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Chapter 2

Experimental Motivation

2.1 Dynamic Calibration Procedure for Vacuum Gauges
Calibration process in general comprises a comparison of instrument to be calibrated against

absolute indicating instrument of a different kind. Special case of such procedure is measure-
ment of exactly known physical quantity by an instrument to be calibrated. Using already
calibrated instrument one can progress further on and calibrate other instruments. It is clear
that at the top of the hierarchy there have to be the most precise instrument - primary standard.

Among all the physical quantities there are currently seven that have the privilege of being
base units in SI1 system. Primary standards of all derived quantities must determine the value
of measured quantity in terms of base units. Although it can be mediated in several inter-steps.

The pressure can be found of measurements of length, mass and time. Detailed search and
analysis show that vacuum gauge whose scale would be possible to determine purely on base
units can be constructed down to a range from 1 Pa to 10−2 Pa depending on the required
precision.

To calibrate gauges for lower pressures the fact that one can establish exactly known value
of pressure by a thermodynamic process done with a certain amount of gas is exploited. For
instance the thermodynamic process can be a static expansion of gas from smaller into larger
reservoir. The initial pressure can measured by the gauges related to the base units. The
pressure after the expansion process can be calculated by Boyle’s law. This way the lower
bound of the pressure range that can be determined in base units can be extended. Although
detail investigation shows that such procedure can’t be extend infinitely as one hits technological
and physical obstacles.

Dynamic methods rather than using statically stepwise increase of volume rely on steady
flow of gas expanding continuously throughout the vacuum system. As depicted in Figure 2.1
gas flows from the upstream chamber via orifice to the downstream chamber and from there
finally towards pump. The orifice typically consist of a circular hole in a thin plate. Pressure p1
in the upstream chamber is measured by a reference calibrating gauge and pressure p0 in the
downstream chamber is determined from a gauge to be calibrated.

1SI is abbreviation of International Unit System in French (Le Système International d’Unité)
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Figure 2.1: Dynamic Calibration Procedure Schematics

The relation between pressures p1 and p0 could be determined in a following way. If we
take conservation of mass for both chambers and integrate it over their individual volumes V1
and V0 then using Gauß theorem yields

ˆ
V1

∂tρ1dV1 +
˛
∂V1

ρ1v · dA1 = 0, (2.1)
ˆ

V0

∂tρ0dV0 +
˛
∂V0

ρ0v · dA0 = 0. (2.2)

Vector v = v(x, t) denotes gas flow velocity field in both volumes. ρ1 = ρ1(x, t) and
ρ0 = ρ0(x, t) are density fields in upstream and downstream chamber of the apparatus. Density
in up and downstream chamber ρ1 and ρ0 can be written using pressures p1, p0 utilizing the
equations

p1 = kΘ
m ρ1, (2.3)

p0 = kΘ
m ρ0. (2.4)

m denotes mass of atoms or molecules of the flowing gas and k denotes Boltzmann
constant. We assume that temperature Θ is constant and doesn’t change over time. Pressures
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p1, p0 are constants only in space. Equations (2.1), (2.2) could be simplified to (2.5) and (2.6).
It would be tempting to cancel out the factor preceding the brackets. As will become clear later
this would change the physical units of the equation which is undesired effect.

m
kΘ

[
V1∂tp1 + p1

˛
∂V1

v · dA
]

= 0 (2.5)

m
kΘ

[
V0∂tp0 + p0

˛
∂V0

v · dA
]

= 0 (2.6)

We take into consideration impenetrable walls represented by boundary condition v·dA = 0.
It holds everywhere except for orifice, pump inputs and gas reservoir outlet. Substitution of
boundary condition to the surface integral breaks it into three pieces. One represents flow across
the area of the gas reservoir outlet A1. Second is flow through cross section of the orifice A
and third is integration over the surface of the inlet of the vacuum pump A0. If we introduce
mean gas velocity across a planar surface 〈v〉X = 1

|X|
´
X vdX . X denotes vector normal to the

surface. The magnitude of X is equal to the area of the surface. Equations (2.5), (2.6) can be
written as

m
kΘ [V1∂tp1 + p1 (〈v〉A1 · A1 + 〈v〉A · A)] = 0, (2.7)
m
kΘ [V0∂tp0 + p0 (〈v〉A0 · A0 − 〈v〉A · A)] = 0. (2.8)

Since pumping speed of the vacuum pump is very large compared to the throughput through
the orifice first term in equation (2.8) disappears since pressure in the downstream chamber
is not changing in time. If we sum the equations (2.7) and (2.8) we arrive at equation (2.9)
expressing the dependence of pressure p1 on time and other factors.

m
kΘV1︸ ︷︷ ︸

Ṽ1

∂tp1 + (p1 − p0)
m
kΘ〈v〉AA︸ ︷︷ ︸

K

= − m
kΘ (p1〈v〉A1 · A1 + p0〈v〉A0 · A0)︸ ︷︷ ︸

M

(2.9)

Meaning of the first term on the left side of equation (2.9) is obvious. It expresses rate of
change of pressure over time multiplied by some factor depending on the type of gas, volume
and temperature.

Second term consists of difference between pressures in the upstream and downstream
chambers p1 and p0 multiplied by the cross section of the orifice and mean gas velocity. It can
be thought as throughput through the orifice. Omitting the pressure difference this term will
be denoted as conductivity K of the orifice.

Right side of the equation evaluates mass flow rate through the vacuum system and will be
denoted as M. Final differential equation describing development of pressure in the upstream
chamber over time is (2.10).
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Ṽ1∂tp1 + K (p1 − p0) = M (2.10)

Constant K could be determined experimentally by closing valves bridging the upstream
chamber with gas reservoir. Since pressure p0 is several orders of magnitude smaller than p1 it
could be neglected for the purpose of determination of the time development of the pressure in
the upstream chamber. If the pressure p0 wouldn’t be significantly smaller this fairly complicated
calibration procedure being described here would be deemed absolutely unnecessary since direct
methods could be used to calibrate the gauge. If the valve in gas reservoir is closed then mass
flow rate M = 0. Solution of simplified ordinary differential equation (2.10) under assumptions
stated above is

p1(t) = p1(t0) exp
(
− K
Ṽ1

(t − t0)
)
. (2.11)

By fitting the experimental data recorded by the reference gauge in the upstream chamber
to the equation (2.11) one easily determines the value of K .

Vacuum system is in quasi-stationary state during calibration process. Pressure p1 is
varied extremely slowly and thereby term evaluating time derivative of pressure in (2.10) can
be neglected. Under this assumption we arrive at simplified and practically used equation for
mass flow rate of orifice

K (p1 − p0) = M. (2.12)

Relation (2.12) is an analogy to Ohm’s law. Mass flow rate M is equal to conductivity
times difference in pressure. Mass flow rate is a metaphor of electrical current. Conductivity is
inverse of resistance and difference in pressure is analogous to a voltage drop.

Schematics displaying the detail and dimensions of the orifice that is separating the volumes
V0 and V1 is on Figure 2.2.

Figure 2.2: Orifice

It is worth noting that other more sophisticated shapes of duct than one presented here
are also used. For instance one can form an orifice by making a spherically or conically shaped
duct. Reason for such shapes is that the created domain allows analytical solutions of fluid
dynamics equations can which in turn allows easy theoretical mass flow predictions.
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Bird in [6] states that in molecular regime the mass flow rate of infinitely thin orifice of
diameter D from pressure p1 into vacuum can be evaluated analytically as

√
πγ

2

(
D
2

)2 p1

c = M0. (2.13)

Specific heat capacity is denoted as γ and adiabatic speed of sound is denoted as c and
determined from

c =
√
γ
kΘ
m . (2.14)

Speed of sound depends only on the type of gas by means of specific heat capacity γ,
molecular mass m and temperature θ.

We introduce reduced mass flow rate r used further on. It is defined in (2.15) as ratio of
actual mass flow rate M divided by flow rate in molecular regime M0

r = M
M0

. (2.15)

Now it becomes clear that if we would have canceled out the term m
kΘ a few steps above

the reduced mass flow rate wouldn’t be dimensionless. Units of r would be J/kg . The reason
is that canceling of the m

kΘ factor would yield R in J/s rather than kg/s. Different unit doesn’t
pose a problem since both views are equivalent and they differ only by a multiplicative constant
but a reasonable definition of reduced flow rate should be dimensionless.

According to Berman [4] reduced flow rate needs to be modified by factor ξ adjusting for
finite thickness of the orifice plate ξ = E/D. The orifice thickness E is assumed to be much
smaller than the diameter E � D.

r = M
M0

(1− ξ) (2.16)

2.2 Limitations of Dynamic Calibration Procedure
It is clear from derivation presented in previous section that there exist severe limitations.

Dynamic calibration methods require numerous theoretical propositions. Assumption about
constant pressures and temperatures in the vacuum system could be summed up into single
premise. Whole system must be in thermodynamic equilibrium state which in other words
means that particles must obey Maxwell distribution of velocities.

Serious problem is that such a statement is obvious contradiction whereas the gas flows
from one chamber to the other and expands on the way. Thus it is more realistic to assume sort
of quasi-statical thermodynamic equilibrium. Maxwell distribution is distorted only to a small
degree and the distortion is localized in very small area surrounding the orifice. To what extent
is such assumption valid depends on character of flow. It is worth noting that compliance rate
of quasi-statical equilibrium assumption determines the degree of linearity of (2.12).
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For the quantification of the nature of the flow it is common practice to introduce Knudsen
number Kn (2.17). It is defined as ratio of mean free path of molecules 〈λ〉 and characteristic
dimension of the studied system x . We consistently use orifice diameter D as characteristic
dimension throughout the thesis.

Kn = 〈λ〉x = 〈λ〉D (2.17)

Evaluation of mean free path is somewhat cumbersome. There is classical kinetic theory
result for hard sphere molecules where mean free path can be expressed as a function of among
other things molecular diameter d . Such a relation offers very little practical use considering
it is nearly impossible to accurately determine correct value of d . Hard sphere model isn’t
arguably the most accurate description of molecular interaction and so are many other available
kinetic theory models. A vague parameter of this kind in the heart of the definition of the main
scaling parameter is highly inappropriate. To address the issue we adopt approach presented by
Zhang in [48] where we consider the mean free path defined as a function of only macroscopic
variables. Namely the variables are kinematic viscosity µ, sound speed c and pressure p

〈λ〉 =
√
π

2γ
µc
p . (2.18)

For Knudsen number higher than approximately 1 the flow happens under molecular regime.
Individual molecules of gas are passing through the orifice almost without interactions. In molec-
ular regime relation (2.12) remains linear and mass flow rate is proportional to the difference
in pressure.

As the Knudsen number decreases below 1 number of collisions taking place on a charac-
teristic length scale increases and behavior of gas molecules begin to change. Density becomes
high enough that particles going in particular direction collide with their neighbors and propel
them in the direction of their motion. Kind of a group motion takes place in gas. Such phe-
nomenon is called viscosity of fluids. This effect causes deviation from linear behavior of mass
flow rate M. It is no longer linearly dependent on the pressure difference and (2.12) becomes
inaccurate.

In viscous regime throughput through the orifice increases due to viscosity effects and
equation (2.12) is no longer linear in pressure difference. The transition happens in the range
of Knudsen number between 1 and 10−3. Since pressure is proportional to inverse of mean free
path 〈λ〉 relations (2.17) and (2.18) effectively limit diameter of the orifice D which is necessary
to maintain molecular character of the flow.

Throughput through the orifice is proportional to D2 and thereby decreases steeply with
the diameter. From experimental point of view the procedure lacks required precision if the
throughput gets too small. The reason behind it is that the measurement of flow rate from
the gas reservoir is less accurate for smaller throughput. One of the main issues in vacuum
equipment - out-gassing of walls makes things even worse. Inner surface of the vacuum system
even if properly treated is capable of adsorbing and later releasing significant amount of gas.
This in turn creates inner flows that distort measurements.
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To overcome such a limitation one can arrange several small orifices next to each other
in order to increase throughput. Such assembly of orifices forms so-called multiorifice. Beside
the obvious increase in precision of flow rate measurement one gets further benefits. It is easy
to see that if relative accuracy of determination of diameter D remains the same the overall
accuracy decreases with increasing number of holes as 1/

√
n.

