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ové svetelné krivky

iii



Contents

Introduction 1

1 Random processes 2
1.1 Definition of random process . . . . . . . . . . . . . . . . . . . 2
1.2 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Properties of random processes . . . . . . . . . . . . . . . . . . 6
1.4 Karhunen-Loève expansion . . . . . . . . . . . . . . . . . . . . 8
1.5 Fourier expansion and power spectrum . . . . . . . . . . . . . 10

2 Frameworks for analysis of measurements 11
2.1 Interpretation of measurements . . . . . . . . . . . . . . . . . . 11
2.2 Frequentist approach . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Variable luminosity 17
3.1 Shape of the power spectrum . . . . . . . . . . . . . . . . . . . 17
3.2 Physical properties linked to the variability . . . . . . . . . . . 18

4 Bayesian analysis of light curves 22
4.1 Description of the method . . . . . . . . . . . . . . . . . . . . . 22
4.2 Application of Bayesian framework . . . . . . . . . . . . . . . 23
4.3 Joint probability distribution of ξi . . . . . . . . . . . . . . . . . 24

5 Generation of random data 26
5.1 Spectral synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Brutal force algorithm . . . . . . . . . . . . . . . . . . . . . . . 27

6 Numerical experiment 30

Conclusions 33

References 35

iv



Introduction

Some of the X-ray sources are amongst the most luminous objects in the
known universe. They can serve us as unique natural laboratories for testing
high-energy physics. They could help us to understand behavior of matter
at extreme temperatures and pressures or be useful in testing various rel-
ativistic effects. The basic model of these objects (accretion discs) has been
known for several decades. Despite great advances in knowledge of these
objects, that have been made in past years, we still do not know many de-
tails of the physical processes that are going on in them.

Before we can speculate about further details of our physical models, we
must find inspiration for them in observed data. Unfortunately, it would
seem that we have reached our observational limits. The data, that is pro-
vided by our satellites often does not have the quality, that would be re-
quired for useful interpretation. The information, which is extracted from
the data, is usually not even good enough to test existing hypotheses. Cur-
rent situation (as of 2011) in X-ray astronomy does not look promising for
new missions, which could improve situation with available instruments.

There is, however, another way to get more information. If we cannot get
better data, we must improve our analysis. Advances in the field of statisti-
cal analysis and invention of new theoretical tools show promise to improve
our situation. To that end, this work tries to contribute by offering new tool
that is yet to be proved useful.

1



Chapter 1

Random processes

Variability of X-ray sources, amongst other complicated physical processes,
is a result of some very complicated underlying physics. As in many other
physical systems, one cannot trace every single event contributing to the ob-
served data. Moreover, those measurements are burdened by observational
errors, which are combined effect of many more influences impossible to
trace. Therefore, the measured data seems random in its nature and we are
left with statistical analysis of its properties.

When dealing with observations of complicated and seemingly random
processes, sometimes we can reduce the observations to small number of
parameters (e.g. cylinder of gas can be described by a few thermodynamic
quantities). In other cases it is the features which stand out of the average
behavior that give us the relevant information. Before we can look for one or
the other, we must understand what random processes are and what prop-
erties they have.

This chapter contains review of mathematics used later. We give de-
tailed discussion of random processes, their properties and ways to handle
and represent them. The first section introduces most of the notation used
throughout this work. In the second and third sections we give review of the
common definitions and clarify and expand the notation introduced before.
Most of the definitions in this chapter can be considered common knowl-
edge. In one form or the other they can be found in various literature, e.g.
[Bendat and Piersol, 2000]. The remaining sections describe ways of repre-
senting random functions that we use and discusses their properties.

1.1 Definition of random process

In physics, we always try to find some relations between some information
that we already have (known parameters) and some other information that
we are interested in (usually measured values of some physical quantity).
Good example of this is the association of time to the observed brightness.
Physical processes are any phenomena that produce the interesting infor-
mation. We will designate the input parameters (usually the time) as t and
the measured value (one possible outcome) as x.
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CHAPTER 1. RANDOM PROCESSES 3

If a clearly specified relation can be found that connects the available
relevant information to some sort of output, then the phenomena is called
deterministic process. As opposed to the deterministic process, an outcome
of a random or stochastic process is subject to uncertainty. Hence, we cannot
predict exact outcome based on available information. Random property
of a physical process can be either consequence of lack of information or
inherent property of the process (quantum physics).

Measurements of outcome of random process are called random variables.
Let one possible outcome of the random process for some fixed values of
the input parameters Ti is designated x

(j)
i = X(θj, t)|t=Ti . Another possible

outcome of the same random process at the same values of the input pa-
rameters will be designated x

(k)
i = X(θk, t)|t=Ti . All possible outcomes for

that values of the input parameters will be designated Xi (or X(Ti)). Since
the set of all possible outcomes may depend on the values of the input pa-
rameters, we will designate the random process as X(t) or just X , which
means all possible outcomes for all possible values of the input parameters.
Outcomes for one specific value of the input parameters will be labeled by
subscript.

Function that connects values of input parameters to one possible out-
come of the random process over some range of the input parameters is
called random function. Any random function X(θ, t)|θ=θj can be looked at
as a single realization of random process. We will represent the random pro-
cess as a collection of many (but usually some finite number m) of its real-
izations, i.e. functions X(j)(t) = X(θ, t)|θ=θj taken for many different values
of θj ∈ {θ1, θ2, . . . , θm}. In most cases we will omit the dependence on θ in
our notation and we will just specify if we are talking about one specific
realization or all of them. The realizations will be labeled by superscript in
brackets.

Random functions associated with real physical processes are usually re-
quired to be continuous. However, we will most often work only with some
finite collection of values of a random function sampled at specific values of
input parameters t ∈ {T1, T2, . . . , Tn}. Such a collection of random variables
will be called random vector. Instead of X(i)(Tj) or X(i)(Tk) we will write just
x

(i)
j or x(i)

k . One random vector will contain n random values from one spe-
cific realization (i.e. values of one random function for n different values of
the input parameters) and it will be designated as x(i)

j ; j ∈ {1, 2, . . . , n}. A
random process, represented as a collection of random vectors, then will be
x

(i)
j ; i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}.

1.2 Probability

Although the exact numerical value of the outcome of a random process
cannot be determined, we may know probability of realization of certain
value (or probability of finding the value within certain interval). On the
abstract mathematical level, the probability is defined using the following



Kolmogorov’s axioms:
Let Ω be a non-empty set. An algebra on Ω is a set F of subsets of Ω that

has Ω as its member and that is closed under union and complementation
with respect to Ω. Let P be a function from F to the real numbers obeying:

• (Non-negativity) P (A) ≥ 0,∀A ∈ F

• (Normalization) P (Ω) = 1

• (Finite additivity) P (A ∪B) = P (A) + P (B) ∀A,B ∈ F A ∩B = ∅

We call the function P probability function and (Ω, F, P ) probability space.
[Kolmogorov, 1933]

Many various concepts that meet certain simple criteria (see [Hájek, 2010]
for details) can be considered an equivalent "interpretations" of probability.
The two of the most common ones that are used in physics are frequency
interpretation and Bayesian or subjectivistic interpretation.

