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Abstrakt

V předložené práci je sestaven izotermický matematický model materiálů s feromagnetic-
kou tvarovou pamětí (FSMA). FSMA jsou speciální třídou tzv. magnetostriktních látek,
materiálů, u nichž lze měnit tvar vzorku aplikací magnetického pole a naopak vyvolávat
změny magnetizace namáháním vzorku. Podstatou této vlastnosti jsou fázové přechody
uvnitř materiálu, k nimž dochází během zatěžování vzorku.

Nejprve je zformulován stacionární model FSMA. Je sestaven termodynamický poten-
ciál (zde Helmholzova volná energie) a je ukázáno, že není kvazikonvexní. Kvazikonvexifi-
kace je provedena pomocí teorie relaxace, tj. konstrukcí kvazikonvexní obálky. Pro takto
sestavený model je provedena existenční analýza.

Výsledky stacionárního modelu jsou následně využity k modelu časového vývoje, při-
čemž pozornost je věnována hystereznímu chování, které vzniká v důsledku disipace volné
energie. Časová diskretizace vede na sekvenci hysterezí modifikovaných stacionárních úloh
(koncept energetického řešení). S využitím existujících abstraktních výsledků je dokázána
existence energetického řešení pro model FSMA. Model se opírá o experimentální skuteč-
nost, že disipace energie během fázových přechodů nezávisí na rychlosti, s jakou fázové
přechody probíhají.

Výhodou použitého přístupu je mj. i přímočará implementace modelu, která je popsána
v závěru textu. Součástí práce jsou též konkrétní výsledky pro různé kombinace typů
materiálu a zatížení.

Klíčová slova: Magnetická tvarová pamět’; magnetostriktní látky
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Abstract

In the present work we introduce an isotermic mathematical model of ferromagnetic
shape memory alloys (FSMAs). FSMAs are a special class of magnetostrictive materials,
i.e. materials which deform their shape on account of external magnetic field or which
change magnetization as a consequence of strain. This property originates from phase
transformations that occur within the material when being exposed to external loading.

First, the stationary model of FSMA is formulated. The thermodynamical potential is
composed (Helmholz free energy) and its non-quasiconvexity is discussed. The quasicon-
vexification is performed via the relaxation theory, i.e. quasiconvex envelope construction.
For such a model the existence theory is built.

Then, taking advantage of the stationary case the evolutionary model is developed.
The attention is drawn to hysteresis, which arises from energy dissipation. The time
discretization leads to a sequence of hysteresis-modified stationary problems (the concept
of energetic solution). Benefiting from the existing abstract results, the existence of the
energetic solution for FSMA is shown. The model relies on the experimental fact that the
energy dissipation is a rate-independent process.

The advantage of the formulated model is its straightforward numerical implementation.
Numerical aspects of the model are discussed in the final part of the thesis. Several concrete
results are included for various combinations of a material type and loading.

Keywords: Magnetic shape memory; Magnetostrictive materials



Contents

1 Introduction 9
1.1 Tasks and objectives of the work . . . . . . . . . . . . . . . . . . . . . . . 12

2 Shape memory materials 14
2.1 Shape memory alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Ferromagnetic shape memory alloys . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Characteristic behaviour of NiMnGA . . . . . . . . . . . . . . . . . . . . . 19

3 Continuum mechanics overview 26
3.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Primal problem of linear elasticity formulation . . . . . . . . . . . . . . . . 28
3.3 The minimum free energy principle . . . . . . . . . . . . . . . . . . . . . . 31

4 Magnetism 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Diamagnetism and Paramagnetism . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Ferromagnetism of the localized moments . . . . . . . . . . . . . . . . . . . 41
4.5 Magnetism of the itinerant electrons . . . . . . . . . . . . . . . . . . . . . 46
4.6 Continuum approximation for magnetism . . . . . . . . . . . . . . . . . . . 52
4.7 Minimizer existence for linear elasticity . . . . . . . . . . . . . . . . . . . 60

5 The stationary model for FSMA 62
5.1 The quasiconvex problem formulation . . . . . . . . . . . . . . . . . . . . . 62
5.2 The mathematical model of ferromagnetic shape memory alloy . . . . . . . 67

5



CONTENTS 6

6 The evolutionary model for FSMA 71
6.1 Rate-independent process and energetic formulation . . . . . . . . . . . . . 71
6.2 FSMA energetic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 Energetic solution existence . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7 Numerical simulations 85
7.1 Stationary 2D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Evolutionary 2D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3 Magnetic Field-induced Strain Experiment . . . . . . . . . . . . . . . . . . 100

8 Conclusion 103

9 Bibliography 105

APPENDIXES

A List of Functions 109

B Details on numerical simulation 113

C Used statements 119



List of Figures

1.1 The principle of magnetostriction . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Temperature induced austenite-to-martensite transformation . . . . . . . . 15
2.2 Shape memory effect diagram . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 The effect of superelasticity and pseudoplasticity . . . . . . . . . . . . . . . 17
2.4 Heusler and Half-Heusler structure . . . . . . . . . . . . . . . . . . . . . . 20
2.5 FSMA martensitic variants . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Loading sequence for field-induced strain production . . . . . . . . . . . . . 22
2.7 Characteristic strain vs. magnetic field curves for FSMA . . . . . . . . . . 23
2.8 Stress vs. strain diagram of Ni-Mn-Ga alloys . . . . . . . . . . . . . . . . . 24
2.9 Twinning structure of Ni-Mn-Ga alloys . . . . . . . . . . . . . . . . . . . . 24
2.10 Magnetization vs. field intensity diagram of Ni-Mn-Ga alloys . . . . . . . . 25
2.11 Characteristic strain vs. magnetic field curves for FSMA . . . . . . . . . . 25

4.1 Plot of Brillouin function BJ(y) . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 The spin wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Fermi-Dirac distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Splitting of spin-up and spin down energy bands . . . . . . . . . . . . . . . 50
4.5 Minimization of the magnetostatic energy by adopting the domain structure 54

5.1 Construction of minimizing sequence yk for J . . . . . . . . . . . . . . . . 65
5.2 Schematic illustration of double-well and multiple-well problem. The energy

functional of 1D specimen (e.g. wire) made from magnetostrictive material
embodies two (a) four (b) local minimums. . . . . . . . . . . . . . . . . . . 66

5.3 The quasiconvex envelope of the energy functional of 1D specimen made
from magnetostrictive material introduced in figure 5.2. . . . . . . . . . . . 67

7



LIST OF FIGURES 8

7.1 Piece-wise affine function calculations . . . . . . . . . . . . . . . . . . . . . 88
7.2 The triangulation of domains Ω̃ and Ω, Ω ⊂ Ω̃ . . . . . . . . . . . . . . . . 90
7.3 Magnetic tension - the ilustration of the two martensitic phases. . . . . . . 91
7.4 Magnetic tension - results: deformed configuration, magnetization and vo-

lume fraction distrubution . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.5 Magnetic tension - results: the magnetostatic potential . . . . . . . . . . . 93
7.6 Mechanical bending - the ilustration of two martensitic phases . . . . . . . 94
7.7 Mechanical bending - results: deformed configuretion, magnetization and

volume fraction distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.8 Mechanical bending - the magnetostatic potential. The reference configu-

ration is represented by the black rectangle. The FSMA in a shape of tablet
loaded by external force F = [0.2 0] Used parameters: C = I, µ0 = 1 . . . 96

7.9 Mechanical bending - respose of the sample exposed to a changing body
force. The sequence of 25 subfigures shows the evolution of the sample
deformation and magnetization within one cycle of the force. . . . . . . . . 99

7.11 Four martensitic phases vA, vB, vC , vD used for magnetic twisting. . . . . . 99
7.10 Mechanical bending - response of the sample exposed to a changing body

force. The sequence of 25 subfigures shows the evolution of volume fraction
distribution within one cycle of the force. . . . . . . . . . . . . . . . . . . . 100

7.12 Magnetical twisting - response of the sample exposed to a rotating magnetic
field. The sequence of subfigures shows the cycle. . . . . . . . . . . . . . . 101

7.13 The response of the sample to the loading sequence described in section 2.3.
The sample is loaded by pressure in y-direction of value 0.2. The magnetic
loading runs 0→ 0.4→ −0.4→ 0.4. Magnetoelastic coefficients were set as
follows: c11 = c22 = c33 = c44 = c55 = 100, c12 = 10, c15 = −50, c14 = 0. The
value of CHys was set to 0.1. For the permeability of vacuum the physical
value was used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



Chapter 1

Introduction

Magnetostriction can be defined as ”the change in dimension of a piece of magnetic material
induced by a change in its magnetic state1.” Magnetostrictive materials, in general, are
materials with the ability to change their shape due to an external magnetic field or embody
change in magnetization when being deformed. It is one of the properties that accompanies
ferromagnetism.

Although the phenomenon of magnetostriction is a relatively complex subject matter
that arises from processes on the atomic level, it is very easy to get in touch with magne-
tostriction in daily life. The effect of magnetostriction is responsible for the characteristic
hum of transformers and other high power electrical devices that we meet every day. As
the transformer takes advantage of electromagnetic induction, there is a huge magnetic
field surrounding the device. The iron material associated with the core of the transformer
replies mechanically to the magnetic field and consequently produces the hum. Since the
frequency of the AC electricity in EU is 50 Hz, the frequency of the characteristic (and
also annoying) hum is 100 Hz.

The effect of magnetostriction could be understood through the domain structure of
a ferromagnetic body and energy associated with this structure. Domains are regions of
approximately constant magnetization. Dimension change is connected with redistribution
of domain structures responding to an applied external magnetic field. Each of the magnetic
domains is distorted by inter-atomic forces in a way so as to minimize the total energy of
the sample.

Considering one of these domains, material with positive (negative) magnetostriction
1the definition introduced in BUSCHOW K.H.J., DE BOER F.R.: Physics of Magnetism and Magnetic

Materials, Kluwer Academic/Plenum Publishers, New York, 2003.

9
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embodies extension (contraction) of a domain along magnetization direction while the
material simultaneously embodies contraction (extension) perpendicular to magnetization
direction, keeping the volume unchanged (see the figure 1.1). The magnetostrictive body
is a complex of many magnetostrictly distorted domains. Application of the external
magnetic field causes dislocation of boundaries between magnetic domains and rotation
of magnetization direction within a domain to achieve the ”satisfactory” location (with
lowest total energy). This process is accompanied with growth of domains with magne-
tization direction close to the field direction at the cost of domains whose magnetization
direction differs more from the field direction. These two mechanisms result in macroscopic
dimension change of the specimen. The process of reorientation of domains is far more
complicated. However, the main idea remains: the rotation and the movement of magnetic
domains cause deformation of the shape of the material (for more detailed discussion see
e.g. [3] or [14]).

H

H = 0
dL

(a) Domain rotation (b) Domain wall motion

Figure 1.1: Schematic representation of principles that produce magnetostriction. When
there is no magnetic field applied, the domains are distorted in order to reduce the mag-
netostatic energy. Magnetical loading of the sample causes dislocation of the domain
boundaries which enables rotation of magnetization direction (1.1(a)) and consequently
growth of domains that have magnetization aligned to the external field (1.1(b)).

The above described process is the most common type of magnetostriction and it is
usually referred to as Joule2 magnetostriction. Considering a single crystal, the deformation
of the material will reflect symmetry of the crystal lattice. Let us describe a simple case of
a cubic material. If tested, the prolongation of the sample depends on direction of loading
as well as on initial and final direction of magnetization. As explained in [3], the strain
(fractional length change) might be described by only two magnetostrictive constants λ100

2Historically, it was James P. Joule who first described the phenomenon of magnetostriction in 1842.
Joule studied a nickel sample.
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and λ111 via

∆l

l
=

3

2
λ100

(
α2
xβ

2
x + α2

yβ
2
y + α2

zβ
2
z −

1

3

)
+ 3λ111 (αxαyβxβy + αxαzβxβz + αyαzβyβz) .

The parameters α, β stand for direction cosines of the magnetization orientation and
loading of the length-measurement direction, respectively. Magnetostrictive constants
λ100(λ111) represent change in length or saturation magnetostriction in the [100]([111])

direction when the magnetization direction is also along the [100]([111]) direction after the
material has been cooled through its Curie temperature. We provide values of magnetost-
rictive constants for several cubic materials in table 1. As one might see, magnetostriction
constants in pure metals are on order of 10−6. Thus, the resulting shape change is very
small and so the application in engineering is limited.

Material λ100(10−6) λ111(10−6)
Fe 24 -22
Ni -51 -23

TbFe2 - 2460
SmFe2 - -2100

Table 1.1: The magnetostriction constants for particular cubic materials at room tempe-
rature. Data are taken from [3]. The negative values of the constants correspond to the
shortening of the sample due to external magnetic field.

The effect of magnetostriction might be strengthened by alloying suitable elements. The
highest magnetostriction was achieved in iron alloys containing rare earth elements Dy-
sprosium and Terbium. The effect is more than 100 times stronger. Thus, it is referred to
as giant magnetostriction. For illustration, see table 1 that also contains magnetostriction
constants for DyFe2 and TbFe2. However, these alloys require large magnetic fields to em-
body magnetostriction since both (Terbium and Dysprosium) suffer from large anisotropy.
Benefiting from the fact that anisotropies in these elements are in opposite directions, it
was proposed to use an alloy incorporating Tb, Dy and Fe. The resulting material named
Terfenol-D3 fullfiled the expectations. At room temperature it exhibits deformation
up to 2000 microstrains (corresponds to 0.2% fractional length change) in the field of
2kOe4. The stoichiometric formula of Terfenol-D is TbxDy1−xFe2, with x ≈ 0.3. This
giant magnetostrictive material found its use in a great number of applications such as

3The material was devoloped in Naval Ordnance Labs, US. The name is abbreviation of terbium (TER),
iron (FE), Naval Ordnance Labs (NOL), and Dysprosium (-D).