2.3 Multiorifice Experiment
Arrangement of multiorifice brings several interesting questions. Dynamic calibration pro-

cedure that is extensible to higher pressures would require to lay huge amount of orifices as
small as up to date manufacturing processes allow very close to each other. The question is
how to determine the spacing of orifices so they wouldn’t influence each other. The overall
conductivity could in that case be calculated as simple sum of linear relations (2.12).

Figure 2.3: Multiorifice Setup

There has been an experiment studying multiorifices conducted by Dr. Tomáš Gronych, Dr.
Ladislav Peksa and Dr. Martin Jeřáb. All are members of the Vacuum group at Department of
Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague.
Aim of the experiment was to measure how spacing of orifices influences the mass flow rate M.

The multiorifice was setup as depicted on Figure 2.3. Argon gas was forced by pressure
gradients to flow through an obstacle presented by the multiorifice. Each multiorifice consisted
of 7 circular holes of diameter D = 0.4 mm. Centers of the holes were placed in corners of a
regular heptagon. Measurement was done on several multiorifices that differed in the length of
the edge of heptagon F . Dimensions of the multiorifice are shown in Figure 2.4. The values of
F were chosen to be {0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.1, 1.6} mm. To get a clearer picture two
extreme cases are displayed on Figure 2.3.

In order to get a direct comparison the measurements were also done on a single circular
orifice as is shown on Figure 2.5. The diameter of single orifice was chosen to be D0 =
1.027 mm ≈

√
7D to maintain the same overall area.
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Figure 2.4: Multiorifice Dimensions

Figure 2.5: Single orifice

Multiorifices were manufactured by laser drilling of the tantalum foil. The thickness of the
foil was E = 0.015 mm. This gives ratios of thickness to diameter of the orifice ξ = 0.0375
and ξ0 = 0.0146 for the single orifice case.

As was exploited in aforementioned derivations the pressure p0 downstream the orifice was
maintained significantly smaller than the driving pressure p1 upstream the orifice. In fact the
ratio of pressures always fulfilled p1/p0 > 1000. The whole experimental apparatus was moved
to basement in order to hold a constant temperature θ = 299 K during the experiment.

The experimental dependence of reduced mass flux r on Knudsen number is shown in
Figure 2.6. There are certain unexpected discontinuities at some points in the data. This is
caused by the necessity to use three different vacuum gauges to cover required pressure range.
From the experimental data it can be roughly estimated that orifices that are spaced more than
3− 4 diameters apart have negligible effects on their neighbors.

As is shown later in chapter 4.5 another dimensionless parameter responsible for the scaling
is Mach number Ma. It is defined as ratio of characteristic macroscopic flow speed v and speed
of sound c
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Figure 2.6: Measured Experimental Dependence of Reduced mass flow on Knudsen number
for different configurations of multiorifice

Ma = v
c . (2.19)

Characteristic velocity v is chosen to be the average component of the velocity normal to
the cross section of the orifice

v = 〈v〉A · A
|A| .

The reason of this choice is that value of v can be easily evaluated from the experimental
value of mass flow rate R = ρ1〈v〉A ·A. Range of parameters that needs to be investigated for
each multiorifice configuration is displayed on Figure 2.7.
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Chapter 3

Theoretical approaches

3.1 Navier-Stokes Equations
First choice when it comes to fluid dynamics is system of Navier-Stokes equations (3.1),(3.2)

and (3.3). We denote density of body forces as f, stress tensor as T, energy density as e, density
of heat sources as q and vector of heat flux as q. System of Navier-Stokes equations express
conservation of macroscopic properties as stated by Newton’s second law. However there are
some difficulties in solving them for the purpose of simulation of rarefied gas flow.

∂tρ+∇ · (ρv) = 0 (3.1)
∂t(ρv) +∇ · (v⊗ v) = f +∇ · T (3.2)

∂te +∇ · (ev) = f · v+∇ · (Tv) + q −∇ · q (3.3)

Continuum description is valid as long as the smallest significant volume in the flow con-
tains a number of molecules large enough to establish averages. Specifically the Navier-Stokes
equations fail when gradients of macroscopic variables become so steep that their scale is of the
same order as mean free path of the molecules of fluid. Such a failure is typically encountered
when studying the inner structure of a shock wave or boundary layer effects. In other words
Knudsen number is required to be several orders of magnitude smaller than one.

Link between the macroscopic and microscopic quantities means that equations expressing
conservation laws may be derived using either continuum or molecular approach. This might
suggest that none of the approaches could provide us with information that is not available
to the other. It must be remembered that conservation laws do not provide a complete set
unless constitutive relations are added. Constitutive relations express stress tensor T and heat
flux q as a function of other macroscopic variables. Even if the constitutive relations would
be acceptably accurate the most problematic portion of them is the dependence of kinematic
viscosity ν on Knudsen number Kn. Qualitative character of this relation is depicted on Figure
3.1. For low pressures viscosity is nearly zero as almost no collisions occur in gas. In higher
pressures viscosity reaches limit denoted as νNS . The value of νNS is viscosity of the given gas
as we commonly understand it under standard atmospheric conditions. It is very difficult if
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not impossible to measure the relation experimentally and we would require it as data for the
solution.

Figure 3.1: Qualitative dependence of viscosity on Knudsen number

However it is failure of completing the system that limits the range of validity of the
continuum equations more seriously rather than uncertain determination of viscosity.

It seems so there is no alternative other than Boltzmann kinetic equation when Knudsen
number is of order unity or larger. It is worth noting that there are two ways in achieving large
Knudsen numbers.

In rarefied gases density of particles is very small and therefore mean free can reach very high
values as is the case in this thesis. Other possibility is to decrease characteristic dimension of the
system. This is the case in some MEMS1 devices like yaw rate sensors or accelerometers. Flow
in MEMS devices happens in microchannels2 layered on a silicon substrate. As the development
of such devices accelerates increasing number of industrial problems require deep understanding
of high Knudsen number flows.

3.2 Boltzmann Kinetic Equation
The kinetic theory of gases pioneered by Ludwig Boltzmann at the second half of the

19th century provides description at the scale between traditional hydrodynamic Navier-Stokes
equations and atomistic approach. Hydrodynamic equations don’t allow to capture physical
phenomena that significantly deviates from thermodynamic equilibrium.

Atomic approach on the other hand suffers from large number of variables required for
proper description. It is possible to develop simplified simulation methods capable of delivering
results on up to date computers. DSMC3 method proposed by Bird in [6, 7] is the most popular
amongst many researchers in the field of rarefied gas dynamics. There exists numerous modi-
fications of the original method which are suited for particular problem of interest. Simulation
methods suffer severe criticism for their non-mathematical foundation. Lack of mathematical
rigor provides very poor connection to the solution of Navier-Stokes or Euler equations. Due to
the physical and stochastic basis the DSMC method the existence, uniqueness and convergence

1Micro Electro-Mechanical System
2At the date of writing thesis as small as 10−9 m.
3Direct Simulation Monte Carlo
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questions that are of significant importance in traditional mathematical analysis are considered
unimportant.

It is necessary to point out that the derivation of the Boltzmann kinetic equation itself is
not straightforward and proposition free as it may seem. Discovery of a new physical law will
always require more intuition than rigor.

The chain of reasoning employing the Liouville operator and kinetic theory assumptions
about molecular chaos and non-correlated binary collisions presented in [35, 12, 11] are not
essentially different from assumptions behind the DSMC method. In fact DSMC is advantageous
in some cases of chemically reacting flows with ternary reactions since it doesn’t rely on existence
of inverse collisions.

As is in detail described in [46, 34, 8] numerical solution of Boltzmann kinetic equation
was originally developed on the basis of lattice-gas cellular automaton and their continuous
successor lattice-Boltzmann method. Nowadays these methods of solving gas kinetics can be
viewed as a very specialized and mathematically rigorous way of discretizing the Boltzmann
kinetic equation as will be shown later.
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Chapter 4

Boltzmann Kinetic Equation

4.1 Basic Properties of the Boltzmann Kinetic Equation

The state of the gas in the Boltzmann kinetic equation is determined by a distribution
function f = f (x,u, t). Arguments of f come from the phase space which consists of both
macroscopic variables. The position vector x ∈ Ω and microscopic velocity u ∈ R3. Domain
occupied by gas Ω is a subset of R3 with a reasonable boundary. Generally the Boltzmann
kinetic equation can be written in an arbitrary number of spatial dimensions but since it is
typically used in 3D we will limit ourselves to this case. However 1D or 2D cases are not
substantially different and results valid for 3D apply as well for them1.

The distribution function f represents density in an infinitesimal phase space volume.
Mass of a small cube of size dx by du around point (x,u) at time t can be approximated
by f (x,u, t) dx3du3. From this it easily follows that physical unit of distribution function f
is kg · m−3 · (m/s)−3. The distribution function is always positive in order to avoid negative
density.

The function f itself isn’t directly observable in a similar fashion as wave function in
quantum mechanics. All measurable macroscopic quantities can be expressed in terms of
microscopic averages over the whole velocity part of the phase space. The local density ρ,
velocity v, pressure tensor P and energy density e are calculated as moments of f

1There are 4D relativistic versions of the Boltzmann equation that are typically used to describe early stages
of the universe or plasma dynamics. Relativistic Boltzmann equation differs in many aspects and the approach
presented here doesn’t apply to it.
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ρ =
ˆ
R3

f (x,u, t) du3, (4.1)

ρv =
ˆ
R3
u f (x,u, t) du3, (4.2)

ρP =
ˆ
R3
u⊗ u f (x,u, t) du3, (4.3)

ρe =
ˆ
R3
u2 f (x,u, t) du3. (4.4)

It is possible in a mathematically very rigorous way as was shown by Cercignani in [12, 13]
to start from Newton’s laws and deduce whole hierarchy of models consisting of linear partial
differential equations. The deduction of hierarchy is based on scaling known as the Boltzmann-
Grad limit. The number of molecules N is let to infinity and at the same time the macroscopic
properties of the gas are unchanged. To achieve this the molecular mass m limits to zero in a
such way that mN is constant. Furthermore the gas needs to be dilute enough so that multiple
particle collisions can be neglected. The Boltzmann-Grad limit can be expressed as

Nd3 � x3, (4.5)

where d denotes diameter of molecules and x is a typical length scale.
As is shown in references [11, 13] to complete and close the hierarchy more assumptions

than binary collisions are required. Most important assumption is so-called molecular chaos.
This requires that molecules that are about to collide are in a non-correlated state. This could
be stated in other words as requirement that the molecules haven’t collided with each other in
near past. This is an essential a property of randomness and it is very hard to name a system
which doesn’t fulfill this condition. Once chaos has been established the Boltzmann equation
has been shown to asymptotically propagate it.

Final closed equation known as the Boltzmann kinetic equation can be written as (4.6).
Term describing the effect of volume forces is omitted on the grounds that it isn’t important
in the thesis.

∂t f + u·∇f = Q(f , f ′) (4.6)

On the right side of the equation lies a term called a collision integral Q which expresses
change of distribution function due to particle collisions. It is described in further detail in next
section.

In the case of extremely rarefied gases the particle collisions can be neglected and the
collision integral Q becomes nearly zero. We obtain free transport equation for f (4.7). The
operator v ·∇ is classical transport operator. Solution of hyperbolic free transport equation can
be easily obtained analytically. Initial conditions are streamed along characteristic lines.

∂t f + u·∇f = 0 (4.7)
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The Boltzmann equation is of integral-differential type. The collision term consists of five
dimensional integral over the whole velocity space. That among other things means that it’s
analytical solution are possible only in very special simple cases.