Frequency probability of getting result x, given the input parameters, is
defined as the limiting value of the ratio of number of measurements of that
value m(X = x) and the total number of measurements m:

PX(x) = lim
m→∞

m(X = x)|t=T
m

(1.1)

That is given that results of the experiment are drawn at random from a pool
of all possible results. The existence of such a converging infinite sequence
of possible draws must be postulated axiomatically. We will approximate
this number by empirical probability

pX(x) = lim
m→∞

m(X = x)|t=T
m

, (1.2)

where m will be our number of realizations that we have and m(X = x)|t=T
the number of realizations of the value x. From the law of large numbers it
follows, that this number approaches PX(x) defined by (1.1).

Another definition of probability, that we are going to use, is setting
probability equal to some kind of subjective degree of belief or confidence
level. This can be further defined and constrained by some additional condi-
tions. Different authors add various conditions. The least constraining con-
ditions (by de Finetti) are conformance to the probability calculus and so
called conditioning, i.e. constant change of the probability in the light of
new evidence as it comes:

Pnew(x) = Pold(x|E) (1.3)

provided that the new probability is non-zero. P (x|E) means the value given
by the original probability function for x in case that E is true. Although
this probability is defined very loosely, thanks to the conditioning property
it will be very useful. We can declare our level of belief to be equivalent

4



CHAPTER 1. RANDOM PROCESSES 5

to (1.2) and update it as new values of measurements come. For truly ran-
dom values and big number of measurements, differences between those
two probabilities tend to zero in this case.

We will be needing to determine the probability of finding measured
value (actual outcome of a random function) within certain interval. To do
this, we need to know its probability density function (PDF). The PDF ρX(x; t)
of the random processX is a function of the possible outcome of the process
and the input parameters. Probability of finding the measured value (out-
come of X) within any given interval Ω for some value of input parameters
t = T is equal to integral of the PDF over that interval.

p(x ∈ Ω)|t=T =

∫
Ω

ρX(x; t)|t=T dx (1.4)

This relation can be taken as definition of PDF. We say, that the measured
values are random variables drawn from distribution with the correspond-
ing PDF.

For real-valued outcomes, the integral of PDF from−∞ to some possible
outcome x is called cumulative distribution function (CDF).

F (x; t) =

∫ x

−∞
ρX(y; t)dy (1.5)

Its significance is the probability of finding the value of the outcome lower
than the x [F (x;T ) = p(X < x)|t=T ].

For two different random variables A and B we can define their joint
probability pA,B(a, b) = p(A = a,B = b) as probability of finding value of the
variable A = a and, simultaneously, the value of the second variable B = b.

In special case of statistically independent variables, their joint probabil-
ity is equal to product of their individual probabilities.

pA,B(a, b) = pA(a) · pB(b) for independent A and B (1.6)

In general, this does not need to be true.
For variables that are not independent, the joint probability can be rewrit-

ten using so called conditional probability of the two variables.

pA,B(a, b) = pA(a) · pB|A(b|a) (1.7)

The conditional probability pB|A(b|a) expresses the probability that B = b
given that A = a. For the variables, that are not entirely independent, that is
not the same as pB(b).

We may also define joint probability distribution function for the two vari-
ables

ρA,B(a, b; t) = ρA(a; t) · ρB|A(b|a; t), (1.8)

where the ρB|A(b|a) is so called conditional probability distribution e.g. the
probability distribution of B when the value of A is held at a (in some time).
The joint probability distribution can be integrated over some 2D interval of



possible values of the variables to find the probability of finding the values
of both a and b within the interval at the same time.

In a manner similar to definition of the one-dimensional CDF we can
define cumulative distribution function for two variables. Its significance
will be the probability of finding values of both variables lower than given
constraints: FA,B(a, b; t) = p(A < a,B < b|t).

We can marginalize the joint probability distributions by integration over
all possible values of one of the variables to find marginal distribution for the
other variable.

fA(a, t) =

∫
ΩB

ρA,B(a, b; t) db (1.9)

Using the marginal distribution, the conditional distribution of variable B
can be written as

ρB|A(b|a; t) =
ρA,B(a, b; t)

fB(b)
(1.10)

Using the conditional distributions and the process of marginalization
via other variables the concepts of joint probability distribution and joint
probability can be easily extended to multiple variables.

ρX1,X2,...,Xn(x1, x2, . . . , xn; t) = fX1,X2,...,Xn−1(x1, x2, . . . , xn−1; t) (1.11)
·fXn|X1,X2,...,Xn−1(xn|x1, x2, . . . , xn−1; t)

1.3 Properties of random processes

For certain fixed values of the input parameters t = Ti we may get many
possible outcomes of random process x ∈ ΩX(Ti), where the ΩX(Ti) is do-
main of all possible outcomes of X for the values of parameters Ti. If we
denote ρX(x; t)|t=Ti is the PDF of the random process X at that time, then
the number

E[X]|t=Ti =

∫
ΩX(Ti)

x · ρX(x; t)|t=Ti dx (1.12)

is called expected value or mean of the process at t = Ti. We are going to use
symbol µX for the mean (in specific time µXi). From now on, we will omit
the dependence of mean (and other variables and functions) on the value of
the parameters (time) in our notation, unless we need to point it out.

In discrete case, if the time is the only parameter and we have m realiza-
tions of the possible outcome of the random process in the time Ti, we can
approximate the mean (µXi) as

µ̃Xi =
1

m

m∑
j=1

x
(j)
i (1.13)

Mean is the first moment of the random variable. Second moment about

6



CHAPTER 1. RANDOM PROCESSES 7

the mean µX is defined like this:

Var(X) =

∫
ΩX

(x− µX)2 · ρX(x) dx (1.14)

= E[(X − µX)2]

= E[X2]− (E[X])2

≡ σ2
X

and is called variance. Square root of the variance is denoted σX and is called
standard deviation of the random variable X .

Higher moments are defined by replacing the square in the definition
integral for variance by higher order power. The moments can be standard-
ized by dividing them by corresponding power of the standard deviation.
Standardized third moment is called skewness and standardized fourth mo-
ment is called kurtosis.

Again, in discrete case for m realizations of the random variable we can
approximate the variance of the random variable by

σ̃2
Xi

=
1

m− 1

∑
j=1

(x
(j)
i − µXi)2. (1.15)

For two random variables A and B we may define a quantity

Cov(A,B) = E[(A− E[A]) · (B − E[B])] (1.16)

called covariance. The covariance can be standardized by dividing it by the
standard deviations.

Corr(A,B) =
Cov(A,B)

σAσB
(1.17)

This quantity is called correlation of variables A and B. The correlation al-
ways falls to the interval [−1, 1].

