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Chapter 1

Introduction

The concept of graph immersions is a generalisation of subgraphs, similar to the
concept of graph minors. We say that a graph H contains an immersion of a graph
G if G can be obtained from H by series of lifting pairs of adjacent edges, vertex
deletions and edge deletions, where lifting of the pair of edges uv, vw means deleting
both edges uv and vw and replacing them by the edge uw.

We begin with a short informal survey of the most important results for im-
mersions and comparison to similar results for minors. The definitions and results
relevant for the rest of the thesis will be formally stated later in this chapter.

The notion of an immersion of a graph was introduced by Nash-Williams in 1960’s
[6]. He also proposed the famous conjecture, analogical to the Wagner’s conjecture
for graph minors, that graphs are well-quasi-ordered with respect to the immer-
sion relation. Both conjectures have been proven by Robertson and Seymour [12],
[13]. Another problem, studied but unsolved for both for minors and immersions is,
whether every k-chromatic graph contains Kk as a minor or an immersion of Kk.
For minors, the problem is called Hadwiger’s conjecture and is known to be true for
k ≤ 6 [14]. For immersions, the conjecture was proven for k ≤ 7 [2].

In the rest of this chapter we introduce the notation, terminology and some
results.

1.1 Basic definitions

In this section, we survey basic definitions, notation and some theorems from graph
theory in particular which are used throughout the thesis. Most of these topics are
described in more detail, e.g., in Diestel’s book [3].

Definition 1. A simple graph (or just a graph) G is a pair (V (G), E(G)), where
V (G) is a set of vertices and E(G) ⊆

(
V (G)

2

)
is a set of edges. An edge e = {u, v}

is usually denoted as uv and the vertices u end v are called ends of the edge e.
A graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G) is a subgraph of G. Two
vertices u, v ∈ V (G) are adjacent if there exists an edge e = uv in E(G). Vertices
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adjacent to v are also called neighbors of v and the set of all vertices adjacent to v is
the neighborhood of v. Edges are adjacent if they have an end in common. Pairwise
nonadjacent vertices or edges are called independent. Independent set of edges is also
called a matching. A vertex cover of a graph G is a set of vertices C such that every
edge in E(G) has an end in C.

The following theorem shows a relation between a matching and a vertex cover.

Theorem 1. (König 1931) The maximum size of a matching in G is equal to the
minimum size of a vertex cover.

Definition 2. A multigraph M is a pair (V (M), E(M) of disjoint sets, where V (M)
is a set of vertices and E(M) is a set of edges, and a map E : E(M)→ V (M)∪

(
V (M)

2

)
that assigns to every edge one or two vertices, its ends. An edge with only one end
is called a loop. We write e = xy to express that the edge e has ends x and y, but
it does not uniquely determine the edge. A multiedge of a multigraph is a nonempty
set of edges E−1(m) for some m ∈ V (M) ∪

(
V (M)

2

)
. If x, y ∈ V (M), the multiedge

E−1({x, y}), is denoted x̂y, the multiedge E−1({x}) is denoted x̂x. The multiplicity
of a multiedge is a number of its elements.

Definition 3. An directed graph D is a pair (V (D), E(D)) of disjoint sets, where
V (D) is a set of vertices and E(D) is a set of edges, and maps init : E(D)→ V (D)
and term : E(D)→ V (D). For an edge e ∈ E(D), a vertex init(e) is called the initial
vertex of e, term(e) is called the terminal vertes of e and we say that e is directed
from init e to term e.

Definition 4. If G is a simple graph, a directed graph or a multigraph, we say
that a vertex v has degree k if v is contained in k edges in G. We write it deg v =
k. If all the vertices of G have the same degree k, G is k-regular. The number
δ(G) = min{deg v|v ∈ V (G)} is the minimum degree of G, the number ∆(G) =
max{deg v|v ∈ V (G)} is the maximum degree of G and the number

d(G) =

∑
v∈V (G) deg v

|V (G)|

is the average degree of G.
If G is an directed graph, a vertex v has in-degree k if v is the terminal vertex

of k edges of G, we write deg− v = k. A vertex v has out-degree k if v is the initial
vertex of k edges of G, we write deg+ v = k.

Definition 5. Graphs G and H are isomorphic if there exists a bijection ϕ : V (G)→
V (H) such that uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(H).

In the thesis, we consider isomorphic graphs to be equal and graph classes to be
closed under isomorphism.
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Definition 6. A path P of length n is a graph with n + 1 vertices v0, . . . , vn and
edges ei = vivi+1 for i = 0, . . . , n − 1. The vertices v0 and vn are ends of the path
P and the vertices v1, . . . , vn−1 are internal vertices of the path. A path in a graph
G between vertices u and v or from u to v is a subgraph of G which is a path with
ends u and v. Distance between vertices u, v in a graph G is length of a shortest
path between u and v or infinity if there is no path between u and v in G.

A cycle C of length n, where n ≥ 3, is comprised of a path of length n− 1 with
ends u and v and an edge uv.

An n-star S is a graph with n+1 vertices v0, . . . , vn and edges v0vi for i = 1, . . . , n.
We say that there is an n-star between vertices v1, . . . , vn in a graph G, if there exists
a vertex v0 in G such that there is an edge v0vi in G for every i = 1, . . . , n.

A graph with an edge between every two vertices, i.e. (V,
(
V
2

)
), is called a complete

graph or a clique and is denoted Kn, where n = |V |.

Definition 7. Let G = (V,E) be a graph, e = uv an edge and w a vertex in
G. Then the graph obtained from G by deleting the edge e is the graph G \ e =
(V,E \ {e}). The graph obtained from G by deleting the vertex w is the graph
G \ w = (V \ {w}, E ∩

(
V \{w}

2

)
).

Definition 8. A graph G is connected if there exists a path between any two vertices
of G. Maximal connected subgraphs of a graph G are connected components.

A vertex cut in a connected graph G is a set W of vertices of G, such that the
graph G \W is not connected. A vertex cut W is called a k-cut if its size is k, i.e.,
|W | = k. The only vertex in a 1-cut is called an articulation. G is called k-connected
if its minimum vertex cut has size at least k. The connectivity of a graph G is the
size of its minimum vertex cut if G is not complete and it is n if G is a complete
graph on n vertices.

An edge cut in a connected graph G is a set W of edges of G, such that the graph
G\W is not connected. The only edge in a 1-edge-cut is called an cut edge. G is called
k-edge-connected if its minimum edge cut has size at least k. The edge-connectivity
of a graph G is the size of its minimum edge cut.

