow
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domain [0 , 0.5] µm× [0 , 0.1] µm.

For a large rectangular domain, b ∼ a sufficiently large, it is clear that the Turing

instability can be initiated with n,m > 0. It means spatial variation would

develop in both directions x and y. This typically invokes a spotted patterns,

which are plotted in Figure. (3.4).

Remark. (Numerical Method)

To solve the system of partial differential equations (3.24)−(3.28) we use the spec-

tral method, which is built on the same idea as the finite element method. The

main difference is that the spectral method approximates the solution as a linear

combination of continuous functions that are generally nonzero over the domain

of the solution (usually sinusoids or Chebyshev polynomials), while the finite el-

ement method approximates the solution as a linear combination of piecewise

functions that are nonzero on small subdomains. Because of this, the spectral

method takes on a global approach while the finite element method is a local

approach. This is part of why the spectral method works best when the solution

is smooth [41].

3.4.1 Mammalian Coat Patterns

In this part we will study perhaps the most spectacular example of the pattern

formation, mammalian coat pattering. This pattern formation is described as a

reaction-diffusion system, where some chemical species stimulates production of

melanin2 and some inhibits its production. We will model mammalian body as

a domain which changes its aspect ratio from rectangular to long and thin. If

we assume that patterns on mammals are driven by Turing instabilities then we

have following possibilities3:

Figure 3.6: Possibilities of mammals coat pattering by the Turing instability.

Common observation is consistent with our assumption (see Figure 3.7) but one

should not expect universal laws in the realms of biology as one does in physics

[11] (see Figure 3.8 ). More generally this analysis has applications in mod-

elling numerous chemical and biochemical reactions, in vibrating plate theory,

and studies of patchiness in ecology and modelling gene interactions.

2Melanin is a substance that gives the skin and hair its natural color.
3Figure reproduced with permission from [11]
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Figure 3.7: Animal coat markings which are consistent with the prediction of

pattern formation by the Turing instability.

Figure 3.8: Animal coat markings which are inconsistent with the prediction of

pattern formation by the Turing instability.

3.4.2 Schnakenberg system

Let us note that under certain conditions, the illustrative model, defined in the

first chapter, provides a good approximation of system studied by Schnakeberg

[61]. This is a reaction-diffusion system of two chemical species, let’s say A and

C, which diffuse with diffusion coefficients D̃a and D̃c and react according to

2A+ C
m1→ 3A (3.39)

∅ m2→ A (3.40)

A
m3→ ∅ (3.41)

∅ m4→ C, (3.42)

where the m1, m2, m3 denotes reaction rates. The Schnakenberg system was used

in the model of the follicule spacing on the skin of mice, presented by Sick et al

[12]. It is also used in the simulation of mammalian coat pattering studied in [1].

Now let us explain how the two-component Schnakenberg system can be approx-

imated by the three component illustrative model defined in the first chapter. If

m2 = k4, m3 = k5, m4 = k6, D̃a = Da and D̃c = Dc, then chemical reactions

(3.40)− (3.42) are exactly the same reactions as (2.3)− (2.5). The reaction (3.39)

can be approximated by (2.1) − (2.2) if we assume that the B molecules exist

in the system only for a short amount of time. Furthermore, this assumption

implies that the concentration for B is never large, it means that the bulk of

the mass is shared between species A and C which is to be expected for the two

component Schnakenberg system. The assumption on the short life time of B

molecules holds if k2 and k3 are large. Thus we introduce a small parameter
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ε > 0 such that 1/ε = k2. Then the comparison of the total mass of both models

implies, that these two models are equivalent if

k1 = ρm1,

where ρ = k3/k2, such that ρ << 1/ε and if Db = 0. The assumption on the

diffusion constant Db matters because the concentration of B is small everywhere.

It means that the b is small and so is the diffusion term.

The reaction-diffusion mechanism of the Schnakenberg model is governed by

the following equations

∂a

∂t
= D̃a∆a + f(a, c) (3.43)

∂c

∂t
= D̃c∆c+ g(a, c), (3.44)

where f and g stands for the corresponding reaction terms. The conditions under

which this system undergoes Turing instability are presented in the following

theorem.
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Theorem 6. (Conditions for Turing Instability of the Schnakenberg system)

The diffusion-driven instability of the system (3.39)-(3.42) occurs if the following

inequalities hold:

fa + gc < 0 , (3.45)

fagc − fcga > 0 , (3.46)

D̃cfa + D̃agc > 0 , (3.47)
(
D̃cfa + D̃agc

)
> 2

√
D̃aD̃c (fagc − fcga) . (3.48)

And if there exists a time-independent solution W(x), of spatial eigenvalue prob-

lem (3.11)− (3.12) with eigenvalue k2, (k ∈ R) within the following range

k2 ∈
[
A−

√
A2 − B

2D̃aD̃c

,
A +

√
A2 − B

2D̃aD̃c

]
,

where

A = D̃cfa + D̃agc,

B = 4D̃aD̃c(fagc − fagc).

The idea of the proof is the same as in the proof of Theorem 5, but it is easier

since the Schnakenebrg system deals only with two chemical species. The proof

can be found in [1] or [11].

Model specification

In all simulations of the illustrative model we will use following diffusion coeffi-

cients and the following reaction rates

Da = 1× 10−4 µm2sec−1, Db = 1× 10−5 µm2sec−1, (3.49)

Dc = 0.02 µm2sec−1, k1 = 1 µm3sec−1, (3.50)

k2 = 1 sec−1, k3 = 2 µm3sec−1, (3.51)

k4 = 1 µm−3sec−1, k5 = 2 sec−1 (3.52)

k6 = 3 µm−3sec−1. (3.53)

Similar, we specify the model parameters for the Schnakenberg model

D̃a = 5× 10−4 µm2sec−1, D̃c = 0.06 µm2sec−1 (3.54)

m1 = 1 µm4sec−1, m2 = 1 µm−2sec−1, (3.55)

m3 = 2 sec−1, m4 = 3 µm−2sec−1 (3.56)

One can easily check that this model fulfils conditions from Theorem 6.
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4. Compartment-based

Stochastic Reaction-Diffusion

Algorithm

In the previous chapter we studied pattern formation in the systems characterised

by concentration and described by the partial differential equations. If we want

to explore this process at the molecular level, we need to describe the system by

number of molecules rather then by concentrations and use the stochastic ap-

proach instead of the deterministic one.

In this chapter we study one of the compartment based stochastic simulation

algorithms. The idea of this algorithm is to divide the domain into small com-

partments, such that molecules within each compartment are well mixed. It is

not necessary for molecules to be well-mixed between the compartments. Further-

more we will assume that only molecules in the same compartment may react.

Since molecules are well-mixed we can use the Gillespie algorithm to simulate

chemical reaction within each compartment. Moreover, thanks to the division of

the domain, we can incorporate the diffusion to the system as follows.

For simplicity let us at first consider a one dimensional domain of the length L di-

vided into K compartments of the length h = L/K (see Figure 4.1a). To describe

the diffusion of molecules of chemical species A within this domain, we denote the

number of Amolecules in the i-th compartment [(i−1)h , ih) by Ai, i = 1, . . . , K.

As a result of the Brownian motion particles naturally cross from one imaginary

compartment to another (see Figure 4.2). These jumps between neighbouring

compartments can be simulated as a chain of chemical reactions [23, 7, 54] :

A1

d
−→
←−
d

A2

d
−→
←−
d

A3

d
−→
←−
d

. . .
d
−→
←−
d

AK . (4.1)

Since all molecules can diffuse to the right with the same probability as to

the left, all above chemical reactions occur with the same reaction rate d. We

(a) (b)

Figure 4.1: (a) Domain [0, L] divided into K compartments. Diffusion is consid-

ered only from left to the right and vice versa. (b) A snapshot of E. coli, presented

in [16].
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Figure 4.2: Diagram illustrating the stochastic description of diffusion. Each

particle has equal probability of moving left as moving right. If for example, the

right diffusion reaction, Ri, occurs one molecule from box i moves to box i + 1.