In discrete case, we can approximate the covariance of these numbers
from available corresponding realizations a(k)

i and b
(k)
j as

Covappx(Ai, Bj) =
1

m

m∑
k=1

[(a
(k)
i − µAi) · (b

(k)
j − µBj)] (1.18)

=
1

m

m∑
k=1

a
(k)
i b

(k)
j − µAiµBj .

The later form is useful for incremental calculation.
Correlation and covariance are measures of strength of linear relation-

ship between the variables. If the correlation coefficient of the two variables
is 0 then the variables are said to be uncorrelated. Between uncorrelated vari-
ables there still may exist some strong, but other than linear relationship.



For example, if the variables Ai and Bj would be chosen as possible coordi-
nates on a unit circle or a sine wave, their correlation coefficient would be
zero, but there would be definitive dependence between a(k)

i and b
(k)
j .

If no relationship between the two variables can be found, then the vari-
ables are said to be independent.

Covariance and correlation coefficients calculated from values drawn
from the same random process X (as opposed to two different random
processes A and B) in two different times, say r and s, are called auto-
covariance CX(r, s) and autocorrelation RX(r, s) functions. In discrete case,
when Xi = X(Ti) are elements of a random vector, the autocovariance
and autocorrelation functions are represented by autocovariance and auto-
correlation matrices Cij and Rij . Elements of those matrices are defined as
cij = Cov(X(Ti), X(Tj)) and rij = Corr(X(Ti), X(Tj)) respectively.

If for any set of the input parameters t ∈ {T1, T2, . . . , Tn} and any value of
some new variable τ , the joint probability distribution of random variables
Xi = X(Ti) and the joint probability distribution of variablesX ′i = X(Ti+τ)
are the same, then the random process X(t) is said to be strictly-stationary.

The mean and covariance of realizations of strictly-stationary random
process for any value of input parameters t are the same. Moreover, the au-
tocovariance and autocorrelation functions are only functions of the differ-
ence of t: CX(r, s) = CX(r − s) = CX(τ) and RX(r, s) = RX(r − s) = RX(τ).

If µX(T ) = µX(T + τ) and Var(XT ) = Var(XT+τ ) holds for any τ , it is
said to be weak-sense stationary. Weak-sense stationary process need not to
be strictly stationary.

The random process X(t) is said to be ergodic, if its properties can be de-
duced from single sufficiently long realization. Ergodicity implies stationar-
ity, but the reverse need not to be true.

1.4 Karhunen-Loève expansion

An analytic function can be expressed as sum of its Taylor series. In general,
if we have a complete system of orthogonal functions fi(x) on some interval
closed [a, b], i.e. functions for which following holds:

δij =

∫ b

a

fi(x)?fj(x) · dx,

then any continuous function ϕ(x) on that interval can be expressed as the
sum

ϕ(x) =
∞∑
j=1

ξj · fj(x) x ∈ [a, b] (1.19)

where the ξj are coefficients of the expansion that can be determined by

ξj =

∫ b

a

fj(x)ϕ(x) · dx. (1.20)

8



CHAPTER 1. RANDOM PROCESSES 9

If we represent the function on the interval [a, b] as some finite number of
n samples ϕi = ϕ(xi), xi ∈ [a, b] (function values in points distributed over
that interval), then we do not need infinite sum to determine the expanded
values. The n samples is fully determined by n coefficients.

Instead of infinite set of orthogonal functions, we can take finite set of n
orthogonal vectors ~fj (of dimension n), with elements f ij , i, j ∈ {1, 2, . . . , n}.
The expanded values can be expressed as

ϕi =
n∑
j=1

ξjf
i
j (1.21)

where the coefficients ξj are

ξj =
n∑
i=1

ϕif
i
j . (1.22)

The choice of the set of the orthogonal vectors (functions) is arbitrary.
The coefficients are determined by this orthogonal system and the expanded
vector (function). For a random vector Xi these coefficients are some ran-
dom numbers.

The Karhunen-Loève theorem (see e.g. [Stark and Woods, 1986]) states,
that if we choose the system of orthogonal vectors as the system of eigenvec-
tors of the autocorrelation matrix of that random vector, then the coefficients
of the expansion are uncorrelated. Moreover, if we choose the coefficients of
the expansion for its k-th realization like this:

ξ
(k)
j =

n∑
i=1

1√
λj
f ijx

(k)
i , (1.23)

where the coefficients λj are eigenvalues of the autocorrelation, then the
coefficients ξ(k)

j have zero means and unit variances. We can reconstruct the
original values of x(k)

i ( ~X(k)) from the coefficients ξ(k)
j and the eigensystem

like this:

x
(k)
i =

n∑
j=1

√
λjξ

(k)
j f ij . (1.24)

This is called Karhunen-Loève expansion (KLE) of the vector Xi.
It follows, that any two random vectors represented using KLE with the same

basis (the set of orthogonal vectors fi and values λi) have the same autocovariance
functions.

For a continuous random function we would replace the sum with inte-
gral. The set of orthogonal functions would be the system of eigenfunctions
of its autocovariance function. To completely reconstruct all values of the
random function everywhere in the interval [a, b], we would have to calcu-
late the infinite sum. In practice, however, we can often truncate the sum af-
ter some finite number of terms, since in convergent sum the first few terms
are the most important ones and the error (difference between the sum and
the value of the expanded function) decreases as we add more terms.



1.5 Fourier expansion and power spectrum

Another common choice of an orthogonal system for expansion of a func-
tion is system of functions defined as

fj(x) = exp
(
i2π

n

τ
x
)
, (1.25)

where τ = |b−a| is length of the interval where we want to use the expansion
(ideally period of the expanded function). The coefficients of the expansion
for a function y(x) are

cj =
1

τ

∫ b

a

y(x) exp
(
−i2πn

τ
x
)

dx (1.26)

and the function can be reconstructed with

y(x) =
∞∑

j=−∞

cjfj(x). (1.27)

This is the well known Fourier series.
In discrete case, realization of n-dimensional random vector with com-

ponents xk can be reconstructed using coefficients

cj =
1

n

n−1∑
k=0

xk exp

(
−i2πjk

n

)
(1.28)

and finite sum

xk =
n−1∑
j=0

cj exp

(
i2π

kj

n

)
. (1.29)

Vector, whose components cj are defined by (1.28), is called discrete Fourier
transform of ~x. Relation (1.29) is called inverse discrete Fourier transform.

For a continuous function y(x) we can calculate its Fourier transform

ŷ(ω) =

∫ ∞
−∞

y(x)e−2πixωdx (1.30)

and its energy spectral density

S(ω) =

∣∣∣∣∫ ∞
−∞

y(x)e−iωtdt

∣∣∣∣2 =
ŷ(x) · ŷ∗(x)

2π
. (1.31)

The energy spectral density is useful tool for searching of periodicity, as it
shows how energy is distributed with angular frequency (ω = 2πf ).

Wiener-Kinchin theorem states, that for a wide-sense stationary process
the power spectral density is the Fourier transform of the autocorrelation
function.

