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Introduction

Kerdock codes represent one of the well known families of nonlinear binary error
correcting codes that contains more codewords than any comparable currently
known linear code for fixed length n and minimum distance d.

Kerdock codes K(m) can be constructed for each even integer m with the
following parameters

• length 2m,

• number of codewords 22m,

• minimum distance 2m−1 − 2
m
2
−1.

Theory of error-correcting codes was historicaly interested mainly in linear
codes over the finite fields Fq (usually q=2), i.e. subspaces of a vector space F

n
q ,

n ∈ N.
In 1968 high school student A. W. Nordstrom and J. P. Robinson construct-

ed (15, 256, 5) optimal nonlinear code (now we usually denote by Nordstrom-
Robinson code its extension by parity check). In the same year F. P. Preparata
defined a family of practicaly useful nonlinear codes. And finally, in 1972 A.M.
Kerdock in his article [21] described a construction of the family of optimal non-
linear binary codes. Due to their convenient parameters, these three discoveries
renewed an interest in nonlinear codes and supported their more intensive re-
search.

Shortly after the first definition of Kerdock codes, it was observed that they
behave like dual codes of Preparata codes of the same length in the sense that the
weight and distance distributions of these codes are connected via the MacWilliams
identity.

This property seemed very strange until a publication of article [15]. Ham-
mons et al. here showed that both, Kerdock and Preparata codes, are images of
dual codes over the ring Z4 under an appropriate mapping from Z

n
4 to Z

2n
4 .

The complete description of algebraic structure of Kerdock codes in both of
their forms then opened the doors to their extensive study with respect to another
areas of mathematics.

This master thesis describes basic constructions of both binary and quater-
nary Kerdock codes. Then the connection of Kerdock codes with another areas
of mathematics is investigated.

The thesis is divided into four chapters. The first chapter contains two basic
methods of definition of Kerdock codes. The second part connect the construc-
tion of Kerdock codes to theory of orthogonal and symplectic geometry. In the
third part, Kerdock codes are used for description of infinite sets of combinatorial
designs. And finally, the fourth chapter contains usage of Kerdock codes related
to the basic cryptographic primitives.
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Original definition of Kerdock codes, described in [21], uses the trace function
from the field F2m to F2. But now Kerdock codes are commonly defined in two
different ways described in Chapter 1.

The first method of construction shows the Kerdock code as a union of cer-
tain cosets of the first order Reed-Muller code RM(1, m) in the second order
Reed-Muller code RM(2, m) (see Definition 1.1.2). The second method define
Kerdock codes as images of Z4-cyclic codes under the Gray map (see Definition
1.2.14).

In Section 1.1 we expect an existence of the Kerdock set K of m ×m skew-
symmetric matrices such that

• the zero matrix is in K,

• a difference between each two distinct matrices from K is regular.

The existence of Kerdock set is not obvious.
In the second chapter we will consider the vector space Fm

2 , m even, equipped
with a quadratic form

Q(v) = x1y1 + . . .+ xmym =

m
∑

i=1

xiyi, (1)

where v ∈ V and v = (x1, . . . , xm, y1, . . . , ym). Then we will divide the set of
singular vectors of quadratic form Q to 2m−1 + 1 sets of the same cardinality.
This division defines an algebraic structure called orthogonal spread. The main
result of the chapter is proof of one-to-one correspondence between orthogonal
spreads and Kerdock sets.

The problem of construction of the Kerdock set is then convert to a construc-
tion of well-known structure from finite geometry.

As was written above, the third part is dedicated to combinatorial designs.
The t− (v, k, λ) design is a set of v points and k-subsets called blocks, such that
any subset of t points is contained in precisely λ blocks.

Let C be a binary (n, k, d) code. Now we can imagine each coordinate of
codewords from C as one of v points and the set of nonzero coordinates in given
codeword as a block. Therefore, when we formulate some additional conditions
the set of codewords of given weight can be regarded as a combinatorial design.

The formulation of such conditions is in Theorem 3.2.2. Since the binary
Kerdock code satisfies them, we get 3 infinite sets of combinatorial 3-design.

The second part of the section then considers quaternary Kerdock codes and
designs that are provided by them. In Theorem 3.3.9 we construct next two infi-
nite sets of 3-designs.

The last chapter investigates possibilities of a connection between theory of
Kerdock codes and cryptography.

Codewords of the second order Reed-Muller code are just evaluations of Boolean
functions of arity m and degree ≤ 2 and we can therefore look to codewords of
binary Kerdock codes in the same way.
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If we use an algebraic structure of Kerdock code K(m), we can show that
the difference between each two codewords from K(m) corresponds to an affine
Boolean function or to a Boolean function that reaches maximal distance from
the set of affine functions. These maximal functions are called bent and due
to their high nonlinearity are very useful in construction of basic cryptographic
schemes.

In the second part of the last chapter we will use the systematicity of Kerdock
codes to construction of functions from F

n
2 to F

k
2, such that for each choice of

values of t bits (t ≤ n), each possible output k-tuple occurs equally likely. The
function with this property is called (n, k, t)-resilient.

The reader is expected to have at least basic knowledge of theory of error-
correcting codes, linear algebra and theory of finite fields.
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1. Constructions and basic

properties of Kerdock codes

There are many different ways how to construct binary codes with the same
parametres as codes defined by A. M. Kerdock in [21]. In this chapter we will
describe two of them.

The first method takes the Kerdock code of length 2m, m ≥ 4 even, as a union
of certain cosets of the first order Reed-Muller codeRM(1, m) in the second order
Reed-Muller code RM(2, m). This approach allows us to study Kerdock codes
from a geometrical point of view.

The second method is based on an observation that the Kerdock code of length
2m, m ≥ 4 even, is a binary image of an extended cyclic code over the ring Z4 of
length 2m−1.

The second part of this chapter is dedicated to a description of several basic
properties of Kerdock codes, which will be used in the following chapters of this
thesis.

1.1 Kerdock code as union of cosets of RM(1,m)

Reed-Muller codes form a well-known family of binary linear codes that can be
defined in terms of Boolean functions.

Let m be an integer and let elements of vector space F
m
2 be numbered in

some way. Usually we use a lexicographical ordering, i.e. we bind an index
i =

∑m
j=1 vj2

m−j to a vector v = (v1, . . . , vm) ∈ F
m
2 and elements of the space Fm

2

are then ordered by this index.
A Boolean function f of arity m is any function f :Fm

2 → F2. We can as-
sign to each Boolean function f an evaluation vector vf = (u0, . . . , u2m−1), where
ui = f(v1, . . . , vm) for i =

∑m
j=1 vj2

m−j.

There is a one-to-one correspondence between Boolean functions of given ar-
ity m and polynomials from the ring F2[x1, . . . , xm]/(x1 + x2

1, . . . , xm + x2
m). Ele-

ments of this ring are often called Boolean polynomials and every such polynomial
p(x1, . . . , xm) can be expressed in the form

p(x1, . . . , xm) =
∑

ai1,...,imx
i1
1 · . . . · xim

m , (1.1)

where i1, . . . , im ∈ {0, 1} and ai1,...,im ∈ F2. The maximal value of sum i1+ . . .+im
over all terms with a nonzero value of ai1,...,im is called the degree of the polynomial
p(x1, . . . , xm). In the following text we will mean by a degree of the Boolean
function f a degree of the corresponding Boolean polynomial p(x1, . . . , xm).

Boolean functions of degree d ≤ 1 are often called affine. Boolean polynomial
that corresponds to an affine Boolean function of arity m is therefore in the form

m
∑

i=1

aixi + a0, (1.2)
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where a0, a1, . . . , am ∈ F2.
Connections between Boolean functions and Boolean polynomials are de-

scribed in more detail e.g. in Chapter 2 in [25].

Definition 1.1.1. The first order Reed-Muller code RM(1, m) of length 2m,
m ≥ 1, is the binary code that consists of evaluation vectors vf where f runs
through all affine Boolean functions f of aritym, i.e. each codeword ofRM(1, m)
is equal to vf for a Boolean function f of arity m and degree d ≤ 1.

The second order Reed-Muller code RM(2, m) of length 2m, m ≥ 2, is a binary
code consisting of evaluation vectors vf corresponding to Boolean functions f of
arity m and degree d ≤ 2.

The first-order Reed-Muller code RM(1, m) is a linear code with 2m+1 code-
words and minimum distance 2m−1. The second-order Reed-Muller codeRM(2, m)

is a linear code that contains 2
m2+m

2
+1 codewords and its minimum distance is

equal to 2m−2.

Denote the set of all affine Boolean functions of arity m by Lm and the set of
all Boolean functions of arity m of degree d ≤ 2 by Qm. Both sets Lm and Qm

then form vector spaces, since the sum of two Boolean functions of degree d ≤ 1
or d ≤ 2, is the Boolean function of degree d ≤ 1 or d ≤ 2, respectively. It is easy
to see that Lm is a vector subspace of Qm.

Due to correspondence between Boolean functions and Boolean polynomials,
each Boolean function l(x1, . . . , xm) ∈ Lm can be expressed in the polynomial
form

l(x1, . . . , xm) =
m
∑

k=1

akxk + c, (1.3)

and each element Boolean function q(x1, . . . , xm) ∈ Qm has the polynomial form

q(x1, . . . , xm) =
∑

1≤i<j≤m

qijxixj +

m
∑

k=1

akxk + c, (1.4)

where qij ∈ F2 for 1 ≤ i < j ≤ m, ak ∈ F2 for 1 ≤ k ≤ m and c ∈ F2.

Moreover, the set Qm can be divided into 2
m2

−m
2 disjoint parts with respect to

the quadratic term
∑

1≤i<j≤m qijxixj in the polynomial representation of elements
of Qm, i.e.

Qm =
⋃

q∈Q′
m

{

q +

m
∑

k=1

akxk + c; ak ∈ F2, 1 ≤ k ≤ m, c ∈ F2

}

, (1.5)

where Q′
m =

{

∑

1≤i<j≤m qijxixj ; qij ∈ F2, 1 ≤ i < j ≤ m
}

.

The set Q′
m forms the complete set of representants of cosets modulo Lm. A

cardinality of each coset C modulo Lm is then equal to cardinality of the set Lm

(|C| = |Lm| = 2m+1).
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From Definition 1.1.1 it immediately follows that RM(1, m) can be identi-
fied with the vector space Lm and RM(2, m) corresponds precisely to the vector
space Qm. The first order Reed-Muller code RM(1, m) is therefore the vec-
tor subspace of RM(2, m) and each coset in RM(2, m) modulo RM(1, m) is
uniquely identified by quadratic term q ∈ Q′

m.
The quadratic term q =

∑

1≤i<j≤m qijxixj ∈ Q′
m is fully described by its

coefficients qij , 1 ≤ i < j ≤ m. If we arrange the coefficients into a matrix such
that indices i and j determine a corresponding row and column, we get an upper
triangular matrix Q = (qij)1≤i<j≤m of size m × m with zeros at diagonal. The
matrix Q uniquely corresponds to given coset C of the first order Reed-Muller
code.

In the following chapters we will identify the coset C of RM(1, m) (with a
coefficient upper triangular matrix Q) also with a skew-symmetric matrix (anti-
symmetric matrix with zero diagonal) B = Q + QT , i.e. B = (bij)

m
i,j=1, where

bij = bji = qij).

From now, let m ≥ 4 be an even integer. We will construct a binary Kerdock
code K(m) of length 2m as a union of certain cosets ofRM(1, m). An appropriate
set of cosets is identified by a Kerdock set of skew-symmetric matrices. This set
is maximal in the sense that a difference between each two distinct matrices is a
regular matrix and it has the biggest possible cardinality.

Definition 1.1.2. Let m ≥ 4 be an even integer. A Kerdock set K is a set of
2m−1 skew-symmetric m×m matrices such that

• the zero matrix is in K,

• a difference between each two distinct matrices in K is regular.

The Kerdock code K(m) of length 2m is a union of cosets of the first order Reed-
Muller code RM(1, m) corresponding to matrices in the Kerdock set K.

1.2 Kerdock code as Z4-code

Error-correcting codes were historicaly considered as sets of n-tuples (n ∈ N) over
a finite field Fq, usually q = 2. But in [15] it has been observed that an analogical
construction of sets over the ring Z4 also makes sense. The next research of
Z4-codes has led to a generalization of understanding of error-correcting codes.

One of the first findings in theory of Z4-codes was an observation that the
binary Kerdock code of length 2m can be viewed as an image of a linear Z4-code
of length 2m−1 under the specific mapping.

This section contains a basic introduction to theory of Z4-codes and their
connection to suitable binary codes, especially the Kerdock codes.

The main sources for the section were book [35] and article [15].

Definition 1.2.1. Let Z4 be a ring of integers mod 4 and let Z
n
4 , n ∈ N, be a

set of n-tuples over Z4. Any non-empty subset C of Zn
4 is called a Z4-code (or a

quaternary code) of length n.
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If a Z4-code C is an additive subgroup of the group Z
n
4 we call it a Z4-linear

code.

Similarly as for the linear codes over a finite field, each Z4-linear code can be
described in the form of the generator matrix.

Definition 1.2.2. Let C be a Z4-linear code. A matrix G is called a generator
matrix of C if the rows of G span the code C and none of them can be written as
a linear combination of the other rows of G.

The previous definition allows us to write any codeword c ∈ Z
n
4 from a Z4-

linear code C ⊆ Z
n
4 as a linear combination of rows of its generator matrix with

coefficients from Z4.

On Z
n
4 we can define an inner product of two vectors x = (x1, . . . , xn) ∈ Z

n
4

and y = (y1, . . . , yn) ∈ Z
n
4 by

x · y = x1y1 + x2y2 + . . .+ xnyn (mod 4). (1.6)

It allows us to construct a dual code C⊥ to a quaternary code C in a standard
way.

Definition 1.2.3. Let C be a Z4-linear code of length n. The set

C⊥ = {x ∈ Z
n
4 ;x · y = 0 for all y ∈ C} (1.7)

forms a Z4-linear code called a dual code of C.

For each binary code, three basic parameters can be found — the length
of the code n, the number of codewords k, and the minimum distance d. The
quaternary codes can be described by analogical parameters. The length and
the number of the codewords have the same meaning in both cases. The only
difference is in the definition of distance between two codewords (and generally
between two vectors). For binary codes, the Hamming distance is considered. In
the quaternary case we will define a Lee weight and consequently a Lee distance.

Definition 1.2.4. Lee weights wL(i) of elements i ∈ Z4 are defined by

wL(0) = 0, wL(1) = wL(3) = 1, wL(2) = 2. (1.8)

The Lee weight wL(x) of a vector x = (x1, . . . , xn) ∈ Z
n
4 is the rational sum of

Lee weights of its components, i.e.

wL(x) =
n
∑

i=1

wL(xi). (1.9)

The Lee weight function determines on Z
n
4 a distance function

dL(x, y) = wL(x− y), x,y ∈ Z
n
4 (1.10)

called the Lee distance.
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Now we connect quaternary and binary codes using an appropriate mapping.
A suitable encoding that assigns two bits to each value from Z4 is called the Gray
map. Its definition reflects physical properties of a transmission channel.

In the following text, when we speak about a binary image of quaternary code
C, we always mean its image C = φ(C) under the Gray map φ.

Definition 1.2.5. Define two maps β and γ from Z4 to Z2 by

β(0) = β(1) = 0, β(2) = β(3) = 1,

γ(0) = γ(3) = 0, γ(1) = γ(2) = 1 (1.11)

and extend them to the maps from Z
n
4 to Z

n
2 by

β(x) = (β(x1), . . . , β(xn)),

γ(x) = (γ(x1), . . . , γ(xn)), (1.12)

for all x = (x1, . . . , xn) ∈ Z
n
4 .

The Gray map φ is a mapping from Z
n
4 to Z

2n
2 given by

φ(x) = (β(x), γ(x)), x ∈ Z
n
4 . (1.13)

A property that confirms applicability of the Gray map φ is its ability to
preserve distances between suitable vectors in their binary and quaternary forms.

Lemma 1.2.6. The Gray map φ is a weight-preserving map from

(Zn
4 ,Lee weight) to (Z2n

2 ,Hamming weight),

and a distance-preserving map from

(Zn
4 ,Lee distance) to (Z2n

2 ,Hamming distance),

i.e.

wL(x) = w(φ(x)), for all x ∈ Z
n
4 , (1.14)

dL(x,y) = d(φ(x), φ(y)), for all x,y ∈ Z
n
4 ,

where functions w and d are the Hamming weight and distance functions of binary
vectors.

Proof. Due to Definition 1.2.5, equations wL(xi) = w(φ(xi)) hold for all xi ∈ Z4.
Moreover, for all x = (x1, . . . , xn) ∈ Z

n
4

wL(x) =
n
∑

i=1

wL(xi) (1.15)

and

w(φ(x)) = w(β(x), γ(x)) =
n
∑

i=1

w(β(xi), γ(xi)) =
n
∑

i=1

w(φ(xi)). (1.16)

The equation wL(x) = w(φ(x)) then holds.

An analogical approach can be used for distances.
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From the previous lemma it also follows that the minimum Lee weight and the
minimum Lee distance of quaternary code C is equal to the minimum Hamming
weight and the minimum Hamming distance of its binary image C = φ(C), i.e.

min{wL(c); c ∈ C, c 6= 0} = min{w(φ(c)); c ∈ C, c 6= 0}, (1.17)

min{dL(c, c′); c, c′ ∈ C, c 6= c′} = min{d(φ(c), φ(c′)); c, c′ ∈ C, c 6= c′}.

In traditional theory of error-correcting codes, a large part of the research
is dedicated to the study of cyclic codes, since they are easy to describe and
encode. Theory of binary cyclic codes depends upon the structure of the ring
F2[x]/(x

n− 1), where n is the length of a given code. Each cyclic code is an ideal
of this ring and each codeword can be represented as a polynomial from F2[x] of
degree less than n (sometimes called the code polynomial).

A similar theory can be built if we want to introduce and study quaternary
cyclic codes.

Definition 1.2.7. Let C be a Z4-linear code of length n. The code C is called
cyclic (or Z4-cyclic), if it is invariant under a cyclic shift, i.e. if

c = (c0, c1, . . . , cn−2, cn−1) ∈ C ⇒ c̃ = (cn−1, c0, . . . , cn−3, cn−2) ∈ C. (1.18)

A structure of Z4-cyclic code C of length n will be more understandable if
we will think about the codewords from C as about the elements of the ring
Rn = Z4[x]/(x

n − 1). The ring consists of the residue classes of Z4[x] modulo
xn−1. Each polynomial from Z4[x] of a degree less than n belongs to the different
residue class and we can take these polynomials as representants of the residue
classes. The ring Rn can be therefore considered as ring of polynomials from
Z4[x] of degree less than n with addition, subtraction and multiplication modulo
xn − 1. Each codeword c = (c0, c1, . . . , cn−2, cn−1) ∈ C can be identified with a
polynomial

c(x) = c0 + c1x+ . . .+ cix
i + . . .+ cn−1x

n−1 ∈ Rn.

In the following text we will use both notations, i.e. we will write both c ∈ C
and c(x) ∈ C to express that given codeword belongs to the code C. If p(x) is a
polynomial from Z4[x] whose remainder, upon division by xn − 1, belongs to C,
we write p(x) ∈ C (mod xn − 1).

Now we show that Z4-cyclic codes correspond precisely to ideals of the ring
Rn. The theorem can be found in [1] (Theorem 2.1).

Theorem 1.2.8. There is a one-to-one correspondence between Z4-cyclic codes
of length n and ideals of the ring Rn = Z4[x]/(x

n − 1).