A graph G is k-linked if G has at least 2k vertices and for every 2k distinct
vertices s1, . . . sk, t1, . . . tk, there exist k pairwise vertex disjoint paths P1, . . . Pk such
that si and ti are the ends of the path Pi for each i.

For a subgraph G of H and X ⊆ V (G), a G-bridge over X is a maximal connected
subgraph of H \ E(G) such that it does not contain any vertex cut consisting of
vertices of X (i.e. vertices of H \X are in the same G-bridge over X if there exists
a path between them in H \ E(G) \X).

Theorem 2 (Mader). For every k ∈ N, every graph with average degree d(G) ≥ 4k
has a (k + 1)-connected subgraph H such that d(H) > d(G)− k/2.

Theorem 3. (Thomas, Wollan [17]) Let G be a graph and k ∈ N. If d(G) ≥ 4k and
G is 2k-connected, then G is k-linked.
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Figure 1.1: A grid, an elementary wall, a wall and its subwall

Definition 9. A forest is a graph that does not contain any cycle as a subgraph. A
connected forest is called a tree. A spanning tree of a connected graph G is a tree
T such that V (T ) = V (G) and E(T ) ⊆ E(G). A spanning forest of a graph G is a
forest consisting of spanning trees of all the connected components of G. Vertices of
degree 1 in a tree are leaves.

A rooted tree is a tree with one distinguished vertex, a root. In a rooted tree, the
root is not a leaf, even if it has degree 1.

Definition 10. A grid of size n × m is a graph with vertices corresponding to a
vertices in a plane with integer coordinates [x, y] with 0 ≤ x ≤ n, 0 ≤ y ≤ m and
edges between vertices in (Euclidean) distance 1. A subgrid of a grid is subgraph of
a grid that is a grid.

An elementary wall of height h is obtained from agrid of size 2h+1×h by deleting
edges between vertices of the grid that can be written as [2i, 2j] and [2i, 2j + 1], or
[2i+ 1, 2j+ 1] and [2i+ 1, 2j+ 2] for i, j ∈ N and deleting vertices of degree one. I.e.,
an elementary wall of height h has h rows and h faces in every row as in the Figure
10.

A wall of height h is any subdivision of an elementary wall of height h.
A subwall of height h′ of a wall W is a connected subgraph of W that consists of

a wall W ′ of height h′ smaller than height of W and a (possibly empty) set of paths
such that each path has one end in W ′ and the rest of the path is disjoint from W ′.
Boundary vertex of a subwall S of a wall W is a vertex s of S such that there exists
a vertex v in V (W ) \ V (S) such that sv is an edge of W . The set of all boundary
vertices of S is denoted ∂S.

Two vertices u and v of a wall W are in wall distance k, if on every path from
u to v in W is at least k + 1 branching vertices of W . I.e., distance between two
vertices of elementary wall is the same as their wall distance.

Definition 11. A graph G is planar if it can be drawn into a plane (R2) so that
vertices correspond to points of a plane and edges correspond to arcs that are pair-
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wise disjoint except for the endpoints. By an arc we mean an image of an injective
continuous function from interval [0, 1] to R2.

The notion of embeddability into the surface naturally generalizes the notion of
planarity.

Definition 12. By a surface we mean a 2-dimensional topological manifold. An
embedding of a graph into a surface Σ is representation of a graph on Σ such that
vertices correspond to points of the surface and the edges correspond to arcs that are
pairwise disjoint except for the endpoints. By arcs we mean an image of an injective
continuous function from [0, 1] to Σ.

A face is a maximal connected subset of the space obtained from the surface by
removing the points corresponding to the vertices and edges of the graph.

1.2 Immersions, graph minors and tree-width

In this section, we survey definitions and results related to immersions, graph minors
and tree-width, focusing on the relation between immersions and graph minors and
their connection to tree-width.

Definition 13. A graph obtained from G by subdividing an edge uv ∈ V (G) is the
graph obtained by adding a vertex w into V (G) and replacing the edge uv by edges
uw and vw. A graph H is a subdivision of a graph G, if H can be obtained from G
by zero or more edge subdividings. A set B of vertices of H is the set of branching
vertices for G, if H can be obtained from G by subdividing edges and B = V (G).

Definition 14. A graph obtained from a graph G by contracting an edge e = uv is
the graph obtained by deleting the edge e and identifying the vertices u and v. The
resulting vertex uv is adjacent to all the vertices which are adjacent to u or to v in
G \ e.

Definition 15. A graph G is a minor of a graph H, if G can be obtained from H by
a sequence of vertex deletions, edge deletions and edge contractions. If this sequence
is nonempty, G is a proper minor of H.

Definition 16. A graph resp. multigraph obtained from a graph resp. multigraph
G by lifting a pair of adjacent edges e = uv and e′ = vw is the graph obtained by
deleting the edges e and e′ and adding the edge f = uw. A graph resp. multigraph
obtained from a graph resp. multigraph G by lifting a path P between u and v is the
graph obtained by deleting all the edges in P and adding the edge e = uv.

Note that the result of lifting in a simple graph can be a multigraph. Lifting edges
e = uv and e′ = vw where v is a vertex of degree 2 and deleting v afterwards is an
inverse process to subdividing an edge f = uw.
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Definition 17. A graph G is immersed in a graph H, if G can be obtained from H
by a sequence of vertex deletions, edge deletions and lifts of pairs of adjacent edges.
Alternatively, we say that H contains an immersion of G.

Throughout our considerations we often use the word immersion in the context
when some of the vertices of graphs G and H are distinguished; we then require that
the distinguished vertices of G correspond to the appropriate distinguished vertices
of H.

Note that both relations ”contains as a minor” and ”contains an immersion” are
transitive.

It is easy to see that if H contains a subdivision of G as a subgraph, H also
contains G as a minor and an immersion. However, there is no relation between mi-
nor and immersion containment in general. For example, a planar graph G1 cannot
contain a nonplanar graph as a minor because all minor operations preserve embed-
dability into plane but G1 can contain an immersion of nonplanar graph as shown
in Fig.1.2. Complete graph on 5 vertices that is nonplanar can be obtained from G1

by lifting paths v1u1u2v3, v2u2u3v4, v3u3u4v5, v4u4u5v1 and v5u5u1v2 and deleting
vertices u1, . . . u5, i.e., K5 is immersed in G1.

v1

v2

v3v4

v5 u1

u2

u3

u4

u5

K5

v1

v2

v3v4

v5

G1

Figure 1.2: Planar graph containing immersion of K5

On the other hand, a graph G2 with maximum degree ∆ cannot contain an im-
mersion of a graph with degree greater than ∆ because none of immersion operations
can increase degree of a vertex, while G2 can contain a graph with degree greater
than ∆ as shown in Fig. 1.3. G2 of maximum degree 3 contains as 4-star with a
vertex of degree 4. A 4-star can be obtained from G1 by contracting the edge uv.