Reproduced from [44]

Figure 4.3: Domain [0, L]3 is divided into K3 compartments. Reproduced from

[6]

can use the Gillespie algorithm to simulate chemical reactions in (4.1). The only

parameter that needs to be determined is the rate constant d. It can be shown,

([7], Chapter 5.), that the Gillespie algorithm is the correct model of diffusion

provided that the rate constant d in (4.1) is chosen as

d =
D

h2
, (4.2)

where D is the diffusion constant. It is easy to extend this model of diffusion for

two or three dimensions by dividing the corresponding domain in compartments

(see Figure 4.3) and allow the molecules to jump in any of the adjacent four,

respectively six, compartments.

The compartment based models were recently implemented to the MesoRD

[23] and to the SmartCell [40] simulators. For instance the reaction-diffusion

processes needed for the division of E. coli [16] was modelled using the MesoRD

simulator.

Now let us properly explain the compartment based model on the three com-

ponent illustrative model in general three dimensional domain. To do this we

inherit the notation presented in [6].
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4.1 Compartment-Based Simulation of the

Illustrative Model

Let us assume that the chemical species A, B and C, from the illustrative model,

diffuse with diffusion coefficients Da, Db and Dc, respectively, in the cubic con-

tainer [0, L]3. We incorporate this domain with zero flux (reflective) boundary

conditions, i.e. whenever a molecule hit the boundary, it is reflected back. For

implementation of more specific boundary conditions see Erban and Chapman

paper [5]. We divide the domain [0, L]3 into K3 cubic compartments of volume

h3, where h = L/K andK ≥ 1 (see Figure 4.3). We will denote the compartments

by indices from a set [6]

Iall = {(i, j, k)| i, j, k are positive integers such that 1 ≤ i, j, k ≤ K} .

The number of molecules A, B, resp. C in the (i, j, k)-th compartment at time t is

denoted as Aijk(t), Bijk(t), resp. Cijk(t), where (i, j, k) ∈ Iall. Diffusion of these

molecules is modelled as a jump process between neighbouring compartments.

Therefore we define the set of all possible directions of the diffusion jumps as

follows [6]:

E = {[1, 0, 0], [−1, 0, 0] , [0, 1, 0] , [0, −1, , 0] , [0, 0, 1] , [0, , 0 ,−1]} .

For each compartment (i , j , k) ∈ Iall we define the set of all possible directions

of jumps from this compartment [6]:

Eijk = {e ∈ E| ( (i, j, k) + e) ∈ Iall}.

Then the illustrative model can be rewritten as a system of 3K3 ”chemical

species” Aijk, Bijk and Cijk, where (i, j, k) ∈ Iall which are subject to the follow-

ing chemical reactions:

Aijk + Aijk
k1→ Bijk (4.3)

Bijk
k2→ Aijk + Aijk (4.4)

Bijk + Cijk
k3→ Bijk + Aijk (4.5)

∅ k4→ Aijk , Aijk
k5→ ∅ , ∅ k6→ Cijk (4.6)

Aijk
Da/h2

→ Aijk+e (4.7)

Bijk
Db/h

2

→ Bijk+e (4.8)

Cijk
Dc/h2

→ Cijk+e, (4.9)

where (i, j, k) ∈ Iall and e ∈ Eijk. The reactions (4.3)− (4.6) represent chemical

reactions (2.1)− (2.5) considered in each compartment. The propensity functions

of these chemical reactions are the same as presented in table 2.1, but instead of
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the volume of the whole domain we consider just the volume of the compartment.

For instance the propensity function of (4.5) is

αijk,3 = BijkCijkk3/h
3

where h3 is the volume of the compartment. The reactions (4.7) − (4.9) repre-

sent diffusive jumps between the neighbouring compartments. Their propensity

functions are given as

αijk,Da
= AijkDa/h

2, αijk,Db
= BijkDb/h

2, αijk,Dc
= CijkDc/h

2.

Each of reactions in (4.7)−(4.9) effectively describes 6K3−6K2 reactions, because

each diffusing molecule has 6 possible directions to jump from each inner compart-

ment and some directions are missing for boundary compartments [6, 7]. Thus

the compartment-based model of the illustrative system is a set of 3K3 ”chemical

species” which are subject to 27K3 − 18K2 reactions presented in (4.3)− (4.9).

The time evolution of this system can be simulated by the Gillespie algorithm.

Remark. In a general compartment-based model it is possible to divide the do-

main in compartments which are not cubic and which are not of the same size

[42, 43]. However in such case it may be difficult to distinguish which phenomena

are genuine property of the system and which are only the consequence of the

non-uniform mesh. In this thesis we use only the uniform cubic compartments,

because they are the most natural choice and it is easy to implement them com-

putationally. However it needs to be noted that the uniform cubic mesh brings

an artificial anisotropy to the system, because the compartments have different

length along the side and along the diagonal [6]. The potential consequences of

this fact are not investigated here.

In the following sections we apply the presented compartment based model to

the illustrative system. We will study two different cases. At first, we show that

under certain conditions the compartment based SSA provides the same results

as the deterministic model. In the second case we will investigate the stochastic

behaviour in the system.

4.2 Compartment-Based Model in the

”Deterministic Limit”

It can be shown [53], if the number of molecules in the system tends to infin-

ity and if the size of the compartment h → 0+ then the system of equations

(4.3) − (4.9) is well approximated by the system of PDEs (3.24) − (3.26). We

verify this by numerical simulations. To do this we will consider the illustrative
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system with large number of molecules in the domain divided into large number

of compartments. The term ”large number” is related to the size of the domain.

At first let us consider the illustrative model within a ”one dimensiona” domain

of the length L = 1 µm divided into K = 100 compartments of the size h = L/K

(see Figure 4.1a). Although it may seems useless to study behaviour of such

domain the opposite is true. Firstly this domain is actually three dimensional

domain [0, L]× [0, h]× [0, h]. The name ”one dimensional” refers to the fact that

the diffusion is considered only from right to left and vice versa. To remove the

feeling this is an artificial concept, let us note that a similar type of domain was

used to simulate the division of E. coli [16]. This dividing process is governed

by so called Min proteins which diffuse between poles of a bacteria and which

role is to specify the middle point of the bacteria to ensure a symmetrical divi-

sion. In this situation it is appropriate to consider an elongate domain with one

dimensional diffusion. In the Figure 4.1 we present a snapshot of E. coli in a

comparison with the ”one-dimensional” domain.

Furthermore we need to considered a large number of molecules in the system.

To do this we will assume that the number of molecules per compartment is

of the order 1000. This can be achieved by appropriate rescaling of the reac-

tion rate constants (see Section 2.2). Since the volume of a single compartment

is ν := h3 = 10−6µm3 and we want to have 1000 molecules per compartment,

following rescaling of reaction rates is needed:

k1 = 1/1000, k2 = 1, k3 = 2/1000 (4.10)

k4 = 1000, k5 = 2, k6 = 3000.

In the Figure 4.4 we present results of compartment-based simulation in the ”one

dimensional domain” [0, 1] µm× [0, 0.01] µm× [0, 0.01] µm. We initially consider

2000 molecules of A, 4000 molecules of B and 370 molecules of C in each com-

partment, i.e. at the beginning of simulation we set Ai(0) = 2000, Bi(0) = 4000

and Ci(0) = 370, for i = 1, . . . , K . We let the system evolve for 10000 sec.