Proof. Let C be a Z4-linear code of length n and let c = (c0, c1, . . . , cn−1) be a
codeword of C identified with a polynomial c(x). Shifted codeword

c̃ = (cn−1, c0, . . . , cn−3, cn−2) ∈ C (1.19)

is then associated with a polynomial

c̃(x) = xc(x) ∈ C (mod xn − 1). (1.20)
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The additional shifts of the codeword c don’t take us out of the code C and we
have

xic(x) ∈ C (mod xn − 1), for all i ∈ N. (1.21)

Due to the Z4-linearity of code C,

aix
ic(x) ∈ C (mod xn − 1) (1.22)

and consequently
m
∑

i=0

aix
ic(x) ∈ C (mod xn − 1) (1.23)

for any ai ∈ Z4, 0 ≤ i ≤ m. For every polynomial a(x) =
∑m

i=0 aix
i ∈ Z4[x] the

product a(x)c(x) (mod xn−1) thus belongs to C. Moreover, from the Z4-linearity
it follows that code C is closed under polynomial addition and therefore C is an
ideal of the ring Z4[x]/(x

n − 1).

Otherwise, let I be an ideal of the ring Z4[x]/(x
n − 1) and let p(x) ∈ I be a

polynomial over Z4 of degree less than n. Since any ideal of the ring is closed under
a multiplication by any element from the ring and since the polynomial q(x) = x
is in Z4[x]/(x

n − 1) for all n ≥ 2, the product q(x)p(x) (mod xn − 1) belongs to
the ideal I. We have shown that if I contains a polynomial corresponding to the
vector c = (c0, c1, . . . , cn−1) then it contains a polynomial corresponding to the
shifted vector c̄ = (cn−1, c0, . . . , cn−2) and the ideal I therefore forms a Z4-cyclic
code.

For any polynomial f(x) ∈ Z4[x] of degree less than n define a principal ideal
of the ring Rn generated by the polynomial f(x) by

(f(x)) = {f(x)h(x); h(x) ∈ Rn} (1.24)

(the multiplication of the polynomials is done modulo xn − 1).

Definition 1.2.9. Let g(x) ∈ Z4[x] be a monic polynomial dividing xn − 1 (i.e.
there exist a polynomial h(x) ∈ Z4[x] such that g(x)h(x) = xn−1). Let C = (g(x))
be a principal ideal of Rn generated by g(x). Then C is called a Z4-cyclic code
with the generator polynomial g(x).

Let C be a Z4-cyclic code of length n with a generator polynomial g(x) =
∑m

i=0 gix
i ∈ Z4[x] of degree m < n (i.e. g(x) ∈ Rn). Each codeword c(x) =

∑n−1
j=0 cjx

j ∈ C is element of the ring Rn and can be therefore expressed as product

c(x) = g(x)f(x) =
n−m
∑

i=0

fkx
kg(x), (1.25)

where f(x) ∈ Rn is a polynomial of degree ≤ n − m (the multiplication of the
polynomials is done modulo xn − 1).

Moreover, the codeword c(x) ∈ C can be expressed as a linear combination
of polynomials g(x), xg(x), . . . , xn−mg(x). Since there exists a polynomial
h(x) ∈ Rn of degree n − m such that g(x)h(x) = 0 in Rn (i.e. g(x)h(x) ≡ 0
(mod xn−1)), the polynomial xn−mg(x) can be expressed as a linear combination
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of g(x), xg(x), . . . , xn−m−1g(x). The polynomial h(x) is often called the check
polynomial of code C.

The generator matrix of Z4-cyclic code C with generator polynomial g(x) =
∑m

i=0 gix
i is then n× (n−m) matrix in the form

G =











g0 g1 . . . gm 0 . . . 0

0 g0 g1 . . . gm
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 g0 g1 . . . gm











. (1.26)

Each codeword from C can be described as a linear combination of rows from the
matrix G.

In Theorem 1.2.8 we have shown that Z4-cyclic codes correspond precisely
to ideals of the ring Rn. Previous paragraphs were concerned with codes that
correspond to a principal ideal of the ring Rn generated by polynomial g(x)
dividing xn − 1.

In the binary case, each cyclic code is generated by a monic polynomial g(x)
dividing xn−1. In the quaternary case, we have to be more careful. If we consider
the Z4-cyclic codes of odd length n, then every ideal in the ring Rn is principal,
but its generating polynomial don’t have to be a divisor of polynomial xn − 1 in
Z4[x]. The previous construction therefore doesn’t cover all Z4-cyclic codes, but
it is sufficient for an introduction to quaternary Kerdock codes.

The more detailed information about ideals in the ring Z4[x]/(x
n − 1) can be

found in Chapter 7.4 in [35].

When we want to study binary cyclic codes, we usually use fields F2m for an
appropriate m ∈ N. The parameter m is chosen so that the field F2m contains
an nth root of unity. Similarly in the case of Z4-cyclic codes, it is convenient to
introduce the Galois ring GR(4m) for an appropriate m ∈ N.

In the following paragraphs we introduce the basic structure of Galois ring
GR(4m). Then we use it in a construction of quaternary Kerdock codes.

First polynomials over Z4 analogous to the irreducible and primitive polyno-
mials from F2[x] will be defined.

Let µ : Z4[x] → Z2[x] be a map that naturally extends the modulo-2 map
from Z4 to F2, i.e.

µ

(

k
∑

i=0

aix
i

)

=
k
∑

i=0

(ai mod 2)xi (1.27)

for all polynomials
∑k

i=0 aix
i ∈ Z4[x] of a degree k ≥ 0.

It is easy to see that this extended map is a ring homomorphism from Z4[x]
onto Z2[x] with kernel (2) = 2Z4[x].

Definition 1.2.10. Let h(x) ∈ Z4[x] be a monic polynomial of degree m that
divides xn − 1 (mod 4), where n = 2m − 1 (i.e. there exists a polynomial f(x) ∈
Z4[x] such that h(x)f(x) = xn−1 in Z4[x]). Let µ(h(x)) ∈ F2[x] be the irreducible
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polynomial (in F2[x]). Then the polynomial h(x) is called a basic irreducible
polynomial of degree m over Z4[x].

If the polynomial µ(h(x)) ∈ F2[x] is primitive in F2[x], then the polynomial
h(x) is called a basic primitive polynomial.

In theory of Galois fields, it is known that for any integer m ≥ 0 there exists
both irreducible and primitive polynomials of degree m over any finite field Fq

(q ∈ N is a power of prime number), i.e. the existence of such polynomials is
ensured also in F2[x]. This fact can be extended to polynomials over Z4. The
main idea of the proof is an application of the Hensel’s lemma (see Lemma 5.2 in
[35]) on irreducible or primitive polynomial from F2[x]. For any positive integer m
thus exists basic irreducible polynomial and basic primitive polynomial of degree
m in Z4[x].

Let h(x) ∈ Z4[x] be a basic irreducible polynomial of degree m. The set of all
polynomials over Z4 of degree less than m with operations modulo h(x) forms a
Galois ring GR(4m), i.e. each element of GR(4m) can be expressed as the residue
class

a0 + a1x+ a2x
2 + . . .+ am−1x

m−1 + (h(x)), (1.28)

where a0, a1, . . . , am−1 ∈ Z4.

Definition 1.2.11. Let h(x) be a basic irreducible polynomial of degree m ∈ N

over Z4. The residue class ring Z4[x]/(h(x)) is called the Galois ring and is
denoted by GR(4m).

Basic properties of the Galois ring GR(4m) for m ∈ N are summarized in the
following theorem. These results can be found in Theorem 6.1 in [35]. In finite
field theory the similar basic description of F2m is often formulated.

Theorem 1.2.12. Let h(x) ∈ Z4[x] be a basic irreducible polynomial of degree
m ∈ N. Then the Galois ring GR(4m) = Z4[x]/(h(x)) is a finite ring of charac-
teristic 4 (i.e. the order of 1 in the additive group of ring GR(4m) is equal to 4)
with 4m elements. Denote ξ = x + (h(x)), then h(ξ) = 0 and every element of
GR(4m) can be written uniquely in the form

a0 + a1ξ + . . .+ am−1ξ
m−1, (1.29)

where a0, a1, . . . , am−1 ∈ Z4, and GR(4m) = Z4[ξ].

Proof. A characteristic of ring is an order of the identity 1 in its additive group
and in the case of Galois ring GR(4m) it is equal to 4 because (1+ (h(x))) + (1+
(h(x))) + (1 + (h(x))) + (1 + (h(x))) = 0 + (h(x)).

The number of elements in the Galois ring can be easily determined from
expression (1.28) since there exist precisely 4m sets of coefficients a0, a1, . . . , am−1.

Denote ξ = x+ (h(x)), then

h(ξ) = h(x) + (h(x)) = 0 + (h(x)) (1.30)

and ξ is therefore a root of polynomial h(x) and elements

a0 + a1ξ + . . .+ am−1ξ
m−1, (1.31)

where a0, a1, . . . , am−1 ∈ Z4, correspond precisely to all distinct elements of the
ring GR(4m). Therefore GR(4m) = Z4[ξ].
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The expression (1.29) gives us an additive representation of elements of Galois
ring GR(4m) = Z4[ξ].

The construction of Galois ring GR(4m) based on factorization of the poly-
nomial ring Z4[x] by a basic irreducible polynomial from Z4[x] of degree m ∈ N

doesn’t tell anything about the uniqueness of Galois ring. But it can be shown
that any two Galois rings, both of characteristic 4 and having the same number
of the elements, are isomorphic (see [35], Theorem 6.5 and Corollary 6.6).

Since the additive representation of element of the Galois ring GR(4m) doesn’t
have to be appropriate in all cases, we introduce the second canonical way of
representation called multiplicative or 2-adic.

The proof of the following results is only sketched, the complete proofs of
particular parts can be found in [35], Chapter 6.

Theorem 1.2.13. Let m be a positive integer.

(i) In the Galois ring GR(4m) there exist a nonzero element ξ of order 2m − 1,
which is a root of basic primitive polynomial h(x) of degree m over Z4 and
GR(4m) = Z4[ξ].

(ii) Let Tm = {0, 1, ξ, . . . , ξ2m−2}, then any element c ∈ GR(4m) can be written
uniquely as

c = a+ 2b, (1.32)

where a, b ∈ Tm.

(iii) Any element η ∈ GR(4m) of order 2m−1 is of the form ξj, where integers j
and 2m − 1 are coprime (i.e. GCD(j, 2m − 1) = 1), and it is a root of basic
primitive polynomial of degree m over Z4. Moreover, the set Tm is equal to
{0, 1, η, . . . , η2m−2}.

Proof. (sketch)

(i) Let ξ2 be a primitive element of F2m . Then order of ξ2 is 2m − 1 and ξ2 is
a root of polynomial x2m−1 − 1 over F2. Using Taylor series of x2m−1 − 1,
it can be shown that there exists a unique root ξ ∈ GR(4m) of polynomial
x2m−1 − 1 over Z4 such that µ(ξ) = ξ2. Then ξ2

m−1 = 1 and ξ is of order
2m − 1 (since µ(ξ) has order 2m − 1).

From the structure of finite fields it follows that the polynomial x2m−1 −
1 ∈ F2[x] can be in F2[x] factored into the product of distinct irreducible
polynomials of degrees > 1 dividing m, i.e.

x2m−1 − 1 = f1(x) . . . fr(x), (1.33)

where r is the number of divisors of m greater than 1. Without loss of
generality we can assume that f1(x) is a primitive polynomial of degree m
over Z2 and µ(ξ) is a root of f1(x).

Using Hensel’s lemma (see Lemma 5.2 in [35]) we get the factorization of
polynomial x2m−1 − 1 in Z4[x] in the form

x2m−1 − 1 = h1(x) . . . hr(x), (1.34)
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where h1(x), . . . , hr(x) are pairwise coprime monic polynomials and µ(hi(x)) =
fi(x), 1 ≤ i ≤ r.

Let h(x) = h1(x), then h(x) is a basic primitive polynomial of degree m
over Z4 and there exists the unique root η ∈ GR(4m) of polynomial h(x)
such that µ(η) = µ(ξ). But since η is also the root of x2m−1 − 1, η is equal
to ξ and ξ is a root of h(x).

(ii) Since the Galois ring GR(4m) has cardinality 4m, it is sufficient to show
that all of 4m elements of the form c = a+2b, where a, b ∈ Tm, are distinct.

Assume that
a+ 2b = a′ + 2b′, (1.35)

where a, b, a′, b′ ∈ Tm. If we apply the modulo-2 reduction µ we get µ(a) =
µ(a′). Since both elements ξ and µ(ξ) are of an order 2m − 1, the map
ξi → µ(ξi), for 0 ≤ i ≤ 2m − 2, is bijective and a = a′.

It implies 2b = 2b′. Let b = 0 and b′ = ξi for some i ∈ {0, . . . , 2m − 2}.
From the equality 0 = 2ξi it follows that 0 = 0 · ξ2m−1−i = 2ξi · ξ2m−1−i = 2,
which contradicts 0 6= 2 in Z4. Thus b = 0 if and only if b′ = 0. Now let
b = ξi and b′ = ξ′i

′

, for i, i′ ∈ {0, . . . , 2m − 2}. If i 6= i′ we can assume
without loss of generality that i > i′. It implies 2ξi−i′ = 2. The element
ξi−i′ − 1 is the zero divisor or 0 and therefore it is in the ideal (2). Then
(µ(ξ))i−i′ = 1 which contradicts that µ(ξ) has order 2m − 1.

(iii) The assertion is corollary of the previous results.

The set Tm is often called a Teichmuller set.

On the finite field Fpn (p, n ∈ N, p prime) we often define a Frobenius auto-
morphism σ:Fpn → Fpn by formula σ(a) = ap for all a ∈ Fpn . The Frobenius
automorphism of the field Fpn allows us to express any authomorphism σi of Fpn

in the form σi = σi, where i = 0, . . . , n − 1. The automorphism group of the
finite field Fq is therefore a cyclic group of order n.

The Frobenius map σ of the field F2m , m ≥ 1, thus assigns element a2 ∈ F2m

to any a ∈ F2m . The map σ can be generalized to the Galois ring GR(4m) as a
map σ′ as follows

σ′: GR(4m) → GR(4m)

c = a+ 2b 7→ c′ = a2 + 2b2, a, b ∈ Tm. (1.36)

The map σ′ is called a generalized Frobenius map of GR(4m). Since the structure
of the Teichmuller set Tm of the Galois ring GR(4m) = Z4[ξ] doesn’t depend on
a choice of element ξ ∈ GR(4m) of order 2m − 1, the map σ′ is correctly defined.

The generalized Frobenius map on GR(4m) satisfies the similar conditions as
the Frobenius map on finite field. The map σ′ is a ring automorphism of GR(4m).
Moreover, any ring automorphism σ′

i of GR(4m) is in the form σ′
i = (σ′)i for some

0 ≤ i ≤ m − 1. The automorphism σ′ therefore generates a cyclic group of an
order m, which is usually called the Galois group of GR(4m).
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Now we define a trace map of the field F2m and its generalized version over
the ring GR(4m). The trace map Tr of F2m is a function given by

Tr :F2m → F2

a 7→ a+ σ(a) + σ2(a) + . . .+ σm−1(a). (1.37)

The generalized trace map T of the ring GR(4m) can be analogically defined
by

T :GR(4m) → Z4

c 7→ c+ σ′(c) + (σ′)2(c) + . . .+ (σ′)m−1(c). (1.38)

It can be easily verified that the generalized trace map T of GR(4m) and the
trace map Tr of F2m are connected via relationship

µ ◦ T = Tr ◦µ, (1.39)

where µ is the modulo-2 reduction map.

Now we have all tools needed for the construction of quaternary Kerdock
codes K4(m) of length n = 2m.

Definition 1.2.14. Let h(x) ∈ Z4[x] be a basic primitive polynomial of degree
m for an odd integer m ≥ 3 and let g(x) be the reciprocal polynomial to the
polynomial

xn − 1

(x− 1)h(x)
, (1.40)

where n = 2m − 1.
The Z4-cyclic codeK−

4 (m) of length n−1 = 2m−1 with a generator polynomial
g(x) is called the shortened quaternary Kerdock code.

The quaternary Kerdock code K4(m) of length n = 2m is the Z4-code obtained
from K−

4 (m) by adjoining the zero-sum check symbol.

Since the generator polynomial g(x) =
∑d

i=0 gix
i ∈ Z4[x] of the shortened

quaternary Kerdock code K−
4 (m) has degree

d = (2m − 1)− (m+ 1) = 2m −m− 2, (1.41)

the generating matrix G of quaternary Kerdock code K4(m) is 2m × (m + 1)
matrix over Z4 in the form

G =











g∞ g0 g1 . . . gd
g∞ g0 g1 . . . gd
...

. . .
. . .

g∞ g0 g1 . . . gd











, (1.42)

where g∞ = −∑d
i=0 gi (operations are done in the ring Z4).

Letm be an odd integer, m ≥ 3. Then the binary image K(m+1) = φ(K4(m))
of the quaternary Kerdock code K4(m) is the nonlinear binary code of length
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2m+1 with 22(m+1) codewords and the minimum Hamming distance 2m−2(m−1)/2.
Therefore K(m+1) has the same parameters as the binary Kerdock code of length
2m+1 (see Definition 1.1.2).

In original article [21] A. M. Kerdock uses the trace function over the field F2

for construction of binary nonlinear codes. A similar approach can be provided
also in the quaternary case.

Now we use the generalized trace function of the ring GR(4m) to description
of particular codewords of the quaternary Kerdock code K4(m). The theorem
can be found in [35].

Theorem 1.2.15. Let GR(4m) = Z4[ξ] be the Galois ring, where ξ is a root of
basic primitive polynomial h(x) in GR(4m). The quaternary Kerdock code K4(m)
has the following trace description over GR(4m)

K4(m) = {ε1+ u(λ); ε ∈ Z4, λ ∈ Z4[ξ]}, (1.43)

where

u(λ) = (T (λξ∞), T (λξ0), T (λξ1), . . . , T (λξn−1)), n = 2m − 1, (1.44)

1 is the all-one vector of length n + 1 and with the convention that ξ∞ = 0.

Proof. First we show that the trace description of the shortened Kerdock code is

K−
4 (m) = {ε1+ v(λ); ε ∈ Z4, λ ∈ Z4[ξ]}, (1.45)

where
v(λ) = (T (λξ0), T (λξ1), . . . , T (λξn−1)), n = 2m − 1. (1.46)

Let C be a code defined in (1.45). Let c be a codeword from C and c(x) its
polynomial expression. Then c(x)(x−1)h(x) is equal to 0 because the vector 1 is
annihilated by polynomial x− 1 and the vector v(λ) is annihilated by h(x), since
ξ is a root of h(x).

The generator polynomial of code K−
4 (m) is a reciprocal polynomial to (xn −

1)/(x−1)h(x). It follows that check polynomial ofK−
4 (m) is (x−1)h(x). Therefore

C ⊆ K−
4 (m).

Since both codes C and K−
4 (m) contain the same number of codewords (|C| =

|K−
4 (m)| = 4m+1), the equality C = K−

4 (m) holds.

The theorem now follows from the fact that the zero-check sum for ε1 is equal
to ε and the zero-check sum for v(λ) is equal to 0.

The previous theorem showed that each codeword of quaternary Kerdock code
K4(m) of length 2m can be expressed in the form

c = (c∞, c0, c1, . . . , cn−1), n = 2m − 1, (1.47)

where
ci = T (λξi) + ε, i ∈ {∞, 0, 1, . . . , n− 1} (1.48)

for some ε ∈ Z4 and λ ∈ GR(4m).
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1.3 Basic properties of Kerdock codes

Kerdock codes can be viewed as nonlinear binary codes or linear quaternary codes
with parameters that are summarized in Tables 1.1 and 1.2.