4.2 Collision Integral
From mathematical point of view the collision integral Q is tensor quadratic operator acting

on the velocities u. It is given as

Q(f , f ′) =
ˆ

R3

˛
|s|=1

B(u− u∗, s)(f
′f ′

∗ − ff∗)ds2du3
∗ . (4.8)

We have used standard abbreviations in the field of Boltzmann equation. Velocities u, u∗
are in post-collision state and u′ , u′

∗ are pre-collision values as is depicted in Figure (4.1). Same
notation is valid for indexes of distribution function f before (4.9) and after the collision (4.10).

f ′ = f (x,u′, t) f ′

∗ = f (x,u′

∗, t) (4.9)
f = f (x,u, t) f∗ = f (x,u∗, t) (4.10)

Collisions are assumed to be binary and elastic. Binary collision proposition is serious
difficulty when the density becomes sufficiently large. But in gases it is generally accepted
and very accurate approximation. Neglected multi-particle collisions are more frequent than
it seems. Interaction potential of molecules can be approximated by a power law. Power law
potentials are rapidly decaying but their range is infinite and therefore if the scale is small
enough every molecule in the gas is colliding with every other at the same time. Infinite range
interaction poses one of the difficulties in analysis of the Boltzmann equation and are usually
cut off to ensure finiteness of certain integrals.

During elastic collisions momentum and kinetic energy are the same before and after the
collision. Since we are not dealing with mixtures all particles have the same mass and therefore
energy and momentum conservation can be stated as

u′ + u′

∗ = u+ u∗, (4.11)
u′ 2 + u′

∗
2 = u2 + u∗2. (4.12)

All collisions can be parametrized by assuming a reference system in the plane of collision
defined by pre-collisional velocities. Having s ∈ R2, |s| = 1 the pre-collisional velocities can be
written as

u′ = u+ u∗
2 + |u− u∗|

2 s, (4.13)

u′

∗ = u+ u∗
2 − |u− u∗|

2 s. (4.14)



4.2 Collision Integral 21

Figure 4.1: Collision Velocities Notation

The difference of products of density distribution functions in the definition of collision
integral (4.8) can be split into gain term containing f ′f ′

∗ and loss term containing ff∗. Loss
term represents all collisions in which a given particle at velocity u will encounter another
particle and exchange of momentum will lead to a different velocity. The gain term measures
the number of particles whose post-collision velocity is u and have therefore gained this value
of velocity due to collisions.

The collision kernel B is always non-negative and depends only on |u| and u · s because
elastic collisions are reversible. The collision kernel depends crucially on the microscopic interac-
tions and molecular potentials. Various kinds of collision kernels for different kinds of scattering
together with their derivation from microscopic potentials can be found for example in reference
[12]. Collision kernel for hard spheres is effectively a cross-section and can be explicitly written
as

B = d2|u|. (4.15)

Cercignani in [12] showed that there are only five elementary collision invariants I(u) having
the property

ˆ
R3

I(u)Q(f , f ′) du3 = 0.

Namely elementary invariants are a constant, velocity u and kinetic energy u2. Since
arbitrary constant is also an invariant all the other collision invariants can be constructed as
linear combinations of the elementary ones. Cercignani also showed that there exists a family
of distribution functions which yields zero collision integral Q(f eq, f eq′) = 0. The equilibrium
Maxwell distribution function (4.16) is a special case among these functions.

f eq = ρ

c3
(

2π
γ

)3/2 exp
(
−γ2

(v− u
c

)2
)

(4.16)

It is noteworthy to state that f eq depends on spatial coordinate x and time t only by means
of macroscopic variables ρ, v and c .
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4.3 Boundary Conditions
If we are about to describe an experimental setup where gas flows past a solid body or is

contained in a region bounded by the domain the Boltzmann kinetic equation must be provided
with a boundary conditions. Boundary conditions in a sense represent what is taking place
behind them. In the context of Boltzmann kinetic equation boundary conditions model the
interaction between gas molecules and the wall. Mechanism of this interaction is responsible
for momentum exchange and heat transfer.

In order to write down accurate expressions for the boundary conditions one needs to gain
a deep insight to the molecular and in some cases even quantum-mechanical level. The lack
of knowledge about the structure of surface layers of solids makes this task quite difficult since
molecule impacting upon a surface is adsorbed and various things can occur. It may chemically
react and form a bond, dissociate, ionize or even shift the surface molecules.

Boundary conditions are prescribed on a part of the phase space ∂Ω+ which lies on the
boundary of the domain ∂Ω and have velocities pointing towards the boundary

∂Ω± = {x ∈ ∂Ω, v ∈ R3, ±v · dA > 0}.
dA is unit vector perpendicular to the boundary and pointing outwards.

4.3.1 Reflection
Specular reflection boundary condition is an approximation of gas-surface interaction where

molecules bounce back off the surface. It is assumed that the position of the boundary is
perfectly known and that the surface is completely smooth. The post-collision angle is the
same as pre-collision one as is displayed in Figure 4.2.

Figure 4.2: Specular Reflection Boundary Condition

Finer details of molecular interaction are not taken into consideration. Mathematical
formulation of the boundary condition is

f (x,u, t) = f (x,u′, t),
u = u′ − 2(dA⊗ dA)u′.
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Specular reflection is an analogy to macroscopic no-slip boundary condition.

4.3.2 Diffusive Scattering
Diffusive scattering is a finer boundary condition taking into account boundary irregularities

and scattering on walls

f (x,u, t) =
ˆ
∂Ω+

K (u,u′)f (x,u′, t) du′3.

K is a scattering kernel responsible for statistical modeling of gas-surface interaction.
Choice of scattering kernel K is very complex topic since it must take into account all the
phenomena stated above. As demonstration of extent and complexity could serve several
chapters devoted to the problematic in monographs [12, 13]. In general post-collision velocities
can have arbitrary directions as is displayed in Figure 4.3.

Figure 4.3: Diffusive Scattering Boundary Condition

The scattering diffusion has an analogy in macroscopic boundary condition representing
certain amount of slip that is determined by the exact form of the collision kernel.

4.3.3 Maxwell Scattering
Particularly useful example of scattering kernel is Maxwellian reflection

f (x,u, t) = f eq
Θw

ˆ
∂Ω+

f (x,u′, t) du′3. (4.17)

f eq
Θw is a Maxwell distribution where local speed of sound is determined by the temperature

of the wall Θw . This models a process which is a very good approximation to what is taking
place on the gas-surface interface if there are no chemical reactions. The molecules are adsorbed
and released after it has been heated or cooled to the temperature of the wall. Distribution of
velocities corresponds to the equilibrium Maxwell distribution at the temperature of the wall.
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4.4 H-Theorem
In the same paper where Ludwig Boltzmann gave a heuristic derivation of equation that

now bears his name he also deduced an important consequence from it. Now this result is
known as the H-theorem. This theorem explains at fundamental level the irreversibility of
natural processes by showing that molecular collisions never decreases entropy density. Entropy
density is defined for arbitrary distribution function f satisfying the Boltzmann kinetic equation
as

h =
ˆ

R3
f (x,u, t) log f (x,u, t) du3. (4.18)

The H-theorem states that

dh
dt ≤ 0. (4.19)

The equal sign is valid only if f is Maxwell distribution function (4.16). There are some
issues with integrability of certain the terms when one calculates the full time derivative of
entropy density. Due to this sufficiently general proof of the theorem has not been available
until recently. The details of the proof are discussed in section 5.6.

It would be tempting in virtue of (4.19) to expect that the solutions of the Boltzmann
kinetic equation are more and more resembling the Maxwell distribution as the time progresses.
This holds for true for majority of boundary conditions. For example specular reflection or
periodic boundary condition. It is also true for unbounded domains. However inappropriate
choices of boundary conditions could easily spoil this and establish an equilibrium state different
than the one given by the Maxwell distribution function. This is especially true for rarefied
gas where gas-surface interaction in some configurations has more influence on establishing
equilibrium state than inter-particle collisions.

4.5 Scaling
Dimensionless scaling of the Boltzmann equation happens on two distinct levels. Tem-

perature in Boltzmann equation is represented in a natural way as kinetic energy of molecules
and it’s value is established only by averaging over the velocity space (4.4). This sets a scale
given by the characteristic velocity at microscopic level which we choose as sound speed c at
reference temperature Θ. The microscopic dimensionless velocity is then defined as

û = u
c . (4.20)

If we choose reference length x , time t, density ρ, and temperature θ we can start defining
dimensionless equivalents of respective macroscopic quantities. If we denote dimensionless
equivalent of each macroscopic with hat we arrive at
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x̂ = x
x , t̂ = t

t , ρ̂ = ρ

ρ
(4.21)

Using dimensionless variables the dimensionless operators evaluate as

∂̂t = t ∂t , ∇̂ = x ∇. (4.22)

Scaling of distribution function f can be determined from the dimensional analysis and
goes as

f̂ = c3

ρ
f . (4.23)

Scaling of the collisional operator is a bit more cumbersome. The integrals surrounding
the collisional kernel suggests that collision kernel can be interpreted as frequency of collisions
happening in a unit mass spread across a unit volume. The characteristic time scale of the
collision kernel is determined by the mean time between consecutive collisions 〈tλ〉. Using the
reference speed of sound we can relate 〈tλ〉 to the mean free path as

c = 〈λ〉
〈tλ〉

. (4.24)

This in turn yields dimensionless collision kernel as

B̂ = ρ

〈tλ〉
B.

Finally after substitution of dimensionless variables into the definition of the collision inte-
gral (4.8) the dimensionless collisional operator can be written as

Q̂ = c4

〈λ〉ρ
Q. (4.25)

Having dealt with all the quantities in the Boltzmann kinetic equation it’s dimensionless
form is

Ma ∂̂t f̂ + û · ∇̂x f̂ = 1
Kn Q̂(f̂ , f̂ ′). (4.26)

The mach number Ma was earlier defined in (2.19). However there are some finer details
and discrepancies in the definition that need to be discussed. Mach number from the scaling
of Boltzmann kinetic equation comes out as

Ma = x/t
c . (4.27)

Usually the choice of reference quantities t and x is done in a way that corresponds to
the dimensions of the domain and timescale of the gas motion. In some cases the scale of
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reference velocity v can be small enough so that the scale of x and t can be seen as some
kind of macroscopic flow where the small oscillations of size v occurs on top of a much larger
flow. Therefore the definition of the Mach number using the reference velocity v is invalid
and approach though x and t must be adopted. In the case where the reference space and
time scales are in accordance with the velocity scale the problem is no longer important and
macroscopic reference velocity can be defined as

v = x
t . (4.28)

In case of higher Mach number flow microscopic and macroscopic scales start to overlap
and it is reasonable to make both velocities comparable and set the reference macroscopic
velocity to the sound of speed and introduce dimensionless macroscopic velocity

v̂ = v
v = v

c . (4.29)

We have derived that the natural dimensionless scaling parameters are the Mach number
and the Knudsen number. Introduction of other commonly used dimensionless scaling parameter
the Reynolds number Re is in the context of Boltzmann kinetic equation a bit more cumbersome.
Viscous forces are represented only through collision kernel Q and viscosity can be expressed
for certain types of collision kernels as an integral as is shown by Chapman and Cowling in [14].

4.6 Hydrodynamic limits
Common way to investigate limiting behavior of Boltzmann kinetic equation is to employ

Chapman–Enskog expansion. It consists of expansion in powers of Knudsen number whose
value provides a measure of deviation of the Boltzmann distribution from its local equilibrium
state. The time scale is expanded on two distinct levels. On the diffusive level and convective
level.

Making such limits and expansions mathematically rigorous turned out to be very demand-
ing task and requires introduction of entirely new weak function spaces that suit the particular
problem and to large extent suffer from all kinds of child complaints since the field is far from
being completely understood. Some details on mathematical advance in investigation of the
limits can be found in [10, 11, 12, 35] and references therein.
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Chapter 5

Lattice-Boltzmann Method

5.1 BGK Approximation of Collision Integral
The major difficulty when it comes to solving Boltzmann kinetic equation is the collision

integral. There have been proposed much simpler descriptions of collision mechanisms to deal
with the complexity. Arguably the most popular BGK1 simplification of the collision integral
is to large extent responsible for the success of the method. Original idea goes to classical
Brathnagar, Gross and Krook paper [5] where they have applied simplified collision integral
(5.1). The idea of the simplification is to remove enormous number two-particle interactions
which are unlikely to substantially affect the values of macroscopic quantities by a relaxation
towards the equilibrium state.