4Oe is the unit of magnetic field intensity in the CGS system of units. 1 Oe is equivalent to 1000/4πA/m
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magnetomechanical sensors, actuators, and acustic and ultrasonic transducers.
In this work we are interested in a special subclass of magnetostrictive materials called

ferromagnetic shape memory alloys (FSMA). Besides domain wall motion and domain ro-
tation, in FSMAs the magnetostriction is driven by shape memory effect - solid-to-solid
phase transformation that occurs within the alloy. The shape memory effect represents
strong contribution to Joule magnetostriction. Thus, FSMAs have exbited approximately
five times larger strains than Terfenol-D. Additionally, in these materials, magnetically
induced strain is produced fast and without need of external temperature change (unlike
classical shape memory alloys). This property together with large strains production make
FSMA attractive for applications since FSMA-based devices (actuators, sensors) can ope-
rate in high frequencies. In order to introduce the matter of shape memory effect in more
detail we devote the whole chapter 2 to this topic.

(Ferromagnetic) shape memory alloys represent extremely exciting category of mate-
rials that is worth studying. Modelling of FSMAs is interesting from physical as well as
mathematical point of view. Mathematical modelling of such systems is rather complicated
since the thermodynamic potentials describing the material are generally not (quasi)convex.
Therefore, the stable configuration of the systems can not be found as an energy minimizer,
but has to be described via construction of a minimizing sequence. Furthermore, conside-
ring the evolutionary model the effect of hysteresis has to be taken into account. Before
we proceed to detail analysis of FSMAs, let us set up our goals first.

1.1 Tasks and objectives of the work

In the present work we study mathematical aspects of modelling of ferromagnetic shape
memory alloys (FSMAs), a special class of magnetostrictive materials. The tasks of the
thesis are as follows:

1. Become familiar with the mathematical and physical theory of micromagnetism. Put
special emphasis on the theory describing ferromagnetic materials and the mechanism
that gives rise to magnetic domains. Learn methods necessary for (F)SMA modelling.

2. Study the direct method of calculus of variations.

3. Formulate the stationary model of FSMA. Analyse the model with respect to solution
existence.
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4. Formulate the evolutionary model of FSMA. Analyse the model with respect to
solution existence.

5. Based on the previous two items, implement 2D model of FSMA that would be useful
for quantitative analysis.

6. Discuss the model and confront it with available experimental data.

The structure of the text naturally follows the aforementioned points. In the first part
of the work we present physical and mathematical bases for our model. We start from the
assumption that the material is continuous, neglecting microscopic consequences. Thus,
considering small deformation, several results of continuum mechanics are introduced in
chapter 3. In chapter 4, the fundamentals of magnetism as well as the mathematical
model of micromagnetism are presented. Mathematical analysis is also included within the
chapter.

In the second part, we formulate a model combining linear elasticity and micromag-
netism. Chapter 5 introduces the stationary model combining mechanical and magnetical
behaviour. First, the appropriate thermodynamical potential (Helmholz free energy) is
constructed and the non-(quasi)convex properties are discussed. Then, the quasiconvexi-
fication is performed via standard methods of calculus of variations. Using the relaxation
theorem we construct the quasiconvex envelope. The existence result is provided under
certain conditions. Based on the analysis of the stationary model, the evolutionary model
of FSMA is introduced in chapter 6. Taking advantage of the fact that the hysteresis is
observed to be rate-independent, we construct the energetic model of the material and
prove the existence result.

Additionally, we provide several (both stationary and evolutionary) numerical simulati-
ons in chapter 7. The aim is to demonstrate functionality and reasonable behaviour of the
formulated mathematical model(s).



Chapter 2

Shape memory materials

In this chapter we present phenomenological description of FSMA and we provide physical
information in sense of experimental data examples and figures. The aim of the chapter is
to make the reader familiar with the discussed material. Additionally, we provide several
applications of FSMA. Altogether, we wish to share the idea that topic of FSMA represents
rather interesting matter.

When introducing FSMA, we naturally start with more famous class of active materials,
the so called shape memory alloys. Later on we draw our attention back to the effect
magnetostriction and FSMAs.

2.1 Shape memory alloys

Shape memory alloys (SMAs) are materials which are able to recover their original shape
after having been deformed by applying heat to the alloy. Such extraordinary phenomenon
is referred to as shape memory effect. Additionally, shape memory alloys exhibit other
interesting properties - superelasticity and psedoplasticity.

Shape memory effect

The physical reason of the shape memory effect is presence of two stable solid phases in
which the material can exist. The phase transformation between the phases within SMAs
is evoked by change in temperature. The high-temperature phase with high-symmetry,
usually cubic, is called austenite. The low-temperature phase, named martensite, exists in
several symmetry-related variants. In NiTi for instance, there are 24 monoclinic variants.

14
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Moreover, according to external loading, martensite can be produced in two forms, the
deformed one and the un-deformed (twinned) one.

The martensitic transformation (austenite-to-martensite) is described by four values
of temperature: As, Af , Ms, Mf which determine the start and end of each phase, cf.
figure 2.1. Having the sample in austenite phase, cooling increases free energy associa-
ted with the austenite phase. At certain temperature, free energy exceeds the value of
martensite phase and it is no longer energetically suitable for the material to stay in the
austenite. Let us denote Tam the temperature at which free energy of austenite is equal
to free energy of martensite. At temperature Tam > Ms the martensitic transformation
starts. It is in motion until the temperature Mf is reached. Then the whole sample is in
low-temperature phase. Similarly, the reverse (martensite-to-austenite) transformation is
driven by heating. It starts at temperature Tam < As and finishes at Af . The equilibrium
temperature lies just in the middle of Ms and As. The difference between Ms and Af (Mf

and As) is caused by energy dissipation.

M
f s AM As f

Martensite

Austenite

T
Figure 2.1: Temperature induced austenite-to-martensite transformation. There exist two
stable solid phases for shape memory alloy: the high-temperature austenitic and low-
temperature martensitic. The martensitic phase occurs in many geometry-related variants.
The transformation is described via four temperatures which define beginning and ending
of each of the phases.

If the sample is cooled in the absence of applied load, the alloy transforms from austenite
into twinned (self-accommodated) martensite. At this stage, all variants are present in the
twinned configuration. As a result of this phase transformation, no observable macroscopic
shape change occurs, but at this state the material can be easily deformed. Applying
external loading to the sample leads to reorientation (detwinning) of martensitic variants
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and the specimen moves into a single deformed phase. A relatively large strain is produced
via this procedure. The original shape of the body might be recovered by heating upon
temperature Af . The heat transmitted to the specimen is the energy driving the atomic
rearrangement of the alloy, similar to heat that melts ice into water, but the SMAs stay
solid. The deformed martensite is now transformed to the cubic austenite phase, which is
configured in the original shape of the specimen. The situation is schematically shown in
Figure 2.2.

Deformation

C
oo

lin
g H

eating
Austenite

Twinned martensite Detwinned martensite

Figure 2.2: Shape memory effect diagram. When being cooled, the sample transforms from
the austenitic phase to the martensitic phase. If there is no mechanical loading applied, the
material forms a twinning structure (twinned martensite) and no macroscopic strain occurs.
Subsequent loading of the sample causes movement of the twin boundaries and growth of a
variant that fits the loading best. As a consequence of this process the macroscopic strain is
observed. Heating of the sample initiates a reverse martensite-to-austentite transformation
and the material returns to its original shape.

Superelasticity and Pseudoplasticity

The austenite-to-martensite transformation can be also reached without cooling. If the
sample is loaded in the austenitic state (at temperature T > Af ), the material transforms
into the most suitable martensitic variant (according to the applied stress). The resul-
ting strain is naturally limited, however, it is fully reversible after the loading is removed
(clarify the figure 2.3(a)). Contrary to elastic deformation in common metals, where the
strains are relatively small (they rarely reach 0.7%), the elastic response induced by phase
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transformation might reach 10%. Such huge elastic deformation is called superelasticity.In
contrast to elasticity, the stress-strain curve of superelastic response is nonlinear and always
accompanied with hysteresis.

Another interesting feature of SMAs is pseudoplasticity. Like superelasticity, it is also
a direct consequence of the phase transformation that might occure in the material. As
schematically shown at the figure ??,in the case of loading in the martensitic phase (at
temperature T < Ms), the sample is easily deformed within the range of about 5%. In
the material are formed such martensitic variants that are in accordance with the loading
(tensing or compressing). After creating a suitable variant, the material behaves elastically.
The resulting strain might then be plastic. However, when the opposite loading is applied,
the initial state might be recovered.

Although the stress vs. strain diagram might resemble behaviour of a common metal,
in SMAs there occur no shear dislocations that would cause unrecoverable deformations.
It causes only the movement of twin boundaries. Consequently, the material transforms
from one martensitic variant to another. Therefore, the plastic deformation of SMAs might
reach up to 10% without making irreversible changes in the micro-structure of the alloy.

Stress
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(a) Superelasticity
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Figure 2.3: The effect of superelasticity and pseudoplasticity. The possibility of stress-
induced austenite-to-martensite and martensite-to-martensite phase transformation within
SMAs causes interesting mechanical properties called superelasticity and pseudoplasticity.

Commonly used SMAs are typically made of copper-zinc-nickel (Cu-Zn-Ni), copper-
aluminium-nickel (Cu-Al-Ni) or nickel-titanium (Ni-Ti). The unusual properties of the
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shape memory offer a wide range of applications, among others in aeronautics1 and medi-
cine2.

2.2 Ferromagnetic shape memory alloys

Ferromagnetic Shape Memory Alloy Materials (FSMAs), often also referred to as Mag-
netic Shape Memory Alloys (MSMAs) represent magnetic extension of SMAs. They em-
body twinning mechanism, as observed in SMA materials, however, the difference lies in
causation of the phase change. Besides temperature and stress-induced strains, in FSMA
large strains can be produced by magnetic field application. Each of the martensitic vari-
ant is associated with preferred direction of magnetization. Therefore, the phase transfor-
mation between particular martensitic variants and so macroscopic strain can be initiated
by external magnetic field. FSMAs are ferromagnetic alloys. Thus also phenomena descri-
bed in previous chapter contribute to the magnetostrictive behaviour. Altogether, there
are three mechanisms in FSMAs that give rise to magneto-mechanical coupling: domain
wall motion, domain rotation and martensitic variants reorientation. The field-induced
strain response of FSMA is nonlinear, hysteretic and strongly stress-dependent.

Ferromagnetic shape memory alloys are interesting materials due to their application
potential. Magnitude of magnetic-field-induced strains produced by FSMAs is nearly of
two orders higher than in giant-magnetostrictive materials such as Terfenol-D or Galfenol,
clarify e.g. [17], [33]. Additionaly, compared to conventional shape memory alloys, FSMAs
can be operated in higher frequency range up to 1kHz. The respose of the material is
caused by magnetic-field-activated reorientation of martensitic variants and so it is not
limited by the speed of heat transfer. Thus, the reaction of the alloy is much faster. On
the other hand, the main disadvantage of FSMAs is relatively low blocking stress - minimal
stress needed for complete suppression of the magnetic field induced strain.

FSMAs may be used in construction of sensors and transducing components in mo-
dern machineries. The actuation mechanism is always provided by energy transformation

1For example, SMAs enable construction of variable geometry chevron that helps to reduce engine
noise of commercial aeroplanes. Morphing chevrons located at the trailing edge of the jet engine create
vortexes that influence the mixing rate of adjacent stream lines. Optimizing of the mixing ration enables
to decrease jet engine noise. More information about SMA implementation into jet engine design might
be found in [4].

2Nitinol (nickel-titanium based alloy developed in Naval Ordnance Laboratory) is commonly used for
cardiovascular stent construction. The deformed stent is inserted into a vein. Being heated (by the body)
the stent expands into the designed shape and consequently improves the blood flow, for more details
about stent design see e.g. [36]



CHAPTER 2. SHAPE MEMORY MATERIALS 19

(electric/magnetic, thermal) into the mechanical work. The component needs to com-
bine large strains, high-force production and fast dynamic response during an actuation
event. FSMAs have potential to satisfy these requirements. Hence, they are attractive
for application in actuators3 and sensors, see [16], [32]. Due to unique and adjustable
magnetic properties ferromagnetic shape memory alloys might be also suitable materials
for construction of solenoid transducers [21] or voltage generators [15]. There is a rich set
of various applications of FSMAs introduced in related literature. For further and more
detailed description about state-of-art applications see e.g. [31], [5].

The class of ferromagnetic shape memory alloys contains many materials such as Fe-Pd,
Fe-Ni-Co-Ti, Fe-Pt, Co-Ni-Ga, Ni-Mn-Al or Co-Ni-Al. However, materials that enjoy the
greatest interest are with no doubts Ni-Mn-Ga alloys [18]. Optimizing the ratio between
Ni, Mn and Ga elements, we have gained field-induced strains up to 10%. In the following
section we use Ni-Mn-Ga to demonstrate the characteristic behaviour of FSMAs. We also
provide examples of experimental data for two particular alloys.

