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Introduction

In this thesis, we present an overview of some recent developments in extremal

combinatorics, particularly of results concerning hypergraph jumps.

We begin with an exposition of the framework of flag algebras developed by

Razborov [10], building on previous work by Lovász and Szegedy [8] on graph

limits. This calculus allows us to infer relations between limit densities of fixed

subgraphs by providing an algebraic formalization of arguments typical in the

field, such as averaging over all choices of some parameter. Applying this frame-

work has several advantages. Its concise nature allows for very short proofs of

many classical theorems. This is illustrated in Section 2.1, where we give a proof

of Turán’s theorem by a short computation in flag algebras A0 and A1. Further-

more, the formalism allows for a computerized search for the relations useful in

proving conjectures or improving existing bounds. The latter property plays a

key role in Section 2.2, where we discuss a technique used by [1,11] to bound the

Turán density of a general finite family of r-uniform hypergraphs.

In Chapter 3, we discuss Erdős’ question about hypergraph jumps, which can

be roughly stated as follows: for what values of α are we guaranteed to find an

r-uniform subgraph of density α+ c (where c depends only on α and r) in every

sufficiently large r-uniform graph with the density of slightly more than α? (The

reader is referred to Definition 3.2.1 for a precise statement.) Both positive and

negative results can be obtained using a characterization developed by Frankl

and Rödl [7], discussed in Section 3.2. Their theorem reduces the question to

finding a family of r-uniform graphs whose Turán density satisfies certain relation.

Baber and Talbot [1] applied flag algebras to give sufficiently good bounds on this

density and thus proved the existence of non-trivial jumps for r = 3. Their result,

based on solving a semidefinite program of considerable size using a computer, is

discussed in Section 3.3. We provide a software implementation of their method.

The source code for this program is available on the attached DVD.

6



Chapter 1

Flag algebras

In this section, we review a framework developed by Razborov in [10], which for-

malizes certain typical arguments used in asymptotic extremal combinatorics. In

line with [10], we present the definitions in their general forms using the language

of finite model theory while also supplementing this with specific examples.

1.1 Basic definitions

We fix a universal first-order theory with equality and infinite models in a lan-

guage containing only predicate symbols. Specifically, in this thesis, we are inter-

ested in the theory TG of all undirected graphs and the theories Tr of r-uniform

hypergraphs (with predicates representing edges). The ground set of a model M

from this theory is denoted V (M). This notation corresponds with the fact that

our models are graphs and their ground sets are their vertex sets.

For U ⊆ V (M) we define M |U to be the submodel induced by U . We let

M − U := M |V (M)\U . A model embedding α : M → N is an injective mapping

α : V (M) → V (N) inducing an isomorphism between M and N |im(α). The

existence of an isomorphism between the models M and N is denoted by M ≈ N

and Mn represents the set of all models (up to isomorphism) with a ground set

of size n. Thus, in the theory TG, Mn represents all non-isomorphic graphs of

size n.

Definition 1.1.1. A type σ is a model with ground set [k] := {1, . . . , k} for

some non-negative integer k. A σ-flag is a pair (M, θ) where M is a model

and θ : σ → M is a model embedding. A flag embedding α : F → F ′ where

F = (M, θ) and F ′ = (M ′, θ′) are σ-flags, is a model embedding such that θ′ = αθ.

Two flags are isomorphic if there is a one-to-one flag embedding between them.

The set of all σ-flags is denoted by Fσ and its restriction to flags of size l by

Fσl . In the context of our theory TG, a type is a graph with vertices labeled by

[k], and a flag is a graph with several vertices distinguished using labels [k].
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We call the collection V1, . . . , Vt of finite sets satisfying the condition Vi∩Vj =

C for all distinct i, j ∈ [k] a sunflower with the center C and petals V1, . . . , Vt.

We consider the probability space of induced submodels of a fixed (large) model:

Definition 1.1.2. For M ∈ Ml and N ∈ ML with l ≤ L we let p(M,N) be the

probability that a uniformly randomly chosen subset U of V (N) of size l satisfies

M ≈ N |U .

Definition 1.1.3. For a fixed type σ of size k and integers l, l1, . . . , lt ≥ k satis-

fying

l1 + . . .+ lt − k(t− 1) ≤ l,

and F = (M, θ) ∈ Fσl , Fi ∈ Fσli , we denote by p(F1, . . . , Ft;F ) the probability that

uniformly randomly generated sunflower with center im(θ) and petals Vi of sizes

li satisfies F |Vi ≈ Fi for all i ∈ [t]. (For t = 1 this coincides with the previous

definition.)

The function p is the key quantity of our interest and the basis for the defini-

tion of flag algebras. We first give a simple observation [10, Lemma 2.2]:

Lemma 1.1.4 (Chain rule). Consider σ-flags Fi ∈ Fσli for i ∈ [t]. Take s ∈ [t],

a flag F ∈ Fσl and l̃ ≤ l such that:

l̃ + ls+1 + · · ·+ lt − |σ|(t− s) ≤ l,

l1 + · · ·+ ls − |σ|(s− 1) ≤ l̃.

Then

p(F1, . . . , Ft;F ) =
∑
F̃∈Fσ

l̃

p(F1, . . . , Fs; F̃ )p(F̃ , Fs+1, . . . , Ft;F ).

Proof. Let F = (M, θ). Consider another way of uniformly generating a random

sunflower (V1, . . . ,Vt):

First generate uniformly and randomly the sunflower (Ṽ ,Vs+1, . . . ,Vt) with

the center im(θ) and petals of sizes l̃, ls+1, . . . , lt. Then, within Ṽ generate uni-

formly and randomly a sunflower (V1, . . . ,Vs) with center im(θ) and petals of

sizes l1, . . . , ls. This also leads to a uniform distribution and the identity we are

proving becomes the formula of total probability with the right-hand side corre-

sponding to the partition of the probability space according to the isomorphism

type of F |Ṽ .

The following lemma motivates us to consider the vector space of all linear

combinations of flags as a basis of our framework since it shows that, asymptoti-

cally, the function p(F1, . . . , Ft;F ) is multiplicative in the parameters F1, . . . , Ft.
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Lemma 1.1.5. [10, Lemma 2.3] Let Fi ∈ Fσli for i ∈ [t] and F ∈ Fσl . Then∣∣∣p(F1, . . . , Ft;F )− p(F1;F ) · . . . · p(Ft;F )
∣∣∣ ≤ (l1 + . . .+ lt)

O(1)

l
. (1.1)

Proof. Note that the difference between the two expressions corresponds to pick-

ing the elements differently. In the first expression, the randomly chosen sets

forming the petals of the sunflower can’t overlap, while the second case allows

this.