They form a family of well-known codes with many interesting properties.
In the following paragraphs we formulate several basic facts about the Kerdock
codes, which will be consequently used in the next chapters of this thesis.

length n = 2m

number of codewords k = 22m

(Hamming) minimum distance d = 2m−1 − 2
m−2

2

Table 1.1: Parameters of the binary Kerdock code K(m), m ≥ 4 even

length n = 2m−1

number of codewords k = 22m

(Lee) minimum distance d = 2m−1 − 2
m−2

2

Table 1.2: Parameters of the quaternary Kerdock code K4(m− 1), m ≥ 4 even

The Kerdock codes are systematic.

A binary code is systematic if each codeword can be splitted into two disjoint
parts. Bits in the first part carry an information that is present in the codeword.
On the other hand, bits in the second part serve as check bits and they guarantee
an ability of error-correctness.

The systematic property is always fulfilled for linear codes, but it isn’t as-
sured in the case of nonlinear codes. But although the binary Kerdock codes are
nonlinear, they are systematic. This fact was shown in article [29]. It was proved
that in the Kerdock code K(m) of length 2m (m ≥ 4 even) we can find a fixed
set of 2m coordinates such that for each binary 2m-tuple there exists exactly one
codeword which take on this value in given coordinates.

The Kerdock codes are distance invariant.

A binary code C is called distance invariant if (Hamming) weight distributions
of its translates c+ C are the same for all codewords c ∈ C.

Since a binary linear code C of length n is a linear subspace of the vector
space Fn

2 , it is a distance invariant code. But similarly as for the systematicity of
a code, the distance invariancy isn’t guaranteed for nonlinear codes.

In the following lemma we will specify a set of binary codes (not necessarily
linear) which satisfy a condition of distance invariancy. The lemma can be found
in [35].

Lemma 1.3.1. If C is a Z4-linear code, then its binary image C = φ(C) is
distance invariant.
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Proof. Since C is Z4-linear (an additive subgroup of Zn
4 ), c + C = C for all code-

words c ∈ C. Therefore C is distance invariant with respect to the Lee weight.
The result then follows from Lemma 1.2.6.

In Section 1.2, we have defined the binary Kerdock codes K(m) (m ≥ 4 even)
as binary images of Z4-linear codes K4(m− 1). By applying the previous lemma,
the distance invariancy of the binary Kerdock codes is confirmed.

The Kerdock codes are formally dual to Preparata codes.

The Preparata codes were first constructed in 1968 and form another impor-
tant family of nonlinear binary codes. Similarly as the Kerdock codes K(m), the
Preparata codes P(m) are systematic and distance invariant codes of length 2m,
where m ≥ 4 is even. They contain 22

m−2m codewords and the minimum distance
between each two codewords is equal to 6.

length n = 2m

number of codewords k = 22
m−2m

(Hamming) minimum distance d = 6

Table 1.3: Parameters of the binary Preparata code P(m), m ≥ 4 even

Shortly after publication of Kerdock’s article in 1972 ([21]), it was observed
that weight and distance distributions of the Preparata code P(m) of length 2m

are the MacWilliams transformations of weight and distance distributions of the
Kerdock codeK(m) of the same length (i.e. these two codes behave like dual linear
codes). This property was very surprising because both Kerdock and Preparata
codes are nonlinear and they cannot be dual due to the standard definition.

An explanation was given in [15]. It was observed that both of these codes
can be defined as binary images of Z4-linear codes that are dual (in the sense
of Definition 1.2.3). Weight and distance distrubutions of dual quaternary codes
are connected by the quaternary version of the MacWilliams identity, similarly
as in the binary case.

Finally, due to Lemma 1.2.6, binary images of dual quaternary codes are
connected via the binary version of MacWilliams identity. Thus the strange be-
haviour of the Kerdock and Preparata codes was explained.
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2. Kerdock sets

One of the basic ways to define the binary Kerdock codes is based on tools of
orthogonal and symplectic geometry. This chapter contains an introduction to
theory of quadratic and symplectic forms and orthogonal spreads which are then
used to construction of Kerdock sets and consequently the Kerdock codes.

In the whole chapter we will confine mainly to fields of characteristic 2 and
vector spaces over the field of characteristic 2.

2.1 Symplectic and quadratic forms

Bilinear and quadratic forms are one of basic objects in linear algebra. In this
section, we describe several properties of these forms especially over the field F2.

An introduction to theory of forms used in the following paragraphs can be
found in Chapter 103 in [19], Chapter 2 in [7] or Chapter 1 in [28].

Definition 2.1.1. Let V be a vector space over a field F . A quadratic form on
V is a mapping Q:V → F satisfying the conditions

(i) Q(λv) = λ2Q(v), for all λ ∈ F, v ∈ V .

(ii) The function β:V × V → F defined by

Q(v + w) = Q(v) +Q(w) + β(v, w) (2.1)

is a bilinear form on V.

The pair (V,Q) is an orthogonal space.

A relationship between bilinear form β corresponding to quadratic form Q is
called a polarisation (i.e. quadratic form Q polarises to bilinear form β).

Let Q be a quadratic form that polarises to the bilinear form β. From point
(ii) in the previous definition it follows that

β(v, w) = Q(v + w)−Q(v)−Q(w) = Q(w + v)−Q(w)−Q(v) = β(w, v)

for all v, w ∈ V and the form β is therefore a symmetric bilinear form.
Moreover, if a characteristic of field F is equal to 2, an equation β(v, v) = 0

holds for all v ∈ V since

β(v, v) = Q(v + v)−Q(v)−Q(v) = Q(2v)− 2Q(v) = 0

(i.e. the bilinear form β is alternating).

Definition 2.1.1 implies that we can assign a unique symmetric bilinear form
β to any quadratic form Q on a vector space V by formula

β(v, w) = Q(v + w)−Q(v)−Q(w) (2.2)
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for all v, w ∈ V . But converse relation isn’t so obvious. In the case of forms over a
field F with chararacteristic different from 2, a quadratic form Q can be uniquely
recovered from a symmetric bilinear form β by the formula Q(v) = 1

2
B(v, v), for

all v ∈ V .
If a characteristic of field F is equal to 2, the situation is different since many

quadratic forms can polarise to one bilinear form. If two quadratic forms Q1 and
Q2 both polaris to the same bilinear form β, then the quadratic form Q = Q1−Q2

polarises to the zero form, i.e. from equations

Q1(v + w) = Q1(v) +Q1(w) + β(v, w),

Q2(v + w) = Q2(v) +Q2(w) + β(v, w), (2.3)

it follows an equation
Q(v + w) = Q(v) +Q(w) (2.4)

for all v, w ∈ V . Moreover, since α2 = α for all α ∈ F , we have

Q(αv) = αQ(v) (2.5)

and the form Q is therefore linear. Otherwise, if two quadratic forms differ by a
linear form, they polarise to the same bilinear form.

From now, we will assume that all used vector spaces are in the form V = F
n
2 ,

n ∈ N, and all mentioned forms (bilinear or quadratic) are defined on such vector
spaces.

Most bilinear forms that will be used in the following text are non-degenerate
alternating bilinear forms.

Definition 2.1.2. Let β be a bilinear form on a vector space V.
If β(v, v) = 0 for all v ∈ V , the form β is called alternating.
The form β is said to be non-degenerate, if it satisfies conditions

(i) (β(v, w) = 0 for all w ∈ V ) ⇒ v = 0;

(ii) (β(v, w) = 0 for all v ∈ V ) ⇒ w = 0.

The non-degenerate alternating bilinear form is called symplectic. The pair
(V, β) is a symplectic space if β is a symplectic form on V .

From remarks above it follows that any non-degenerate bilinear form β on a
vector space V = F

m
2 that corresponds to a quadratic form Q on V is symplectic.

Now we equip a vector space V with a symplectic bilinear form β. Suppose
that V is even-dimensional (i.e. dimV = 2m, m ∈ N) and suppose that there is
a basis {v1, . . . , vm, w1, . . . , wm} of V such that

β(vi, vj) = β(wi, wj) = 0, for all i, j ∈ {1, . . . , m},
β(vi, wj) = β(wj, vi) = 0, for all i 6= j, i, j ∈ {1, . . . , m},
β(vi, wi) = −β(wi, vi) = 1, for all i ∈ {1, . . . , m}. (2.6)

This basis is called symplectic.
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By induction on the dimension of the vector space V it can be shown, that
for every even-dimensional vector space, there exists a symplectic basis. This is
one of basic facts for symplectic geometry and it can be found for example in
Theorem 6 in [23].

In the following sections, we focus mainly on non-singular quadratic forms.
Informally, a quadratic formQ on a vector space V of dimensionm is non-singular,
if it can’t be written in fewer than m variables by any linear transformation of
variables. More formal definition follows.

Definition 2.1.3. Let V be a vector space and Q be a quadratic form on V that
polarises to a bilinear form β. The form Q is said to be non-singular if the only
subspace W ⊆ V with the property that Q vanishes on W and β(v, w) = 0 for
all v ∈ V and w ∈ W is the zero subspace.

If V is a vector space over a field of an odd characteristic, then the quadratic
form Q on V is non-singular if and only if the bilinear form β corresponding
to Q is non-degenerate. But for the fields of a characteristic 2, the situation is
again different. In this case, a quadratic form Q is non-singular if and only if the
bilinear form β obtained by polarisation is non-singular.

In the next paragraphs we will need a notion of orthogonality and singularity
of vectors in vector spaces equipped with a quadratic form that polarises to the
symmetric bilinear form.

Definition 2.1.4. Let U be a subset of vector space V and let β be a symmetric
bilinear form on V . Then the orthogonal complement U⊥ of U is defined by

U⊥ = {v ∈ V ; β(u, v) = 0 for all u ∈ U}. (2.7)

If U = u is a singleton then U⊥ is also denoted by u⊥.

Definition 2.1.5. Let Q be a quadratic form on vector space V and let β be a
bilinear form on V .

A vector v ∈ V is called isotropic if v ∈ v⊥, i.e. if β(v, v) = 0. A subspace
U ⊆ V is called totally isotropic if U ≤ U⊥, i.e. if β vanishes identically on U .

A vector v ∈ V is called singular if Q(v) = 0. A subspace U ⊆ V is said to
be totally singular, if Q vanishes identically on U , i.e. if Q(u) = 0 for all u ∈ U .

Now we would like to classify quadratic forms on a vector space V = F
m
2 .

First, two types of subspaces of V equipped with quadratic form Q should be
defined.

Definition 2.1.6. Let Q be a quadratic form on a vector space V that polarises
to a bilinear form β.

A subspace W ⊆ V is called anisotropic, if it has no non-zero singular vectors
(i.e. if Q(w) = 0 if and only if w = 0, for all w ∈ W ).

A two-dimensional subspace U = 〈v1, v2〉 of V is a hyperbolic plane if Q(v1) =
Q(v2) = 0 and β(v1, v2) = 1.

In order to identify quadratic forms that behaves identically, we define an
equivalence of quadratic forms in the following way.
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Definition 2.1.7. Let Q1, Q2 be quadratic forms on vector spaces V1, V2 over a
field F , respectively.

An isometry σ: (V1, Q1) → (V2, Q2) of orthogonal spaces (V1, Q1) and (V2, Q2)
is a bijective linear mapping from V1 to V2 satisfying

Q1(v) = Q2(σ(v)), for all v ∈ V1. (2.8)

The quadratic forms Q1 andQ2 are called equivalent if there exists an isometry
σ from V1 to V2.

Let V be a vector space equipped with a quadratic form Q. Since a composi-
tion of two isometries of V is again an isometry and the identity function is also
an isometry of V , isometries of V form a group O(V ) called the orthogonal group
of V .

The orthogonal group of V of dimension m can be also viewed as a subgroup of
general linear group GL(m, 2) of regular m×m matrices over F2 that preserves
the quadratic form Q (i.e. it consists of matrices A ∈ GL(m, 2) that satisfy
Q(Ax) = Q(x) for all x ∈ V ).

Let Q be a quadratic form on V and let f be a linear form on V , then the
mapping Q + f is also the quadratic form equivalent to Q since in the field of
characteristic two squaring is an automorphism, i.e. there exists an isometry σ
on V such that

Q(v) + f(v) = Q(σ(v)) (2.9)

for all v ∈ V .

The classification of quadratic forms will be formulated using anisotropic
spaces and hyperbolic planes. The theorem can be found in [7] (Theorem 2.1).

Theorem 2.1.8. Let Q be a quadratic form on a vector space V = F
m
2 that

polarises to a bilinear form β.

(i) An anisotropic space has dimension at most 2.

(ii) Let Q be a non-singular quadratic form on V . Then

V = W ⊕ U1 ⊕ · · · ⊕ Ur, (2.10)

where W is anisotropic, U1, . . . , Ur are hyperbolic planes, and the sum-
mands are pairwise orthogonal.

(iii) If quadratic forms Q1, Q2 on vector spaces V1, V2, respectively, give decom-
positions

V1 = W1 ⊕ U11 ⊕ · · · ⊕ U1r,

V2 = W2 ⊕ U21 ⊕ · · · ⊕ U2r, (2.11)

then Q1 and Q2 are equivalent if and only if r = s and dim(W1) = dim(W2).
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Proof.

(i) Let W be an anisotropic space. Then for all distinct non-zero vectors v, w ∈ W
it holds

β(v, w) = Q(v + w) +Q(v) +Q(w) = 1. (2.12)

If w1, w2, w3 ∈ W are linearly independent, then

1 = β(w1, w2 + w3) = β(w1, w2) + β(w1, w3) = 0 (2.13)

and we have a contradiction. Therefore, in W there don’t exist three linearly
independent vectors and dim(W ) ≤ 2.

(ii) The proof will be done by induction on dim(V ). If V = {0} or V is anisotropic,
then W = V and we have a trivial decomposition. Thus, we can suppose that
there is a vector u ∈ V such that u 6= 0 and Q(u) = 0. Since Q is nonsingular, β
is also non-singular and there exists a vector v ∈ V with β(u, v) = 1. Then

Q(v) +Q(u+ v) = β(u, v) +Q(u) = 1, (2.14)

and therefore either Q(v) = 0 or Q(u+ v) = 0. If Q(v) = 0, then U1 = 〈u, v〉 is a
hyperbolic plane. If Q(u+ v) = 0, then

β(u, u+ v) = β(u, u) + β(u, v) = 1, (2.15)

since β is alternating bilinear form, and U1 = 〈u, u + v〉 = 〈u, v〉 is again a
hyperbolic plane. Moreover, dim(U⊥

1 ) = dim(v)− 2, since

dim(U) + dim(U⊥) = dim(V ) (2.16)

for non-singular bilinear form β and for all subspaces U ≤ V , and the restriction
of Q to U⊥

1 is nonsingular. By the induction hypothesis, U⊥
1 can be decomposed

in given form and the result is proved.

(iii) The condition on equality of number of hyperbolic planes and dimensions of
anisotropic parts is sufficient since we can consider an isometry σ: (V1, Q1) →
(V2, Q2) of orthogonal spaces (V1, Q1) and (V2, Q2) such that σ(W1) = W2 and
σ(U1i) = U2i for all i = 1, . . . , r.

Since isometry is a bijective map on finite-dimensional vector space, it is clear
that equivalent quadratic forms are defined on spaces of the same dimension.
Thus, it remains to show that they have the same number r of hyperbolic planes
in decomposition of V1 and V2. We show that the number r is for each non-
singular quadratic form Q on a vector space V equal to the maximal dimension
of any totally singular subspace of V , which implies the required equality.

Let Q be a non-singular quadratic form on vector space V that polarises to
bilinear form β. Let

V = W ⊕ U1 ⊕ · · · ⊕ Ur, (2.17)

where W is anisotropic, U1, . . . , Ur are hyperbolic planes, and the summands are
pairwise orthogonal. Let Ui = 〈ui, vi〉, where Q(ui) = Q(vi) = 0 and β(ui, vi) = 1.
Then X = 〈u1, . . . , ur〉 is a totally singular subspace of dimension r. Now we show
by induction on r that no larger totally singular subspace exists.
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If r = 0, then V is anisotropic and the proposition is true. Let Y be a totally
singular subspace of dim(Y ) = k > 0. Let y ∈ Y be a nonzero vector. If we
consider the vector space V ′ = 〈y〉⊥/〈y〉, then Q induces a nonsingular quadratic
form Q′ on V ′. The decomposition of V ′ provides by Q′ then conatins r − 1
hyperbolic planes. Moreover, the subspace Y ′ = Y/〈y〉 of V ′ is a totally singular
space of dimension k − 1. If Y is maximal totally singular subspace of V then
Y ′ is maximal totally singular subspace of V ′ and from inductive hypothesis, it
follows that k − 1 = r − 1 and thus k = r.

From the previous theorem it follows that non-singular quadratic forms on
a vector space F

m
2 are determined up to equivalence by two parameters — the

dimension of anisotropic part and the number of hyperbolic planes.

Definition 2.1.9. Let Q be a quadratic form on a vector space F
m
2 and let

V = W ⊕ U1 ⊕ · · · ⊕ Ur (2.18)

be the decomposition given by Q. The quadratic form Q is said to be of type 1,
0 or -1, if dim(W ) is equal to 0, 1 or 2, respectively. The number r of hyperbolic
pairs, is called the Witt index.

In the proof of item (iii) we have shown that the maximal dimension of totally
singular subspace of orthogonal space (V,Q) is equal to the Witt index.

Now we consider only non-singular quadratic forms on vector spaces of even
dimension over the field F

m
2 , i.e. V = F

m
2 , m even. Since each hyperbolic plane Ui,

1 ≤ i ≤ r, in a decomposition of V corresponding to non-singular quadratic form
Q has dimension 2, the type of Q is 1 or -1 (an anisotropic part in decomposition
must be of even dimension).

Moreover, if Q is the form of type 1 (i.e. vector space V can be decomposed
to the direct sum of hyperbolic planes U1, . . . , Um/2), it is equivalent to the form

Q+(x) = x1x2 + . . .+ xm−1xm, (2.19)

since we can define an isometry σ:V → V that identifies the basis of V with
generators of hyperbolic planes U1, . . . , Um/2 (in appropriate order). This case is
often called hyperbolic.

If Q is the form of type -1 (i.e. Q decompose the vector space V to the direct
sum of hyperbolic planes U1, . . . , Um/2−1 and anisotropic space W of dimension
2), it is equivalent to the form

Q−(x) = x1x2 + . . .+ x2
m−1 + xm−1xm + x2

m, (2.20)

since we can define an isometry σ on V that identifies m − 2 basis vectors with
generators of hyperbolic planes U1, . . . , Um/2−1 and 2 vectors with generators of
anisotropic space W . This case is called elliptic.

In the following chapters we will often need to determine the weight of evalua-
tion vector of non-singular quadratic form on even-dimensional vector space. First
we show that if we allow not only isometries between two non-singular quadrat-
ic forms, but any affine transformation, we get just one type of non-singular
quadratic forms.
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Lemma 2.1.10. Let V = F
m
2 be a vector space of even dimension m. Let Q1

and Q2 be non-singular quadratic forms on V . Then there exists a bijective affine
mapping τ :V → V and t ∈ F2, such that

Q1(v) = Q2(τ(v)) + t (2.21)

for all v ∈ V .

Proof. If the quadratic forms Q1 and Q2 are of the same type, then there exist
an isometry σ on V such that Q1(v) = Q2(σ(v)) for all v ∈ V and we can take
τ = σ and t = 0.

Let Q1 be of type 1 and Q2 be of type -1, then Q1 is equivalent to Q+ and
Q2 is equivalent to Q−. Now it is sufficient to show, that there exist an affine
mapping τ on V and t ∈ F2 such that Q+(v) = Q−(τ(v)) + t. But if we take
t = 1 and if τ is a mapping defined by

τ(v) = (v1, . . . , vm−1 + 1, vm + 1) (2.22)

for all v = (v1, . . . , vm−1, vm) ∈ V , we get the desired equation since x2
m−1 +

xm−1xm + x2
m = (xm−1 + 1)(xm + 1) + 1.