S(ω) = lim
T→∞

1

2T
E

[∣∣∣∣∫ T

−T
e−iωtx(t)dt

∣∣∣∣2
]

(1.32)
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Chapter 2

Frameworks for analysis
of physical measurements

Any acceptable physical theory must be formulated based on some observa-
tions and it must give predictions about values of the some physical prop-
erties. It must be possible to observe (measure) those properties and put
them to test by experiment. The standard method of acquiring knowledge,
referred to as the scientific method, relies on continuous cycle of gathering
evidence and updating existing theories, which can be (partially or com-
pletely) refuted by experiments. This cycle has following stages: observation
or measurement, interpretation of measurements and creation (correction)
of hypothesis, prediction of values of physical properties and testing the hy-
pothesis by new observations and experiments. Interpretation of the initial
measurements and creation of the hypothesis using deductive approach is
a key step in this cycle.

In this chapter we explain our notion of physical measurements and
what they represent. We give an interpretation of measured values and we
present the results of measurement as output of random processes described
in the previous chapter. Then we show methods that are used to extract use-
ful information in form of statistical inference out of such measurements.

First, we define the basic task of the statistical analysis. Then we describe
two different approaches to accomplish that task. The two methods, that
are used in modern physics, are the frequentist approach and the Bayesian
approach. Basic principles of both of those approaches are briefly reviewed
and their advantages and disadvantages are discussed.

2.1 Interpretation of measurements

To make the interpretation of measurements possible, we need to identify
results of the observation. Measurement, or the measured value of some
real physical quantity (observable), is always composed of two elements.
The first element is the real value of the quantity of the interest (signal) and
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second one is the observational error (noise).

measurement = signal + noise

The real value of the measured quantity, is somehow connected to the
physical system. It depends on the physical system properties, and the sys-
tem properties can be often (but not always) deduced from the real values
of the observable quantities. The assumptions about how the physical sys-
tem works, what properties it has and what values of the physical quanti-
ties should be accessible to observation are called model (or physical theory
about the system). We can create model based on values of the physical
quantities and we can test the model by comparing its predictions with ob-
servations.

The second component of the measured value, called noise, is consid-
ered to have unknown random value. All observations are burdened with
these errors. By stating that observational errors are of random nature we
are saying that we cannot, in principle, know the values of the errors. Entire
measurement is therefore a random value. Statistical analysis of measure-
ments tries to define relations between the results of measurements and the
real values of the physical quantities.

Since any model we might have about the system is only an assumption,
the best we can do is to estimate probabilities of finding the measured data
for different assumptions and compare them. Then we can decide, based
on these probabilities, between various models and accept or reject them
as valid hypotheses for our physical system. In most cases, we can never be
completely sure about validity of physical theories and we can only rule out
some of the assumptions as "extremely unlikely" or accept some of them as
"very likely".

The central problem of the statistical analysis of measurements can be
therefore formulated as follows: analysis of measurements aims to find the
most likely possible value of the measured variable given values of the mea-
surements (our evidence). It also tries to determine reliability of the result
or express our level of trust in it.

Finding the reliability of the result for discrete values means finding
probability, that the observed variable has that particular value. For con-
tinuous values it means finding the probability, that the value is contained
in some small set. That is, for the continuous variables we are trying to de-
termine

P (x ∈ I|M), (2.1)

where the x is the actual value of the observed variable, I is the said set
and M are measured values of the variable burdened with errors. The set
I is referred to as confidence interval. It may (or may not) be chosen so, that
it contains the most likely value. It is defined as such subset of all possible
values that has certain probability of finding the the value of the observed
variable within it and has smallest possible size. By the size S of a set I we
mean

S(I) =

∫
I

1ddI. (2.2)
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This set should be determined only by the probability (level of confidence)
that the actual value of the observed variable falls within it and quality of
our measurements. Measurements with smaller error typically give smaller
confidence intervals. The smaller the confidence interval is, the more reli-
able result we have.

2.2 Frequentist approach

The most common approach to figure out the most likely value and confi-
dence interval is called frequentist approach. It is based on the frequency in-
terpretation of probability. From the frequency definition of probability and
our interpretation of measurements it follows, that the most likely value of
the observed variable is simply the value, that would yield the observed
values of measurements the greatest number of times if we could repeat the
measurement infinitely many times (under exactly the same conditions).

Analysis of measurements using this approach always assumes that we
know something about probability distribution of errors. For example, if
the observational errors are some random values with symmetric proba-
bility distribution around zero, then the most likely value of the observed
variable is simply the arithmetical average of the measured values for many
measurements. Probability, that the difference of the actual value of the mea-
sured variable and the average is significant, tends to zero with number of
measurements going to infinity. That is true for any admissible symmetric
probability distribution of errors. In other words, the value of average gets
closer to the actual value as the number of measurements increases.

If we assume some specific shape of the distribution of the errors, we can
calculate the probability that the arithmetic average µ of the measurements
falls within certain interval around the actual value.

The value of the observational error consists of contributions from many
different sources. If those contributions can be considered independent, which
is often a good assumption, then the probability distribution of an average
error tends to normal Gaussian distribution

%gx =
1√

2πσ2
· exp

(
−(x− µ)2

2σ2

)
(2.3)

as the number of the contributions goes to infinity. This is the statement of
classical central limit theorem. Width of the distribution σ2 can be deter-
mined from variance of measurements.

Gaussian distribution of errors simplifies many things. For example, we
can determine the confidence interval for some level of confidence P by
construction called χ2 statistics. First we calculate value χ2

min

χ2
min =

∑
i

(xi − µ)2

σ2
(2.4)



from values of measurement xi. Any value b such that

k. |b− µ| < σ√∑
i x

2
i

(2.5)

belongs into confidence interval with the level of confidence equal to

P =

∫ kσ

−kσ
%g(x)dx (2.6)

i.e. integrating the Gaussian normal distribution with variance σ2 centered
around the average value µ within boundaries given by χ2 statistics gives
probability equal to the level of confidence P (see e.g. [Muller and Made-
jsky, 2009]).

Calculating average of measurements with symmetrical monotonically
decreasing distribution of errors and determining confidence interval by
χ2 statistics for measurements with Gaussian noise are the most basic ex-
amples of methods based on frequentist approach. For measurements with
the Gaussian distribution of errors, there are numerous sophisticated meth-
ods to calculate confidence intervals, determine various indirect variables,
search for tendencies in observed data and even process power spectra of
noisy time series.

The ease of the interpretation of data using frequency probability and
the central limit theorem, which guarantees that the distribution of errors is
usually Gaussian, are major advantages.

However, the assumption about Gaussian distribution is usually at the
cornerstone of all complicated statistical methods and they may not give
good results when this assumption is not true. It has been shown, that if
some of the contributions to the errors are significantly more important
than the others and they are not entirely independent, the errors no more
have the Gaussian distribution. The same is true also under somewhat more
abstract assumption of fractal underlying geometry, which is widely ob-
served. See e.g. [Metzler and Klafter, 2000] for details. That means, that non-
Gaussian processes can be quite common in nature. Modification of existing
methods to incorporate non-Gaussian distribution is very complicated, of-
ten completely impossible. When it is possible, it must be done on case-to-
case basis.