Let F = (M, θ). Choose uniformly, randomly and independently the sets

Vi ⊆ V (M) with sizes li satisfying im(θ) ⊆ Vi for all i ∈ [t]. Consider the

following two events:

A . . . ∀i ∈ [t](Fσ|Vi
≈ Fi),

B . . . the sets Vi \ im(θ) are disjoint.

The left-hand side of the inequality (1.1) now becomes
∣∣P [A|B] − P [A]

∣∣. This

can be bounded from above by:

1− P [B] ≤
∑
i 6=j

P [im(θ) ( (Vi ∩ Vj)] ≤
(l1 + . . .+ lt)

O(1)

l
,

and the lemma follows.

Let RFσ be the space of all formal finite linear combinations of σ-flags and

let Kσ be its linear subspace generated by the elements of form

F̃ −
∑
F∈Fσl

p(F̃ , F )F, (1.2)

for F̃ ∈ Fσ
l̃

and |σ| ≤ l̃ ≤ l. The set Kσ represents the set of zeros in our algebra.

Definition 1.1.6 (Flag algebra Aσ).

Aσ := (RFσ)/Kσ.

We conclude this section with several examples, which are also used to fix

some notation. In the theory TG of all simple graphs (without loops and parallel

edges), there is a unique type of size 0 – when there is no risk of confusion, we

also use 0 to represent this type. Note thatMl = F0
l . There are three non-empty

types of size at most 2, denoted by 1, E and E:

1 1 2 1 2
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The set FE3 contains the following four (non-isomorphic) E-flags:

1 2 1 2 1 2 1 2

Below is an example of an element of KE (and thus also of RFE):

1 2

−1

2
×

1 2

−1×
1 2

−1

2
×

1 2

−1

2
×

1 2

−1

2
×

1 2

1.2 Operators

Typically, given a fixed set of models M1, . . . ,Mt, our goal is to understand the

relations between p(Mi, N) that always hold for N ∈ML as L→∞. To achieve

this, our plan is to encode the assumptions of our theory using the notation of

flag algebras. We then use the operators defined in this section to take these

assumptions and infer additional propositions from them.

1.2.1 Flag multiplication

We define the product of two flags F1 ∈ Fσl1 , F2 ∈ Fσl2 as

F1 · F2 :=
∑
F∈Fσl

p(F1, F2;F )F, (1.3)

where l ≥ l1 + l2 − |σ| is chosen arbitrarily. This mapping is extended onto

(RFσ)⊗ (RFσ) by linearity (where ⊗ denotes Cartesian product). The following

Lemma shows the correctness of the definition:

Lemma 1.2.1. Razborov [10, Lemma 2.4]

(a) The right-hand side of (1.3) is independed of the choice of l (modulo Kσ).
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(b) The equation (1.3) induces a bilinear mapping Aσ ⊗Aσ → Aσ.

Proof. (a) Let l ≥ l̃ ≥ l1 + l2 − |σ|. We have:∑
F∈Fσl

p(F1, F2;F )F =
∑
F∈Fσl

∑
F̃∈Fσ

l̃

p(F1, F2; F̃ )p(F̃ , F )F

=
∑
F̃∈Fσ

l̃

p(F1, F2; F̃ )
∑
F∈Fσl

p(F̃ , F )F

=
∑
F̃∈Fσ

l̃

p(F1, F2; F̃ )F̃ mod Kσ.

(b) We have to show that ∀f1 ∈ Kσ ∀F ′ ∈ Fσ ⇒ f1 · F ′ ∈ Kσ; the rest follows

from symmetry of (·) and linearity of RFσ. We may also assume that f1 has

the form (1.2). Therefore, we need to show:(
F̃ −

∑
F∈Fσl

p(F̃ , F )F
)
· F ′ = 0.

By the already proven part a, we may compare the following expressions:

F̃ · F ′
∑
F∈Fσl

p(F̃ , F )F ·F ′

by expanding them as summations over FσL for common L. Looking at a

particular F̂ ∈ FσL , its coefficient in the left expression is p(F̃ , F ′; F̂ ) while

the coefficient in the expression on the right is
∑

F∈Fσl
p(F̃ , F )p(F, F ′; F̂ ).

The equality follows from the chain rule of Lemma 1.1.4.

We again give several examples:

1

·
1

=

1

+

1

1

·
1

=
1

2
×

1

+
1

2
×

1

2

1

·
1

2

=
1

2
21

+
1

2
21
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1.2.2 Unlabelling – the downward operator

The downward operator is a linear operator acting between different flag algebras

Aσ and Aσ′
for |σ| > |σ′|. It allows us to unlabel some (or all) vertices of our flags

by averaging and thus obtain statements about flags of a smaller type. Typically,

we need to perform an unlabelling step at least at the end of our arguments, since

we are mostly interested in statements about graphs, i.e., the elements of F0.

Definition 1.2.2. For a type σ of size k and an injective mapping η : [k′]→ [k],

we define σ|η to be the type induced by im(η), i.e. for any predicate symbol

P (x1, . . . , xr) and any i1, . . . , ir ∈ [k′] the following holds:

σ|η |= P (i1, . . . , ir)⇔ σ |= P (η(i1), . . . , η(ir)).

Furthermore, given a σ-flag F = (M, θ), the σ|η-flag F |η is defined as F |η :=

(M, θη).

Now, we can define the downward operator:

Definition 1.2.3. For a type σ and η, k, k′ as in the previous definition, we define

a mapping [·]σ,η from Fσ to Fσ|η as follows:

[F ]σ,η := qσ,η(F ) · F |η,

where qσ,η(F ) for F = (M, θ) is the probability that a uniformly randomly chosen

injective mapping θ : [k]→ V (M) satisfying θη = θη defines a model embedding

σ →M and (M,θ) ≈ F holds.

Informally speaking, the coefficient q is equal to the probability that a random

“extension” of the labeling of a partially unlabeled flag produces, again, the

original flag (or an isomorphic one).

Let us illustrate this operator on a few examples. We let η1 and η2 be mappings

[1]→ [2], with η1(1) = 1 and η2(1) = 2. The empty mapping is denoted by 0 and

dropped from notation by setting [F ]σ := [F ]σ,0.

[ 1

2

]
E,η1

=
1

2
×

1

[ 1

2

]
E,η2

=

1

[(
1

)2]
1

=
1

3
+
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1.2.3 Upward operator

The upward operator complements the one from the previous section. Having

our example theory TG in mind, the upward operator allows us to, e.g., take

the propositions we know about graphs, or rather about F0, and translate them

into propositions about Fσ.