Presented results correspond to the one dimensional deterministic solutions pre-

sented in Chapter 3. The system starts to evolve from the homogeneous state

and similarly as in the deterministic case once the state with a specific number

of patterns (peaks) is reached, the system stays there. In Figure 4.4d we plot the

number of peaks of A molecules as a function of time. As we can see no switching

between states with different number of peaks is observed.
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Figure 4.4: (a)-(c) Stochastic simulation of the illustrative model in [0, 1] µm

domain divided into K = 100 compartments. The diffusion coefficient and reac-

tion rates given by (3.49)− (3.53). We initially place 2000 molecules of A, 4000

molecules of B and 370 molecules of C in each compartment and let the system

evolve for 10000 sec. (d)The time evolution of the number of patterns (peaks) of

A molecules.
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Now we will consider the illustrative model in the ”two-dimensional” domain

[0, L] × [0, L] × [0, h], where L = 0.2 µm and h = 0.01µm. More precisely, it is

three dimensional domain in which particles diffuse along two coordinates. We use

the same reaction rates as in the ”one-dimensional” case. The initial conditions

are choose as follows i.e. Ai,j(0) = 2000, Bi,j(0) = 4000 and Ci,j(0) = 370,

for i, j = 1, . . . , K In figure 4.5 we present a result of the compartment-based

simulation in the comparison with the deterministic solution.
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Figure 4.5: (a) Stochastic simulation of the illustrative model in the domain

[0, 2] µm × [0, 2] µm × [0, 0.01] µm divided into 20 × 20 compartments. (b) De-

terministic solution of the equations (2.16)− (3.26) in the domain [0, 0.2] µm×
[0, 0.2] µm.

To obtain a better resolution for the compartment-based model we need to

increase the number of compartments, but it implies an increase in the number of

”chemical species”. Since the compartment based model is based on the Gillespie

algorithm this would also increase the computational time. An improvement can

be achieved if the Gillespie algorithm is replaced by the next subvolume method or

the next reaction method. These methods scales logarithmically with the number

of compartments, whereas the Gillespie algorithm scales linearly. Although we

do not use these methods in this thesis, we briefly explain them, to provide some

guidance for increasing the efficiency of the compartment based model.

The next reaction method, is the method implemented in the SmartCell sim-

ulator. It works similarly as the presented compartment based algorithm, but

instead of the Gillespie algorithm it uses a Gibson-Bruck algorithm [45]. This

algorithm can be explained as follows. After the initialisation of molecules, we

compute the propensity function for each event i.e. for each possible reaction

and diffusion. Moreover, for each of them we compute and store the time when

the next event occurs. Then the event with the smallest next occurrence time is

chosen and evaluated. After this we recompute the propensity functions and the

next event time only for those events which were changed in the previous step.

Then the process is repeated. One advantage of this concept is that we do not
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need to compute all propensity functions in each time step as it is in the Gillespie

algorithm. Moreover, we do not need to generate so many random numbers.

The next subvolume method, implemented in the MesoRD simulator, can be de-

scribed as follows. At the beginning we define a domain, divide it into compart-

ments and distribute the initial numbers of molecules into the compartments.

Then we compute the propensity function for each compartment as the sum of

the propensity functions of all possible events within the compartment. More-

over, for each compartment we compute the next event time. Then we order the

compartments according to their next event times, such that the compartment

with the lowest next event time is on the top of the queue. Inside of the com-

partment, which is at the top of the queue, we find the event which will occur

in the next time step and update the state of the system according to this. For

compartments, whose state is changed by this event, we recompute the propensity

function and the next event time. Then we insert them into the queue, order the

queue and repeat the processes above. The advantage of this method is that we

can quickly find the compartment within the next event occurs. Similar to the

next reaction method we recompute only those propensity functions and those

next event times which were changed in the previous step. This saves time and

random numbers.

4.3 Stochastic Behaviour

In this section we will study the behaviour of the system out of the deterministic

limit, i.e. we will consider the system with a small number of compartments

and molecules. At this moment a question arise what the term ”small number”

means. Since the number of molecules is usually determined by the reality and

thus it is not in hands of modellers, we would not focus so much on it. Our

attention is focused on the only model parameter, i.e. the number of compart-

ments K. To answer the question what should be considered as a small number

of compartments, we will search for the minimal number of compartments within

which the Turing instability can arise. We already know that no Turing patterns

are produced in the domain composed from a single compartment. It is because

the compartment-based model in one compartment is equivalent to the Gillespie

algorithm. As we saw in Chapter 2 no Turing patterns are produced there, be-

cause the diffusion is not considered.

In the Subsection 4.3.1 we derive the minimal number of compartments needed

for Turing instability. As soon as we will know this minimal number, we start

to investigate the role of the noise in the system. This is the aim of Subsection

4.3.2. Due to a simpler investigation we perform all following analysis in ”one

dimensional” domain.
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4.3.1 Minimal Number Of Compartments

Let us consider the illustrative model in the ”one-dimensional” domain. Since

the number of compartments depends on the domain size we fix it at first. For

simplicity we fix L = 1 µm, i.e. the number of compartments is given asK = 1/h.

Then the idea how the minimal number of compartments can be found is follow-

ing. We can compute the homogeneous steady state for the illustrative model

within one-dimensional domain divided into arbitrary number of compartments.

Moreover, we know that this state is stable without diffusion. To find the minimal

number of compartments in which Turing instability can arise, we search for such

number of compartments K, that this steady state becomes unstable when the

diffusion is presented. To decide weather the system posses an unstable steady

state or not, we will investigate the eigenvalues of the corresponding Jacobian

matrix.

To implement presented idea, we at first derive the form of the Jacobian matrix.

For simplification, we will firstly consider the illustrative model within the domain

divided into three compartments. In this case the reaction diffusion mechanism

is govern by following nine equations:

dA1

dt
=

−k1
h3

A2
1 + k2B1 +

k3
h3

B1C1 + k4h
3 − k5A1 +

Da

h2
A2 −

Da

h2
A1 ,

dA2

dt
=

−k1
h3

A2
2 + k2B2 +

k3
h3

B2C2 + k4h
3 − k5A2 +

Da

h2
A1 −

2Da

h2
A2 +

Da

h2
A3 ,

dA3

dt
=

−k1
h3

A2
3 + k2B3 +

k3
h3

B3C3 + k4h
3 − k5A3 +

Da

h2
A2 −

Da

h2
A3 ,

dB1

dt
=

k1
h3

A2
1 − k2B1 +

Db

h2
B2 −

Db

h2
B1 ,

dB2

dt
=

k1
h3

A2
2 − k2B2 +

Db

h2
B1 −

2Db

h2
B2 +

Db

h2
B3 ,

dB3

dt
=

k1
h3

A2
3 − k2B3 +

Db

h2
B2 −

Db

h2
B3 ,

dC1

dt
= −k3

h3
B1C1 + k6h

3 +
Dc

h2
C2 −

Dc

h2
C1 ,

dC2

dt
= −k3

h3
B2C2 + k6h

3 +
Dc

h2
C1 −

2Dc

h2
C2 +

Dc

h2
C3 ,

dC3

dt
= −k3

h3
B3C3 + k6h

3 +
Dc

h2
C2 −

Dc

h2
C3 .

There the letters Ai, Bi and Ci denote the number of molecules of A, B and C

in the i-th compartment, i = 1, 2, 3. The homogeneous steady state (A0, B0, C0)

of the above system is given as

A0 =
k6h

3 + k4h
3

k5
, B0 =

k1
k2h3

A2
0, and C0 =

k6h
6

k3B0
. (4.11)

The steady state for the illustrative model within arbitrary number of compart-

ments is also given by equations (4.11). For easier handling we express the above
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nine equations governing the reaction-diffusion mechanism as follows:

dA1

dt
= f1(A1, A2, B1, C1) +

Da

h2
A2 −

Da

h2
A1 ,

dA2

dt
= f2(A1, A2, A3, B2, C2) +

Da

h2
A1 −

2Da

h2
A2 +

Da

h2
A3 ,

dA3

dt
= f3(A2, A3, B3, C3) +

Da

h2
A2 −

Da

h2
A3 ,

dB1

dt
= g1(A1, B1, B2) +

Db

h2
B2 −

Db

h2
B1 ,

dB2

dt
= g2(A2, B1, B2, B3) +

Db

h2
B1 −

2Db

h2
B2 +

Db

h2
B3 ,

dB3

dt
= g3(A3, B2, B3) +

Db

h2
B2 −

Db

h2
B3 ,

dC1

dt
= h1(B1, C1, C2) +

Dc

h2
C2 −

Dc

h2
C1 ,

dC2

dt
= h2(B2, C1, C2, C3) +

Dc

h2
C1 −

2Dc

h2
C2 +

Dc

h2
C3 ,

dC3

dt
= h3(B3, C2, C3) +

Dc

h2
C2 −

Dc

h2
C3 .