Another important thing to notice is that to calculate the arithmetical
average with sufficiently small confidence interval we actually need many
measurements performed at the same (or very similar) conditions. This can
be a problem, especially if the values of interest change with time. Methods
to process measurements of such values can be very complicated.

2.3 Bayesian approach

Instead of assuming, that there is some fixed value of the observed variable
and that the frequency of of certain values of measurements that are bur-
dened with random errors with some known probability distribution can
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tell us something about this value, Bayesian approach uses completely dif-
ferent method. For any possible value of the variable of interest, it tries to
determine the probability density that corresponds to it.

To find out what is the Bayesian probability of some possible value we
could start by assigning it some arbitrary non-zero probability and then cor-
rect our assumption based on observations. This is principally different ap-
proach then the frequentist one.

Calculating probabilities using Bayesian approach is done via Bayes the-
orem. The Bayes theorem follows from definitions of joint probability and
conditional probabilities.

PAB(a, b) = PA(a) · PB|A(b|a) = Pb(b) · PA|B(a|b)

leads to
PA|B(a|b) = PA(a) · PB|A(b|a) · 1

PB(b)
. (2.7)

Using the equation (1.4) it can be easily shown, that the same relation
hold for probability densities. All the terms in the equation (2.7) have their
established names. The term PA|B is called posterior probability. Its meaning
is the probability of the some value of interest (a) (or the tested hypothesis)
given the observed data (b). PA(a) is called apriori probability and it is our as-
sumption about the probability of the tested value before observation. This
assumption is to be corrected in the light of new evidence (observation).
PB|A(b|a) is so called likelihood function which stands for probability of find-
ing the measured values given the assumed value of data. This is where
our assumption (distribution function) about errors come in. The last term
1/PB(b) is normalization factor. Its meaning is probability to find the partic-
ular measured values out of all possible values there could be. The name
comes from the fact, that it is thanks to this term, that the sum of prob-
abilities for all possible values is 1. As long as we are only interested in
comparing probabilities of different values, we can disregard this term (or
normalize our posterior probabilities so that the sum is 1 later). If we as-
sume that all the possible values are equally probable, we can disregard the
apriori probability term too.

If we can find the probability density of finding the measured data as a
function of the parameters (e.g. likelihood function), we can perform the
Bayesian estimate. Then we can find the smallest set (of parameters) on
which the integral of the found probability density reaches the required
level of confidence (P ).

If we have more than useful measurement, and we cannot calculate the
likelihood directly, using all of the measurements, we can find the final con-
fidence region using so called Neyman construction. We just find confidence
region with desired level of confidence for each measurement separately
and then find the confidence region as intersection of those confidence in-
tervals. It is immediately obvious, that more measurements constraints our
confidence interval better (result is usually smaller confidence interval).



One of the advantages of this approach is, that we were able to isolate the
step, where we were are required to make assumption about the distribution
of the data. For different distributions, We only need to change calculation
of the likelihood function. This makes methods based on the Bayesian ap-
proach much more universal, because they can be readily adapted for han-
dling measurements with any distribution of errors via simple change. The
same modification usually requires extensive modifications of the standard
(frequentist) methods for processing measurements.
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Chapter 3

Variable luminosity
of accretion flows

The primary motivation behind development of new statistical method,
which is described in next chapter, is investigation of X-ray light curves
from active galactic nuclei and compact objects. When we talk about X-ray
light curves from compact objects, we mean mainly time domain observa-
tions of flux by satellites (like RXTE, XMM-Newton, Chandra. . . ) of binary
systems of white dwarfs, neutron stars, stellar BH’s or active galactic nuclei
supermassive BH’s with accretion discs. Light curves of many of these ob-
jects show similar properties. This could lead to the conclusion, that basic
mechanism responsible for of creation of the radiation and variability are
the same (see e.g. [Uttley and McHardy, 2005]).

The radiation of these sources originates in accretion discs and shows
strong variability on relatively short time scales. Source of the variability, as
well as reliable models of the phenomena, remain largely unknown. Still, we
can make elaborate guesses properties of these objects based on properties
of the variability.

In the first paragraph of this chapter we give very brief review of some
power spectral features, that are observed in these light curves. Then we
discuss, how these features are connected to physical properties of those
systems and what conclusions can be drawn from them. Finally, we point
out the biggest complications in their observation.

3.1 Shape of the power spectrum

The discussed light curves show irregular variability on typical time scales
that vary from fraction of seconds (stellar BH’s, see [Axelsson et al., 2006])
to days (supermassive galactic BH’s, see [Markowitz and Edelson, 2004]).
Apart from the irregular variability, some objects show signs of periodic or
quasi-periodic behavior. The typical time scales and periodic frequencies
with highest energy in the power spectra of the time series observations can
be attributed to some physical properties of the systems [van der Klis et al.,
1985].
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The more or less random light curve can be described as a realization of
a random process. Its most basic properties are specified by its CDF and au-
tocorrelation function. The autocorrelation function appears to have double
exponential form:

C(t) = σ2 · e−
|t|
τ , (3.1)

whet the constant τ is the typical time scale of variations. According to the
Wiener-Kinchin theorem, power spectrum of this process is given by Fourier
transform of the autocorrelation function

S(ω) = Ĉ(t)(ω) =
2σ

ω2 + 1
τ2

(3.2)

i.e. it has form, which is approximately constant for ω2 � τ−2 and falls
like ω−2 for big ω. Typical power spectrum of an X-ray light curve then
looks like the one on figure 3.1. The break is not actual discontinuity, but
rather artifact created by logarithmic scales. However, approximating the
relations between logarithm of power spectrum and logarithm of frequency
by linear functions for low and high frequencies and finding their meeting
point seems to work well for determination of the typical time scale. In some
cases, there is more than one typical time scale and there are more breaks in
the power spectrum. Position of this break is an important feature, because
from its frequency we can deduce time scale of variability which is linked
to typical time scales of physical processes in the source.

Another important feature, that is probably linked to physical proper-
ties of the system, are quasi-periodic oscillations. Figure 3.1 shows typical
appearance of the QPO in power spectrum. Although QPOs show as a peak
on power spectrum, there is no coherent periodic process happening at their
frequency.

3.2 Physical properties linked to the variability

Although the specific mechanism responsible for creation of radiation and
variability is not known, we can draw some general conclusions from basic
principles.

The most basic result, pointed out in very early stages of exploration
of what we call today compact objects, is relativistic limit to size. If the ra-
diated power is created within certain volume of space with edge-to-edge
dimension of s, and we assume, that the power creation is approximately
evenly distributed within the volume, then the total radiated power can-
not significantly change faster than s/c (the c is speed of light). The reason
is, that opposite ends of the volume could not be synchronized faster than
with the speed of light. Sudden change in luminosity in all parts of the vol-
ume at once, that is not causally connected, would be very unlikely, given
the nature of observed variability.