For this to work, we need an easy assumption of non-degeneracy of a type

and also a variant of the operator defined in the previous section, which not only

unlabels a subset of vertices, but completely removes them from the flag.

Definition 1.2.4. A type σ is non-degenerate if |Fσl | > 0 ∀l ≥ |σ|.

Definition 1.2.5. Let σ be a non-degenerate type of size k and η : [k′]→ [k] an

injective mapping. For a σ-flag F = (M, θ), we define

F ↓η := F |η − θ([k] \ im(η)).

We can now define the upward operator:

Definition 1.2.6. Let σ, η, k, k′ be as in the previous definition. The upward

operator πσ,η(·) is the following mapping from Aσ|η to Aσ:

πσ,η(F ) :=
∑{

F̂ : F̂ ∈ Fσl+d ∧ F̂ ↓η = F
}
,

where d := k − k′ is the number of vertices removed by (·) ↓η.

Informally, for a given type σ, vertex removal operation determined by η, and

a σ|η-flag F , the operator returns the sum of all σ-flags for which the vertex

removal (·) ↓η results in F .

Again, we illustrate the definition on some examples below. Recall the map-

pings η1 and 0 from the example at the end of the Section 1.2.2. As usual, we

drop the empty mapping from the notation by setting πσ := πσ,0.

π1
( )

=

1

+

1

+

1

πE,η1
(

1

)
=

2

1

+

2

1
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1.3 Semantics

Recall that Lemma 1.1.5 says that the function p is “almost” multiplicative. In

other words, the difference between p(F1, F )·p(F2, F ) and p(F1 ·F2, F ) approaches

0 for |V (F )| → ∞. Thus, the mapping F → p(F, F̂ ) should converge to an algebra

homomorphism for large flags F̂ . In this section, we consider the set of all such

limiting homomorphisms and determine which of them correspond to valid density

assignments. Deciding a statement in extremal combinatorics is then equivalent

to deciding whether the statement holds for all of these homomorphisms.

Definition 1.3.1. Let σ be a non-degenerate type. We define Hom(Aσ,R) to be

the set of all algebra homomorphisms between Aσ and R.

Therefore, for every φ ∈ Hom(Aσ,R) we have φ(F1) · φ(F2) = φ(F1 · F2) for

all σ-flags F1, F2 and φ(1σ) = 1.

Definition 1.3.2. Let σ be a non-degenerate type. Denote by Hom+(Aσ,R) the

set of all φ ∈ Hom(Aσ,R) such that ∀F ∈ F σ : φ(F ) ≥ 0. We define the

semantic cone Csem(Fσ) to be the set:

{f ∈ Aσ : ∀φ ∈ Hom+(Aσ,R)(φ(f) ≥ 0)}.

In the theory TG of graphs, the elements of Hom+(Aσ,R) correspond to lim-

iting objects of convergent sequences of graphs, as discussed in [8] and [10]. The

semantic cone Csem(Fσ) represents the (polynomial) statements that hold for all

such objects.

For example, we can express Mantel’s theorem as:

max
φ
{φ(K2) : φ ∈ Hom+(A0,R) ∧ φ(K3) = 0} =

1

2
,

where Kr ∈ F0 is a complete graph on r unlabeled vertices.

To make our proofs more readable, we introduce the following natural nota-

tion:

Definition 1.3.3. For f, g ∈ Aσ the statement f ≤σ g is defined as:

(g − f) ∈ Csem(Fσ).

The subscript σ is dropped when the choice of the type is clear from the context.

We have already mentioned that the operators introduced in Section 1.2 cor-

respond to inference rules of our calculus. This is formalized by the following

easy proposition. (The definition of the operators is extended from flags to sets

of flags in the straightforward way.)

14



Proposition 1.3.4. Let σ be a non-degenerate type of size k and η : [k′] → [k]

be an injective mapping. It holds that:

(a) [Csem(Fσ)]σ,η ⊆ Csem(Fσ|η) and

(b) πσ,η(Csem(Fσ|η)) ⊆ Csem(Fσ)

The next definition provides us with an initial set of true statements:

Definition 1.3.5. The ordinary cone C(Fσ) is defined as the set of elements

of the form f 2F1F2 . . . Ft, where f ∈ Aσ and Fi ∈ Fσ for i ∈ [t].

Clearly, C(Fσ) ⊆ Csem(Fσ) and thus ∀f ∈ C(Fσ) : [f ]σ ≥ 0. The following

proposition will be particularly useful in the next chapter.

Proposition 1.3.6. The following holds for any positive semidefinite quadratic

form Q and F1, . . . , Ft ∈ Aσ:

[Q(F1, . . . , Ft)]σ ≥ 0.

Finally, we can easily obtain the Cauchy-Schwarz type inequalities:

Proposition 1.3.7. It holds for any f, g ∈ Aσ:

[f 2]σ,η · [g2]σ,η ≥ [f · g]2σ,η.

1.3.1 Graph limits

We now proceed to prove that the definition Csem(Fσ) indeed captures the in-

tended semantics.

Definition 1.3.8. Let σ be a non-degenerate type. An increasing sequence is

a sequence of σ-flags

F1, F2, . . . , Fn, . . .

such that |F1| < |F2| < . . . < |Fn| < . . . We call an increasing sequence of σ-flags

{Fn} convergent if the limit limn→∞ p(F, Fn) exists for all F ∈ Fσ.

We assign each σ-flag F̂ a point pF̂ in an infinitely dimensional space [0, 1]F
σ
:

pF̂ (F ) := p(F, F̂ ).

The compactness of [0, 1]F
σ

implies that every increasing sequence of σ-flags

contains a convergent subsequence. Similarly, each φ ∈ Hom+(Aσ,R) can be

viewed as a point from this space and Hom+(Aσ,R) can thus be interpreted as a

(compact) subset of [0, 1]Fσ.

15



Theorem 1.3.9. [10, Theorem 3.3]

(a) If a sequence {Fn} of σ-flags is convergent, then limn→∞ p
Fn ∈ Hom+(Aσ,R).

(b) If φ ∈ Hom+(Aσ,R), then there exists a sequence {Fn} of σ-flags such that

limn→∞ p
Fn = φ.

Proof. (a) We need to verify that the limiting point of the sequence {pFn}, when

considered as a mapping from Fσ to [0, 1], is an algebra homomorphism

between Aσ and R. The expression (1.2) is mapped to zero for every Fn
(provided that l in this expression is chosen so that l ≤ |Fn|). The condition

(1.3) on flag multiplication is satisfied by pFn in the limit by Lemma 1.1.5.

We conclude that limn→∞ p
Fn ∈ Hom+(Aσ,R).

