
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Bc. Darja Suchá

Matrix functions and their numerical approximations

Department of Numerical Mathematics

Supervisor of the master thesis: RNDr. Iveta Hnětynková, Ph.D.

Study programme: Mathematics
Specialization: Numerical and Computational Mathematics

Prague 2011

I would like to thank my supervisor RNDr. Iveta Hnětynková, Ph.D. for her help, valuable
advice, opinion and suggestions. I also would like to thank Dipl.-Math. Stefan Güttel,
Ph.D., M.S. Jie Chen, Ph.D. and Prof. Valeria Simoncini, for the opportunity to use
their software and for their valuable advice. I thank Bc. Lukáš Korous, for matrices I
used for the numerical experiments in this thesis. And finally, I would like to thank my
family and friends for the motivation and support.

2

I declare that I carried out this master thesis independently, and only with the cited
sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University in Prague has the right to conclude a license agreement on the use of this work
as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague, 5. 12. 2011 Darja Suchá

3

Contents

Introduction 7

1 Theoretical background 9
1.1 Notation and auxiliary definitions . 9
1.2 Definitions of matrix functions . 11
1.3 Examples of elementary matrix functions 15

2 Numerical methods for approximation of f(A) 19
2.1 Schur decomposition . 19
2.2 Truncated Taylor series . 22
2.3 Rational Padé approximation . 22
2.4 Scaling and squaring method and its modifications 23
2.5 Chebyshev approximation . 24
2.6 Matrix iterations . 24

3 Methods for approximation of f(A)b of non-Krylov type 26
3.1 Quadrature rule . 26
3.2 Contour integral . 27
3.3 Polynomial least squares approximations for f(A)b 27

4 Krylov subspace methods for approximation of f(A)b 35
4.1 Restarted Krylov subspace method . 37
4.2 Modification of the standart and the restarted Krylov subspace method

based on rational approximation to f . 46
4.3 Generalisation of the steepest descent method for matrix functions 48
4.4 Deflated restarting for matrix functions 53
4.5 Extended Krylov subspace method . 60

5 Numerical experiments 64

Conclusion 78

Bibliography 80

4

Název práce: Maticové funkce a jejich numerické aproximace
Autor: Darja Suchá
Katedra/Ústav: Katedra numerické matematiky
Vedoućı diplomové práce: RNDr. Iveta Hnětynková, Ph.D., katedra numerické
matematiky

Abstrakt: V předložené práci studujeme numerické metody pro aproximaci funkce f
matice A. Nejprve uvedeme teoretický základ - shrneme možné definice maticových funkćı
a jejich vlastnosti. Dále představ́ıme základńı numerické metody výpočtu
aproximace f(A). V mnoha aplikaćıch potřebujeme aproximovat maticovou funkci f(A)
aplikovanou na předem daný vektor b, tj. f(A)b. Zejména, pokud A je velká a ř́ıdká,
výpočet aproximace f(A) a následné přenásobeńı vektorem b může být výpočetně velmi
náročné. Proto se v daľśıch kapitolách zabýváme numerickými metodami, které poč́ıtaj́ı
př́ımo aproximaci f(A)b. Hlavńı d̊uraz je kladen na polynomiálńı aproximaci ve smyslu
nejmenš́ıch čtverc̊u a několik modifikaćı Krylovovských metod. Numerické experimenty
ukazuj́ı srovnáńı konvergence a časové náročnosti výpočtu aproximace.

Kĺıčová slova: maticová funkce, numerické aproximace, ortogonálńı polynomy, nejmenš́ı
čtverce, Krylovovské metody, restart, deflace, rozš́ı̌rený Krylov̊uv prostor, konvergence

5

Title: Matrix functions and their numerical approximations
Author: Darja Suchá
Department/Institute: Department of Numerical Mathematics
Supervisor of the master thesis: RNDr. Iveta Hnětynková, Ph.D., department of Numer-
ical Mathematics

Abstract: In the presented work, we study numerical methods for approximation of a
function f of a matrix A. First, we give theoretical background - definitions of matrix
functions, and their properties. Further, we summarize basic numerical methods for com-
putation of an approximation of matrix functions f(A). In many applications, we need to
approximate the matrix function f(A) applied on an apriory given vector b, i.e. f(A)b.
Especially, when A is large and sparse, the computation of approximation to f(A) and
subsequent multiplication by the vector b can be computationaly expensive. Therefore
we study methods, which compute the approximation of f(A)b directly. Main emphasis
is placed on the polynomial approximation in the least squares sense, and several modi-
fications of Krylov subspace methods. Numerical experiments compare convergence and
computational time required to obtain reasonable approximation to f(A)b.

Keywords: matrix function, numerical approximation, orthogonal polynomials, least
squares, Krylov subspace methods, restart, deflation, extended Krylov subspace, con-
vergence

6

Introduction

’The beginning is the most important part of the work.’
Plato

In this thesis, we are interested in matrix functions and their numerical approximation.
Matrix functions arise in many applications, e.g.:

• Systems of linear equations Ax = b with the solution y = f(A)b, where
f(z) = 1/z. Such systems come from discretisation of the Heat equation, Maxwell’s
equations, Wave equation etc.

• Systems of ordinary differential equations of the first order y′ = Ay with the initial
condition y(0) = b, with the solution f(A)b, where f(z) = exp(z).

• Nuclear magnetic resonance, see [25], pp. 37, described by the Solomon equations,

dM(t)

dt
= −M(t)R,

with the given initial condition M(0) = I. Here M(t) is the matrix of intensities,
and R is a symmetric, diagonally dominant matrix, known as the relaxation matrix.
This relation is used in both directions: in simulations and testing to computeM(t)
for a given R, M(t) = exp (−Rt); and in the inverse problem to dermine R from
observation identities, R = −1

t
logM(t).

• Systems of ordinary differential equations of the second order, y′′(z) + Ay(z) = 0
with the initial conditions y(0) = b1 and y′(0) = b2, with the solution

y(z) = f1(g1(A)z)b1 + g2(A)f2(g1(A)z)b2,

where f1(z) = cos(z), f2(z) = sin(z), g1(z) =
√
z and g2(z) = 1/

√
z.

Generally, consider a scalar function f : C → C of a complex variable. We are looking
for a generalization of f to a mapping from Cn×n to Cn×n, n ∈ N, i.e. a correct definition
of a function of a matrix f(A) for a given matrix A ∈ Cn×n. There are several ways how
to define such matrix function, [19, 20, 24]. Sometimes it is possible to substitute A for
a scalar variable, e.g. when f is a polynomial or rational function, or if it is possible
to expand a function f into a convergent serie. Some of the most used definitions, that
can be applied to a general function f , are definition via the spectral decomposition, via
Hermite interpolation polynomials, or via Cauchy integral representation formula. We

7

discuss equivalence of these definitions, [25, 29], and summarize some useful properties
of matrix functions in the first chapter.

Numerical methods for computation of approximations to matrix functions have been
widely studied, [4, 7, 19, 20, 24, 25, 26, 28, 30, 34, 35, 36]. We summarize some of them
in the second chapter. Schur decomposition [20, 34], truncate Taylor series [25, 36], ra-
tional Padé approximation [19, 23, 30], scaling and squaring method [28] and Chebyshev
approximation [7, 44] belong among direct methods. Matrix iterations [24, 25, 27] can
be determined only for specific functions. We mention matrix iterations based on the
Newton method, for approximation of matrix square root and matrix sign function.

In many applications, only evalution of f(A)b for an apriory given vector b is required.
One possibility is to compute an approximation of f(A) using one of the methods above
and then multiply by the vector b. Especially when A is large and sparse (which is the
case in many applications), the computational cost can be very hight. Thus it may be
desirable to compute immediately an approximation of the vector f(A)b. In the third
chapter, we describe classical methods for approximation of f(A)b of non-Krylov type.
These include method using contour integral, [9, 25], quadrature rule [25] and polynomial
least squares approximation. In the polynomial method, the function f is first approxi-
mated by a spline and then the spline is approximated in the sense of least squares using
basis of orhonormal polynomials, generated using the three-term Stieltjes reccurence,
[6, 50].

Other efficient methods for approximation of f(A)b are Krylov subspace methods,
studied in the fourth chapter. We start with the standart Krylov subspace method,
[3, 12], where after m iterations, m << n, an approximation to f(A)b is computed by
projecting the original problem onto a Krylov subspace of dimension m. When A is
large, with growing number of iterations, the computation cost of the standart Krylov
subspace method may increase. It can be improved by restarting the method after a
predefined number of iterations. After each restart it is possible to update the approxi-
mation efficiently. This method is called the restarted Krylov subspace method, [2, 15].
The convergence of the method can be accelerated using deflation, [16]. In [1], a special
case of the restarted Krylov subspace method was introduced, where the restart length is
equal to one. This method is called the method of the steepest descent for matrix func-
tions. The last method studied here is the extended Krylov subspace method, [13, 31],
where the approximation is found on an extended Krylov subspace containing informa-
tion not only about the matrix A, but also about its inverse A−1. In advance, we mention
a modification of the Krylov subspace methods based on the rational approximation of
the function f , [2, 19].

We conclude this thesis by numerical experiments. In the Bachelor thesis [52], we al-
ready compared some of the methods for approximation of f(A) and the standart Krylov
subspace method. Here we concentrate on comparision of computational time and con-
vergence behaviour of the methods for evaluation of f(A)b.

8

Chapter 1

Theoretical background

’All theory, dear friend, is gray, but the
golden tree of life springs ever green.’

Johann Wolfgang von Goethe

1.1 Notation and auxiliary definitions

A = (aij)
n
i,j=1 ∈ Cn×n matrix whose function f we want to compute

b ∈ Cn vector
Λ(A) = {λ1, . . . , λn} spectrum of matrix A
W (A) =

¦
vHAv : ∥v∥ = 1,v ∈ Cn

©
field of values of matrix A

JA = Z−1AZ Jordan canonical form of matrix Afλ1, . . . ,fλℓ distinct eigenvalues of A with multiplicity ji,
i = 1, . . . , ℓcλ1, . . . ,cλd eigenvalues belonging to a Jordan block Ji(bλi)
of dimension mi

ψ(A) minimal polynomial of matrix A

tr(A) =
nX

i=1

aii trace of matrix A

ρ(A) = max
i=1,...,ℓ

{|eλi|} spectral radius of matrix A

Re(z) real part of a complex number z
Im(z) imaginary part of a complex number z
Pm set of all polynomials of degree not exceeding m
Rpq set of all rational functions, with the nominator

and the denominator of degrees at most p and q
Km(A, b) mth Krylov subspace with respect to the matrix

A and vector bgK2m(A, b) extended Krylov subspace with respect to the
matrix A, its inverse A−1 and vector b

9

Definition 1.1.1 We say, that function is defined on a spectrum of A ∈ Cn×n if
all the derivatives f (k)(eλi), k = 0, . . . , ji, i = 1, . . . , ℓ exists.

Definition 1.1.2 Matrix is nonderogatory when it is not derogatory, i.e. one eigen-
value of A belongs to one Jordan block.

Definition 1.1.3 We say, that matrix A ∈ Cn×n is derogatory, when it has a multiple
eigenvalue to which belongs more than one Jordan block.

Definition 1.1.4 Primary matrix function is obtained, when we take the same
branches of solution for different Jordan blocks Jk(λk).

Definition 1.1.5 Nonprimary matrix function is a function f , which is not pri-
mary. We cannot express this function as a polynomial.

Definition 1.1.6 We say, that the vectors span {w1, . . . ,wm} = Km(A, b) form an
ascending basis of Km(A, b) if and only if span {w1, . . . ,wj} = Km(A, b) for all
j = 1, . . . ,m.

10

1.2 Definitions of matrix functions

There are many ways of defining matrix functions. In this section we will focus on
the most significant definitions. For a given matrix A ∈ Cn×n with the spectrum
Λ(A) = {λ1, λ2, . . . , λn}, we are looking for a generalization of a scalar function
f : C → C of complex variable z to a mapping from Cn×n to Cn×n.

If f is a polynomial of degree n,

f =
nX

k=0

akz
k,

then we can simply substitute the matrix A for the scalar variable z, i.e.

f(A) :=
nX

k=0

akA
k.

Assume that it is possible to expand the function f into an infinite power-series (e.g.
Taylor series),

f(z) =
∞X
k=0

akz
k, (1.1)

converging for |z| < r, where r > 0 is called radius of convergence. Then we can
define

f(A) :=
∞X
k=0

akA
k (1.2)

and the series (1.2) converges if |λi| < r, i = 1, . . . , n, see [19], pp. 2. It may happen, that
the radius of convergence is not large enough. Because of that it is often usefull to use
another definitions of matrix functions - via spectral decomposition, Hermite interpolation
polynomials or Cauchy integral representation formula.

Spectral decomposition

Let f be defined on the spectrum of A and let A have a Jordan canonical form
JA = Z−1AZ with nonsingular matrix Z, where

JA = diag(J1(bλ1), . . . , Jd(bλd)),
and the Jordan block

Jk(bλk) =
2666664
bλk 1 . . . 0

. . .
...

. . . 1bλk

3777775 ,
k = 1, . . . , d, has the dimension mk,

dX
k=1

mk = n. From the property of matrix functions

f(ZJAZ
−1) = Zf(JA)Z

−1, we obtain the definition

f(A) := Zf(JA)Z
−1 = Zdiag(f(J1(bλ1)), . . . , f(Jd(bλd)))Z−1, (1.3)

11

where

f(Jk(bλk)) =
2666664
f(bλk) f ′(bλk) · · · f (mk−1)(bλk)

(mk−1)!

.
...

f(bλk) f ′(bλk)
f(bλk)

3777775 , (1.4)

see [20], pp. 557-559. Note that if A is a derogatory matrix, then the matrices Z and JA
are not uniquely defined. However, the resulting function doesn’t depend on the choice
of Z and JA.

Cauchy integral representation formula

Perhaps the most elegant definition of a function of a matrix is a generalization of the
Cauchy integral theorem. Let Γ be a closed curve which encloses the spectrum of A,
Λ(A). Then

f(z) =
1

2πi

Z
Γ

f(t)

t− z
dt

and the Cauchy integral representation formula for a matrix function is defined as

f(A) :=
1

2πi

Z
Γ
f(t)(tI − A)−1dt. (1.5)

Hermite interpolation polynomials

We can also define matrix functions using Hermite interpolation polynomials. First, we
introduce some theoretical background on minimal polynomial of a matrix A ∈ Cn×n and
matrix polynomials, see [25], pp. 4-7. Minimal polynomial ψ of a matrix A is defined
as a polynomial of the lowest degree, for which it holds ψ(A) = 0.

Lemma 1.2.1 Minimal polynomial ψ divides any polynomial p, for which p(A) = 0.

Proof. We will prove this lemma by contradiction. Suppose, that p is not divisible by
ψ and so it can be written as p = ψq + r̃, where the degree of the remainder r̃ is less
than that of ψ. Then 0 = p(A) = ψ(A)q(A) + r̃(A) = r̃(A) and that contradicts the
minimality of the degree of ψ unless r̃ = 0. Thus r̃ = 0 and ψ divides p.

�

Considering the Jordan canonical form of A, we can see, that the minimal polynomial
is of the form

ψ(t) =
ℓY

i=0

(t− λ̃i)
ni .

Lemma 1.2.2 For two polynomials p and q, p(A) = q(A) if and only if p and q take the
same values on the spectrum of A.

12

Proof. First, suppose that p(A) = q(A). Then d := p − q is zero at A. It implies that
d is divisible by the minimal polynomial of A and so d takes only the value zero on the
spectrum of A. That means that p and q take the same values on the spectrum of A.

Conversely, suppose that p and q take the same values on the spectrum of A. Then
d := p − q is zero on the spectrum of A and so d must be divisible by the minimal
polynomial ψ. In other words, d can be written as a product d = ψr̃, where r̃ is some
polynomial. Then d(A) = ψ(A)r̃(A) = 0, from which follows that p(A) = q(A).

�

We have shown, that matrix polynomials are completely determined by the values of f
on the spectrum of A. Now, we can introduce the definition via Hermite polynomials.
Let eλ1, . . . , eλℓ be distinct eigenvalues of A, where ni is the index of eλi, i.e., the dimension
of the largest Jordan block which belongs to the eigenvalue eλi, i = 1, . . . , ℓ. Let r(A) be
a Hermitian interpolation polynomial of degree less than

ℓX
i=1

ni = degψ

satisfying the interpolation conditions

r(j)(eλi) = f (j)(eλi), j = 0, . . . , ni − 1, i = 1, . . . , ℓ. (1.6)

If f is defined on the spectrum of A, then we define

f(A) := r(A). (1.7)

We note, that the required Hermite interpolating polynomial is of the form

r(z) =
ℓX

i=1

24�ni−1X
j=0

ϕ
(j)
i (λi)(z − eλi)j�Y

j ̸=i

(z − eλj)nj

35 ,
where ϕ(z) = f(z) ·

24Y
j ̸=i

(z − eλj)nj

35−1

, see [25], pp. 6.

Remark 1.2.3 If polynomial q satisfies interpolation conditions in the sense of (1.6)
and some additional interpolation conditions (at the same or different eλi), then r and q
take the same values on the spectrum of A. According to Lemma (1.2.2), it holds that
q(A) = r(A) = f(A).

Equivalence of definitions

Definitions (1.3) and (1.7) are equivalent. They are also equivalent with the definition
(1.5) if and only if f is analytic in a complex plane containing the spectrum of A. In
following, we will prove this equivalence according to [25], pp. 8 and [29], pp. 426-428.

13

Theorem 1.2.4 The definition (1.3) and the definition (1.7) are equivalent.

Proof. From definition (1.7) we have r(A) = f(A) for r satisfying the conditions (1.6). If
A = ZJAZ

−1, then

f(A) = r(A) = r(ZJAZ
−1) = Zr(JA)Z

−1

= Zdiag
�
r(J1(bλ1)), . . . , r(Jd(bλd))�Z−1.

Because r(Jk(λ̂k)), k = 1, . . . , d is determined by the values of r on the spectrum of A,
and these values form a subset of the values of r on the spectrum of A, from the Remark
1.2.3 and from the form of the Hermite interpolation polynomial it follows, that r(Jk(λ̂k))
is equal to (1.4).

�

To complete the proof of equivalence of the definitions, we will first need to formulate an
auxiliary proposition, see [29], pp. 425-426:

Proposition 1.2.5 Let D be a simply connected open subset of C or an open interval,
let the functions f , g be continuous in A, Λ(A) ⊂ D. Then f(A) = g(A) for all A,
Λ(A) ⊂ D if and only if f(A) = g(A) for all diagonalizable matrices A, Λ(A) ⊂ D.

The proof is based on the fact, that the set of all diagonalizable matrices is dense in the
set of all matrices. Now we can prove the last equivalence, see [29], pp. 427-428.

Theorem 1.2.6 Let f be analytic on a simply connected open subset D ⊂ C. Then the
definition (1.3) is equivalent with the definition (1.5).

Proof. According to Proposition 1.2.5 it is enough to prove this theorem for diagonaliz-
able matrices. Let the matrix A be diagonalizable, A = Zdiag (λ1, . . . , λn)Z

−1. Using
elementary properties of matrix functions,

f(A) =
1

2πi

Z
Γ
f(t)(tI − A)−1dt

=
1

2πi

Z
Γ
f(t)

�
tI − Zdiag (λ1, . . . , λn)Z

−1
�−1

dt

= Zdiag
�

1

2πi

Z
Γ
f(t) (tI − λ1)

−1 dt, . . . ,
1

2πi

Z
Γ
f(t) (tI − λn)

−1 dt
�
Z−1

= Zdiag (f (λ1) , . . . , f (λn))Z
−1,

and we obtained (1.3).

�

14

Useful properties of matrix functions

A good definition leads to applicable properties, we summarize the most important of
them:

• f(A) commutes with A, f(A)A = Af(A).

• f(AT) = f(A)T .

• For any nonsingular matrix X, it holds that f(XAX−1) = Xf(A)X−1.

• If A is diagonalizable, i.e. Z−1AZ = D = diag(d1, d2, . . . , dn), then
f(A) = Zdiag(f(d1), f(d2), . . . , f(dn))Z

−1.

• f(diag(A11, A22, . . . , Ann)) = diag(f(A11), f(A22), . . . , f(Ann)).

• Let f and g be functions defined on the spectrum of A.

– If h(z) = f(z) + g(z), then h(A) = f(A) + g(A).

– If h(z) = f(z)g(z), then h(A) = f(A)g(A).

• Let h be defined on the spectrum of A and let the values g(j)(h(eλi)),
j = 0, . . . , ni − 1, i = 1, . . . , ℓ exist. Then f(z) = g(h(z)) is defined on
the spectrum of A and f(A) = g(h(A)).