However, for graphs with maximum degree at most 3, containing G as a minor
implies existence of an immersion of G.

Proposition 4. [3] Let G be a graph with maximum degree at most 3. If a graph H
contains G as a minor, then H contains a subdivision of G as a subgraph.

Corollary 5. Let G be a graph with maximum degree at most 3. If a graph H contains
G as a minor, then H contains a an immersion of G.
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u v

G2

Figure 1.3: Graph of maximum degree 3 containing 4-star as a minor

The following three results compare sufficient conditions on average degree of a
graph G to contain a subdivision Kr, resp. Kr as a minor, resp. an immersion of Kn.

Theorem 6. (Kostochka, Thomasson) There exists a constant α ∈ R such that for
every r ∈ N, every graph G of average degree d(G) ≥ αr2 contains a subdivision of
Kr as a subgraph. In particular, α can be 10.

Theorem 7. (Kostochka [4]) There exists a constant α ∈ R such that for every
r ∈ N, every graph G of average degree d(G) ≥ αr log r contains Kr as a minor. Up
to the value of α, this bound is best possible as a function of r.

Quite recently, an analogical theorem was proved for containing an immersion of
Kn.

Theorem 8. [1] There exists a constant α ∈ R such that for every r ∈ N, every
graph G of average degree d(G) ≥ αr contains an immersion of Kr.

In the rest of the section we focus on tree-width and its relation to graph minors.
In all the results, the graphs are required to be simple.

Definition 18 (Robertson & Seymour [8]). A tree decomposition of a graph G is a
pair (T,V) where T is a tree (a decomposition tree) and V = {Vt}t∈V (T ) is a system
of subsets Vt ⊆ V (G) with the following properties:

•
⋃
t∈V (T ) Vt = V (G)

• for every edge uv ∈ E(G) there exists t ∈ V (T ) such that {u, v} ⊆ Vt

• if t, t′, t′′ ∈ V (T ) and t′′ is on the path between t and t′, then Vt ∩ Vt′ ⊆ Vt′′

The width of a tree decomposition (T,V) is the size of the largest set Vt in the
tree decomposition decreased by 1, i.e., maxt∈V (T )(|Vt| − 1).

The tree-width of a graph G is the minimum width of a tree decomposition of G.

The concept of tree decompositions and tree-width was introduced by Robertson
and Seymour in 1980’s. The relation of tree-width and graph minors was extensively
studied in the series of their papers [7] and in many other works by other authors.
Here, we restrict ourselves to a few results that are needed for proving the main
result of the thesis.
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Theorem 9. [10] For every planar graph H, there is a number ω such that every
graph with tree-width ≥ ω has a minor isomorphic to H.

Corollary 10. For every number k, there is a number ω such that every graph with
tree-width ≥ ω contains a subdivision of a wall of height k.

Lemma 11. [9] For every n there exists d such that a grid with n prescribed vertices
in distance at least d from each other contains a subdivision of any planar graph G
with maximum degree 4 on n vertices with vertices of G mapped to the prescribed
vertices.

The following lemma is a well known consequence of tree-width duality theorem
[15].

Lemma 12. A grid k × k has tree-width k.

1.3 Graph Structure Theorem

Definition 19. A graph G′ is said to be obtained from a graph G by adding an apex
vertex v, if G′ \ v = G.

Definition 20. Let F be a face of an embedded graph G and let v0, v1, . . . , vn = v0

be the vertices on the boundary of F , in the circular order. A circular interval for
F is the set of vertices {vi, v(i+1) mod n, . . . , v(i+k) mod n}, where i and k are integers
and 0 ≤ i < n. Let Λ be a finite list of circular intervals for F . We con struct a
new graph as follows. For each circular interval L ∈ Λ, we add a new vertex vL and
edges between vL and vertices of some (possibly empty) subset of L. If two intervals
L and M of Λ have nonempty intersection, we may add an edge between vL and vM .
If every vertex on the boundary of F appears in at most d intervals of Λ, we say that
the resulting graph is obtained from G by adding a vortex of depth at most d to the
face F .

Definition 21. let G and H be graphs and k a nonnegative integer. A k-clique sum
of G and H is a graph obtained by identifying clique of size m ≤ k in G with a clique
of size m in H and deleting some of the edges in this clique.

Theorem 13 (structural theorem). [11] For any graph G, there exists a positive
integer k such that every graph H that does not contain G as a minor can be obtained
as a k-clique sum of graphs H1, . . . Hn, where every Hi is a graph obtained from a
graph H ′i that is embeddable on a surface on which H does not embed by adding at
most k vortices, each of them of depth at most k, and at most k apex vertices.
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Chapter 2

Immersing graphs with maximum
degree at most 4

In this chapter we prove the main result of the thesis that shows a relation between
tree-width of a graph and containment of immersion of a graphs with small maximum
degree.

Theorem 14. For every integer n there exists m such that every 4-edge-connected
graph H of tree-width at least m contains an immersion of any graph G on n vertices
with maximum degree at most 4.

The additional condition of 4-edge connectivity on H is necessary. A wall of
height h contains a grid of size h × h as a minor. Therefore, by Lemma 12, if H
contains a wall of height m2, tree-width of H is at least m. Let Hcounter be a graph
consisting of a wall W of height m2 and |V (W )| pairwise disjoint copies of K5, such
that every copy of K5 contains exactly one vertex of W . Then Hcounter is a graph of
tree-width at least m with minimal degree 4, but for arbitrarily large m, Hcounter does
not contain an immersion of any 4-edge-connected graph on more than 5 vertices.

Before we start proving the theorem itself, we make a few simple observations.
The following observation shows a correspondence of graphs with maximum degree
at most 4 to planar graphs of maximum degree at most 4. In the proof of the theorem,
we sometimes look for an immersion of a planar graph Gp that contains an immersion
of G, instead of G.

Observation 15. For every graph G on n vertices with maximum degree at most 4
there exists a planar graph Gp on at most 2n2 vertices with maximum degree at most
4 such that G is immersed in Gp.

Proof. Since the maximum degree of G is at most 4, G has at most 2n edges. Consider
a drawing of G into plane with minimal number of crossings such that no three edges
cross in one point. There exist at most

(|E|
2

)
≤
(

2n
2

)
= 2n2−n pairs of crossing edges.