(b) Consider φ ∈ Hom+(Aσ,R). The fact φ(1σ) = 1 together with (1.2) implies:∑
F∈Fσl

φ(F ) = 1.

Thus, φ defines a probability measure on Fσl for every l ≥ |σ|. We gener-

ate a random sequence Fn by choosing Fn ∈ Fσn2 , where the probability of

generating a particular F ∈ Fσn2 is φ(F ). It suffices to show:

P [ lim
n→∞

pFn = φ] = 1.

This is equivalent to showing that ∀F ∈ Fσl and ∀ε > 0 the following holds:

P [∃n0 such that ∀n ≥ n0 : |p(F,Fn)− φ(F )| ≤ ε] = 1.

For n2 ≥ |σ|, using 1.2:

E[p(F,Fn)] =
∑

Fn∈Fσ
n2

p(F, Fn)φ(Fn) = φ(F ).

Next, calculate the variance:

Var[p(F,Fn)] = E[p(F,Fn)2]− φ(F )2

= E[p(F,Fn)2]− p(F, F ;Fn)

=
∑

Fn∈Fσ
n2

p(F, Fn)2φ(Fn)−
∑

Fn∈Fσ
n2

p(F, F ;Fn)φ(Fn)

∈ O(1/n2),

since the difference between p(F, Fn)2 and p(F, F ;Fn) is inO(1/n2) by Lemma

1.1.5. The statement of the theorem now follows from Chebyshev inequality

and Borel-Cantelli Lemma.
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We now formulate a corollary of Theorem 1.3.9 which links Hom+(Aσ,R) and

the study of polynomial relations in asymptotic extremal combinatorics:

Corollary 1.3.10. [10, Corollary 3.4]

Let F1, . . . , Ft ∈ Fs be σ-flags and f : Rt → R be a polynomial. It holds that

f(F1, . . . , Fh) ∈ Csem(Fσ)

if and only if

lim inf
l→∞

min
F∈Fσl

f(p(F1, F ), . . . , p(Fh, F )) ≥ 0.
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Chapter 2

Estimating Turán densities

In this chapter, we apply flag algebras to the problem of bounding the Turán

density of a fixed finite family. This is a fundamental task in dense extremal

combinatorics. We shall see that the framework of flag algebras not only provides

a concise way to express these arguments but it also allows to formulate the search

for such arguments in terms of solving a semidefinite program.

2.1 Turán’s theorem

The following theorem due to Turán is one of the most classical results in extremal

combinatorics:

Theorem 2.1.1. If a simple undirected graph G = (V,E) on n vertices has no

copy of Kp (p ≥ 2), then

|E| ≤
(

1− 1

p− 1

)n2

2
.

This inequality is (asymptotically) tight, with the extremal example being

a complete (p − 1)-partite graph with partitions of (almost) equal sizes. We

postpone the proof of this theorem to Section 3.1 and discuss only the special

case p = 3, which is known as Mantel’s theorem:

Theorem 2.1.2. If a simple undirected graph G = (V,E) on n vertices has no

triangle, then

|E| ≤ n2

4
+O(n).

Here, we first present the proof of the theorem and identify its key parts. We

then proceed to give an analogous proof using flag algebras. Our hope is to illus-

trate how the individual arguments translate to our framework while highlighting

the systematic nature of the resulting proof.
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Proof. As usual, for a vertex v ∈ V the number of edges incident with v is

denoted by deg(v). First, we estimate the number of edges by looking at 3-vertex

configurations:

|E| ≥ 1

n

∑
{u,v}∈E

(
deg(u) + deg(v)

)
.

This inequality holds because every edge contributes at most n to the sum –

otherwise the vertices u and v would have a common neighbour which would

result in a triangle. We can rewrite the sum as∑
{u,v}∈E

(
deg(u) + deg(v)

)
=
∑
v∈V

deg2(v),

since each vertex v contributes deg(v) times to the sum on the left-hand side.

Applying Cauchy-Schwarz inequality, we get:∑
v∈V

deg2(v) ≥ 1

n

(∑
v

deg(v)
)2

=
4|E|2

n
.

Therefore |E| ≥ 4|E|2

n2
which implies the theorem.

Note the two key parts of the above proof:

1. inspecting possible subgraphs of size l = 3 and

2. using Cauchy-Schwarz inequality to exploit the information about 1-vertex

overlaps between 2-vertex subgraphs obtained from the inspection of l-

vertex subgraphs.

Omitting the second step would leave us with a significantly worse bound: 3-vertex

graphs without K3 have 0, 1 or 2 edges. Thus, using only the first argument, we

would get the bound

|E| ≤ 2

3
· n

2

2
.

Increasing l to 5 would improve the multiplicative factor from 2
3

to 3
5
, but the

averaging argument of this kind is not strong enough to yield the tight bound.

We now reformulate the proof of the assymptotic version of the theorem in

terms of flag algebras:

Proof. Our aim is to prove the following:

max
φ
{φ(K2) : φ ∈ Hom+(A0,R) ∧ φ(K3) = 0} =

1

2
.

Analogously to the previous proof, we start by estimating the edge density φ(K2)

in terms of flags of size 3. This is made possible by the relation 1.2:
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=
1

3
× +

2

3
× + ≥ 2

3
×

We omitted K3, since φ(K3) = 0. We also discarded the flag with a single edge:

since it is not present in our conjectured extremal example (a complete bipartite

graph), our hope is that it does not play a significant role in proving the theorem.

To apply Cauchy-Schwarz inequality, we distinguish one of the flag’s vertices by

labeling it (in the last equality, we again drop the flag containing a triangle):

2

3
× = 2×

[
1

]
1,0

= 2×
[(

1

)2]
1,0

The Cauchy-Schwarz inequality, as presented in Proposition 1.3.7 and applied

with g = 1, now yields:

2×
[(

1

)2]
1,0
≥ 2×

( )2

Thus, we arrive at the following:

≥ 2×
( )2

Solving this inequality for φ(K2) concludes the proof.

In general, we are going to apply the two techniques discussed above for

estimates on |E| for families of prohibited graphs (or r-uniform hypergraphs)

more general than {K3}. Naturally, using larger values of l (i.e., using bigger

flags) and/or considering overlaps of size larger than 1 (i.e., using larger type

σ) result in better estimates. On the other hand, with bigger flags of larger

types, it can be computationally prohibitive to find the right inequalities to use

by computer search. This will be discussed in the next two sections. Finally, we

note that while the above proof uses only a single trivial type K1, using several

types might be necessary to obtain good bounds for harder problems.
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2.2 Bounding Turán densities using flag alge-

bras

Recall that an r-uniform hypergraph (or shortly r-graph) is a tuple H = (V,E)

where E ⊆
(
V
3

)
. We follow the standard graph theory terminology [3] while

stressing that subgraphs do not necessarily have to be induced (unless stated

otherwise).