• Let Ω ⊆ C be an open subset such that each connected component of Ω is closed
under the conjugation, D = {A ∈ Cn×n : Λ(A) ⊆ Ω}, then f(AH) = f(A)H and
f(A) = f(A) for all A ∈ D.

For more details, see [25], pp. 10-14.

1.3 Examples of elementary matrix functions

Further, we summarize some elementary matrix functions such as matrix exponential,
goniometric functions, logarithm, square root and signum. We discuss the ways of defi-
nitions and some of their properties.

Matrix exponential

Exponential eA of a matrix A ∈ Cn×n can be defined using the Taylor series:

eA := I + A+
A2

2!
+ · · ·+ Ak

k!
+ · · · .

This serie always converges and the definition is correct, see [36], pp. 1. As it is shown in
[25], pp. 233-238, properties of scalar exponential ez generally cannot be extended to the
matrix function eA. For example, the equality e(A+B)t = eAteBt for two complex matrices

15

A,B holds only if the matrices commute, AB = BA. Thus, e.g., eAe−A = I.

Computation of matrix exponential is needed, e.g., while solving systems of time-
dependent differential equations in the form

y′(z) = Ay(z) + b(z), y(0) = y0. (1.8)

Analytical solution of (1.8) is

y(z) = ezAy0 +
Z z

0
e(t−z)Ab(t)dt,

where A is a negative semidefinite matrix.

Matrix sign function

Scalar function sign(z) for z ∈ C \ {0} is defined by the formula

sign(z) =

¨
1 Re(z) > 0
−1 Re(z) < 0

.

Assume for a moment that JA = Z−1AZ ∈ Cn×n, where

JA =

"
J
(1)
A 0

0 J
(2)
A

#
,

J
(1)
A ∈ Cp×p, J

(2)
A ∈ Cq×q, all eigenvalues of J

(1)
A have negative real part and all eigenvalues

of J
(2)
A have positive real part, p+ q = n. Then we can define

sign(A) := Z

�
−Ip 0
0 Iq

�
Z−1.

Matrix sign function can be also defined in other ways. For a scalar function it holds that

sign(z) = z/(z2)1/2,

and thus the matrix function can be defined as

sign(A) := A(A2)−1/2. (1.9)

It can also be set

sign(A) :=
2

π
A
Z ∞

0

�
t2I + A2

�−1
dt. (1.10)

From these representations of a matrix sign function S :=sign(A) it can be shown, see
[25], pp. 107-108, that S is diagonalizable, its eigenvalues are ±1 and S2 = I. If A is
symmetric and positive definite, then S = I.

16

Matrix square root

Square root of a matrix A is a matrix X such that X2 = A. It can be shown, see [25],
pp. 20, that if none of the eigenvalues lie in R−, then there exists a unique matrix X
such that X2 = A and all its eigenvalues have positive real part.

Now, we will derive an integral representation formula for the matrix square root.
We customize (1.10) for a certain specific block matrix,

sign

��
O A
I O

��
(1.10)
=

2

π

�
O A
I O

� Z ∞

0

�
t2I +

�
O A
I O

� �
O A
I O

��−1

dt

=
2

π

�
O A
I O

� Z ∞

0

��
(t2I + A)−1 O

O (t2I + A)−1

��
dt

=
2

π

�
O A
I O

� � R∞
0 (t2I + A)−1dt O

O
R∞
0 (t2I + A)−1dt

�
=

2

π

�
O A

R∞
0 (t2I + A)−1dtR∞

0 (t2I + A)−1dt O

�
.

(1.11)

Further, from (1.9) we have

sign

��
O A
I O

��
=

�
O A1/2

A−1/2 O

�
. (1.12)

Finally, comparing (1.11) with (1.12) we can see that

√
A =

2

π
A
Z ∞

0
(t2I + A)−1dt.

Matrix square root is not uniquely determined. For example, an identity matrix In of
dimension n×n has 2n diagonal square roots, with elements ±1 on the diagonal, see [24],
pp. 7-8. Only two of them are primary: In and −In. Other, symmetric and nonprimary
square roots are unit permutation matrices and so-called Householder matrices in a form
In − 2vvT

vT v
, where v is an arbitrary nonzero vector. Unsymmetric square roots of In

are in the form XDX−1, where X is nonsingular regular nonorthogonal matrix and
D=diag(±1) ̸= ±I.

Matrix square root is used for example for computation of a polar decomposition, see
[25], pp. 193-220.

Matrix logarithm

Logarithm of a matrix A is a matrix X for which eX = A. If the spectral radius of A
satisfies ρ(A) = max

i=1,...,ℓ
{|eλi|} < 1, we can define matrix logarithm using the Taylor serie

log(I + A) := A− A2

2
+ · · ·+ (−1)k+1A

k

k
+ · · · .

Equivalent definition is via the integral representation formula,

log(A) =
Z 1

0
(A− 1) [t(A− I) + I]−1 dt.

17

If any of the eigenvalues of A does not lie on a negative real axis, then there exists a unique
matrix logarithm X of the matrix A, whose eigenvalues lie in set
{z ∈ C| − π < Im(z) < π}, see [25], pp. 269. We call this logarithm principal loga-
rithm of A. If the logarithm is defined on the spectrum of A, then exp(log(A)) = A.
But generally log(exp(A)) = A does not hold, see [24], pp. 10. Logarithm of a matrix
can be used to compute a determinant of A, det(A) = exp(tr(log(A)).

Matrix sine and cosine

Sine and cosine of a matrix A can be defined using Taylor series

sin(A) := A− A3

3!
+ · · ·+ (−1)kA2k+1

2k + 1!
+ · · · ,

cos(A) := I − A2

2!
+ · · ·+ (−1)kA2k

2k!
+ · · · .

Some formulas, which hold for scalar sine and cosine, hold also for matrix sine and cosine,
i.e. formulas for double argument cos(2A) = 2 cos2(A)−I, sin(2A) = 2 sin(A) cos(A) and
cos2(A) + sin2(A) = I, see [25], pp. 287-288.

Goniometric matrix functions are used to solve differential equations of the second
order

y′′(z) + Ay(z) = 0, y(0) = y0, y′(0) = y1,

whose analytical solution is

y(z) = cos
�√

Az
�
y0 +

�√
A
�−1

sin
�√

Az
�
y1,

where
√
A is an arbitrary square root of A.

18

Chapter 2

Numerical methods for
approximation of f (A)

’All exact science is dominated by the idea of approximation.’
Bertrand Russell

In this chapter we summarize basic numerical methods for approximation of matrix func-
tions f(A). These methods are useful usually only for small dense problems, for large
problems they can be inefficient and the computational cost may become very large.

These methods were widely studied and compared in the literature, see also the Bach-
elor thesis, see [52], pp. 23-30.

2.1 Schur decomposition

Schur decomposition of a matrix A has the form

A = QTQH , (2.1)

where Q ∈ Cn×n is a unitary matrix and T ∈ Cn×n is an upper triangular matrix. Using
the basic property of matrix functions, we obtain f(A) = f(QTQH) = Qf(T)QH . The
question is, how to compute the function of a triangular matrix T . One possibility is
given by the following theorem, see [34], pp. 7-9:

Theorem 2.1.1 Let T = (tij)
n
i,j=1 ∈ Cn×n be upper triangular matrix, where óλi = tii,

i = 1, . . . , n, are its eigenvalues and let f be defined on the spectrum of T . Then
F = f(T) = (fij)

n
i,j=1 is upper triangular, fij = 0 for i > j; fij = f(óλi) for i = j; and

finally, for i < j

fij =
X

(s0,··· ,sk)∈Sij

ts0,s1ts1,s2 · · · tsk−1,skf
hóλs0 , . . . , óλski , (2.2)

where Sij is the set of all strictly increasing sequences of integers that start at i and end

at j, and f
hóλs0 , · · · , óλski is the kth order divided difference of f at óλs0 , . . . , óλsk .

19

Note. We will show later, that

fij = tij
fjj − fii
tjj − tii

+
j−1X

k=i+1

tikfkj − fiktkj
tjj − tii

, i ̸= j, fii = tii, i = j. (2.3)

We will use this equality in the proof of Theorem 2.1.1.
Proof. fij = 0 for i > j and fij = f(óλi) for i = j follows immediately from (2.3). Now
we will prove the case (2.2). We first assume that λi, i = 1, . . . , n are distinct. Setting
j = i+ 1 in (2.3) we obtain

fi,i+1 = ti,i+1
fi+1,i+1 − fi,ióλi+1 − óλi = ti,i+1f

hóλi, óλi+1

i
.

This proves (2.2) for 1 = j − i. The rest will be proved by induction. We assume, that
(2.2) holds for i, j = 1, . . . , n, i.e., 1 ≤ j − i ≤ n − 1, n ≥ 2, and we will show that it
holds also for 1 ≤ j − i ≤ n. Without loss of generality, it suffices to set i = 1, j = n and
show

f1n =
X

(s0,...,sk)∈S1n

ts0s1 · · · tsk−1skf
hóλs0 , . . . , óλski .

From (2.3), we have

f1n = t1nf
hóλ1, óλni+ n−1X

q=2

f1qtqn − t1qfqnóλn − óλ1 (2.4)

and by the inductive hypotheses, we have for q = 2, . . . , n− 1

f1q =
X

(s0,...,sk)∈S1q

ts0s1 · · · tsk−1skf
hóλs0 , . . . , óλski

and
fqn =

X
(s0,...,sk)∈Sqn

ts0s1 · · · tsk−1skf
hóλs0 , . . . , óλski .

We customize these expressions. First,

n−1X
q=2

f1qtqn =
n−1X
q=2

X
(s0,...,sk)∈ S1q

ts0s1 · · · tsk−1sktqnf
hóλs0 , . . . , óλski

=
X

(s0,...,sk)∈ S1n
k>1

ts0s1 · · · tsk−1skf
hóλs0 , . . . , óλsk−1

i (2.5)

and in a similar way

n−1X
q=2

t1qfqn = · · · =
X

(s0,...,sk)∈S1n
k>1

ts0s1 · · · tsk−1skf
hóλs1 , . . . , óλski . (2.6)

Inserting (2.5) and (2.6) into (2.4), we obtain

20

f1n = t1nf
hóλ1, óλni+ X

(s0,...,sk)∈S1n
k>1

ts0s1 · · · tsk−1sk

f
hóλs0 , . . . , óλsk−1

i
− f

hóλs1 , . . . , óλskióλn − óλ1 =

=
X

(s0,...,sk)∈S1n

ts0s1 · · · tsk−1skf
hóλs0 , . . . , óλski ,

and the theorem is proved for distinct eigenvalues.
Now assume that T has multiple eigenvalues. We can write

T = diag(óλ1, . . . , óλn) +N,

where

N =

266666664
0 t12 t13 · · · t1n
0 0 t23 · · · t2n
...

...
. . .

...
...

0 0 · · · 0 tn−1,n

0 0 · · · 0 0

377777775 .
Let us define a sequence of upper triangular matrices

Tq = diag(óλ(q)1 , . . . , óλ(q)n) +N

such that lim
q→∞

Tq = T , and each Tq has distinct eigenvalues óλ(q)1 , . . . , óλ(q)n . We can chooseóλ(q)i , i = 1, . . . , n, to be in the interior of the contour Γ in (1.5). Thus,

f(T) =
1

2πi

Z
Γ
f(t) (tI − T)−1 dt = lim

q→∞

1

2πi

Z
Γ
f(t) (tI − Tq)

−1 dt = lim
q→∞

f(Tq).

Further, from the continuity

lim
q→∞

f
hóλ(q)s0

, . . . , óλ(q)sk

i
= f

hóλs0 , . . . , óλski ,
for (s0, . . . , sk) ∈ Sij, i < j. Summarizing

fij = lim
q→∞

f
(q)
ij = lim

q→∞

X
s0,...,sk∈Sij

ts0s1 · · · tsk−1skf
hóλ(q)s0

, . . . , óλ(q)sk

i
=

X
(s0,...,sk)∈Sij

ts0s1 · · · tsk−1skf
hóλs0 , . . . , óλski .

and that proves (2.2) also for matrix with multiple eigenvalues.

�

Computation of f(T) using this theorem requires O(2n) elementary operations. More
efficient method is the Parlett Method, see [25], pp. 85-86, which is based on the com-
mutativity of matrix and its matrix function, T = (tij)

n
i,j=1 and F = f(T) = (fij)

n
i,j=1.

From TF = FT we obtain

21

fij = tij
fjj − fii
tjj − tii

+
j−1X

k=i+1

tikfkj − fiktkj
tjj − tii

, i ̸= j, fii = tii, i = j. (2.7)

A problem can occur, when the matrix A has multiple, respectively close eigenvalues.
Then the denominator in (2.7) is zero, respectively very small, and the method cannot
be used. In [20], pp. 560-561 and [25], pp. 86-87, 221-231 a modification of this method,
based on clustering close or multiple eigenvalues in blocks along the diagonal of T is
described. Block variant of (2.7), i.e. system of Sylvester’s equations, is obtained. This
system can be solved using the so-called Bartels-Steward algorithm, that is described in
[20], pp. 365-366.

2.2 Truncated Taylor series

If the function has a Taylor expansion

f(A) =
∞X
k=0

f (k)(A)

k!
Ak,

then we can simply approximate f(A) by truncating this serie,

f(A) ≈ Tq(A) :=
qX

k=0

f (k)(A)

k!
Ak

for some parameter q ∈ N. This parameter is taken as the smallest number for which

fl [Tq(A)] = fl [Tq+1(A)] ,

where fl [Tq(A)] is the matrix of the floating point numbers obtained by computing Tq(A)
in floating point arithmetics, see [36], pp 9. Note that rounding errors and catastrophic
cancellation during adding of two numbers with oposite signs in finite precise arithmetics
can occur, and thus aproximating f(A) using truncated Taylor series can be efficient only
near origin.

2.3 Rational Padé approximation

The function f can be approximated by the so-called [p/q] Padé approximation

f(z) ≈ Rpq :=
Npq(z)

Dpq(z)
=
n0 + n1z + n2z

2 + · · ·+ npz
p

d0 + d1z + d2z2 + · · ·+ dqzq
,

where Npq is a polynomial of degree p and Dpq is a polynomial of degree q. Similarly, we
can approximate

f(A) ≈ Npq(A) ·Dpq(A)
−1.

Assume that the function can be expanded into a serie (1.1). The coefficients {ni}pi=0

and {di}qi=0 can be found by considering the equality

Dpq(z) ·
�
a0 + a1z + a2z

2 + · · ·+ ap+qz
p+q
�
= Npq(z)

22

and equating coefficients of the same powers of z up to p+ q. For example, in case of the
matrix exponential eA, the polynomials Npq and Dpq have the form, see [19], pp. 13,

Npq(z) =
pX

i=0

(p+ q − i)!p!

(p+ q)!(p− i)!i!
zi

Dpq(z) =
pX

i=0

(p+ q − i)!q!

(p+ q)!(q − i)!i!
(−z)i,

where
lim
p→∞

Npp = eA/2,

lim
p→∞

Dpp = e−A/2.

Diagonal Padé approximation (i.e., the case when p = q) is prefered, due to the fact that
computation of Rpq is not cheaper then computing Rp∗p∗ , where p

∗ = max{p, q}, see [36],
pp. 9-10. Because of their stability properties, Padé [p + 1, p] and [p, p] approximations
are used in the numerical solution of initial value problems with one-step methods.

2.4 Scaling and squaring method and its modifica-

tions

Some of the previous methods applied to the matrix exponential eA can be improved
by using scaling and squaring method. Scaling and squaring method is usually applied
to rational Padé approximation resp. to truncated Taylor series near to the origin, i.e.,
when ∥A∥ is small. The scaling and squaring method for the matrix exponential uses its
property

eA =
�
eA/2s

�2s
for some s ∈ N. The approximant of eA/2s is determined and then the final approximation
of eA is obtained by repeated squaring. Parameter s is chosen such that eA/2s can be
reliably and efficiently computed. It is chosen as small as possible such that it satisfies
the condition ∥A∥ /2s < 1, for more details, see [36], pp. 31-33.

Analogeous method can be applied to another functions - matrix logarithm, matrix
sine and cosine function. For matrix logarithm inverse scaling and squaring method can
be used as it is described in [25], pp. 273-274. It is based on the identity

log(A) = 2s log(A1/2s).

For matrix sine and cosine the following modification is advantageous, see [20], pp. 567.
Using the identities

cos(2A) = 2 cos2(A)− I,
sin(2A) = 2 sin(A) cos(A),

we set the initial approximation as S0 ≈ sin(A/2s), C0 ≈ cos(A/2s) and then for
j = 1, . . . , s, we compute the iterations as

Sj = 2Sj−1Cj−1,
Cj = 2C2

j−1 − I.

23

2.5 Chebyshev approximation

The Chebyshev (or best L∞([a, b])) approximation to f on an interval [a, b] is a rational
function R∗ satisfying

max
z∈[a,b]

|R∗(z)− f(z)| = min
R∈Rpq

max
z∈[a,b]

|R(z)− f(z)| ,

where Rpq is a set of all rational functions with the nominator and the denominator
of degrees at most p and q, respectively. The best Chebyshev approximation can be
constructed using the Remez algorithm, for details see [44], pp. 72-84.

The result can be directly translated for Hermitian matrices with eigenvalues on the
negative real axis. The coefficients of R∗ were determined for various values of p, q in the
work of Cody, Meinardus and Varga, see [7], pp. 50-65.

2.6 Matrix iterations

Matrix iteration is a process

Xk+1 = g(Xk), k = 0, 1, 2, . . . ,

where g is usually a polynomial or a rational function. The initial approximation X0 is
usually taken as the identity matrix I or the matrix A itself. Matrix iterations are usually
used for matrix sign and matrix square root functions.

Matrix iterations can be based for example on a Newton method, that is described
in [25], pp. 139. We describe it now for the matrix square root. Suppose that Y is
an approximate solution of the matrix equation X2 = A. Let E be a matrix such that
X = Y + E. Then

A = (Y + E)2 = Y 2 + Y E + EY + E2. (2.8)

Setting Xk = Y,Ek = E and Xk+1 = X, k = 0, 1, 2, . . ., we obtain the process

XkEk + EkXk = A−X2
k

Xk+1 = Xk + Ek, k = 0, 1, 2, . . .
(2.9)

For a different choice of X0 and adding some more presumptions, different methods
can be obtained. For example, if we set X0 = A and suppose, that Ek and Xk commute,
we obtain Newton iteration,

Xk+1 =
1

2

�
Xk +X−1

k A
�
, k = 0, 1, 2,

Newton iteration is quadratically convergent, but it is numerically stable only if A is well
conditioned, see [26], pp. 537-549. Another disadvantage is, that at each iteration we
need to compute an inverse of the matrix Xk. Further methods, mentioned in [24], pp.
18-19, can be obtained by modifying (2.9).

24

More stable method is, e.g., the double step Denman-Beavers iteration, [27], pp.
227-242,

Xk+1 = 1
2
(Xk + Y −1

k), X0 = A,
Yk+1 = 1

2
(Yk +X−1

k), Y0 = I, k = 0, 1, 2, . . . ,

for which
lim
k→∞

Xk = A1/2, lim
k→∞

Yk = A−1/2.

Another option is the double-step Meini iteration [35], pp. 362-376,

Yk+1 = −YkZ−1
k Yk, Y0 = I − A,

Zk+1 = Zk + 2Yk+1, Z0 = 2(I + A), k = 0, 1, 2, . . . ,

for which
lim
k→∞

Yk = 0, lim
k→∞

Zk = 4A1/2.

Both Denman-Beavers iteration and Meini iteration are quadratically convergent, but we
have to compute inverse matrix in each step. If we want to avoid this, we can use Schulz
iteration [27], pp. 227-242,

Yk+1 = 1
2
Yk(3I − ZkYk), Y0 = A,

Zk+1 = 1
2
(3I − ZkYk)Zk, Z0 = I, k = 0, 1, 2, . . . ,

for which
lim
k→∞

Xk = A1/2, lim
k→∞

Yk = A−1/2,

is convergent only if ∥diag(A− I, A− I)∥ < 1.

For the matrix sign function, iterative methods can be determinded in a similar way
as for the matrix square root using the identity sign2(A) = I, i.e., applying Newton’s
method on the matrix equation X2 = I. Then the Newton iteration for matrix sign
function is given by

Xk+1 =
1

2
(Xk +X−1

k), X0 = A, k = 0, 1, 2,

It converges quadratically to sign(A) if A has no imaginary eigenvalues. Number of
iterations can be reduced using the Newton-scaled iteration

Xk+1 =
1

2
(µkXk + µ−1

k X−1
k), X0 = A, k = 0, 1, 2, . . .

for a properly chosen scale parameters µk, which is discussed in [4], pp. 127-140. To
avoid computing matrix inverses, we can use Newton-Schulz iteration

Xk+1 =
1

2
Xk(3I −X2

k), X0 = A,

which converges only for ∥I − A2∥ < 1 we can also use Padé family of iterations,
which is described and its convergence is discussed in [30], pp. 273-291.