2.3 Characteristic behaviour of NiMnGA

The Ni-Mn-Ga compounds are commonly the most investigated ferromagnetic shape me-
mory alloys. Therefore, we use this material to describe qualitatively the characteristic
behaviour of FSMAs. Naturally, quantitative properties are strongly dependent on par-
ticular stoichiometry of the alloy. Thus, we provide experimental result for two concrete
alloys.

The austenitic phase of Ni-Mn-Ga alloy of stoichimetry close to Ni2MnGa adopts the
L21 Heusler structure, see figure 2.10(a). The high temperature phase of compounds clo-
ser to stoichiometric NiMnGa exhibits similar C1b structure (sometimes called the semi-
Heusler), illustrated in figure 2.10(b). The austenite is in a paramagnetic state above the
Curie temperature and in a ferromagnetic state below it. The Curie temperature has value
of 376K for the Ni2MnGa and it seems to be almost compositional-independent4. Contrary
to the Curie temperature, the martensitic start temperature Ms depends on the particular
elements’ratio. For the stoichimetric Ni2MnGa the value is 202K.

3For illustration let us mention the membrane actuator based on FSMA composite for synthetic jet
applications proposed in [37]

4The compositions Ni2+xMn1+yGa1+z with x+y+z = 0 were studied in [10]. Authors state that ”moving
away from the stoichiometric composition, a slight variation, a large reduction, and a marked enhance-
ment, were, respectively, observed for the Curie temperature, the magnetic anisotropy, and the structural
(martensitic–austenitic) transformation temperatures”.
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(a) L21 structure (b) C1b structure

Figure 2.4: Heusler and semi-Heusler structure. Stoichiometric Ni2MnGa and NiMnGa are
Heusler and semi-Heusler alloys. Thus they crystallize in L21 and C1b structure respecti-
vely. Unit cell of L21 structure consists of 4 intersecting f.c.c. sublattices with positions
(000), (1

2
1
2

1
2

1
2
) for Ni, (1

4
1
4

1
4

1
4
) for Mn and (3

4
3
4

3
4

3
4
) for Ga. The C1b structure misses the

second Ni sublattice. In case all atoms are of the same type, the structure would become
bcc. The figures are taken from [22].

Depending on composition, the martensitic phase can exhibit five-layered tetragonal
(5M), seven-layered orthorombic (7M) or non-modulated tetragonal (NM) morphology [13].
We consider the most common tetragonal martensite configuration. For illustration see 2.5.
Regarding the fact that the temperature Mf is below the Curie point, the material is in
a ferromagnetic state and so the martensitic variants are spontaneously magnetized. The
local magnetization in each variant is oriented in particular easy axis direction.

In figure 2.6 we schematically show the typical loading sequence of FSMA that ena-
bles us to measure the field-induced strain. The sample is cooled below Ms first, so the
martensitic phase transformation occurs. Then the external compressive stress is applied
in direction of x-axis. Since the mechanical loading causes shortening in x-direction, mar-
tensitic variant 1 is favoured (compare with 2.5). The stress is then reduced to desired test
level which remains constant during the whole test. The value of stress that suppresses
any variant reorientation is named the blocking stress.

Consequently, when the single variant state is accommodated, the fine micro-structure
of magnetic domains is developed. Magnezitation within domains is in accordance with
the easy axis of the variant 1. However, the domains with magnetization in direction [100]
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y

x

z

Cubic austenite

Three tetragonal 
martensitic variants

Figure 2.5: A simplified representation of FSMA crystal structure that is adopted in the
thesis. We consider a cubic austenite and three tetragonal martensitic variants. Arrows
denote directions of easy magnetization.

alternate with those with magnetization in opposite direction ([-100]). This happens in
order to minimize the magnetostatic energy. Since no magnetic field is applied, neither of
the domains is preferred and both occur in equal ratio. No macroscopic magnetization is
produced.

The magnetic field application in direction perpendicular to the compressive stress (y-
axis direction in the figure 2.6) gives rise to the variant 2 once a critical value of the field
intensity Hs(1,2)

y is reached. The variant 2 occurs in the microstructure because its easy axis
lies in the direction of the applied field. As Hy increases, the variant 2 grows at the expense
of variant 1 and so twin boundaries are created. Since the variant 2 is spatially oriented
in a different way than the variant 1, its growth naturally brings along macroscopic strain
of the sample. Further strengthening of the magnetic field decreases the volume fraction
of the variant 1 and from the critical value Hf(1,2)

y the variant 1 is completely eliminated.
Consequently, maximal field-induced strain is reached.

Characteristic strain vs. magnetic field curves for four different stress levels are plotted
in figure 2.11. Values Hs(1,2)

y and H
f(1,2)
y denote the start and the end of the process of

transition from the variant 1 to the variant 2. Similarly, Hs(2,1)
y and H

f(2,1)
y stand for

corresponding values for transition from the variant 2 to the variant 1. On the way from
one martensitic variant to another the material forms the twin structure. Depending on
the field intensity, the proportion between the variants is not balanced. Thus, non-zero
magnetization is observed. The schematic arrangement of the twinned martensite at field
level Hs(1,2)

y < Hy < H
f(1,2)
y is depicted in sector II. of the figure 2.6. The martensitic
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Figure 2.6: Characteristic loading sequence for field-induced strain production in FSMA.
The zoom-in sectors illustrate the arrangement of martensitic variants during the rise in
magnetic filed.

variants are separated by skew lines; vertical and horizontal lines denote the domain walls.
within each variant two domain types with mutually opposite magnetization are present.
As one can see, the transition from one variant to another might be also understood as a
motion of the twin boundaries.

Alloy Ni Mn Ga Ms Mf As Af Tc
Alloy A 49.2 29.6 21.2 304 301 308 311 373
Alloy B 52.1 27.3 20.6 405 385 375 395 390-400

Table 2.1: Composition and characteristic temperatures of the investigated Ni-Mn-Ga
alloys. Experimental data are taken from [35].

The tests were carried out at room temperature. The stress-strain curves for both alloys
are shown in figure 2.8. The minimal stress that evokes the twin boundaries motion in the
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Figure 2.7: Characteristic strain vs. magnetic field curves for FSMA. Four different stresses
σ1
xx < σ2

xx < σ3
xx < σ4

xx < σblock were applied.

alloy A is approximately 2 MPa. The twinning stress in the alloy B is of one order higher.
The optical image in polarized light of the twinning structure is depicted in 2.9. The image
was taken when the strain took value of 3% and 10% for alloy A and B respectively.

The results from measuring of the magnetic properties are plotted in figure 2.10. During
the measurements the samples were mechanically loaded in order to prevent martensitic
variant reorientation. As can assume from the results, in the alloy A the c-direction is the
easy axis of magnetization. The hard axis is a perpendicular plane to the c-axis. Contrary
to the first alloy, in the alloy B the c-axis is the hard axis. The saturation magnetization
of both alloys is approximately the same (µ0H = 0.6).

Finally, the figure 2.11 shows the magnetic field-induced strain of the alloy A. The
sample was prestressed to generate the single variant configuration. The c-axis of the
resulting variant was oriented in normal direction to the applied stress. The maximal



CHAPTER 2. SHAPE MEMORY MATERIALS 24

(a) Alloy A (b) Alloy B

Figure 2.8: Stress vs. strain diagram of Ni-Mn-Ga alloys. Experimental data are taken
from [35].

(a) Alloy A (b) Alloy B

Figure 2.9: Twinning structure of Ni-Mn-Ga alloys. Experimental data are taken from [35].

strain produced in the first cycle was 4.78% in the field 1.05 T.
The alloy B did not produce any field-induced strain (with respect to precision stated

by authors, it is lower than 2 · 10−2%). As authors explain, this happens due to the high
twinning stress.
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(a) Alloy A (b) Alloy B

Figure 2.10: Magnetization vs. field intensity diagram of Ni-Mn-Ga alloys. Experimental
data are taken from [35].

Figure 2.11: Characteristic strain vs. magnetic field curves for FSMA. Experimental data
are taken from [35].



Chapter 3

Continuum mechanics overview

In this chapter, we review some results derived in continuum mechanics, which are impor-
tant for the description of magnetostrictive material. In Section 3.1, we focus on a mathe-
matical representation of continuum body and its motion (kinematics). Section 3.2 deals
with the description of motion causer (stress) and its relation to the change of state (Ho-
oke’s law). In Section 3.3, the classical formulation of the linear elasticity problem is given
as well as derivation of minimum total potential energy principle. Finally in Section 4.7,
the existence of minimizing problem set in section 3.3 is presented. For comprehensive
theory of linear elasticity see [12] or [30].

3.1 Kinematics

In continuum mechanics, we model a body as a set of mass points identified with the part
of space Ω ⊂ R3 that it occupies in certain time. Let Ω be open, bounded set. When the
observed body is moving, the domain Ω is changing in time. Further more we assume that
the body is homogeneous and Ω has a Lipschitz boundary.

Definition 3.1.1. Let Ω be a domain. The boundary Γ of Ω is said to by Lipschitz if
there exist numbers α > 0 and β > 0 so that for ∀x0 ∈ Γ the frame of reference could be
translated and rotated to the point x0 such that the following is valid. If we denote

kn−1 = {x ∈ Rn, |xi| ≤ α for ∀ i = 1, ..., n− 1, }

then there exists a Lipschitz function a : Kn−1 → xn, such that a(x1, ..., xn−1) = xn. And
all x = (x1, ..., xn−1, xn) ≡ (x′, xn) having x′ ∈ Kn−1 and a(x′) < xn < a(x′) + β lay in Ω

26
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and all x = (x′, xn) having x′ ∈ Kn−1 and a(x′)− β < xn < a(x′) lay outside Ω̄.

Let us consider a one-to-one mapping χ : Ω→ R3 called configuration, assigning every
point X̃ ∈ Ω its position x in R3. Then the motion is one-parameter configuration class
χt : Ω→ R3, t ∈ R:

x = χt(X̃) = χ(X̃, t),

where t represents time.
Choosing one configuration as a referential one and denoting points X̃ with positions of

X in referential configuration (X = χ0(X̃), Ω = χ0(ΩX)), we may get a useful description
of motion (deformation) of the body

x = χ(X̃, t) = χ(χ−1
0 (X), t) = χ(X, t).

Then the one-to-one mapping x = χ(X, t) is called the deformation function with respect
to referential configuration and it is known as the Lagrange representation.

In this text, we will be interested in changes between referential configuration Ω and
current configuration Ω, but not in the way in which the change occurs. This means that
time evolution is not relevant for us and we may write x = χ(X, t) = χ(X).

In view of the description above, the local geometrical transition surrounding of an
arbitrary point of the body is defined by the deformation gradient

F = ∇χ = ∇x Fij =
∂χi
∂Xj

=
∂xi
∂Xj

.

To avoid the disappearance of the mass, we assume detF > 0. Thus, the deformation of
any linear element dX is given by dx = FdX, and for the square of the change of length
of this element we obtain

|dx|2 − |dX|2 = |FdX|2 − |dX|2 = dXFF TdX − dXdX = dX(FF T − 1)dX.

The term E = 1
2
(F TF − 1) is called the tensor of finite deformation. It is useful in

introducing field quantity u : Ω0 → Ω as u(X) = χ(X)−X describing the displacement of
points from referential to current configuration. Then ∇u = F − 1 and the tensor of finite
deformation looks as follows:

E =
1

2

[
(∇u+ 1)T (∇u+ 1)− 1

]
=

1

2

[
∇u+ (∇u)T + (∇u)T (∇u)

]
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If we restrict our attention to small deformations |∇u| << 1 and neglect the last term in
the last equation, we obtain the so-called small deformation tensor

e =
1

2

[
∇u+ (∇u)T

]
,

which also gives the precise meaning of the displacement gradient. Considering the decom-
position of the displacement gradient into the symmetric and antisymmetric parts, we see
that each transformation could be represented by composition of a pure deformation and
a pure rotation:

∇u =
1

2

[
∇u+ (∇u)T

]︸ ︷︷ ︸
deformation

+
1

2

[
∇u− (∇u)T

]︸ ︷︷ ︸
infiniterotation

.

3.2 Primal problem of linear elasticity formulation

The state of continuum subjected to an applied external force is well described by Cau-
chy’s stress tensor. Forces acting within the body could be divided into body forces (e.g.
gravitation) and contact forces (e.g. press, friction).

Let Ω0 ⊂ Ω with Lipschitz boundary Γ0, x ∈ Γ0 and ν be the outer normal to Γ0 in x.
The stress vector g(x, ν), g : Ω× S → R3, where S denotes unit sphere, characterizes the
density of contact forces acting from Ω− Ω0 to Ω̄0 in point x. Then the relation between
stress and outer normal is intended by Cauchy’s theorem.

Theorem 3.2.1. Let us assume g ∈ C(Ω̄×S). Then g(x, ν) is linearly dependent on ν in
x, i.e. there exists tensor τ such as

g(x, ν) = τ(x)ν(x)

for ∀x ∈ Ω0 and any ν(x) in x.

We use the Einstein summation convention. Proof of the statement can be found in
[30]. The following equilibrium equations shows important properties of stress tensor.