Thus the reaction terms of chemical species Ai, Bi and Ci are substituted by

functions fi, gi and hi, respectively, where i = 1, 2, 3. Then the Jacobian ma-

trix related to the three compartment system can be obtain by corresponding

derivations of the above equations. Using the symmetry of these equation, we

can derive the general form of the Jacobian matrix, denoted as J . Since the

illustrative model consists of three chemical species, J is 3K×3K matrix, where

K denotes the number of compartments. Then J can be built from nine blocks:

J =




I II III

IV V V I

V II V III IX




(A0,B0,C0)

. (4.12)

Here the block I corresponds to the derivation of the functions f with respect to

A at (A0, B0, C0) i.e.:

I =
∂f

∂A
=




∂f1
∂A1

∂f1
∂A2

. . . ∂f1
∂AK

∂f2
∂A1

∂f2
∂A2

. . . ∂f2
∂AK

...
... . . .

...
∂fK
∂A1

∂fK
∂A2

. . . ∂fK
∂AK




(A0,B0,C0)

. (4.13)

In the same way we can express all remaining blocks of the matrix J , (shown

below). Computing the corresponding derivatives we obtain that the blocks of

the general Jacobian matrix J associated to the illustrative model within K
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compartments are given as:

I =
∂f

∂A
=

(
−2k1

h3
A0 − k5

)
I+

Da

h2
D,

II =
∂f

∂B
=

(
k2 +

k3
h3

C0

)
I, III =

∂f

∂C
=

(
k3
h3

B0

)
I,

IV =
∂g

∂A
=

(
2k1
h3

A0

)
I, V =

∂g

∂B
= −− k2I+

Db

h2
D,

V I =
∂g

∂C
= 0× I, V II =

∂h

∂A
= 0× I,

V III =
∂h

∂B
=

(
−k3
h3

C0

)
I, IX =

∂h

∂C
=

(
−k3
h3

B0

)
I+

Dc

h2
D.

Here I denotes the identity matrix and D is given as

D =




−1 1 0 0 . . . 0 0 0

1 −2 1 0 . . . 0 0 0

0 1 −2 1 . . . 0 0 0
...

...
...

. . .
. . .

. . .
...

...

0 . . . . . . . . . 0 1 −2 1

0 . . . . . . . . . . . . 0 1 −1




,

Knowing the formula for the Jacobian matrix, we can determine the minimal

number of compartments by a simple loop:

1. Fix domain size and choose an initial number of compart-

ments, usually K = 2.

2. For given K compute the homogeneous steady state de-

fined in (4.11) and the corresponding Jacobian matrix J .

3. Compute the eigenvalues of the matrix J .

4. If Re(λ) < 0 for all eigenvalues λ of the matrix J then set

K = K + 1 and continue with the step 2. Otherwise go to

step 5.

5. If at least one of the eigenvalues of matrix J has positive

real part, then K is the minimal number of compartments

and the loop can be stopped.

In the first step of the loop it is possible to use arbitrary K for which we know

that the systems does not undergo the Turing instability in K−1 compartments.

Now consider the illustrative model within domain [0, 1] µm with diffusion co-

efficients and reaction rates given by (3.49) − (3.53). Then, with the use of the
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Figure 4.6: The relation of domain size and minimal number of compartments

needed for the Turing instability in the illustrative model. Here L denotes the

length of the domain expressed in µm.

above loop, we find that the minimal number of compartments needed for Turing

instability is K = 17. In the figure 4.6 we present the relation of the domain size

and the minimal number of compartments for the illustrative system. From the

figure we can see that this relation is not defined if the domain is too small. This

is consistent with the statement from the Chapter 3., where we showed that no

Turing patterns are produced if the domain is too small.

Remark. The presented idea for determining the minimal number of compart-

ments can be easily rewrite and used for further systems. For instance, no Turing

instability can arise in the Schnakenberg system within the ”one dimensional”

domain of length L = 1 µm with the diffusion coefficients and reaction rates

defined in (3.54)− (3.56) if K < 7 .

4.3.2 Stochastic Switching Between States of

the Illustrative Model

To investigate the role of the noise in the system we will consider the illustrative

model in the domain [0, 1] µm divided into K = 17 compartments. The reason

why we consider the system with the minimal number of compartments, is that

the effect of the noise will be strongest there. Furthermore we will assume that

the number of molecules in each compartment is of the order 100. This can be

achieved by appropriate rescaling of reaction rates similarly as in (4.10). Let us

note that we do not observe switching between different states using this order

of molecules in ”one dimensional domain” divided into K = 100 compartments.

Initially we will consider 200 molecules of A, 400 molecules of B and 40 molecules
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Figure 4.7: The stationary distributions of A molecules in the first two compart-

ments.

of C in each compartment, i.e. Ai(0) = 200, Bi(0) = 400 and Ci(0) = 40, where

i = 1, . . . , 17. This initial state corresponds to the homogeneous steady state of

this system.

To investigate the behaviour of the system we compute the stationary distribution

in each compartment. For illustration we plot the stationary distribution of

molecules of A in the first two compartments ( see the Figure 4.7). The shape

of these stationary distributions invokes that as the system evolves it can switch

between states with different number of molecules within a single compartment.

The result of this switching is a different ordering of patterns over time. This

is the first non-deterministic observation, because any pattern rearrangement is

possible in the deterministic models.

Furthermore, we would like to know if the noise in this system is strong enough

to cause the switching between states with different number of peaks. Thus we

would like to know if the number of patterns (peaks) can change in the time.

At first we need to define a peak. Since the steady state of A molecules in this

system is defined by 200 molecules of A within each compartment we distinguish

two different states in each compartment. The first one is the state where the

number of A molecules is more then 200 and the second one is the state with less

than 200 molecules of A. If the system is out of the steady state and we plot

the number of molecules of A in each compartment then peaks will arise in the

compartments at the first state and pits in the compartments at the second state.

To investigate the switching of the system between states with different number

of peaks we define a matrix describing the state of A molecules within all 17

compartments. This matrix will be denote by S and it will consists of 17 columns,

where each column corresponds to one compartment. Each line of the matrix S

will belong to one unit of time. The entrances of this matrix will be only numbers

0 and 1, where 0 stands for the compartments where the number of A molecules is

less then 200 and number 1 denotes compartments with more than 200 molecules

of A. Thus the matrix S = {sij}, where j = 1, . . . , 17 and i is from the set of
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time steps, can be expressed

sij =

{
1 Aj(i) > 200

0 Aj(i) < 200
(4.14)

It means that each line of S provides the number and positions of peaks in a given

time step.

We simulate the evolution of the illustrative model within 17 compartments for a

long time and we store the state of A molecules to the matrix S each second. In

the figure 4.8 we present the evolution within 30000 seconds, where one state of A

molecules is plotted every 500 seconds. Thus on the figure 4.8 we plot 60 states,

where white color stands for the compartments determined by number one in the

matrix S and black color is for the compartments with number zero. In the figure

we can observe oscillations in the peaks ordering. Some of these oscillations are

suppressed, but some result in the change in the number of peaks. Looking at

right columns in the figure 4.8, we can see a state with nine peaks. This state

occurs most often (more then 80% time), however as we can see states with 7 and

8 peaks are also possible.
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Figure 4.8: Evolution of the illustrative model in the domain of length L = 1 µm

divided into 17 compartments. Black color denotes compartments where the num-

ber of A molecules is less then 200. Compartments with more than 200 molecules

of A are denoted by white color. Each column corresponds to the state of A

molecules within one unit of time. For instance the last peak describes the state

with nine peaks. The system evolved for 30 000 seconds and we plot the state of

A molecules every 500 seconds.
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In the same way we can investigate the states of different systems. For in-

stance, let us consider the Schnakenberg system in domain [0, 1]µm divided in-

to K = 7 compartments, with reaction rates and diffusion coefficients given in

(3.54)− (3.56). We consider the same order of molecules per compartment as in

the illustrative model. In the figure 4.9 is the evolution of this system within 40

seconds. The state of A molecules is plotted every second. The transition of the

system from the state with four peaks to three peaks can be clearly observed.