25

Chapter 3

Methods for approximation of f (A)b
of non-Krylov type

’Far better an approximate answer to the right question, than the exact
answer to the wrong question, which can always be made precise.’

John Tukey

In this chapter, we describe methods, that compute an approximation of f(A)b of non-
Krylov type. We shortly mention the quadrature rule and contour integral and the last
method, polynomial least squares approximation, will be described in detail. This method
will be compared with Krylov subspace methods in numerical experiments.

3.1 Quadrature rule

Suppose that f(A) has integral representation,

f(A) =
Z a

0
g(A, t)dt,

where a ∈ R and g is a rational function. Applying quadrature formulaZ a

0
g(A, t)dt ≈

pX
k=1

ckg(A, tk),

we obtain an approximation

f(A)b ≈
pX

k=1

ckg(A, tk)b, (3.1)

see [25], pp. 306-308. The quadrature formula might be the Gauss rule, repeated rule such
as the repeated trapezium or repeated Simpson rule etc. Matrix sign function, matrix
square root and matrix logarithm have integral representations with rational function g,
thus for these functions this method can be applied.

In case that a Hessenberg decomposition A = VkHkV
H
k , with upper Hessenberg matrix

26

Hk ∈ Ck×k and a matrix with orthonormal columns Vk ∈ Cn×k, k << n, can be computed
(this decomposition will be described in detail in Chapter 4), then (3.1) transforms to

f(A)b ≈ V
mX
j=1

g(Hk, tj)V
H
k b.

Using such Hessenberg reduction, the problem can be solved in O(n2) flops, opposed to
O(n3) flops for a dense system. Another efficient possibility is to apply Schur decompo-
sition (2.1) on (3.1).

3.2 Contour integral

If f is analytic on and inside a closed contour Γ that encloses the spectrum of A, we can
represent f(A)b by Cauchy integral formula (1.5), see [9], pp. 6-9,

f(A)b =
1

2πi

Z
Γ
f(t) (tI − A)−1 bdt. (3.2)

Assume that the contour Γ is a circle with a center α and a radius β,

Γ =
¦
t : t− α = βeiθ, 0 ≤ θ ≤ 2π

©
.

Then dt = iβeiθdθ = i(t(θ)− α)dθ. Denoting

w(t) = f(t)(tI − A)−1b

we obtain Z
Γ
w(t)dt = i

Z 2π

0
(t(θ)− α)w(t(θ))dθ. (3.3)

On this integral, we apply the m-point repeated trapezium rule and obtain the approxi-
mation

f(A)b ≈ 2πi

m

m−1X
j=0

(tj − α)w(tj),

where tj − α = βe2jπ/m, i.e. t0, . . . , tm are equally spread points on the contour Γ (since
Γ is a circle, we have t0 = tm). If A is a real matrix and if the center α is taken real, then
it suffices use just the points tj in the upper half plane and then take the real part of the
result.

The attractivity of this approximation is in that it is exponentially accurate when
applied to a periodic function. But in general, it is very unefficient unless A is well
conditioned.

3.3 Polynomial least squares approximations for f (A)b

In this section we will consider a polynomial method, which approximates f(A)b in the
sense of least squares as it is described in [6]. For simplicity, suppose that A is real sym-
metric matrix (this approach can also be extended to the case, when A is nonsymmetric

27

with real eigenvalues). First, we approximate function f by a spline function s. Then we
approximate this spline by a polynomial, see [6], pp. 5.

Suppose, that the spectrum Λ(A) of A is included in some interval [α, β], α < β ∈ R.
We define inner product of two functions g, h associated to a weight function w

⟨g, h⟩[α,β] =
Z β

α
g(t)h(t)w(t)dt,

and the corresponding norm

∥g(t)∥[α,β] = ⟨g(t), g(t)⟩1/2[α,β] . (3.4)

Using this notation, we will construct an orthonormal basis of polynomials
Pk+1(t) = {Pj(t)|j = 1, 2, . . . , k + 1} by the so called Stieltjes procedure. We put
P0(t) = 0, P1(t) = 1

∥1∥ , where 1 is constant function with value one. Stieltjes proce-
dure generates the basis using the three-term reccurence

βj+1Pj+1(t) = tPj(t)− αjPj(t)− βjPj−1(t), j = 1, . . . , k, (3.5)

where αj = ⟨tPj(t), Pj(t)⟩[α,β], βj+1 =
ÜPj+1

−1

[α,β]
and Pj+1(t) = βj+1

ÜPj+1(t), see [6], pp.

3-4. Define vj := Pj(A)b. With the assumption Λ(A) ⊂ [α, β], the approximation of
f(A)b is given by

f(t) ≈
k+1X
j=1

γjPj(A)b =
k+1X
j=1

γjvj =: zk+1(t),

where γj(t) = ⟨f(t), Pj(t)⟩[α,β] and from (3.5) we obtain the Stieltjes reccurence for vj,

βj+1vj+1 = Avj − αjvj − βjvj−1.

It is unlikely, that for arbitrary function f the numerical integration can be avoided
in computation of γj(t) = ⟨f(t), Pj(t)⟩[α,β]. Thus, it is often advantageous to first ap-
proximate f using a piecewise cubic spline. The advantage is, that on each subinterval
the inner products needs to be computed only for polynomials. In addition, splines can
be adjusted at the areas, where the function f has ’stiff region’ by placing more knots in
the places with high derivatives. For this, a form of (exact) Gauss-Chebyshev quadrature
will allow us to completely bypass numerical integration. Cubic spline s(t) is defined as
a piecewise cubic polynomial on the knots

α = t0 < t1 < · · · < tn−1 < tn = β,

s(t) :=
n−1X
i=0

si(t), t ∈ [α, β] ,

where for i = 0, . . . n− 1, the polynomial piece is

si(t) =

¨
ai + bi(t− ti) + ci(t− ti)

2 + di(t− ti)
3 if t ∈ [ti, ti+1] ,

0 otherwise.

Since now, we will consider

s(t) ≈
k+1X
j=1

γjvj

and γj = ⟨s(t), Pj(t)⟩[α,β].

28

Transformation of variable

Now we need to define inner product and the corresponding norm on each subinter-
val [ti, ti+1], i = 1, . . . , n − 1. First, consider Chebyshev polynomials of the first kind
Tp(x) = cos(p cos−1 x) defined on the interval [−1, 1]. These polynomials also satisfy
the three-term reccurence

Tp+1(x) = 2xTp(x)− Tp−1(x), T0(x) = 1, T1(x) = x

and they constitute a sequence of orthogonal polynomials on [−1, 1] with respect to
the weight function 1√

1−x2 . On the subintervals [ti, ti+1], consider the transformation of
variable

x(i)(t) =
2

ti+1 − ti
t− ti+1 + ti

ti+1 − ti
, i = 1, . . . , n, x(i)(t) ∈ [−1, 1] .

Then, we can define

C(i)
p (t) = Tp(x

(i)(t)), t ∈ [ti, ti+1] , i = 1, . . . , n− 1,

the corresponding inner product

⟨g(t), h(t)⟩[ti,ti+1]
:=
Z ti+1

ti

g(t)h(t)È
(t− ti) (ti+1 − t)

dt (3.6)

and the corresponding norm

∥g(t)∥[ti,ti+1]
:= ⟨g(t), g(t)⟩[ti,ti+1]

. (3.7)

Polynomials C(i)
p (t) are orthogonal with respect to the weight function

1È
(t− ti)(ti+1 − t)

,

i.e., ¬
C(i)

p (t), C(i)
q (t)

¶
[ti,ti+1]

=
π

2
[δp−q + δp+q] . (3.8)

Using (3.6) we can define an inner product on the whole interval [α, β] as

⟨g(t), h(t)⟩[α,β] :=
n−1X
i=0

⟨g(t), h(t)⟩[ti,ti+1]
(3.9)

and the corresponding norm satisfies

∥g(t)∥2[α,β] =
n−1X
i=0

∥g(t)∥2[ti,ti+1]
.

Computing coefficients αj, βj+1, γj+1

With the definition of an inner product on each subinterval, we can exploit the orthogo-
nality of the basis to efficiently compute the coefficients for the Stieltjes reccurence, see
[6], pp. 6-8.

29

First we describe computation of αj. Polynomial Pj(t) from the orthonormal basis
Pk+1 can be expressed on the subinterval [ti, ti+1] as

Pj(t) =
j−1X
p=0

µ
(i)
pjC

(i)
p (t). (3.10)

Just for now we assume, that the coefficients µ
(i)
pj are known. Rewriting the formula

for the three-term recurrence for Chebyshev polynomials on the subinterval [ti, ti+1], we
obtain

tC(i)
p (t) =

ti+1 − ti
4

C
(i)
p+1(t) +

ti+1 + ti
2

C(i)
p (t) +

ti+1 − ti
4

C
(i)
p−1(t), p ≥ 1,

tC
(i)
0 (t) =

ti+1 − ti
2

C
(i)
1 (t) +

ti+1 + ti
2

C
(i)
0 (t)

(3.11)

We use the convections µ
(i)
−1,j = 0 and µ

(i)
p,j for p ≥ j. Inserting (3.11) into (3.10) multiplied

by t, we obtain

tPj(t) =
ti+1 − ti

4
µ
(i)
0jC

(i)
1 (t) +

jX
p=0

�
ti+1 − ti

4

�
µ
(i)
p−1,j + µ

(i)
p+1,j

�
+
ti+1 + ti

2

�
C(i)

p (t).

Defining

σ
(i)
pj :=

ti+1 − ti
4

�
µ
(i)
p−1,j + µ

(i)
p+1,j

�
+
ti+1 + ti

2
µ
(i)
pj , p = 0, . . . , j, (3.12)

gives

tPj(t) =
ti+1 − ti

4
µ
(i)
0jC

(i)
1 (t) +

jX
p=0

σpjC
(i)
p (t).

According to the definition of the inner product (3.9), we have

αj = ⟨tPj(t), Pj(t)⟩[α,β] =
n−1X
i=0

⟨tPj(t), Pj(t)⟩[ti,ti+1]
.

Finally

αj = π
n−1X
i=0

�
σ
(i)
0j µ

(i)
0j +

ti+1 − ti
8

µ
(i)
0j µ

(i)
1j +

jX
p=1

σ
(i)
pj µ

(i)
pj

�
. (3.13)

Further we consider the computation of βj+1. We denote the right-hand side of (3.5)
by Sj(t) = tPj(t)− αjPj(t)− βjPj−1(t). For j = 0, we have

β1 = ∥S0(t)∥[α,β] =

Ì
n−1X
i=0

∥C0(t)∥2[ti,ti+1]
=

√
nπ

and for j ≥ 1, we have by some manipulations

β2
j+1 = ∥Sj(t)∥2[α,β] =

n−1X
i=0

ti+1 − ti
4

µ
(i)
0jC

(i)
1 (t) +

jX
p=0

�
σ
(i)
pj − αjµ

(i)
pj − βjµ

(i)
p,j−1

�
C(i)

p (t)

2

[ti,ti+1]

.

30

Defining
η
(i)
pj := σ

(i)
pj − αjµ

(i)
pj − βjµ

(i)
p,j−1, p = 0, . . . , j (3.14)

yields the formula for βj+1

βj+1 =

Í
π

n−1X
i=0

24η(i)20j +
1

2

�
η
(i)
1j +

ti+1 − ti
4

µ
(i)
0j

�2

+
1

2

jX
p=2

η
(i)2

pj

35. (3.15)

Now, we can find an update formula for µ
(i)
p,j+1. Since Pj+1(t) = Sj(t)/βj+1, j = 0, . . . , k,

µ
(i)
01 = 1/β1,

µ
(i)
1,j+1 =

h
η
(i)
1j + ti+1−ti

4
µ
(i)
0j

i
/βj+1

µ
(i)
p,j+1 = η

(i)
pj /βj+1 for p = 0, 2, 3, . . . , j.

(3.16)

Finally, consider computing γj+1. We have

γj+1 = ⟨s(t), Pj+1(t)⟩[α,β] =
n−1X
i=0

°
si(t),

jX
p=0

µ
(i)
p,j+1C

(i)
p (t)

º
[ti,ti+1]

, (3.17)

where si(t) is a cubic polynomial of the form

si(t) = ξ
(i)
0 C

(i)
0 (t) + ξ

(i)
1 C

(i)
1 (t) + ξ

(i)
2 C

(i)
2 (t) + ξ

(i)
3 C

(i)
3 (t),

with hi =
ti+1 − ti

2
, and

ξ
(i)
0 = 5

2
dih

3
i +

3
2
cih

2
i + bihi + ai

ξ
(i)
1 = 15

4
dih

3
i + 2cih

2
i + bihi

ξ
(i)
2 = 3

2
dih

3
i +

1
2
cih

2
i

ξ
(i)
3 = 1

4
dih

3
i .

. (3.18)

Previous derivations can be summarized in the following algorithm for computation of
an approximation to f(A)b using polynomial least squares method:

31

Algorithm 1

Given t0, t1, . . . tn, where t0 = α, tn = β and ti < ti+1 i = 1, . . . , n− 1.
1. Compute a cubic spline s(t) which interpolates f(t) in points (ti, f(ti)), i = 1, . . . , n
2. β1 =

√
nπ

3. v1 = b/β1
4. Compute ξ(i)p for i = 0, . . . , n− 1 and p = 0, . . . , 3, using (3.18)

5. µ
(i)
01 = 1/β1, for i = 0, . . . , n− 1

6. γ1 = π
n−1X
i=0

ξ
(i)
0 µ

(i)
01

7. z1 = γ1v1

8. for j = 1, . . . , k do

9. Compute σ
(i)
pj for i = 0, . . . , n− 1 and p = 0, . . . , j using (3.12)

10. Compute αj using (3.13)

11. Compute η
(i)
pj for i = 0, . . . , n− 1 and p = 0 . . . , j using (3.14)

12. Compute βj+1 using (3.15)

13. Compute µ
(i)
p,j+1 for i = 0, . . . , n− 1 and p = 0, . . . , j using (3.16)

14. vj+1 = (Avj − αjvj − βjvj−1)/βj+1

15. Compute γj+1 using (3.17)
16. zj+1 = zj + γj+1vj+1

17. enddo

Convergence analysis

We approximated f(t) on the interval [α, β] by the spline s(t), and we projected s(t) onto
the polynomial space Pk+1. Denote

Φk+1 =
k+1X
j=1

γjPj(t) ≈ s(t)

thus
zk+1 = Φk+1(A)b ≈ s(A)b.

For the norm (3.4), Φk+1(t) approximates s(t) in the least squares sense, [6], pp. 9,
i.e.

Φk+1(t) = arg min
Φ∈Pk+1

∥Φ(t)− s(t)∥[α,β] .

Suppose that the matrix A is symmetric. Then

∥zk+1 − f(A)b∥[α,β] ≤ max
t∈[α,β]

|Φk+1(t)− f(t)| ∥b∥2 .

To bound the difference between Φk+1(t) and f(t), we use the triangle inequality,

|Φk+1(t)− f(t)| ≤ |Φk+1(t)− s(t)|+ |s(t)− f(t)| .

For the difference between s(t) and f(t) on the interval [α, β], we first suppose that f(t)
is fourth order differentiable on the interval [α, β], and s(t) is the unique cubic spline that
interpolates f(t) on the knots

α = t0 < t1 < . . . < tn−1 < tn = β

32

with the boundary condition

s′(t0) = f ′(t0) and s′(tn) = f ′(tn).

Then

max
t∈[α,β]

|s(t)− f(t)| ≤ 5M

384
max

0≤i≤n−1
(ti+1 − ti)

4,

where M = maxt∈[α,β]
���f (4)(t)

���. This result was shown in [48].

We define the modulus of continuity of a function g(t) on the interval [α, β] as

ω(g; [α, β]; δ) := sup
t1,t2∈[α,β]

|t1−t2|<δ

|g(t1)− g(t2)|

for δ > 0. In case the context is clear, we will use shorthand notation ω(δ). Before we
estimate |Φk+1(t)− s(t)|, we need the following lemmas, see [47] and [45], pp. 22.

Lemma 3.3.1 For the norm defined in this section, (3.4), it holds that

∥g(t)∥[α,β] ≤
√
nπ max

t∈[α,β]
|g(t)| .

Lemma 3.3.2 Let gk+1(t) ∈ Pk+1 be any polynomial of degree not exceeding k. Then
using the notation of this section, we have

max
t∈[α,β]

|gk+1(t)| ≤
s
2(k + 1)

π
∥gk+1(t)∥[α,β] .

By the property of uniform norm, for any continuous function g(t) there exist a polynomial
g∗k+1(t) of degree k, such that

max
t∈[α,β]

���g∗k+1(t)− g(t)
��� ≤ max

t∈[α,β]
|Φk+1(t)− g(t)| .

Lemma 3.3.3 If a function g is continous on the interval [α, β], then

max
t∈[α,β]

���g∗k+1(t)− g(t)
��� ≤ 6ω

�
β − α

2k

�
.

These lemmas can be used to prove the following theorem presented in [6], pp. 10-11.,
which gives the upper bound for |Φk+1(t)− s(t)|.

Theorem 3.3.4 The uniform norm of the residual polynomial admits the bound

max
t∈[α,β]

|Φk+1(t)− s(t)| ≤
�
6
È
2n(k + 1) + 1

�
ω

�
β − α

2k

�
.

33

Proof. Using triangle inequality, there holds

max
t∈[α,β]

|Φk+1(t)− s(t)| ≤ max
t∈[α,β]

���Φk+1(t)− s∗k+1(t)
���+ max

t∈[α,β]

���s∗k+1(t)− s(t)
��� . (3.19)

According to Lemma 3.3.2, we have

max
t∈[α,β]

���Φk+1(t)− s∗k+1(t)
��� ≤ s

2(k + 1)

π

Φk+1(t)− s∗k+1(t)

[α,β]

, (3.20)

Since Φk+1 is an approximation in the sence of least squares,Φk+1(t)− s∗k+1(t)

[α,β]

≤ ∥Φk+1(t)− s(t)∥[α,β] +
s(t)− s∗k+1(t)

[α,β]

≤
s∗k+1(t)− s(t)

[α,β]

+
s(t)− s∗k+1(t)

[α,β]

= 2
s(t)− s∗k+1(t)

[α,β]

,

(3.21)

and (3.20) becomes

max
t∈[α,β]

���Φk+1(t)− s∗k+1(t)
��� ≤ 2

s
2(k + 1)

π

s∗k+1(t)− s(t)

[α,β]

.

and from Lemma 3.3.1 we have

max
t∈[α,β]

���Φk+1(t)− s∗k+1(t)
��� ≤ 2

È
2n(k + 1) max

t∈[α,β]

���s∗k+1(t)− s(t)
��� .

Thus, (3.19) becomes

max
t∈[α,β]

|Φk+1(t)− s(t)| ≤
�
2
È
2n(k + 1) + 1

�
max
t∈[α,β]

���s∗k+1(t)− s(t)
��� .

The proof is finished by applying Lemma 3.3.3.

�
Finally, we can formulate the following theorem for the upper bound of ∥Φk+1(t)− s(t)∥,
see [6], pp. 12:

Theorem 3.3.5 The norm of the residual polynomial admits the bound:

∥Φk+1(t)− s(t)∥[α,β] ≤ 18
√
nπω

�
β − α

2k

�
.

Proof. Using (3.21), Lemma 3.3.2 and 3.3.3, gives

∥Φk+1(t)− s(t)∥[α,β] ≤
Φk+1(t)− s∗k+1(t)

[α,β]

+
s∗k+1(t)− s(t)

[α,β]

≤ 3
s∗k+1(t)− s(t)

[α,β]

≤ 3
√
nπ max

t∈[α,β]

���s∗k+1(t)− s(t)
���

≤ 18
√
nπω

�
β − α

2k

�
.

�
Summarizing, the estimate of the error is

∥zk+1 − f(A)b∥[α,β] ≤ ∥b∥2
��

6
È
2n(k + 1) + 1

�
ω

�
β − α

2k

�
+

5

24
M max

0≤i≤n−1
h4i

�
.

34

Chapter 4

Krylov subspace methods for
approximation of f (A)b

’There is no method but to be very intelligent.’
Thomas Stearns Eliot

Krylov subspace methods, first introduced in [32], are iterative methods that play a
key-role in a large and sparse matrix-vector problems; not only in solving systems of
linear equations but also in problems of actions of a vector on matrix functions, f(A)b.
In Krylov subspace methods an approximate solution of f(A)b can be found in a finite
number of iterations, usually significantly smaller than n, and thus using Krylov subspace
methods can be a good and efficient choice for our problem.