Theorem 3.2.2. Let us assume τ ∈ C1(Ω). Let f : Ω → R3 be a body force density. Let
x0 ∈ Ω and Ωh ⊂ Ω be a ball with Lipschitz boundary with center in x0 and radius h. Then

1. (force equilibrium)

∂τij
∂xj

(x0) + fi(x
0) = 0, for i = 1, 2, 3 and ∀x0 ∈ Ω (3.1)
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2. (force momentum equilibrium)

τij = τji, for ∀i, j and ∀x0 ∈ Ω (3.2)

Generally in mechanics, we are concerned with a position change (characterized by the
deformation tensor) of the body in relation to applied external forces (described by the
stress tensor). The response of one material to a loading may vary according to the measure
of applied stress. Therefore we distinguish plastic deformation, where the specimen stays
deformed after unloading and elastic deformation, whereas the body takes back its own
shape after removing the stress. In this text, we restrict our attention to the situation
when the stress depends linearly to the deformation of a specimen. This is usually called
the linear theory of elasticity. The assumption set above may be expressed by Hooke’s law

τij(x) = Cijkl(x)ekl(x) for i, j = 1, 2, 3. (3.3)

for ∀x ∈ Ω, where Cijkl ∈ R. In this equation, no absolute term occurs since we assume,
that if the deformation tensor equates to zero, then the stress vanishes as well. From
symmetry of τ and e, we obtain

Cijkl = Cjikl and Cijkl = Cijlk.

In addition to this, energy considerations give

Cijkl = Cklij.

Generally, there are 21 constants describing the material. This number could be cut down
for some materials, but for example copper sulphate has 21 independent constants.

Definition 3.2.3. The material is said to be homogenous, if Cijkl(x) = Cijkl for ∀x ∈ Ω.
The material is said to be isotropic in x ∈ Ω, if Cijkl(x) is independent of the choice of
coordinates.

For isotropic materials the Generalized Hooke’s law holds:

τ(x) = λTr(e(x)) + 2µe(x) (3.4)
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or written in components
τij(x) = λeijδij + 2µeij(x), (3.5)

where λ, µ are so-called Lame’s constants.

Remark 3.2.4. λ = C1122, µ = C1212.

If we assume u ∈ C2(Ω), F ∈ C1(Ω̄) and that the equilibrium equations are satisfied in
Ω, we may then formulate the linear elasticity primal problem. Substituting the equation
into the force equilibrium from the Generalized Hooke’s law, we obtain

∂

∂xi
(λeii) +

∂

∂xi

(
µ
∂ui
∂xj

)
+

∂

∂xi

(
µ
∂uj
∂xi

)
+ fi = 0 (3.6)

(λ+ µ)
∂eii
∂xi

+ µ∆ui + fi = 0 (3.7)

for i = 1,2,3, where we used the homogeneity of the body. The two sets of equations are
the so-called general Lame’s equations and Lame’s equations for homogenous and isotropic
bodies.

Definition 3.2.5. Let Ω be a domain with Lipschitz boundary Γ. Let Γ1, Γ2 be disjoint
and open in Γ such that Γ = Γ1 ∪ Γ2 ∪ Γ̃, where Γ̃ has zero surface measure. There are
contact forces T : Γ1 → R3 given on Γ1 and boundary displacement u0 : Γ2 → R3 given on
Γ2. λ, µ are Lame’s constants. Then the primal problem of the linear elasticity is to find

u ∈ C1(Ω ∪ Γ1) ∩ C(Ω ∪ Γ2) ∩ C2(Ω)

satisfying (2.4) and
τijνj = gi on Γ1, (3.8)

u = u0 on Γ2, (3.9)

where g ∈ C(Γ1) and u0 ∈ C(Γ2).

The boundary condition (2.4) can be expressed using generalized Hooke’s law

λeiiνi + 2µeijνj = gi on Γ1. (3.10)
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3.3 The minimum free energy principle

The equilibrium equations presented in Theorem (3.2.2) enable us to describe the stability
of any part of the body. These differential equations holds for every point of the specimen
and have a local character. The equilibrium can also be described by integral relations
using the energy balance or a variational principle for energy. This way of characterization
turns out to be very useful for mathematical analysis and approximative solutions.

Let us consider τ(x) and u(x) satisfying conditions (3.8), (3.9) and the force equilibrium
equation. We assume, that τ(x) and u(x) are smooth enough so that the Green’s Theorem
is valid and all differential relations and boundary conditions make sense.

If we then rewrite (3.1) in integral formulation and apply Green’s Theorem, we obtain∫
Ω

τ · e(u) dx =

∫
Ω

fu dx+

∫
Γ1

gu dS +

∫
Γ2

νT τu0 dS. (3.11)

The equation above can be interpreted in such a way, that (virtual) work of inner forces
equates to the (virtual) work of outer (body and contact) forces. This is the so-called
virtual work principle.

Furthermore, we may consider τ0 and fields of displacement u0, u0 + δu all complying
with the primal problem of linear elasticity. If we put these into (3.11) and deduct the
equations from each other, we get∫

Ω

τ0 · e(δu) dx =

∫
Ω

fδu dx+

∫
Γ1

gδu dS. (3.12)

We reflect δe(u) = e(δu), where δu stands for variation of u (virtual displacement). Re-
lation (3.12) expresses the virtual displacement principle.

For deriving the minimum energy principle, it is enough to use Hooke’s law for anisot-
ropic material (3.3) and substitute it into the virtual displacement principle. We presume
that C is positive definite, which is to say, there exist c0 > 0 such that

〈Ce(u), e(u)〉 ≥ c0e(u) · e(u),

∀e : e = eT . Let τ0, u0 satisfy the primal problem of linear elasticity. Since

1

2
δ 〈Ce(u0), e(u0)〉 =

1

2

d

dt
〈Ce(u0 + tδ), e(u0 + tδu)〉 |t=0 = 〈Ce(u0), e(δu)〉 ,
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where 〈, 〉 stands for the dot product, we obtain

1

2

∫
Ω

〈Ce(u0), δe(u)〉 dx−
∫

Ω

fδu dx−
∫

Γ1

gδu dS = 0,

which can be rewritten as

δ

{
1

2

∫
Ω

〈Ce(u), e(u)〉 dx−
∫

Ω

fu dx−
∫

Γ1

gu dS

}
u=u0

= 0. (3.13)

Let us denote the term in the vinculums I(u) and call it the potential energy of an elastic
body. It is obvious that for u = u0, the functional I(u) satisfies Euler’s necessary condition
for being the extremizer. For proof that I(u0) is minimizer see [30].

The minimum energy minimizer could be then formulated. If u0 is the solution of the
linear elasticity primal problem then u0 gives

I(u) =
1

2

∫
Ω

〈Ce(u), e(u)〉 dx−
∫

Ω

fu dx−
∫

Γ1

gu dS,

the lowest value amongst u complying with (3.8), (3.8). At this point, the question of
existence of such a minimizer arises. We will return to this matter later in Chapter 4 .



Chapter 4

Magnetism

4.1 Introduction

In the previous chapter, we built up a formalism in order to describe the behavior of a
continuous body subjected to external body and contact forces, and we justified the energy
approach to the problem. In this chapter, we develop our concept considering magnetically
active body. We review basics of magnetism as well as the physical framework of such
phenomena.

Magnetism describes the response of the material to the applied magnetic field. All
materials show some degree of magnetic activity as a reply to an external field. Some
materials exhibit a magnetic field attracted to an applied field (paramagnetic materials),
however some produce a field that is repulsed by an external field (diamagnetic materi-
als). Ferromagnetic materials are those which exhibit their own magnetic field without
any external magnetic activity. The magnetic properties are strongly temperature depen-
dant, so it is also important to examine how characteristic values behave with respect to
temperature.

On the microscopic level magnetism may arise from two different sources:

• Localized magnetic moments. The carrier of magnetism is a spin or an angular
momentum. This type of magnetism is usual for free atoms, molecules or single
ions in solids. In metallic solids, the localized magnetic moments are present within
f -electrons of the rare-earths.

• Itinerant magnetic moments. The magnetic properties are carried by conducting
(itinerant) electrons which can travel through the material and are present in the

33
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metallic solids.

It is a feature of nature to keep things complicated and these two phenomena are usually
in some degree combined. However, in this text we would like to examine basic magnetic
principles and so we will treat them separately. Futher and more detailed information may
be found in e.g. [29], [2] or [19].

Diamagnetic and paramagnetic responses of a material to an applied magnetic field are
explained in section 4.2. In section 4.3 we consider the different types of magnetic inter-
action, which play the key role in producing the long range order of solids. In section 4.4
two physical models of ferromagnetism are introduced, whereas only localized magnetic
moments are taken into consideration. The presence of conducting electrons is discussed
in section 4.5 as well as the principle that gives rise to the magnetic properties. Finally,
in section 4.6 we introduce the continuous approximation, which will be used in further
sections. Within the last section we present the term of the free energy of a magnetic
material. Moreover, we introduce the direct proof of the existence of energy minimizer.

4.2 Diamagnetism and Paramagnetism

Let us consider a single atom with Z electrons described by the hamiltonian Ĥ0

Ĥ0 =
Z∑
i=1

(
p2
i

2me

+ Vi

)
.

The sumation index i runs over all electrons in the atom with kinetic energy p2i
2me

and
potential Vi.

We expose the atom to an external magnetic field B given by

B = rotA,

where A stands for the magnetic vector potential, which we choose (according to the fact
that A is not uniquely determinated) such that A = 1

2
(B × r). The hamiltonian of the
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system is then changed into

Ĥ =
Z∑
i=1

(
[pi + eA(ri)]

2

2me

+ Vi

)
+ gµBB · S

=
Z∑
i=1

(
p2
i

2me

+ Vi

)
+ µB(L+ gS) ·B +

e2

8me

Z∑
i=1

(B × ri)2

= Ĥ0 + µB(L+ gS) ·B +
e2

8me

Z∑
i=1

(B × ri)2 , (4.1)

where L and S stand for the orbital angular momentum and the spin angular momentum
and g is known as the g-factor. The second term of 4.1, which is usually the dominant
perturbation to the original hamiltonian Ĥ0, is called the Paramagnetic term. The third
one is a consequence of the diamagnetic moment. We discuss both contributions in more
detail.

Diamagnetism

We say that a material is diamagnetic if it exhibits weak, negative susceptibility. That
is to say, the applied magnetic field generates a conversely oriented magnetic moment
within the material. To illustrate such an effect let us consider an atom with completely
filled electronic shells so that the paramagnetic term in equation 4.1 may be neglected.
Considering the magnetic field B oriented parallely to the z axis implies (B × ri)

2 =

B2(x2
i + y2

i ) and the first-order correction of the ground state energy is

∆E0 =
e2B2

8me

Z∑
i=1

〈
0|x2

i + y2
i |0
〉

=
e2B2

12me

Z∑
i=1

〈
0|r2

i |0
〉
.

For the last equation we assume spherical symmetry of the atom1 〈x2
i 〉 = 〈y2

i 〉 = 1
3
〈r2
i 〉.

Let us assume a solid formed by N ions by Z electrons occupying volume V. Using termo-
dynamic results we may evaluate the magnetization as

M = −
(
∂F

∂B

)
T,V

= −N
V

∂∆E0

∂B
= −N

V

e2B

6me

Z∑
i=1

〈
r2
i

〉
,

1Such a presumption is eligible since the total angular momentum J is zero.
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where F stands for the Helmholz free energy. Furthermore, we pressume2 ∂M
∂H
≈ µ0

∂M
∂B

.
Hence we arrive for the diamagnetic susceptibility with

χ = −N
V

e2µ0

6me

Z∑
i=1

〈
r2
i

〉
.

This is a classical Langevin’s result. The effect of diamagnetism (the negativ contribution
to the susceptibility) is present in all materials, however it is considered as a very weak
effect and therefore can be neglected or taken as a tiny correction to other dominant effects.

Paramagnetism

Compared to Diamagnetism, Paramagnetic materials are those with positive susceptibility.
So that the applied magnetic field evokes magnetization aligned parallely with the magnetic
field direction. Paramagnetism corresponds to the presence of unpaired electrons within the
atoms, by another name presence of non-zero magnetic moments (both orbital and spin).
When no magnetic field is applied, these moments are randomly oriented since neighbouring
atoms interact weakly and may be considered as independent. The application of an
external field aligns them, the level of lining up (and so the induced magnetization) depends
on the strength of the applied magnetic field.

The magnetic moment on an atom is measured by total angular momentum J , which
is defined as a sum of the orbital angular momentum L and the spin angular momentum S

J = L+ S.

Throughout this text, we measure these quantities in multiples of ~. One would naturally
anticipate that the induced magnetization of the paramagnetic material is directly propor-
tional to the magnitude of the applied field and inversly proportional to the temperature
which supports the randomization of spins within the material. We wish to examine this
crucial behaviour as well as temperature dependance of the paramagnetic susceptibility.

We consider a quantum mechanical system with magnetic moments J of any integer or
half-integer value. Without loss of generity, we assume the applied magnetic field to be
parallel with z axis. We will compute 〈mJ〉 the average value of the z component of J ,

2For small fields, χ << 1,so B ≈ µ0H
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which determines the magnetization. The partition function is given by

Z(B) =
J∑

mJ=−J

exp (mJgJµB/kBT ), (4.2)

where µB denotes the Bohr magneton, kB the Bolzman constant a gJ is the appropriate
g-factor. If we substitute x = gJµBB/kBT , we may write (according to Bolzman statistics)

〈mJ〉 =

∑J
mJ=−J mJ exp (mJx)∑J
mJ=−J exp (mJx)

=
1

Z

∂Z(B)

∂x
.