Another meaning of the typical time scale could be deduced from our
other assumptions about the sources of the radiation. When we consider the
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Figure 3.1: Observed power spectral density from X-ray light curve of
Cygnus X-1 in transition between low and high energy state. The most ob-
vious feature is break on frequency corresponding to typical time scale of
variability. Break like this appears to be universal feature of power spectra
of many sources. Other features (secondary breaks) can be sometimes ob-
served. Picture taken from [Cui et al., 1997].

sources as accretion discs, (in some cases there is even direct evidence for
that), we can expect the matter in them to orbit with certain orbital period,
is given by mass of the central object M . This period can be for most of the
time approximated by non-relativistic Kepler orbital period:

T 2 =
2π2

GM
·R3 (3.3)

Since this period depends on distance, orbiting alone is probably not the
main source of variability. Although, according to our best physical mod-
els of accretion discs, most energy is created in the innermost regions, and
hence, relatively small range of orbital distances. There are some theories,
which consider e.g. orbiting luminous hot spots as the source of variability.

If the central object is black hole, according to general relativity there ex-
ists last stable orbit, which must be the last possible inner edge of any stable
accretion disc. Radius of the last stable orbit rL scales with Schwarzschild
radius Rs, which scales linearly with mass.

rL ∝ Rs =
2GM

c2
(3.4)

There is a strong correlation between the (independently determined) mass
of the central object and typical time scales (determined from the break in



Figure 3.2: Quasi-periodic oscillations in power spectrum from an ULX in
M82 (M82 X-1) in several energy bands. Image credit ESA, XMM-Newton,
[Strohmayer and Mushotzky, 2003].

power spectrum). See figure 3.2 or work of [McHardy et al., 2004]. This
could indicate, that the typical time scale could be linked to the dimension
of the most luminous parts of the accretion disc.

Also the frequency of the quasi-periodic oscillations appears to be linked
to the orbital frequency at the last stable orbit. If the QPOs are observed, this
relation can serve as good measure of the mass of the central object.
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Figure 3.3: Correlation between independently measured mass of central
objects and typical time scale of variability in accretion discs. Picture taken
from [Uttley and McHardy, 2005].



Chapter 4

Bayesian analysis
of light curves

In the last chapter we talked about how time-domain observations can help
us to understand basic properties of compact objects. Before we can draw
any conclusions from these observations, we must overcome obstacles that
are connected with their interpretation. Most of them have very high level
of noise. We cannot repeat measurement of flux at some particular mo-
ment to improve precision and the detectors are not advanced enough to
give us data with the precision we would like. At short time measurements
we often deal with individual photon counts. Moreover, the distribution of
data is very non-standard. It has log-normal rather than Gaussian distribu-
tion. Most statistical method based on assumption of Gaussian distribution
might give us imprecise results. That is why many authors reached out to
Monte Carlo simulations and methods based on Bayesian statistics.

This chapter forms the core of the theoretical part of this work. We show
how the Bayesian framework can be used for analysis of light curves and
what kind of useful information can be extracted. We summarize the pro-
posed method for analysis of light curves and discuss its advantages and
disadvantages.

We compare this method to some other methods, that have been pro-
posed by different authors. We also show, how these new method can be
used specifically in case of X-ray light curves for exploration of some prop-
erties that are impossible to analyze otherwise.

The developed method is universal in that way, that it can be readily
used for investigation of many other problems, that deal with series of mea-
surements of constantly changing quantity. Examples of such data are seis-
mogram, weather records and so on.

4.1 Description of the method

In our analysis, the light curves are modeled as random functions of time.
That means, that the value of interest (brightness) is random variable. Rather
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than determining the actual value of brightness at certain time, we are in-
terested in statistical properties of the function as a whole.

In principle, this is done by comparing observed light curve with many
simulated light curves with known properties. Since the light curves are
random, highly variable and noisy, the comparison is non-trivial task. The
randomness property is the reason, why we must express the results of com-
parison in terms of probability. The light curve can have, in principle, almost
any shape, only some of them are more likely than the others.

We do not try to compare values of brightness in different light curves
directly. Instead, we express the curves using Karhunen-Loève expansion
(KLE). Since we consider both, the simulated light curves and the observed
one, random, the coefficients of the KLE will be random too.

They will strongly depend on the basis functions, which are in this case
eigenfunctions (eigenvectors) of the autocovariance (see Eq. (1.23) and defi-
nition of KLE).

The KLE coefficients are uncorrelated, but not independent. They are
connected by strong non-linear relations. Their probability distribution must
be described as joint probability distribution function for all coefficients
(JPDF).

We can look at the KLE as transformation (in analogy to the discrete
Fourier transform). It takes vectors from space vectors that contain values
of brightness (direct space) and brings them to space of vectors that con-
tain values of KLE coefficients. That transformation is non-singular (reverse
transformation exists). Than if we have processes, that are somehow dis-
tinguished in direct space, e.g. processes with some distribution, they must
be somehow distinguished also after KLE transform. Therefore, the precise
form of the JPDF must depend not only on the basis functions, but also on
those other properties of the random processes.

The corner stone of our method is to estimate the JPDF of the KLE coeffi-
cients. For a given autocovariance function, and other properties, we try to
empirically estimate the JPDF from KLE coefficients of generated synthetic
light curves. Then we find values of the KLE coefficients of the actual ob-
served light curve and we estimate value of the probability density for that
particular combination of KLE coefficients.

4.2 Application of Bayesian framework

The result of the estimate described in the previous paragraph is a value of
probability density. That value is calculated for KLE coefficients of a partic-
ular observed light curve from JPDF given by synthetic light curves with
specific values of parameters.

We can estimate the value of probability density (probability in infinites-
imal interval) for the observed light curve for any value of the parameters.
That means, that we can find the probability density function as a function
of the investigated parameters, given the observed light curve. That is ex-



actly the definition of Bayesian likelihood function.
To complete the Bayesian estimate, we need to set some value of apriori

probability and estimate probability (density) of finding our particular data
for calculation of normalizing factor. In our case, that would mean finding
the probability of finding the particular combination of values of KLE coef-
ficients of observed data out of all possible combinations. We can avoid the
later problem by doing normalization in simpler way. The choice of apriori
probabilities is, in principle, unconstrained.

We choose some uniformly distributed grid of parameters in parameter
space. This grid should cover some reasonable range such, that probability
of finding the parameters outside of this grid should be negligible. If we
don’t have any other apriori knowledge about the probability distribution
of the parameters, we can assign the same apriori probability value to all
of them (i.e. 1/n, where the n is the number of grid points, so that total
apriori probability is 1). Now the purpose of the normalization factor in
Bayesian estimate is such, that integral of the final probability distribution
function over all possible values of parameters should be 1. We can calculate
the normalization factor by summing up the values of probability density
for all tested values of parameters. Final probability value then will be the
value of the likelihood function, multiplied by 1/n (apriori probability) and
divided by this sum (normalizing factor).