Suppose that A ∈ Cn×n and 0 ̸= b ∈ Cn are given. We define themth Krylov subspace
as

Km(A, b) = span{b, Ab, . . . , Am−1b} = {q(A)b : q ∈ Pm−1}.

We need an orthonormal basis of this subspace (because the vectors b, Ab, A2b, . . . can
easily become ’numericaly’ dependend). This basis can be constructed using the so called
Arnoldi algorithm, [3], with the starting vector v1 = b/ ∥b∥. Assume that the algorithm
does not terminate before step m. Then we obtain an Arnoldi decomposition of A
with respect to Km(A, b),

AVm = Vm+1Hm+1,m = VmHm + ηm+1,mvm+1e
T
m, (4.1)

where the columns of Vm = [v1,v2, . . . ,vm] form an orthonormal basis of Km(A, b), the
matrix Hm+1,m ∈ C(m+1)×m is unreduced upper Hessenberg of the form

Hm+1,m =

266666666664

η1,1 η1,2 · · · η1,m
η2,1 η2,2 · · · η2,m

η3,2
. . .

...
. . .

...
ηm,m−1 ηm,m

ηm+1,m

377777777775
35

and Hm = [Im, 0]Hm+1,m ∈ Cm×m. For the Krylov subspaces, it holds that

K1(A, b) ⊂ K2(A, b) ⊂ . . . ⊂ Km(A, b), m = 1, . . . , L,

where L is the smallest index for which

KL(A, b) = KL+1(A, b) = KL+2(A, b) =

The Arnoldi approximation fm to f(A)b is then defined as

fm := βVmf(Hm)e1, where β = ∥b∥ , for m = 1, . . . , L, (4.2)

see Algorithm 2:

Algorithm 2

Given A, b
1. β = ∥b∥, v1 = b/β
2. for j = 1, . . . ,m do
3. w = Avj

4. for i = 1, . . . , j do
5. ηi,j = (w, Avj)
6. w = w − ηi,jvi

7. enddo
8. ηj+1,j = ∥w∥
9. if ηj+1,j ̸= 0, then vj = w/ηj+1,j else stop
10. enddo
11. compute approximation fm = βVmf(Hm)e1

Note that the Arnoldi algorithm simplifies into a three-term reccurence in case that A is
a Hermitian matrix. Then the process is called the Lanczos algorithm, see [33], and the
Hessenberg matrix Hm is tridiagonal. The Hermitian Lanczos algorithm is nothing but
the matrix formulation of the Stieltjes algorithm for computing the basis of orthonormal
polynomials Pk+1, see [50].
For a general matrix we can also construct a basis of Km(A, b) using three-term rec-
curence. However, the basis is no longer orthogonal. This process is called the two-sided
Lanczos algorithm, see [33]. We construct two sequences of vectors, {v}mj=1 , {óvj}mj=1, such
that

AVm = VmTm + βm+1vm+1e
T
m,

AHôVm = ôVmTH
m + γm+1 óvm+1e

T
m,

where αj = óvH
j Avj, matrices ôVm = [óv1, . . . , óvm] and Vm = [v1, . . . ,vm] satisfyôV H

m AVm = Tm, ôV H
m Vm = I

and Tm is of the form

Tm =

266666664
α1 γ2

β2 α2
. . .

.

γm
βm αm

377777775 .

36

Then we can approximate f(A)b by

fm = βVmf(Tm)e1.

The following lemma, [46], pp. 215, shows, that for any matrix polynomial
pj(A) ∈ Pj, j ≤ m− 1, the Arnoldi approximation is exact.

Lemma 4.0.6 Let A ∈ Cn×n, b ∈ Cn and let Vm, Hm be the matrices obtained after m
steps of the Arnoldi process applied to A and b. Then for any polynomial pj of degree
j ≤ m− 1 the following equality holds,

pj(A)b = βVmpj(Hm)e1.

The lemma can be easily proved using mathematical induction. According to this lemma,
the approximation fm can be expressed using interpolation polynomials, as it is summa-
rized in the following theorem, see [46], pp. 215.

Theorem 4.0.7 Suppose, that q ∈ Pm−1 is a polynomial that interpolates f in a Hermite
sense on the spectrum of Hm, then

fm = βVmf(Hm)e1 = βVmq(Hm)e1 = q(A)b. (4.3)

Proof. For m ≥ L, let q(A) be a Hermite interpolation polynomial. Then
q(A) = f(A) = Vmf(Hm)V

H
m and thus q(A)b = Vmf(Hm)V

H
m b = βVmf(Hm)e1.

For m < L, there exists a Hermite interpolation polynomial q̃(Hm) to f(Hm). Then
from the definition (1.7), q̃(Hm)b = f(Hm)b giving

βVmf(Hm)e1 = βVmp̃(Hm)e1 = βq̃(A)Vme1 = q̃(A)b.

�

In the following sections, we will refer to the method, that gives an approximation
(4.2) based on the Arnoldi decomposition (4.1), as the standart Krylov subspace
method.

4.1 Restarted Krylov subspace method

Computational cost and storage requirements of the standart Krylov subspace method
increase with growing number of iterations, due to the fact that the algorithm uses long
recurrences. This problem can be reduced by regular restarting of the Arnoldi process
after a given number of steps. In this section we show how the approximation of f(A)b
is updated at the end of the current Arnoldi process using the value of the previous
approximation and matrices incurred while computing current Arnoldi decomposition.

Before we briefly describe the method itself, based on [15], we give some theoretical
background in order to properly understand the idea of restarting the Krylov subspace
method.

Similar results as were shown for the Arnoldi decomposition can be described for more

37

general decompositions of Km(A, b). Consider {wm}Lm=1, a sequence of ascending (not
necessarily orthonormal) basis vectors such that

Km(A, b) = span {w1,w2, . . . ,wm} , m = 1, . . . , L. (4.4)

Then there exists the unique, so called Arnoldi-like decomposition,

AWm =Wm+1Hm+1,m = WmHm + ηm+1,mwm+1e
T
m, (4.5)

where Wm = [w1, . . . ,wm] ∈ Cn×m, Hm+1,m ∈ C(m+1)×m is an unreduced upper Hessen-
berg matrix and Hm = [Im, 0]Hm+1,m ∈ Cm×m. The following lemma, [15], pp. 2484, is a
simple generalization of the corresponding result for Arnoldi decompositions.

Lemma 4.1.1 For any polynomial qm(z) = amz
m+am−1z

m−1+ . . .+a1z+a0 ∈ Pm the
vector qm(A)b can be represented as

qm(A)b =

¨
β [Wmqm(Hm)e1 + αmγmwm+1] , m < L,
βWLqm(HL)e1, m ≥ L,

(4.6)

where

γm :=
mY
j=1

ηj+1,j

and βw1 = b. In particular, for any q ∈ Pm−1

q(A)b = βWmq(Hm)e1.

The proof of this lemma can be found in [18]. It is based on verifying the assertion for
monomials, taking into account the sparsity pattern of a Hessenberg matrix.

We next introduce the polynomial notation of vectors from the Arnoldi-like decom-
position (4.5). To each vector wm, there corresponds a unique polynomial

wm−1 ∈ Pm−1 (4.7)

such that wm = wm−1(A)b. Arnoldi-like recurrence (4.5) rewritten for each polynomials
becomes

λ [w0(λ), . . . , wm−1(λ)] = [w0(λ), . . . , wm−1(λ)]Hm + ηm+1,m [0, . . . , 0, wm(λ)] . (4.8)

Obviously, each zero of wm is an eigenvalue of Hm. Moreover, the zeros of multiplicity ℓ
are the eigenvalues of Hm corresponding to a Jordan block of dimension ℓ. Further, for
an approximation using the Arnoldi-like decomposition, we have the following theorem,
see [46], pp. 2485:

Theorem 4.1.2 Let qm−1 ∈ Pm−1 be a polynomial and let f(Hm) be defined. Then

qm−1(Hm) = f(Hm) (4.9)

if and only if qm−1 interpolates f in Hermite sense at the eigenvalues of Hm. Moreover,

fm := βWmf(Hm)e1 = βWmq(Hm)e1 = q(A)b. (4.10)

38

Approximation (4.10) is called the Krylov subspace approximation to f(A)b associated
with the Arnoldi-like decomposition. Shortly, we refer to this as the Arnoldi-like ap-
proximation.

Remark 4.1.3 We briefly describe one possibility of choice of the basis vectors
wm = wm−1(A)b, [15], pp. 2485-2486. Let

ϑ
(1)
1

ϑ
(2)
1 ϑ

(2)
2

ϑ
(3)
1 ϑ

(3)
2 ϑ

(3)
3

...
...

...

be a fixed sequence of nodes. Then we can choose the basis vectors as

wm−1(z) = ωm−1(z − ϑ
(m−1)
1)(z − ϑ

(m−1)
2) · . . . · (z − ϑ

(m−1)
m−1),

where ωm−1 ̸= 0 is a parameter. The nodes can be chosen, e.g., as zeros of Chebyshev
polynomials. Other choices are described in [38], [39], [41].

Since now, we will use the following notation. We define the nodal polynomial associ-
ated with the nodes ϑ1, . . . , ϑm as

p(z) := (z − ϑ1)(z − ϑ2) · · · (z − ϑm). (4.11)

We denote the unique polynomial which interpolates f in the Hermite sense by Ipf . We
define the mth order divided difference of f with respect to the nodes {ϑj}mj=1

by

∆pf :=
f − Ipf

p
. (4.12)

The following theorem, [15], pp. 2486, gives an expression of the error for the Arnoldi-like
approximation.

Theorem 4.1.4 Given A ∈ Cn×n, b ∈ Cn and a function f , let (4.5) be an Arnoldi-like
decomposition, and let wm ∈ Pm−1 be the associated polynomial (4.7). Then

f(A)b− βWmf(Hm)e1| {z }
fm

= βγm [∆wmf] (A)wm+1. (4.13)

Proof. First consider an arbitrary set of nodes ϑ1, . . . , ϑm with associated nodal poly-
nomial (4.11). From the definition (4.12), it holds that f(z) = [Ipf] (z) + [∆pf] (z)p(z).
Inserting A for z in this identity and multiplying by b, we obtain

f(A)b = [Ipf] (A)b+ [∆pf] (A)p(A)b. (4.14)

Now we apply Lemma 4.1.1. Since Ipf ∈ Pm−1, we have

[Ipf] (A)b = βWm [Ipf] (Hm)e1 (4.15)

39

and since p ∈ Pm is monic,

p(A)b = βWmp(Hm)e1 + βγmwm+1. (4.16)

Substituting (4.15) and (4.16) into (4.14) gives

f(A)b− βWm [Ipf] (Hm)e1 = β [∆pf] (A) (Wmp(Hm)e1 + γmwm+1) .

Choosing p as the characteristic polynomial wm of Hm, it follows that wm(Hm) = O
by the Cayley-Hamilton theorem. Since Iwmf interpolates f at the eigenvalues of Hm,
[Iwm] f(Hm) = f(Hm) by (4.9), and (4.13) is proved.

�

Krylov approximation after Arnoldi restart

Consider two subsequent restarts of the Arnoldi process. We turn to the question, how
to compute an approximation of f(A)b after a restart.

Starting with the given matrix A ∈ Cn×n and the vector b ∈ Cn, we compute the first
Arnoldi decomposition of Km(A, b) after m iterations,

AV (1)
m = V (1)

m H(1)
m + η

(1)
m+1,mv

(1)
m+1e

T
m, v

(1)
1 = b/ ∥b∥ . (4.17)

Using the last vector v
(1)
m+1 from the first Arnoldi decomposition (4.17), we compute the

Arnoldi decomposition of the next Krylov subspace Km(A,v
(1)
m+1),

AV (2)
m = V (2)

m H(2)
m + η

(2)
m+1,mv

(2)
m+1e

T
m, v

(2)
1 = v

(1)
m+1. (4.18)

Then the columns of W2m =
�
V (1)
m , V (2)

m

�
form a basis of K2m(A, b). We can combine the

Arnoldi decompositions (4.17) and (4.18) to an Arnoldi-like decomposition

AW2m = W2mH2m + η
(2)
m+1,mv

(2)
m+1e

T
2m, (4.19)

where the Hessenberg matrix H2m is of the form

H2m =

"
H(1)

m O

η
(1)
m+1,me1e

T
m H(2)

m

#
.

Remark 4.1.5 We restarted the Arnoldi process with v
(1)
m+1, which is a natural choice.

However, we could restart it with any vector of the form

bvm+1 = V (1)
m y + ym+1v

(1)
m+1 ∈ Km+1(A, b) \ Km(A, b),

where y = [y1, y2, . . . , ym]
T ∈ Cm is a coefficient vector. In this case, H(1)

m is replaced by its

rank-one modification H(1)
m − (η

(1)
m+1,m/ym+1)ye

T
m, and η

(1)
m+1,m is replaced by η

(1)
m+1,m/ym+1,

see [15], pp. 2488.

40

Now, the goal is to compute the approximation of f(A)b without using V (1)
m . The former

is defined as

f2m = [Iw2mf] (A)b = βW2m [Iw2mf] (H2m)e1 = βW2mf(H2m)e1, (4.20)

where w2m is the nodal polynomial with zeros Λ(H(1)
m) ∪ Λ(H(2)

m), including their multi-
plicity, see (4.10). Function f(H2m) is of the form

f(H2m) =

�
f(H(1)

m) O
X2,1 f(H(2)

m)

�
, X2,1 ∈ Cm×m, (4.21)

and thus (4.20) becomes

f2m = βV (1)
m f(H(1)

m)e1 + βV (2)
m X2,1e1.

From the commutativity of a matrix and its matrix function, H2mf(H2m) = f(H2m)H2m,
we obtain a Sylvester equation

H(2)
m X2,1 −X2,1H

(1)
m = η

(1)
m+1,m

�
f(H(2)

m)e1e
T
m − e1e

T
mf(H

(1)
m)

�
with an unknown X2,1. This problem is well conditioned only if the spectra of H(1)

m and
H(2)

m are well separated, see [22], pp. 292-294. Instead of that, we can derive a computable
expression by way of interpolation, see [15], pp. 2489.

Lemma 4.1.6 Consider two successive Arnoldi decompositions (4.17) and (4.18). Let
w(1)

m , w(2)
m and w2m denote the monic nodal polynomials associated with Λ(H(1)

m),Λ(H(2)
m)

and Λ(H2m) = Λ(H(1)
m)∪Λ(H(2)

m), respectively with H2m being the upper Hessenberg matrix
of the combined Arnoldi-like decomposition (4.19). Then

[Iw2mf] (H2m)e1 =

24 h
I
w

(1)
m
f
i
(H(1)

m)e1

γ(1)m

h
I
w

(2)
m
(∆

w
(1)
m
f)
i
(H(2)

m)e1

35 , (4.22)

where γ(1)m =
Qm

j=1 η
(1)
j+1,j.

Proof. Due to the block triangular structure of H2m as (4.21)

[Iw2mf]

 "
H(1)

m O

η
(1)
m+1,m H(2)

m

#!
=

�
[Iw2mf] (H

(1)
m) O

X2,1 [Iw2mf] (H
(2)
m)

�
. (4.23)

First, we prove the polynomial identity

[Iw2mf] = I
w

(1)
2m
f + I

w
(2)
2m

�
∆

w
(1)
m
f
�
w(1)

m , (4.24)

by showing that polynomials on a both sides of (4.24) have the same degree 2m − 1
and interpolate f in the Hermite sense at the nodes Λ(H(1)

m) ∪ Λ(H(2)
m). For the nodes

ϑ ∈ Λ(H(1)
m), we have w(1)

m (ϑ) = 0, and thereforeh
I
w

(1)
m
f
i
(ϑ) +

h
I
w

(2)
m

�
∆

w
(1)
m
f
�i

(ϑ)w(1)
m (ϑ) =

h
I
w

(1)
m
f
i
(ϑ) = f(ϑ) = [Iw2mf] (ϑ).

41

For the nodes ϑ ∈ Λ(H(2)
m), we haveh

I
w

(1)
m
f
i
(ϑ) +

h
I
w

(2)
m

�
∆

w
(1)
m
f
�i

(ϑ)w(1)
m (ϑ) =

h
I
w

(1)
m
f
i
(ϑ) +

h
∆

w
(1)
m
f
i
(ϑ)w(1)

m (ϑ)

= f(ϑ) = [Iw2mf] (ϑ),

with the second equality following from the definition (1.7). Thus (4.24) is proved.
Inserting the matrix H(1)

m into the polynomials on both sides of (4.24), noting that
w(1)

m (H(1)
m) = O, we obtain the first block of (4.23).

To verify the second block of the vector (4.22), the identity (4.24) will be written as

[Iw2mf] (H2m) =M (1) +M (2)M (3),

where the matrices

M (1) :=
h
I
w

(1)
m
f
i
(H2m), M (2) :=

�
I
w

(2)
2m
(∆

w
(1)
m
f)
�
(H2m), M (3) := w(1)

m (H2m)

have a block lower triangular structure

M (i) =

"
M

(i)
1,1 O

M
(i)
2,1 M

(i)
2,2

#
, i = 1, 2, 3.

In addititon M
(3)
1,1 = w(1)

m (H(1)
m) = O. Using this notation, the second block of (4.22) is

given by
X2,1e1 =M

(1)
2,1e1 +M

(2)
2,2M

(3)
2,1e1. (4.25)

For the first term on the right of (4.25), we have M
(1)
2,1e1 = 0 because, as the (2,1)-block

of M (1) =
h
I
w

(2)
m
f
i
(H2m), a polynomial of degree m − 1 in the Hessenberg matrix H2m,

M
(1)
2,1 has a zero first column. Next, again by the block lower triangular structure of

H2m, it holds M
(2)
2,2 =

�
I
w

(2)
2m
(∆

w
(1)
m
f)
�
(H(2)

m). Finally, we note that M
(3)
2,1e1 = γ(1)m e1. This

follows in a similar way as the evaluation of M
(1)
2,1e1, but there M (3) = w(1)

m (H2m) is a
polynomial of degree m in the 2m × 2m upper Hessenberg matrix H2m. Again by the
sparsity structure of powers of Hessenberg matrices, the first column ofM

(3)
2,1 is a multiple

of e1. Comparing coefficients reveals this multiple to be γ(1)m . Inserting these quantities
in (4.25) establishes the second block of identity (4.22), and the proof is complete.

�

Thanks to Lemma 4.1.6, we can find an expression for X2,1e1, i.e., comparing (4.20) and
(4.22) reveals that

X2,1e1 = γ(1)m

h
∆

w
(1)
m
f
i
(H(2)

m)e1.

Then the approximation (4.20) based on the Arnoldi-like decomposition (4.5) can be
written as

f2m = βV (1)
m f(H(1)

m)e1 + βγ(1)m V (2)
m

h
∆

w
(1)
m
f
i
(H(2)

m)e1. (4.26)

Thus, approximations (4.26) for the restarted Krylov subspace method are computed
subsequently in the form

f (1) = βV (1)
m f(H(1)

m)e1

42

f (2) = f (1) + βγ(1)m V (2)
m

h
∆

w
(1)
m
f
i
(H(2)

m)e1,

and after k steps
f (k) = f (k−1) + γ(k−1)

m V (k)
m f (k−1)(H(k)

m)e1,

where γ(k)m = γ(k−1)
m

Qm
j=1 η

(k)
j+1,j, γ

(0)
m = β, f (k) = ∆(k)

wm
f (k−1) and f (0) = f . We summarize

this into the following algorithm:

Algorithm 3

Given A, b, f

1. β = ∥b∥ , f (0) = f,f (0) = 0, γ(0) = 1,v
(0)
m+1 = b/β

2. for i = 1, 2, . . . , k

3. Compute the decomposition AV (i)
m = V (i)

m H(i)
m + η

(i)
m+1,mv

(i)
m+1e

T
m of Km(A,v

(i−1)
m+1).

4. Update the approximation f (i) = f (i−1) + γ(i−1)
m V (i)

m f (i−1)(H(i)
m)e1.

5. γ(i)m = γ(i−1)
m

Qm
j=1 η

(i)
j+1,j

6. f (i) = ∆
w

(i)
m
f (i−1), where w(i)

m is the characteristic polynomial of H(i)
m .

7. enddo

This algorithm seems to be very attractive from a computational point of view, but it
can be affected by several stability problems, caused by the difficulty of numerical com-
puting of interpolation polynomials of high degree. Therefore the following less efficient
variant, which is free from numerical problems, was derived in [15], pp. 2491-2492.