Considering that F = −nkB lnZ (n stands for the concentration of magnetic moments)
and M = −

(
∂F
∂B

)
T,V

, we may write

M = ngJµB 〈mJ〉 =
ngJµB
Z

∂Z

∂B

∂B

∂x
= nkBT

∂ lnZ

∂B
. (4.3)

It is easy to compute the partition function since it means to tot up the geometric pro-
gression. Using cyclometric functions we arrive at

Z =
sinh((2J + 1)x/2)

sinh(x/2)
.

So if we perform the computations of 4.3 and resubstitute y = xJ = ngJµBJB/kBT , we
find that

M = MsBJ(y),

where the saturation magnetization Ms is

Ms = ngJµBJ

and BJ(y) is known as Brillouin function given by

BJ(y) =
2J + 1

2J
coth

(
2J + 1

2J
y

)
− 1

2J
coth

( y

2J

)
. (4.4)

The course of the Brillouin function for several values may be found in figure 4.1.
Let us assume that y << 1, which corresponds to very low temperatures or very weak
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Figure 4.1: The magnetization of the paramagnetic material with magnetic moment J is
governed by Brillouin function BJ(y), which is plotted for several values of J .

fields. Then we may expand BJ(y) into Taylor series

BJ(y) =
(J + 1)y

3J
+O(y3).

Hence for paramagnetic susceptibility holds

χ =
M

H
≈ µ0

M

B
=
nµ0µ

2
eff

3kBT
, (4.5)

where µeff denotes the effective moment

µeff = gJµB
√
J(J + 1).

The equation 4.5 is known as the Curie Law.

4.3 Interactions

The aim of our interest is to describe magnetic ordering within the material. In order to
obtain any magnetic structure, the means of ”communication” between individual magnetic
moments (that all together induce magnetization) needs to be introduced. Such a commu-
nication between the magnetic moments is mediated by different magnetic interaction and
it forms a crucial condition for presence of any long range order.

Magnetic dipolar interaction

The magnetic dipolar interaction is a classical mediator of the interplay of two dipoles.
Let us consider two magnetic dipoles µ1 and µ2 which are separated by vector r. Then the
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potential energy of such a system is

E =
µ0

4πr3

(
µ1 · µ2 −

3

r2
(µ1 · r)(µ2 · r)

)
.

To estimate the importance of this interaction, notice that we are dealing with moments
of magnitude degree of |µ| ≈ 1µB separated by distance of |r| ≈ 1Å. Such interaction is
represented by energy of 10−23J which is equivalent to about 1K in temperature. However,
materials usually order at higher temperature. Hence the effect of the magnetic dipolar
interaction is minor and may be neglected.

Exchange interaction

The exchange interaction is the key effect thatenables the rise of magnetism. It is a purely
quantum mechanism contributing to the total potential energy of the body with a spin-
spin interaction between every pair of particles with non-zero spin. In fact, the exchange
interaction reflects fact that the wave function of the system of two undistinguishable par-
ticals is subjected to exchange symmetry, it is to say the wave function is either symmetric
(bosons) or antisymmetric (fermions, liable to Pauli exclusive principle).

To demostrate such an effect, let us consider two electrons placed at r1 and r2. The
wave function of the joint state is a product of the two single-state wave functions ψa(r1)

and ψb(r2)

Ψ = ψa(r1)ψb(r2). (4.6)

However, the equation 4.6 does not respect the exchange symmetry. Since we are dealing
with electrons, only antisymmetric wave function is allowed. So the spin part of the wave
function has to be either antisymmetric χS for the case of symmetric spatial part, or
symmetric for the antisymmetric spatial part χT

ΨS =
1√
2

[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)]χS (4.7)

ΨT =
1√
2

[ψa(r1)ψb(r2)− ψa(r2)ψb(r1)]χT .. (4.8)

The situation of 4.7 corresponds to a singlet state and 4.8 to a triplet state. The energies
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of these two states are

ES =

∫
Ψ∗SĤΨS dr1 dr2

ET =

∫
Ψ∗T ĤΨT dr1 dr2,

where we suppose the normalization of the wave function. So the energy difference is

ES − ET = 2

∫
ψa(r1)∗ψb(r2)∗Ĥψa(r2)ψb(r1) dr1 dr2 = 2J. (4.9)

The equation is also a definition of the value J , which is usually called the exchange
integral. The eigenvalues of the joint operator Ŝ1Ŝ2 are −3

4
(singlet) and 1

4
(triplet), hence

the hamiltonian can be rewritten as ’effective hamiltonian’

Ĥ =
1

4
(ES + 3ET )− (ES − ET )Ŝ1Ŝ2. (4.10)

The first part of 4.10 is constant, however, the second part is function of the spin. Using
the exchange integral we may write the spin contribution to the hamiltonian of the system

Ĥspin = −2J Ŝ1Ŝ2.

As J > 0 the triplet state with the total spin S = 1 is preferred, however if J < 0 the
singlet state with the total spin S = 0 is favoured. Naturally in many electron systems the
situation is more complicated, however there is no interaction among three particles (they
always interact in pairs). Therefore Heisenberg proposed in his model the Hamiltonian of
the form

Ĥ = −
∑
ij

JijŜiŜj, (4.11)

whereas the summation runs over all pairs of the interacting spins. Jij stands for the
exchange integral of the ith and jth spin.

There are different kinds of the exchange interaction. When there is interaction between
electrons of the neighbouring magnetic atoms and no intermediator is needed, we talk about
direct interaction. However, this kind of interaction is not of high importance for magnetic
properties, as it is subjected to sufficient overlap of neighbouring electron orbitals (e.g. in
rare earths the 4f electrons are very localized and even in transition metals the contribution
of the direct exchange interaction is probably not the key effect). Another kind of exchange
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interaction is usual for many ionic solids, such as MnO, MnF2. So-called superexchange
is the exchange interaction between non-neighbouring magnetic ions mediated by non-
magnetic ion placed in between. In metals the exchanged interaction is often mediated by
conducting electrons (it is usually called RKKY interaction). The ferromagnetic exchange
interaction may occur within some oxides as the magnetic ions exhibit mixed valency. The
more detailed analysis of different types of the exchange interaction is beyond the focus of
this work. To find more see [2].

4.4 Ferromagnetism of the localized moments

We say that a material is ferromagnetic if it exhibits spontanoeus magnetization, even
when no external magnetic field is present. As mentioned in the introduction, there are
two phenomena that give rise to magnetic behaviour. Within this section we explain
ferromagnetism as a global alignment of the (localized) atomic moments.

The level of spontaneous magnetization naturally depends on the temperature. With
increasing temperature the thermal motion of the magnetic dipoles competes with the ten-
dency of dipoles to align (due to the exchange interaction). When the temperature reaches
a certain point so-called Curie temperature, a second-order phase transition occurs and the
spontaneous magnetization vanishes, however, the material still responds paramagnetically
to the external field.

Material TC magnetic moment
[K] [µB/ formula unit]

Fe 1043 2.22
Co 1394 1.715
Ni 631 0.605
Gd 289 7.5

MnSb 587 3.5
EuO 70 6.9

Table 4.1: The common ferromagnetic materials and their properties

Some common ferromagnetic materials as well as their magnetic properties are given
in table 4.1.

We introduce two models of ferromagnetism of the localized moments. The first one,
Weiss model, is in a way generalization of the paramagnetism by using the concept of mean
field. The second one, Heisenberg model, then recognizes that the mean field is in reality
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consequence of the exchange interaction.

Weiss molecular field model

In order to explain the spontaneous magnetization within the material, Pierre Weiss pres-
sumed (without knowing any physical interpretation) the presence of the internal magnetic
field, the so-called molecular field Bmf . Since the molecular field is a measure of system
magnetization, we may assume

Bmf = λM,

where λ > 0 is a molecular field constant. The problem can be now treated as a paramag-
netic system placed in a magnetic field B +Bmf . Hence, repeating the procedure from the
section 4.2, we have to solve simultaneously equations

M

Ms

= BJ(ỹ) =
2J + 1

2J
coth

(
2J + 1

2J
ỹ

)
− 1

2J
coth

(
ỹ

2J

)
,

ỹ =
gJµBJ(B + λM)

kBT
. (4.12)

For ỹ << 1 we may use Taylor series for Brillouin function and write again

BJ(y) =
(J + 1)ỹ

3J
+O(ỹ3).

If we consider zero external field B = 0, the expression for the Curie temperature (the
temperature at which M vanishes) may be derived. We seek for non-trivial intersection
point of the plot of BJ(ỹ) with M(ỹ), which is given in 4.12. Hence

M

Ms

=
(J + 1)

3J

JgJµBλM

kBT
(4.13)

=⇒ TC =
(J + 1)gJµBλMs

3kB
=
nλµ2

eff

3kB
. (4.14)

Magnetization is a continuous function, positive for T < TC and identically zero for T > TC

with a jump in the first derivative at point T = TC . Therefore the transition between
ferromagnetic and paramagnetic state is the second-order phase transition. When a weak
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3 field B is applied, the magnetization of the material follows the equation

M

Ms

=
(J + 1)

3J

JgJµB
kBT

(B + λM) ,

=
(J + 1)

3J

JgJµB
kBT

(
B +

3kBTcM

(J + 1)gJµBMs

)
.

After several manipulations we arrive at

M

Ms

(
1− T

TC

)
=

(J + 1)gJµB
3kBT

B,

and so for the magnetic susceptibility stands

χ =
C

T − TC
where C =

(J + 1)gJµBMs

3kB
. (4.15)

The equation 4.15 is known as the Curie-Weiss law.

Heisenberg model

Another model of magnetic behaviour of solids is the (nearest neighbour) Heisenberg mo-
del. In contrast with Weiss model, where the interaction is approximated by molecular
(mean) field, Heisenberg considers pairwise interaction between spins. With respect to the
exchange interaction the model introduces a contribution to the hamiltonian of the system

Ĥ = −J
∑
j,δ

ŜjŜδ − gJµB
∑
l

HextŜj. (4.16)

The index j runs over all spin positions and δ denotes the nearest spins placed in δ-
neighbourhood of the jth spin.

The eigenstates of the hamiltonian describe the excitation of the whole spin system.
These excitations are called spin waves or magnons. At temperature 0K all spins are (due
to the exchange interaction) perfectly aligned in direction of magnetization. As the tempe-
rature increases, excitation of the system occurs. The excitation is in fact a perturbation
of the perfect order which decreases the net magnetization. It is possible to determine the
magnon dispersion relation from the Heisenberg model and so calculate the reduction of

3so that the assumtion ỹ << 1 is still satisfied
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the spontaneous magnetization at low temperature.
To demonstrate this, we use semiclassical approach to derive the magnon dispersion

relation in one-dimension. Let us consider one-dimensional spin chain in no external field.
Each spin has two neighbours in distance δ, so the hamiltonian reduces to

Ĥ = −2J
∑
j

ŜjŜJ+1

We calculate the time dependance of
〈
Ŝj
〉

d

dt

〈
Ŝj
〉

=
1

i~

〈[
Ŝj, Ĥ

]〉
= −2J

i~

〈
[Ŝj, ...Ŝj−1Ŝj + ŜjŜj+1 + ...]

〉
= −2J

i~

〈
[Ŝj, Ŝj−1Ŝj] + [Ŝj, ŜjŜj+1]

〉
=

2J

~

〈
Ŝj × (Ŝj−1 + Ŝj+1)

〉
. (4.17)

We will treat spin as a classical vector of magnitude S. At the ground state all spins are
aligned in z direction. If we assume that the amplitude of excitation is sufficiently small
(Sxj , S

y
j << S, Szj ≈ S), we may linearize equation 4.17

dSxj
dt

=
2J

~
(2Syj − S

y
j−1 − S

y
j+1)

dSyj
dt

=
2J

~
(2Sxj − Sxj−1 − Sxj+1)

dSzj
dt

= 0.

We search for a solution in form of normal mode,i.e. we use ansatz

Sxj = A exp[i(kjδ − ωt)] Syj = B exp[i(kjδ − ωt)],

where k stands for the wave vector. By instituting into linearized equations and from
demanding solvability of the resulting equation system, we obtain

~ω = 4JS (1− cos(kδ)) ,

which represents the dispersion relation for the one-dimensional case. For the illustration
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see figure 4.4.

Figure 4.2: The spin wave in a line of spins. The perspective view (upper) and the view
from above (lower).

In general the dispersion relation takes form

~ω = 2JSm

(
1− 1

m

∑
δ

cos(kδ)

)
,

where m denotes the number of the closest neighbours. Since we are concerned with low
energy excitations, we may use Taylor series for cosine

~ω = 2JSδ2k2 ∝ k2. (4.18)

To calculate Curie temperature, the fact that magnons are bosons needs to be taken into
consideration. Therefore the Bose-Einstein statistics has to be used. In three dimensions,
since

dω

dk
=

4JSδ2k

~
∝ ω

1
2 ,

the density of states is given by

g(ω) dω ∝ ω
1
2 dω.

Therefore the number of magnons is

n =

∫ ∞
0

g(ω)

exp(~ω/kBT )− 1
dω =

(
kBT

~

) 3
2
∫ ∞

0

x
1
2

exp(x)− 1
dx ∝ T

3
2 .