Definition 2.2.1. Let H be a finite family of r-uniform hypergraphs. We call an

r-graph H-free if it does not contain any graph H ∈ H as a subgraph. The set of

all H-free non-isomorphic r-graphs on n vertices is denoted by Hn. The density

d(H) of an r-graph H is defined as:

d(H) :=
|E(H)|(|V |

r

) .

We sometimes refer to H-free graphs as admissible when the choice of the

family of the prohibited subgraphs is clear from context.

Definition 2.2.2. The Turán density π(H) of a finite family of r-graphs H is

defined as the following limit:

π(H) := lim
n→∞

max{d(H) : H ∈ Hn}. (2.1)

In the following, we assume that the family of forbidden r-graphs does not

contain a graph with no edges, since that results in a pathological situation where

the maximum is taken over an empty set.

Using an averaging argument as in the previous section, we can obtain the

following bound for any fixed l:

π(H) ≤ max{d(H) : H ∈ Hl}.

Combined with the compactness of the interval [0, 1], this also shows the existence

of the limit in (2.1) for any H. In the remainder of the section, we describe a

method applied in [11] and [1] to find a better upper bound on π(H) using a

calculation in flag algebras based on the theory of all admissible r-graphs.

Let us fix an ordering of all non-isomorphic admissible r-uniform hyper-

graphs Hl = {H1, H2, . . . , Hs} where l is a fixed natural number. Also, let

Hσ
n = {F σ

1 , F
σ
2 , . . . , F

σ
r } denote the set of all σ-flags of size n not containing

any of the prohibited graphs as a subgraph. Consider t triples (σi,mi,Q
i), where

σi is a type, mi is a natural number such that 2mi − |V (σi)| ≤ l (this ensures

that two σi-flags of size mi overlapping on σi fit into a graph with l vertices) and

finally Qi is a positive semidefinite matrix of type |Hσi
mi
| × |Hσi

mi
|.
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The matrices Qi can be found using semidefinite programing while the exact

choice of t and σi,mi is a matter of some experimentation. Ideally, we would use

all types of a certain size but this can be computationally intractable.

First, we again express the density as a sum of 0-flags of size l:

Kr = d(H1)×H1 + . . .+ d(Hs)×Hs, (2.2)

where Kr denotes the flag consisting a single unlabeled hyperedge. Using Propo-

sition 1.3.6 for quadratic forms defined by Qi, we get the inequality:

0 ≤ [Qi(F1, . . . , Fr)]σi where Fj ∈ Hσi
mi
.

Now, we multiply the flags and group the coefficients of each Hi:

0 ≤
[∑
a,b

(Qi)a,b(Fa · Fb)
]
σi

(2.3)

=
[∑
a,b

(Qi)a,b
∑

H∈Hσil

p(Fa, Fb;H) ·H
]
σi

(2.4)

= ci1 ×H1 + . . .+ cis ×Hs (2.5)

Here, cij is the sum of all coefficients in front of a 0-flag Hj. Note that this sum can

be 0, e.g., if Hj does not contain a copy of the graph σi as an induced subgraph.

Summing these inequalities for all i ∈ [t] with (2.2) yields:

Kr ≤ c1 ×H1 + . . .+ cs ×Hs,

where cj = d(Hj) +
∑

i c
i
j.

Now recall that in Section 1.3.1, we defined a certain set of homomorphisms

from A0 to R, denoted by Hom+(A0,R), and proved in Theorem 1.3.9 that these

homomorphisms correspond to convergent sequences of graphs. We want to show

that φ(Kr) is bounded by a universal constant for all φ ∈ Hom+(A0,R), since

this immediately implies a bound on the limit edge density in every convergent

sequence. Because φ is a homomorphism to R, we can use the simple fact that

the weighted average of a set of real numbers is at most the maximum of the set.

Thus, we get the bound:

π(H) ≤ max
j
{cj}. (2.6)

The positive semidefinite matrices Qi minimizing this bound for a given choice

of the types σi and the flag sizes mi can be found using a semidefinite program-

ming solver, e.g. CSDP [2].
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2.3 Example – a bound on π({K−4 })
Baber and Talbot [1] applied flag algebras to give bounds on Turán density for

several families of 3-graphs. We discuss their results in more detail in Section

3.3. Here, we present one of their bounds to illustrate the method.

The graph K−4 is complete 3-uniform graph on 4 vertices without an edge:

K−4 =
{
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}

}
.

The value of Turán density π({K−4 }) is conjectured to be 2/7 ≈ 0.2857. Baber

and Talbot [1] prove the following theorem:

Theorem 2.3.1. The Turán density of K−4 satisfies:

π({K−4 }) ≤ 0.2871.

This theorem is a result of a computation in flag algebras using the method

described in the previous section. Specifically, they choose to analyze all 3-graphs

of size l = 7 and use the following choice of σi = ((Vi, Ei), θi) and mi:

V1 = [3], E1 = ∅, m1 = 5,

V2 = [3], E2 = {123}, m2 = 5,

V3 = [4], E3 = {123}, m3 = 5,

V4 = [5], E4 = {123, 124, 125}, m4 = 6,

where we use the notation xyz to denote the set {x, y, z} and θi is an identity on

Vi for all i ∈ [4]. The subsequent optimization yields Theorem 2.3.1.

2.4 Computational aspects

In the previous section, we have seen how the problem of bounding π(H) can be

turned into a semidefinite program minimizing (2.6). However, since the number

of non-isomorphic admissible r-graphs grows exponentially, the sizes of the matri-

ces Qi increase rapidly, making the solution of the semidefinite program difficult

to obtain. Razborov [11] has shown several methods to reduce the computational

complexity of this task.

The method applied in [1] exploits the fact that semidefinite solvers run in

time bounded by a polynomial in the sum of the sizes of the blocks in the block-

diagonal structure of the matrices involved. Thus, for each i, type σi and flag

size mi, we consider the space of all linear combinations of admissible flags Hσi
mi

,

denoted by RHσi
mi

, and find a basis with respect to which the quadratic forms to

be found have a block-diagonal structure. (We drop i from the notation, since

the argument is carried out for each i separately.)

Specifically, we find a base B of RHσ
m with the following two properties:
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1. B = B+ ∪ B−, where B+ ∩ B− = ∅,

2. for all B+ ∈ B+, B− ∈ B− we have [B+ ·B−]σ = 0.