After k−1 restarts of the Arnoldi algorithm, we can collect the Arnoldi decompositions
into the (k − 1)-fold Arnoldi-like decomposition

AW(k−1)m =W(k−1)mH(k−1)m + η
(k−1)
m+1,mv

(k−1)
m+1 eT

(k−1)m,

where W(k−1)m =
�
V (1)
m V (2)

m , . . . , V (k−1)
m

�
. Combining this with the Arnoldi decomposition

AV (k)
m = V (k)

m H(k)
m + η

(k)
m+1,mv

(k)
m+1e

T
m

of the following Krylov space Km(A,v
(k−1)
m+1), we obtain the following Arnoldi-like decom-

position
AWkm = WkmHkm + η

(k)
m+1,mv

(k)
m+1,me

T
km

with Wkm =
�
W(k−1)m, V

(k)
m

�
and

Hkm =

"
H(k−1)m O

η
(k−1)
m+1,me1e

T
(k−1)m H(k)

m

#
.

Than the required approximation is

f (k) = βWkmf(Hkm)e1 = f (k−1) + βV (k)
m [f(Hkm)e1](k−1)m+1:km , (4.27)

giving the following algorithm:

43

Algorithm 4

Given A, b, f

1. β = ∥b∥ ,f (0) = 0,v
(0)
m+1 = b/β

2. for i = 1, 2, . . . , k

3. Compute the decomposition AV (i)
m = V (i)

m H(i)
m + η

(i)
m+1,mv

(i)
m+1e

T
m of Km(A,v

(i−1)
m+1).

4. if i = 1 then
5. Him = H(1)

m

6. else

7. Him =

"
H(i−1)m O

η
(i−1)
m+1,me1e

T
(i−1)m H(i)

m

#
8. endif
9. enddo
10. Update the approximation f (i) = f (i−1) + βV (i)

m [f(Him)e1](i−1)m+1:im.

This allows us to discard the basis vectors of previous cycles, but, on the other hand,
it requires the evaluation of f for a matrix of the size km in the k-th cycle. This can
become a substantial computational problem as k gets large. Moreover, we need just
the first m entries of the first column of f(Hkm), but we compute the whole matrix. An
alternative approach, which promises less work per cycle is to use commutativity of a
function and its matrix function, is described in [2], pp. 5-6. By comparing the blocks in
the identity

f(Hkm)Hkm = Hkmf(Hkm),

we obtain a system of Sylvester equations

Xk,k−jH
(k−j)
m −H(k)

m Xk,k−j = η
(k−1)
m+1,me1e

T
mXk−1,k−j −Xk,k−j+1η

(k−j)
m+1,me1e

T
m,

for j = 1, 2, . . . , k − 1, where

Hkm =

2666664
H(1)

m

η
(1)
m+1,me1e

T
m H(2)

m
.

η
(k−1)
m+1,me1e

T
m H(k)

m

3777775 ∈ Ckm×km,

f(Hkm) =

266664
X1,1

X2,1 X2,2
...

...
. . .

Xk,1 Xk,2 Xk,k

377775 ∈ Ckm×km.

The matrices H(k−j)
m , H(k)

m are upper Hessenberg and thus the Sylvester equations are
easy to solve. We still, however, have to store the whole matrix Hkm, i.e. the matrices
H1, . . . , Hk and the elements η

(1)
m+1,m, . . . , η

(k)
m+1,m. Moreover, the Sylvester equation tends

to be severely ill-conditioned since Hj and Hj−k represent compressions of the same ma-
trix A and thus their spectra are by no means well separated, see [2], pp. 6.

44

Error of the restarted Krylov subspace approximation

Now, we study the error of the restarted Krylov subspace approximation (4.27), using
an extension of an idea described in [46], pp. 223-224 and [43], pp. 95-119. Given fm
complex nodes eϑ1, eϑ2, · · · , eϑem such that f(eϑj) is defined for each j, we define the sequence
of associated nodal polynomials

p0(z) := 1, pj(z) := (z − eϑ1)(z − eϑ2) . . . (z − eϑj), j = 1, 2, . . . ,fm.
We denote the associated divided differences of f by

Φ0(z) := f(z), Φj(z) :=
�
∆wj

f
�
(z).

From the interpolation identity (see (4.24))

Iwj+1
f = Iwj

f + wj∆wj
f, j = 0, 1, . . . ,fm− 1,

we see that these obey the recursion

Φj(z) =
Φj−1(z)− Φj−1(eϑj)

z − eϑj

, j = 1, 2, . . . ,fm.
For 0 ≤ ℓ ≤ fm and 0 ≤ j ≤ fm− ℓ, we define by

∆j
ℓf :=

1

2πi

Z
Γ

f(t)

(t− eϑℓ) · · · (t− eϑℓ+j)
dt

the jth order divided difference with respect to the nodes eϑℓ, eϑℓ+1, . . . , eϑℓ+j. Let
us now consider the matrixÝWem :=

h
p0(A)v

(k)
m+1, p1(A)v

(k)
m+1, . . . , pem−1(A)v

(k)
m+1

i
∈ Cn×em (4.28)

and the bidiagonal matrix

ÜBem =

2666664
eϑ1

1 eϑ2

.

1 eϑem

3777775 ∈ Cem×em,
for which

AÝWem = ÝWem ÜBem +
h
0, . . . , 0, pem(A)v(k)

m+1

i
. (4.29)

Extending (4.5) by (4.29), we obtain the Arnoldi-like decomposition

A
h
Wkm,ÝWemi = h

Wkm,ÝWemi fHkm+em + pem(A)v(k)
m+1e

T
km+em,

where fHkm+em =

"
Hkm O

η
(k−1)
m+1,me1e

T
km

ÜBem
#
∈ C(km+em)×(km+em).

45

If we approximate f(A)b ≈ Üfk := [WkmWem] f(fHkm+em)e1, then the associated error may
by represented as

f(A)b− Üfk = ef(A)pem(A)v(k)
m+1, (4.30)

where ef := eγkm+em∆ewf, Üw ∈ Pkm+em is the characteristic polynomial of fHkm+em, eγkm+em
is the product of the subdiagonal entries of fHkm+em.
Lemma 4.1.7 In terms of the notation introduced above,

f(fHkm+em) = "
f(Hkm) OÜFk,em f(ÜBem)

#
,

f(ÜBem) =
266664
f(ϑ1)
∆1

1 f(ϑ2)
...

...
. . .

∆em−1
1 ∆em−2

2 · · · f(ϑem)
377775

and
eT
j
ÜFk,em = η

(k−1)
m+1,me

T
kmΦj(Hkm).

Proof of this lemma, based on the result of Opitz, [42], can be found in [2], pp. 10-11.

From Lemma 4.1.7 and from the definition of ÝWem in (4.28), we can see that the
approximation is

Üfk = Wkmf(Hkm)e1 + η
(k−1)
m+1,m

emX
j=1

�
eT
kmΦj(Hkm)e1

�
pj−1(A)v

(k)
m+1.

This result, together with the error representation (4.30) gives us the error of the restarted
Krylov subspace approximation (4.27), see [2], pp. 11,

f(A)b−Wkmf(Hkm)e1 = η
(k−1)
m+1,m

emX
j=1

�
eTkmΦj(Hkm)e1

�
pj−1(A)v

(k)
m+1 +

ef(A)pem(A)v(k)
m+1.

(4.31)
In [43] it was shown, that the remainder term in (4.31) may be written asef(A)pem(A)v(k)

m+1 = pem(A) [Φem(A)b−WkmΦem(Hkm)e1] .

4.2 Modification of the standart and the restarted

Krylov subspace method based on rational ap-

proximation to f

When we approximate matrix functions using the standart or the restarted Krylov sub-
space method, the following modification can be used, see [2], pp. 7-9, and [19], pp. 8-10.
First, a function f is approximated by a partial fraction,

f(z) ≈ r(z) =
npq(z)

dpq(z)
= h(z) +

NX
ℓ=1

αℓ

ωℓ − z
, N ∈ N,

46

where npq(z) is a polynomial of degree p and dpq(z) is a polynomial of degree q and thus
h(z) is a polynomial of degree p− q for p ≥ q and h ≡ 0 for p < q. Then

f(A)b ≈ r(A)b = h(A)b+
NX
ℓ=1

αℓ(ωℓI − A)−1b

= βWkmh(Hkm)e1 + βWkm

NX
ℓ=1

αℓ(ωℓI −Hkm)
−1e1.

That means, that for the restarted Krylov subspace method and also for the standart
Krylov subspace method (set k = 1 in the following derivations), we need to find

r(Hkm)e1 := h(Hkm)e1 +
NX
ℓ=1

αℓ(ωℓI −Hkm)
−1e1. (4.32)

Denote br0 = h(Hkm)e1 and brℓ = (ωℓI −Hkm)
−1e1. Then (4.32) becomes

r(Hkm)e1 = br0 + NX
ℓ=1

αℓbrℓ.
In case that h is a polynomial of a low degree, evaluation of br0 is straightforward. E.g.,
for h(z) = a1z + a0 we have

br0 = h(Hkm)e1 =
h
(a1H

(1)
m + a0I)e1, a2η

(1)
m+1,me1e

T
me1, 0, . . . , 0

iT
.

Evaluating brℓ is done via solving the linear system of equations

(ωℓI −Hkm)brℓ = e1.

Due to the sparsity pattern of the right hand side e1 and the block lower triangular form
of Hkm, this can be computed recursively. Letbrℓ = �

rT
ℓ,1, r

T
ℓ,2, . . . , r

T
ℓ,k

�T
be partioned comformingly with Hkm. Then the reccurence is

(ωℓI −H1)rℓ,1 = e1, (ωℓI −Hj)rℓ,j = η
(j−1)
m+1,me1e

T
mrℓ,j−1, j = 2, . . . , k

Moreover, for evaluation of (4.27) only the last block of r(Hkm)e1 is required, which
can be obtained as

[O, . . . , O, I] r(Hkm)e1 = r0,k +
NX
ℓ=1

αℓrℓ,k.

Note that the rational approximation to f is usually real for real arguments, but its
poles ωℓ and αℓ appear in complex conjugate pairs, ωℓ+1 = ωℓ and αℓ+1 = αℓ. Since all
other quantities in the equations (ωℓI−cHk)brℓ = e1 are real, we have brℓ+1 = brℓ and there-

fore rℓ+1,j = rℓ,j. Thus αℓrℓ,k + αℓ+1rℓ+1,k = 2Re(αℓrℓ,k) = 2
h
Re(αℓ)r

(R)
ℓ,k − Im(αℓ)r

(I)
ℓ,k

i
.

Setting rℓ,j = r
(R)
ℓ,j + ir

(I)
ℓ,j and ωℓ = ω

(R)
ℓ + iω

(I)
ℓ , straightforward computation shows that�

|ωℓ|2 I − 2ω
(R)
ℓ H(1)

m +H(1)2

m

�
r
(R)
ℓ,1 =

�
ω
(R)
ℓ I −H(1)

m

�
e1

r
(I)
ℓ,1 = 1

ω
(I)
ℓ

�h
ω
(R)
ℓ I −H(1)

m

i
r
(R)
ℓ,1 − e1

�
.

47

For j = 2, 3, . . . , k, we have

�
|ωℓ|2 I − 2ω

(R)
ℓ H(j)

m +H(j)2

m

�
r
(R)
ℓ,j = ω

(I)
ℓ η

(j−1)
m+1,me1e

T
mr

(I)
ℓ,j−1 +

�
ω
(R)
ℓ I −H(j)

m

�
η
(j−1)
m+1,me1e

T
mr

(R)
ℓ,j−1

r
(I)
ℓ,j = 1

ω
(I)
ℓ

�h
ω
(R)
ℓ I −H(j)

m

i
r
(R)
ℓ,j − η

(j−1)
m+1,me1e

T
mr

(R)
ℓ,j−1

�
which avoids complex arithmetic.

Now we can give the algorithm for approximating f(A)b using rational approximation
of f , according to [2], pp. 8:

Algorithm 5

Given A, b, f , coefficients and poles (αℓ, ωℓ) of a rational function r ≈ f

1. β = ∥b∥ ,f (0) = 0,v
(0)
m+1 = b/β

2. for i = 1, 2, . . . , k do

3. Compute the decomposition AV (i)
m = V (i)

m H(i)
m + η

(i)
m+1,mv

(i)
m+1e

T
m of Km(A,v

(i−1)
m+1).

4. if i = 1 then
5. for ℓ = 1, 2, . . . , N do
6. Solve (ωℓI −H1)rℓ,1 = e1.
7. enddo
8. else
9. for ℓ = 1, 2, . . . , N do

10. Solve (ωℓI −Hi)rℓ,i = η
(i−1)
m+1,m(e

T
mrℓ,i−1)e1.

11. enddo
12. hi =

PN
ℓ=1 αℓrℓ,i

13. Update approximation f (i) = f (i−1) + V (i)
m hi.

14. enddo

4.3 Generalisation of the steepest descent method

for matrix functions

In the work of M. Afanasjew, M. Eiermann, O. G. Ernst and S. Güttel [1] a special case
of the restarted Krylov subspace method is considered, where the restart length is set to
one. In that special case, the algorithm of the restarted method after k restarts gives a
decomposition

AWk =Wk+1Bk+1,k = WkBk + σk+1vk+1e
T
k , (4.33)

where

Bk+1,k =

266666664
ρ1
σ2 ρ2

σ3
. . .
. . . ρk

σk+1

377777775 ∈ C(k+1)×k,

48

Bk = [Ik0]Bk+1,k ∈ Ck×k and Wk = [v1,v2, . . . ,vk] ∈ Cn×k. Resulting approximation of
f(A)b is then defined as

f (k) := σ1Wkf(Bk)e1. (4.34)

The algorithm of the restarted Krylov subspace method in this special case, where the
restart length m is set to one, is:

Algorithm 6

Given b, A, set σ1 := ∥b∥ , v1 := b/σ1.
1 for i = 1, 2, . . . , k do
2. w = Avi

3. ρi = vH
i w

4. w = w − ρivi

5. σi+1 = ∥w∥
6. vi+1 = w/σi+1

7. enddo

Approximants f (k) can be explicitly represented, see [1], pp. 209, as

f (k) =
kX

r=1

�
rY

j=1

σj

��
∆r−1

1 f
�
vr = f (k−1) +

�
kY

j=1

σj

��
∆k−1

1 f
�
vk.

The following theorem, see [1], pp. 209-210, gives a convergence result for fk, connection
to a certain interpolation processes is given in [11], pp. 81-83.

Theorem 4.3.1 Let W (A) :=
¦
vHAv : ∥v∥ = 1

©
denote the field of values of A and let

δ := max
ζ,η∈W (A)

|ζ − η|

be its diameter. Let f be analytic in (a neighborhood of) W (A) and let ρ > 0 be maximal
such that f can be continued analytically to

Wρ :=

¨
λ ∈ C : min

η∈W (A)
|λ− ζ| < ρ

«
.

If f is entire, we set ρ = ∞. If ρ > δ, then

lim
k→∞

f (k) = f(A)b

and the convergence is at least linear.

We note that this theorem holds also for Arnoldi approximation of arbitrary restart length
and also for its unrestarted variant. We also have superlinear convergence if f is an entire
function, see [15], pp. 2495-2496.

We will reffer to the restarted Krylov subspace method with restart length one as a
steepest descent method for matrix functions. This follows from the special case
f(A) = A−1, where A is Hermitian, positive definite matrix, i.e. f is a function we need
for solving a system of linear equations Ax = b. Here, the method is equivalent to FOM

49

with restart length 1 as well as to IOM with the truncation parameter equal to 1. If we
choose f (0) = 0 as the initial approximation, then

f (k) = f (k−1) + (σ1σ2 · · ·σk)
�
∆k−1

1 f
�
vk = f (k−1) + αkrk−1,

where rk = b− Af (k) and

αk =
1

ρk
=

1

vH
k Avk

=
rH
k−1rk−1

rH
k−1Ark−1

,

which is known as the method of the steepest descent.

Asymptotic behaviour

Now we show, based on [1], pp. 210-214, that the method with restart length m = 1
yields asymptoticaly two periodical behaviour.

First we consider a special case, where the vector b (and therefore v1) is a linear
combination of two first orthonormal eigenvectors of a Hermitian matrix A ∈ Cn×n. Here

v1 =
1È

1 + |γ|2
z1 +

γÈ
1 + |γ|2

z2,

where zj, j = 1, 2, are normalized eigenvectors associated with the eigenvalues λj of A.
Then for k = 1, 2, . . . ,

v2k−1 = v1 =
1È

1 + |γ|2
z1 +

γÈ
1 + |γ|2

z2, (4.35)

v2k = v2 = − |γ|È
1 + |γ|2

z1 +
γ

|γ|
È
1 + |γ|2

z2. (4.36)

This can be easily verifed by using straightforward calculation, see [6], pp. 210. Under
the assumptions above, the entries of the bidiagonal matrices Bk are given by

ρ2k−1 = θλ1 + (1− θ)λ2,
ρ2k = (1− θ)λ1 + θλ2,

σk+1 =
È
θ(1− θ)(λ2 − λ1),

with θ := 1/(1 + |γ|2), see [1], pp. 211.
Now, we turn to a general case. Assume, that A has only simple eigenvalues,

λmin = λ1 < λ2 < . . . < λn−1 < λn = λmax, n ≥ 2.

By z1, . . . , zn we denote the corresponding normalized eigenvectors. Assume, that b (and
therefore v1) has nonzero components in all eigenvectors, zH

j b ̸= 0, for j = 1, 2 . . . , n.
Suppose, that A is diagonal (otherwise replace A by QHAQ and b by QHb) and b is real
(otherwise replace b by QHb, where Q = diag(b1/ |b1| , . . . , bn/ |bn|)). In summary, we can

50

assume, that A is Hermitian matrix with pairwise distinct diagonal entries and that b is
a real vector with nonzeros entries. Now, we introduce theoretical background, necessary
to formulate the key theorem, which describes the asymptotic behaviour of the diagonal
and subdiagonal elements of the matrix Bk.

The sequence {σk+1}k∈N is bounded,

0 ≤ σk+1 = ∥(A− ρkI)vk∥ ≤ ∥A− ρkI∥ ≤ ∥A∥+ |ρk| ≤ 2 ∥A∥ ,

and nondecreasing,

σk+1 = ∥(A− ρkI)vk∥
= ∥vk+1∥ ∥(A− ρkI)vk∥ since ∥vk+1∥ = 1

=
���vH

k+1(A− ρkI)vk

��� since σk+1vk+1 = (A− ρkI)vk

=
���vH

k+1(A− ρkI)
Hvk

��� since A is Hermitian

=
���vH

k+1(A− ρk+1I + (ρk+1 − ρk)I)
Hvk

���
=

���vH
k+1(A− ρk+1I)

Hvk + (ρk+1 − ρk)v
H
k+1vk

���
=

���vH
k+1(A− ρk+1I)

Hvk

��� since vk⊥vk+1

≤ ∥(A− ρk+1I)vk+1∥ ∥vk∥ by the Cauchy-Schwarz inequality
= ∥(A− ρk+1I)vk+1∥
= σk+2.

Consequently, the sequence {σk+1}k∈N is also convergent. Moreover, σk+1 = σk+2 if and
only if the vectors vk and (A − ρk+1I)vk+1 = σk+2vk+2 are linearly dependent, i.e. vk

and vk+2 are linearly dependent. The following lemmas, see [1], pp. 212-214, describe
the behaviour of {vk}k∈N.

Lemma 4.3.2 Each accumulation point of the vector sequence {vk}k∈N is contained in
the linear hull of the eigenvectors of A associated with its extremal eigenvalues.

Proof can be found in [1] pp. 212-213.

Lemma 4.3.3 For the vector sequence {vk}k∈N there exist nonzero real numbers α and
β, α2 + β2 = 1, which depend on the spectrum of A and on b, such that

lim
k→∞

v2k−1 = αz1 + βzn and lim
k→∞

v2k = sign(αβ) [−βz1 + αzn] .

Proof. We will count the candidates for accumulation points of the sequence {vk}, denote
them by u. By Lemma 4.3.2, u ∈ span{z1,zn}. Since ∥u∥ = 1, every accumulation point
can be written as u = αz1 + βzn with α2 + β2 = 1. For every vector of this form,Au− (uHAu)u

2 = α2β2(λn − λ1)
2 = α2(1− α2)(λn − λ1)

2.

Each accumulation point is a limit of a subsequence {vkν+1}, for which the associated

sequence {σkν+1} converges. Denote its limit by σ∗. Then
Au− (uHAu)u

 = σ∗ and

α2(1− α2) =
�

σ∗

λn − λ1

�2

. (4.37)

51

This equation has at most four solutions α, which shows that there are at most eight
points of accumulation.