The switch between states with different number of peaks occurs faster as in the

illustrative model, because this model consists only from 7 compartments.

Similar analysis can be done in systems with larger number of compartments.

By increasing the number of the compartments the system slowly loose it ability

to switch between the states with different number of patterns, however the re-

arrangement of patterns with the same number of peaks is still possible. Further

increase in the number of compartments removes the ability of pattern rearrange-

ments. Which is nothing surprising, because the more compartments we use closer

we are to the deterministic case.
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Figure 4.9: Evolution of the Schnakenberg model in the domain of the length

L = 1 µm divided into 7 compartments. Black color denotes pits and white color

is for peaks. Each column correspond to the state of A molecules within one

second. The system evolves for 40 seconds.
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5. Molecular-Based Stochastic

Reaction-Diffusion Algorithm

In the previous chapter we studied a model where compartments were used to

localize position of molecule in well-mixed system. However, when more precise

localisation is desired, one need to proceed to detail models. In this chapter we

present Molecular-based models which allow to follow trajectories of individual

molecules. Models of this type are used in a number of applications, includ-

ing modelling of ion channels [56], liquid crystals [57] or gene expression [55].

Moreover, this model can be applied for systems which are not well-mixed. To

investigate the trajectories of molecules, we need to consider a different model for

molecular diffusion then in the compartment-based model. This is explained in

Section 5.1. Then in Section 5.2 we study modelling of different types of chemical

reactions. In Section 5.4 we apply the molecular-based model to the illustrative

system. Let us note that in the molecular-based algorithm, each molecule is

considered as a sphere represented by the position of its center.

5.1 Diffusion in the Molecular-based Model

Molecules as any small particles have a non-zero kinetic energy and a non-zero

instantaneous speed [7]. To obtain a better idea how the molecular diffusion

looks like, please see attached movie called diffusion.avi or download it from

http://tdo.sk/∼ jana/diffusion.avi. There the molecular diffusion in a cubic do-

main is presented. Molecules of different chemical species are presented as differ-

ent coloured dots. As we can see the trajectories of the molecules are not straight,

but they execute the Brownian motion. Therefore the position [Xi(t), Yi(t), Zi(t)]

of the i-th diffusing molecule evolves according to the system of three stochastic

differential equations (SDEs) [6]

Xi(t+ d t) = Xi(t) +
√

2Di dWi,x, (5.1)

Yi(t+ d t) = Yi(t) +
√
2Di dWi,y, (5.2)

Zi(t+ d t) = Zi(t) +
√

2Di dWi,y, (5.3)

where dWi,x, dWi,y, dWi,z are white noises and Di is the diffusion constant of the

i-th particle. To simulate trajectories of the system of SDEs (5.1)− (5.3) we will

use the Euler-Maruyama method [54, 58]. It means we choose a small time step
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∆t and compute the position of i-th molecule at time t +∆t by

Xi(t +∆t) = Xi(t) +
√

2Di∆t ξi,x, (5.4)

Yi(t +∆t) = Yi(t) +
√

2Di∆t ξi,y, (5.5)

Zi(t +∆t) = Zi(t) +
√

2Di∆t ξi,y, (5.6)

where ξx,i, ξy,i, ξz,i are normally distributed random numbers.

In the following simulations we will consider a system with the reflexive bound-

ary conditions, i.e. whenever a molecule hits the boundary it is reflected back.

To explain the implementation of the reflexive boundary conditions to the above

diffusion model, let us for simplicity consider the diffusion in one dimensional

domain [0, L]. It means we assume that molecules diffuse only along the x coor-

dinate. Then the reflexive boundary conditions are implemented as follows [7]:

If Xi(t +∆t) computed by (5.4) is less then 0 then

Xi(t +∆t) = −Xi(t)−
√
2Di∆t ξx,i.

If Xi(t +∆t) computed by (5.4) is greater then L then

Xi(t +∆t) = 2L−Xi(t)−
√
2Di∆t ξx,i.

This mirror reflection can be easily extended for the three dimensional domain.

5.2 Modelling of Chemical Reactions byMolecular-

based Model

In this section we study modelling of chemical reactions from the illustrative

model (2.1) − (2.5). At first we explain modelling of the zero-order and first-

order chemical reactions. Then we present Erban and Chapman’s λ − ρ̄ model

[6] for second-order reactions and finally we describe the model for reversible

chemical reactions.

5.2.1 Zero and First Order Chemical Reactions

To explain the modelling of zero and first order chemical reactions let us consider

reactions (2.3) and (2.4) i.e.

∅ k4→ A and A
k5→ ∅ .

Since both of these reactions occur without molecular collisions, they can be

simulated same as in the Gillespie algorithm. It means, the probability that one

molecule of A is produced within time interval [t, t+d t) in the domain of volume ν

is k4ν d t. The probability that one molecule of A dissociates within time interval

[t, t + d t) is A(t)k5 d t, where A(t) is a number of A molecules in the system at
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time t.

To implement these reactions numerically we substitute the infinitesimally small

time step dt by finite time step ∆t, which needs to be chosen so small that

k3ν∆t << 1 and A(t)k4∆t << 1. To avoid to this restriction on the small time

step ∆t we can simulate the production and the dissociation as a Poisson process

with the rate constants k4 and k5, respectively. It means, the probability that one

molecule of A is produced in time interval [t, t+∆t) is equal to 1− exp(−k3∆t).

Similarly, the probability that one molecule of A dissociates within [t, t +∆t) is

equal to 1− exp(−k4∆t). Thus the implementation of these reactions is easy for

arbitrary time step.

5.2.2 Second Order Reactions

As we already know the second order chemical reactions require collisions of re-

acting molecules. Since the molecular-based model treats molecules as points,

we can assume that two molecules collide, whenever distance of their centres is

less than the sum of molecular radii. However, because of the reaction-activation

energy, not every molecular collision is necessary followed by the reaction. More-

over in some cases molecules may only react if they collide in a certain way, for

instance, if certain ”biding sides” on the surface of the molecules meet [22]. To

incorporate all of this to the simulation of the second order reaction (2.3), we

will use the Erban and Chapman λ− ρ̄ model [6]. There, it is postulated that a

molecule of B and a molecule of C can react with probability Pλ3
whenever the

distance of their centres is smaller than the reaction radius ρ̄3. The index 3 in

the terms ρ̄3 and Pλ3
means that this parameters are related to the third reaction

from the illustrative model, i.e. to the reaction (2.3). This can be schematically

expressed as

If dist(B,C) ≤ ρ̄3 ⇒ B + C
k3→ B + A with probability Pλ3

.

Thus this model makes use of two parameters Pλ and ρ̄3, while the reaction

(2.3) is described in terms of one measurable parameter k3. To implement the

algorithm numerically we need to relate model parameters with the quantity k3.