QBGK (f ) =
1
τ
(f eq − f ) (5.1)

It is easy to see that QBGK has the same collision invariants as the original collision operator
Q provided that the local Maxwell distribution function f eq has the same macroscopic density,
velocity and speed of sound.

Rate of relaxation towards Maxwell distribution is governed by relaxation time τ . We
can relate the relaxation time to the mean time between molecular collisions 〈tλ〉 to obtain
dimensionless relaxation time

τ̂ = τ

〈tλ〉
.

It is not surprising that BGK approximation of the collision integral scales in a very similar
fashion to the original collision integral

Q̂BGK (f̂ ) =
c4

〈λ〉ρ
1
τ̂
QBGK (f ).

The dimensionless Maxwell distribution function which is part of the Q̂BGK can be written
as

1BGK are first letters of names of authors who proposed the operator.
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f̂ eq = ρ̂(
c
c

)3 (2π
γ

)3/2 exp
(
−γ2

(c
c (v̂− û)

)2)
. (5.2)

We can write the dimensionless Boltzmann kinetic equation with BGK approximation as

Ma ∂̂t f̂ + û · ∇̂f̂ = 1
Kn

1
τ̂
Q̂BGK (f̂ ). (5.3)

5.2 Discretization of Velocity Space
He in [22] showed that lattice-Boltzmann method can be obtained from the Boltzmann

kinetic equation by special discretization of velocity space and use of small Mach number
expansion. The starting point of his derivations is Boltzmann kinetic equation with BGK
approximation of collision integral (5.3).

In order to deal with unbounded velocity space He adopted approach where only a small
number discrete velocities ûα, α = {0, ..., L} are chosen and only distribution function evaluated
at these velocities are used to determine macroscopic variables. Using notation f̂α(x̂, t̂) =
f̂ (x̂, ûα, t̂) we can in analogy to (4.1)-(4.4) write

ρLB =
L∑

α=0
wαf̂α, (5.4)

ρLBvLB =
L∑

α=0
ûα wαf̂α, (5.5)

ρLBPLB =
L∑

α=0
ûα ⊗ ûα wαf̂α, (5.6)

ρLBeLB =
L∑

α=0
û2
α wαf̂α. (5.7)

Indexes LB
2 signify that the respective quantity is a discrete lattice-Boltzmann counterpart

of the original physical value. To obtain exact values of weights wα Shan in [36] used Gauß-
Hermite quadrature of 3rd order and pointed out that in order to recover isothermal Navier-
Stokes equations integrals of powers of microscopic velocity up to

´
R3 u3f eq du3 must be

evaluated exactly by the quadrature. To recover non-isothermal hydrodynamics moments of up
to 4th order of u must be exact. The values of the wα and orientation of discretization velocities
ûα for widely used isothermal D2Q9 velocity model are displayed in Figure 5.1. Weights for
many other velocity discretizations can be found in paper [21].

It is common in the field to adopt DNQL notation for categorization of velocity models.
Number N stands for spatial dimensions and L stands for number of discrete velocities used to

2LB is acronym of lattice-Boltzmann.
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wα α
4/9 0
1/9 1 2 3 4
1/36 5 6 7 8

Figure 5.1: Isothermal D2Q9 Velocities and Weights

evaluate the quadratures (5.4)-(5.7) at each point of space. Straightforward extension of the
D2Q9 model into 3D is D3Q27 which is essentially three D2Q9 models from Figure 5.1 layered
on top of each other to achieve 3D structure of the discretized velocity vectors ûα.

We introduce effective distribution function Fα = wαf̂α and since weights and discrete
velocities are constants we can write in virtue of (5.3) the following system of equations which
holds at each point in space

Ma ∂̂tFα + ûα · ∇̂Fα = 1
Kn

1
τ̂
(F eq

α − Fα) , α = {0, ..., L}. (5.8)

If we approximate the time derivative by 1st order finite difference and the convective term
by a 1st order upwind finite difference we arrive at discrete version of equation (5.8)

Fα(x̂, t + δt)− Fα(x̂, t) +
|ûα|
Ma

δt

|δxα|︸ ︷︷ ︸
1

(Fα(x̂, t)− Fα(x̂− δxα, t)) =

= δt

Kn Ma︸ ︷︷ ︸
1

1
τ̂
(F eq

α (x̂− δxα, t)− Fα(x̂− δxα, t)) , α = {0, ..., L}. (5.9)

The reason why collision terms are discretized by downwind finite difference is not clear
at the first sight. Chen in [16] showed that although it is not obvious the delicate Lagrangian
nature of the discretization is capable of achieving 2nd order accuracy both in space and time.

By choosing multiplicative factors that came out of discretization to be 1 we recover the
Lattice Boltzmann equation (5.10).

Fα(x̂+ δxα, t + δt) = Fα(x̂, t) +
1
τ̂
(F eq

α (x̂, t)− Fα(x̂, t)) , α = {0, ..., L}. (5.10)
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5.3 Lattice
To finish the discretization and complete the lattice-Boltzmann model algorithm we need

to discuss how are the space and time discretization tied together. The discretization forms
so-called lattice as can be seen in Figure 5.1. In the field of lattice-Boltzmann equation term
lattice is utilized to refer to the structure of space discretization. It can be considered as an
analogy to mesh used in traditional CFD.

Lattice is a periodic structure consisting of nodes denoted by black circles where the
distribution function is evaluated. Distance of the neighbor nodes is a natural lattice length
unit. One iteration over all the nodes advances the time by one lattice time step which is
in a similar way natural unit of time on the lattice. The adjacent nodes are inter-connected
by discretization velocities in such a way that that spatial step is related to the time step by
Lagrangian relation

δxα = ûαδt , α = {0, ..., L}.

We have in the last step of derivation of the velocity space assumed that

Ma = cLB
|δxα|
δt

. (5.11)

We have denoted the size of ûα as cLB which is lattice speed of sound. For particular velocity
discretization it is a fixed constant. In fact no information on the lattice can propagate faster
than cLB. For D2Q9 velocity model the lattice speed of sound attains value of 1√

3 . Impossibility
to change the speed of sound is one of the main drawbacks of the lattice-Boltzmann method.

The discretization has another minor drawback which is an assumption that ties together
Mach and Knudsen number

Ma = 1
δt

Kn. (5.12)

However this assumption is not so severe in incompressible the applications since value of
Ma is considered negligible.

While in traditional CFD the local refinement of mesh is mandatory for efficient and ac-
curate solution. In case of the lattice this brings difficulties and the topic is a subject of active
research.

Explicit nature of lattice-Boltzmann discretization suggest that when the lattice is refined
the time step must be decreased correspondingly to keep the speed of sound constant at all
levels. Besides the time step complication which is manageable deeper analysis [19] shows that
values of distribution function cannot be transferred or interpolated directly in places where
the coarser part of lattice meets the finer one. The macroscopic fluid dynamic variables like
viscosity or heat conductivity must be kept smooth on the interface. These two effects spoil
significant amount the effort invested into lattice refinement techniques but performance boost
is still achievable.
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5.4 Discretization of BGK Approximation
For the isothermal D2Q9 velocity the ratios of c/c are 1 and dimensionless Maxwell distribu-

tion (5.2) attains much simpler form. In order to derive the velocity model weights Shan replaced
the dimensionless Maxwell distribution by Taylor series expansion in dimensionless macroscopic
velocity v̂ up to 2nd order and obtained effective discretized equilibrium distribution function

F eq
α = wαρ̂(

c
c

)3 (2π
γ

)3/2 exp
(
−γ2 û

2
α

)(
1 + γûα · v̂+

1
2 (γûα · v̂)2 − γ

2 v̂
2
)
, α = {0, ..., L}

(5.13)
For other velocity models than D2Q9 the Maxwell distribution function Taylor series expan-

sion is truncated at higher order to obtain more accurate evaluation of moments of distribution
function and recover compressible, thermal or other models. Form of F eq

α has to ensure that
the macroscopic fluid equation obtained from (5.10) by the Chapman-Enskog expansion agrees
with the appropriate limiting macroscopic equations. Exact form of Taylor series expansion
depends on the structure of the lattice and is not uniquely determined. This leaves space for
improvements in stability or introduction of additional physical phenomena which occur further
off the equilibrium state.

Truncated expansion is reasonably accurate as long as the dimensionless velocity v̂ is
small. Considered the definition of the dimensionless macroscopic velocity (4.29) the expansion
effectively restricts the local Mach number to small values. Such restriction is only valid for
incompressible or very slightly compressible flows. Compressibility in this context is understood
differently. Limiting behavior of the truncated series up to 2nd order by no means recovers
compressible Navier-Stokes equations.

Instead of solving additional Poisson equation for pressure lattice-Boltzmann method ex-
hibits quasi-compressible behavior in a sense that if the relative fluctuations of density are small
then incompressible Navier-Stokes behavior is recovered accurately as the effect of compress-
ibility can be made of the same order as discretization error.

Obviously Taylor series expansion of the equilibrium distribution function is the bottleneck
in our discretization. It restricts magnitude of Mach numbers that the method is capable of
simulating. As will be discussed later it seems that there are no results that have successfully
overcome this difficulty so far.

5.5 Lattice-Boltzmann Method
Lattice-Boltzmann equation (5.10) derived in the previous chapter has many very nice

properties. From the numerical point of view the scheme of lattice-Boltzmann equation is
explicit. There is no need to solve additional system of equations to advance the time step.
Boltzmann kinetic equation can therefore be understood at a more elementary level by using
methods original to the lattice-gas automaton.
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The calculations are effectively split into two parts as is indicated in (5.14). In the first part
the distribution function is streamed alongside velocities ûα to the nearest neighbor node and
after the streaming the relaxation takes place. Relaxation can be interpreted as a simplification
of the collision processes in gases that lead towards towards establishing equilibrium.

Fα(x̂+ δxα, t + δt) = Fα(x̂, t)︸ ︷︷ ︸ − 1
τ̂
(F eq

α (x̂, t)− Fα(x̂, t))︸ ︷︷ ︸
Streaming Relaxation

, α = {0, ..., L} (5.14)

Relaxation and streaming processes in case of the D2Q9 velocity model is displayed on
Figure 5.2.

Figure 5.2: D2Q9 Streaming and Relaxation

Convective term represented by streaming operation is non-local since it affects also adja-
cent nodes but more importantly is linear. Non-linearity is concentrated only in the relaxation
step that happens locally. This is major advantage compared to the traditional CFD. The
convective term ∇ · (v⊗ v) is nonlinear and non local at the same time. The fluid momentum
is transported along streamlines. In case of case porous media flows the streamlines can have
very high derivatives. Rapidly varying velocity negatively affects numerical stability of traditional
CFD methods. This effect is completely avoided by the lattice-Boltzmann method.

Another property to notice is that localization of the respective steps in lattice-Boltzmann
method makes up for almost ideal scaling in parallel computing since very little communications
is required when the domain is split between several computers.
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5.6 Hydrodynamic limits
In order to determine limiting behavior of lattice models Chapman-Enskog expansion is

used. Typically distribution function is expanded formally into a series around local equilibrium
distribution function and time derivatives are considered on two separate timescales. This
approach is slightly misleading and the same results can be obtained in more transparent fashion.

In our derivation we consider hydrodynamic limit where Knudsen number is sufficiently
small. Knudsen number can be in viewed as a parameter which measures departure off the
local equilibrium state. We expand effective distribution function Fα around equilibrium state
F eq
α into series of Kn and truncate the series at first non-equilibrium contribution F neq

α

Fα = F eq
α + Kn F neq

α , α = {0, ..., L}.

Since we want our approximation to conserve mass and momentum from (5.4) and (5.5)
one can easily deduce following restrictions on F neq

α

L∑
α=0

F neq
α = 0 ,

L∑
α=0

ûαF neq
α = 0.