From the previous lemma, it immediately follows that for all vectors v ∈ V

Q+(v) = 0 ⇔ Q−(τ(v)) = 1 (2.23)

where τ is defined as in (2.22). Moreover, since τ is bijective, we have that the
number of singular vectors of Q+ is equal to the number of non-singular vectors
of Q− and conversely.

Now it is easy to determine cardinalities of sets of singular and non-singular
vectors of any non-singular quadratic form on V = F

m
2 , m even. The theorem

can be found e.g. in [24].

Lemma 2.1.11. Let Q be a non-singular quadratic form on vector space V = F
m
2 ,

where m is an even integer. If Q is of type ε ∈ {−1, 1}, then there exist exactly
2m−1 + ε2m/2−1 singular vectors of Q.

Proof. LetQ be of type 1. Then Q is equivalent to the quadratic formQ+ and it is
sufficient to calculate the number of singular vectors of Q+. Let x = (x1, . . . , xm)
be a vector from F

m
2 . If a vector (x1, x3, . . . , xm−1) is the zero vector, we have

2
m
2 choices for (x2, x4, . . . , xm) to get singular vector x. If there is at least one

nonzero element at positions x1, x3, . . . , xm−1, then there are 2
m
2
−1 choices of

x2, x4, . . . , xm to get singular vector x. The number of singular vectors of the
form Q+ is therefore equal to 2

m
2 + (2

m
2 − 1)2

m
2
−1.

LetQ be of type -1. From Lemma 2.1.10, it follows that the number of singular
vectors of Q is equal to the number of non-singular vectors of quadratic form of
type 1, which is 2m − (2m−1 + 2m/2−1) = 2m−1 − 2m/2−1.

In the previous text, we have identified a quadratic form Q on a vector space
V with a homogeneous polynomial of degree 2. This correspondence is formalized
by the next lemma (see Proposition 1.2 in [28]).
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Lemma 2.1.12. Let V be a vector space of dimension n over field F . There
is one-to-one correspondence between quadratic forms on V and homogeneous
polynomials of degree 2 in n variables (i.e. homogeneous quadratic polynomials
from F [x1, . . . , xn]).

Proof. Let v1, . . . , vn ∈ V be a fixed basis of vector space V . Let

p(x1, . . . , xn) =
∑

1≤i≤j≤n

αijxixj (2.24)

be a homogeneous polynomial of degree 2 from F [x1, . . . , xm]. We define a map-
ping Q:V → F by Q(v) = p(λ1, . . . , λn), where v =

∑n
i=1 λivi ∈ V . Now we will

check the conditions for Q being a quadratic form.

(i) For all λ ∈ F and v ∈ V

Q(λv) = Q(
n
∑

i=1

λλivi) = p(λλ1, . . . , λλn) = λ2p(λ1, . . . , λn) = λ2Q(v).

(2.25)

(ii) If we define a form β:V × V → F by

β(v, w) =
∑

1≤i≤j≤n

αij(λiµj + λjµi), (2.26)

where v =
∑n

i=1 λivi and w =
∑n

i=1 µivi, then β is a symmetric bilinear
form on V . Moreover, for all v, w ∈ V

Q(v + w) = p(λ1 + µ1, . . . , λn + µn) =
∑

1≤i≤j≤n

αij(λi + µi)(λj + µj)

=
∑

1≤i≤j≤n

αijλiλj +
∑

1≤i≤j≤n

αijµiµj +
∑

1≤i≤j≤n

αij(λiµj + λjµi)

= p(λ1, . . . , λn) + p(µ1, . . . , µn) + β(v, w)

= Q(v) +Q(w) + β(v, w). (2.27)

The function Q is therefore a quadratic form on V .
Conversely, let Q:V → F be a quadratic form on V and β:V ×V → F be the

corresponding bilinear form. Define a homogeneous polynomial p(x1. . . . , xn) =
∑

1≤i≤j≤n αijxixj by

αii = Q(vi), 1 ≤ i ≤ n,

αij = β(vi, vj), 1 ≤ i < j ≤ n. (2.28)

Then we have for all v =
∑n

i=1 λivi ∈ V

Q(v) = Q(
n
∑

i=1

λivi) =
n
∑

i=1

Q(λivi) +
∑

1≤i<j≤n

β(λivi, λjvj)

=
n
∑

i=1

λ2
iQ(vi) +

∑

1≤i<j≤n

λiλjβ(vi, vj)

=
n
∑

i=1

αiiλ
2
i +

∑

1≤i<j≤n

αijλiλj

=
∑

1≤i≤j≤n

αijλiλj = p(λ1, . . . , λn). (2.29)

27



2.2 Orthogonal spreads and Kerdock sets

In the previous chapter we have introduced orthogonal spaces together with their
totally singular subspaces. Now we focus on totally singular subspaces of maximal
dimension. These structures are in the geometric literature also called generators.

It is a natural question whether a set of singular points can be partitioned
into generators. These partitions are called spreads.

In the following paragraphs we investigate spreads on orthogonal spaces and
their connection to Kerdock sets. The main sources for this section were Chapter
79 in book [19] and article [4].

Let V = F
2m
2 be a vector space of dimension 2m, where m is an even integer.

We equip the vector space V with a quadratic formQ that polarises to the bilinear
form β defined by

Q(v) = x1y1 + . . .+ xmym =

m
∑

i=1

xiyi = (x1, . . . , xm) · (y1, . . . , ym), (2.30)

β(v, v′) =

m
∑

i=1

(xi + x′
i)(yi + y′i)−

m
∑

j=1

xjyj −
m
∑

k=1

x′
ky

′
k =

m
∑

i=1

xiy
′
i +

m
∑

j=1

x′
jyj,

where v, v′ ∈ V and v = (x1, . . . , xm, y1, . . . , ym), v
′ = (x′

1, . . . , x
′
m, y

′
1, . . . , y

′
m).

The quadratic form Q is equivalent to the form Q+ (see equation (2.19)) since
we can consider an isometry σ on V that changes ordering of basis vectors of V
in an appropriate way.

Note that all symplectic forms on V are equivalent to the form (2.31), i.e.
if β1 and β2 are symplectic forms then there exist bijective linear map σ on V
(isometry) such that β1(u, v) = β2(σ(u), σ(v)). For more information see Section
3.6 in [2].

Let {e1, . . . , em, f1, . . . , fm} be a symplectic basis of V (the symplectic basis
exists since V is even-dimensional). The vector space V can be now considered
as

V = F
m
2 ⊕ F

m
2 = X ⊕ Y, (2.31)

where X and Y are the subspaces of V with bases {ei}mi=1 and {fj}mj=1, respec-
tively. From now, all vectors from V will be considered with respect to the basis
{e1, . . . , em, f1, . . . , fm} (i.e. for a vector v = (x1, . . . , xm, y1, . . . , ym) ∈ V the ele-
ment xi is a coordinate associated with the basis vector ei and the element yj rep-
resents a coordinate associated with the basis vector fj). All matrices correspond-
ing to isometries on V will be with respect to the basis {e1, . . . , em, f1, . . . , fm}.

The vector spaces X and Y are totally singular subspaces of V of dimension
m (i.e. generators) since

Q(x) = Q((x1, . . . , xm, 0, . . . , 0)) = 0, for all x ∈ X (2.32)
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and
Q(y) = Q((0, . . . , 0, y1, . . . , ym)) = 0, for all y ∈ Y. (2.33)

The vector space V = F
2m
2 is therefore expressed as a direct sum of two totally

singular subspaces of maximal dimension (since m is the Witt index of Q).

In Lemma 2.1.11 we have shown that the number of singular vectors of the
form Q = Q+ on a vector space V = F

m
2 is equal to 22m−1 + 2m−1. If we consider

only nonzero singular vectors in V then the number is equal to

22m−1 + 2m−1 − 1 = (2m − 1)(2m−1 + 1). (2.34)

Since each totally singular space of V of maximal dimension (i.e. dimension m)
consists of 2m − 1 nonzero singular vectors, it suggests that in V there exists
a family of totally singular spaces of dimension m that partition the set of all
nonzero singular vectors, i.e. spread.

Definition 2.2.1. Let V be a vector space of dimension 2m and Q be a quadratic
form on V of type 1. The family Σ of 2m−1 + 1 totally singular subspaces of
dimension m that divides the set of all nonzero singular vectors is called an
orthogonal spread.

Now we would like to describe totally singular subspaces of a vector space F2m
2

of maximal dimension disjoint with a subspace Y .
First we formulate an auxiliary lemma that describes isometries of V fixing

the subspace Y (see Lemma 3.1 in [20]).

Lemma 2.2.2. The isometries of V = X ⊕ Y that fix every vector of Y are just
those whose matrices are

(

I M
0 I

)

, (2.35)

for some skew-symmetric m×m matrix M .
Moreover, these isometries form a group isomorphic to the additive group of

all binary skew-symmetric m×m matrices.

Proof. Every linear transformation σ on the vector space V is in the form

S =

(

L M
0 N

)

, (2.36)

for some m×m matrices L, M and N .
Since σ fix every vector y from Y, equation yS = y holds for all y ∈ Y and N

is the identity matrix.
Since σ is an isometry, the equation Q(uS) = Q(u) must be satisfied for

all vectors u = (v1, . . . , vm, w1, . . . , wm) ∈ V , where v = (v1, . . . , vm) ∈ X and
w = (w1, . . . , wm) ∈ Y , i.e. equation vL · (vM + w) = v · w must hold. From the
expression of equation using particular coordinates it follows that L must be the
identity matrix I and M is skew-symmetric matrix.

The second part of the lemma follows from the fact that
(

I M
0 I

)(

I N
0 I

)

=

(

I M +N
0 I

)

. (2.37)
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The previous lemma will be now used for an identification of totally singular
subspaces of V with maximal dimension such that their intersection with the
space Y is equal to 0.

Theorem 2.2.3. There is a one-to-one correspondence between totally singular
subspaces Z of V of dimension m such that Y ∩Z = 0 and subspaces of V in the
form

X

(

I M
0 I

)

, (2.38)

where M is a skew-symmetric m×m matrix.

Proof. Let Z be a totally singular subspace of V of dimensionm such that Y ∩Z =
0. Then each vector z ∈ Z can be written in the form z = (x, xM) for x ∈ X
and the unique m×m matrix M , i.e.

Z = {(x, xM); x ∈ X}. (2.39)

Since Z is totally singular it must hold

Q(z) = Q((x, xM)) = x · xM = 0, for all z ∈ Z, (2.40)

which is exactly the condition for M to be skew-symmetric.

Otherwise, let Z be a subspace of V in the formX

(

I M
0 I

)

for skew-symmetric

m × m matrix M . Then each vector z ∈ Z can be expressed in the form
z = (x, xM) for x ∈ X . This implies that dimension of Z is equal to m and
Y ∩ Z = 0. Moreover, due to a skew-symmetricity of M , it holds

Q(z) = Q((x, xM)) = x · xM = 0 (2.41)

for all z = (x, xM) ∈ Z and the space Z is totally singular.

The last auxiliary observation will connect dimension of intersection of two
totally singular subspaces in the form (2.38) with the rank of their matrix repre-
sentants. The lemma can be found in [6] (Lemma 2.12).

Lemma 2.2.4. Let M1 and M2 be binary skew-symmetric m × m matrices for

which the corresponding totally singular m-spaces W1 = X

(

I M1

0 I

)

and W2 =

X

(

I M2

0 I

)

satisfy Y ∩ W1 = Y ∩ W2 = 0. Then W1 ∩ W2 = 0 if and only if

M1 −M2 is regular (i.e. rank(M1 −M2) = m).

Proof. A vector v ∈ V is in the intersection of those two subspaces if it can
be written in the form v = (x1, x1M1) and v = (x2, x2M2) for some vectors
x1, x2 ∈ X . This means that (x1, x1M1) = (x2, x2M2) and thus x1 = x2.

The dimension of intersection of two totally singularm-subspaces is then equal
to dimension of solution of linear equations system xM1 = xM2 (i.e. system of
linear equations x(M1−M2) = 0). This dimension is equal to m−rank(M1−M2)
and we have shown that

dim

(

X

(

I M1

0 I

)

∩X

(

I M2

0 I

))

= m− rank(M1 −M2). (2.42)
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Now we have all information necessary for construction of Kerdock set K (see
Definition 1.1.2) of size 2m−1 (and consequently Kerdock code K(m) of length
2m) from an orthogonal spread Σ in vector space F

2m
2 .

Theorem 2.2.5. Let V = F
2m
2 be a vector space. Let X, Y be m-subspaces of V

such that V = X ⊕ Y .
If K is a Kerdock set of 2m−1 skew-symmetric m×m matrices, then

Σ = {Y } ∪
{

X

(

I M
0 I

)

; M ∈ K
}

(2.43)

is an orthogonal spread of V .
Conversely, if Σ is an orthogonal spread of V that contains subspacesX and Y ,

then the set of m×m skew-symmetric matrices that are associated with subspaces
Σ− {Y } is a Kerdock set.

Proof. From Theorem 2.2.3 and properties of the space Y it follows that the set Σ
consists of 2m−1+1 totally singular subspaces. For each subspace Z from Σ−{Y }
it holds that its intersection with the space Y is equal to 0 (i.e. Z ∩ Y = 0).

Now it remains to show that intersection of each two elements of Σ− {Y } is
equal to 0. But this follows from Lemma 2.2.4, because difference between each
two matrices M1 and M2 from K is regular (i.e. it has rank m).

We have shown that the set Σ is an orthogonal spread.

Otherwise, let Σ be orthogonal spread that contains X and Y and let K be the
set of skew-symmetric matrices associated with subspaces from Σ − {Y }. Since
X is in Σ, the set K contains zero matrix.

The intersection of each two spaces Z1 and Z2 from Σ− {Y } with associated
matrices M1 and M2 is equal to 0. Now we can use Lemma 2.2.4 which implies
that rank(M1 −M2) = m and thus difference between each two matrices from K
is regular matrix.

We have proved that K is a Kerdock set.

The notation of Kerdock set K in the previous theorem is very ambiguous. If
we consider an orthogonal spread Σ, the Kerdock set depends on the choice of a
pair of totally singular spaces from Σ that will play the role of X and Y and on
the choice of symplectic basis. But up to equivalence of codes, the Kerdock code
K(m) depends only on Σ and on a subspace Y ∈ Σ. For more information see
Chapter 3 in [6].
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3. Kerdock designs

Combinatorial design theory forms an important branch of combinatorial mathe-
matics. Its main concern is the existence and a construction of finite sets systems
with various specific properties.

Theory of error-correcting codes gives us a rich source of combinatorial de-
signs with various parameters. Let C be a code. If we form a matrix whose
rows are codewords from C of the same Hamming weight, we can possibly get an
incidence matrix of a design. Therefore, it may be feasible to view coordinates
in codewords as elements (points) of a supporting set and codewords of the same
weight then represents blocks of design.

According to Definitions 1.1.2 and 1.2.14, the Kerdock code can be seen as a
nonlinear binary code of length 2m or as a quaternary linear code of length 2m−1

for even m. This gives us a chance to construct combinatorial designs on a set
of 2k elements, k ≥ 3, whose blocks corresponds to codewords of the Kerdock
code with the same weight. However, the existence of such designs isn’t obvious
neither for the binary case nor for the quaternary case.

The chapter is divided into three sections. The first one compiles basic facts
about combinatorial design theory and its connection with error-correcting codes.
The main source for the section was Chapter VII.1.

In the second part a weight distribution of the binary Kerdock codes K(m),
m ≥ 4 even, is calculated and then it is shown that codewords of each weight
form a combinatorial design. Connections between codes and designs are in more
detail described in Chapter 6 in [26].

The third part determines weight enumerators of the quaternary Kerdock
codes K4(m−1) and describes a construction of designs derived from these codes.
For more information on designs based on Z4-codes see [17] or [36].

3.1 Combinatorial designs from codes

Definition 3.1.1. A t− (v, k, λ) design D is a set of v points with a collection of
k-subsets called blocks, such that any subset of t points is contained in precisely
λ blocks.

Parameters v, k and λ are often omitted from the previous notation and a
t− (v, k, λ) design is referred to as a t-design.

According to Definition 3.1.1, any t− (v, k, λ) design D can be seen as a pair
(V,B), where V is a set of v elements (points) and B ⊂ P(V ) is a set of k-subsets
(blocks) of V with mentioned properties.

If we consider a t − (v, k, λ) design D = (V,B) based on a binary code C
of length n, then points from the set V are identified with coordinates in the
codewords from C and a parameter v is equal to n. Each block B ∈ B then cor-
responds to a set of nonzero coordinates of a codeword c ∈ C with the Hamming
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weight k. Moreover, for each set of t coordinates i1, . . . , it there exist exactly λ
codewords c1 = (c11, . . . , c1n), . . . , cλ = (cλ1, . . . , cλn) ∈ C of Hamming weight k
with nonzero elements in given coordinates (i.e. cjil 6= 0 for each j ∈ {1, . . . , λ}
and l ∈ {1, . . . , t}).

This construction can be formalized using the following definition (see [10],
part VII.1.2).

Definition 3.1.2. Let V = F
n
q be a vector space of dimension n over the field

Fq. The support supp(x) of a vector x = (x1, x2, . . . , xn) ∈ V is a set of indices
of its nonzero coordinates, i.e.

supp(x) = {i; xi 6= 0, 1 ≤ i ≤ n}. (3.1)

Let C be a binary code of length n. Let K be a set of all codewords from C
of the Hamming weight k, 1 ≤ k ≤ n. If we take the n coordinate indices as the
points and the supports of vectors from K as the blocks, it may be possible to
construct t-design with v = n for an integer t. Such design is called support design.

We have described the connection between binary codes and designs. But for
quaternary codes, a situation is slightly different since the notion of “weight” of
codeword is ambiguous.

Let c = (c1, . . . , cn) be a codeword from a Z4-linear code C of length n. For
ciphers i = 0, 1, 2, 3 denote by ni a number of occurences of i in the codeword c,
i.e.

ni(c) = |{j; cj = i, 1 ≤ j ≤ n}|, for i = 0, 1, 2, 3. (3.2)

We can associate several weight enumerators with the code C. The complete
weight enumerator (CWE) of C is a homogeneous polynomial of degree n in four
indeterminates

CWEC(w, x, y, z) =
∑

c∈C
wn0(c)xn1(c)yn2(c)zn3(c). (3.3)

In many technical applications of quaternary codes it isn’t necessary to distinguish
between ciphers 1 and -1 (−1 = 3 in Z4). For this purpose an appropriate weight
enumerator called symmetrized (SWE) is defined as

SWEC(w, x, y) =
∑

c∈C
wn0(c)xn1(c)+n3(c)yn2(x). (3.4)

The Hamming weight enumerator (HWE) of the code C is a polynomial defined
by

HWEC(w, x) =
∑

c∈C
wn0(c)xn1(c)+n2(c)+n3(c). (3.5)

There are two basic ways to proceed with research of designs based on the
quaternary codes. In the first one, we choose a weight enumerator (complete,
symmetrized or Hamming) of given quaternary code C and we check if supports
of codewords from C with constant weight (complete, symmetrized or Hamming)
form a t-design.
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The second approach uses a generalization of t-designs into colored t-designs.
The notion of colored t-designs was introduced in article [5]. It adds a set of
colors that are assigned to each point in each block into the definition of design.
An ordinary design can be viewed as 2-colored with colors “incident” and “not
incident” since we distingiush if given point is incident with given block. In
colored designs based on quaternary codes, colors are identified with ciphers 0,1,2
and 3 in given coordinates of a codeword.