Assume now that vk is sufficiently close to an accumulation point
u = u1 = α z1 + βzn. Since all operations in Algorithm 6 are continuous, vk+1 for
k sufficiently large, is arbitrarily close to

u2 =
A− (uH

1 Au1)u1

∥A− (uH
1 Au1)u1∥

= sign(αβ) [−βz1 + αzn]

(which is also an accumulation point of {vk} different from u1 since αβ ̸= 0). Moreover,
vk+2 must be then close to

u3 =
A− (uH

2 Au2)u2

∥A− (uH
2 Au2)u2∥

= αz1 + βzn = u1.

Since we already know there are only finitely many accumulation points of {vk}, we
conclude that the sequence {vk} must asymptotically alternate between u1 and u2.

�

We conclude this section by the following theorem, see [1], pp. 211.

Theorem 4.3.4 If A is Hermitian with extremal eigenvalues λmin and λmax and if the
vector b has nonzero components in the associated eigenvectors, then there exists a real
number θ ∈ (0, 1), which depends on the spectrum of A and b, such that the entries ρk
and σk+1, k = 1, 2, . . . , of the bidiagonal matrices Bk in (4.33) satisfy

lim
k→∞

ρ2k−1 = θλmin + (1− θ)λmax =: ρ∗1,

lim
k→∞

ρ2k = (1− θ)λmin + θλmax =: ρ∗2,

lim
k→∞

σk+1 =
È
θ(1− θ) (λmax − λmin) =: σ∗,

(4.38)

where θ ∈ (0, 1).

Proof. By elementary calculations it folows, that

lim
k→∞

ρ2k−1 = lim
k→∞

vH
2k−1Av2k−1 = uH

1 Au1 = (αz1 + βzn)
HA(αz1 + βzn)

= α2λmin + β2λmax = θλmin + (1− θ)λmax,

where θ := α2 and in similar way

lim
k→∞

ρ2k = lim
k→∞

vH
2kAv2k = uH

2 Au2 = sign(αβ)(−βz1 + αzn)
HA sign(αβ)(−βz1 + αzn)

= β2λmin + α2λmax = (1− θ)λmin + θλmax.

The result for lim
k→∞

σk+1 follows from (4.37).

�

52

We can conclude, that asymptotically the restart Krylov subspace method with restart
length m = 1 is equivalent to an interpolation f in just two points ρ∗1 and ρ∗2 with in-
creasing multiplicity.

Remark 4.3.5 Based on (4.38), we know, that ρ∗1 and ρ
∗
2 lie in an open interval (λmin, λmax)

symmetricaly according to 1
2
(λmin + λmax). If

1
2
(λmin + λmax) is an eigenvalue of the ma-

trix A, then

|ρ∗1 − ρ∗2| ≤
√
2

2
(λmin − λmax) ,

see [1], pp. 219. There is no more information about the general case. More precise
information can be available for a special case. Consider, that Λ(A) is symmetric with
respect to 1

2
(λmin + λmax). Then����λj − 1

2
(λmin + λmax)

���� = ����λn+1−j −
1

2
(λmin + λmax)

���� , j = 1, 2, . . . ,
�n
2

�
.

Moreover, if the coefficients of v1 =
Pn

j=1 cj,1zj are symmetric as well, then it is easy to
see, that ρk =

1
2
(λmin + λmax) for every k and thus ρ∗1 = ρ∗2 =

1
2
(λmin + λmax).

4.4 Deflated restarting for matrix functions

Restarting the standart Krylov subspace method causes slowing down of convergence.
This section describes a scheme, derived in [16], which is based on further generalization
of decompositions of Arnoldi type. This modification of the Krylov subspace method
- deflated restarting - can accelerate the convergence after a restart. Consider a more
general decomposition than Arnoldi or Arnoldi-like,

AWm+ℓ = Wm+ℓKm+ℓ +wkT
m+ℓ, (4.39)

where Km+ℓ ∈ C(m+ℓ)×(m+ℓ),Wm+ℓ ∈ Cn×(m+ℓ) with range(Wm+ℓ) = Km(A, b),
w ∈ Km+1(A, b) \ Km(A, b) and km+ℓ ∈ Cm+ℓ. The columns of Wm+ℓ are linearly
dependent if and only if ℓ > 0. We will refer to decomposition (4.39) as a Krylov-
like decomposition of A with respect to Km(A, b). Under some additional assump-
tions, Krylov-like decompositon simplifies into various special cases of decompositions,
i.e. (4.39) becomes:

• a Krylov decomposition if ℓ = 0 and thus the columns of Wm are linearly indepen-
dent, see [51],

• an Arnoldi-like decomposition (4.5) if ℓ = 0 and the columns of Wm form an as-
cending basis of Km(A, b), in which case Km is an unreduced upper Hessenberg
matrix, see [15],

• an Arnoldi decomposition (4.1) if ℓ = 0 and the columns of Wm are orthonormal
and form an ascending basis of Km(A, b), in which case Km is also unreduced upper
Hessenberg and which constitutes the most familiar situation, see, e.g. [46].

53

Let f be a function such that f(Km+ℓ) is defined. We then define the Krylov-like ap-
proximation f(A)b associated with (4.39) as

fm+ℓ := Wm+ℓf(Km+ℓ)bb,
where bb ∈ Cm+ℓ is any vector such that Wm+ℓ

bb = b.

Next we give several lemmas to show some properties of Krylov-like approximations,
see [16], pp. 4-6.

Lemma 4.4.1 For any polynomial q(z) = amz
m + . . .+ a0 ∈ Pm,

q(A)b = Wm+ℓq(Km+ℓ)b̂+ am(k
T
m+ℓK

m−1
m+ℓ b̂)w, (4.40)

using the notation of (4.39). In particular, for q ∈ Pm−1 this simplifies to

q(A)b = Wm+ℓq(Km+ℓ)b̂.

Proof. Due to linearity of matrix polynomials it is sufficient to verify (4.40) for the
monomials q(z) = zj, j = 0, . . . ,m. This can be proved using mathematical induction.
For j = 0, we have

A0b = Wm+ℓK
0
m+ℓb̂ = Wm+ℓb̂ = b.

For j = 1, 2, . . . ,m, it holds that

Ajb = A(Aj−1b) = A(Wm+ℓK
j−1
m+ℓb̂)

(4.39)
= Wm+ℓK

j
m+ℓb̂+ (kT

m+ℓK
j−1
m+ℓb̂)w.

The vector Ajb is contained in Kj+1(A, b)\Kj(A, b). Since w ∈ Km+1(A, b)\Km(A, b),

the rightmost vector must be kT
m+ℓK

j−1
m+ℓb̂ = 0 for 1 ≤ j ≤ m− 1. For j = m, we obtain

the identity (4.40).

�

The vectorw lies in Km+1(A, b)\Km(A, b) and can be therefore expressed asw = pm(A)b
with a unique polynomial pm of exact degree m. This gives the following result, see [16],
pp. 5.

Lemma 4.4.2 For the polynomial pm defined by w = pm(A)b,

Wm+ℓpm(Km+ℓ)b̂ = 0. (4.41)

More generally, for any polynomial q

Wm+ℓq(Km+ℓ)pm(Km+ℓ)b̂ = 0. (4.42)

Proof. Writing pm = amz
m + . . .+ a0 and substituing w = pm(A)b in (4.40) yields

pm(A)b =Wm+ℓpm(Km+ℓ)b̂+ am(k
T
m+ℓK

m−1
m+ℓ b̂)pm(A)b,

54

or equivalently,

(1− am(k
T
m+ℓK

m−1
m+ℓ b̂))pm(A)b =Wm+ℓpm(Km+ℓ)b̂. (4.43)

The vector w = pm(A)b is an element of Km+1(A, b) \Km(A, b) and the right-hand side
of (4.43) is an element of Km(A, b). Thus, the equality in (4.43) holds only if both sides
of (4.43) vanish, i.e., if Wm+ℓpm(Km+ℓ)b̂ = 0.

Further, we prove (4.42) by mathematical induction. From linearity of matrix poly-
nomials it is sufficient to prove it for monomials Kj

m+ℓ, j = 1, . . . ,m. For j = 0 we have

(4.41). For j ≥ 1, we assume that Wm+ℓK
j−1
m+ℓpm(Km+ℓ)b̂ = 0. Then, using (4.39),

Wm+ℓK
j
m+ℓpm(Km+ℓ)b̂ = (Wm+ℓKm+ℓ)K

j−1
m+ℓpm(Km+ℓ)b̂

= (AWm+ℓ −wkT
m+ℓ)K

j−1
m+ℓpm(Km+ℓ)b̂

= AWm+ℓK
j−1
m+ℓpm(Km+ℓ)b̂− (kT

m+ℓK
j−1
m+ℓpm(Km+ℓ)b̂)w

= −(kT
m+ℓK

j−1
m+ℓpm(Km+ℓ)b̂)w.

Since w ∈ Km+1(A, b) \ Km(A, b) and Wm+ℓK
j
m+ℓpm(Km+ℓ)b̂ ∈ Km(A, b) we have

Wm+ℓK
j
m+ℓpm(Km+ℓ)b̂ = 0.

�

The following lemma describes the property of the zeros of pm, see [16], pp. 6.

Lemma 4.4.3 The zeros of pm, where w = pm(A)b, are contained in the spectrum of
Km+1. More precisely, pm divides the characteristic polynomial of Km+ℓ.

Proof. The jth column of the matrixWm+ℓ can be expressed as p(j)(A)b for some polyno-
mial p(j) of degree at most m− 1. From (4.39) we can see, that these polynomials satisfy
the recurrence

z
�
p(1)(z), . . . , p(m+ℓ)(z)

�
=
�
p(1)(z), . . . , p(m+ℓ)(z)

�
Km+ℓ + pm(z)k

T
m+ℓ. (4.44)

If z0 is a zero of pm, then pm(z0)k
T
m+ℓ vanishes and z0 must be an eigenvalue of Km+ℓ. If

we differentiate (4.44), we obtain

z

"
dp(1)(z)

dz
, . . . ,

dp(m+ℓ)(z)

dz

#
+
�
p(1)(z), . . . , p(m+ℓ)(z)

�
=

=

"
dp(1)(z)

dz
, . . . ,

dp(m+ℓ)(z)

dz

#
Km+ℓ +

dpm(z)

dz
kT
m+ℓ.

If z0 is a double zero of pm, than dpm(z0)/dz = 0 and z0 is an eigenvalue ofKm+ℓ associated
with the eigenvector

�
p(1)(z0), . . . , p

(m+ℓ)(z0)
�

and the principal vector�
dp(1)(z0)/dz, . . . , dp

(m+ℓ)(z0)/dz
�
. Consequently, the eigenvalue z0 of Km+ℓ has alge-

braic multiplicity at least two. For zeros of higher order the result follows from further
differentiation.

�

Now we are ready to prove the main theorem, given in [16], pp. 6-7.

55

Theorem 4.4.4 The Krylov-like approximation to f(A)b introduced as

fm+ℓ = Wm+ℓf(Km+ℓ)bb
can be characterised as

fm+ℓ = qm−1(A)b, (4.45)

where qm−1 interpolates f in the Hermite sense at the zeros of pm, i.e. at some, but not
at all eigenvalues of Km+ℓ.

If Γ is a Jordan curve which contains the eigenvalues of A and Km+ℓ in its interior,
and f is analytic in and on Γ, then

fm+ℓ =
1

2πi

Z
Γ
f(t)xm+ℓ(t)dt, (4.46)

where xm+ℓ(t) = Wm+ℓ(tIm+ℓ − Km+ℓ)
−1bb is the Krylov-like approximation to

(tIn − A)−1b associated with (4.39).

Proof. Let r ∈ Pm+ℓ−1 be the Hermite interpolation polynomial of f at the eigenvalues of
Km+ℓ, then f(Km+ℓ) = r(Km+ℓ). Thus the Krylov-like approximation can be expressed
as fm+ℓ = Wm+ℓr(Km+ℓ)b̂, and it suffices to show that

Wm+ℓr(Km+ℓ)b̂ = qm−1(A)b.

Since, by Lemma 4.4.3, the zeros of pm are contained in the spectrum of Km+ℓ, the
polynomial qm−1 also interpolates r at the zeros pm, and therefore r − qm−1 must be
divisible by pm, i.e., r = spm + qm−1 for some polynomial s. Thus,

Wm+ℓr(Km+ℓ)b̂ = Wm+ℓs(Km+ℓ)pm(Km+ℓ)b̂+Wm+ℓqm−1(Km+ℓ)b̂.

By Lemma 4.4.2, Wm+ℓs(Km+ℓ)pm(Km+ℓ)b̂ = 0, and, by Lemma 4.4.1,
Wm+ℓqm−1(Km+ℓ)b̂ = qm−1(A)b, which gives (4.45).

The characterization (4.46) is an immediate consequence of the representation of a
matrix function as a Cauchy integral. Under the given assumptions,

f(Km+ℓ) =
1

2πi

Z
Γ
f(t)(tIm+ℓ −Km+ℓ)

−1dt.

�

As a consequence, the approximation fm+ℓ = Wm+ℓf(Km+ℓ)bb is determined by the
zeros of pm but it is independent of the specific choice of bb, as long as Wm+ℓ

bb = b.

The restarted Krylov approximation with deflation

Now we describe the Arnoldi method with deflated restarting presented in [16], pp. 7-11.
Let 0 ≤ ℓ ≤ m be given. In the first restart a standard Arnoldi decomposition of A with
respect to the subspace Km(A, b) is computed,

AV (1)
m = V (1)

m H(1)
m + η

(1)
m+1,mv

(1)
m+1e

T
m.

56

Then ℓ eigenvalues of H(1)
m are extracted using the partial Schur decomposition

H(1)
m U

(1)
m,ℓ = U

(1)
m,ℓT

(1)
ℓ ,

where T
(1)
ℓ ∈ Cℓ×ℓ is an upper triangular matrix and the columns of U

(1)
m,ℓ ∈ Cm×ℓ are

orthonormal. Putting Y
(1)
m,ℓ = V (1)

m U
(1)
m,ℓ, gives

AY
(1)
m,ℓ = Y

(1)
m,ℓT

(1)
ℓ + η

(1)
m,m+1v

(1)
m+1u

(1), (4.47)

where we denote the row vector u(1) = eT
mU

(1)
m,ℓ. We extend the factorization (4.47) by m

Arnodi steps and obtain

A
h
Y

(1)
m,ℓV

(2)
m

i
=
h
Y

(1)
m,ℓV

(2)
m

i " T
(1)
ℓ S

(1)
m,ℓ

η
(1)
m+1,me1u

(1) H(2)
m

#
+ η

(2)
m+1,mv

(2)
m+1e

T
ℓ+m,

where

G(2) :=

"
T

(1)
ℓ S

(1)
m,ℓ

η
(1)
m+1,me1u

(1) H(2)
m

#
∈ C(m+ℓ)×(m+ℓ).

The matrix
h
Y

(1)
m,ℓV

(2)
m v

(2)
m+1

i
∈ Cn×(m+ℓ−1) has orthonormal columns and

S
(1)
m,ℓ =

h
Y

(1)
m,ℓ

iH
AV (2)

m ∈ Cℓ×m is in general dense matrix. Repeating the process, for
j = 2, . . . , k we obtain in the jth cycle

A
h
Y

(j−1)
m,ℓ V (j)

m

i
=
h
Y

(j−1)
m,ℓ V (j)

m

i
G(j) + η

(j)
m+1,mv

(j)
m+1e

T
ℓ+m,

where

G(j) =

"
T

(j−1)
ℓ S

(j−1)
m,ℓ

η
(j−1)
m+1,me1u

(j−1) H(j)
m

#
∈ C(ℓ+m)×(ℓ+m).

and the matrix H(j)
m ∈ Cm×m is upper Hessenberg, T

(j−1)
ℓ ∈ Cℓ×ℓ is upper triangular,

Y
(j−1)
m,ℓ =

h
Y

(j−2)
m,ℓ V (j−1)

m

i
U

(j−1)
m,ℓ ∈ Cn×ℓ, S

(j−1)
m,ℓ =

h
Y

(j−1)
m,ℓ

iH
AV (j)

m and u(j−1) = eT
m+ℓU

(j−1)
m,ℓ .

Then ℓ eigenvalues of G(j−1) are computed using partial Schur decomposition

G(j−1)U
(j−1)
m,ℓ = U

(j−1)
m,ℓ T

(j−1)
ℓ ,

and set u(j−1) = eT
ℓ+mU

(j−1)
m,ℓ .

Putting everything together, we obtain a Krylov-like decomposition

AW (k) = W (k)K(k) + η
(k)
m+1,mv

(k)
m+1e

T
km+(k−1)ℓ, (4.48)

where W (k) =
h
V (1)
m Y

(1)
m,ℓ . . . Y

(k−1)
m,ℓ V (k)

m

i
∈ Cn×(km+(k−1)ℓ),

K(k) =

266664
G(1)

F (1) G(2)

.

F (k−1) G(k)

377775 ∈ C(km+(k−1)ℓ)×(km+(k−1)ℓ),

57

with G(1) = H(1)
m ∈ Cm×m,

F (1) = η
(1)
m+1,meℓ+1e

T
m ∈ R(ℓ+m)×m,

F (j) = η
(j)
m+1,meℓ+1e

T
ℓ+m ∈ R(ℓ+m)×(ℓ+m), j = 2, 3, . . . , k − 1.

The Krylov-like approximation associated with (4.48) is then

f (k) := βW (k)f(K(k))e1, (4.49)

where β = ∥b∥. Taking into account the block-triangular structure of K(k), we obtained
an update scheme for f (k),

f (k) = f (k−1) + β
h
Y

(k−1)
m,ℓ V (k)

m

i �
f(K(k))e1

�
(k−1)m+(k−2)ℓ+1:km+(k−1)ℓ

.

By Theorem 4.4.4 the approximation f (k) in (4.49) can be represented as qkm−1(A)b,
where qkm−1, a polynomial of degree km− 1, interpolates f in the Hermite sense at km
of the km+ (k − 1)ℓ eigenvalues of K(k).These interpolation nodes can be characterized
as described in the following theorem, for the proof, see [16], pp. 9-10.

Theorem 4.4.5 The approximation to f(A)b (4.49) can be characterised as

f (k) = qkm−1(A)b,

where qkm−1 interpolates f in the Hermite sense at the zeros of pkm. Let θ
(j)
1 , θ

(j)
2 , . . . θ

(j)
ℓ

be the eigenvalues of T
(j)
ℓ , including their multiplicities. The zeros of qkm−1 are given by

k−1[
j=1

�
Λ
�
G(j)

�
\
n
θ
(j)
1 , . . . , θ

(j)
ℓ

o�
∪ Λ

�
G(k)

�
.

If Γ is a Jordan curve which contains the eigenvalues of A and K(k) in its interior, such
that f is analytic in and on Γ, then

f (k) =
1

2πi

Z
Γ
f(t)x(k)(t)dt,

where x(k)(t) = ∥b∥ (tI−K(k))−1e1 is the approximation to the solution of (tI−A)x(t) = b
after k cycles of the restarted FOM method with restart lengthm and ℓ deflated eigenvalues
beginning with x0(t) = 0.

Reorthogonalization

In finite-precision arithmetic the orthogonality of the approximate eigenvectors Y
(k−1)
m,ℓ

can be lost. This can be overcame if Y
(k−1)
m,ℓ is reorthogonalised before the Arnoldi de-

composition is extended by the vectors V (k)
m , see [16] pp. 10. Suppose, we have computed

the decomposition in the kth cycle

AÜY (k−1)
m,ℓ = ÜY (k−1)

m,ℓ T
(k−1)
ℓ + η

(k−1)
m+1,mv

(k−1)
m+1 u(k−1),

58

where the columns of ÜY (k−1)
m,ℓ have lost orthogonality due to the rounding errors, but are

still linearly independent. We compute a QL decompositionhÜY (k−1)
m,ℓ v

(k−1)
m+1

i
= QL :=

h
Y

(k−1)
m,ℓ v

(k−1)
m+1

i " ÒL O
∗ 1

#
,

where the matrix Q ∈ Cn×(ℓ+1) has orthonormal columns. Then Y
(k−1)
m,ℓ has orthonormal

columns and ÒL ∈ Cℓ×ℓ is nonsingular lower triangular matrix. By elementary computa-
tions we obtain

AY
(k−1)
m,ℓ =

h
Y

(k−1)
m,ℓ v

(k−1)
m+1

i " ÒL O
∗ 1

"
T

(k−1)
ℓ

η
(k−1)
m+1,mu

(k−1)

ÒL−1

=: Y
(k−1)
m,ℓ T

(k−1)
ℓ,new + η

(k−1)
m+1,mv

(k−1)
m+1 u(k−1)

new .

In the restarted Krylov subspace method with deflation, only Y
(k−1)
m,ℓ and V (k)

m need to

be stored to update f (k−1). However, the method requires evaluation of f(K(k)), i.e. a
function of a matrix, which dimension grows with number of restarts.