Insertion of Knudsen number expansion series into continuous lattice-Boltzmann equation
(5.8) yields

Ma ∂t (F eq
α + Kn F neq

α ) + ûα · ∇ (F eq
α + Kn F neq

α ) = −F neq
α

τ̂
, α = {0, ..., L}.

We have effectively recurrent relation for F neq
α where it is expressed as certain mixtures

of it’s own spatial and time derivatives. By reinserting the recurrent relation into itself and
comparing terms of order Kn0

Ma ∂tF eq
α + ûα · ∇F eq

α = −F neq
α

τ̂
, α = {0, ..., L}.

Terms of order Kn1 can be after non-negligible amount of algebra expressed as

Ma ∂tF neq
α + (2τ̂ − 1)ûα · ∇ (∂tF neq

α + ûα · ∇F neq
α ) = 0, α = {0, ..., L}.

Finally after summing over all discretization velocities we can write the conservation equa-
tions for lattice mass and momentum as

∂tρLB + ρLB∇ · vLB = 0,

ρLB∂tvLB +∇ · PLB = 0.
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The lattice pressure tensor came out as

PLB =
L∑

α=0
ûα ⊗ ûα (F eq

α + (2τ̂ − 1)F neq
α ) .

From the structure of the pressure tensor one can see that viscosity is generally non-
equilibrium effect in the Boltzmann kinetic equation. Hydrodynamic limit of zero order ex-
pansion which is effectively equilibrium distribution function can be easily identified as Euler
equations.

After substitution of equilibrium distribution function (5.13) the pressure tensor can be
written as

PLB = ρLBc2
LB︸ ︷︷ ︸

pLB

I+ ρLB

L∑
α=0

ûα ⊗ ûα + (2τ̂ − 1)︸ ︷︷ ︸
νLB

L∑
α=0

ûα ⊗ ûαF neq
α .

In order to obtain incompressible Navier-Stokes equations we identify previously unspecified
dimensionless relaxation time τ̂ as a way to regulate viscosity

νLB = (2τ̂ − 1)c2
LB. (5.15)

Another result is that we have derived relation that can be called lattice equation of state.
Since cLB is fixed constant when expressed in lattice units we can easily convert between pressure
and density when a need arises

pLB = c2
LBρLB. (5.16)

5.7 Initial and Boundary Conditions
The simplest way to initialize the computation based on lattice-Boltzmann method is to

specify an initial macroscopic variables and set all particle distributions to equilibrium based
on these using (5.13). But according to Skordos it is slightly inaccurate. In [41] he presented
new approach how invert relations (5.4)-(5.7) to calculate the lattice-Boltzmann distribution
functions at a boundary node from the fluid variables that are specified at this node. These
two approaches are most widely used in lattice-Boltzmann method.

Fluid in simulation is enclosed in a bounded domain and confined by a surrounding bound-
ary. Generally the problem of formulating boundary conditions for lattice-Boltzmann method
consist in finding dependence of unknown outgoing particle populations on known incoming
populations. Outgoing populations fulfill condition ûα · dA > 0 where dA is outer normal to
the boundary. Incoming populations are defined by the opposite sign of the inequality. Bound-
ary conditions for lattice-Boltzmann method have in general very weak connection to their
continuous counterparts formulated for Boltzmann kinetic equation.

The problem of formulating boundary condition is demonstrated in the case of D2Q9
velocity model in Figure 5.3. Grayed numbers represent outgoing distribution functions which
needs to be determined while white number are incoming distribution functions.
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Only requirement that needs to be met in order to recover hydrodynamic limits of lattice-
Boltzmann equation is conservation of macroscopic variables. This leads to a incomplete system
of equations that lacks unique solution. Requirement to complete the system of equations
opens up opportunities to add new physical phenomena into the boundary conditions. But
this is double-edged sword since caution is required to prevent mathematical ill-posedness and
jeopardy of second order of accuracy achieved in discretization.

Figure 5.3: D2Q9 Velocities on Boundary

5.7.1 Bounce Back Boundary Condition for Velocity

One of the most basic boundary conditions for lattice-Boltzmann method is a hard wall
which reflects particles back and effectively represents a no-slip condition. There exists two
variations of this condition the full-way or on-grid bounce-back and the half-way or mid-grid
bounce back method.

In both variants boundary conditions are represented by certain nodes on the lattice marked
as walls. Such nodes are not part of the fluid and the particle distributions are not relaxed
towards equilibrium and are not governed by the lattice-Boltzmann equation.
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Figure 5.4: Full-way Bounce Back Boundary Condition

The full-way is the simpler of the two methods. In the collision step of each iteration
when the fluid nodes are relaxed, all distribution functions residing on bounce back nodes are
reversed. That way the particles are sent back in the direction they originally arrived in but
one iteration delayed. Collision step is modified for the full-way bounce back nodes but the
streaming step is kept the same. Full-way boundary condition is displayed on Figure 5.4.

In the half-way variant, distribution functions that are about to stream into a wall node
are reflected instead of streamed, as is depicted in Figure 5.5. In this case the streaming step
is modified while the collision step remains the same.

Figure 5.5: Half-way Bounce Back Boundary Condition

In both bounce back conditions the effective position of the wall is actually between the
wall nodes and fluid nodes adjacent to it. Half-way bounce back is a more difficult to implement
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than the full-way method, but as was shown by Chen in [37] the half-way variant gives second
order accuracy which is in agreement with the order of accuracy of lattice-Boltzmann equation.
The full-way is only first order accurate. Main difficulties in implementation of the half-way
boundary condition are corners. The full-way bounce back node doesn’t require any supple-
mental information about being a corner or regular wall node. The half-way variant demand
this information. In 2D there is only inner and outer corner so that doesn’t present a limitation.
But for example in porous media flow in complex domains where especially in three dimensions
situation becomes a bit more cumbersome but still somewhat manageable.

5.7.2 Zou’s Boundary Condition for Pressure

Incompressible lattice-Boltzmann method schemes don’t deal easily with pressure boundary
conditions. The reason behind it is that density and pressure are tied up together by lattice equa-
tion of state (5.16). Any pressure change is inevitably accompanied by pressure change which
breaks the incompressibility condition in the first place. Conventional CFD typically sweeps
the problem under the carpet by allowing arbitrary high speed of sound. That way significant
pressure drops can be sustained with negligibly small variation of density and solenoidality of
the velocity field is maintained.

In lattice-Boltzmann method steady states are always affected by a compressibility error. It
can be estimated by slight modification of continuity equation (3.1). Expanding the divergence
term yields

∂tρ+∇ρ · v+ ρ∇ · v = 0. (5.17)

If we assume the system in a steady state the time derivative disappear and the resulting
equation can be written as

∇ log ρ · v+∇ · v = 0. (5.18)

It’s obvious that first term expresses deviations from solenoidal velocity field. In other
words compressibility error. The error is of order Ma2 thus negligible in most applications.

The standard way to impose pressure differences in open flows consists of replacing real
pressure gradient with a corresponding volume force producing exactly the same momentum
input to the flow as would the pressure gradient. Such procedure breaks down if detailed
information about space distribution of the pressure field is required since it’s unable to provide
this data.

Quasi compressible pressure boundary condition proposed by Zou and He in [49] uses
relatively simple strategy as opposed to strictly incompressible approaches in used by Noble in
[30]. Drawback of their approach is that in order to calculate missing distribution functions
they assumed the tangential components of velocity to be zero. So far there seems to be no
way to resolve this problem and not introduce other issues in available literature.
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5.7.3 Inamuro’s Boundary Condition for Velocity
Inamuro’s boundary conditions can be used to represent slip velocity boundary condition.

In our case we use only zero slip velocity boundary condition but the original reference [23] deals
with arbitrary slip value. Inamuro’s boundary condition draws unknown distribution functions
from a local equilibrium distribution function with the same normal and different tangential
sped at the wall. It can be considered a discrete counterpart continuous of Maxwell scattering
(4.17).

Tangential speed is adjusted for so called counter-slip speed to achieve mass flux conser-
vation on the wall. Unknown distribution function at the wall are assumed to be an equilibrium
function with a counter-slip velocity which is determined so that fluid velocity at the wall in
accordance with the wall velocity and also temperature.

Inamuro and his colleagues tested their boundary condition in two dimensional Poiseuille
flow and showed that no-slip condition is accurately reproduced for larger range of relaxation
times 1

2 < τ̂ < 20 whereas standard bounce back condition yields significant error already
beyond τ̂ < 2. This is in line with physical expectations since τ̂ increases with mean free path.
Important advantage of this boundary condition over many others is easy transfer into 3D.

Naive attempt to design a zero density gradient might just be to copy the incoming particle
population at the outlet. Such a procedure would receive zero gradient but unfortunately
doesn’t work. The copying produces spurious chain of backward waves of density fluctuations
going towards inlet. The fluctuation caused by waves can easily destabilize whole computation.
However there are some special cases where it might work. It would be when the density
gradients itself would come out small enough for example at the end of a very long channel.

5.7.4 Other Boundary Conditions
The list of boundary conditions presented in the current section is far from complete.

An important property of each boundary condition is locality. It is clear from aforementioned
descriptions of different boundary conditions that evaluation of missing particle populations
involve only direct neighbors of the particular node. Generally non-local boundary condition are
better avoided since they spoil linear parallelization scaling which is the most potent advantage
of lattice-Boltzmann algorithm over traditional CFD methods.

It’s noteworthy that there exist whole family of special boundary conditions designed for
multiphase and multi-component flows dealing with various circumstances appearing in the
simulations of vapor-liquid mixtures.

We also haven’t mentioned so-called complex boundary conditions. We were fortunate
enough that the domain setup required for rarefied flow doesn’t include any misaligned or
curved boundaries. Complex boundary conditions are not easy to implement but results are
worth the trouble since they increase order of accuracy as was shown by Renwei [33].

Another thing we haven’t noted are periodic boundary conditions. Periodic boundary
conditions mainly used in acoustics and unbounded domain simulation. Periodicity is surprisingly
easy to implement in lattice-Boltzmann method. The distribution functions will simply reappear
on the other side of the domain and continue streaming in the same direction. That way the
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system becomes closed by the edges of the domain.

5.8 Lattice Boltzmann Units

5.8.1 Conversions of Units
Conversion of units in physics is generally considered annoying but a simple task. In the case

of lattice-Boltzmann method it is not so straightforward one can get completely confused. There
are many arguments and notations from different fields that are overlapping. In this section we
use a notation concept for conversion between physical and lattice variables introduced earlier.
For each physical variable there’s a counterpart in lattice units denoted with lower indexes LB.
Conversion factor between physical and lattice units is denoted as δ with an index representing
which quantity is converted.

Natural choice of length unit in a lattice is a distance between adjacent nodes. Values
of length on the lattice xLB are integer multiples of the distances between neighboring nodes.
Physical and lattice lengths are converted as in

x = δx xLB. (5.19)

Length conversion factor δx can be found if we divide physical dimension of the system by
the number of lattice nodes that represents the distance on the lattice. For example if D is the
width of channel in Poiseuille flow and the number of lattice nodes which represent the width
is ND the length conversion factor is δx = D/ND. Conversion factor δx can be understood as
size of one lattice inter-space in meters.

Similar approach can be used in time conversion. We discretize characteristic time scale
T by NT iteration steps. Therefore time conversion factor is defined as δt = T/NT and the
conversion of lattice iteration steps into physical time goes as

t = δt tLB. (5.20)

Having converted the time and distance one readily gets conversion relation for velocities

v = δx

δt
vLB. (5.21)

In analogy to previous conversions of length and time we can easily introduce a conversion
equation for mass. However following approach introducing densities before mass is more
beneficial due to the fact that density is one of the main macroscopic quantities of interest in
typical lattice-Boltzmann problem.

