Abstract:

We give an overview of recent progress in the research of hypergraph jumps -- a problem from extremal combinatorics.

The number $\alpha \in [0, 1)$ is a jump for r if for any $\cosh > 0$ and any integer $m \ge r$ any r-graph with $N > N(\epsilon, m)$ vertices and at least $(\alpha + \epsilon) \in N$ vertices and at least $\alpha + \epsilon$ with m vertices and at least $\alpha + \epsilon$ and $\alpha + \epsilon$ with m vertices and at least $\alpha + \epsilon$ and $\alpha + \epsilon$ with $\alpha + \epsilon$ and $\alpha + \epsilon$ and $\alpha + \epsilon$ with $\alpha + \epsilon$ and $\alpha + \epsilon$ and $\alpha + \epsilon$ with $\alpha + \epsilon$ and $\alpha + \epsilon$ with $\alpha + \epsilon$ and $\alpha + \epsilon$ and

where $c := c(\alpha)$ does depend only on α .

Baber and Talbot \cite{Baber} recently gave first examples of jumps for r = 3 in the interval [2/9, 1).

Their result uses the framework of flag algebras \cite{Raz07} and involves solving a semidefinite optimization problem.

A software implementation of their method is a part of this work.