By replacing a pair of crossing edges u1u2 and v1v2 by a new vertex x and edges u1x,
u2x, v1x and v2x we obtain a drawing of the graph G′ that contains an immersion
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Figure 2.1: A wall of height 8 divided into 9 subwalls of height 2

of G – G can be obtained from G′ by lifting pairs of edges u1x,xu2 and v1x, xv2 and
deleting the vertex x. Moreover, the drawing of G′ has less pairs of crossing edges
than the drawing of G. By repeatedly replacing crossing pairs of edges in this way,
after at most 2n2 − n replacements we obtain a plane graph Gp with at most 2n2

vertices that contains an immersion of G.

The following observation describes a construction of a grid from subwalls in a
wall.

Observation 16. For integers h′ and k, every wall W of height h = (h′+1)k contains
k2 disjoint subwalls of height h′. Let Gr be an auxiliary graph such that V (Gr) is
the set of k2 subwalls and there is an edge between two subwalls W ′ and W ′′ in Gr
if and only if there exists an edge between vertices of W and W ′ in W . Then the k2

walls can be chosen in such a way that Gr contains a subgraph isomorphic to a grid
k × k.

Every subwall W ′ of height h′ contains 2(h′ − 1)(h′ + 1) branching vertices that
are connected to other branching vertices of W ′ by three edge disjoint paths in W ′.
Let us call such vertices the inner branching vertices of a subwall W ′.

In the rest of the chapter, we prove Theorem 14. We interrupt the proof several
times, to formulate and prove auxiliary observations but get back to the main proof
immediately afterwards. In the second part of the proof we discuss four separate
cases A.-D.. The cases are not entirely disjoint but in each case we assume that
none of the previous cases occurs.

Proof of Theorem 14. Let G be a graph on n vertices with maximum degree 4. Let
d be a distance between prescribed vertices in the grid, required by Lemma 11 for
embedding a planar graph on 2n2 vertices into a grid. Let c = 4 · 108n5 and k =
2c2n2d2 = 25·1016n12d2. By Observation 16, there exists h such that any wall of height
h contains at least k disjoint subwalls that form a grid described in the observation
and each subwall contains at least c inner branching vertices. By Corollary 10, there
exists m such that every graph of tree-width at least m contains a wall of height h
as a minor.

10



Let H be a 4-edge-connected graph with minimum degree at least 4 and of tree-
width at least m. To prove the theorem we need to show that H contains an immer-
sion of G. The structure of a graph H is too difficult to describe in general, therefore
we first construct a graph H ′, consisting of a wall of height h and additional edges,
that is immersed in H. Then we will look for an immersion of G in H ′.

By Corollary 10 and the choice of m, H contains a wall of height h as a subgraph.

Observation 17. If there exists a wall W ′ of height h in H, then there exists a wall
W of height h such that for every branching vertex b of W , there exists a path in
H \E(W ) between b and a vertex c ∈ V (W ) that is in wall distance at least one from
b.

Proof. Take any wall W ′ of height h in H. Suppose that there exists a branching
vertex b′ of W ′ such that in H \E(W ′) there is no path from b′ to any vertex of W ′

in wall distance at least one from b′. Color the components of H \E(W ′) containing
vertices of W ′ in wall distance at least one from b′ blue, the component containing
b′ red and all other components green.

Observe that if there is a path in H \ E(W ′) between b different from b′ and a
vertex c ∈ V (W ) in wall distance at least one from b, this path is in a blue component.

We want to find two edge disjoint paths Q1 and Q2 such that one end of Q1

and Q2 is b′ and the other end q of Q1 is one of the branching vertices of W ′ in
wall distance exactly one from b′ and the other end of Q2 is a vertex of W ′ in wall
distance at least one from b′ – to find such a path it is enough to find a path from
b′ to any blue vertex b, because then there exists a path in a blue component from
b to a vertex in wall distance at least one from b′. By replacing a path P between b′

and q in W ′ by Q1, we obtain a wall W , in which there is a desired path between b′

to a blue vertex in H \ E(W ).
Moreover, we find such a path Q1, that for every branching vertex b, if it was

connected to a vertex in wall distance at least one in H \ E(W ′), it is connected in
H \E(W ), for W obtained from W ′ by replacing P by Q1, too. Note that every path
Q1 such that E(Q1) \ E(P ) contains only red and green edges has this property.

By repeating such a replacement we can decrease a number of branching vertices
of a wall that are not connected to a vertex in wall distance one in H \ E(W ) to
zero.

It remains to describe how to find a path Q1.
If there is a path P of W ′ between b′ and its neighboring branching vertex con-

taining a red vertex r between two blue vertices (by between we mean on the subpath
between these two vertices not necessarily adjacent to any of them), we can obtain
a path Q1 from a path P by replacing a part of P between b′ and r by a path in red
component as shown in Figure A. We also get a path Q2 that is edge disjoint with
Q1, from b′ to a blue vertex.

If there is no such path between b′ and its neighboring branching vertex, it means
that on every path there are blue and red vertices separated as in Figure B. Since H
is 4-edge-connected, there exists a green component containing at least one vertex

11



A

B

C

b′

b′

b′

vbvr

r

q

vr

vb

12



vb between blue and one vertex vr between red vertices. If vr and vb are on the same
path P , we can obtain a path Q1 from P by replacing a subpath of P between vr
and vb by a path in the green component as shown in Figure B. If vr and vb are
on different paths Pr and Pb of W ′ between b′ and neighboring branching vertices
of W ′, we first replace a path Pr containing vr by a path Q′1 obtained from Pr by
replacing the shortest subpath of Pr that contains all the red vertices in Pr by a path
in the red component as shown in Figure C. By this replacement we obtain a wall W
where the former green component is a part of component of H \ E(W ) containing
b′, so we can proceed as in the case where there is one red vertex between two blue
vertices.

Definition 22. Let us call a wall W in H such that for every branching vertex b of
W , there exists a path in H \ E(W ) between b and a vertex c ∈ V (W ) that is in
wall distance at least one from b a good wall.

(continued proof of Theorem 14)
Let W be a good wall of height h in H. Then W can be divided into k subwalls

such that each such subwall v contains at least c inner branching vertices. Denote
B a set of all the inner branching vertices in all the subwalls and V the set of the
subwalls. Let us denote C1 . . . Cm all the W -bridges over B. For every vertex v ∈ B
we choose a shortest path Pv in H ′ \E(W ) to a vertex of W in wall distance at least
one.

Let Bi be a set of all the vertices b ∈ B such the path Pb is contained in Ci, if the
number of such vertices is even or one, otherwise let Bi be a set of all such vertices
except one. Thus, for every i, Bi contains either one or an even number of vertices.