The formulae relating these parameters is derived in [6]. In order to keep this

thesis complete we present this formulae in Theorem 7. For better orientation

we inherit the notation presented in [6]. To simplify the derivation of the desired

formulae let us define the dimensionless parameters

γ̃ =
s

ρ̄3
=

√
2(DB +DC)∆t

ρ̄3
, κ̃ =

k3∆t

ρ̄33
and ρ̃ =

ρ̄3
ρ̄3

= 1. (5.7)

Here the term s denotes an average change in the relative position of molecule

of B and molecule of C during one time step. Moreover we define an auxiliary
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function g̃(r) : [0,∞) → [0, 1] as the solution of the integral equation

g̃(r) = (1− Pλ3
)

∫ 1

0

K(r, r′; γ̃)g̃(r′) d r′ +

∫ 1

∞

K(r, r′, γ̃)g̃(r′) d r′, (5.8)

satisfying g̃(r) → 1 as r → ∞. The function K(z, z′, γ̃) is given by

K(z, z′, γ̃) =
z′

zγ̃
√
2π

(
exp

[
−(z − z′)2

2γ̃2

]
− exp

[
−(z + z′)2

2γ̃2

])
. (5.9)

The function g̃(r) depends on dimensionless parameters Pλ3
and γ̃ which can be

expressed as g̃(r) ≡ g̃(r, Pλ3
, γ̃).

Theorem 7. (Relation of Pλ3
, ρ̄3 and k3)

Let A, B and C be chemical species with diffusion coefficients DA, DB and DC

which are subject to the reaction (2.3) simulated by the λ − ρ̄3 model. Then the

model parameters Pλ3
, ρ̄3 and the rate constant k3 are related by the following

equation

k3∆t

ρ̄33
= Pλ3

∫ 1

0

4πr2g̃(r) d r. (5.10)

The proof of this theorem is presented in [6], Appendix F, or in the Appendix

A.2 of this thesis. The formula (5.10) can be considered as follows. Since k1,

DB and DC are known, the time step ∆t can be specified at the beginning of the

simulation, then the equation (5.10) is one equation for two unknowns. Moreover,

having the formulae relating Pλ3
and ρ̄3, we can choose the reaction radius ρ̄3 close

to the molecular radius and use k3 to compute the appropriate value of Pλ3
. The

numerical method for solving equation (5.10) is introduced in [6], Appendix F,

and it is also presented in the Appendix A.2 of this thesis.

5.2.3 Reversible Chemical Reactions

Let us consider the reversible reaction (2.1). As we mentioned in the Chapter 2,

this reaction effectively describes two reactions, the second-order reaction (2.6)

and the first-order reaction (2.7). Although, we already know how to simulate

these types of reactions, the situation is not so straightforward as it may seem.

For illustration, let us assume that the reaction (2.6) is simulated by the λ − ρ̄

model and that the probability Pλ = 1. Furthermore assume the cleavage of

the complex B is described by the Poisson process with rate k2. When the

molecule B dissociates we introduce two new molecules of A to the system. But,

what should be their positions? A natural way to initialise these new molecules

is by the position of the complex B which was destroyed during this reaction.

However, if the next step of the computer code describes the forward reaction

(2.6), then the new molecules of A will immediately create the complex B. They
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have to react, because their distance is zero. In particular we may obtain different

results by different ordering of the subroutines in the computer code [2, 7]. In our

previous work [2] we solved this problem by introducing an extra model parameter

called unbinding radius and denoted σ̄. We assume that whenever the complex

B dissociates we introduce new molecules of A with initial separation equal to σ̄.

Then the model for the reversible reaction (2.1) can be summarized as follows.

If the distance of two different molecules of A is less then the reaction radius ρ̄1,

then the forward reaction (2.6) occurs with the probability Pλ1
. The index 1 in

ρ̄1 and Pλ1
means that these parameters are related to the first reaction from the

illustrative model, i.e. to (2.1). On the other hand, the cleavage of the complex

B is simulated as a Poisson process with parameter k2. When the molecule B

dissociates we introduce two new molecules of A with the initial separation given

by σ̄.

This model description makes use of three model parameters Pλ1
, ρ̄1 and σ̄, while

the reaction (2.1) is described in terms of two parameters k1 and k2. Since we

already use the parameter k2 to describe the dissociation of complex B, the

remaining parameters Pλ1
, ρ̄1 and σ̄ need to be related to the reaction rate k1.

The derivation of this relation is presented in [2]. In order to keep this thesis

complete we present this relation in Theorem 8. Similarly as in the previous

section, we firstly define dimensionless parameters

γ =

√
4DA∆t

ρ̄1
, κ =

k1∆t

ρ̄31
σ =

σ̄

ρ̄1
and ρ̃ =

ρ̄1
ρ̄1

= 1. (5.11)

We also define the auxiliary function g(r) : [0,∞) → [0, 1] as the solution of the

integral equation

g(r) = (1− Pλ1
)

∫ 1

0

K(r, r′, γ)g(r′)dr′ +

∫ ∞

1

K(r, r′, γ)g(r′)dr′ (5.12)

+K(r, σ, γ)
Pλ1

4πσ2

∫ 1

0

g(r)4πr2dr,

satisfying g(r) → 1 as r → ∞, where K(r, r′, γ) is defined in (5.9). The function

g(r) depends on parameters Pλ1
, γ and σ̄, what can be expressed as g(r) ≡

g(r, Pλ1
, γ, ρ̄). Let us note the the functions γ̃, κ̃ and g̃ defined in the previous

section are in general different as the function γ, κ, g and Pλ1
introduced in this

section.

Theorem 8. (Relation of Pλ1
, ρ̄1, σ̄ and k1)

Let A and B be chemical species diffusing with diffusion constants DA and DB

which are subjects to the reversible reaction (2.1) simulated by the algorithm pre-

sented in this section. Then the model parameters ρ̄1, σ̄, Pλ1
and reaction rate k1
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are related by the following equation

k1∆t

ρ̄1 3
= Pλ1

∫ 1

0

4πr2g(r)dr. (5.13)

The proof of this theorem can be found in [2] and it is also presented in

Appendix A.3. Although equation (5.13) has the same form as the equation

(5.10) it describes different relation. The formulae (5.13) is one equation for

three unknown, Pλ1
, ρ̄1 and σ̄. If we choose ρ̄1 to be close to the molecular radii

than equation (5.13) provide the relation between Pλ1
and σ̄. In Appendix A.3

we briefly describe the numerical method for solving equation (5.10) introduced

in [2].

5.3 Molecular-based Algorithm for the Illustra-

tive model

In the Section 5.1 we presented simulation of molecular diffusion. Then in the

Section 5.2 we explained modelling of each chemical reaction from the illustrative

model (2.1)−(2.5). Bringing these models together we obtain a reaction-diffusion

molecular-based algorithm for the illustrative system.
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THE MOLECULAR BASED ALGORITHM

1. Initialisation: set time t = 0, define the domain size, specify the initial

number and positions of molecules of each chemical species and define a

time step ∆t and a stopping time tSTOP .

2. For each molecule in the system compute its position in the time t + ∆t

by (5.4)-(5.6). If the computed position is outside the domain, apply the

reflexive boundary conditions.

3 . For each molecule of A compute its distance to the remaining A molecules

in the system. Whenever this distance is less then the reaction radius ρ̄1,

generate a random number r1 uniformly distributed in the interval (0, 1).

If r1 < Pλ1
, then remove both reacted molecules of A and introduce a

new molecule of B. Initialise the position of B at the halfway between the

reactants.

4. For each molecule of B generate a random number r2 uniformly distribut-

ed in the interval (0,1). If r2 < (1 − exp(−k2∆t)) then introduce two

molecules of A to the system. Place them at distance σ̄ apart so that their

centre of mass is equal to the position of complex B before it dissociate.

Consequently remove the reacted complex B.

5. For each molecule of B compute its distance to each molecule of C. When-

ever this distance is less then the reaction radius ρ̄3 generate a random

number r3 uniformly distributed in the interval (0, 1). When r3 < Pλ3
in-

troduce one molecule of A and place it at the position of reacted molecule

of C. Consequently remove this C molecule.

6. Generate a random number r4 uniformly distributed in the interval (0, 1).

If r4 < (1 − exp(−k4∆t)) then introduce one molecule of A at a random

place in the system.

7. For each molecule A generate a random number r5 uniformly distributed

in the interval (0, 1). If r5 < (1 − exp(−k5∆t)) then remove the molecule

of A from the system.