In this chapter we focus only on the former approach to designs from quater-
nary codes.

3.2 Designs from binary Kerdock codes

The first step in the construction of combinatorial design from binary code C
of length n lies in a calculation of its Hamming weight distribution (i.e. in the
calculation of list {Ai}ni=0, where Ai is the number of codewords of weight i from
the code C). The second step then involves a proof of existence of support design
made by codewords with given weight k, 1 ≤ k ≤ n and a determination of its
parameters.

This section is divided into two parts. In the first part, the Hamming weight
distribution of binary Kerdock code K(m), m ≥ 4 even, is calculated. For more
information see [24].

The main goal of the second part is to show that codewords of the binary
Kerdock code K(m) of each weight form a combinatorial design.

3.2.1 Hamming weight distribution of binary Kerdock code

The binary Kerdock code K(m) of length 2m, m ≥ 4 even, is usually defined
as a union of certain 2m−1 cosets of the first order Reed-Muller code RM(1, m)
in the second order Reed-Muller code RM(2, m) (see Definition 1.1.2). These
cosets are determined by skew-symmetric m×m matrices from the Kerdock set
K. Since the zero matrix is always in K, an inclusion RM(1, m) ⊆ K(m) holds.
The cosets that form the binary Kerdock code K(m) can be therefore divided
into two groups that should be investigated independently

(i) one coset identified with the first order Reed-Muller code RM(1, m);

(ii) 2m−1−1 cosets corresponding to regular skew-symmetric matrices from the
Kerdock set K.

First, we calculate a weight distribution of the first order Reed-Muller code
RM(1, m). According to Definition 1.1.1 the codewords ofRM(1, m) correspond
to the set of Boolean functions of arity m and degree ≤ 1 (i.e. each codeword
c ∈ RM(1, m) is equal to evaluation vector vf of an affine Boolean function).

Let f be an affine Boolean function of arity m, i.e.

f(x) =
m
∑

i=1

aixi + a0, (3.6)
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where a0, a1, . . . , am ∈ F2. Let c ∈ RM(1, m) be the codeword corresponding to
the function f (i.e. c = vf).

Let ai be equal to zero for all 1 ≤ i ≤ m. If a0 is zero, then f(x) = 0 for all
x ∈ F

m
2 and the codeword c is the zero vector 0 of length 2m. Conversely, if a0 is

1, then f(x) = 1 for all x ∈ F
m
2 and the codeword c is equal to the all-one vector

1 of length 2m.
Now let ai be equal to 1 for some 1 ≤ i ≤ m. Let xj be selected arbitrarily

for all 1 ≤ j ≤ m, j 6= i. Then f(x) = a0 +
∑

i 6=j ajxj + xi and we can choose
the value of xi such that f(x) = 0. The opposite choice of xi gives us f(x) = 1.
This means that for all codewords c ∈ RM(1, m) except the zero and the all-one
codeword, a Hamming weight of c is equal to 2m−1 (each of 2m−1 choices of values
for m−1 variables xj (i 6= j) cause that one coordinate in the codeword c is equal
to 1 and one coordinate in c is equal to 0).

The weight distribution of the first order Reed-Muller code RM(1, m) (and
thus the corresponding coset in the Kerdock code K(m)) is then shown in Table
3.1.

i Ai

0 1
2m−1 2m+1 − 2
2m 1

Table 3.1: Weight distribution of the first order Reed-Muller code RM(1, m)

A weight distribution of a coset of RM(1, m) corresponding to a regular
skew-symmetric matrix will be now determined.

Let B be a nonzero m ×m skew-symmetric matrix from the Kerdock set K
and let CB be a coset of RM(1, m) assigned to the matrix B. Then B is a matrix
of a symplectic form β on a vector space V = F

m
2 that establishes a non-singular

quadratic form Q.
Each codeword from CB can be therefore expressed as an evaluation vector of

a quadratic Boolean function f in the form

f(x) = Q(x) +
m
∑

k=1

akxk + a0, (3.7)

for all x = (x1, . . . , xm) ∈ F
m
2 , where ak ∈ F

m
2 for 0 ≤ k ≤ m.

In Section 2.1 we have shown that each non-singular quadratic form on vector
space F

m
2 is equivalent to one of quadratic forms

Q+(x) = x1x2 + x3x4 + . . .+ xm−1xm (3.8)

or
Q−(x) = x1x2 + x3x4 + . . .+ x2

m−1 + xm−1xm + x2
m (3.9)

for all x = (x1, . . . , xm) ∈ F
m
2 . Moreover, from Lemma 2.1.11 we know numbers

of singular vectors of forms Q+ and Q−.
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Assume that the quadratic form Q is equivalent to the form Q+. The function
f(x) from (3.7) is therefore equivalent to a quadratic Boolean function

Q+(x) + a0, (3.10)

since the sum of quadratic form and linear function is equivalent with the quadrat-
ic form itself (see equation (2.9)).

Since number of singular vectors of the form Q+ is equal to 2m−1 + 2
m
2
−1,

there is exactly 2m−1 − 2
m
2
−1 vectors x = (x1, . . . , xm) such that Q+(x) = 1 and

an evaluation vector vf has one of weights 2m−1±2
m
2
−1 depending on value of a0.

If the quadratic form Q is equivalent to Q−, situation is very similar since the
forms Q+ and Q− have the opposite number of singular vectors.

The whole situation is summarized in Table 3.2. 1.

Quadratic form a0 Weight of vector Number of functions

Q+ 0 2m−1 − 2
m
2
−1 2m

1 2m−1 + 2
m
2
−1 2m

Q− 0 2m−1 + 2
m
2
−1 2m

1 2m−1 − 2
m
2
−1 2m

Table 3.2: Weights and numbers of vectors from the coset CB

The previous table shows that each coset of the first order Reed-Muller code
that corresponds to a regular skew-symmetric matrix from the Kerdock set K has
the weight distribution as in Table 3.3.

i Ai

2m−1 − 2m/2−1 2m

2m−1 + 2m/2−1 2m

Table 3.3: Weight distribution of coset of RM(1, m)

Since the binary Kerdock code K(m) contains one coset of the type (i) and
2m−1− 1 cosets of the type (ii) the weight distribution of K(m) is summarized in
Table 3.4.

1An interpretation of a row in Table 3.2 in terms of column names is following: ”If the
quadratic form Q is equivalent to quadratic form (Quadratic form), then there exist (Number
of functions) codewords from the coset CB of weight (Weight of vector) such that absolute term
corresponding Boolean function is equal to (a0).”
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i Ai

0 1
2m−1 − 2m/2−1 2m(2m−1 − 1)

2m−1 2m+1 − 2
2m−1 + 2m/2−1 2m(2m−1 − 1)

2m 1

Table 3.4: Weight distribution of the binary Kerdock code K(m)

3.2.2 Existence of designs from binary Kerdock codes

Each binary (n, k, d) code C can be described by four fundamental paramaters —
minimum distance, number of different nonzero distances between two codewords,
dual distance and external distance. In the following text these parameteres will
be defined and then used to specify sufficient conditions for the existence of design
based on the code C. For more information see Section 6.2 in [26].

Definition 3.2.1. Let C be a binary (n, k, d) code. The (Hamming) distance
distribution of the code C is a list {Bi}ni=0, where

Bi =
1

k

∑

c∈C
|{c′ ∈ C; d(c′, c) = i}|. (3.11)

If (n, k, d) code C is a distance invariant code that contains the zero codeword,
a distance distribution {Bi}ni=0 of C is equal to the Hamming weight distribution
{Ai}ni=0, where Ai is the number of codewords c ∈ C of weight i.

Let τ0, τ1, . . . , τs be the indices i for which Bi 6= 0, where

0 ≤ τ0 < τ1 < . . . < τs ≤ n. (3.12)

Since the distance of each codeword from itself is equal to zero (i.e. d(c, c) = 0
for all c ∈ C), the coefficient B0 is equal to 1 and τ0 = 0.

A minimum distance of a code C is defined as the minimal Hamming distance
between two different codewords c1 and c2 from code C (i.e. d = min d(c1, c2),
where c1, c2 ∈ C and c1 6= c2). From Definition 3.2.1 it follows that the minimum
distance is equal to the index τ1.

For a distance invariant code that contains the zero codeword, values of min-
imum weight and minimum distance are the same. Since we focus only on these
codes, a letter d will denote both minimum weight and minimum distance of given
code.

As was shown in Section 1.3, the binary Kerdock code K(m) is a distance
invariant code. Since the zero codeword is in K(m), a distance distribution of the
Kerdock code is equal to its Hamming weight distribution (see Table 3.4), i.e. the
distance distribution of the Kerdock code K(m) is a list of values Bi, 0 ≤ i ≤ 2m,
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where

B0 = 1,

B2m−1−2(m−2)/2 = 2m(2m−1 − 1),

B2m−1 = 2m+1 − 2,

B2m−1+2(m−2)/2 = 2m(2m−1 − 1),

B2m = 1,

Bj = 0, 0 ≤ j ≤ 2m, j /∈ {0, 2m−1 ± 2(m−2)/2, 2m−1, 2m}. (3.13)

A minimum distance d of the binary Kerdock code K(m) is then equal to
2m−1 − 2(m−2)/2.

The second parameter of a code C related to its distance distribution is a
number s which represents the number of distinct nonzero distances between any
two codewords from C.

The set of equations (3.13) implies, that parameter s is for the Kerdock code
K(m) equal to 4.

Now we determine the remaining two parameters associated with a (n, k, d)
code C. Both of them relates to the MacWilliams transform of distance distribu-
tion {Bi}ni=0 of the code C. More detailed information about this transform can
be found e.g. in [26].

Let {B′
k}nk=0 be the MacWilliams transform of distance distribution {Bi}ni=0

of the code C given by

B′
k =

1

|C|
n
∑

i=0

BiKk(i), k = 0, 1, . . . , n, (3.14)

where Kk(x) ∈ Z[x] are the Krawtchouk polynomials defined as

Kk(x;n) = Kk(x) =
k
∑

j=0

(−1)j
(

x

j

)(

n− x

k − j

)

, k = 0, 1, . . . , n. (3.15)

Let σ0, σ1, . . . , σs′ be the indices k for which B′
k 6= 0, where

0 ≤ σ0 < σ1 < . . . < σs′ ≤ n. (3.16)

Since K0(x) is equal to 1 for any x and B0 is equal to 1 for any code C, the
coefficient B′

0 is always equal to 1 and σ0 = 0.
The index σ1 is called a dual distance of the code C and is denoted by d′. If

C is the linear code then its dual distance d′ is equal to the minimal distance of
its dual code C⊥.

The number s′ of nonzero indices k such that B′
k 6= 0 is called an external

distance of the code C. This parameter was defined for completeness of code
description and won’t be used for design construction.

In Section 1.3, we have introduced the Preparata codes whose weight distribu-
tion is the MacWilliams transform of weight distribution of the binary Kerdock

38



codes K(m). Since both of these codes are distance invariant and contains the ze-
ro codeword, their distance distributions are connected via MacWilliams identity
(3.14).

A dual distance d′ of the Kerdock code K(m) is therefore equal to the mini-
mum distance of the Preparata code of the same length, which is 6. The external
distance s′ of the Kerdock code K(m) corresponds to a number of nonzero weights
in the Preparata code, which is equal to 4 (see Table 1.3).

Now we have all information required for a formulation of theorem that gives
us a sufficient condition for the existence of combinatorial designs based on the
binary code C. Since neither the special formulation of the theorem for the
Kerdock codes nor its proof would be much simpler, we formulate it in a general
form. Then we apply the result on the binary Kerdock codes K(m). The theorem
can be found in [26] (Chapter 6, Theorem 9).

Theorem 3.2.2. Let C be a binary distance invariant (n, k, d) code (not nec-
essarily linear) with dual distance d′. Let {Ai}ni=0 = {Bi}ni=0 be its weight (re-
spectively distance) distribution and let 0, τ1, . . . , τs denote the indices i for which
Ai = Bi 6= 0, where

0 < τ1 < . . . < τs ≤ n. (3.17)

Let s̄ be defined as follows

s̄ =

{

s if An = 0,

s− 1 if An = 1.
(3.18)

Let S(x) be a polynomial defined as

S(x) =
s̄
∏

j=1

(τj − x). (3.19)

If s̄ < d′ then the codewords of weight τi in C form a t − (n, τi, λτi) design,
where t = d′ − s̄ and λτi is given by

λτi ·
s̄
∏

j=1
j 6=i

(τj − τi) =
AnS(n)

n− τi
+

k

2n

n
∑

r=t

(

n− t

r − t

)

S(r)

τi − r
. (3.20)

Proof. We say that a vector v = (v1, . . . , vn) ∈ F
n
2 covers a vector u = (u1, . . . , un) ∈

F
n
2 if an implication (ui = 1 ⇒ vi = 1) holds for all i ∈ {1, . . . , n}.
Let u ∈ F

n
2 be a fixed vector of weight t = d′− s̄. For τi ≥ t, let λτi(u) denotes

the number of codewords from C of weight τi that cover u.

First, we prove that the numbers λτi(u) satisfy a set of d′ − t equations

s
∑

i=1

(

τi − t

j

)

λτi(u) =
k

2t+j

(

n− t

j

)

, (3.21)

where 0 ≤ j ≤ d′ − 1− t.
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For each equation, we show that both sides express a number of vectors of
weight t + j which cover u and are covered by a codeword from C.

Since we count the number of vectors of weight t+ j and t ones in each such
vector are determined by fixed coordinates in the vector u, we have to choose
exactly j ones from each codeword c ∈ C. The choice can be provided in

(

τi−t
j

)

ways. If we consider all possible values of τi we get the sum on the left side of
equation (3.21).

The right side of equation (3.21) follows from the fact that if we fix the set of
r ≤ d′ − 1 coordinates then each r-tuple appears exactly k/2r times in a set of
codewords from C (see e.g. Theorem 5.8 in [26]).

Let take r = t+ j and fix r coordinates in the codewords from C. A number
of codewords of C that has ones at all r coordinates is equal to k/2r = k/2t+j.
Since the vector u has weight t, we can choose only j of r coordinates (remaining
t coordinates correspond to ones in the vector u). The choice can be done in
(

n−t
j

)

ways and we get the right side of equation (3.21).

The all-one vector of length n covers every vector from F
n
2 . Thus we can

subtract its appearence from the both sides of equation (3.21) for all 0 ≤ j ≤
d′ − 1− t and rewrite them to the form

s̄
∑

i=1

(

τi − t

j

)

λτi(u) =

(

k

2t+j
− An

)(

n− t

j

)

. (3.22)

Now we have a set of s̄ linear equations with s̄ unknowns λτi(u). From con-
struction of equations (3.22) it follows that the value of λτi(u) for all 0 ≤ i ≤ s̄
doesn’t depend on a choice of vector u and we can denote it by λτi for all vectors
u ∈ F

n
2 of weight t.

Thus we have shown that the codewords from C of each weight τi forms
t− (n, τi, λτi) design because if we choose t coordinates in vectors from F

n
2 , then

there exist exactly λτi codewords from C of weight τi that have ones at prescribed
t positions.

Now it remains to deduce formulas for the parameters λτi , 1 ≤ τi ≤ s̄, as a
solution of set of equations (3.22).

This set of equations can be expressed as

Ax = b, (3.23)

where x is a column vector of length s̄ of unknowns λτi , A is an s̄ × s̄ matrix
equals to















1 1 . . . 1
τ1 − t τ2 − t . . . τs̄
(

τ1−t
2

) (

τ2−t
2

)

. . .
(

τs̄−t
2

)

...
. . .

...
(

τ1−t
s̄−1

) (

τ2−t
s̄−1

)

. . .
(

τs̄−t
s̄−1

)















, (3.24)
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and b is a column vector of the right sides

bT =

((

k

2t
− An

)

, . . . ,

(

k

2t+s̄−1
−An

)(

n− t

s̄− 1

))

. (3.25)

The vector x is then equal to the product A−1b (since x = AA−1x = A−1b)
and therefore we need to calculate an inverse matrix A−1.

Define rational polynomials fτi by

fτi(x) =

s̄
∏

j=1
j 6=i

τj − t− x

τj − τi
. (3.26)

Because the degree of polynomial fτi is for all i ∈ {1, . . . , s̄} at most s̄− 1 there
exist rational numbers fij (1 ≤ i ≤ s̄, 0 ≤ j ≤ s̄− 1), such that

fτi(x) =

s̄−1
∑

j=0

fij

(

x

j

)

. (3.27)

Let F be a matrix {fij}, 1 ≤ i ≤ s̄, 0 ≤ j ≤ s̄− 1. The inner product of the
i-th row in the matrix F and the k-th column in the matrix A is expressed by

s̄−1
∑

j=0

fij

(

τk − t

j

)

= fτi(τk − t) =

s̄
∏

j=1
j 6=i

τj − τk
τj − τi

= δik, (3.28)

where δik is the Kronecker delta, i.e. it is equal to 1 if i = k and it’s equal to 0
otherwise. The matrix product FA gives the unitary matrix of size s̄ and thus
A−1 = F .

Now we can calculate the unknowns λτi for all 1 ≤ i ≤ s̄ using the inverse
transform matrix A−1 by

λτi =

s̄−1
∑

j=0

fij

(

k

2t+j
− An

)(

n− t

j

)

. (3.29)

From the binomial theorem we derive the following formula that help us to
express equation (3.29) in a suitable form

2n−t−j

(

n− t

j

)

=

n−t−j
∑

k=0

(

n− t− j

k

)(

n− t

j

)

=

n−t
∑

r=j

(

n− t

r

)(

r

j

)

. (3.30)
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Now we can modify equation (3.29) as

λτi =
s̄−1
∑

j=0

fij

(

k
2n−t−j

2n
− An

)(

n− t

j

)

=
k

2n

s̄−1
∑

j=0

fij2
n−t−j

(

n− t

j

)

− An

s̄−1
∑

j=0

fij

(

n− t

j

)

=
k

2n

s̄−1
∑

j=0

fij

n−t
∑

r=j

(

n− t

r

)(

r

j

)

−An

s̄−1
∑

j=0

fij

(

n− t

j

)

=
k

2n

n−t
∑

r=0

(

n− t

r

) s̄−1
∑

j=0

fij

(

r

j

)

−An

s̄−1
∑

j=0

fij

(

n− t

j

)

=
k

2n

n−t
∑

r=0

(

n− t

r

) s̄
∏

j=1
j 6=i

τj − t− r

τj − τi
− An

s̄
∏

j=1
j 6=i

τj − n

τj − τi
, (3.31)

which is exactly the desired form (3.20).

Now we apply the previous theorem on the binary Kerdock codes.
The binary Kerdock code K(m), where m ≥ 4 is even, is the distance invariant

(2m, 22m, 2m−1 − 2m−2/2) code with the parameters s = 4 and d′ = 6. Since K(m)
contains the all-one vector the value of s̄ is equal to 3 and the assumptions of
Theorem 3.2.2 are satisfied.

From the code K(m) therefore arose following three combinatorial designs

• 3− (2m, 2m−1 − 2m−2/2, λ2m−1−2m−2/2),

• 3− (2m, 2m−1, λ2m−1),

• 3− (2m, 2m−1 + 2m−2/2, λ2m−1+2m−2/2),

where λ2m−1−2m−2/2 , λ2m−1 and λ2m−1+2m−2/2 are given by expression (3.20).

3.3 Designs from quaternary Kerdock codes

Let K4(m), m ≥ 3 odd, be a quaternary Kerdock code of length 2m. Similarly as
Section 3.2 about designs based on binary Kerdock codes, this section contains
two parts. In the first part we investigate a weight distribution and weight enu-
merators of the quaternary Kerdock code K4(m). Its main source is article [36].
The second part is dedicated to a proof of existence of designs that arose from
the quaternary Kerdock code.