If there is only one vertex b in Bi, we lift Pb, and delete the rest of Ci. Let Mi be
a matching consisting of a single edge obtained by lifting Pb.

Otherwise, for every Ci, we choose a minimal tree Ti containing Bi such that
every vertex of Bi is a leaf of Ti (such a tree can be obtained from a spanning tree
of Ci \ Bi, by adding vertices of Bi as leaves and deleting subtrees without vertices
adjacent to Bi).

By the following observation, every Ti contains an immersion of a perfect match-
ing Mi on Bi.

Observation 18. Every tree with 2k leaves contains an immersion of a matching
of size k on its leaves.

Proof. We will proceed by induction. For a tree with only 2 leaves, the observation
holds from the connectivity of a tree. Suppose it holds for every integer smaller than
k. Let us have a tree T with 2k leaves. If T contains vertices of degree two, lift the
pairs of edges adjacent to those vertices and delete the vertices. Now, every vertex
either has degree at least 3 or is a leaf. There exists a vertex b of degree at least 3
adjacent to at least two leaves u, v. Lift the edges ub and bv and delete b if it becomes
a leaf. The resulting graph Y is immersed in T and consists of an edge uv and a
tree T ′ with 2(k− 1) leaves. By induction hypothesis, T ′ contains an immersion of a
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matching of size k − 1 on leaves. Therefore, Y contains an immersion of a matching
of size k on leaves.

(continued proof of Theorem 14)
Let M = ∪mi=1Mi. Let H ′ be a multigraph W∪M with double edges where edges

both in W and M exist. Then H ′ is immersed in H, V (H ′) = V (W ) and at least 2/3
of the vertices in B are connected by an edge in M with a vertex in wall distance at
least one.

Define an auxiliary multigraph H′ = (V,E) such that E = EW ∪ EM, where
EW = {e = uv|∃u ∈ u, v ∈ v, uv ∈ E(W )}, i.e., W = (V,EW) is a grid with all
edges simple, and EM = E(M), such that E(uv) = {u,v} if u ∈ u and v ∈ v.

For every natural number i, define a simple graph without loops H′i, such that
V (H′i) = V and there is an edge uv in H′i, if and only if an edge ûv has multiplicity
at least i in EM.

The multigraph H′ always has at least one of these four properties (as shown
below):

A. At least l = 2n2d2 nodes of V are incident to a loop in EM

B. The average degree of H′1 is at least ϕ = 105n3

C. There is a matching of size l in H′µ where µ = 2000n2

D. There is a vertex cover of H′µ of size at most l − 1

We prove that G is immersed in H ′ for each of these cases separately.

A. A loop e in H′ corresponds to an edge in M between two vertices of the same
subwall v. Consequently v incident to a loop contains a vertex v of degree four,
with all the neighbors in v. We show that there is a subdivision of Gp in H ′, that
uses these vertices as a vertices of Gp and edges of W as a paths between subwalls
containing these vertices.

Let L be a set of nodes of V incident to a loop in EM. If L contains at least l
nodes, we can find 2n2 disjoint subgrids in W = (V,EW) of size d×d with vertex of
L in the middle. These vertices are in distance at least d from each other, therefore W
contains a subdivision of Gp by lemma 11. We show that there is also a subdivision
of Gp in H ′, using the following observations.

Observation 19. For every subwall v and any three boundary vertices v1, v2, v3 of
v, H ′[V (v)] contains an immersion of a 3-star between the vertices v1, v2 and v3.
The similar claim holds for 2-stars.

Observation 20. For every subwall v incident to a loop and for any four bound-
ary vertices v1, v2, v3, v4 of v, H ′[V (v)] contains an immersion of a 4-star between
vertices v1, v2, v3, v4.
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Let Ḡp be a subdivision of Gp in W. For every edge uv in Ḡp, choose an edge
uvvu ∈ E(W ) between boundary vertices uv ∈ ∂u and vu ∈ ∂v. Let ∆ be the set
of these edges. By the previous observation, for every v ∈ L, there exists a vertex
v ∈ v that is a center of degḠp(v)-star Sv between all the vertices vu, such that
u is a neighbor of v. The union of the stars Sv for all v ∈ Ḡp and ∆ is a desired
subdivision of Gp in H ′.

Let O be a set of loops in EM. If there are less than l nodes incident to a loop,
then the average degree of H′ \O is at least Φ, where

Φ =
2
3
ck − cl
k

= c

(
2

3
− l

k

)
= c

(
2

3
− l

c2l

)
= c

(
2

3
− 1

c2

)
>
c

2

The high average degree of a multigraph without loops implies either that the
average number of neighbors of vertices is high or that there is a lot of multiedges
with large multiplicity. The former case is discussed in B., the latter in C. and D..

B. Suppose that H′1 has average degree at least ϕ. First, we make a simple technical
observation necessary for the proof of Lemma 22.

Observation 21. Let G be an directed graph on n vertices, c1 > 1 and 1 > c2 > 0.
If ∆+(G) ≤ c1 · d+(G), then G contains at least 1−c2

c1−c2n vertices of out-degree at least
c2 · d+(G).

Proof. The observation is purely arithmetic and follows directly from estimating
d+(G) from above.

In Lemma 22 we show that if H′1 has average degree at least ϕ, then it contains a
subdivision of Kn that can be used for finding an immersion of G in H ′. The lemma
is a modification of Theorem 6 and the proof of the lemma is analogical to the proof
of Theorem 6 that can be found in [3].

Definition 23. Suppose that H′1 contains a subdivision K̄n of Kn. We say that and
edge uv in H ′ is a presentable edge for uv, if u ∈ u, v ∈ v and u is an inner branching
vertex of u if u is a branching vertex of K̄n and v is an inner branching vertex of v
if v is a branching vertex of K̄n.

Lemma 22. If H′1 has average degree at least ϕ, H′1 contains a subdivision K̄n of
Kn such that for every edge uv of K̄n, there exists a presentable edge uv in H ′.

Proof. For every edge e in H′ \O, we choose one edge ep ∈ e. We find a subdivision
K̄n such that if e is K̄n, then ep is a presentable edge for e. We orient the edges in
H′1 such that the edge e = uv is directed from u to v if and only if ep is adjacent to
a branching vertex in u. (I.e., some edges can be directed in both directions.) Denote
−→
H′1 the directed graph obtained this way.
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By Mader’s theorem, if d(H′1) ≥ ϕ, then there exists a subgraph R of H′1 that
is ϕ

4
+ 1-connected and its average degree is greater than 7

8
ϕ. Then R is ϕ

8
-linked by

Theorem 3.
Let
−→
R be a graph R with edges directed as in

−→
H′1. Note that d+(

−→
R) ≥ d(R)/2 >

7ϕ/16 and ∆+(
−→
R) ≤ c and R has at least ϕ/4 + 1 vertices. By Observation 21 for

c1 = c/(7ϕ/16), c2 = 1/8, there exist at least

D =
72ϕ

16 · 8c
· ϕ

4
=

72ϕ2

29c
=

721010n6

211108n5
> n

vertices of out-degree at least 1/8ϕ > n2 in
−→
R.