Lattice density ρLB is defined in (5.4). We want the lattice density to be corresponding to
the physical density of the gas. In incompressible flow absolute value of lattice density is to a
large extent arbitrary and unimportant. Only gradients of the density have significant effects
on the fluid dynamics. From the numerical point of view absolute value of lattice density is
chosen at the beginning of the computation as an initial value ρLB. We generally want the
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variations of lattice density to be small compared to it’s absolute value. Reason behind it is
that magnitude of log ρ in (5.18) would yield significant deviations from incompressibility if the
density is close to zero. In compressible flow one doesn’t have this luxury of arbitrary density
to improve numerical stability.

Generally accepted scheme is to set the initial lattice density ρ very close to 1. If ρ denotes
the physical value of density corresponding to the initial lattice density ρLB we can introduce
density conversion factor δρ in (5.22).

ρ = δρ ρLB (5.22)

Equation (5.22) has a slightly different character than aforementioned conversion equa-
tions. It serves as definition of density conversion factor δρ. Actual densities resulting from
lattice-Boltzmann method are converted as in (5.23) and the conversion factor value is deter-
mined from (5.22).

ρ = δρ ρLB (5.23)

In a typical incompressible lattice-Boltzmann simulation [27, 45] conversion factor of density
δρ is considered to be 1 and relations (5.22) and (5.23) are not needed at all. Since we are
dealing with compressible case and we wish compare them with experiments we are forced to
employ it.

Density conversion factor can be expressed as a function of in some sense more fundamental
conversion factors for mass δm and length δx

δρ =
δm

δ3
x
. (5.24)

Analogously to the aforementioned conversion one can write relation between mass in
lattice and physical units as

m = δm mLB. (5.25)

The last important quantity appearing in our problem that is left to convert is pressure.
We need to find the lattice density ρLB as a function of physical pressure p because values of
boundary conditions are given in lattice densities rather than pressures. Lattice pressure and
density are constrained by the lattice equation of state (5.16).

Considering the units of pressure one can readily obtain the relation for conversion

p = δm

δxδ2
t
pLB. (5.26)

Substituting the mass conversion factor δm as defined by (5.24) and lattice equation of
state we can simplify pressure conversion to

p = δρδ
2
x

δ2
t

c2
LBρLB. (5.27)
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5.8.2 Choice of space and time step
The largest difficulty is that in lattice-Boltzmann method the value of the Mach number

is coupled with the choice of the discrete time and space step by (5.11). The speed of sound
is a lattice constant independent of time and length conversion factor. This means that if the
values of space and time steps are not chosen appropriately the physical c and lattice speed of
sound cLB don’t attain the same value

c = δx

δt
cLB. (5.28)

Discrepancy between real and lattice-Boltzmann speed of sound is not an issue in applica-
tions that intend to recover the incompressible Navier-Stokes equation in the limit because the
sound speed is typically not the point of interest. More important is the correct value of viscos-
ity which in turn yields the same value of Reynolds number in the physical and computational
system. From the conversion formalism introduced in the previous chapter it easily follows that
conversion of viscosity into physical units goes as

ν = δ2
x
δt

c2
LB(2τ̂ − 1).

We have used the relation for lattice viscosity (5.16). Choice typically observed in the lit-
erature is to change scaling parameters in such way that Reynolds number which is proportional
to the inverse of the viscosity remains constant.

Scaling in acoustic applications go exactly the other way. Speed of sound is crucial for
validity of the results therefore the scaling is based on (5.28). This essentially means that
proper wave dispersion can’t be predicted using the lattice-Boltzmann method as is shown by
Viggen in [45].

Scaling used in the thesis comes from high Knudsen number flows in MEMS devices and
is chosen to be

Kn = δx τ̂ . (5.29)
It is interesting to note that many other variations are actively used. Basic thing on what

the authors of available papers disagree is the multiplicative constant before Kn. Nie in [29]
determines the constant by fitting numerical results on experimental data. The fitted value
is very closed to value used by Zhang in [48] or Kim in [25]. Succi [43, 44] and some other
authors offset the value of relaxation time τ̂ by 1/2 but this is only convention since values of τ̂
below 1/2 lead to numerical instabilities due to negative viscosity.

5.9 Limitations

5.9.1 Stability
The Chapman-Enskog expansion verifies how the model will behave on in hydrodynamic

long-wavelength limit however it guarantees very little about the model’s behavior at shorter
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scales. Stability question of lattice-Boltzmann method is still an open one.
There’s restriction on relaxation time τ̂ > 1/2 given by the positivity of viscosity. Another

problem discussed earlier is that lattice velocities needs to be kept sufficiently small in order
for the computation to be stable. That is because model doesn’t support supersonic flows. As
the structure of discretized equilibrium distribution function (5.13) suggests if lattice velocities
reach values comparable with the speed of sound the calculation yields infinite results as a
consequence of negative densities.

The discretized equilibrium distribution function is not always positive as it’s continuous
counterpart. This effect is technically prevented in entropic lattice-Boltzmann methods pro-
posed recently by Karlin in [18] that fulfill the discrete version of the H-theorem. Lattice
densities needs to be offset from zero in order to avoid locally negative distribution functions
and achieve small variations. Chen and Sterling provided survey of the problem in [16]. Their
results are consistent with the overall framework of the lattice-Boltzmann method.

From von Neumann stability analysis they concluded limit on the relaxation time τ̂ is
consistent with positivity of the viscosity. They also derived upper limit on the velocity than
can be achieved on the lattice which fits into the scheme of low Mach number expansion
employed to derive the discretization of velocity space. Although their results apply in the
simple geometry of Poiseuille channel. More general results are not available as far as author
is aware.

5.9.2 High Mach Number
Dimensionless equilibrium distribution functions (5.2) in isothermal models has the constant

reference sound of speed c appearing in the denominators as opposed to thermal models where
the speed of sound c can’t be considered constant. Therefore non-dimensional velocity v̂ based
on a dynamic speed of sound produces additional terms in time and space derivatives. This
presents a problem for Gauß-Hermite expansion. To overcome such difficulty different approach
was proposed by Shan in [38]. The continuous Boltzmann kinetic equation with BGK collision
operator is projected on special basis consisting of Gauß-Hermite polynomials and truncated at
appropriate order. This problem has also implications at higher Mach numbers.

The range of Ma that occurs in the multiorifice experiment is approximately 0.3-0.5 as can
be seen in figure (2.19). Locally one can expect the Ma to be even higher. The Mach number is
determined from the average velocity of the flow and reference temperature. If gas flow would
be fully developed and no-slip boundary condition would hold on the walls of channels the
maximal velocity would be 3/2 of the average as can be easily calculated from analytic solution
Navier-Stokes equation in configuration of Poiseuille flow. Despite flow through multiorifice is
anything but fully developed such simplified approximation allows to estimate that local Mach
numbers can even reach values around 0.8.

There are many quite successful results in the open literature that use compressible lattice-
Boltzmann method limiting in Euler equations. However the list is narrowed down significantly
when one states the requirement of proper compressible viscous flow treatment. The reason
behind it needs to be looked for in intrinsic nature of lattice-Boltzmann discretization that
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ties together the speed of sound and viscosity which seems to be extremely hard to overcome
without spoiling other benefits of the discretization.

Sharipov used DSMC method mentioned in early chapters to calculate flow rates of thin
orifice in [39]. From the results part it can be clearly seen that the temperature along the
axis of the orifice changes significantly. Rescaling his results to our case yields downstream
temperature of 60 K . Drop in temperature is caused by nearly adiabatic expansion of gas into
vacuum. Process can be considered adiabatic due to fact that in rarefied gas viscous heating
and heat exchange can be neglected under the circumstances. Quick estimate shows that drop
in temperature means that the sound speed decreases locally in the downstream area of the
orifice to about a half of the upstream value. This argumentation can be numerically verified
in Sharipov’s other paper on outflow of long tubes into vacuum [40] where it can be seen that
in similar computational configuration locally the Mach number reaches values up to 2.0.

5.10 Proposed Modifications
From the earlier discussion it turned out that in order to describe the situation that arise

in the multiorifice experiment isothermal lattice-Boltzmann method capable of reaching Ma
around 1.0 would be desirable. Although at the same time the method must remain stable at
large relaxation times τ̂ as is the case in rarefied flows and must be able to recover proper value
of viscosity.

Chen and his colleagues in [2, 3, 15] adopted approach in which the ratio of rest weight
to weight in movement can be altered. This leads to adjustable speed of sound. A reason-
able agreement between theory and results was achieved for Ma < 0.4. Above 0.4 there are
significant discrepancies between theory and simulation. Among fixed value of Prandtl number
viscosity was forced to be a function of the variable speed of sound in order to keep the com-
putation stable enough. For this reason the approach is unsuitable for simulation of multiorifice
flow.

McNamara [28] presented approach using over-relaxed collision operator. His approach
becomes unstable at low viscosity and therefore offers very limited use for application in high
Knudsen number regime.

Qian [31] adopted obtained higher order correction to Navier-Stokes dynamics and improved
which seems to be different to that of a Burnett equation and therefore relevance of their
approach is uncertain.

Different approach was used by Yu or Buick in [9, 47]. They added an attractive force
term to the equilibrium distribution function which produced the desired variable speed of sound
dependent on the amplitude of the attractive force. The model was verified to be capable of
simulating flows up to Ma ≈ 5 and didn’t suffer numerical instabilities due to varied weight of
rest distribution function as some of the previous approaches. As authors noted this method
introduces artificial viscosity through the additional attractive term and therefore is incapable
of accurately capturing throughput.

As argued earlier compressible lattice-Boltzmann models that are looked for must be much
more versatile than their incompressible variants. Demand on the Mach number is reaching
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value of 2.0 while other requirements are the same as for the incompressible case.
Kataoka in paper [24] showed very interesting idea that is common in the traditional

compressible CFD in the limit of small Knudsen number the finite difference form of the lattice-
Boltzmann approaches Euler equation as long as a consistent discretization scheme is used.
This important result implies that shock-capturing technique should be applied to capture
such effects. Based on this he developed several models limiting in compressible Navier-Stokes
equations. The drawback of the model is numerical instability when the Mach number reaches
1.0.

Chenghaian in [17] developed the adaptive lattice-Boltzmann model. In this model the
structure of lattice velocities varies with the mean flow velocity and the internal energy. This
allows the flow to have higher Mach number. Drawback of the method is that unlike the
conventional lattice-Boltzmann method where the transported operator is linear in adaptive
method transport process is the same as in traditional CFD - non-linear convective streaming.
On top of that dimensionless relaxation parameter τ̂ is fixed which makes used of the method
impossible in rarefied flows.

Qu [32] presented approach where Maxwell distribution function is replaced by a spherical
function. The function meets all restrictions needed obtain the compressible Navier-Stokes
equations in the limit. The circular function is then distributed by Lagrange interpolation to
the lattice velocity directions in a similar way as traditional lattice-Boltzmann method. This
approach seems to be capable of delivering what is demanded by the multiorifice experiment
as the results shows simulations of Ma = 2.9. Author conducted only inviscid flow calculations
and regarded viscosity effectively as a numerical parameter and there seems to be no other
source in the open literature adopting the approach to model high Ma viscous flows.

It seems like Maxwell distribution function or it’s modifications may not be the best choice
of equilibrium distribution in simulation of compressible flows. In case of thermal compressible
flow coefficients c/c in the equilibrium distribution function will generate additional terms of the
temperature gradients in the process of Chapman-Enskog expansion. This is not the case for
isothermal flow where the factor c/c cancels out since temperature is considered a constant. Ad-
ditional temperature gradients don’t appear in the macroscopic governing equations. Resulting
model fits somewhere between Burnett and Navier-Stokes equations. Navier-Stokes equations
are generally considered correct but it is most likely not the case with Burnett model as was
shown for instance in [42].