4.3 Joint probability distribution of ξi
The entire process of calculating likelihood function had two key steps:
generation of the synthetic light curves and empirical estimation of JPDF
from their KLE coefficients. The problem of generation of the synthetic light
curves will be dealt with in the next chapter. Estimation of the JPDF is de-
scribed here.

Simplest method, that could be considered, would be direct estimation
of density at some point from density of coefficients found in small neigh-
borhood. The KLE coefficients of the observed process would represent one
point in n-dimensional space, where the n is the number of coefficients. We
would like to estimate, how many points, representing KLE coefficients of
random light curves generated for some value of parameters, falls into small
neighborhood of the point from observed light curve. The probability, that
the observed light curve has parameters of the synthetic light curves would
be (in limit for number of points going to infinity and size of the neigh-
borhood going to zero) equal to fraction of points that fall into the neigh-
borhood and the total number of points. For one dimensional case, this is
analogical to estimating probability distribution from histogram. Even for
simple 1D histogram, too many values would be required to achieve good
level of precision. Instead of one dimensional points, we would have points
in n-dimensional space. To achieve the same level of precision, as we would
achieve with 1000 points in one dimension, we would need 10002 points
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in two dimensions. Typical dimension (number of coefficients) for our case
would on the order of hundreds. This simple consideration shows, that this
method is not usable, because the number of realizations we would have to
generate would be too big.

For 1D histograms there are some methods, which allow to "smooth" the
distribution and draw nice histograms (and provide good estimates of prob-
ability density) even from small number of realizations (points drawn from
the distribution of interest). These methods are based on summing up some
contributions to total density from every point. Each point ~xi is approxi-
mated by some smooth function K(~x) called kernel (e.g. Gaussian). At any
point of their vector space, the probability is approximated by normalized
sum of the contributions:

P (~x)
.
=
∑
i

K(~x− ~xi)

n
(4.1)

More sophisticated methods use kernel variable with some other estimates
of density. For details of multi variative kernel methods see [Terrel and Scott,
1992]. Unfortunately, for dimension 100 and 1500 points, we were not able
to approximate the joint probability distribution even with those methods.

The method, that proved successful, was in fact the simplest one. We
emphasized that the coefficients are uncorrelated, but not independent. If
they were independent, we could calculate their joint probability density
simply by multiplying their individual probability densities:

%(ξ1, ξ2, . . . , ξn) = %(ξ1) · %(ξ2) · · · %(ξn) (4.2)

Surprisingly, this value appears to give the best approximation even com-
pared to multi variative kernel estimation. As will be shown by our results,
the reliability of this estimate can be significantly improved by using only
some of the coefficients.



Chapter 5

Generation of random data
with prescribed properties

Important step in calculating likelihood function for Bayesian analysis of
light curves, as described in last chapter, was generation of random syn-
thetic light curves. These random light curves were modeled as random
processes with prescribed properties. To investigate the power spectral fea-
tures, we need to model random processes with known autocorrelation func-
tion and CDF. The generation of realizations of such random processes is
non-trivial task, which accounted for much work in this thesis.

This chapter deals with the methods for generating random data. We de-
scribe the spectral synthesis, that is can be used for simulating light curves,
since it can produce data with satisfactory autocorrelation. However, the
distribution of the generated data will be Gaussian. Many other methods
to accomplish this task were proposed by other authors. Some of them try
to solve the flaw with distribution, but our investigation of some of them
has shown, that they are usually not suitable, because they are severely con-
strained to very specific type of data they can generate (like the method
proposed in [Phoon et al., 2005]) or they are relatively cumbersome to im-
plement (method by [Ferrante et al., 2005]).

For this reasons, we have proposed a new method, which is rather com-
putationally inefficient, but it is very universal and has good properties that
make it more suitable for our purposes. This method is described in second
paragraph.

5.1 Spectral synthesis

Spectral synthesis is one of the standard methods for generating random
data with an arbitrary power spectrum. Design of this method is based on
analysis of Fourier transform and power spectrum of stochastic process.

In its basic form, the distribution of generated data is Gaussian. For log-
normal distribution it can be adapted (translation process). It also generates
light curves only from very small subset of all possible light curves with
the desired properties. The basic idea is, that one can get data with known
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power spectrum like this:

x(t) ∝
∑
ω

√
S(ω) cos[ωt− ϕ(ω)], (5.1)

where the ϕ(ω) ∈ [0, 2π] is random. Every angular frequency ω = 2πν has
therefore fixed amplitude and only phases are randomized between data
points.

The method, as described in [Timmer and Koenig, 1995] does following:

1. Pick the power spectrum S(ω).

2. For every frequency ωi draw two random numbers from Gaussian dis-

tribution and multiply those numbers by
√

1
2
S(ωi).

3. Use those numbers as real and imaginary parts of coefficients of Fourier
transform. For coefficients with negative frequencies, use their com-
plex conjugates.

4. Calculate the time series by inverse (discrete) Fourier transform.

Using this method it is possible to generate time series that resemble
light curves, that can be used for certain purposes. Of course, it is obvious,
that such data cannot be simply used if we are looking for spectral features
that are not consistent with simple power law (e.g. break in the power spec-
trum).

5.2 Brutal force algorithm

To generate data with arbitrary admissible distribution and autocorrela-
tion we proposed simple method, that is based on random swapping. This
method could be entitled as brutal-force matching of autocorrelation func-
tion on data with prescribed distribution. Described version of the method
only works for discrete representations of stationary processes.

It is relatively easy to generate a set of random numbers with prescribed
distribution. One easy method (that we are actually using) is called inverse
sampling method. The basic idea of this method is, that CDF F% for any distri-
bution % has the meaning of probability and the result of operation F%(x) for
any x always falls within interval [0, 1]. Moreover, if we draw some random
variable x from this distribution, then F%(x) will be uniformly distributed
over the interval [0, 1]. But then the inverse function to the CDF, which we
denote F−1

% , applied on a random numbers drawn from uniform distribu-
tion on [0, 1] will result in variables x, which are random numbers drawn
from the corresponding distribution (see [Press et al., 1992] for proof).

x = F−1
% (y); y ∈ U [0, 1]; P (a < x ≤ b) =

∫ b

a

%(z)dz (5.2)



We can therefore easily generate random vector of dimension n: ~X = [x1, x2, . . . , xn]
with desired distribution. The vector with components generated via in-
verse transform sampling method from independent, uniformly distributed
numbers yi, may not have the desired autocovariance.

The following discussion is limited to random vectors that can be con-
sidered as samplings of stationary random processes (i.e. every element is
value of one specific realization of some stationary random process X (with
desired distribution) in some time: xi = X(k)(Ti)).

If it is, at least in principle, possible to have a random process with our
desired target distribution and target autocovariance, then we call this com-
bination of autocovariance and distribution admissible. We can match only
admissible combinations of autocovariance and distributions.