Consider that each magnon mode is a delocalized single reversed spin and reduces the total
magnetization by factor S = 1. Then the reduction of spontaneous magnetization at low
temperature is

M(0)−M(T )

M(0)
∝ T

3
2 . (4.19)
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The equation 4.19 is known as Bloch T
3
2 law.

4.5 Magnetism of the itinerant electrons

Till now, we have been concerned with the localized magnetic moments, however, regarding
metals the origin of magnetism is different. In metals the magnetic moments are carried
by conducting electrons which can freely travel within the material. These are usually
known as itinerant electrons. We approximate the behaviour of the itinerant electrons by
the simplest model, the free electron model, and we introduce mechanisms that give rise
to the paramagnetic and ferromagnetic behaviour.

The free electron model

In the free electron model, the electrons are supposed to behave as molecules of the ideal
gass. That is to say electron-electron interactions are neglected as well as the periodical
potential due to the lattice. With no loss of generality, we asssume that the electrons are
placed in a cube of volume V = L3. The electrons occupy states up to the Fermi wave
vector kF . States in the k-space are separated by 2π/L. The number of states between k
and k+ dk is equal to proportion of the volume of a spherical shell of radious r and width
dk and volume corresponding to the one state in k-space. Since each state can be occupied
by two electrons, the state density is given by

g(k) dk = 2
4πk2

(2π/L)3
dk =

V k2

π2
dk.

At temperature 0K the electrons fill up the states up to kF so for the numer of electrons
implies

N =

∫ kF

0

g(k) dk =
V k3

F

3π2
. (4.20)

The Fermi energy is given by

EF =
~2k2

F

2me

.

Since the energy is proportional to the square of the wave vector i.e. E ∝ k2, the states
density is proportional to

√
E. That is to say

g(E) = dn dE ∝
√
E,
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where we defined n = N/V as the electron density. By substituting in the equation 4.20
we obtain

n =

∫ EF

0

g(E) dE ∝ E
3
2
F

and therefore for the state density at Fermi energy stands

g(EF ) =

(
dn

dE

)
E=EF

=
3

2

n

EF
=
mekF
(π~)2

.

The last equation holds due to the 4.20 and 4.5.
If the temperature is higher than zero, Fermi-Dirac distribution needs to be considered.

The density stays unchanged, however the occupancy of each state is modified by Fermi
function f(E)

f(E) =
1

e(E−µ)/kBT + 1
,

where µ stands for the chemical potential. The Fermi function results from Pauli exclusion
principle, which holds for electrons. At T = 0 the function f(E) is the Haeviside function
with a step at µ. With increasing temperature the step smooths up. Usually, for most
metals the Fermi function is very close to a step function at wide range of temperatures and
we talk about degenerated limit. However, one can show that for large energies E >> kBT

the Fermi-Dirac distribution meets the Maxwell-Boltzmann form e(E−µ)/kBT , that is called
the non-degenerated limit. The Fermi function for the various temperatures is plotted at
figure4.3(a).

At zero temperature the Fermi energy is the highest energy occupied by an electron.
That means ∫ EF

0

f(E)g(E) dE = n.

Function f(E)g(E) is plotted at figure 4.3(c). At T = 0 the Fermi energy equates with
the chemical potential. If the temperature is increased, the two values slightly differ.

Pauli paramagnetism

Within the metal materials each k-state is double occupied (spin up and down). When
the external magnetic field is applied, the energy of the electrons increases or decreases
according to the spin direction. This effect causes a paramagnetic susceptibility and is
known as Pauli paramagnetism.

To derive the susceptibility, we neglect the orbital contribution. The electron density
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Figure 4.3: Fermi-Dirac distribution

for each spin orientation is

n↑ =
1

2

∫ ∞
0

g(E + µBB)f(E) dE

n↓ =
1

2

∫ ∞
0

g(E − µBB)f(E) dE

Considering small external field B, the magnetization of the material is given by M =
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µB(n↑ − n↓). Hence using the mean value theorem and the integration by parts, we get

M ≈ µ2
BB

∫ ∞
0

dg

dE
f(E) dE = µ2

BB

(
[g(E)f(E)]∞0 −

∫ ∞
0

df

dE
g(E) dE

)
.

If we consider that g(0) = 0 and lim
E→∞

f(E) = 0, the border term vanishes and we arrive at

M ≈ µ2
BB

∫ ∞
0

(
− df

dE

)
g(E) dE.

In order to handle the diferential of the Fermi function, we consider two limits.
At T = 0 (the degenerate limit), the diferential of Haeviside function is a delta function

at point EF . That is to say

− df

dE
= δEF

.

Hence we obtain
M = µ2

BBg(EF ) and χP = µ0µ
2
Bg(EF ).

However, in the non-degenerate limit f(E) ≈ e(E−µ)/kBT which yields to

M =
µ2
BB

kBT

∫ ∞
0

f(E)g(E) dE =
nµ2

BB

kBT

and so
χ =

nµ0µ
2
B

kBT
. (4.21)

One can see that 4.21 is in good agreement with 4.5. For most metals EF takes the value of
a few eV , therefore the degenerated limit holds well at all temperatures below the melting
point.

Itinerant ferromagnetism

In the previous model of ferromagnetism we assume presence of the molecular field λM

that affects all spins. Regarding the Pauli paramagnetism χ this field may magnetize the
electron gas in the metals. However the resulting magnetisation M can be in return the
causer of the molecular field. Such ”chicken-egg” mechanism may give rise to spontaneous
ferromagnetism if both λ and χ? are large enough. The key criterion is whether the
ferromagnetic state is favourable with the view of energy.

To examine this, let us assume that no magnetic field is applied and let us virtually



CHAPTER 4. MAGNETISM 50

g(E)g(E)

E

EF

Figure 4.4: States-density of spin-up and spin-down bands showing spontaneous energy
splitting.

remove small amount of electrons at the Fermi energy level from the spin-down band to
the spin-up band. More precisely, we take spin-down electrons from the energy range
[EF , EF − δE], flip their spins and put them into the spin-up band to the energy range
[EF , EF + δE] as illustrated in Figure 4.4. The electron rearrangement causes increase
of total energy since the kinetic energy of the electrons grows. On the other hand the
interaction between resulting magnetization and the molecular field produces reduction of
the potential energy. Consider that the number of moved electrons is g(EF )δE/2 and the
energy growth is δE, then the change of the total kinetic energy is given by

∆Ek =
1

2
g(EF )(δE)2.

The developed magnetization is M = µB(n↑ − n↓), where spin-up and spin-down densities
are

n↑ =
1

2
(n+ g(EF )δE)

n↓ =
1

2
(n− g(EF )δE).
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The total change of the molecular field energy is

∆Ep = −
∫ M

0

µ0(λM ′) dM ′ = −∆12µ0λM
2

= −1

2
µ0µ

2
Bλ(n↑ − n↓)2 = −1

2
U (g(EF )δE)2 . (4.22)

In the last identity we substitute U = µ0µ
2
Bλ, which is a measure of Coulomb energy.

Hence the total change of energy is

∆E =
1

2
g(EF )(δE)2

(
1− U (g(EF )δE)2) .

So one can see that the spontaneous ferromagnetism is favourable if ∆E < 0. That is to
say

Ug(EF ) ≥ 1, (4.23)

which is the famous Stoner criterion. The presence of the spontaneous ferromagnetization
requires strong Coulomb effects and large state density at the Fermi energy. Let us remark
that the situation may be interesting even if the Stoner criterion is not satisfied, since the
magnetic susceptibility is influenced. It may be derived that the presence of the Coulomb
interaction increases the Pauli paramagnetic susceptibility as follows

χ =
χP

1− Ug(EF )
.

This is known as the Stoner enhancement of χP .

As one can see, the describtion of magnetism is rather complicted. However, we wish to
develop medel that represent material as a macroscopic object. That is to say, we are not
interested in behaviour of particular magnetic dipols. We are fully satisfied with describtion
via mean values of relevant physical quantities. Thus, we can step back from the atomic
level an take advanatege of the physical model developed by Landau and Lifschitz ussually
called micromagnetism. It is based on a variational principle stating that those states are
preferred which minimize the total stored energy functional. Such an approach is very
convenient since it is coherent with variational principle introduced in section 3.3. The
concept is discussed in the following section.
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4.6 Continuum approximation for magnetism

Problem formulation

We study behavior of a ferromagnetic body placed in an external magnetic field H. We
assume a rigid, homogeneous body identified with the part of space Ω ⊂ R3 that it occupies.
Let Ω be an open, bounded set with a Lipschitz boundary. The state of a ferromagnetic
body at a fixed temperature below the Curie point is described by vector field called
the magnetization m: Ω → R3, which corresponds to volume density of the macroscopic
magnetic moment. This means that m generates a magnetic field u at all points of space.
We assume that a ferromagnetic body could be locally saturated, i.e. there exists a value
ms, so that

0 < |m(x)| = ms almost everywere in Ω, (4.24)

so that a specimen can reach a demagnetized state only in the sense of mean value. The
value ms is called saturation magnetization and in general, is a function of temperature.
For the purposes of this text put ms = 1. We suppose that m(x) ∈ L2(Ω,R3).

The total potential energy of a ferromagnetic body exposed to an external magnetic
field is composed from several contributions originating from the microscopic structure of
the specimen and the properties of applied outer field. The respective components are
called exchange energy, anisotropy energy, interaction energy and magnetostatic energy.

The principle of magnetism is the existence of current loops of electrons ”orbiting”
about a nucleus and the existence of electron spin. The exchange interaction is a quantum
mechanical effect contributing to the total potential energy of the body with a spin-spin
interaction between every pair of particles having non-zero spin. There is no classical
analogy for such an effect in classical mechanics. The exchange interaction contributes to
the Hamiltonian of the system by term

Hex = −
∑
i,j

JijSi · Sj.

where Jij is the exchange integral and Si, Sj stand for the spin operators. The summation
runs over all couples (i, j) of particles taking part in the spin-spin interaction. Computation
of J is based on wave function properties of the concerned particles. For more detailed
information see [14]. Hence Jij decreases rapidly with an increasing distance of particles
we may write J instead of Jij. If we substitute the spin operators with vectors and rewrite
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the dot product, we obtain the term for the exchange energy

Eex = −JS2
∑

cosϕij

where ϕ denotes the angle between the concerned vectors. Since only small values of ϕ are
supposed, the Taylor’s series for the cosine can be used. After shifting the zero value of
energy (in order to remove any absolute term), we obtain

Eex = JS2
∑

ϕ2
ij.

Notice that we take each interacting pair only once. If considered

|ϕij| ≈ |mi −mj| ≈ |(rij · ∇)m|,

where rij stands for position vector from the lattice point i to j, then

Eex = JS2
∑
i

∑
rij

|(rij · ∇)m|2.

Passing from the first summation to integration over the ferromagnetic body, the term for
the exchange energy is given by

Eex = ε

∫
Ω

|∇m(x)2 dx, (4.25)

where ε > 0. The exchange energy represents the ability for a specimen to create domain
structure (regions of uniform magnetization), by penalizing spatial changes of m. To see
this, consider the Pauli Exclusion Principle. Two electrons having different spin can stay at
the same orbital, which means to have the same angular state. But the closer electrons are
to each to other, the stronger Coulomb repulsion they experience. On the other hand, if two
electrons have the same spin, they occupy different orbits and so their relative Coulombic
repulsion is lower. The Coulombic repulsion force the electron spins to be placed in different
orbits, it is to say to be parallel within as large region as other effects enable.

If there was only an exchange part of the energy, the sample would adopt the single
domain structure and would behave as a block magnet, which exhibits an external mag-
netic field with certain energy. This energy can be minimized by decreasing the external
magnetic field by dividing the material into domains, see Figure 4.5. Adding extra doma-
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ins increases the exchange energy because the domains can have parallel magnetization.
However the total energy is decreased as the magnetostatic energy is the dominant effect.
The contribution of the energy of the generated magnetic field to the total energy can be
reduced to zero by a closed domain structure which does not leave any external field.

Figure 4.5: Adopting the domain structure leads to minimization of the magnetostatic
energy of the specimen.

In order to describe this effect, the magnetostatic energy corresponding to the energy
of the magnetic field h ∈ L2(R3,R3) generated by magnetized body with magnetization
m, need to be introduced. The induced field has to be a solution of Maxwell’s equations
of magnetostatics (no free currents and no electric field is concerned).

curl h = 0

div (µ0h+mχΩ) = 0

in R3, where χΩ : Rn → {0, 1} is the characteristic function of Ω and µ0 is the vacuum
permeability. Hence h is a curl-free field, and there exists a scalar function um : R3 → R
called scalar magnetic potential of spatially located magnetic dipoles so that

h = −∇um.

um is then governed by
div(−µ0∇um +mχΩ) = 0. (4.26)

The magnetostatic energy is the main reason for arising the domain structure.
But crystalline solids are rather anisotropic. This has the energy functional to reflect,

otherwise the magnetization would always vanish if no magnetic field is applied, which does
not corresponds to the observation. In magnetic crystal, there exist preferred directions,
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so-called easy axis, along which the physical properties could vary dramatically from others.
This effect is modeled through an even, non-negative anisotropy density φ : B1 → [0,+∞).
φ(x) vanishes along easy axis and thereby the directions of easy magnetization are deter-
minate. The anisotropy energy is then given by

Eani =

∫
Ω

φ(m) dx. (4.27)

The anisotropy energy can be minimized by adopting domain structure with magneti-
zation point along the easy axis. The ideal magnetic material has an easy axis perpendicular
to one another in order to minimize both the magnetostatic and anisotropic energy (see
figure 4.5 (left)). In the regions bordering the domains, so-called domain walls, there is
a change in the direction of the magnetization and so magnetization is not aligned along
easy axes. Hence, structure with large domains with few domain walls tend to decrease
the anisotropy energy.