The second property ensures that we can (after changing the coordinate frame)

restrict the search to just those positive semidefinite matrices Q that have a block-

diagonal structure with one block of size |B+| and one of size |B−|. Even more

formally, let T be the |Hσ
m| × |Hσ

m| matrix expressing the change of basis from

B to the trivial basis Hσ
m. In the subsequent optimization, we enforce Q to have

the stated block-diagonal structure and replace Q in (2.3) by TTQT. This has

a potential of significantly reducing the number of variables to be determined,

especially if the blocks have comparable sizes.

In the rest of this Section, we describe the construction of such a base B. Let us

fix a type σ = (H, θ) and a flag sizem. We begin by considering the automorphism

group Γ of all bijections α :V(σ)→ V (σ) satisfying (H, θ) ≈ (Hα, θα). For α ∈ Γ

and a flag F = (HF , θF ), we introduce the notation Fα for the σ-flag (HF , θFα).

First, we find bases for the following two subspaces of RHσ
m:

RHσ+
m = {L : L ∈ RHσ

m ∧ Lα = L∀α ∈ Γ},

RHσ−
m = {L : L ∈ RHσ

m ∧
∑
α∈Γ

Lα = 0}.

Note that RHσ+
m is the Γ-invariant subspace of RHσ

m, while RHσ−
m is the anti-

invariant one. Since every element of RHσ
m can be expressed as a sum of invariant

and anti-invariant elements, the union of the two subspaces spans the whole RHσ
m.

Therefore, our aim is to first find the bases B+ and B− for the subspaces RHσ+
m and

RHσ−
m , respectively. We then show that they indeed have the desired properties.

We begin the construction by taking the set Hσ
m of all admissible σ-flags of

size m along with the following equivalence relation:

Fa ∼ Fb if and only if ∃α ∈ Γ such that Faα = Fb.

We partition the set Hσ
m into classes of equivalence relation ∼. These (distinct)

classes are denoted by Q1, Q2, . . . , Qu and called orbits. The base of RHσ+
m is

formed by sums of individual orbits:

B+ = {
∑
F∈Oi

F : i ∈ [u]}.

To construct the base of RHσ−
m , we pick one arbitrary flag F̂i in each orbit Oi and

set

B− = {F̂i − F ′ : F ′ ∈ Oi ∧ F ′ 6= F̂i}.

Let us provide an example to illustrate the situation in the theory TG of all

graphs. Set m = 4 and consider the following type (labeled path on 3 vertices):

24



1
2 3

The group of automorphisms Γ consists of the identity mapping and the bijection

switching the elements 2 and 3. The set Hσ
4 consists of 8 graphs. The following

four of them are in orbits of size 1:

1
2 3

3

1
2 3

3

1
2 3

3

1
2 3

3

Each of these flags is an example of an element of B+. There are two orbits

of size 2, one of them formed by the following pair of graphs:

1
2 3

3

1
2 3

3

Again, the sum of these two flags is an element of B+. One possible element

of B− is below:

1×
1

2 3

3

−1×
1

2 3

3

We have already mentioned that the product of an element of B+ and an

element of B− should yield 0 after unlabeling. As an exampel of this property, it

can be easily verified that:

[
1

2 3

3

·
(

1
2 3

3

−
1

2 3

3 )]
σ

= 0.

This is established in full generality by the following lemma from [11]. This

lemma shows that the use of this coordinate frame indeed results in a block-

diagonal structure of the matrix Q.

Lemma 2.4.1. ∀B+ ∈ B+,∀B− ∈ B− we have [B+ ·B−]σ = 0.

Proof. We have B− = Fbα − Fb for a choice of Fb ∈ Hσ
m and α ∈ Γ as in the

construction above. Also, B+α = B+ for all B+ ∈ B+, α ∈ Γ. Therefore:

[B+ · (Fbα− Fb)]σ = [(B+α) · (Fbα− Fb)]σ
= [(B+α)(Fbα)− (B+ · Fb)]σ
= [(B+α)(Fbα)]σ − [(B+ · Fb)]σ
= [(B+ · Fb)]σ − [(B+ · Fb)]σ
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The last equality follows from [F ]σ = [Fα]σ for any σ-flag F and a permutation

α of V (σ).
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Chapter 3

Hypergraph jumps and

Lagrangians

In this chapter, we discuss the concept of hypergraph jumps and a related question

of Erdős. This question can be reduced by a theorem of Frankl and Rödl [7] to

finding a suitable family H of hypergraphs satisfying a certain inequality between

two of its properties – the Turán density of the family and its minimal Lagrangian.

The former of these two properties has already been discussed in Chapter 2.

The latter is the subject of Section 3.1. We then move on to describe the current

state of knowledge about hypergraph jumps and prove a theorem of Frankl and

Rödl relating them with Turán densities and Lagrangians. Finally, in Section 3.3

we discuss recent progress made by Baber and Talbot [1] for the 3-uniform case.

3.1 The Lagrange function of a hypergraph

The Lagrangian of a graph has been first introduced by Motzkin and Straus

[9] to provide another proof of the Turán’s theorem. Informally speaking, the

Lagrangian measures the maximal local density of a graph. Although there are

several ways to extend this property from graphs to r-graphs, the most natural

generalization will suffice for our purposes.

Definition 3.1.1. Fix an r-graph H with V (H) = [n]. The Lagrangian func-

tion of H is a function λH : Rn → R defined as follows:

λH(x) := r! ·
∑

{i1,...,ir}∈E(H)

xi1xi2 · · ·xir ,

where xi denotes the i-th coordinate of the vector x. The Lagrangian of H,

denoted by λ(H), is the maximum of this function on the simplex Sn ⊂ Rn given

by xi ≥ 0,
∑
xi = 1:

λ(H) := max
x∈Sn

λH(x).
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(The purpose of the multiplicative factor r! is mainly to normalize the possible

values to the [0, 1] interval.) For 2-graphs, there is a simple characterization of

the value λ(G) provided by the following lemma:

Lemma 3.1.2. Let G be a graph in which the largest clique has size p. Then:

λ(G) = 1− 1

p
.

It follows that for 2-graphs, the possible values of λ(G) form a discrete set

and also that the computation (or even a reasonable approximation) of λ(G) is

NP-hard. The easy proof of Lemma 3.1.2 can be found in [7] where it is derived

from a lemma stated below as Lemma 3.1.3. This lemma gives some insight into

how Lagrangians behave for general value of r. The situation for r ≥ 3 is more

complex.

Lemma 3.1.3. Let H be an r-graph (r ≥ 2) with V (H) = [n]. Among all vectors

x ∈ Sn (where Sn is the same simplex as in the previous definition) satisfying

λH(x) = λ(H), choose one for which the set J := {i : xi > 0} has minimal size.