The previous derivations can be summarized to the following algorithm, which com-
putes the Krylov-like approximation of f(A)b.

Algorithm 7

Given A, b, f
1. β = ∥b∥ ,v1 = b/β, Y (0) = []

2. Compute the decomposition AV (1)
m = V (1)

m H(1)
m + η

(1)
m+1,mv

(1)
m+1e

T
m.

3. F (1) = η
(1)
m+1,meℓ+1e

T
m ∈ R(ℓ+m)×m, f (1) = βV (1)

m f(H(1)
m)e1.

4. for i = 2, 3, . . . , k do

5. Compute partial Schur decomposition H(i−1)
m U

(i−1)
m,ℓ = U

(i−1)
m,ℓ T

(i−1)
ℓ .

6. Set Y
(i−1)
m,ℓ =

h
Y

(i−2)
m,ℓ V (i−1)

m

i
U

(i−1)
m,ℓ and reorthogonalize.

7. Compute A
h
Y

(i−1)
m,ℓ V (i)

m

i
=
h
Y

(i−1)
m,ℓ V (i)

m

i
G(i) + η

(i)
m+1,mv

(i)
m+1e

T
ℓ+m

by m further Arnoldi steps.

8. Set K(i) =

�
K(i−1) O

O · · ·OF (i−1) G(i)

�
.

9. Set F (i) = η
(i)
m+1,meℓ+1e

T
ℓ+m ∈ R(ℓ+m)×(ℓ+m).

10. Set f (i) = f (i−1) + β
h
Y

(i−1)
m,ℓ V (i)

m

i �
f(K(i))e1

�
(i−1)m+(i−2)ℓ+1:im+(i−1)ℓ

.

11. enddo

Note that it is possible to modify the algorithm using a rational approximation of a
function f , in a similar way as it was described earlier for the standart and the restarted
Krylov subspace method.

59

4.5 Extended Krylov subspace method

The last method from the family of the Krylov subspace methods we give in our summary
is the extended Krylov subspace method, first proposed in [13]. The extended Krylov
subspace methods contains information not only about A, but also about A−1, i.e.gK2m(A, b) = span

¦
b, A−1b, Ab, A−2b, A2b, . . . , Am−1b, A−mb

©
,

see the work of V. Simoncini and L. Knizherman, [31]. In [49] the following implemen-
tation of the extended Krylov subspace method was proposed. We start with the pair
{b, A−1b} and generate an orthonormal basis of the extended subspace with a block
Arnoldi-type method, by adding two vectors at the same time, one multiplied by A and
one multiplied by A−1. The described process generates an Arnoldi-like reccurence

AÜV2m = ÜV2mfH2m + v2m+2η̃2m+2,2mE
T
2m,

where ÜV2m = [v2,v4, . . . ,v2m] ∈ C2m×2m has orhonormal columns, v2j =
h
v
(1)
j ,v

(2)
j

i
,

j = 1, . . . ,m + 1, fH2m = ÜV H
2mA

ÜV2m ∈ C2m×2m, η̃2m+2,2m = vH
2m+2A

ÜV2m and ET
2m is a

matrix, that contains the last two columns of the identity matrix. The Arnoldi-like
approximation is then computed asÜf2m = βÜV2mf(fH2m)e1, (4.50)

for more details see [31], pp. 3. An algorithm for the extended Krylov subspace method
has the form

Algorithm 8

Given b, A, f

1. β = ∥b∥, set v(1)
1 = b, v

(2)
1 = Av

(1)
1

2. Set v2 = GS([v
(1)
1 v

(2)
1]), ÜV0 = [].

3. for i = 1, 2, . . . ,m do

4. ÜV2i = �ÜV2i−2,v2i

�
5. Set fH2i = ÜV H

2i A
ÜV2i.

6. Compute Üx2i = f(fH2i)e1.
7. v′

2i+2 = [Av2ie1, A
−1v2ie1]

8. Orthogonalize v′
2i+2 with respect to ÜV2i, obtain bv2i+2.

9. v2i+2 = GS(bv2i+2)
10. enddo

11. Compute approximation Üf = βÜV2mf(fH2m)e1.

Here GS denotes the Gram-Schmidt procedure to orthogonalize the columns of the given
matrix. The following proposition was given in [31], pp. 4.

Proposition 4.5.1 Let v2j =
h
v
(1)
j ,v

(2)
j

i
, j = 1, . . . ,m. With the previous notation, if

dim(ÜK2m(A, b)) = 2m, then for 1 ≤ j ≤ m

v
(1)
j = pj−1(A)b+ qj−1(A

−1)b, v
(2)
j = rj−1(A

−1)A−1b+ sj−1(A)b,

60

where deg pj−1 = deg rj−1 = j − 1 and deg qj−1 ≤ j − 1, deg sj−1 ≤ j − 1.

Proof. We will use mathematical induction to proof this proposition. Without loss of
generality suppose that ∥b∥ = 1. For m = 1, we have

v
(1)
1 = b = p0(A)b

and
v
(2)
1 = c1A

−1b+ c2A
0b = r0(A

−1)A−1b+ s0(A)b,

where r0, s0 ∈ P0 and c1, c2 ̸= 0.
We proceed with m+ 1. We have

Av(1)
m = Apm−1(A)b+ Aqm−1(A

−1)b = cAmb+
m−1X

i=−m+2

ciA
ib,

with c ̸= 0. Orthogonalization with respect to the previous vectors v
(1)
j ,v

(2)
j , j = 1, . . . ,m

gives

cAmb+
m−1X

i=−m+2

ciA
ib+

mX
i=1

�
c
(1)
i v

(1)
i + c

(2)
i v

(2)
i

�
= cAmb+

m−1X
i=−m

c̃iA
ib ̸= 0,

due to linear independence. Thus v
(1)
m+1 = pm(A)b + qm(A

−1)b, with deg pm = m.
Analogously,

A−1v(2)
m = A−1rm−1(A

−1)A−1b+ A−1sm−1(A)b = cA−m−1b+
m−2X
i=−m

ciA
ib, c ̸= 0

Orthogonalization with respect to v
(1)
j ,v

(2)
j , j = 1, . . . ,m and to v

(1)
m+1 gives

cA−m−1b+
m−1X
i=−m

ciA
ib+

mX
i=1

�
c
(1)
i pm(A)b+ c

(2)
i qm(A

−1)b
�
= cA−m−1b+

mX
i=−m

c̃iA
ib ̸= 0,

again, due to linear independence. Therefore, v
(2)
m+1 = rm(A

−1)A−1b + sm(A)b, with
deg rm = m.

�
This proposition shows, that if the algorithm stops with zero basis vector v(1)

m or v(2)
m ,

then an invariant subspace of A associated with b is found, and it contains the exact
solution of the given problem. The following lemma says that polynomials in A and A−1

are exactly represented in the extended Krylov subspaces, see [13].

Lemma 4.5.2 Matrix polynomials in A, resp. A−1 of degree k ≤ m − 1, respectively of
degree k ≤ m are exactly represented in the extended Krylov subspace gK2m. In particular,

pk(A)b = βÜV2mpk(fH2m)e1 ∈ gK2m(A, b),

k ≤ m− 1, and
pk(A

−1)b = βÜV2mpk(fH−1
2m)e1 ∈ gK2m(A, b),

k ≤ m.

Proof of this result for symmetric case can be found in [13], generalization to the non-
symmetric case is straightforward.

61

Convergence theory

We conclude this section by giving an error estimation for the approximation (4.50)
computed using the extended Krylov subspace method, see [31], pp. 8-9.

We define W1 := W (A) and W2 = (W (A))−1 := {z−1|z ∈ W1}, and we asssume, that
both Wj, j = 1, 2, are symmetric with respect to the real axis R and strictly lie in the
right half-plane. Let D denote the closed unit circle, and let ψj : C̄ \ D → C̄ \ Wj,
ϕj := ψ−1

j be the direct and inverse Riemann mappings for Wj, j = 1, 2. Moreover, let
Fj,k, k ∈ N denote the corresponding Faber polynomials of degree k, whose definition can
be found, e.g. in [40], pp. 3. The kth (ordinary) Faber polynomial is defined as the
polynomial part of the Laurent expansion at ∞ of [ϕj(z)]

k,

[ϕj(z)]
k = zk +

k−1X
i=−∞

βk,i,jz
i, k ≥ 0,

i.e.

Fj,k := zk +
k−1X
i=0

βk,i,jz
i, k ≥ 0,

j = 1, 2. Consider the class of functions that can be written as

f(z) =
Z 0

−∞

dµ(ς)

z − ς
, z ∈ C \ (−∞, 0], (4.51)

where µ is a measure such that the integral converges absolutely. For a > 0, we split this
integral into

f(z) = f1(z) + f2(z), f1(z) =
Z −a

−∞

dµ(ς)

z − ς
, f2(z) =

Z 0

−a

dµ(ς)

z − ς
. (4.52)

First, we introduce an auxiliary lemma.

Lemma 4.5.3 Let f be defined by (4.51) and satisfy (4.52) for some a > 0. With the
notation above, for any m ∈ N, m > 1,�����f1(z)− m−1X

k=0

γ1,kF1,k(z)

����� ≤ c1 |ϕ1(−a)|−m , z ∈ W1,�����f2(z)− mX
k=0

γ2,kF2,k(z)

����� ≤ c2
���ϕ2(−a−1)

���−m
, z ∈ W1,

where c1, c2 are positive real constants independent of m,n, and γ1,k, γ2,k are some real
numbers.

For a proof, see [31], pp. 7-8. The following theorem gives the required error estimation,
see [13], pp. 9.

62

Theorem 4.5.4 Let A ∈ Rn×n be nonsingular with W1 ⊂ C+ and let f(z) be (4.51).
There exists a > 0 such thatf(A)b− βÜV2mf(fH2m)e1

 ≤ c

|ϕ1(−a)|m
, (4.53)

where c is a positive constant depending on W1 and on the measure µ but independent of
n and m.

Proof. Define the functions

g(z) = f1(z)−
m−1X
k=0

γ1,kF1,k(z), h(z) = f2(z)−
mX
k=0

γ2,kF2,k(z
−1). (4.54)

Using the splitting (4.52) and Lemma 4.5.3, we havef(A)b− βÜV2mf(fH2m)e1

 =

f1(A)b− m−1X
k=0

γ1,kF1,k(A)b− βÜV2mf1(fH2m)e1

+βÜV2m m−1X
k=0

γ1,kF1,k(fH2m)e1 + f2(A)b−
mX
k=0

γ2,kF2,k(A
−1)b

−βÜV2mf2(fH2m)e1 + βÜV2m mX
k=0

γ2,kF2,k(fH−1
2m)e1

=

g(A)b− βÜV2mg(fH2m)e1 + h(A)b− βÜV2mh(fH2m)e1

≤ max{1, β}

�
∥g(A)∥+ ||g(fH2m)||+ ∥h(A)∥ − ||h(fH2m)||

�
.

(4.55)
Since both functions in (4.54) are analytic in W1 and since W (fH2m) ⊆ W1, we deduce
from the result in [8], pp. 668-690, that

max{∥g(A)∥ , ||g(fH2m)||} ≤ 11.08max
z∈W1

|g(z)| ,

max{∥h(A)∥ , ||h(fH2m)||} ≤ 11.08max
z∈W1

|h(z)| .

These inequalities combined with (4.55) and Lemma 4.5.3, give (4.53). Here a is chosen
such that

|ϕ1(−a)| =
���ϕ2(−a−1)

��� .
�

63

Chapter 5

Numerical experiments

’No amount of experimentation can ever prove me right;
a single experiment can prove me wrong.’

Albert Einstein

The goal of the presented experiments is to compare methods for approximation of
f(A)b, namely the standart Krylov subspace method, the restarted Krylov subspace
method without and with deflation, the extended Krylov subspace method and the poly-
nomial least squares approximation. (Note that some comparision of methods for ap-
proximation of f(A) and the standart Krylov subspace method was given in my Bachelor
thesis [52]). We focused on the relative error of the approximation f to f(A)b, i.e.
∥f(A)b− f∥ / ∥f(A)b∥, and the computational time. We use the following Matlab soft-
ware modified for our purpose:

• the standart and the restarted Krylov subspace method, without and with deflation
by Dipl.-Math. Stefan Güttel, Dr. rer. nat.,

– available online at http://www.matrixfunctions.com;

• the extended Krylov subspace method by Prof. Valeria Simoncini;

• the polynomial least squares approximation by M.S. Jie Chen, Ph.D.,

– available online at http://www.mcs.anl.gov/∼jiechen/software.html.

The test matrices contain:

• some simple examples constructed by ourselves in order to create a matrix with
specific eigenvalues;

• Lap2D, a test matrix contained in the software from M.S. Jie Chen Ph.D.;

• Trefethen2000, a test matrix from the University of Florida Matrix Sparse Collec-
tion (http://www.cise.ufl.edu/research/sparse/matrices/);

• matrices obtained by discretization of Heat and Maxwell’s equations, donored by
my University schoolmate Bc. Lukáš Korous.

64

For the legend at the pictures, following shortcuts and notation are used:

• KSM - Krylov subspace method;

• LS - least squares;

• ell - deflate number ℓ;

• m - restart length m for the restarted Krylov subspace methods, m=∞ denotes the
standart Krylov subspace method.

Further note, that when we speak about the restarted Krylov subspace method, we mean
the variant without deflation, unless it is not stated otherwise.

Experiment 1

In the first experiment, we compare the accuracy of the approximation f to f(A)b and
the time of computation using the restarted Krylov subspace method for different restart
length m, m = 1, 2, 5, 10, 20, 50, the standart Krylov subspace method, the extended
Krylov subspace method and the polynomial least squares approximation. We compute
an approximation of exp(A)b, where A is a diagonal matrix,

A = diag(1, 2, . . . , 100) ∈ R100×100 (5.1)

and b = (1, 1, . . . , 1)/
√
100 ∈ R100, with relative error tolerance set for all methods to

10−14.
From the Figure 5.1 (top) we can see, that the smaller m we use in the restarted

Krylov subspace method, the more iterations at all we need to obtain the approximate
solution with the same relative error. Figure 5.1 (bottom left and bottom right) shows,
that the extended Krylov subspace method and the polynomial least squares approxima-
tion do not reach the required tolerance.

65

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

Number of iterations

R
el

at
iv

e
er

ro
r

m=1
m=2
m=5
m=10
m=20
m=50
m=∞

0 50 100
10

−3

10
−2

10
−1

10
0

Number of iterations

R
el

at
iv

e
er

ro
r

0 50 100
10

−8

10
−6

10
−4

10
−2

10
0

Number of iterations

R
el

at
iv

e
er

ro
r

Figure 5.1: Convergence behaviour. Top - the restarted and the standart Krylov subspace
method. Bottom left - the extended Krylov subspace method. Bottom right - the polyno-
mial least squares approximation.

66

0 50 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of iterations

T
im

e(
s)

m=1
m=2
m=5
m=10
m=20
m=50

0 50 100
0

0.1

0.2

0.3

0.4

0.5

Number of iterations
T

im
e(

s)

Standart KSM
Extended KSM
Polynomial LS

Figure 5.2: Computational time. Left - the restarted Krylov subspace method for differ-
ent restart lengths m. Right - the standart Krylov subspace method, the extended Krylov
subspace method and the polynomial least squares approximation.

Figure 5.2 (left) illustrates, how the restart length impacts the computational time.
The time of computation is decreasing with increasing restart length, even thought the
method uses long reccurences. The reason is in computation f . In case of the standart
Krylov subspace method, we compute an approximation of the matrix function only
once. In case of the restarted Krylov subspace method, we compute an update of the
approximation of the matrix function after each restart. If A is small, the time savings
due to the restart do not compensate for computational time required to evaluate the
update of f . We will discuss this behaviour later, in Experiment 6.

Further we can observe, that the computational time of the extended Krylov subspace
method and the polynomial least squares approximation is between the computational
time of the standart Krylov subspace method and the restarted Krylov subspace method
with restart length m = 1 (steepest descent method), see Figure 5.2 (right).

Experiment 2

In the second example, we illustrate, how using deflation in the restarted Krylov subspace
method with restart length m = 10 impacts the convergence. We discus the results for
two matrices. The first one is a diagonal matrix with diagonal elements A(i, i) = 15 ∗ i,
i = 1, . . . , 100, and the vector b is the same as in Experiment 1. We computed approx-
imation of

√
Ab. The matrix A has distinct and well separated eigenvaluesand thus we

can see the effect of deflation. Then we show results for the data and the function from
Experiment 1, where the eigenvalues of A are closer to each other.

67

2 4 6 8 10 12 14
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of restarts

R
el

at
iv

e
er

ro
r

ell = 0
ell = 1
ell = 3
ell = 5

0 5 10
10

−15

10
−10

10
−5

10
0

Number of restarts

R
el

at
iv

e
er

ro
r

ell = 0
ell = 1
ell = 3
ell = 5

5.8 6 6.2

10
−13

Number of restarts

R
el

at
iv

e
er

ro
r

ell = 0
ell = 1
ell = 3
ell = 5

Figure 5.3: Top - effect of deflation for the matrix with diagonal elements A(i, i) = 15 ∗
i, i = 1, . . . , 100, for deflate number ℓ = 0 (no deflation), ℓ = 1, ℓ = 3 and ℓ = 5. Bottom
left - effect of deflation for the matrix with diagonal elements A(i, i) = i, i = 1, . . . , 100.
Bottom right - detail of the corner in the picture at the bottom left.

In the first problem the speed of convergence can be accelerated using deflation in
the restarted Krylov subspace method, and the acceleration depends on the choice of the
parameter ℓ. The accelaration of convergence is more obvious for larger values of the
parameter ℓ, see Figure 5.3 (top). The acceleration is not significiant for the matrix (5.1)
from Experiment 1, see Figure 5.3 (bottom left), for detail, see Figure 5.3 (bottom right).

68

This is caused by the choice of the eigenvalues - there they are not so well separated, so
the effect of deflation is negligible.

Using the deflated restart, we approximately identify a subspace of dimension ℓ, which
delays the convergence. In case of the matrix square root, it is an A-invariant subspace
associated with ℓ eigenvalues close to the singularity, i.e., ℓ smallest eigenvalues. If these
eigenvalues are relatively close, the effect of deflation is not so obvious, see [16], pp. 9-12.

Experiment 3

The goal of the third experiment is to compare several methods on a matrix
A = Lap2D ∈ R10000×10000, see [6], pp. 16-17, which is the standart Laplacian on a
uniform 100× 100 grid. The matrix has the block form

A =

26666666664

B −I
−I B −I

−I B −I
.

−I B −I
−I B

37777777775 , with B =

26666666664

4 −1
−1 4 −1

−1 4 −1
.

−1 4 −1
−1 4

37777777775 ∈ R100×100,

its condition number is κ(A) ≈ 4133.6 and its eigenvalues are given by

4
�
sin2

�
iπ

202

�
+ sin2

�
jπ

202

��
, i, j = 1, 2, . . . , 100.

The vector b is random with euclidean norm equal to one. We computed an approximation
of

√
Ab. Methods included in this experiments were the standart and the restarted Krylov

subspace method for different restart lengths m, the restarted Krylov subspace method
without and with deflation using rational approximation of the square root function, the
extended Krylov subspace method and the polynomial least squares approximation.

69

0 50 100 150 200 250
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations

R
el

at
iv

e
er

ro
r

m=1
m=5
m=10
m=20

0 50 100 150 200 250
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of iterations
R

el
at

iv
e

er
ro

r

Standart KSM
Extended KSM
Polynomial LS

Figure 5.4: Convergence behaviour. Left - the restarted Krylov subspace method. Right -
the standart Krylov subspace method, the extended Krylov subspace method and the poly-
nomial least squares approximation.

Figure 5.4 (left) shows the relative error for the restarted Krylov subspace method for
restart lengths m = 1, 5, 10, 20. We can observe similar behaviour as in Experiment 1 -
if we want to obtain the same order of magnitude, the smaller restart length we use, the
more iterations we have to compute. Computation using the extended Krylov subspace
method was stopped after three iterations, so there is no reliable comparision, see the
note bellow. The polynomial least squares approximation achieved similar approximation
result as the restarted Krylov subspace method for the restart length m = 20, see Figure
5.4 (right).

70

0 50 100 150 200 250

10
−0.11

10
−0.1

10
−0.09

Number of iterations

R
el

at
iv

e
er

ro
r

m=1
m=5
m=10
m=20

0 50 100 150 200 250
10

−10

10
0

10
10

10
20

10
30

Number of iterations

R
el

at
iv

e
er

ro
r

m=1
m=5
m=7
m=10
m=12
m=15
m=17
m=20

Figure 5.5: Convergence behaviour. Top - the restarted Krylov subspace method using
rational approximation of the matrix square root, for different restart length m. Bottom -
the restarted Krylov subspace method with deflation, ℓ = 5, using rational approximation
of the matrix square root.