The interaction energy is work needed for magnetization of a specimen by a certain
external magnetic field H : R3 → R3 in certain direction

Eint = −
∫

Ω

H ·m dx, (4.28)

where we assume H ∈ L2(Ω).
The total potential energy of the ferromagnetic body, the so-called Helmholtz energy,

subjected to an external magnetic field is then given by

Im(m) = ε

∫
Ω

|∇m|2 +

∫
Ω

φ(m) −
∫
Ω

H ·m +
µ0

2

∫
R3

|∇um|2, (4.29)

and in accordance with the spirit of Hamilton’s variation principle, the state of the ferro-
magnetic body corresponds to the minimizer of the Helmholz energy functional. The
constant scaling the magnetostatic energy is vacuum permeability 4.

Our task is to find m0 ∈M, whereM = {m ∈ W 1,2(Ω,R3) : |m(x)| = 1 a.e.}, so that

I(m0) = inf {I(m) : m ∈M} .
4The value of vacuum permeability is µ0 = 4π · 10−7NA−2
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The Helmholz free energy minimizer existence

Before we approach to prove the existence of the minimizer, it is necessary to define a
few terms and give several statements, which we use hereinafter. For more a detailed
introduction to the issue, see [30].

Definition 4.6.1. Let X be a Banach space and let f : X → R ∪ {∞}

1. f is said to be convex if

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y).

for every x, y ∈ X,λ ∈ [0, 1]

2. f is said to be (sequentially) lower semicontinuous if

lim inf
xn→x̃

f(xn) ≥ f(x̃).

3. f is said to be (sequentially) weakly lower semicontinuous over X if

lim inf
n→∞

f(xn) ≥ f(x) whenever xn ⇀ x in X.

4. f is said to be coercive over X if

f(x) ≥ α ‖x‖+ β

for every x ∈ X and for some α > 0, β ∈ R.

Lemma 4.6.2. (Korn’s inequality.) Let Ω be an open, connected domain in R3 and u
∈ W 1,2. Then ∫

Ω

eij(u)eij(u)dx ≥ 1

2

∫
Ω

∂ui
∂xj

∂ui
∂xj

dx. (4.30)

The Einstein summation convention is being used here.

Proof. Because W 1,2(Ω) = D(Ω) 5 we may assume, that u ∈ D(Ω). Hence

1

4

∫
Ω

(
∂ui
∂xj

+
∂ui
∂xj

)(
∂ui
∂xj

+
∂ui
∂xj

)
dx =

1

2

∫
Ω

∂ui
∂xj

∂ui
∂xj

dx+
1

2

∫
Ω

∂ui
∂xj

∂uj
∂xi

dx.

5D(Ω) is a space of functions with compact support.
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But for the second integral on the right side, we get (by using the integration by parts)

1

2

∫
Ω

∂ui
∂xj

∂uj
∂xi

dx =
1

2

∫
Ω

(
∂ui
∂xj

)2

dx ≥ 0.

Using this and the equation above, we obtain the statement.

Lemma 4.6.3. (Poincaré inequality.) Assume that 1 < p <∞ and that Ω is a bounded
open subset of Rn having Lipschitz boundary. Then there exists C ∈ R such that, for every
function u ∈ W 1,p(Ω)

‖u− uΩ‖Lp(Ω) ≤ C‖∇u‖Lp(Ω),

where
uΩ =

1

|Ω|

∫
Ω

u(y) dy

is the average value of u over Ω, with |Ω| standing for the Lebesgue measure of the domain
Ω.

Theorem 4.6.4. Let X be a reflexive Banach space and let I : X → R ∪ {∞} be weakly
lower semicontinuous and coercive over X. Assume also that there exists ũ ∈ X with
I(ũ) <∞. Then there exists at least one u0 ∈ X such that

I(u0) = inf {I(u) : u ∈ X} (4.31)

Proof. Let un be a minimizing sequence for inf {I(u) : u ∈ X}, i.e.

I(un)→ inf I.

From hypotheses, we have that β ≤ inf I(u) ≤ I(ũ) < ∞. Using the coercivity of I, we
may then deduce that there exists K > 0, independent of n, such that

‖un‖ ≤ K.

Since X is reflexive, we can extract a weakly convergent subsequence still denoted un, such
that

un ⇀ u0 in X.
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I(u) is lower weakly semicontinuous, which means

lim inf
n→∞

I(un) ≥ I(u0)

But because lim inf
n→∞

I(un) = inf I then inf I = I(u0).

Let us turn our attention back to the Helmholtz energy functional. We show that
functional (4.29) takes the value of its infimum. In the first step, we prove that ‖mk‖W 1,2 ≤
C. After that, in second step, we show that Iε is weakly lower semicontinues and that there
exists m0 : I(m0) = inf {I(m) : m ∈M}.
Step 1

The fact that |m(x)| = 1 impliesm ∈ L∞ and thereforem ∈ L2. Letmk be a minimizing
sequence:

Iε(mk) = ε

∫
Ω

|∇mk|2 +

∫
Ω

φ(mk) −
∫

Ω

H ·mk +
µ0

2

∫
R3

|∇um|2.

the function φ is non-negative and so
∫

Ω
φ(mk) ≥ 0. For interaction energy holds

estimation
∫

Ω
H ·mk ≤ ‖H‖L2 ‖m‖L2 .

For the estimation of magnetostatic energy, we apply an arbitrary testing function
v : R3 → R : lim

x→∞
v(x) = 0 on equation (6.2)

div(mχΩ − µ0∇um)v = 0

div(mχΩ) v − µ0∆um v = 0.

After integration over all of R3 and integration by parts∫
∂Ω

mv −
∫

Ω

m · ∇v = lim
r→∞

µ0

∫
Sr

v∇um − µ0

∫
R3

∇um · ∇v,

where Sr stands for the sphere with radius r and is centered at the origin. According to
behavior of the testing function, boundary items vanish. Specially for v = um we obtain

µ0 ‖∇um‖2
L2 =

∫
Ω

m · ∇um ≤ ‖m‖L2 ‖∇um‖L2

‖∇um‖L2 ≤ ‖m‖L2 .
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Considering |mk(x)| ≤ 1, we gain 0 ≤
∫

Ω
|mk(x)|2 ≤ |Ω| and so

Iε(mk) ≥ ε‖∇mk‖2
L2 + C1.

Furthermore, using Poincaré inequality

1

ε
Iε(mk) + C2 ≥ ‖∇mk‖2

L2 ≥ C3‖mk‖2
L2 ,

where C1, ..., C3 are constants. So we may then deduce that I(mk) is coercive and

‖mk‖W 1,2 ≤ C.

Since ‖mk‖W 1,2 is bounded and W 1,2 is reflexive, we may (see Theorem C.3) extract a
subsequence (still denoted mk) such that

mk ⇀ m0 ∈ W 1,2

Considering that the space W 1,2 is compact nesting in L2, we have

mk → m ∈ L2.

This is equivalent to
∫

Ω
|mk −m0|2 → 0⇔ |m0| = 1 a.e.

Step 2

The functionals
∫

Ω
|∇mk|2 and

∫
Ω
|∇um|2 are both convex and so according to Dacoro-

gna [6] (see Theorem C.1 ), they are weakly lower semicontinuous.
Because mk → m ∈ L2 and φ is continuous, φ(mk) → φ(m0) a.e. Furthermore, φ is

bounded, so using Lebesgue’s Theorem we obtain
∫
φ(mk) →

∫
φ(m0) a.e. The same is

valid for the interaction energy by using Hölder’s inequality∫
Ω

H · (m0 −mk) ≤ ‖H‖L1 ‖m0 −mk‖L∞ → 0,

i.e.
∫

Ω
H · mk →

∫
Ω
H · m0 a.e., which is stronger than the assumption of weakly lower

semicontinuity required in the proof of Theorem 4.6.4.
Thus, the energy functional Iε(m) is weakly lower semicontinuous and so, according to

Theorem 4.6.4, there exists m0 such that Iε(m0) = inf {Iε(m) : m ∈M}.
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4.7 Minimizer existence for linear elasticity

The proof of the minimizer’s existence of the potential energy in the linear elasticity is very
similar to the previous proof. Let us recall the problem. For Ω ⊂ R3, a bounded domain
and Γ1,Γ2 ⊂ ∂Ω, u0 ∈ W 1,2(Γ2;R3) we denote

U =
{
u ∈ W 1,2(Ω;R3) : τν = g on Γ1, u = u0 on Γ2

}
,

where u stands for field of displacement, τ for the stress tensor and g represents the contact
force.

We study the minimizing problem of the free energy functional

I(u) =
1

2

∫
Ω

〈Ce(u), e(u)〉 dx−
∫

Ω

f · u dx−
∫

Γ1

g · u dS, u ∈ U (4.32)

where f stands for a vector field of body force, C : R34 × R34 → R is the elasticity tensor
(in orthogonal coordinates represented by positively defined matrix) and e : R3 ×R3 → R
is the small-deformation tensor. The small deformation is connected with the displacement
through

e =
1

2
(∇u+ (∇u)T ).

To prove that the free energy reaches the infimum, we will proceed similarly as before.
Let uk be a minimizing sequence. Since C is positively defined

I(uk) =
1

2

∫
Ω

〈Ce(uk)e(uk)〉 dx−
∫

Ω

f · uk dx ≥ α ‖e(uk)‖2
L2 − ‖f‖L2 ‖uk‖L2 .

After applying Korn’s and Poincaré inequalities, we obtain

I(uk) + ‖f‖L2 ‖uk‖L2 ≥ α ‖e(uk)‖2
L2 ≥ α ‖∇uk‖2

L2 ≥ α̃ ‖uk‖2
L2 .

So again we obtain the result
‖uk‖W 1,2 ≤ C.

Taking advantage of the properties of the spaces W 1,2 or L2 (reflexivity and W 1,2 ↪→↪→ L2,
see Theorem C.3 and Theorem C.4) we gain

uk ⇀ u ∈ W 1,2
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uk → u ∈ L2.

Further proceed is analogous to magnetism. Since the first part of (4.32) is convex and for
the second part the Hölder’s inequality is valid, the functional I(u) is lower semicontinuous
and coercive. And so, owing to Theorem 4.6.4, the free energy functional reaches its
infimum, i.e. there exists u0 such that I(u0) = inf {I(u) : u ∈ U}.



Chapter 5

The stationary model for FSMA

In the following chapter, we will study the magnetostrictive materials, which means the
combination of both effects - linear elasticity and magnetism. Generally, magnetostriction
is the ability of some ferromagnetic materials to change their shape owing to an external
magnetic field or to embody magnetization in consequence of deformation.

Such behavior makes us enlarge the potential energy model with the term of energy
wells. This brings mathematical difficulties in to the minimizer existence argumentation
because the resulting energy functional is not weakly lower semicontinuous at all. Therefore
we introduce the quasiconvex formulation of the problem in section 5.1. The existence of
the minimizer of a simplified magneto-elastic problem is solved in the successive section 5.2.

5.1 The quasiconvex problem formulation

The free energy of a magneto-elastic material at a fixed temperature below the Curie’s
temperature is, in general, given by

I(u,m) =

∫
Ω

Φ(u(x),m(x),∇u(x),∇m(x))dx.

We denote
UM =

{
[u,m] ∈ W 1,2(Ω,R6)

}
for Ω ⊂ R6 a bounded domain, Γ ⊂ ∂Ω. We suppose, that UM 6= ∅.

As described above, we may associate the stable phase of the material with the minimum

62
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of the energy. This leads to the following problem:

min { I(u,m); [u,m] ∈ UM}. (5.1)

The difference between magneto-elasticity and the situations described in the previous two
chapters lies in the assumption of existence of several local minimizers, the so-called energy
wells. Each well represents a stable phase of the specimen. The point is that the phase in
which the specimen could be found may locally differ, and the laminating structure might
occur.

The energy density Φ(u(x),m(x),∇u(x),∇m(x)) is invariant under material symmetry
transformations

Φ(Qu,Qm,Q(∇u)QT , Q(∇m)QT ) = Φ(u,m,∇u,∇m) ∀Q ∈ SO(3),

where SO(3) =
{
Q ∈ R3×3 : detQ = 1, QQT = QTQ = I

}
. If [e(u0),m0)] corresponds to

the minimizer of (5.1), then [Qe(u0)QT , Qm0] corresponds to the minimizer of (5.1) as well
as to each Q ∈ SO(3). We suppose that every energy minimizer is generated from only one
minimizer by means of symmetry transformations. Hence, the set of minimizers associated
with

∫
Ω

Φ dx has the structure

W =
N⋃
i=1

[e(u0i),±m0i],

and for each i = 1, ..., n there exists a symmetry transformation Q ∈ SO(3) such that

[e(u0i),±m0i] = [Qe(u01)QT , Qm01]. (5.2)

Each couple [e(u0i),m0i] is then called the energy well. Thus there are N = 2n energy
wells. It turns out that in real materials the positions of energy wells cannot be stationed
arbitrarily. The set W of the energy wells embodies symmetry properties reflecting sym-
metry of atomic structure of the concerned ferromagnetic material. This is usually called
the pairwise compatibility of energy wells.