For more information about t-designs based on quaternary codes see [17].

3.3.1 Weight enumerators of quaternary Kerdock code

Throughout this section we consider the Galois ring GR(4m) as an extension ring
Z4[ξ] for an appropriate ξ ∈ GR(4m) (see Theorem 1.2.12). The Teichmuller set
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of GR(4m) is denoted by Tm and T ∗
m = Tm−0 denotes a set of invertible elements

of Tm.
We use the trace description of the quaternary Kerdock codes presented in

Theorem 1.2.15. Each codeword cλ,ε ∈ K4(m), m ≥ 3 odd, can be therefore
expressed in the form

(T(0) + ε,T(λ) + ε,T(λξ) + ε, . . . ,T(λξ2
m−2) + ε), (3.32)

where λ ∈ Z4[ξ], ε ∈ Z4 and T denotes the generalized trace map of the
ring GR(4m) = Z4[ξ]. Parameters λ and ε uniquely determine the codeword
cλ,ε ∈ K4(m).

First, we formulate an auxiliary lemma that simplify the following calculations
with the generalized trace function T over the Galois ring GR(4m).

Lemma 3.3.1. Let T be the generalized trace map T :GR(4m) → Z4. Denote the
set of all invertible elements of GR(4m) by R∗ (i.e. R∗ = GR(4m)− 2GR(4m)).

(i) If α runs through the Teichmuller set Tm = {0, 1, ξ, . . . , ξ2m−2}, then T(2α)
takes the values 0 and 2 equally often.

(ii) If λ runs through the ideal 2GR(4m), then T(λ) takes the values 0 and 2
equally often.

(iii) If λ runs through GR(4m), then T(λ) takes the values 0, 1, 2 and 3 equally
often.

Proof. Let µ be the modulo-2 reduction map. Since µ(ξ) is a primitive element
of the finite field F2m , a set µ(Tm) is isomorphic to F2m (i.e. µ(Tm) ≃ F2m). From
Section 1.2 we know that the trace function Tr : F2m → F2 is related to the
generalized trace function T by the relationship µ ◦ T = Tr ◦µ.

Moreover, the trace map Tr is a surjective map such that Tr(x) is 0 or 1
equally often when x runs through F2m . Since 2 · 0 ≡ 2 · 2 ≡ 0 (mod 4) and
2 · 1 ≡ 2 · 3 ≡ 1 (mod 4), part (i) is proved.

Since 2GR(4m) = {2b; b ∈ Tm}, part (ii) is equivalent to part (i).
Part (iii) then follows from the uniqueness of 2-adic representation of each

element from GR(4m) and the previous notes.

Now we investigate weight enumerators of the quaternary Kerdock codes
K4(m). First, codewords from K4(m) will be divided into groups with respect to
numbers of particular ciphers from Z4. The following definition gives us a useful
notation.

Definition 3.3.2. Let V = Z
n
4 , n ∈ N, be a set of n-tuples over the ring Z4. A

vector x ∈ V is defined to be of the type 1n12n23n30n0 if i occurs ni times as a
component of x for i = 0, 1, 2, 3.

A type distribution of the quaternary Kerdock code is determined in the next
theorem (see Lemma 1 in [36]).

Theorem 3.3.3. Let m ≥ 3 be an odd integer and let K4(m) be the quaternary
Kerdock code of length n = 2m. Then every codeword cλ,ε ∈ K4(m), where
λ ∈ Z4[ξ] and ε ∈ Z4 is of one of this types
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(i) in, once for each i ∈ {0, 1, 2, 3};

(ii) 2
n
2 0

n
2 , 2(2m − 1) times;

(iii) 1
n
2 3

n
2 , 2(2m − 1) times;

(iv) 1n12n23n30n−n1−n2−n3, 2m(2m − 1) times, where n1 = 2m−2 ± 2
m−3

2 , n2 =

2m−2 − 2
m−3

2 and n3 = 2m−2 ∓ 2
m−3

2 ;

(v) 1n12n23n30n−n1−n2−n3, 2m(2m − 1) times, where n1 = 2m−2 ± 2
m−3

2 , n2 =

2m−2 + 2
m−3

2 and n3 = 2m−2 ∓ 2
m−3

2 .

Proof. Let cλ,ε (λ ∈ Z4[ξ], ε ∈ Z4) be a codeword from the quaternary Ker-
dock code K4(m). Let the parameter λ has a 2-adic representation in the form
λ = α + 2β, where α, β ∈ Tm. The type distribution of the code K4(m) will be
calculated with respect to parametres α, β and ε.

First, let α = β = 0 and let ε be equal to i ∈ Z4. Then all values T(λξj), for
j ∈ {∞, 0, 1, . . . , 2m − 2}, are equal to zero and the codeword c0,ε is of the type
in.

Let α = 0, β ∈ T ∗
m and ε ∈ Z4. From Lemma 3.3.1 we know that the value

T (2β) is equal to 0 or 2 equally often. Therefore, if ε ∈ {0, 2}, then the codeword
c2β,ε is of the type 0n/22n/2 and if ε ∈ {1, 3}, then the codeword c2β,ε is of the
type 1n/23n/2.

The option α ∈ T ∗
m, β ∈ Tm and ε ∈ Z4 remains. Let

v(λ) = (T (λ), T (λξ), . . . , T (λξ2
m−2)), (3.33)

where λ = α + 2β, be a codeword of the shortened quaternary Kerdock code
K−

4 (m). Let ni, where i ∈ {0, 1, 2, 3}, be the number of coordinates with value i
in the codeword v(λ).

We claim that there exist parameters δ1 and δ2 both equal to 1 or -1 such that

n0 = 2m−2 − 1 + δ12
(m−3)/2, n1 = 2m−2 + δ22

(m−3)/2,

n2 = 2m−2 − δ12
(m−3)/2, n3 = 2m−2 − δ22

(m−3)/2. (3.34)

Let S be an exponential sum

S =
∑

x∈T ∗
m

ωT(λx) = n0 − n2 + ωn1 − ωn3, (3.35)

where ω =
√
−1.

The complex conjugate S̄ of the sum S is equal to

S̄ =
∑

x∈T ∗
m

ω−T(λx), (3.36)

since ω0 = ω−0 = 1, ω2 = ω−2 = −1 and ω1 = ω−3 = ω, ω3 = ω−1 = −ω.
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Then

|S|2 = S · S̄ =
∑

x∈T ∗
m

ωT(λx) ·
∑

y∈T ∗
m

ω−T(λy)

=

2m−2
∑

i,j=0

ωT(λ(ξi−ξj)) = (2m − 1) +
∑

i 6=j

ωT(λ(ξi−ξj)). (3.37)

Elements ±ξk are invertible for all 0 ≤ k ≤ 2m − 2 and elements ξi − ξj are
invertible and different from ±ξk for distinct i, j, k ∈ {0, . . . , 2m − 2} (see section
III.C in [15]). A set

R∗ = {±ξk; 0 ≤ k ≤ 2m − 2} ∪ {ξi − ξj; i 6= j, 0 ≤ i, j ≤ 2m − 2} (3.38)

of distinct invertible elements has therefore a cardinality 2(2m−1)+(2m−1)(2m−
2) = 22m−2m and it is exactly the set of all invertible elements of the Galois ring
GR(4m) (i.e. R∗ = GR(4m)− 2GR(4m)).

From Lemma 3.3.1 it follows that
∑

ν∈R∗ ωT (ν) = 0 since

∑

ν∈R∗

ωT (ν) =
∑

ν∈GR(4m)

ωT (ν) −
∑

ν∈2GR(4m)

ωT (ν) (3.39)

and both sums are equal to 0.
The number |S|2 can be therefore rewritten to the form

|S|2 = (2m − 1) +
∑

ν∈R∗

ωT(ν) −
2m−2
∑

i=0

ωT(λξi) −
2m−2
∑

j=0

ω−T(λξj)

= (2m − 1)− S − S̄. (3.40)

An equation SS̄ + S + S̄ + 1 = 2m holds and after a substitution of number
S by n0 − n2 + ωn1 − ωn3 we get a diophantine equation

(n0 − n2 + 1)2 + (n1 − n3)
2 = 2m. (3.41)

The equation has four possible solutions

n0 − n2 + 1 = ±2
m−1

2 , n1 − n3 = ±2
m−1

2 . (3.42)

Lemma 3.3.1 implies that

n0 + n2 = 2m−1 − 1, n1 + n3 = 2m−1. (3.43)

By combining the previous two results we get desired equations (3.34).

Finally, by adding a parity check symbol to four codewords ε1 + v(λ) we get
type distributions of codewords from items (iv) and (v).

In Section 3.1 we have introduced three basic weight enumerators of Z4-codes.
Expression of weight enumerators of the quaternary Kerdock codes K4(m) is a
direct corollary of the previous theorem.
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Corollary 3.3.4. Let m ≥ 3 be an odd integer and let K4(m) be the quaternary

Kerdock code of length 2m. Let m+ denote an expression 2m−2 + 2
m−3

2 and m−

denote an expression 2m−2 − 2
m−3

2 .
The complete weight enumerator CWE of the code K4(m) is a polynomial

CWEK4(m)(w, x, y, z) = w2m + x2m + y2
m

+ z2
m

+

2(2m − 1)w2m−1

y2
m−1

+ 2(2m − 1)x2m−1

z2
m−1

+

2m(2m − 1)wm+

xm+

ym
−

zm
−

+

2m(2m − 1)wm+

xm−

ym
−

zm
+

+

2m(2m − 1)wm−

xm+

ym
+

zm
−

+

2m(2m − 1)wm−

xm−

ym
+

zm
+

. (3.44)

The symmetrized weight enumerator SWE of the code K4(m) has the form

SWEK4(m)(w, x, y) = w2m + 2m+1x2m + y2
m

+ 2(2m − 1)w2m−1

y2
m−1

+

2m+1(2m − 1)wm+

x2m−1

ym
−

+

2m+1(2m − 1)wm−

x2m−1

ym
+

. (3.45)

The Hamming weight enumerator HWE of the code K4(m) is in the form

HWEK4(m)(w, x) = w2m + (2m+1 + 1)x2m + 2(2m − 1)w2m−1

x2m−1

+

2m+1(2m − 1)wm+

x3·2m−2−2
m−3

2 +

2m+1(2m − 1)wm−

x3·2m−2+2
m−3

2 . (3.46)

Proof. Weight enumerators of the quaternary Kerdock codeK4(m) can be directly
calculated using the type distribution of K4(m) from Theorem 3.3.3.

In Theorem 3.3.3 we have described the type distribution of the quaternary
Kerdock code K4(m) but we still cannot determine the type of a codeword
cλ,ε ∈ K4(m) identified by given values of parameters λ ∈ Z4[ξ] and ε ∈ Z4.
The following paragraphs help us to solve this problem. The main source was
Chapter 2 in [36].

The Lee weight wL(i) of i ∈ Z4 is related to a real part of ωi by

wL(i) = 1− Re(ωi), (3.47)

where ω =
√
−1 (see Table 3.5).

The Lee weight of a codeword cλ,ε ∈ K4(m) can be then expressed as

wL(cλ,ε) =
∑

x∈Tm

(

1− Re(ωT(λx)+ε)
)

= 2m − Re

(

∑

x∈Tm

ωT(λx)+ε

)

= 2m − Re

(

ωε
∑

x∈Tm

ωT(λx)

)

. (3.48)
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i ωi wL(i) 1− Re(ωi)
0 1 0 1-1=0
1 i 1 1-0=1
2 -1 2 1-(-1)=2
3 -i 1 1-0=1

Table 3.5: Relationship between Lee weights of i ∈ Z4 and real parts of ωi

For simplification, let Γ(λ) denotes an expression
∑

x∈Tm ωT(λx). Then we have

wL(cλ,ε) = 2m − Re (ωεΓ(λ)) . (3.49)

Now it is sufficient to determine the value of exponential sum Γ(λ) for λ ∈
Z4[ξ] to find the Lee weight of given codeword cλ,ε.

First we formulate an auxiliary lemma (see Lemma 5 in [36]).

Lemma 3.3.5. Let λ ∈ Z4[ξ] has a 2-adic represenation λ = α + 2β, where
α ∈ T ∗

m and β ∈ Tm. Then

Γ(α + 2β) = ω−T( β
α)Γ(1). (3.50)

Proof. Let x and y be in Tm. First we show that also x+ y+2
√
xy is in Tm. We

use a 2-adic representation of element x+ y ∈ Z4[ξ]. Let x+ y = d+ 2e for some
d, e ∈ Tm. Then we calculate a value (x+ y)2

m
in two ways. First, (x+ y)2 = d2

and therefore (x+ y)2
m
= d2

m
= d. The second calculation uses an induction

(x+ y)2
m

= (x2 + 2xy + y2)2
m−1

= (x22 + 2x2y2 + y2
2

)2
m−2

= x2m + 2x2m−1

y2
m−1

+ y2
m

= x+ y + 2
√
xy. (3.51)

By comparison of previous two formulas we get an equation d = x + y + 2
√
xy

and x + y + 2
√
xy is in Tm. Moreover, when we fix y and let x run through Tm

then x+ y + 2
√
xy also runs through Tm.

Therefore we have

Γ(λ) =
∑

x∈Tm

ωT(λx) =
∑

x∈Tm

ωT(λ(x+y+2
√
xy))

= ωT(λy)
∑

x∈Tm

ωT(λ(x+2
√
xy)). (3.52)

If we set λ = 1, we get

Γ(1) = ωT(y)
∑

x∈Tm

ωT(x+2xy)) = ωT(y)Γ(1 + 2y) (3.53)

since T(2
√
xy) = T(2xy).

We have shown that for λ = α + 2β (α 6= 0), the sum Γ(λ) can be expressed
as

Γ(λ) = Γ(α+ 2β) = Γ

(

α

(

1 + 2
β

α

))

=
∑

x∈Tm

ωT(αx(1+2 β
α)) =

∑

y∈Tm

ωT(y(1+2 β
α))

= Γ

(

1 + 2
β

α

)

= ω−T( β
α)Γ(1). (3.54)
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When we combine equation (3.49) and Lemma 3.3.5, we get an expression of
Lee weight for an arbitrary Kerdock codeword in terms of coefficients in its trace
description and 2-adic representation.

For α ∈ T ∗
m, β ∈ Tm and ε ∈ Z4, the Lee weight of codeword cα+2β,ε ∈ K4(m)

is expressed as

wL(cα+2β,ε) = 2m − Re
(

ωε−T(β
α)Γ(1)

)

. (3.55)

For α = 0, β ∈ T ∗
m and ε ∈ Z4, the Lee weight of codeword c2β,ε ∈ K4(m) can

be expressed by
wL(c2β,ε) = 2m, (3.56)

since

∑

x∈Tm

ωT ((2β)x) =
∑

y∈Tm

ωT (2y) = 2m−1ω0 + 2m−1ω2 = 0 (3.57)

and the second term in expression (3.48) disappears.
For α = 0, β = 0 and ε ∈ Z4, the Lee weight of codeword c0,ε ∈ K4(m) can

be expressed by modification of equation (3.48) in the form

wL(c0,ε) = 2m − 2mRe(ωε). (3.58)

The previous general formulas for the Lee weight of given codeword cα+2β,ε ∈
K4(m) help us to identify the codeword type.

Theorem 3.3.6. Let m ≥ 3 be an odd integer and let cα+2β,ε be a codeword from
the quaternary Kerdock code K4(m) of length n = 2m, where α ∈ Tm, β ∈ Tm and
ε ∈ Z4.

(i) If α = 0, β = 0 and ε = i, for i ∈ {0, 1, 2, 3} then the codeword cα+2β,ε is
of the type in.

(ii) If α = 0, β ∈ T ∗
m and ε ∈ {0, 2}, then the codeword cα+2β,ε is of the type

2
n
2 0

n
2 .

(iii) If α = 0, β ∈ T ∗
m and ε ∈ {1, 3}, then the codeword cα+2β,ε is of the type

1
n
2 3

n
2 .

(iv) If α ∈ T ∗
m, β ∈ Tm and ε ∈ Z4 such that ε − T(β/α) ≡ 1−m

2
(mod 4), then

the codeword cα+2β,ε is of the type 1n12n23n30n−n1−n2−n3 with

n1 = 2m−2 + 2
m−3

2 , n2 = 2m−2 − 2
m−3

2 , n3 = 2m−2 − 2
m−3

2 . (3.59)

(v) If α ∈ T ∗
m, β ∈ T (m) and ε ∈ Z4 such that ε − T(β/α) ≡ 3−m

2
(mod 4),

then the codeword cα+2β,ε is of type 1n12n23n30n−n1−n2−n3 with

n1 = 2m−2 + 2
m−3

2 , n2 = 2m−2 + 2
m−3

2 , n3 = 2m−2 − 2
m−3

2 . (3.60)
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(vi) If α ∈ T ∗
m, β ∈ T (m) and ε ∈ Z4 such that ε−T(β/α) ≡ 3−m

2
+1 (mod 4),

then the codeword cα+2β,ε is of type 1n12n23n30n−n1−n2−n3 with

n1 = 2m−2 − 2
m−3

2 , n2 = 2m−2 + 2
m−3

2 , n3 = 2m−2 + 2
m−3

2 . (3.61)

(iv) If α ∈ T ∗
m, β ∈ Tm and ε ∈ Z4 such that ε − T(β/α) ≡ 1−m

2
− 1 (mod 4),

then the codeword cα+2β,ε is of the type 1n12n23n30n−n1−n2−n3 with

n1 = 2m−2 − 2
m−3

2 , n2 = 2m−2 − 2
m−3

2 , n3 = 2m−2 + 2
m−3

2 . (3.62)

Proof. The first three items can be shown using the same arguments as in parts
(i) and (ii) of Theorem 3.3.3.

Let α ∈ T ∗
m, β ∈ Tm and ε ∈ Z4. Denote an expression ε − T(β/α) by x.

Let m+ denotes a number 2m−2+2
m−3

2 and let m− denotes a number 2m−2−2
m−3

2 .

The value of Γ(1) for odd m is equal to (1 + ω)m (see Lemma 4 in [22]). The
main idea of the proof lies in definition of L-function which provides an equation
Γ(1) = −ηm for some complex number η. When we set m = 1 we get −η = 1+ω
and therefore Γ(1) = −(−(1 + ω)m).

Combining equation (3.48) and expression of Γ(1) we get the Lee weight of
codeword cα+2β,ε as

wL(cα+2β,ε) = 2m − Re(ωx(1 + ω)m). (3.63)

Since (1 +ω)2 = 2ω and (1+ ω)3 = (2ω)(1+ ω), the value of (1 +ω)m can be
for odd m ≥ 3 expressed as

(1 + ω)m = (2ω)
m−1

2 (1 + ω). (3.64)

Equation (3.63) is then in the form

wL(cα+2β,ε) = 2m − Re(ωx(2ω)
m−1

2 (1 + ω))

= 2m − Re(2
m−1

2 (ωx+m−1
2 + ωx+1+m−1

2 )). (3.65)

Therefore the Lee weight of codeword cα+2β,ε depends on an expression x+m−1
2

and it is equal to 2m − 2(m−1)/2 or 2m + 2(m−1)/2.
Now we investigate values of the sum x+ m−1

2
.

• If x + m−1
2

≡ 0 (mod 4), then the Lee weight wL(cα+2β,ε) is equal to 2m −
2(m−1)/2 and x ≡ 1−m

2
(mod 4).

• If x + m−1
2

≡ 1 (mod 4), then the Lee weight wL(cα+2β,ε) is equal to 2m +
2(m−1)/2 and x ≡ 3−m

2
(mod 4).

• If x + m−1
2

≡ 2 (mod 4), then the Lee weight wL(cα+2β,ε) is equal to 2m +
2(m−1)/2 and x ≡ 3−m

2
+ 1 (mod 4).