For i, j ∈ J, i 6= j there exists e ∈ E(H) such that

{i, j} ⊆ e ⊆ J.

Proof. Suppose there exist indices i and j violating the statement of the lemma.

We proceed by adjusting x so that it has fewer non-zero positions. By symmetry,

we can assume:
∂

∂xi
λH(x) ≤ ∂

∂xj
λH(x).

Define δ := min{xi, 1− xj} and construct a vector z from x by setting:

zk :=


xi − δ for k = i

xj + δ for k = j

xk otherwise.

Clearly, z ∈ Sn and has fewer non-zero positions. Furthermore, we have

λH(z) = λH(x) + δ
( ∂

∂xj
λH(x)− ∂

∂xi
λh(x)

)
≥ λH(x),

since λH is linear in each variable and since

∂2

∂xi∂xj
λH(x) = 0,

which follows from i and j being non-neighbours.
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The following proof of Turán’s theorem, already mentioned in Section 2.1,

illustrates the usefullness of Lagrangians:

Theorem 3.1.4. Let G be a graph. If p is the order of the largest clique of G,

then

d(G) ≤ 1− 1

p− 1
.

Proof. By Lemma 3.1.2, we have:

λ(G) = 1− 1

p− 1
.

We also have:

2 · |E(G)| ·
( 1

n

)2

≤ λ(G),

since the left side of the inequality is the value of the Lagrangian function for the

vector with 1/n in each position. The statement of the theorem follows from the

observation that this is equal to the density d(G).

3.2 Hypergraph jumps

Let us start with a definition:

Definition 3.2.1. The number α, 0 ≤ α ≤ 1 is a jump for r if for any ε > 0

and any integer m,m ≥ r any r-hypergraph with N > N(ε,m) vertices and at

least (α+ ε)
(
N
r

)
edges contains a subgraph with m vertices and at least (α+ c)

(
m
r

)
edges, where c := c(α) does depend only on α.

Erdős-Stone-Simonovitz Theorem [5,6] implies that for r = 2, every α ∈ [0, 1)

is a jump. Erdős asked whether this also holds for all r ≥ 3 and in particular

whether α = r!/rr is a jump for every r. The first question has been answered

negatively in [7] by proving that 1 − l1−r is not a jump for r ≥ 3 and l > 2r.

However, whether r!/rr is a jump remains open even for r = 3. Baber and

Talbot [1] have found two intervals of jumps for r = 3, specifically [0.2299, 0.2316)

and [0.2871, 8/27). Their proof is discussed in Section 3.3 and uses the following

characterization developed by Frankl and Rödl [7]:

Theorem 3.2.2. The following statements are equivalent:

1. A real number α is a jump for r.

2. There exists a family of r-graphs H such that:

min
H∈H

λ(H) > α ≥ π(H).
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This theorem immediately implies the result that [0, r!/rr) is an interval of

jumps for every r ≥ 3, since λ(Kr) = r!/rr and pi({Kr}) = 0, where Kr denotes

the r-graph on r vertices with a single edge.

For our purposes, it suffices to prove the implication (2) ⇒ (1). We need the

following theorem of Erdős. We state it without a proof, which can be found

in [4]:

Theorem 3.2.3. Let {Gi} be an infinite sequence of r-graphs such that |V (Gi)| →
∞ as i→∞. If limi→∞ d(Gi) exists and is non-zero, then there exists a sequence

{Hi} of complete r-partite r-graphs with each color class of the same cardinality

such that Hi ⊆ Gi, |V (Hi)| → ∞ as i→∞ and limi→∞ d(Hi) = r!/rr.

We can now prove the implication (2) ⇒ (1) in Theorem 3.2.2.

Proof. Let H = {H1, H2, . . . , Ht} be a family of r-graphs as in the statement

of the theorem and let ε and m be as in the Definition 3.2.1. Our aim is to

find N = N(ε,m). The proof proceeds in the following steps: First, we show

that all sufficiently large r-graphs with density α + ε contain a large number of

copies of one of the graphs of H. In fact, their density in the r-graph can be

bounded from below by a constant. This allows us to apply Theorem 3.2.3 to

find a configuration of these copies isomorphic to any fixed “blow-up version”

of this graph (provided that the r-graph is big enough). Since the density of a

blow-up version of an r-graph approaches the value of its Lagrangian, we can

conclude the proof by setting c := minH∈H λ(H)− α.

Note that without loss of generality we can assume that all graphs in H have

the same number of vertices, denoted by l. We can add isolated vertices to graphs

of smaller size without affecting their Turán density or their Lagrangian.

Let n1 be such that for all n ≥ n1 the following holds:

n · (n− 1) · . . . · (n− r + 1)

nr
≥ α + ε/2

α + 2ε/3
.

Let nT (ε, α,H) be a number with the property that every graph on at least

nT (ε, α,H) vertices with density of at least α+ ε contains a copy of a graph from

H. Now, set n2 := max{n1, nT (ε, α,H)} and consider a graph G on at least n2

vertices. The expected density of a uniformly randomly chosen n1-vertex induced

subgraph of G is at least α + ε
2
. This implies that at least

ε

4

(
|V (G)|
n2

)
n2-subsets of V (G) induce a subgraph with density at least α + ε/4. Due to the

choice of n2, we know that each of these subgraphs contains a copy of an r-graph

30



from H. On the other hand, a single copy of Hi ∈ H cannot be contained in more

than (
|V (G)| − |V (Hi)|
n2 − |V (Hi)|

)
subgraphs. By pigeon-hole principle, there exists a number ĉ > 0 such that G

contains at least
ĉ

m

(
n

|V (Hi)|

)
copies of Hi for some choice of i provided that G has at least n3 = n3(n2, ĉ)

vertices. Similarly, we can argue that there exists a partition V (G) = V1 ∪ V2 ∪
. . . ∪ Vl (recall that l is the size of Hi) such that the density of the copies of Hi

with vertices in the same position, say vj ∈ Vj is

1

ll
ĉ

m

(
n

l

)
> c′

(
n

l

)
.

Now define an auxiliary l-graph based on the r-graph G in the following way.

Its vertex set is the same as G. To define the (l-uniform) edges, consider the

partition V1 ∪ V2 ∪ . . . ∪ Vl and the fixed ordering of the vertices of Hi as above.

The vertices {v1, v2, . . . , vl} form an edge of the l-graph if and only if vj ∈ Vj for

all i and the vertices {v1, . . . , vl} induce a copy of Hi respecting the fixed ordering

of V (Hi).