The lowest moments of the distribution function - density, flow velocity and temperature
satisfy the conservation equations. For higher order moments of the distribution function the
conservation equations are not closed thanks to the higher moments such as stress tensor or heat
flux. It is more or less a convention that in Chapman–Enskog successive approximation equations
are closed by approximating the fluxes in terms of the lower order moments or their spatial and
time derivatives. This procedure successively carries out Euler, Navier–Stokes, Burnett, super-
Burnett equations and so forth. Deficiencies naturally appear in more demanding applications
such as high Mach or Knudsen number flows. In situation further off the equilibrium state higher
order moments become significant for accurate description. The complexity of the Chapman-
Enskog calculation increases enormously as the order of approximation increases, yielding highly
nonlinear high order partial differential equations. What is even worse than the complexity of
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the expansion is that the high order corrections to the Navier–Stokes equations are at least
ill-posed.

Chapman-Enskog expansion is used in every place where the need for investigation of lim-
iting hydrodynamic behavior arises. Problem is that from the point of view of mathematical
analysis the series is argued to be only asymptotic but not convergent to the correct hydro-
dynamic behavior. Although this doesn’t pose a difficulty when constructing incompressible
models that use Chapman-Enskog expansion only up to 2nd order for higher order terms asymp-
toticity of the series effectively means that terms multiplied by the same order of expansion
parameter doesn’t yield hydrodynamic behavior of the same magnitude.

In order to make adjustable speed of sound and to deal with it’s consequences a more
robust to solver like finite volumes or elements might be necessary in order to deal with large
gradients. The simulation of compressible flows with strong shock waves is still a challenge
even for traditional CFD and significant amount of work is needed in order for lattice-Boltzmann
method to be able to mimic the traditional results.
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Chapter 6

Numerical Results

6.1 Palabos
All the calculations were performed using Palabos1 open source software package. The

package is primarily intended as solver of incompressible Navier-Stokes equations. The package
comes with many small demonstration applications which serve as an excellent starting point for
writing user customized problems. There are examples covering multi-component and multi-
phase flows, porous media flows, non-Newtonian models and much more. To support users
even more there’s a lively discussion forum together with instructive manual available at project
web page http://www.palabos.org.

Parallelization uses MPI2 library and scaling properties are excellent both for small and
large problems. Historically Palabos is branched from another open source project OpenLB.
Interesting insight into decision process behind the implementation of lattice-Boltzmann method
can be found in project tech reports on OpenLB web page http://www.openlb.org.

During the development of Palabos accent was placed on object oriented approach. This
allowed further extensions of the code which now supports very wide range of both 2D and 3D
velocity discretization models and even wider range of boundary conditions. Object oriented
programming encapsulates parallel distributed data structures in such way that writing of custom
relaxation models or velocity discretization requires no active knowledge of parallel programing
concepts which is a huge benefit.

In Listing 6.1 there is the main function which every C++ programs contains. On line 2
there’s shorthand define statement that specifies the velocity model that will be used in the
computation.

Next important section is between lines 9 and 29. Class RarefiedFlowParam is an extension
of a class distributed with Palabos that calculates and converts domain and dimension related
parameters. The class is constructed with all the parameters that are required to setup the
computational domain.

On line 32 an instance of MultiBlock2D structure is created. The structure represents
1Palabos is acronym of Parallel Lattice-Boltzmann Solver
2MPI is acronym of Message Passing Interface

http://www.palabos.org
http://www.openlb.org
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lattice where are all the calculations are taking place. The object oriented approach allows to
completely cover details of underlying data structures that are indeed very complicated. Among
obvious facts that the structure is parallelised and distributed between the computing nodes it
also handles communications and sparse domains. The most important parameter passed to
the constructor is class BGKDynamics. BGKDynamics takes a single parameter - inverse of
the relaxation time 1/τ̂. BGKDynamics can be replaced by any other dynamic class available in
Palabos in order to model for instance multi-phase or non-Newtonian fluids is neccesary

On the next two lines we create boundary conditions that are handed over to the functions
that are responsible for setup of the domain (setBoundaryConditions) and initial conditions
(setInitialConditions)

The main loop where all the processor time is spend lies between lines 43 and 64. There are
some functions handling convergence detection and data writing which are not that important
compared to member function of lattice structure collideAndStream. This function is responsible
for the key part of the calculations. It performs a parallel loop over the whole lattice while
streaming and colliding distribution functions.

At the end we clean up the boundary conditions variables.

Listing 6.1: Function main
1 #de f i n e DESCRIPTOR p lb : : d e s c r i p t o r s : : D2Q9Descr iptor

us ing namespace p lb ;
3 us ing namespace s t d ;

5 i n t main ( i n t argc , char ∗ a rgv [ ] ) {
p l b I n i t (&argc , &argv ) ;

7 g l o b a l : : d i r e c t o r i e s ( ) . s e tOutpu tD i r ( " . / out /" ) ;

9 Raref iedFlowParam<double> flowParam (
// Knudsen number

11 ( double ) 0 . 1 ,
// Mach number

13 ( double ) 0 . 5 ,
// R e s o l u t i o n o f l a t t i c e

15 ( p l u i n t ) 200 ,
// Width o f domain

17 ( double ) 40 ,
// He ight o f domain

19 ( double ) 40 ,
// I n i t i a l l a t t i c e d e n s i t y

21 ( double ) 1 . 0 ,
// P r e s s u r e d i f f e r e n c e

23 ( double ) 1 . 0 ,
// Diameter o f o r i f i c e s

25 ( double ) 1 . 0 ,
// Th i ckne s s o f m u l t i o r i f i c e

27 ( double ) 0 . 0 ,
// Spac ing o f m u l t i o r i f i c e

29 ( double ) 1 . 0
) ;

31
Mul t iB l ockLa t t i c e2D <double , DESCRIPTOR> l a t t i c e ( f lowParam . getNx ( ) , f lowParam . getNy ( ) ,

new BGKdynamics<double , DESCRIPTOR>(flowParam . getOmega ( ) ) ) ;
33 OnLatt iceBoundaryCond i t ion2D <double , DESCRIPTOR>∗ zouHeBoundaryCondi t ion =

createZouHeBoundaryCondit ion2D<double , DESCRIPTOR>() ;
OnLatt iceBoundaryCond i t ion2D <double , DESCRIPTOR>∗ i namuroBoundaryCond i t ion =

create InamuroBoundaryCond i t ion2D <double , DESCRIPTOR>() ;
35
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s e t B o u n d a r y C o n d i t i o n s ( l a t t i c e , ∗ zouHeBoundaryCondit ion , ∗ i namuroBoundaryCond i t ion ,
f lowParam ) ;

37 s e t I n i t i a l C o n d i t i o n s ( l a t t i c e , f lowParam ) ;

39 p l u i n t out iT = 10000;
p l u i n t data iT = 10000 ;

41 p l u i n t s t op iT = 500000;
u t i l : : Va lueTracer <double> v a l u e T r a c e r ( f lowParam . getDe l taT ( ) / flowParam . getDe l taX ( ) ,

f lowParam . g e t R e s o l u t i o n ( ) , 1e−4) ;
43 f o r ( p l u i n t iT = 0 ; iT <= stop iT ; iT++) {

double a v g V e l o c i t y = a v e r a g e O r i f i c e V e l o c i t y ( l a t t i c e , f lowParam ) ;
45 v a l u e T r a c e r . t akeVa lue ( a v g V e l o c i t y , t rue ) ;

i f ( v a l u e T r a c e r . hasConverged ( ) == t rue ) {
47 wr i t eData ( l a t t i c e , f lowParam , iT ) ;

break ;
49 }

i f ( iT % data iT == 0) {
51 wr i t eData ( l a t t i c e , f lowParam , iT ) ;

}
53 l a t t i c e . c o l l i d e A n d S t r e a m ( ) ;

}
55

de l e t e zouHeBoundaryCondi t ion ;
57 de l e t e i namuroBoundaryCond i t ion ;

}

In class initialConditions defined in Listing 6.2 there is demonstration of interesting pro-
gramming concept employed in Palabos called the function object. The operator() function is
overloaded in such way that from a certain perspective function and object becomes indistin-
guishable. However using object is more beneficial since it allows to store variables and reuse
code. Each overloaded version is used to initialize different quantity based on whether the
object instance is passed to function setting the velocity or density.

Listing 6.2: Class initialConditions
template<typename T>

2 c l a s s i n i t i a l C o n d i t i o n s {
pub l i c :

4 i n i t i a l C o n d i t i o n s ( Raref iedFlowParam<T> flowParam_ ) : f lowParam ( flowParam_ ) { }
// Combined dens t y and v e l o c i t y f u n c t i o n a l

6 vo id ope ra to r ( ) ( p l i n t iX , p l i n t iY , T& rho , Array<T,2>& u ) const {
rho = a n a l y t i c D e n s i t y ( iX , iY ) ;

8 u = a n a l y t i c V e l o c i t y ( iX , iY ) ;
}

10 // V e l o c i t y f u n c t i o n a l
vo id ope ra to r ( ) ( p l i n t iX , p l i n t iY , Array<T,2>& u ) const {

12 u = a n a l y t i c V e l o c i t y ( iX , iY ) ;
}

14 // D e n s i t y f u n c t i o n a l
T ope ra to r ( ) ( p l i n t iX , p l i n t iY ) const {

16 r e t u r n a n a l y t i c D e n s i t y ( iX , iY ) ;
}

18 p r i v a t e :
Array<T,2> a n a l y t i c V e l o c i t y ( p l i n t iX , p l i n t iY ) const {

20 Array<T,2> u ;
u [ 0 ] = (T) 0 . 0 ;

22 u [ 1 ] = (T) 0 . 0 ;
r e t u r n u ;

24 }
T a n a l y t i c D e n s i t y ( p l i n t iX , p l i n t iY ) const {

26 T y = (T) iY / (T) ( f lowParam . getNy ( )−1) ;
i f ( y <= 0 . 5 ) {
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28 r e t u r n f lowParam . g e t L a t t i c e R h o B a r ( ) ;
} e l s e {

30 r e t u r n f lowParam . g e t L a t t i c e R h o B a r ( ) + flowParam . g e t L a t t i c e R h o D i f f ( ) ;
}

32 }
Raref iedFlowParam<T> flowParam ;

34 } ;

Function setInitialConditions displayed in Listing 6.3 is responsible for preparing the lattice
and setting initial values. Function initializeAtEquilibrium calls the combined functional form of
the initialConditions object to set all the distribution function according the equilibrium state
determined by the values returned by initialConditions object.

Line 3 distributes the lattice variable to all computational nodes in cluster environment.

Listing 6.3: Function setInitialCondition
vo id s e t I n i t i a l C o n d i t i o n s ( Mu l t iB l ockLa t t i c e2D <double , DESCRIPTOR> &l a t t i c e ,

Raref iedFlowParam<double> const &flowParam ) {
2 i n i t i a l i z e A t E q u i l i b r i u m ( l a t t i c e , l a t t i c e . getBoundingBox ( ) ,

i n i t i a l C o n d i t i o n s <double >(flowParam ) ) ;
l a t t i c e . i n i t i a l i z e ( ) ;

4 l a t t i c e . t o g g l e I n t e r n a l S t a t i s t i c s ( f a l s e ) ;
}

In Listing 6.4 there is function handling the domain and boundary condition setup. On the
first 10 lines it is querying the parameter-storing class flowParam about the domain dimensions.

Once the values are obtained it begins to create boxes representing subsets of the lattice
where boundary conditions are prescribed. After creation of boxes appropriate boundary condi-
tion is prescribed at the nodes residing inside the box. The naming scheme in the source code
is consistent with the naming in Figure 6.1

The last two lines finally set values of boundary conditions to the nodes where velocity of
pressure boundary condition was prescribed. On other nodes these functions have no effect.
The values of boundary conditions are consistent with initial conditions since the same function
object is used.