• If x + m−1
2

≡ 3 (mod 4), then the Lee weight wL(cα+2β,ε) is equal to 2m −
2(m−1)/2 and x ≡ 1−m

2
− 1 (mod 4).
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Finally, we assign a type of codeword to the previous four options. The
Lee weight wL(cα+2β,ε) indicates that the first and the last items correspond to
codewords of types 1m

+
2m

−

3m
−

0m
+
or 1m

−

2m
−

3m
+
0m

+
. The second and the third

items then corresponds to codewords of types 1m
+
2m

+
3m

−

0m
−

or 1m
+
2m

+
3m

−

0m
−

.

3.3.2 Existence of designs from quaternary

Kerdock code

In theory of codes over a finite field Fq, a general method of a construction of
t-designs as the support designs in linear codes is known. It was formulated and
proven in 1969 by Assmus and Mattson. For the linear codes over the ring Z4,
no similar theorem has been known until the beginning of the 21st century.

Note that Theorem 3.2.2 is a generalization of Assmus-Mattson theorem for
binary distance invariant codes.

In this section we use an Assmus-Mattson-type theorem for the Z4-linear codes
formulated in [31] for a construction of designs based on the quaternary Kerdock
codes.

Let C be a Z4-linear code of length n and let T = {T1, . . . , Ti} be a set of i
coordinates of C. The punctured code of C at T (i.e. a code of length n− i with
deleted coordinates from the set T ) will be denoted by CT . The shortened code
of C at T is a code that contains only the codewords from C which have 0 in the
coordinates from the set T and that are consequently punctured at T . This code
is denoted by C0@T . The {0, 2}-subcode of C consists of the codewords having
only 0 and 2 as its elements and is denoted by C[0,2].

A connection between Hamming weight enumerators of a code C and its dual
C⊥ is for the binary linear codes often expressed by the MacWilliams identity
(see equation 3.14). The similar equations in terms of complete, symmetrized
or Hamming weight enumerators can be formulated also for Z4-linear codes and
their duals (see Chapter 2 in [11]). The MacWilliams identities of a Z4-linear
code C have form

CWEC(w, x, y, z) =
1

|C⊥|CWEC⊥(w̄, x̄, ȳ, z̄),

SWEC(w, x, y) =
1

|C⊥|SWEC⊥(w + 2x+ y, w − y, w − 2x+ y),

HWEC(w, x) =
1

|C⊥|HWEC⊥(w + 3x, w − x), (3.66)

where w̄ = w+x+y+z, x̄ = w+ ix−y− iz, ȳ = w−x+y−z, z̄ = w− ix−y+ iz
and i =

√
−1.

Now we can formulate an analogy of the Assmus-Mattson theorem for Z4-
linear codes (see Theorem 10 in [31]).

Theorem 3.3.7. Let C be a Z4-linear code of length n such that all codewords
of constant Hamming weight in the subcodes C[0,2] and (C⊥)[0,2] of C and C⊥ yield
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the t-designs. Let s be the number of nonzero weights in (C⊥− (C⊥)[0,2])
0@T where

T ⊂ T is of size t. Let d be the minimum Hamming weight in (C − C[0,2]).
Then the codewords of the constant Hamming weight in C and the codewords

of the constant Hamming weight w ≤ n− t in C⊥ yield the t-designs possibly with
repeated blocks if d− t ≥ s.

Proof. Let C be a quaternary code of length n satisfying assumptions of the
theorem.

Hamming weight enumerators of C and C⊥ satisfy equations

HWEC⊥(w, x) =
1

|C|HWEC(w + 3x, w − x) (3.67)

and

HWE(C⊥)0@T (w, x) =
1

|CT |HWECT (w + 3x, w − x) (3.68)

since the dual of punctured code CT at T is the shortened dual code (C⊥)0@T at
T .

Now we express the Hamming weight enumerator of the code (C⊥)0@T in two
ways as

HWE(C⊥)0@T (w, x) = wn−t +

s
∑

i=1

aiw
n−t−eixei +

n−t
∑

i=1

biw
n−t−ixi, (3.69)

where the term wn−t expresses the zero codeword, the sum with coefficients ai cor-
responds to the codewords from (C⊥ − (C⊥)[0,2])

0@T and the sum with coefficients
bi corresponds to the codewords from (C⊥)0@T

[0,2] , and

HWE(C⊥)0@T (w, x) =
1

|CT |
n−t
∑

i=1

ci(w + 3x)n−t−i(w − x)i. (3.70)

The assumptions of the theorem ensure that the coefficients bi are known for
1 ≤ i ≤ n − t. Moreover, since in (C − C[0,2]) there doesn’t exist a codeword of
weight less than d−t and the weight distribution of C[0,2] is known, the coefficients
ci are known for 0 ≤ i ≤ d− 1− t.

If we combine equations (3.69) and (3.70) and put w = 1, we get

1 +
s
∑

i=1

aix
ei +

n−t
∑

i=1

bix
i =

1

|CT |
n−t
∑

i=1

ci(1 + 3x)n−t−i(1− x)i. (3.71)

If we set x = 1 in equation (3.71), we have

s
∑

i=1

ai =
1

|CT |c04
n−t − 1−

n−t
∑

i=1

bi, (3.72)

which is known value.
Now we diferentiate equation (3.71) j times about x for 1 ≤ j ≤ d−1− t and

again set x = 1. We get a set of equations that can be expressed in the form

s
∑

i=1

ai

(

ei
j

)

= λj, for 0 ≤ j ≤ d− 1− t, (3.73)

51



where λj is known value and with convention
(

ei
j

)

= 0 if j > ei.
Since d−t ≥ s and the previous equations are linearly independent, we obtain

values a1, . . . , as.
The Hamming weight enumerator of the shortened dual code (C⊥)0@T is then

independent of t coordinates from T that shortening takes place in. Thus if we
consider zeros in codewords from C⊥ of the same Hamming weight as blocks, we
get t-design. This yields the complementary t-design from codewords of constant
Hamming weight w ≤ n− t in C⊥. (A t-design D′ is called complementary to the
t-design D if all blocks of D′ are complements of the blocks of D.)

Codewords of constant Hamming weight in C also form a t-design since the
Hamming weight enumerator of CT is independent of the choice of T .

Now we use the quaternary version of Assmus-Mattson theorem for the qua-
ternary Kerdock and Preparata codes.

Corollary 3.3.8. Let K4(m), m ≥ 3 odd, be the quaternary Kerdock code of
length 2m. Then supports of codewords of constant Hamming weight in K4(m)
form 3-design (not necessarily simple).

Proof. The corollary is an application of the quaternary version of Assmus-
Mattson theorem (Theorem 3.3.7) on the quaternary Kerdock and Preparata
codes of the same length 2m, m ≥ 3 odd.

Let code C in Theorem 3.3.7 be the quaternary Preparata code P4(m). Then
the code C⊥ is the quaternary Kerdock code K4(m).

Subcode C[0,2] = P(m)[0,2] can be expressed as

P(m)[0,2] = {2c; c ∈ Ĥ(m)}, (3.74)

where Ĥ(m) is the extended Hamming code of length 2m (see Chapter 13.3 in
[26]). Since the codewords of constant Hamming weight in the extended Ham-
ming code form 3-design, P(m)[0,2] also give 3-designs.

Subcode C⊥
[0,2] = K(m)[0,2] corresponds to a union of zero codeword, all-two

codeword and codewords of type 02
m−1

22
m−1

, i.e.

K(m)[0,2] = c0,0 ∪ c0,2 ∪







⋃

β∈T ∗
m

{c2β,0 ∪ c2β,2}







, (3.75)

where cλ,ε = (T(0)+ ε,T(λ) + ε,T(λξ)+ ε, . . . ,T(λξ2
m−2) + ε), for λ ∈ Z4[ξ] and

ε ∈ Z4 (see proof of Theorem 3.3.3).
The zero and all-two codewords both form trivial 3-design. Thus it remains

to show that the codewords of type 02
m−1

22
m−1

also give 3-design.
Since the generalized trace map T is a linear map such that µ ◦ T = Tr ◦µ,

where µ is a modulo-2 reduction, each codeword c2β,ε, β ∈ T ∗
m, ε ∈ {0, 2} can be

expressed as

c2β,ε = (T(0) + ε,T(2β) + ε,T(2βξ) + ε, . . . ,T(2βξ2
m−2) + ε)

= 2(T(0) + e,T(β) + e,T(βξ) + e, . . . ,T(βξ2
m−2) + e)

= 2(Tr(0) + e,Tr(b) + e,Tr(bα) + e, . . . ,Tr(bα2m−2) + e), (3.76)
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where e = µ(ε) ∈ F2, b = µ(β) ∈ F2m (it follows from an isomorphism Tm ≃ F2m)
and α = µ(ξ) is a primitive element of Fm

2 . The set
{

c2β,ε

2

}

therefore correspond
exactly to the set of extended m-sequences of length 2m, i.e. maximum length
binary sequences generated by primitive polynomial (see Chapter II in [30]), and
form a 3-design. Thus the subcode K(m)[0,2] also forms a 3-design.

The subcode K(m)0@T contains codewords with 5 distinct weights (see The-
orem 3.3.3). Since 3 of them corresponds to the code K(m)[0,2], the parameter
s is equal to 2. Moreover, parameter d is equal to 5 and assumptions of the
Assmus-Mattson theorem are satisfied for t ≤ 3.

Codewords of the quaternary Kerdock codeK(m) of constant Hamming weight
w ≤ 2m − 3 therefore yield 3-design. Since supports of codewords of Hamming
weight 2m give trivial design, the corollary is proved.

Changing the sign of codeword (i.e. multiplying by -1) doesn’t change its sup-
port. Therefore, we consider only codewords from K(m) of types 1m

+
2m

−

3m
−

0m
+

and 1m
+
2m

+
3m

−

0m
−

, where m+ is equal to 2m−2 + 2
m−3

2 and m− is equal to
2m−2 − 2

m−3
2 , to construct nontrivial simple designs.

Theorem 3.3.9. Let m ≥ 3 be an odd integer and let K4(m) be the quaternary

Kerdock code of length n = 2m. Let m+ denote an expression 2m−2 + 2
m−3

2 and
m− denote an expression 2m−2 − 2

m−3
2 .

(i) The supports of codewords of the type 1m
+
2m

−

3m
−

0m
+

in K4(m) form a
3− (2m, k, λ) design, where

k = 2m−1 + 2m−2 − 2
m−3

2 , λ =
k(k − 1)(k − 2)

2m − 2
. (3.77)

(ii) The supports of codewords of the type 1m
+
2m

+
3m

−

0m
−

in K4(m) form a
3− (2m, k, λ) design, where

k = 2m−1 + 2m−2 + 2
m−3

2 , λ =
k(k − 1)(k − 2)

2m − 2
. (3.78)

Proof. From Corollary 3.3.8 and the remark that follows, we know that the sup-
ports of codewords of types 1m

+
2m

−

3m
−

0m
+
and 1m

+
2m

+
3m

−

0m
−

in K4(m) form
t−(v, k, λ) designs, where t is 3 and v is equal to the length of K(m) (i.e. v = 2m).
Since k corresponds to number of nonzero coordinates in codewords of given type,
it is equal to 2m−1 + 2m−2 − 2

m−3
2 or 2m−1 + 2m−2 + 2

m−3
2 respectively.

It remains to determine the parameter λ. We use a general property of t-
designs (see Corollary 2.10 in [26]).

Each t− (v, k, λ) design satisfy a property

λ

(

v

t

)

= B

(

k

t

)

, (3.79)

where B is a number of blocks.
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Since number of blocks is for mentioned designs based on the quaternary
Kerdock codes equal to 2m(2m − 1), we get an equation

λ

(

2m

3

)

= 2m(2m − 1)

(

k

3

)

, (3.80)

and finally we have

λ =
k(k − 1)(k − 2)

2m − 2
(3.81)

for an appropriate k.

In the previous paragraphs we have constructed designs from codewords of
the quaternary Kerdock code K(m) with constant Hamming weight. Article [12]
compiles the results about colored designs based on the code K(m). It is shown
that the codewords of given complete weight define a 4-colored 3-design (colors
are identified with numbers 0,1,2,3 at given coordinates). Moreover, if we consider
symmetrized weight enumerator of K(m), codewords of given symmetrized weight
define blocks of 3-colored 3-design (numbers 1 and 3 at codeword coordinates
correspond to the same color).
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4. Application of Kerdock codes

in Cryptography

In the previous chapter we have shown how to use Kerdock codes to derive com-
binatorial designs. In this chapter we shall show how they can be applied in
cryptography. In particular we shall link them to bent functions and to resilient
functions.

Definition 4.0.10. Let m be a non-negative integer. A Boolean function f of
arity m is a function f :Fm

2 → F2.

Modern cryptography is closely related to computer science (i.e. to the world
of zeros and ones). Probably all conventional cryptographical systems are based
on Boolean functions or, more generally, on functions from F

m
2 to Fn

2 , wherem > n
are the non-negative integers.

In order to assure a resistance of a system against attacks, it is necessary to
choose the involved functions very carefully. Based on known attacks on crypto-
graphical systems, several requirements on functions in use have been formulated
(e.g. nonlinearity, resiliency, balancedness, propagation criterions).

4.1 Bent functions from Kerdock codes

If we want to study a cryptographic scheme that uses a Boolean function of arity
m, one of the first properties that should be investigated is a Hamming distance
of the examined function from a set of all affine Boolean functions (i.e. from the
Boolean functions corresponding to the first order Reed-Muller code RM(1, m)).
Since affine functions can be easily attacked the distance should be as big as
possible. Informally, the larger the distance, the less accurate an approximation
by an affine function can be.

First we formulate few basic definitions and remarks that help us to formalize
the desired property. An introduction to Boolean functions can be found in survey
[8].

In the following text we will identify Boolean functions of aritym with Boolean
polynomials in m indeterminates. By a degree of a Boolean function we will mean
a degree of the corresponding Boolean polynomial. This notation was introduced
in Section 1.1.

A distance between two Boolean functions of the same arity is a number of
values where they differ.

Definition 4.1.1. Let f1 and f2 be Boolean functions of the same arity m. A
distance d(f1, f2) between them is defined by

d(f1, f2) = |{x ∈ F
m
2 ; f1(x) 6= f2(x)}|. (4.1)

As was written above, we are interested mainly in a distance of a Boolean
function f from the set of all affine functions. This distance is often called a
nonlinearity of f .
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Definition 4.1.2. Let f be a Boolean function of arity m. A nonlinearity of the
function f is defined as

Nf = min
a(x)∈A

|{x ∈ F
m
2 ; f(x) 6= a(x)}|, (4.2)

where A is the set of all affine Boolean functions, i.e.

A =

{

a(x) = a0 +

m
∑

i=1

aixi; x = (x1, . . . , xm) ∈ F
m
2 , a0, a1, . . . , am ∈ F2

}

.

(4.3)

Since each codeword of the first order Reed-Muller code RM(1, m) of length
2m is equal to the evaluation of an affine Boolean function of arity m, we can
identify the set A with the code RM(1, m). A nonlinearity of a Boolean function
f of arity m thus corresponds to the minimum of Hamming distances between
the codeword from RM(1, m) and an evaluation vector vf of the function f , i.e.

Nf = min
c∈RM(1,m)

d(c, vf). (4.4)

Now we see that the maximal nonlinearity of a Boolean function of arity m
is equal to a maximal distance from an arbitrary vector x ∈ F

2m

2 to the nearest
codevord c ∈ RM(1, m) (i.e. to the covering radius ρm of the code RM(1, m)).

Definition 4.1.3. Let C be a binary code of length n. The covering radius ρ of
C is

ρ = max
x∈Fn

2

min
c∈C

d(x, c), (4.5)

where d is a Hamming distance function.

The covering radius ρm of the first order Reed-Muller code RM(1, m) for even
m will be calculated using its upper and lower bounds that are approximated in
the following lemmas. The upper bound is derived in Theorem 1.8 in article [7].
The lower bound of the covering radius ρm can be found in [18].

An approximation of the upper bound of the covering radius ρm is formulated
in more general form. Assumption of the lemma uses property of error-correcting
codes called strength.

Definition 4.1.4. A binary code C has a strength s, if all possible s-tuples from
F
s
2 occur the same number of times in any s coordinates. The maximum strength

of a code is defined as the largest integer s for which the code has strength s.

Let C be an [n, k, d] binary linear code and let C⊥ be the [n, n − k, d′] code
dual to C. Let [C] be the 2k × n array of all codewords of C. Then any set of
s ≤ d′ − 1 columns of [C] are linearly independent, since otherwise the code C⊥

would contain a vector of weight s < d′. In terms of strength of the code C, the
previous fact implies that the maximum strength s of C is equal to d′ − 1.

The strength of a code can be defined in the same way also for codes over an
arbitrary finite field Fq. The maximum strength of a code over Fq is then derived
from its dual distance as in the binary case.
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Lemma 4.1.5. Let C be a linear binary code of length n containing the all-one
codeword. If C has maximum strength at least 2, then its covering radius ρ is at
most (n−√

n)/2, i.e.

ρ ≤ n−√
n

2
. (4.6)

Proof. Suppose that the covering radius ρ is n
2
− k, where k ≥ 0. Since

d(v, c+ 1) = n− d(v, c), (4.7)

all distances from a vector v to the code C lie in the interval
[

n
2
− k, n

2
+ k
]

for
all v ∈ F

n
2 .

Now we calculate the variance of distances of an arbitrary vector v ∈ F
n
2 from

codewords c ∈ C.
Let di(c) = 0 if v and c agree in the ith coordinate and di(c) = 1 otherwise,

for 1 ≤ i ≤ n and c ∈ C. Then

d(v, c) =
n
∑

i=1

di(c) (4.8)

and
d(v, c)(d(v, c)− 1) =

∑

i 6=j

di(c)dj(c). (4.9)

If C has strength 2, then
∑

c∈C
di(c)dj(c) =

|C|
4

(4.10)

for all 1 ≤ i, j ≤ n, i 6= j.
Thus the average value of d(v, c)(d(v, c)− 1) for any v ∈ F

n
2 is

1

|C|
∑

c∈C
d(v, c)(d(v, c)− 1) =

1

|C|
∑

c∈C

∑

i 6=j

di(c)dj(c)

=
1

|C|
∑

i 6=j

|C|
4

=
n(n− 1)

4
. (4.11)

Moreover, the average distance of v from codewords of C is

1

|C|
∑

c∈C
d(v, c) =

1

|C|
n
∑

i=1

∑

c∈C
di(c) =

1

|C|
n
∑

i=1

|C|
2

=
n

2
, (4.12)

since C has also strength 1.

A variance σ2 of distances d(v, c) is therefore equal to

σ2 =
1

|C|
∑

c∈C
d(v, c)2 −

(

1

|C|
∑

c∈C
d(v, c)

)2

=
n(n− 1)

4
+

n

2
− n2

4
=

n

4
. (4.13)

A standard deviation σ of distances from a vector v to the code C, which shows
difference of distances from the average n

2
, is then equal to

√
n
2

and we have

k ≥
√
n
2
, since the interval

[

n
2
− k, n

2
+ k
]

contains interval
[

n
2
− σ, n

2
+ σ
]
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Lemma 4.1.6. Let ρm, m ≥ 0, be a covering radius of RM(1, m). Then

ρm ≥ 2m−1 − 2⌈m/2⌉−1. (4.14)

Proof. Let us use a recursive definition of the first order Reed-Muller codes, i.e.