8. Generate a random number r6 uniformly distributed in the interval (0, 1).

If r6 < (1 − exp(−k6∆t)) then introduce one molecule of C at a random

place in the system.

9. Set t = t+∆t and continue with the step 2 until t reaches the tSTOP .

The second step in the algorithm models diffusion of molecules. The step 3.

describes the forward reaction (2.6) and the step 4. the backward (2.7) from the
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chemical reaction (2.1). The steps 5.-8. simulate the remaining reactions from

the illustrative model in the same order as they are presented in (2.2)− (2.5).

5.4 Realisation of the Molecular-Based SSA

Using the molecular-based approach we can determine the positions of all molecules

in every unit of time. On the other hand, the price that we need to pay for such

detail system description is a high computational intensity. Moreover this algo-

rithm was proposed for systems with small number of molecules. Therefore its

application to systems with more than a few hundred molecules is impractical.

Therefore in order to investigate pattern formation mechanisms in the illustrative

model simulated by molecular-based algorithm, we consider two simplifications.

At first, we will use much smaller domain as in the previous chapters. We consider

elongate domain [0, L]×[0, h]×[0, h] and the ”square” domain [0, L]×[0, L]×[0, h],

where L = 0.1 µm and h = 0.01 µm. Although this domain is significantly small-

er, it is still large enough to observe pattern formation.

Secondly, we will assume the Pλ1
= 1 and Pλ3

= 1. Thanks to this we do not

need to generate random numbers in the steps 3. and 5. of the molecular-base

algorithm. Moreover, in this specific situation we can use a reaction-diffusion

simulator called Smoldyn [34, 35, 36]. It was created by S. Andrew in 2004 and is

available for free at http://www.smoldyn.org/download.html. Smoldyn can sim-

ulate chemical reactions up to second-order, including reversible reactions. The

algorithms for chemical reactions implemented in Smoldyn are similar as those

presented in Section 5.2, however in the second-order chemical reactions the prob-

ability Pλ is always equal to one in Smoldyn. A disadvantage of this choice of

probability is that the reaction radius is, for typical values of the biomolecular

rate constants and diffusion coefficients, unrealistically small compared to the size

of individual molecules [6]. However this is not the case of the illustrative model.

Finally we can proceed to the simulation of the illustrative model. We use the

reaction rates and the diffusion coefficients given in (3.49)−(3.53). We choose the

time step ∆t = 10−7sec. According to our assumption the probability Pλ3
= 1.

Then we can use the equation (5.10) or Smoldyn simulator to compute that the

corresponding reaction radius is ρ̄3 = 1.69 × 10−5 µm. Similarly, for Pλ1
= 1 we

can use Smoldyn to compute that ρ̄1 = 6.71× 10−5 µm and σ̄ = 0.0003 µm. Or

we can use (5.10) to compute ρ̄1 corresponding to Pλ1
. Then we use equation

(5.13) to find σ̄. Initially we consider 100 molecules of each chemical species

randomly distributed in the system. At first we consider the evolution of the

system in the elongate domain [0, L] × [0, h] × [0, h], where L = 0.1 µm and

h = 0.01 µm. In Figure 5.1a we plot positions of B molecules after 500 seconds
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of the simulation. Each dot corresponds to one molecule. In order to compare

this result with compartment-based model, we divide the computational domain

in 10 compartments (see Figure 5.1a). This domain division corresponds to the

division in Chapter 4, where we used 100 compartments for the domain of length

1 µm. To observe pattern formation, we compute the number of molecules in

each compartment. In Figure 5.1b we plot the number of B molecules in each

compartment.
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Figure 5.1: Molecules of B after 500 seconds of simulation. In (a) we plot

positions of B molecules. Each dot corresponds to one molecule of B in the

system. For the reason of comparison with the compartment-based model, we

divide the computational domain in imaginary compartments, presented in (a).

In (b) we plot number of molecules in each compartment.

Similarly we proceed in the ”square domain” [0, L] × [0, L] × [0, h], where

L = 0.1 µm and h = 0.01 µm. We let the system evolves for 400 seconds. At

the end of the simulation we divide the domain in 10 × 10 compartment and

compute the number of B molecules in each compartment. In Figure 5.2 we

present the number of B molecules computed by the molecular based model in

the comparison with the deterministic solution computed in the same domain. In

the Figure 5.2, we can observe the formation of a pattern, however it is obvious

that the molecular-based simulation needs to evolve much more longer in order

to obtain better result.

Due to the high computational intensity of the molecular-based model, we

do not investigate the behaviour of the system in the deterministic limit, i.e. in

the situation with a large number of molecules. However this model allows us to

observe the stochastic behaviour. Although the considered domain is too small

and thus cannot produce states with different number of peaks, the states with

different formation of a peak can be observed. In Figure 5.3 we present number of

B molecules, computed by the molecular based model, in different times. Initially

we consider 100 molecules of each chemical species randomly distributed in the

system. We again divide the domain in 10 imaginary compartments and compute

the number of molecules in each compartment.
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Figure 5.2: Number of B molecules computed by molecular-based model (b) in

the comparison with the deterministic solution (a).
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Figure 5.3: States with different formation of a peak. In (a) we plot number of

B molecules for time t = 150 seconds, in (b) for time t = 300 seconds and in (c)

for time t = 500 seconds of the simulation.

Remark. The main advantage of the molecular-based model is detailed descrip-

tion. Moreover it can be applied also for systems which are not well-mixed.

However all currently known molecular-based models are proposed for maximum

second order chemical reactions and bimolecular reversible reactions [2]. On the

other hand each chemical reaction of the third and higher order can be simulated

as a system of first and second order reactions [1]. For instance, the first reaction

in the Schnakenberg model 2A+C
k→ 3A, can be rewrited as the system of three

chemical reactions:

A+ A
m1→ B,

B + C
m2→ B + A,

B
m3→ A + A,

Thus after appropriate approximation of model parameters (see Section 3.4.2)

each chemical reaction can be simulated by the molecular-based algorithm.
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6. Summary

In this thesis we studied the reaction-diffusion mechanism related to the forma-

tion of Turing patterns. We presented necessary and sufficient conditions under

which Turing instability occur. Moreover, for the illustrative model, we derived

a complete set of conditions needed for the formation of Turing patterns. Then

we investigated the behaviour of Turing patterns with the use the deterministic

approach. We showed that even a small change in the initial conditions may lead

to a solution with different number of patterns. However, in the deterministic

approach, once the state with a given number of patterns is reached, the sys-

tem stays there. Then we introduced the compartment-based SSA. We showed

that in the systems with a large number of molecules this algorithm provides the

same results as the deterministic model. Moreover, this model allowed us to ob-

serve non-deterministic behaviour in systems with a lower number of molecules.

The stochastic switching between states with different ordering of patterns was

presented. Then we introduced the molecular-based SSA. This algorithm also

describes the rearrangement of patterns in the time. The high computational

intensity of this algorithm did not allowed us to investigate the behaviour of

the system in the deterministic limit, i.e. in the case with a large number of

molecules. Thus as a future work and the progress in the problematic we suggest

to find methods decreasing the computational intensity of the molecular-based

SSA. An improvement can be probably achieved by parallel programming meth-

ods.