For one realization of such random vector, we will approximate the em-
pirical autocovariance by this formula:

Rappx(t) =
n−t∑
i=1

(xi − x̄) · (xi+t − x̄), t = 1, 2, . . . , n− 3 (5.3)

This formula approximates the autocovariance well for most of t (except for
t
.
= n) if n is big enough. This can be seen from the formula (1.19), definition

of autocovariance and the condition of stationarity.
We can reorder elements within the random vector without changing the

distribution. For every possible ordering of the elements, we can calculate
the empirical autocorrelation using formula (5.3).

If we define distance of two autocovariance functions as

D2(R1, R2) =
∑
t

[R1(t)−R2(t)]2 (5.4)

then we can say, that for every possible ordering, the distance of the autoco-
variance approximated using (5.3) for that ordering and the target autoco-
variance R(t) is some number. There is only n! possible orderings. Amongst
those orderings, there must exist one, for which the distance between ap-
proximated autocovariance of this ordering and the target autocovariance
is minimum. We call this autocovariance Rmin(t).

We can assign each possible ordering some number d, which is equal to
distance of approximated autocovariance for that ordering from target au-
tocovariance. Given all possible sets of n random numbers drawn from the
desired distribution, we could, at least in principle, find a probability distri-
bution of finding some value of d. We call this distribution %d. The bigger n
we have, the more possible orderings we could realize and the more num-
bers d we draw from that probability distribution for one particular set of
numbers xi.

For some set of numbers xi with target distribution %, that are picked at
random, we have the bigger chance of finding d close to zero the more pos-
sible orderings we can make. That means, that average value of D(Rmin, R)
is a decreasing function of n. The bigger n we have, the closer to target au-
tocovariance we can get by reordering.
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If we swap some two values xj ↔ xk, j < k, we do not need to recal-
culate approximated autocovariance entirely. Instead, we can only calculate
change in Rappx for every t:

∆Rappx(t) = 0 if t > k (5.5)
∆Rappx(t) = 0 if t > (k − j), j < t, k > (n− t)
∆Rappx(t) = 0 if t = (k − j), j < t, k > (n− t)

and for other values of t,

∆Rappx(t) = Rappx(t) (5.6)
− {[(xi−t − x̄) · (xi − x̄)] + [(xk − x̄) · (xi−t − x̄)]}1

− {[(xk−t − x̄) · (xk − x̄)] + [(xi − x̄) · (xk−t − x̄)]}2

− {[(xi+t − x̄) · (xi − x̄)] + [(xk − x̄) · (xi+t − x̄)]}3

− {[(xk+t − x̄) · (xk − x̄)] + [(xi − x̄) · (xk+t − x̄)]}4

where we count only those terms in {}i, which make sense. For example, we
cannot count {}1 for any t for which i < t and so on. If we calculate ∆Rappx

for every t, we can calculate ∆D(Rappx, R).
We start by calculating approximated autocovariance for initial ordering

and storing that information somewhere (we keep record for every t). Now
we can pick i, j at random, calculate possible ∆D(Rappx, R) that we would
get, if we swapped elements at those two positions, and if the distance of
the approximated autocovariance of the new ordering would be closer to
the target autocovariance, then we perform the swap and update our stored
information about the approximated autocovariance. If that change would
increase the distance, we pick new pair of i and j.

Numerical experiments has shown, that the target autocovariance can
be matched quite well by our approximated autocovariance after approxi-
mately n2 tries. More tries increases statistical probability, that we get better
precision, but is time consuming.



Chapter 6

Numerical experiment

In this chapter we describe simple test of the proposed method that we de-
signed to demonstrate usability of the method for analysis of X-ray light
curves. This experiment shows basic usage of the method and reliability of
its results.

For this test, we generated one testing random light curve, which was
approximated as a series of 100 values (random vector). The autocovariance
of was given by

C(τ) = exp

(
− τ
b0

)
. (6.1)

This form was chosen because it is somewhat similar to the observed auto-
covariance of X-ray light curves. The curve also had log-normal distribution
given by PDF

%(x) =
1

x ·
√

2πa2
0

· exp

[
(lnx− µ)2

2a2
0

]
(6.2)

Since this was only a toy example, we artificially prescribed one parameter
µ = 0 for all curves. The values of other parameters were a0 = 1 and b0 = 30
for the testing curve.

Then we chose a 20×20 grid in plane of parameters a and bwith values of
the parameter a uniformly distributed in the interval [0.1, 1.9] and b ∈ [5, 55]
around the parameters of the testing curve.

For each of the 400 points (all combinations of the parameters) we gener-
ated 1500 random light curves with those parameters and performed their
KLE.

Then we took all coefficients of the same order at every point (e.g. all
1500 realizations of the coefficient ξ1 from light curves generated for param-
eters a = 0.1, b = 5) and we approximated their cumulative distribution by
function

Fappx(y) =
N(ξa,bi ≤ y)

N
, (6.3)

where the N(ξa,bi ≤ y) is the number of values of the coefficients lower than
y. This way we approximated marginal cumulative distributions Fξi at ev-
ery point. With 1500 points it was possible to approximate these functions
relatively well.
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Since the cumulative distribution is integral of the probability density,
slope (derivation) of this function at any value of y approximates the cor-
responding probability density at that value. Hence, we were able to deter-
mine the marginal distributions ρξi as slopes of the approximated cumula-
tive densities.

At last, we used formula (6.2) to get the final probability density func-
tion. As stated before, this density depends on how many terms are used
in the calculation. It has significance of likelihood function. To get correct
probability, we should normalize this function so that sum of all values is 1.

Results are shown in figure 6. It can be seen, that the area with highest
probability density is located near real value. Value of the parameter a was
determined much better than value of b. Some bias was to be expected, since
the generated curve was random (and its KLE coefficients need not to lie
exactly in the center of the region of highest probability). There were several
false areas of high probability, but the point with highest probability was
very near the correct value (red dot).



Figure 6.1: Probability density calculated from (6.2) using only the first 30
(up), 50 (middle) and all 100 coefficients. The point with the highest value of
the probability for the most precise result lies right under the correct value.
Estimated values of parameters are a = 0.8, b = 30.
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Conclusions

Methods similar to ours were proposed by some other authors. Each of
those methods has certain disadvantages when compared to method pro-
posed here. For example [Vaughan, 2010] proposed Bayesian method for
processing power spectra, but it was based on an assumption of Gaussian
distribution of data. Another method, described by [Muller and Madejsky,
2009], used better Bayesian approach but still used χ2 statistics for estimates
of likelihood probability. It would be interesting to compare results of these
methods on the same problem.

Also, more investigation should be done with regards to the sensitivity
of the proposed method to various influences, like different distributions of
the data. Although the method appears to be working on numerical exam-
ples, an application to real world data could provide some useful pointers.
Unfortunately, processing of real X-ray data proved to be time consuming
task mostly outside of the scope of this work.

Even with those things missing, we were still able to provide description
of new statistical method and provide the most basic test of its functionality.
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And as a bonus, here is a picture of kitten:

. . . because everybody likes kittens.
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