Listing 6.4: Function setBoundaryCondition
1 vo id s e t B o u n d a r y C o n d i t i o n s ( Mu l t iB l ockLa t t i c e2D <double , DESCRIPTOR> &l a t t i c e ,

OnLatt iceBoundaryCond i t ion2D <double , DESCRIPTOR> &domainBoundaryCondit ion ,
OnLatt iceBoundaryCond i t ion2D <double , DESCRIPTOR> &wa l lBounda ryCond i t i on ,
Raref iedFlowParam<double> const &flowParam ) {

// Width o f domain
3 const p l i n t Nx = flowParam . getNx ( ) −1;

// He ight o f domain
5 const p l i n t Ny = flowParam . getNy ( ) −1;

// Diameter o f o r i f i c e
7 const p l i n t D = flowParam . n C e l l ( f lowParam . g e t O r i f i c e D i a m e t e r ( ) ) ;

// Th i ckne s s o f o r i f i c e
9 const p l i n t E = flowParam . n C e l l ( f lowParam . g e t O r i f i c e T h i c k n e s s ( ) ) ;

// Spac ing o f o r i f i c e s
11 const p l i n t F = flowParam . n C e l l ( f lowParam . g e t O r i f i c e S p a c i n g ( ) ) ;

13 // Bottom boundary gammaB ( o u t l e t ) l e f t , c e n t e r and r i g h t p a r t s
Box2D gammaBL(0 , 0 , 1 , (Ny−E) /2) ;

15 Box2D gammaBC(0 , Nx , 0 , 0) ;
Box2D gammaBR(Nx , Nx , 1 , (Ny−E) /2) ;

17 domainBoundaryCond i t ion . s e t P r e s s u r e C o n d i t i o n O n B l o c k B o u n d a r i e s ( l a t t i c e , gammaBL ,
boundary : : d i r i c h l e t ) ;
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domainBoundaryCond i t ion . s e t P r e s s u r e C o n d i t i o n O n B l o c k B o u n d a r i e s ( l a t t i c e , gammaBC,
boundary : : d i r i c h l e t ) ;

19 domainBoundaryCond i t ion . s e t P r e s s u r e C o n d i t i o n O n B l o c k B o u n d a r i e s ( l a t t i c e , gammaBR,
boundary : : d i r i c h l e t ) ;

21 // Top boundary gammaT ( i n l e t ) l e f t , c e n t e r and r i g h t p a r t s
Box2D gammaTL(0 , 0 , (Ny+E) /2+1, Ny−1) ;

23 Box2D gammaTC(0 , Nx , Ny , Ny) ;
Box2D gammaTR(Nx , Nx , (Ny+E) /2+1, Ny−1) ;

25 domainBoundaryCond i t ion . s e t P r e s s u r e C o n d i t i o n O n B l o c k B o u n d a r i e s ( l a t t i c e , gammaTL ,
boundary : : d i r i c h l e t ) ;

domainBoundaryCond i t ion . s e t P r e s s u r e C o n d i t i o n O n B l o c k B o u n d a r i e s ( l a t t i c e , gammaTC,
boundary : : d i r i c h l e t ) ;

27 domainBoundaryCond i t ion . s e t P r e s s u r e C o n d i t i o n O n B l o c k B o u n d a r i e s ( l a t t i c e , gammaTR,
boundary : : d i r i c h l e t ) ;

29 // O r i f i c e boundary gammaO l e f t , c e n t e r and r i g h t p a r t s
Box2D gammaOL(0 , (Nx−F)/2−D, (Ny−E) /2 , (Ny+E) /2) ;

31 Box2D gammaOC( ( Nx−F) /2 , (Nx+F) /2 , (Ny−E) /2 , (Ny+E) /2) ;
Box2D gammaOR( ( Nx+F)/2+D, Nx , (Ny−E) /2 , (Ny+E) /2) ;

33 w a l l B o u n d a r y C o n d i t i o n . s e t V e l o c i t y C o n d i t i o n O n B l o c k B o u n d a r i e s ( l a t t i c e , gammaOL,
boundary : : d i r i c h l e t ) ;

w a l l B o u n d a r y C o n d i t i o n . s e t V e l o c i t y C o n d i t i o n O n B l o c k B o u n d a r i e s ( l a t t i c e , gammaOC,
boundary : : d i r i c h l e t ) ;

35 w a l l B o u n d a r y C o n d i t i o n . s e t V e l o c i t y C o n d i t i o n O n B l o c k B o u n d a r i e s ( l a t t i c e , gammaOR,
boundary : : d i r i c h l e t ) ;

37 // Set v a l u e s o f boundary c o n d i t i o n s
s e tBounda ryDens i t y ( l a t t i c e , l a t t i c e . getBoundingBox ( ) ,

i n i t i a l C o n d i t i o n s <double >(flowParam ) ) ;
39 s e t B o u n d a r y V e l o c i t y ( l a t t i c e , l a t t i c e . getBoundingBox ( ) ,

i n i t i a l C o n d i t i o n s <double >(flowParam ) ) ;
}

Complete source code together with Palabos package version 0.7RC3 are available on the
DVD accompanying the thesis. The code can be compiled using latest stable version of gcc or
icc compilers at the date of writing the thesis.

6.2 Domain setup
Despite the fact that state of the field of compressible lattice-Boltzmann method is quite

unsatisfactory we attempt to predict the distance where orifice stop to influence each other using
incompressible lattice-Boltzmann method. However relevance of the results presented in this
chapter to the experimental data is at least questionable and direct comparison is impossible.

The main discrepancy between the computational domain and experimental setup is the
pressure difference between upstream and downstream chambers. As was stated earlier in-
compressible lattice-Boltzmann method requires small variations of lattice density to obtain
accurate results or even finite. Since scaling parameters of the problem Ma and Kn completely
determine the values of time step, space step and relaxation time. It can be clearly seen from
the conversion equation for pressure (5.27) that there is no other option on how to accomplish
small variations of lattice density than to significantly decrease the driving pressure difference.
The effective driving pressure was decreased to 1/1000 of the experimental value. But apart from
pressure the rarefaction approximation of the calculations is believed to be very accurate.
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Computations were performed on the domains Ω depicted in Figure 6.1. On the top
boundary ΓT and bottom boundary ΓB there is Zou’s pressure boundary condition prescribed.
On the part of the domain representing the orifice ΓO there is impenetrable wall represented by
no-slip Inamuro’s boundary condition.

The orifice diameter D was discretized by 200 lattice nodes. The thickness of the orifice
was E was 1 row of lattice nodes which can be considered infinitely thin. Overall dimension of
the computational domain was 40D × 40D. Such large size of the computational domain was
forced by Zou’s pressure boundary condition and it’s property of setting tangential component
of velocity to 0. Results are significantly distorted if the duct is placed close to the pressure
boundary. Multiorifice spacing F was varied in the interval of (0.25−5.0)D with a step of 0.25D.
Computations were done for three distinct values of Knudsen number Kn = {0.01, 0.1, 1.0}.

Figure 6.1: Scheme of Orifice and Multiorifice Computational Domain

The calculation was initialized by zero velocity field. Value of initial lattice density is
offset by factor of 1 to keep the variations of pressure sufficiently small. Experimental values of
pressure are divided by factor of 1000 to maintain incompressible nature of the flow and rescaled
values are converted into lattice density by (5.27). Density was initialized as linearly decreasing
with the difference between the top and bottom boundary being p1 since in incompressible flow
only difference of pressures has effects on fluid dynamics as long as the variations are kept small.

6.3 Multiorifice Flow Rate
The flow rate in single orifice configuration RS and flow rate in multiorifice configuration

RM were determined by numeric integration of velocity profiles over cross section of the orifice.
Simple trapezoidal rule was used to evaluate integrals. Numeric solutions were obtained on the
domains described in the previous chapter.



52 6 Numerical Results

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1.1

1.2

1.3

1.4

1.5

1.6

x 10
−3

F [D]

R
 [

m
2
/s

]

 

 

Kn=0.01

Kn=0.1

Kn=1.0
2R

S

2R
S

2R
S

Figure 6.2: Numerical Dependence of Flow Rate on Orifice Spacing

Numerical values of flow rate are plotted in Figure 6.2. The dashed lines represent value
of 2RS for respective value of Knudsen number. 2RS is theoretically expected value of flow
rate of two single orifices spaced infinitely apart from each other. It can be seen that for larger
values of Knudsen number Kn = {0.1, 1.0} the theoretical limit is effectively reached up to a
precision of several tenths of percent.

In the viscous regime at Kn = 0.01 the limit value of flow rate is several percent off the limit
value. This can be explained by looking at velocity streamlines in Figure 6.3. In contrary to the
previous cases viscosity is large enough to create vortices downstream the orifice. Interaction
of vortices is very likely to influence the streamlines even when the orifice is spaced more than
5D apart thus modifying flow rate.

From the numerical data it can be clearly identified that the bound where the individual
ducts of the multiorifice stops to influence each other is 2.5D

To get a clearer picture of the character of the flow velocity streamlines in configuration
of single orifice and multiorifice with spacings F = 1D and F = 5D with Knudsen number
varying in the range specified above are shown in Figures 6.3-6.5. The streamlines visualization
applications have some very small but finite value of velocity where the solution of the differential
equation stops. This causes some streamlines to begin or end somewhere in the domain although
theoretically they should leave it. The results are in agreement with expectations. Flow in
lower Knudsen number exhibits tendency to form large eddies and this tendency decreases with
decreasing rarefaction.
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Figure 6.3: Velocity Streamlines at Kn = 0.01 in Orifice and Multiorifice with Spacings
F = 1D and F = 5D Configurations

Figure 6.4: Velocity Streamlines at Kn = 0.1 in Orifice and Multiorifice with Spacings F = 1D
and F = 5D Configurations

Figure 6.5: Velocity Streamlines at Kn = 1.0 in Orifice and Multiorifice with Spacings F = 1D
and F = 5D Configurations
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6.4 Parallel Scaling
In order to verify parallel scalability of the Palabos code simple numeric scale-up and

speed-up tests were performed.
In the speed-up test a problem solving simple pressure driven Poiseuille flow was setup and

increasing number of cores was used to find numerical solution. The computational domain
consisted of 1000 × 1000 lattice and 20 000 steps to be performed. The problem was solved
with increasing number of used CPUs NCPU up to 64.

The scale-up test maintains constant amount of calculations that needs to be done by one
CPU by changing dimension of the problem accordingly. The problem was again simple pressure
driven Poiseuille flow. The computational lattice grew linearly with number of cores used to
solve the problem as 1000× NCPU 1000 and number of steps required to evaluate was 20 000.

The scaling results in MLup/s is displayed in Figure 6.6. MLup/s stands for millions
of lattice updates per second. It is a standard unit in the field to measure performance of
lattice-Boltzmann code.
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Figure 6.6: Parallel Scale-Up and Speed-Up of Palabos

It can be seen that there’s significant drop in efficiency when the size of computational
cluster reaches above 8 CPUs. This is caused by the fact that nodes are quad-core dual processor
machines and therefore to use more cores the network communication which is several orders
of magnitude slower must be used. The linear scale-up slope is determined by extrapolating
results achieved on less than 8 computational cores. Slightly misleading results of the scale-up
test performing sometimes even better than the linear scalability is caused by the structure of
the used cluster. Not all the machines have the same performance. This also explains certain
wobbly areas in speed-up test. Generally the data are in qualitative and rough quantitative
agreement with scalability test performed on different lattice-Boltzmann solvers running on
different machines [?].
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Chapter 7

Conclusion

After deep analysis we are forced to admit unconditional defeat in our attempt to numeri-
cally solve the Boltzmann kinetic equation in the experimental configuration of the multiorifice.

In other rarefied applications numerical solutions were capable of predicting phenomena
beyond the Navier-Stokes equation. However the numerical solution is possible only in low
Mach number regimes which is not the case in the multiorifice experiment.

There seems to be no available option in the open literature when the Mach number
increases and compressibility effects come into play. Source of the problem is nested deep
inside of the discretization argumentation chain and it is very hard to point out the weak spot
and propose a workaround.

Despite the uncomfortable state of the field we have attempted to numerically predict
flow rate and influencing distance of certain configurations of ducts which are unfortunately
significantly departed from the original experimental configuration of orifices.

Complete coverage of discretization of Boltzmann kinetic equation known as lattice-Boltzmann
method is derived. The scheme of the way loosely followed in the thesis together with key as-
sumptions and hydrodynamic limits can be seen in Figure 7.1.



56 7 Conclusion

Figure 7.1: Derivation of Numerical Solution and Hydrodynamic Limits
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