Abstract:

We give an overview of recent progress in the research of hypergraph jumps -- a problem from extremal combinatorics.
The number $\$$ alpha in $[0,1) \$$ is a jump for $\$ \mathrm{r} \$$ if for any $\$$ lepsilon $>0 \$$ and any integer $\$ \mathrm{~m} \backslash$ ge $\mathrm{r} \$$ any $\$ \mathrm{r} \$$-graph with $\$ \mathrm{~N}>\mathrm{N}($ lepsilon, m$) \$$ vertices and at least $\$($ alpha + lepsilon) $\{\mathrm{N}$ ไchoose r $\} \$$ edges contains a subgraph with $\$ \mathrm{~m} \$$ vertices and at least $\$($ alpha +c$)\{\mathrm{m} \backslash$ choose r$\} \$$ edges, where $\$ \mathrm{c}:=\mathrm{c}($ (alpha) $\$$ does depend only on $\$$ \alpha\$.
Baber and Talbot \cite $\{$ Baber $\}$ recently gave first examples of jumps for $\$ \mathrm{r}=3 \$$ in the interval $\$[2 / 9$, 1)\$.

Their result uses the framework of flag algebras \backslash cite $\{\operatorname{Raz07}\}$ and involves solving a semidefinite optimization problem.
A software implementation of their method is a part of this work.