Since the density of this l-graph is at least c′, we can use Theorem 3.2.3

to obtain a complete l-partite subgraph of this l-graph. This implies that for

sufficiently large |V (G)|, the original graph G contains any blow-up of the graph

Hi constructed in the following way: each vertex vj ∈ V (Hi) is replaced by tj
copies of vj denoted by v1

j , . . . , v
tj
j . For every edge {vj1 , vj2 , . . . , vjr} of Hi, we

insert into the graph the edge-set of a complete r-partite r-graph with partitions

{v1
j1
, . . . , v

tj1
j1
}, . . . , {v1

jr , . . . , v
tjr
jr
}. It can be easily seen that an appropriate choice

of coefficients tj leads to a subgraph with density approaching λ(Hi): just set tj
proportionally to the weight of the vertex vj in the weighting maximizing the

Lagrangian function. This in turn implies that we can set c := minH∈H λ(H)−α,

which proves the theorem.

3.3 The existence of jumps for 3-uniform hyper-

graphs

By Theorem 3.2.2, proving that α is a jump for r can be reduced to finding

an appropriate family of r-graphs and estimating its Lagrangians and its Turán

density. Although calculating the Lagrangian is NP-hard, it can be easily done

for small r-graphs using numerical routines implemented in software packages like
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Mathematica. Providing good bounds on Turán density of families of r-graphs is

more problematic but the method presented in Chapter 2 gives some results.

In Section 2.3, we established the bound

π({K−4 }) ≤ 0.2871,

where K−4 is the 3-graph on vertices {1, 2, 3, 4} with edge set{
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}

}
.

Since the value of λ(K−4 ) is 8/27, we get the following:

Theorem 3.3.1 ( [1]). Every α ∈ [0.2871, 8/27) is a jump for r = 3.

Baber and Talbot [1] also established a bound on the Turán density of the

family of 3-graphs H′ = {H1, H2, H3, H4, H5}, where

H1 ={123, 124, 134},
H2 ={123, 124, 125, 345},
H3 ={123, 124, 235, 145, 345},
H4 ={123, 135, 145, 245, 126, 246, 346, 356, 237, 147, 347, 257, 167},
H5 ={123, 124, 135, 145, 236, 346, 256, 456, 247, 347, 257, 357, 167}.

We again use the notation xyz to represent the set {x, y, z}. We employ a

semidefinite program constructed using the method of Chapter 2 applied with

the following choices of σi = ((Vi, Ei), θi) and mi:

V1 = [1], E1 = ∅, m1 = 4,

V2 = [3], E2 = ∅, m2 = 5,

V3 = [3], E3 = {123}, m3 = 5,

V4 = [5], E4 = {123, 124, 135} m4 = 6,

V5 = [5], E4 = {123, 124, 345}, m5 = 6,

V6 = [5], E4 = {123, 124, 135, 245}, m6 = 6.

The subsequent optimization yields the bound π(H′) ≤ 0.2299. This and the

fact that the minimal Lagrangian of H′ is 0.2316 gives us the second interval of

hypergraph jumps:

Theorem 3.3.2 ( [1]). Every α ∈ [0.2299, 0.2316) is a jump for r = 3.
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Conclusion

In this thesis, we have studied the framework of flag algebras and discussed how it

can be applied to bound Turán densities of families of hypergraphs and to resolve

a question about hypergraph jumps.

The bounds on π({K−4 }) and on π(H′) from Section 3.3 are almost certainly

not tight. A better bound could be obtained by using more types and/or flags of

larger size. Even though we are able to generate semidefinite programs in some

of these situations, their size quickly becomes prohibitively large. Alternatively,

one could look at the inequality (2.6) and observe which ci’s achieve the maximal

value. Subsequently, one could try adding an ad-hoc Cauchy-Schwarz inequality

which has negative coefficients in front of the graphs Hi where the value of ci is

maximal. This has the potential of lowering the value of maxi{ci}. It should be

noted that the method described in Section 2.2 is capable, at least in some cases,

to obtain a tight bound on the Turán density using a semidefinite program of a

reasonable size (see, e.g., [11]).

A better bound on π({K−4 }) and on π(H′) would result in extending the

interval of hypergraph jumps. However, the pivotal question of whether 2/9 is

a jump for r = 3 cannot be answered by establishing a better bound on π(H′).
This follows from the fact that there are 3-graphs H with λ(H) > 2/9 that do

not contain any of the 3-graphs in H′ as a subgraph. By taking blow-ups of such

a graph H as in the proof of Theorem 3.2.2, we can obtain a graph with density

strictly larger than 2/9 without containing a 3-graph from H′ as a subgraph,

proving that π(H′) > 2/9.
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Appendix A

Semidefinite programming and

the CSDP library

Semidefinite programming refers to finding the optimal solution to the following

convex optimization problem:

Maximize tr(CTX)

subject to A(X) = b,

X � 0,

where X and C are n× n matrices, A(X) is a linear operator mapping an n× n
matrix into Rm and b is an m-vector. The values of C,b and A are fixed and the

search is done over all positive semidefinite matrices X, as expressed by X � 0.

We use semidefinite programming to bound Turán densities by minimizing the

maximum of a certain set of linear functions, each parametrized by a semidefinite

matrix Qi. This is only a minor difference from the optimization described above.

The presence of more than one matrix X to be searched for can be solved by

forming a block-diagonal matrix from all the matrices Qi. The transition from

maximization to minimization is trivial. Optimization of a maximum of a closed

set of objective functions can be performed by introducing several extra variables:

one for each objective function cj and then one additional variable c, which is

enforced to satisfy c ≥ cj∀j.
We use the CSDP library [2] to solve semidefinite programs. Specifically,

we apply its standalone solver that loads a prepared input file describing each

problem. The input files corresponding to some of the problems discussed in

this thesis can be generated using programs, which can be found on the attached

DVD. Below, we give a brief overview of the sparse input file format used by the

solver.

The input file consists of 5 sections. With the exception of the last one, all

sections are placed on a single line.

34



1. The number m of constraints.

2. The number of blocks in the block-diagonal structure of the matrices.

3. The sizes of individual blocks. Negative number indicates that the corre-

sponding block is actually diagonal.

4. Vector specifying the objective function. As mentioned above, in our case

we maximize only the value of the variable c. This vector is thus a vector

of all 0’s with the exception of one position, which is equal to 1.

5. The last section specifies the constraint matrices. Each line has the format:

<matrix no> <block no> <i> <j> <entry>

Here, matrix no denotes the index of the matrix (starting from 0), block no

identifies the block, i and j the position within the block and finally entry

specifies the matrix value on that position. Since the matrices are symmet-

ric, only the entries in the upper triangle are specified.
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