Then we can choose n vertices of out-degree at least 1/8ϕ in
−→
R as branching

vertices of K̄n and for every such vertex n − 1 of its neighbors in R as subdividing
vertices of K̄n, such that all edges between the branching vertex and the neighboring
subdividing vertices are directed from the branching vertex to its neighbors and all n2

vertices are pairwise disjoint. Then we can find a linkage between subdividing vertices
does not use branching vertices on linking paths (this can be done by finding linkage
between subdividing vertices and between arbitrary pairs of branching vertices – to
prevent them from being used by other linking paths between subdividing vertices)
such that the paths of the linkage together with the set of vertices chosen as a
branching vertices of K̄n and edges between these vertices and subdividing vertices
form a subdivision of Kn. .

Before continuing with the proof of Theorem 14, we observe the following:

Observation 23. For any four inner branching vertices v1, v2, v3, v4 of a wall of hight
at least 3, the wall contains an immersion of a 3-star between three of the vertices
with the fourth vertex as a center. Similarly, for any 3 inner branching vertices, there
is a 2-star between two of the vertices with the third as a center.

Proof. Follows from the structure of a wall.

(continued proof of Theorem 14)
Now, we use Lemma 22 to show that if H′1 has average degree at least ϕ, H ′

contains an immersion of G. We find a subdivision K̄n in H′1 described in Lemma 22
and we choose Ḡ to be a subdivision of G in K̄n. Let P be a set of edges of H ′ such
that for every edge uv in Ḡ, P contains one presentable edge uv ∈ H ′. We denote
v1, . . . vdegḠ

vertices of v adjacent to the edges in P . Because maximum degree in
Ḡ is 4, using observation 23, we find a deg(vḠ − 1)-star Sv for every v in Ḡ. The
union of Sv for every v in Ḡ and the presentable edges for all the edges of Ḡ is a
subdivision of G in H.

If H′1 does not have sufficiently large degree, edges of H′ have average multiplicity
greater than Φ/ϕ > µ. Note that they have multiplicity at most 2c. Then we can
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either find a matching in H′µ of size at least l or there is a vertex cover of H′µ of size
smaller than l, by1.

C. Suppose that there is a matching N of size l in H′µ. Every edge e = uv ∈ N
contains at least µ/2 edges such that all their ends in v are branching vertices or
at least µ/2 edges such that all their ends in u are branching vertices, without loss
of generality suppose the latter case. For every e ∈ N, choose one such subset of

e, denote it −→e and assign it an orientation from u to v. Let
−→
N be an directed

multigraph (V (N), {−→e |e ∈ E(N)}).
Denote N− a set of vertices of

−→
N that are sources and N+ a set of vertices of

−→
N

that are sinks. From matching
−→
N, we can select a matching

−→
N′ of size |V (Gp)| such

that for every multiedge −→uv ∈
−→
N′, vertex u = N− ∩ ~e is in distance at least d from

all vertices of
−→
N′ \ v in (V,EW).

For every −→uv ∈ N ′, where v ∈ N ′+, we divide a wall v into nine disjoint subwalls
of height at least bh′/3c, where h′ is height of h, ṽ1 . . . ṽ9 that form a grid 3× 3 in a
similar way as in Observation 16, such that for every i = 1 . . . 9, v \ ṽi is a connected
graph and for every set Bvw of boundary vertices between v and w, |Bvw ∩ ṽi| is
less than |Bvw|/2. By pigeonhole principle, one of these nine subwalls, which we
will denote ṽ, contains endpoints of at least two edges e1, e2 in −→e . Choose a path
between endpoints of e1 and e2 in ṽ and lift it together with e1 and e2 to obtain an
edge between two branching vertices of u. Denote a graph obtained by this process
H ′′ and a corresponding auxiliary multigraph H′′.

By construction, there are at least |V (Gp)| nodes in H′′ that contain an edge
between two of its branching vertices, and these nodes are in distance at least d in
(V,EW).

To repeat the construction of immersion of G from A., we observe that Obser-
vation 19 holds also for v \ ṽ instead of v:

Observation 24. For every v \ ṽ and any three vertices v1, v2, v3 on the boundary
of v that are not in ṽ, v \ ṽ contains an immersion of a 3-star between the vertices
v1, v2 and v3. Again, the similar claim holds for 2-stars.

If an immersion of Gp in (V,EW) contains an edge uv such that −→uv ∈
−→
N′, there

exists an edge e ∈ E(W ) between vertices uv ∈ Buv \ ũ and vu ∈ Bvu \ ṽ because ũ
contains less than |Buv|/2 vertices of Buv and ṽ contains less than |Bvu|/2 vertices
of Bvu.

From Lemma 11 and the same construction as in A., it follows that H ′′ contains
an immersion of G.

D. Suppose that H′µ has a vertex cover C of size at most l − 1. While the average
degree of H ′ is Φ, i.e. the number of edges is Φ·k/2, the number of edges in multiedges
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of multiplicity less than µ is at most (µ − 1)ϕk/2. Thus, the number of edges in
H′ in multiedges of multiplicity at least µ and therefore incident to C, is at least
(Φ− ϕ(µ− 1))k/2.

Recall that H ′ consists of the wall W and the matching M on the vertices of W .
Let H� be a graph obtained from H ′ in the following way:

(i) Delete all edges of M incident to C such that their endpoint in H ′ \C is not an
inner branching vertex and all the edges of M between nodes of C. Observe
that we deleted at most cl edges, because at least one of endpoints of every
such edge is an inner branching vertex of v ∈ C.

(ii) Delete all edges of M that are not incident to C. If there remain less than
δ > 9ε+ 1 edges of M between some v in H′ \ C and C, delete all of them.

(iii) Delete all edges of M that are not incident to C.

Note that V (H�) = V (H ′) and W ⊆ H�. Let H� be a corresponding auxiliary
multigraph and let F be a set of its nodes v such that v is not in C and there is
an edge between v and C in H� \ EW. Every node v of F has degree at most c
in H� \ EW because every edge incident to v has its endpoint in one of the inner
branching vertices of v.