Further, we compared the restarted Krylov subspace method using rational approxi-
mation of matrix square root (Zolotarev relative best rational approximation to z/

√
z, see

[21], pp. 91-101) for different restart lengths, see Figure 5.5 (top). For all restart lengths,
the differences between particular relative errors are negligible, the method does not con-
verge. The reason is in rational approximation of function f , which was not properly
computed. The error of the rational approximation was further enhaced by computing
additional iterations.

71

Finally, the approximation of
√
Ab was computed using the restarted Krylov subspace

method with deflation, ℓ = 5, and using the same rational approximation of matrix square
root as above. Figure 5.5 (bottom) shows that only the method with restart lengthm = 1
(steepest descent) converge. For larger restart lengths the method does not converge.

Note. Some of the algorithms above automatically terminated before reading suffi-
cient error tolerance. In case of the restarted Krylov subspace method for m = 1 and for
m = 5, and the extended Krylov subspace method, the reason is that the error of the
approximation did not decrease or the decrease was negligible. The same problem oc-
cured while computing approximation using the restarted Krylov subspace method with
deflation, ℓ = 5.

Experiment 4 - Maxwell’s Equations

The modeling of transient electromagnetic fields in inhomogeneous media is a typical task
arising, for example, in geophysical prospecting. Such models can be based on the quasi
static Maxwell’s equations, see [21], pp. 135-139,

rotE + µ∂tB = 0, (5.2)

rotB − σE = j, (5.3)

divB = 0, (5.4)

where
E = E(x, t) is the electric field,
B = B(x, t) is the magnetic field,
σ = σ(x) is the electric conductivity,
µ = 4π · 10−7 is the magnetic permeability,
j = j(x, t) is the external source current density.

After eliminating B from (5.3) and putting into (5.2), we obtain the second order partial
differential equation

∇×∇×E + µσ∂tE = −µ∂tj

for the electric field. That arrives at a scalar bidimensional heat equation

−∇2E + µσ∂tE = −µσtj.

The source term j typically results from a known stationary transmitter with a driving
current that is shut off at time t = 0, i.e.,

je(x, t) = q(x)H(−t)

with the vector field q denoting the spatial current pattern and the Heaviside unit step
function H. Discretization of this equation gives a linear ordinary differential equation

ME
′
(t) = KE(t), E(t0) = E0, (5.5)

72

with symmetric matrices K,M ∈ R728×728 and vectors E(t), E0 ∈ R728. We define
A := M−1K ∈ R728×728. Solution of the discretized system of the differential equations
(5.5) is

f t(A)b = exp(tA)b, t > 0.

Time discretization was computed on the domain (−π
2
, π
2
) × (−π

2
, π
2
) using the implicit

Euler method of the sixth order.

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

10
5

Number of iterations

R
el

at
iv

e
er

ro
r

m=1
m=5
m=10
m=20
Standart KSM
Extended KSM

Figure 5.6: Convergence behaviour. The standart, the extended and the restarted Krylov
subspace method for different restart lengths.

In this experiment, we compared the standart, the restarted and the extended Krylov
subspace methods. We take t = 1. Because the matrix A has complex eigenvalues, it was
not possible to compute approximation via the polynomial least squares approximation
(we could not approximate the function by splines). On Figure 5.6 we can see, that
the behaviour of the standart and the restarted Krylov subspace method is similar as in
Experiment 1 and Experiment 3. Restart length is inversely proportional to the number
of iterations needed to obtain the same order of accuracy. The extended method did not
converge.

Experiment 5 - Heat Equation

In this experiment we consider the initial-boundary value problem for the heat equation
on the unit cube in 2 dimensions,

∂tu = ∆u in Ω, t > 0,
u(x, t) = 0 on Γ = ∂Ω, t > 0,
u(x, 0) = u0(x) in Ω.

(5.6)

73

The equation was discretized using implicit SDIRK method of the second order, second
order elements, and as a domain Ω a kind of naive simulation of a cross-section of cathe-
dral was taken, see the picture below.

After discretization, the problem (5.6) reduces to the initial value problem

u′(t) = Au(t), t > 0
u(0) = b.

(5.7)

The obtained matrix A ∈ R328×328 is symmetric. Its eigenvalues are distinct, real and lie
in the interval (0.097, 13.3361), condition number of this matrix is 294.8203. The solution
of (5.7) is given by

u(t) = f t(A)b, where f t(z) = exp(tz).

In this experiment, we compare efficienty and time of computation of several methods -
the standart and the restarted Krylov subspace method for different restart lengths, the
extended Krylov subspace method and the polynomial least squares approximation. The
approximation is computed in time t = 1.

74

0 10 20 30 40 50 60
10

−15

10
−10

10
−5

10
0

10
5

Number of iterations

R
el

at
iv

e
er

ro
r

m=1
m=5
m=10
m=20
m=50
Standart KSM
Extended KSM
Polynomial LS

Figure 5.7: Convergence behaviour. The standart, the restarted and the extended Krylov
subspace method and the polynomial least squares approximation.

The extended Krylov subspace method and the polynomial least squares do not con-
verge. In the case of polynomial least squares approximation, the knots t0, . . . , tn might
not be properly chosen. In Experiment 1 and Experiment 3, the extremal eigenvalues of
A are known. Here, we have to compute them numerically using the Matlab command
eig. If the computed values are inaccurate, then this error is reflected in further compu-
tation. The standart and the restarted Krylov subspace method have similar behaviour
as in the previous experiments, see Figure 5.7. Because the extended Krylov subspace
method and the polynomial least squares do not converge, we show the time comparision
only for the standart and the restarted Krylov subspace method, see Figure 5.8.

75

0 20 40 60 80 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of iterations

T
im

e(
s)

m=1
m=5
m=10
m=20
m=50
m=∞

Figure 5.8: Time comparision. The standart and the restarted Krylov subspace method
for different restart lengths.

Experiment 6

In the last experiment, we compare time of computation for different methods on a larger
matrix. We chose a matrix from the University of Florida matrix sparse collection, namely
the matrix Trefethen2000 ∈ R2000×2000. The differences are more obvious than in the
previous experiments.

Figure 5.9 (top left) shows for relatively small restart lengths in the restarted Krylov
subspace method, computational time grows faster with the number of iterations if m
is smaller. This is caused by the cost of evaluation of approximation f(A)b after each
restart, see also Experiment 1. The advantage of restart appears when the restart be-
comes significantly larger, compare the curve for m = 100 and m = 150 in Figure 5.9 (top
right). Similarly in Figure 5.9 (bottom left) we can see that the standart Krylov sub-
space method is faster than the restarted Krylov subspace method only for some limited
number of the first iterations. This difference is more visible for large matrices A, where
restarting can accelerate the time of computation. For completeness, Figure 5.9 (bottom
right) compares the polynomial least squares with the standart and the extended Krylov
subspace methods.

76

0 100 200 300 400 500

2

4

6

8

10

12

14

16

18

20

Number of iterations

T
im

e(
s)

m=1
m=5
m=10
m=20

0 100 200 300 400 500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of iterations
T

im
e(

s)

m=50
m=75
m=100
m=150

0 100 200 300 400 500

0.5

1

1.5

2

2.5

3

Number of iterations

T
im

e(
s)

m=5
m=10
m=20
m=50
m=∞

0 100 200 300 400 500
0

20

40

60

80

100

120

140

160

Number of iterations

T
im

e(
s)

Standart KSM
Extended KSM
Polynomial LS

Figure 5.9: Time comparision. Top left - the restarted Krylov subspace method for restart
lengths m = 1, 5, 10, 20. Top right - the restarted Krylov subspace method for restart
lengths m = 50, 75, 100, 150. Bottom left - the standart Krylov subspace method and the
restarted Krylov subspace method with restart lengths m = 5, 10, 20, 50. Bottom right -
the standart Krylov subspace method, the extended Krylov subspace method and the poly-
nomial least squares approximation.

77

Conclusion

’I think and think for months and years. Ninety-nine times,
the conclusion is false. The hundredth time I am right.’

Albert Einstein

In the presented work, we described the ways of defining matrix functions and we sum-
marized their properties. We mentioned methods for approximation of f(A), and then
we turned to methods for approximation of f(A)b, which were the main object of our
interest. From the methods of non-Krylov type, we focused on the polynomial least
squares approximation. Here, the basis of orthogonal polynomials was generated using
the three-term Stieltjes reccurence. Further, we studied methods of the Krylov type - the
standart Krylov subspace method, the restarted Krylov subspace method, the restarted
Krylov subspace method with deflation and the extended Krylov subspace method.

In the numerical experiments, we compared the polynomial least squares approx-
imation and the Krylov subspace methods. We shown, that for a small matrix A, the
computation using the standart Krylov subspace method without restarting is faster than
using restart after a predefined number of iterations. The advantage of restarting in ac-
celeration of the computation may appear only for large problems. Here the standart
Krylov subspace method is faster then the restarted one at the beginning of computa-
tion, but exceeding a certain number of iterations, the evaluation of the approximation
of f(A)b using the standart method, can become more computationaly chalenging then
updating the approximation after each restart in the restarted method. Another way,
how to accelarate the convergence of the restarted Krylov subspace method, is using
restarting with deflation. As we have shown, the effect of deflation is negligible if the
distance among the eigenvalues of A is smaller.

We performed an experiment using the modification of the Krylov subspace method
based on the rational approximation of a function f . We have seen, that if we use the
restarted Krylov subspace method with deflation, the choice of restart length m is impor-
tant for the convergence. For some of the choices, the method diverged, the best results
were obtained for m = 1, i.e. the method of the steepest descent for matrix functions.

Further, we have illustrated that the extended Krylov subspace method is slower than
the standart or the restarted Krylov subspace method. In the extended method the con-
sidered subspace contains also information about the matrix inverse, and its dimension
is twice as large as the dimension of the subspace in the standart or the restarted Krylov
subspace method. In some experiments, the method did not converge.

Finally, we have shown, that the polynomial least squares approximation can be more
efficient than the extended Krylov subspace methods. Unfortunately, this method cannot

78

be used for problems with a matrix A having complex eigenvalues.

79

Bibliography

[1] M. Afanasjew, M. Eiermann, O. G. Ernst, S. Güttel, A generalization of the steepest
descent method for matrix functions, Electronic Transactions on Numerical Analysis,
volume 28, 2008, pp. 206-222.

[2] M. Afanasjew, M. Eiermann, O. G. Ernst, S. Güttel, Implementation of a restarted
Krylov subspace method for the evaluation of matrix functions, Linear Algebra and
its Applications, volume 429, 2008, pp. 2293-2314.

[3] W. E. Arnoldi, The principle of minimized iteration in the solution of the matrix
eigenvalue problem, Quarterly of Applied Mathematics, volume 9, 1951, pp. 17-29.

[4] R. Byers, Solving the algebraic Riccati equation with the matrix sign function, Linear
Algebra and its Applications, volume 85, 1987, pp. 267-279.

[5] A. J. Carpenter, A. Ruttan, R. S. Varga: Extended numerical computations on
the “1/9” conjecture in the rational approximation theory, Springer-Verlag, Lecture
Notes in Mathematics, volume 1105, 1990, pp. 383-411.

[6] J. Chen, M. Anitescu, Y. Saad, Computing f(A)b via least squares polynomial ap-
proximations, SIAM Journal on Scientific Computing, volume 33(1), 2011, pp. 195-
222.

[7] W. J. Cody, G. Meinardus, R.S. Varga: Chebyshev rational approximations to e−x

in [0,+∞) and applications to heat-conduction problems, Journal of Approximation
Theory, volume 2(1), 1969, pp. 50-65.

[8] M. Crouzeix, Numerical range and functional calculus in Hilbert space, Journal of
Functional Analysis, volume 244(2), 2007, pp. 668-690.

[9] P. I. Davies, N. J. Higham: Computing f(A)b for matrix functions f , QCD and
numerical analysis III, Lecture Notes in Computational Science and Engineering,
Springer-Verlag, Berlin, volume 47, 2005, pp. 15-24.

[10] C. Davis: Explicit functional calculus, Linear Algebra and its Applications, volume
6, 1973, pp. 193-196.

[11] P. J. Davis, Interpolation and approximation, Dover Publications, Inc., New York,
NY, 1975.

80

[12] V. Druskin, A.Freenbaum, L. Knizhnerman: Using nonorthogonal Lanczos vectors
in the computation of matrix functions, SIAM, volume 19(1), 1998, pp. 38-54.

[13] V. Druskin and L. Knizhnerman, Extended Krylov subspaces: approximation of the
matrix square root and related functions, SIAM Journal on Matrix Analysis and
Applications, volume 19(3), 1998, pp. 755-771.

[14] R. G. Edwards, U. M. Heller, R. Narayanan: Chiral fermions on the lattice, Parallel
Computing, volume 25, 1999, pp. 1395-1407.

[15] M. Eiermann, O. G. Ernst, A restarted Krylov subspace method for the evaluation
of matrix functions, SIAM Journal on Numerical Analysis, volume 44(6), 2006, pp.
2481-2504.

[16] M. Eiermann, O. G. Ernst, S. Güttel, Deflated restarting for matrix functions, SIAM
Journal on Matrix Analysis and Applications, volume 32, 2011, pp. 621-641.

[17] J. van den Eshof, A. Frommer, T. Lippert, K. Schilling, H. A. van der Vorst: Nu-
merical methods for the QCD overlap operator. I. Sign-function and error bounds,
Computer Physics Communications, volume 146, 2002, pp. 203-224.

[18] R. W. Freund and M. Hochbruck, Gauss-quadratures associated with the Arnoldi
process and the Lanczos algorithm, in Linear Algebra for Large-Scale and Real-Time
Applications, M. S. Moonen, G. H. Golub, and B. L. R. de Moor, eds., volume 232
of NATO Advanced Science Institutes Series E: Applied Sciences, Kluwer Academic
Publishers, Dordrecht, 1993, pp. 377-380.

[19] A. Frommer, V. Simoncini: Matrix functions, Model Order Reduction: Theory, Re-
search Aspects and Applications, Mathematics in Industry, Schilders, W. H. Schilder
and H. A. van der Vorst, eds, Springer, Heidelberg, 2008, pp. 1-25.

[20] S. H. Golub, C. F. Van Loan: Matrix computation, The Johns Hopkins University
Press, 1996, pp. 352-368, 555-574.

[21] S. Güttel, Rational Krylov methods for operator functions, Dissertation Thesis, Tech-
nische Universität Bergakademie Freiberg, 2010.

[22] N. J. Higham, Accuracy and stability of numerical algorithms, SIAM, Philadelphia,
1996, pp. 292-294.

[23] N. J. Higham: Evaluating Padé approximants of the matrix logarithm, SIAM Journal
on Matrix Analysis and Applications, volume 22(4), 2001, pp. 1126-1135.

[24] N. J. Higham: Functions of matrices, MIMS EPrint, 2005, pp. 1-23.

[25] N. J. Higham: Functions of matrices: theory and computation, SIAM, 2008.

[26] N. J. Higham: Newton’s method for the matrix square root, Mathematics of Compu-
tation, volume 46, 1986, pp. 537-549.

81

[27] N. J. Higham: Stable iteration for the matrix square root, Numerical Algorithms,
volume 15(2), 1997, pp. 227-242.

[28] N. J. Higham: The scaling and squaring method for the matrix exponential revisited,
SIAM, Journal on Matrix Analysis and Applications, volume 26(4), 2005, pp. 1179-
1193.

[29] R. A. Horn, C. R. Johnson: Topics in matrix analysis, Cambridge University Press,
1991, pp. 425 - 428.

[30] C. S. Kenney, A. J. Laub: Rational iterative methods for the matrix sign function,
SIAM Journal on Matrix Analysis and Applications, volume 12(2), 1991, pp. 273-
291.

[31] L. Knizhnerman, V. Simoncini, A new investigation of the extended Krylov subspace
method for matrix function evaluations, Numerical Linear Algebra with Applications,
volume 17(4), 2010, pp. 615-638.

[32] A. N. Krylov, On the numerical solution of the equation by which, in technical mat-
ters, frequencies of small oscillations of material systems are determined, Izv. Akad.
Nauk SSSR Ser. Fiz.-Mat., 1931, pp. 491-539.

[33] C. Lanczos An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators, Journal of Research of the National Bureau of
Standards, volume 45, 1950, pp. 255-282.

[34] C. F. Van Loan, A study of the matrix exponential, Numerical Analysis Report No.
10, University of Manchester, Manchester, UK, August 1975.

[35] B. Meini: The matrix square root from a new functional perspective: Theoretical re-
sults and computational issues, SIAM Journal on Matrix Analysis and Applications,
volume 26(2), 2004, pp. 362-376.

[36] C. Moler, C. V. Loan: Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later, SIAM Review, volume 45(1), 2003, pp. 3-49. A portion of this
paper originally appeared in SIAM Review, volume 20(4), 1978, pp. 801-836.

[37] J. D. Roberts: Linear model reduction and solution of the algebraic Riccati equation
by use of the sign function, International Journal of Control, volume 32(4), 1980,
pp. 677-687.

[38] I. Moret and P. Novati, An interpolatory approximation of the matrix exponential
based on Faber polynomials, Journal of Computational and Applied Mathematics,
volume 131, 2001, pp. 361-380.

[39] I. Moret and P. Novati, Interpolating functions of matrices on zeros of quasi-kernel
polynomials, Numerical Linear Algebra with Applications, volume 12, 2005, pp. 337-
353.

82

[40] I. Moret and P. Novati, The computation of functions of matrices by truncated Faber
series, Numerical Functional Analysis and Optimization, volume 22, 2001, pp. 697-
719.

[41] P. Novati, A method based on Fejér points for the computation of functions of non-
symmetric matrices, Applied Numerical Mathematics, volume 44, 2003, pp. 201-224.

[42] G. Opitz, Steigungsmatrizen, Zeitschrift für Angewandte Mathematik und Mechanik,
volume 44, 1964, pp. T52-T54.

[43] B. Philippe, R. B. Sidje, Transient solutions of Markov processes by Krylov subspaces,
Research Report, RR-1989, INRIA, 1995.

[44] M. J. D. Powell, Approximation theory and methods, Cambridge University Press,
Cambridge, UK, 1981, pp. 72-84.

[45] T. J. Rivlin, An introduction to the approximation of functions, Dover Publications,
1981, pp. 22.

[46] Y. Saad: Analysis of some Krylov subspace approximations to the matrix exponential
operator, SIAM Journal on Numerical Analysis, volume 29(1), 1992, pp. 209-228.

[47] Y. Saad, Iterative solution of indefinite symmetric systems by methods using orthog-
onal polynomials over two disjoint intervals, SIAM Journal on Numerical Analysis,
volume 20(4), 1983, pp. 784-881.

[48] M. H. Schultz, Spline analysis, Prentice Hall, 1973.

[49] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equa-
tions, SIAM Journal on Scientific Computing, volume 29(3), 2007, pp. 1268-1288.

[50] T. J. Stieltjes Sur l’ évaluation approchée des intégrales, C. R. Acad. Sci. Paris, vol-
ume 97, 1883, pp. 740-742, 798-799. Reprinted in Oeuvres I (P. Noordhoff, Gronin-
gen), 1914, pp. 314-318.

[51] G. W. Stewart, An Arnoldi-Schur algorithm for large eigenproblems, SIAM Journal
on Matrix Analysis and Applications, volume 23(3), 2002, pp. 601-614.

[52] D. Suchá, Numerické aproximace maticových funkćı, Bachelor Thesis, Charles Uni-
versity in Prague, Faculty of Mathematics and Physics, 2009.

[53] P. K. Suetin, Series of Faber polynomials, analytical methods and special functions,
Gordon and Breach Science, Amsterdam, 1998. Originally published in Russion as
Riady po mnogochlennam Fabera by Nauka, Moscow, 1984.

[54] H. A. van der Vorst: An iterative solution method for solving f(A)x = b, using Krylov
subspace information obtained for the symmetric positive definite matrix A, Journal
of Computational and Applied Mathematics, volume 18(2), 1987, pp. 249-263.

83

[55] H. A. van der Vorst: Solution of f(A)x = b with projection methods for the matrix
A, In Numerical Challenges in Lattice Quantum Chromodynamics, Lecture Notes
in Computational Science and Engineering, Springer, Berlin, volume 15, 2000, pp.
18-28.

[56] A. Wragg, C. Davies: Computation of the exponential of a matrix II: Practial con-
siderations, Journal of the Institute of Mathematics and Its Applications, volume
15(3), 1975, pp. 273-278.

[57] V. Zakian, Rational approximants to the matrix exponential, Electronic Letters, vol-
ume 6(25), 1970, pp. 814-815.

84