In this thesis we focused on reaction-diffusion mechanisms that are present in

biological systems. However we would like to point out that presented techniques

are not limited to biological applications. Recent advances in astrochemistry have

shown that large molecules (commonly called ’space dust’) exist in the interstellar

medium, and that chemical reactions to form organic compounds can occur on

the surface of these dust grains when atoms collide. Since the number of atoms is

miniscule, deterministic models derived are quite unsuitable, and Charnley and

Rodgers [60, 26] have used the Gillespie algorithm to solve the chemical master

equation to calculate abundance of certain hydrocarbons on dust grains.
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A. Appendix

A.1 Roots of the polynomial y

Let us consider the polynomial defined in the condition 6) of the theorem 5 in

Chapter 3, i.e.

y = Am3 +Bm2 + Cm+D,

where m = k2. Then the roots of this polynomial are given by:

m1 =− B

3A
−

− 1

3A
3

√
1
2

[
2B3 − 9ABC + 27A2D +

√
(2B3 − 9ABC + 27A2D)2 − 4 (B2 − 3AC)3

]
−

− 1

3A
3

√
1
2

[
2B3 − 9ABC + 27A2D −

√
(2B3 − 9ABC + 27A2D)2 − 4 (B2 − 3AC)3

]

m2 =− B

3A
+

+
1 + i

√
3

6A
3

√
1
2

[
2B3 − 9ABC + 27A2D +

√
(2B3 − 9ABC + 27A2D)2 − 4 (B2 − 3AC)3

]
+

+
1− i

√
3

6A
3

√
1
2

[
2B3 − 9ABC + 27A2D −

√
(2B3 − 9ABC + 27A2D)2 − 4 (B2 − 3AC)3

]

m3 =− B

3A
+

+
1− i

√
3

6A
3

√
1
2

[
2B3 − 9ABC + 27A2D +

√
(2B3 − 9ABC + 27A2D)2 − 4 (B2 − 3AC)3

]
+

+
1 + i

√
3

6A
3

√
1
2

[
2B3 − 9ABC + 27A2D −

√
(2B3 − 9ABC + 27A2D)2 − 4 (B2 − 3AC)3

]

A.2 Proof of the Theorem 7

However the following derivation of equation (5.10) is reproduced from [6], we

present it this thesis in order to keep the λ− ρ̄ algorithm complete.

Let ci(r) be the concentration of molecules of B at distance r from the origin.

Assuming that molecules of B only diffuse, their concentration at point r after

the time interval ∆t is given as

∫ ∞

0

K(r, r′, γ̃)ci(r
′) d r′ (A.1)

where K(r, r′, γ̃) is given by (5.9). Let us assume that the particles are removed,

in the circle of radius ρ̄3 and centred at origin, with probability Pλ3
, and then
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diffuse for time ∆t. Then (A.1) is modified to

ci+1(r) = (1− Pλ3
)

∫ 1

0

K(r, r′, γ̃)ci(r
′) d r′ +

∫ ∞

1

K(r, r′, γ̃)ci(r
′) d r′ (A.2)

Equation (5.8) is an equation for the fixed point of this iterative scheme. The

rate of removal of particles (at steady state) during one time step is given by the

right hand side of (5.10). Comparing with κ̃, we obtain (5.10).

To solve (5.8) , we will use the condition g̃(r) → 1 as r → ∞. Choosing S large,

we can approximate g̃(r) = 1 for r ≥ S. Let N1 and N2 be positive integers. We

consider the mesh rj = j/N1, for j = 1, 2, . . . , N1 and rj = 1+(S−1)(j−N1)/N2

, for j = N1 + 1, . . . , N1 +N2. We discretize (5.8) as

g̃(ri) =
1− Pλ3

N1

N1∑

j=1

K(ri, r
′
j , γ̃) +

S − 1

N2

N1+N2∑

j=N1

K(ri, r
′
j, γ̃)g̃(rj) +

∫ ∞

S

K(ri, r
′, γ̃) d r′.

This is a linear system for g̃(ri), i = 1, 2, . . . , N1 + N2, which can be solved, for

example, by Gaussian elimination.

A.3 Proof of the Theorem 8

In order to keep the algorithm for the reversible reactions complete, let us derive

the equation (5.13) according to the approach presented in [2]. At first we rewrite

the Theorem 8 in terms of three chemical species A, B and C. This has no impact

on the derivation of formulae (5.13), but it allowed us to distinguish between

reacting molecules in the system.

Theorem 9. (Relation of of ρ̄, σ̄, Pλ and k1)

Let A, B and C be chemical species diffusing with diffusion constants DA, DB

and DC which are subjects to the reversible reaction

A +B
k1
−→
←−
k2

C

Then the model parameters ρ̄, σ̄, Pλ and the rate constant k1 are related by

following equation
k1∆t

ρ̄ 3
= Pλ

∫ 1

0

4πz2g(z)dz. (A.3)

Proof. The λ-ρ̄ model of the forward chemical reaction A + B
k1→ C states that

molecules of A and molecules of B diffuse with the diffusion constants DA and

DB, respectively. If the distance between molecule of A and molecule of B is less

than ρ̄, then the molecules react with the probability Pλ. Let us assume that

all molecules of B are centered at the origin. Considering a frame of reference
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situated in the molecules of B, we can equivalently describe this process as the

random walk of molecules of A which have the diffusion constant DA + DB.

These molecules diffuse to the ball of radius ρ̄ (centered at origin) which removes

molecules of A with the probability Pλ [6]. In this frame of reference, the reverse

step C
k2→ A + B corresponds to the introduction of new molecules of A at the

distance σ̄ from the origin. Let ci(r) be the concentration of molecules of A at the

distance r from the origin (i.e from the molecules of B). To describe the model for

reversible reaction from the numerical point we will consider that the reactions

occur first and then the diffusion. It can be schematically expressed as follows

ci(r)
R→ c̃i(r)

D→ ci+1(r),

where c̃i(r) is a concentration at the distance r from the origin modified by

reaction R (i.e A+B
k1
−→
←−
k2

C) and ci+1(r) is a concentration at the distance r from

the origin modified by reaction R and then by diffusion D.

Reaction includes removing of the particles of A, in the circle of radius ρ̄ and

centered at the origin, with probability Pλ and also introducing of particles of A

at the distance σ̄ from the origin. Thus c̃i(r) can be expressed as

c̃i(r) = (1− Pλ)χ[0,1]ci(r) + χ(1,∞)ci(r) + ωδ(r − σ̄), (A.4)

where ω is a constant describing the production of molecules of A in one time

step. Diffusion now implies that

ci+1(r) =

∫ ∞

0

K(r, r′, γ)c̃i(r
′)dr′, (A.5)

where K(r, r′, γ) is defined in (5.9).

Substituting c̃i(r) in (A.5) we obtain

ci+1(r) = (1−Pλ)

∫ 1

0

K(r, r′, γ)(ci)(r
′)dr′+

∫ ∞

1

K(r, r′, γ)(ci)(r
′)dr′+ωK(r, σ̄, γ).

Let us assume that g(r) is a fixed point of the iterative scheme (A.5) i.e

g(r) =

∫ ∞

0

K(r, r′, γ)g̃(r′)dr′,

where

g̃(r) = (1− Pλ)χ[0,1]g(r) + χ(1,∞)g(r) + ωδ(r − σ̄).

For the derivation of the constant ω we use the condition that the diffusion doesn’t

change the total quantity. This implies that
∫ ∞

0

g(r)4πr2dr =

∫ ∞

0

g̃(r)4πr2dr,

and using this we find

ω =
Pλ

4πσ̄2

∫ 1

0

g(r)4πr2dr.
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Consequently

g(r) = (1− Pλ)

∫ 1

0

K(r, r′, γ)g(r′)dr′ +

∫ ∞

1

K(r, r′, γ)g(r′)dr′ (A.6)

+ K(r, σ, γ)
Pλ

4πσ̄2

∫ 1

0

g(r)4πr2dr.

Then the rate of removing particles during one time step is given by

κ = Pλ

∫ 1

0

4πr2g(r)dr (A.7)

what is the desired relation.

To solve the equation (A.6) we can use the same numerical approach as is

presented in Appendix A.2
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Acronyms

SSA . . . stochastic simmulation algorithm

PDE . . . partial differentila equation

ODE . . . ordidnary diffenerantialy equation

D . . . diffusion coefficient

k . . . reaction rate

L . . . length of the domain

K . . . number of compartments

h . . . size of the compartment

ρ̄ . . . reaction radius

σ̄ . . . initial separation

Pα . . . probability of reaction
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Attachments

1. . . . Turing.avi (movie)

2. . . . diffusion.avi (movie)
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