Observation 25. The number of vertices in F is greater than cl/2.

Proof. Consider a node v that is adjacent to C in H′µ \ EW and does not belong
to F. At least µ − δ edges between v and C have been deleted during (i) and at
most δ − 1 edges between v and C have been deleted during (ii). Consequently,
there exist at most cl/(µ − δ) such vertices. Therefore, during (i) and (ii), at most
cl + cl(δ − 1)/(µ− δ) edges have been deleted.

Since nodes in F have degree at most c in H� \ EW and there are at least

Φ− (µ− 1)ϕ

2
k − c(l − 1)− c(l − 1)(δ − 1)

(µ− δ)

edges incident to C, the number of nodes in F is at least

(Φ− ϕ(µ− 1))k/2− cl(1 + δ−1
µ−δ )

c
> k/c− l(1 +

δ

µ− δ
) > cl/2

because Φ− ϕ(µ− 1) > 2, k = c2l and 1 + δ
µ−δ < c/2.

(continued proof of Theorem 14)
Divide every v ∈ C, into nine smaller subwalls and denote ṽ one of them that

is incident to the most of the edges of H� \W . If there is an odd number of edges
of H� \W incident to ṽ, delete one of them. Divide the remaining edges of H� \W
incident to ṽ into pairs, such that a path in ṽ between their endpoints does not
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contain an endpoint of any other edge. For every such pair of edges e1 and e2, lift a
path consisting of e1, e2 and the path between their endpoints in ṽ.

Denote the resulting graph H× and the corresponding auxiliary multigraph H×.
The graph H× is an immersion of H� and a V (H×) = V (H�). By construction, the

average degree of the graph H×[F] is at least |F|δ/9−l|F| ≥ (δ−1)/9 = ε. We can repeat

the stages analogical to A., B. and C. of the proof for the graph H×, the situation D.
cannot occur this time, because all the edges of H× \W are between inner branching
vertices and therefore the maximum degree of a node of H× \ EW is at most c.

A×. Let L× be a set of vertices of F incident to a loop in H×. If there are at
least l of vertices in L×, we can find |Gp| vertices of L× that are in distance at
least d from each other in (V,EW). By Lemma 11, there exists a subgraph of H×

isomorphic to a subdivision of Gp with vertices of Gp corresponding to some vertices
of F. From Observation 24 and the same arguments as in C., it follows that there
exists an immersion of Gp in H×.

If there are less than l vertices in F incident to a loop, the average degree of
vertices of F in H× \ L× is at least

Φ× ≥ ε− cl

2|F|
because every vertex incident to a loop is incident to at most c/2 loops.

B×. If the average number of neighbors of vertices of F in H×[F] is at least
ϕ× = 10n2, by Theorem 6, there exists a subdivision of Kn in H×[F]. By Observation
23, and the same arguments as in B., if follows that there exists an immersion of G
in H×.

C×. For µ× = 10, H×[F]µ× contains either a matching of size at least l, or it
has a vertex cover C× of size at most l. In the latter case, if vertices in H×[F] do
not have the average number of neighbors at least ϕ×, then there exists at least
(Φ× − ϕ×(µ×))|F| edges incident to C×, i.e. the average degree of a vertex in C is

(Φ× − ϕ×µ×)|F|
l

=
(Φ× − 100n2)|F|

l
> c.

This cannot happen, because maximum degree of H× is c. Therefore, there exists a
matching of size at least l in H×[F]. By the same arguments as in C., we get that
there exists an immersion of Gp in H×.
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Chapter 3

Graphs without an immersion of a
3-regular graph

In this chapter, we prove that 3-edge-connected graphs that do not contain an immer-
sion of a fixed 3-regular graphs have bounded maximum degree. We believe that this
result can be generalized for k-edge-connected graphs and immersions of k-regular
graphs.

For 3-regular graphs the result is particularly interesting, because by Corollary 5
every graph H that does not contain an immersion of a 3-regular graph G also does
not contain G as a minor. Therefore, our result can be combined with graph structure
theorem to obtain more precise characterisation of graphs without an immersion of
a fixed 3-regular graph.

The generalisation of the result for 4-regular graph would improve the condition
on 4-edge-connected graphs that do not contain an immersion of a fixed 4-regular
graph, given by Theorem 14 in the previous chapter – such graphs would have both
bounded tree-width and maximum degree.

Theorem 26 (Mader [5]). Let G = (V,E) be a graph that has at least r(s, t) edge-
disjoint paths between s and t for all s, t ∈ V \x. If there is no cut edge incident to x
and d(x) 6= 3, then some edge pair (xu, xv) can be lifted so that in the resulting graph
there are still at least r(s, t) edge-disjoint paths between s and t for all s, t ∈ V \ x.

Observation 27. If G contains an immersion of an n-star with edges of multiplicity
k, then G contains an immersion of any k-regular graph on n vertices.

Lemma 28. Let G be a 3-edge-connected (multi)graph. If there is a vertex c ∈ V (E)
such that

∑
uc∈E(G) min(µ(uc), 3) ≥ 6n, then G contains an immersion of an n-star

with edges of multiplicity 3.

Proof. We may assume that multiplicity of every multiedge incident to c in G is at
most 3. Denote N1 respectively N2 sets of vertices of N(c) that are connected to c
by a multiedge of multiplicity 1 respectively 2 in G.
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Let H be a graph obtained from a graph G by lifting pairs of edges by Mader’s
theorem 26 from all vertices of V (G) \ {c} as long as possible without lifting a pair
containing an edge incident to c and without decreasing the degree of vertices of N1

and N2 under 3, and deleting isolated vertices.
Observe that the graph H is still 3-edge-connected, because by lifting a pair of

edges incident to a vertex v, we do not change the number of edge disjoint paths
between vertices in V (G) \ v. Therefore, we create a 2-edge-cut only by decreasing
degree of v to 2. But then we obtain 3-edge-connected graph again by lifting the
remaining two edges incident to v, again without changing the number of edge disjoint
paths between other vertices, and deleting v because it becomes isolated.

Now, all the vertices in H\{c∪N(c)} have degree 3, but vertices in N(c) can have
arbitrarily large degree. By the following process we decrease the number of vertices
in N(c) that have degree greater than 3 in H \ c, preserving 3-edge-connectivity.

Consider a graph Hv = H \{ĉv} for some vertex v ∈ N(c) that has degree greater
than 3 in H \ c.

If Hv is 3-edge-connected, by Theorem 26 and previous reasoning we can lift pairs
of edges adjacent to v in Hv until v has degree at most 3 in a way that the resulting
graph is either 3-edge-connected or it has the only 2-edge-cut – the last two edges
adjacent to v.