RM(1, 0) = {(0), (1)} ,
RM(1, m+ 1) =

⋃

c∈RM(1,m)

{(c, c), (c, c̄)} (4.15)

where c̄ denotes a complement of the codeword c (i.e. c̄ = c+ 1, where 1 is the
all-one vector of length 2m). The definition is correct, since each affine Boolean
function f of arity m+ 1 can be expressed using an affine Boolean function g of
arity m as

f((x1, . . . , xm+1)) = g((x1, . . . , xm)) + am+1xm+1, (4.16)

for all (x1, . . . , xm+1) ∈ F
m+1
2 , where am+1 ∈ F2.

A code RM(1, m+ 2) can be therefore expressed in terms of codewords from
RM(1, m) as

RM(1, m+ 2) =
⋃

c∈RM(1,m)

{(c, c, c, c), (c, c, c̄, c̄), (c, c̄, c, c̄), (c, c̄, c̄, c)} . (4.17)

Let v ∈ F
2m

2 be a vector such that d(v, c) ≥ ρm for all c ∈ RM(1, m). The
definition of covering radius ρm ensures the existence of such vector. Then

d(v̄, c̄) = d(v, c) (4.18)

and
d(v̄, c) = d(v, c̄) = 2m − d(v, c). (4.19)

If we consider vector u = (v,v,v, v̄) ∈ F
2m+2

2 , we have

d((v,v,v, v̄), (c, c, c, c)) = 3d(v, c) + d(v̄, c)

= 2d(v, c) + 2m ≥ 2ρm + 2m. (4.20)

Similarly, using formulas (4.18) and (4.19) we show that d(u, c′) ≥ 2ρm+2m also
for other types of codewords c′ ∈ RM(1, m+ 2). Therefore ρm+2 ≥ 2ρm + 2m.

The theorem now follows by induction, since ρ0 = 0 and ρ1 = 0 and if ρm ≥
2m−1 − 2⌈m/2⌉−1, then

ρm+2 ≥ 2ρm + 2m ≥ 2(2m−1 − 2⌈m/2⌉−1) + 2m

= 2(m+2)−1 − 2⌈(m+2)/2⌉−1. (4.21)

Now we get the covering radius ρm of the first order Reed-Muller code as a
direct consequence of auxiliary lemmas 4.1.5 and 4.1.6.
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Corollary 4.1.7. Let m ≥ 0 be an even integer. The covering radius ρm of the
first order Reed-Muller code RM(1, m) is equal to

ρm = 2m−1 − 2
m
2
−1. (4.22)

Proof. According to the note on the strength of a code, a maximum strength
of the first order Reed-Muller code RM(1, m) is equal to 3, since its dual code
RM(m − 2, m) has minimum weight 2m−(m−2) = 4 (see Chapter 13 in [26]).
Moreover, the length of the first order Reed-Muller code RM(1, m) is 2m and
Lemma 4.1.5 therefore implies that the covering radius ρm is at most 2m−1−2

m
2
−1.

Conversely, from Lemma 4.1.6 it follows that for even m, the covering radius
ρm is at least 2m−1 − 2

m
2
−1.

Boolean functions that reach the upper bound of the nonlinearity are often
called bent or perfect nonlinear functions.

Definition 4.1.8. A Boolean function f :Fm
2 → F2 of arity m is called bent if its

Hamming distance to the first order Reed-Muller code RM(1, m) (i.e. to the set
of all affine Boolean functions of arity m) is equal to 2m−1 − 2

m
2
−1.

From the definition it immediatly follows that no affine Boolean function is
bent. A Boolean function can be therefore bent, if it has a degree at least 2.
The following theorem identifies the quadratic bent functions. A recognition of
bent functions of low degrees can be found in section 6.2. in [8]. A complete
characterization of bent functions of degree d ≥ 3 is an open problem.

Theorem 4.1.9. Let f :Fm
2 → F2 be a quadratic Boolean function of arity m.

Then f is bent if and only if one of the following equivalent properties is satisfied:

(i) the Hamming weight of its evaluation vector vf is equal to 2m−1 ± 2
m
2
−1;

(ii) the function f can be expressed as

f(x) = Q(x) + a0, (4.23)

where x = (x1, . . . , xm) ∈ F
m
2 , Q is a non-singular quadratic form on a

vector space F
m
2 and a0 ∈ F2.

Proof. In Section 3.2.1 we have determined a weight distribution of coset of the
first order Reed Muller code corresponding to a non-singular quadratic form. The
equivalence of conditions (i) and (ii) is a consequence of discussion on Table 3.2.

Let f be a quadratic bent Boolean function of arity m. Then its distance
from RM(1, m) is equal to 2m−1 − 2

m
2
−1. Since RM(1, m) is a linear code that

contains the all-one codeword, weight of evaluation vector vf is 2m−1 − 2
m
2
−1 or

2m−1 + 2
m
2
−1.

Let f be a quadratic Boolean function that can be expressed in the form
(4.23) for some non-singular quadratic form Q. Then the coset f +RM(1, m) of
the first order Reed-Muller code in the second order Reed-Muller code is equal to
the coset Q+RM(1, m). Distances from an evaluation vector of Q to codewords

59



from RM(1, m) are equal to weights of vectors in the coset Q+RM(1, m), which
is 2m−1 ± 2

m
2
−1 (see section 3.2.1).

Since a nonlinearity of function f is equal to its minimal distance from a code-
word of RM(1, m) (i.e. to the minimal weight of a vector from Q+RM(1, m)),
it is equal to 2m−1 − 2

m
2
−1. The function f is therefore bent.

In section 1.1 we have defined the binary Kerdock code K(m) (m ≥ 4 even)
as a union of certain cosets of the first order Reed-Muller code RM(1, m) in the
second order Reed-Muller code RM(2, m). Since each codeword of RM(2, m) is
an evaluation vector of given Boolean function of arity m and degree d ≤ 2, the
second order Reed-Muller code RM(2, m) (and consequently the Kerdock code
K(m)) can be viewed as a set of Boolean functions of arity m.

Now we classify the nonlinearity of codewords from the Kerdock code K(m)
and their differences.

Theorem 4.1.10. Let K(m) be the binary Kerdock code of length 2m, m ≥ 4
even. Then the difference of any two codewords c1, c2 ∈ K(m) is either bent or
affine Boolean function (i.e. the nonlinearity of a Boolean function corresponding
to the vector c1 − c2 is equal to 2m−1 − 2

m
2
−1 or 0).

Proof. The binary Kerdock code K(m) can be viewed as a union of the first order
Reed-Muller code together with cosets corresponding to non-singular quadratic
forms determined by the Kerdock set K of regular skew-symmetric matrices.

Since the difference between each two matrices from the Kerdock set K is
again a regular matrix, it gives us a coset of RM(1, m) (not necessarily included
in the code K(m)) corresponding to a non-singular quadratic form.

The result therefore follows from Theorem 4.1.9.

In the literature, an inverse approach to the relationship between Kerdock
codes and bent functions is sometimes considered (see [33]). The Kerdock code
of length 2m, m ≥ 4 even, is then defined as a union of the first order Reed-Muller
code RM(1, m) together with 2m−1 − 1 cosets of RM(1, m) in the second order
Reed-Muller code RM(2, m) such that the Boolean functions associated with
the cosets are quadratic bent functions such that the sum of every two of them
is again a bent function.

4.2 Resilient functions from Kerdock codes

Resilient functions form a family of functions defined on a vector space F
n
q that

can be succesfully applied in a cryptography. We shall assume that q = 2 since
this is the case that usually occurs in cryptographical applications. The basic
idea was formulated independently in the eighties in articles [9] and [3].

The main usage of resilient functions lies in a construction of stream ci-
phers. In a stream cipher the plaintext is added (by XOR) with a pseudorandom
keystream that is typically generated by combining the outputs of several lin-
ear feedback shift registers (LFSR). Security of the cipher depends significantly
on a choice of the combining function. If there exist a correlation between the
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keystream and the output sequence of some LFSRs, the divide and conquer al-
gorithm can be used to decrease the complexity of a brute force attack on the
cipher (the correlated registers are attacked separately). Such a type of attack is
called a correlation attack. A sufficient resiliency of the combining function of a
LFSR based stream cipher serves as an efficient prevention from the attack.

For more information about correlation attacks see [27], Chapter 6, or [32].
The main source for the section was [34].

Let n ≥ k ≥ 1 be integers and let f be a function

f :Fn
2 → F

k
2, (4.24)

i.e. the input of f consists of n bits and the output of f consists of k bits. Now
assume that t input bits are fixed and remaining n − t input bits are chosen
randomly and independently. If each possible output of k bits occurs equally
likely, the function f is called t-resilient. A more formal definition follows.

Definition 4.2.1. Let n ≥ k ≥ 1 be integers and let f be a function

f : Fn
2 → F

k
2. (4.25)

Let t ≤ n be an integer. The function f is called (n, k, t)-resilient if for every
subset of indices {i1, . . . , it} ⊆ {1, . . . , n} of cardinality t, for every choice of
zj ∈ F2, 1 ≤ j ≤ t, and for every k-tuple (y1, . . . , yk) ∈ F

k
2

P (f(x1, . . . , xn) = (y1, . . . , yk) | xij = zj , 1 ≤ j ≤ t)

= P (f(x1, . . . , xn) = (y1, . . . , yk)) =
1

2k
. (4.26)

An (n, k, t)-resilient function f that can be expressed in the form

f(x) = xG, (4.27)

for a n× k binary matrix G is called linear. The basic construction of linear re-
silient functions uses a direct connection between linear (n, k, t)-resilient functions
and linear [n, k, t+ 1] error-correcting codes.

In articles [9] and [3] it is shown that these two structures are equivalent. The
main idea of proof lies in an identification of a matrix G determining the linear
(n, k, t)-resilient function f with a generating matrix GT of an [n, k, t+ 1] linear
code.

The authors of article [3] also conjectured that if there exists an (n, k, t)-
resilient function, then there exist a linear (n, k, t)-resilient function. The conjec-
ture was disproved in article [34] by exhibiting an infinite class of counterexamples
based on binary Kerdock codes.

In the next paragraphs we describe a general connection between the resilient
functions and the codes (not necessarily linear) and apply it to binary Kerdock
codes.

Resilient functions are closely related to a combinatorial structure called an
orthogonal array. It forms a bridge between error-correcting codes and resilient
functions.
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Definition 4.2.2. An orthogonal array OAλ(t, n, v) is a λvt × n array of v sym-
bols, such that in any t columns of the array each of possible vt ordered t-tuples
of symbols occurs in exactly λ rows. An orthogonal array is said to be simple if
no two rows are identical.

A large set of orthogonoal arrays LOAλ(t, n, v) is a set of vn−t/λ simple or-
thogonal arrays OAλ(t, n, v) such that every possible n-tuple of symbols occurs
in exactly one of the orthogonal arrays in the set.

The main usage of orthogonal arrays is in design of experiments. In terms
of statistics, colums in an orthogonal array are often called factors since they
represent the studied variables. Rows of an orthogonal array then corresponds to
the particular observations or runs of an experiment.

A comprehensive source on orthogonal array theory is book [16]. In article
[13], applications of orthogonal arrays in computer science and cryptography are
summarized.

Now we formulate the first part of mentioned link and prove an equivalence
between resilient functions and orthogonal arrays. The proof can be found in
section 5 of article [14].

Theorem 4.2.3. An (n, k, t)-resilient function is equivalent to a large set of
orthogonal arrays LOA2n−k−t(t, n, 2).

Proof. First, let f :Fn
2 → F

k
2 be an (n, k, t)-resilient function. For any k-tuple

y ∈ F
k
q , form an array Ay whose rows are vectors from f−1(y). Ay is then a

|f−1(y)| × n array of elements from F2 and each vector from the vector space F
n
2

occurs in exactly one array Ay. It is therefore sufficient to show that each array
Ay is an orthogonal array OA2n−k−t(t, n, 2).

Let {i1, . . . , it} ⊆ {1, . . . , n} be a t-subset, and let zj ∈ F2, 1 ≤ j ≤ t, be fixed
elements. For every vector y ∈ F

k
2, let λy denotes a number of rows in the array

Ay in which zj occurs in the column ij for all 1 ≤ j ≤ t.
Since λy expresses the number of vectors x = (x1, . . . , xn) ∈ F

n
2 from f−1(y)

with xij = zj for all 1 ≤ j ≤ t, and 2n−t is the number of all vectors from F
n
2 that

satisfy the required equations, we can use the Bayes formula for the conditional
probability and we get for all y ∈ F

k
2

P (f(x1, . . . , xn) = (y1, . . . , yk) | xij = zj , 1 ≤ j ≤ t) =
λy

2n

2n−t

2n

=
λy

2n−t
. (4.28)

Moreover, since f is an (n, k, t)-resilient function we have for all y ∈ F
k
2

P (f(x1, . . . , xn) = (y1, . . . , yk) | xij = zj , 1 ≤ j ≤ t) =
1

2k
. (4.29)

The previous two equations imply that

λy =
2n−t

2k
= 2n−t−k (4.30)

for all y ∈ F
k
2.

We have shown that the number λy is independent on a choice of a vector
y ∈ F

k
2 and it is also independent on particular choices of coordinates i1, . . . , it
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and elements zj , 1 ≤ j ≤ t. Therefore the arrays Ay, y ∈ F
k
2 form a set of 2k

orthogonal arrays OA2n−k−t(t, n, 2) and the first implication is proved.

Conversely, suppose that we have the large set LOA2n−k−t(t, n, 2) of orthogonal
arrays. The set contains 2n−t

2n−k−t = 2k arrays that can be denoted by Ay, y ∈ F
k
2.

Now define a function f :Fn
2 → F

k
2 by an equivalence

f(x1, . . . , xn) = (y1, . . . , ym) ⇐⇒ (x1, . . . , xm) ∈ A(y1,...,ym) (4.31)

for all (x1, . . . , xn) ∈ F
n
2 .

Let {i1, . . . , it} ⊆ {1, . . . , n} be a t-subset, and let zj ∈ F2, 1 ≤ j ≤ t, be
fixed elements and y ∈ F

k
2 be a fixed vector. Now we calculate the probability

P (f(x1, . . . , xn) = (y1, . . . , yk) | xij = zj , 1 ≤ j ≤ t). We again use the Bayes
formula and explain the required conditional probability as a quotient of a joint
probability of events and a probability of condition. From basic probability theory
and the definition of orthogonal array follows that

P (f(x1, . . . , xn) = (y1, . . . , yk) & xij = zj , 1 ≤ j ≤ t)

= P ((x1, . . . , xn) ∈ A(y1,...,yk) & xij = zj, 1 ≤ j ≤ t)

= P ((x1, . . . , xn) ∈ A(y1,...,yk) & vij = zj , 1 ≤ j ≤ t,v = (v1, . . . , vn))

= P ((x1, . . . , xn) ∈ A(y1,...,yk)) · P (vij = zj , 1 ≤ j ≤ t,v = (v1, . . . , vn))

=
2n−k

2n
· 2

n−k−t

2n−k
=

2n−k−t

2n
(4.32)

and

P (xij = zj , 1 ≤ j ≤ t,x ∈ F
n
2) =

2n−t

2n
. (4.33)

Therefore we have

P (f(x1, . . . , xn) = (y1, . . . , yk) | xij = zj , 1 ≤ j ≤ t) =
2n−k−t

2n

2n−t

2n

=
1

2k
(4.34)

and the function f is (n, k, t)-resilient.

Theory of resilient functions doesn’t have to be restricted to the field F2, but
we can define them in general as functions F

n
q → F

k
q . The proof of the previ-

ous theorem can be then easily generalized and we get an equivalence between
a (n, k, t)-resilient function over a field Fq and a large set of orthogonal arrays
LOAqn−k−t(t, n, q).

Now we can formulate a necessary condition on an (n,K, d) error-correcting
code C that provides an (n, n− k, d′ − 1)-resilient function, where K = 2k and d′

is a dual distance of the code C defined in Section 3.2.2. The theorem was first
proved in [34].

Theorem 4.2.4. If there exists a systematic (n,K, d) code C having a dual dis-
tance d′, then there is an (n, n− k, d′ − 1)-resilient function, where K = 2k.
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Proof. Write codewords of C as rows ofK×n array. Any set of d′−1 columns now
contains each d′−1-tuple exactly K/2d

′−1 times. Therefore, we get an orthogonal
array OAλ(t, n, 2), where t = d′ − 1 and

λ =
K

2d′−1
=

2k

2d′−1
= 2k−d′+1. (4.35)

Since C is systematic, we can assume without loss of generality that informa-
tion bits correspond to the first k coordinates.

For any possible (n−k)-tuple z = (z1, . . . , zn−k) ∈ F
n−k
2 we denote by Cz a set

of vectors from F
n
2 obtained from C by adding a vector (0, . . . , 0, z1, . . . , zn−k) to

each codeword. The set Cz is then a simple orthogonal array OA2k−d′+1(d′−1, n, 2).
Moreover, a set of arrays {Cz; z ∈ F

n−k
2 } is a large set of orthogonal arrays

LOA2k−d′+1(d′ − 1, n, 2) since all rows in the arrays Cz, z ∈ F
n−k
2 , are distinct.

From Theorem 4.2.3 it follows, that an (n, n − k, d′ − 1)-resilient function
exists.

If an (n, k, d)-code C is linear, a set of orthogonal arrays from the proof cor-
respond precisely to cosets of the code C.

Since the binary Kerdock code K(m) is a systematic code of length n = 2m

with K = 22m codewords and dual distance d′ equal to 6 (see Sections 1.3 and
3.2.2), assumptions of the previous theorem are satisfied. Therefore, we can apply
it to the code K(m) and for all even m ≥ 4 we obtain a (2m, 2m− 2m, 5)-resilient
function.

Theorem 4.2.5. Let m ≥ 4 be an even integer. Then there exist a nonlinear
(2m, 2m − 2m, 5)-resilient function.

Proof. An existence of desired resilient function is a direct consequence of Theo-
rem 4.2.4 and paramaters of the binary Kerdock codes.

By an application of Theorem 4.2.4 on the Preparata codes P(m), m ≥ 4
even, we get a (2m, 2m, 2m−1 − 2(m−2)/2 − 1)-resilient function.
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Conclusion

The main goal of the previous chapters was to show that the Kerdock codes are
not interesting only for their capability of correcting errors but that they also in-
terfere to many other areas of mathematics that are not on the first sight related
to the theory of error-correcting codes.

This thesis contains applications of Kerdock codes in orthogonal geometry,
combinatorial mathematics and cryptography.

We have shown that the algebraic structure defining these codes is equivalent
with a structure from orthogonal geometry called orthogonal spread. Then we
confirmed that there exist five infinite sets of 3-designs based on the Kerdock
codes in their binary and quaternary form. Finally, we used the algebraic struc-
ture of Kerdock codes to construction of two different types of cryptographically
interesting functions.

After all, the list of applications of Kerdock codes is still not complete. Re-
cently, the Kerdock codes were used in communication theory to coding wireless
communication between multiple senders and multiple receivers. This topic is
not included in the thesis since the application is related mainly to physical prop-
erties on transmission channel or implementation of coding algorithm but not to
underlying algebraic structures.

Although the Kerdock codes are intensively studied for 40 years, they still
aren’t fully examined. There are formulated several open problems related to
Kerdock codes. The first one concerns existence or nonexistence of linear code
with the same parameters as the Kerdock code. Nonexistence of such linear code
is proven only for the Nordstrom-Robinson code NR = K(4). For m > 4 there
exists a conjecture about the nonexistence of such linear code, but it is still not
proven.

The second open problem is related to calculation of the covering radius of
the Kerdock code K(m) for even m > 4. Similarly as the previous problem the
covering radius of the Nordstrom-Robinson code NR is known but for m > 4 we
have only upper and lower bounds that help us to estimate the covering radius
but the exact value is in general case unknown.

I am sure that in the following years the Kerdock codes will serve as a base for
many other applications mainly in computer science and communication theory.
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