By lifting the same pairs of edges inH instead ofHv, we obtain a 3-edge-connected
graph H ′v, such that v has degree at most 3 in H ′v \ c.

If Hv is not connected, we delete all vertices that are in the component K of
Hv that contains v, except v. Again, by deleting these vertices in H, we obtain a
3-edge-connected graph H ′v.

If Hv is connected but not 3-edge-connected, let C to be an edge-cut of minimum
size. Observe that in the component of K = Hv \C that contains v are at most two
other vertices of N(c).

There exist |C| edge disjoint paths from v to Hv \ (K ∪ C) in K ∪ C. We lift
these paths in H and delete the rest of K. Observe that the resulting graph H ′v is
3-edge-connected and that v has degree at most 2 in H ′v \ c.

Note that if some of the edges of the cut C are incident to c, lifting decreases
the number of the vertices adjacent to c but it does not decrease degree of c and the
resulting multiedge between c and v has multiplicity at most 5.

By repeating this process as long as necessary for different vertices of N(c) (at
most once for each vertex), we obtain a 3-edge-connected graph H ′ that is immersed
in H, such that every vertex of N(c) have degree at most 3 in H ′ \ c. Note that
if there is a multiedge of multiplicity 5 between c and a vertex v in H ′ that arose
during the process, then v is not incident to any other edge. If there is a multiedge
of multiplicity 4 between c and a vertex v that arose during the process, then v has
degree at most 1 in H ′\c. By 3-edge-connectivity of H ′, the number of edges between
c and any connected component of H ′ \ c is at least 3.

Denote N ′1 respectively N ′2 sets of vertices of N(c) that are connected to c by a
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multiedge of multiplicity 1 respectively 2 in H ′. Denote N ′3 a set of vertices of N(c)
that are connected to c by a multiedge of multiplicity at least 3 in H ′.

Now, we construct a star S with all multiedges of multiplicity at least 3 and with
the vertex c as a center. Let us begin with an empty star consisting only from c. We
add another vertices and edges as follows:

For every connected component K of H ′ \ c, if K contains a single vertex v, we
add ĉv into S (the multiedge ĉv has multiplicity at least 3).

If K contains more than one vertex, we choose a minimal rooted tree TK in K
that contains all the vertices of N(c)∩K (i.e. every leaf of TK is in N(c)), such that
the root is a vertex of degree 1 in TK . Note that every vertex in Tk has at most two
children. We repeat the following algorithm modifying K, H ′, TK , N ′1 N

′
2 and N ′3

and adding vertices and multiedges to S, until TK contains a single vertex.

Algorithm:
If TK contains a leaf v that is not in any of N ′1, N ′2 and N ′3, delete v from TK .

If TK contains a leaf v in N ′3:

• if ĉv has multiplicity greater than 3, lift edges cv and vu, where u is a prede-
cessor of v

• delete v from Tk and add v and ĉv to S

If all the leaves of TK are in N ′1 or N ′2, choose a vertex u of TK such that all its
children are leaves. Then one of the following situations occurs:

Vertex u is not in any of N ′1, N ′2 and N ′3:

• u has two children v and w:

– at least one of v, w, without loss of generality v, is in N ′2:
lift edges uv and uw and cw to obtain a multiedge of multiplicity 3 between
c and v and add it into S, delete vertices u, w from TK

– both v and w are in N ′1:
lift edges cv, vu and cw, wu, delete vertices v and w from TK and add
vertex u into N ′2

• u has only one child v: if u has a predecessor p, lift edges uv, up and delete u
from TK , otherwise delete u from TK

Vertex u is in N ′1:

• u has two children v and w:

– both v and w are in N ′1:
lift edges cv, vu and cw, wu to obtain a multiedge of multiplicity 3 between
c and u, add it into S and delete v, w from TK
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– at least one of v, w, without loss of generality v, is in N ′2:
lift edges uc, uv to obtain a multiedge of multiplicity 3 between c and v,
add it into S and delete v from TK

• u has only one child v:

– v is in N ′1: lift edges cv, uv to obtain a multiedge of multiplicity 2 between
c and u, delete v (and move u from N ′1 to N ′2)

– v is in N ′2: lift edges cu, uv to obtain a multiedge of multiplicity 3 between
c and v, add it into S and delete u from TK

Vertex u is in N ′2:

• u has two children v and w:

– both of them are in N ′2: lift edges uv, uc and uw uc to obtain multiedges
of multiplicity 3 between c and v,w, add them into S and delete u, v and
w from TK .

– exactly one of them, without loss of generality v, is in N ′2: lift edges uv,
uw cw to obtain a multiedge of multiplicity 3 between c and v, add it into
S

– both of them are in N ′1: if u has a predecessor p, lift edges vu and up. Lift
wc and uw to obtain a multiedge of multiplicity 3 between c and u, add
it into S and delete u and w from TK

• u has only one child v: lift edges cv, uv to obtain a multiedge of multiplicity 3
between c and u, add it into S and delete v from TK

Vertex u is in N ′3:

• u has two children v and w:

– both of them are in N ′2: lift edges uv, uc and uw uc to obtain multiedges
of multiplicity 3 between c and v,w, add them into S and delete v and w
from TK . If u has a predecessor p, lift uc and up. Delete u from TK .

– exactly one of them, without loss of generality v, is in N ′2: lift edges uv,
uw cw to obtain a multiedge of multiplicity 3 between c and v, add it into
S

– both of them are in N ′1: if u has a predecessor p, lift edges vu and up.
Delete w from TK . Add ûc into S and delete u from TK .

• u has only one child v: If u has a predecessor p, lift edges uv and up. Add ûc
into S and delete u from TK .
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After the end of the algorithm, TK contains a single vertex v. If ĉv has multiplicity
at least 3, add it into S.

Observe that the algorithm processes each vertex in TK at most twice. In each
step of the algorithm, the degree of c in H ′ either does not change, or it decreases
by 1. After every decreasing, we add at least one vertex into S. After the end of the
algorithm, TK contains a single vertex v such that multiplicity of ĉv is at most 5.
Since we know that the number of edges between c and any connected component
of H ′ is at least 3, every such component provides at least one vertex to S.

Thus, for every 6 edges in multiedges of multiplicity at most 3 in incident to c in
G, we added at least one vertex into S. This implies the statement of the lemma.

The following corollary for simple graphs follows directly from Observation 27
and Lemma 28.

Corollary 29. Let H be a 3-edge-connected simple graph. If there ∆(H) > 6n, then
H contains an immersion of any 3-regular graph G on n vertices.
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