Definition 5.1.1. (Pairwise compatibility conditions) The set W =
N⋃
i=1

[e(u0i),±m0i] con-

sists of N pairwise compatible magneto-elastic wells if there exist unit vectors njk, and
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vectors ajk, j, k = 1, ..., N such that

ej − ek =
1

2
(ajk ⊗ njk + njk ⊗ ajk) (5.3)

(mj −mk) · njk = 0, (5.4)

for all j, k = 1, ..., N .

The structure of pairwise compatible magneto-elastic wells is in fact the consequence
of kinematic compatibility condition for solid-to-solid transformation and its application
on magnetically active material. This was introduced by James and DeSimone in [8] and
is briefly outlined in following paragraph.

It is known (see [9]) that for a diffusionless solid-to-solid phase transformation the
kinematic compatibility condition between the strain tensors ej and ek is satisfactory if
there exists a 180◦ rotation Q such that

QekQ
T = ej, Q = −I + 2b⊗ b, (5.5)

where b denotes the axis of rotation of Q. Assuming (5.5) and letting
a = 4[(ek · b⊗ b)b− ekb], we obtain

ej − ek =
1

2
(a⊗ b+ b⊗ a).

Therefore a planar interface can be formed to separate regions of the body deformed
according to ek and ej, either with normal nI = b or with normal nII = a. In the former
case QnI = nI and the region is of type I, while in the latter case QnII = nII and the
region of the body is of type II. In addition to this, let us assume, that Q is a symmetry
transformation satisfying (5.2) and there exists a unique easy magnetic direction associated
with each ej, so that

mj = ±Qmk. (5.6)

Then the magnetic compatibility between k-th and j-th variant become a consequence of
their elastic compatibility. In the case that mj = +Qmk

(mj −mk) · nI = (mk −mk) ·QnI = 0

and magneto-elastic compatibility can be achieved by taking ajk = a, njk = nI = b. If
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mj = −Qmk, then

(mj −mk) · nII = (mk ·QnII −mk) ·QnII = 0

and we take ajk = b, njk = nII = a.
The preceding given derivation assumes existence of rotation Q satisfying (5.5) and

existence of unique magnetic direction for each ej, so that equations (5.5) and (5.6) hold
simultaneously. Despite these presumptions are not universally valid, they are sufficiently
usable in most cases of practical interest.

Let us turn back our attention to the minimizing problem (5.1). Generally, no solution
of (5.1) exists, i.e. I(u,m) does not have to reach the minimizer. To demonstrate the
aforementioned situation, let us look at the following one-dimensional example.

example 5.1.2. (Dacorogna)

Minimize J(y) =
∫ 1

0
y2(x) + (y′2(x)− 1)2dx, y ∈ W 1,4([0, 1]), y(0) = y(1) = 0.

Figure 5.1: Construction of minimizing sequence yk for J . As one can see lim J(yk) =
inf J = 0, however J(w − lim yk) = J(0) > 0.

It is easy to see that sequences of functions depicted on Figure 4.1 are the minimizing
sequence for J and that lim J(yk) = inf J = 0. However, J(w − lim yk) = J(0) > 0 and so
the minimum is never reached. The point is that the functional J is not sequentially weak
lower semicontinues, which is the same problem we face in the model of magnetostriction.
This is sometimes called double/multiple-well model (spacial oscillations among various
variants of solid phase). The situation is schematically depicted on Figure 5.2.

On the other hand we saw that in linear elasticity or simply magnetism, the stable state
(energy minimizer) is being reached. It is necessary to answer the question, what is the
property of the energy density Φ which prevents such behavior. This condition is called
quasiconvexity.
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(a) Double-well problem (b) Multiple-well problem

Figure 5.2: Schematic illustration of double-well and multiple-well problem. The energy
functional of 1D specimen (e.g. wire) made from magnetostrictive material embodies
two (a) four (b) local minimums.

Definition 5.1.3. f : Rm×n → R is said to be quasiconvex if for any matrix A ∈ Rm×n

and any smooth function φ : Ω ⊂ Rn → Rm, φ(x) = Ax, for x ∈ ∂Ω holds that∫
Ω

f(∇φ(x))dx ≥ f(A) |Ω|.

We can see that we deal with density which is not quasiconvex. Suitable extension
(relaxation) of the problem, which would provide solvability, was introduced by Dacorogna
(see Appendix Theorem C.2 or [6], Section 5.1 ). For the rest of this Section, let us denote
the couple [u,m] = v, then we can reformulate the minimizing problem to

min

{
IQ =

∫
Ω

QΦ(v(x),∇v(x))dx; v ∈ UM
}
, (5.7)

where QΦ(v, ·) is the quasiconvex envelope of Φ(v, ·) defined by

QΦ(v, ·) = sup {f ≤ Φ(v, ·); f quasiconvex} .

In such a case, IQ is sequentially weakly lower semicontinuous and the problem (4.2) has
a solution. That is to say that there is v0 ∈ UM such that

IQ(v0) = min {IQ(v) : v ∈ UM} ≡ min(4.2).
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The illustration of the idea of the quasiconvex envelope for energy functionals showed in
5.2 can be found in Figure 5.3.

The relaxed problem is connected with the original one via relaxation theorem intro-
duced by Dacorogna, which says that under several growth conditions:

(i) inf(5.1) = min(4.2),

(ii) if v0 ∈ UM is a solution to (4.2) then there is a minimizing sequence {vk}∞k=1 ⊂ UM
converging weakly to v0 in W 1,2(Ω,R3) and lim

k→∞
I(vk) = IQ(v0),

(iii) any minimizing sequence of (4.1) converges weakly to the minimizer of (4.2).

(a) Double-well problem (b) Multiple-well problem

Figure 5.3: The quasiconvex envelope of the energy functional of 1D specimen made from
magnetostrictive material introduced in figure 5.2.

5.2 The mathematical model of ferromagnetic shape me-

mory alloy

Consider a magneto-elastic material having N martensitic variants. Each variant is cha-
racterized by a stress-free deformation, which is a symmetric n × n tensor (n = 2, 3 is
the dimension), and by an easy axis prescribing two preferred directions of the magne-
tization ±m. So, we actually face a 2N -well problem. As a characterizing quantity, we
choose v : Ω→ Rn(n+1)/2+n as a conjunction of independent components of the symmetric
tensor e(u) and the magnetization m. For n = 3, we have
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v = (e11, e22, e33, e12, e13, e23, m1, m2, m3)

|m| = m2
1 +m2

2 +m2
3 = 1

The i-th well is then described by the vector vi ∈ Rn(n+1)/2+n where the first n(n + 1)/2

components stay for the symmetric strain and the last n components stay for the magneti-
zation. We assume that the set of vi satisfies the pairwise compatibility conditions. We can
group vi, i = 1, . . . , 2N so that v2j−1 differs from v2j by the sign of the last n components
j = 1, . . . , N .

We suppose that all variants have the same “magneto-elastic” moduli and that the
magneto-elastic energy density of the i-th variant is given by

Wi(v) =
1

2

〈
C(v − vi), (v − vi)

〉
,

where v ∈ Rn(n+1)/2+n is the given configuration and C stands for the magneto-elastic
tensor. The magneto-elastic tensor is an extension of the elasticity tensor, which denotes
the response of a magneto-elastic material to both deformation and external magnetic field.
We presume that C is positively defined. The overall energy is then

W (v) = min
1≤i≤2N

Wi(v) .

Notice that we know v if we know the displacement u : Ω → Rn of the body and its
magnetization m : Ω→ Rn, |m| = 1 a.e. Hence, we set up the energy functional

I(u,m) =

∫
Ω

W (v(x)) dx−
∫

Ω

f · udx− (5.8)

−
∫

Γ1

g · udS −
∫

Ω

H ·m+
µ0

2

∫
Rn

|∇um|2 dx. (5.9)

When compared with (4.29), we can see that the magnetic exchange energy was neglected.
In this correction we take into consideration scaling analysis for the large body introduced
by DeSimone in [7].

However, due to nonconvexity of W and because of the nonconvex constraint |m| = 1,
the minimum of I does not necessarily exist for u ∈ W 1,2(Ω;Rn), u = u0 on Γ0 and
m ∈ L2(Ω;Rn), |m| = 1 because I is not sequentially weakly lower semicontinuous. Hence,
we look for a weakly lower semicontinuous extension Ī of I which is, generally, very difficult
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to find.
Following Govindjee, Mielke ( see [11]) we estimate the effective energy density W̄ by

W̄ (λ, v) =
2N∑
i=1

λiWi(v) +
1

2

2N∑
i=1

(λ2
i − λi)

〈
Cvi, vi

〉
,

where λi : Ω → 〈0, 1〉 : 0 ≤ λi,
∑

i λi = 1 are the volume fractions of particular vari-
ants. Function λi(x) expresses the relative representation of i-th phase in an infinitesimal
surrounding of point x. It is easy to see that

W̄ (λ, v) =
1

2

〈
C(v −

2N∑
i=1

λiv
i), (v −

2N∑
i=1

λiv
i)

〉
,

λ = (λ1, . . . , λ2N). Moreover, we relax the constraint |m| = 1 to |m| ≤ 1.
Assuming f ∈ L2(Ω),g ∈ L2(Γ1) and H ∈ L2(Ω), we define the relaxed free energy

functional

Ī(λ, u,m) =

∫
Ω

W̄ (λ(x), v(x)) dx−
∫

Ω

f · udx− (5.10)

−
∫

Γ1

g · udS −
∫

Ω

H ·m+
µ0

2

∫
Rn

|∇um|2 dx. (5.11)

The task is to minimize it for |m| ≤ 1, m ∈ L2(Ω;Rn), λ ∈ L∞(Ω;R2N), u ∈ W 1,2 : u = u0

on Γ.

To show the existence means to apply the same procedure as before. Notice that the
first term of (5.10) which contains C is strictly convex if C is positively defined. Then for∫

Ω
W̄ (λ, v)dx the following estimation is valid:

∫
Ω

W̄ (λ, v)dx ≥ α

∥∥∥∥∥v −
2N∑
i=1

λiv
i

∥∥∥∥∥
2

L2

≥

≥ α

∣∣∣∣∣‖v‖L2 −

∥∥∥∥∥
2N∑
i=1

λiv
i

∥∥∥∥∥
L2

∣∣∣∣∣
2

≥ α‖v‖2
L2 − c‖v‖L2 .

For the remaining terms of Ī(λ, u,m) we use estimations introduced in the previous chapter,
i.e.
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∫
Ω

H ·mdx+

∫
Ω

f · udx ≤ cm ‖m‖L2 + cu ‖u‖L2 ≤

≤ cm ‖m‖L2 + c̃u ‖∇u‖L1 ≤ c ‖v‖L2 ,

where cm, cu, c̃u, c ∈ R. So finally

Ī(λ, u,m) ≥ α‖v‖2
L2 − c̃‖v‖L2 .

Let us consider the set

H =
{

(λ, u,m) : |m| ≤ 1,m ∈ L2(Ω;Rn), λ ∈ L∞(Ω;R2N), u ∈ W 1,2
}

and (λk, uk,mk) ∈ H, the minimizing sequence for inf Ī, i.e.

Ī(λk, uk,mk) −→ inf Ī .

We assume that λk → λ and mk → m. Considering estimations made above, we may
deduce that Ī(λk, uk,mk) is coercive and that there exists K ≥ 0, independent of k, such
that

‖uk‖W 1,2 ≤ K , ‖mk‖L2 ≤ K.

Since L2 is reflexive Banach space and W 1,2 ↪→↪→ L2 we can extract weakly convergent
subsequence (still denoted uk) such that

uk ⇀ u in W 1,2 and uk → u in L2.

The terms
∫

Ω
W̄ (λ, v) and µ0

2

∫
Rn |∇um|2 dx are convex and so, according to Dacorogna,

weakly lower semicontinuous. The remaining terms of (5.10) are continuous functionals,
and uk and mk converge strongly. Therefore

∫
Ω
f · ukdx →

∫
Ω
f · udx,

∫
Ω
H · mkdx →∫

Ω
H ·mdx and

∫
Γ
g · ukdS →

∫
Γ
g · udS. Hence Ī is sum of weakly lower semicontinuous

functionals, it is weakly lower semicontinuous as well. Considering Theorem 4.6.4, we
obtain the required statement, i.e.

inf Ī = Ī(λ, u,m).



Chapter 6

The evolutionary model for FSMA

In this chapter we introduce evolutionary model of FSMA. The model is again build on a
suitable extremum principle. We take advantage of the relaxed concept formulated in the
Section 5.1. While in the steady case we were interested in the stored energy (described
by an appropriate thermodynamical potential) only, in the case of time evolution we also
want to take the effect of hysteresis into account. Therefore, two energy functionals are
used: E describes the stored energy corresponding to a particular martensitic phase and
D prices the phase transformation into a different martensitic phase.

Firstly, we introduce the concept of rate-independent processes is general in Section 6.1.
Secondly, we apply the the general framework to the FSMA in Section6.2 and formulate
the evolutionary model. Finally, we discuss the solution existence of the rate-independent
process in Section 6.3.

6.1 Rate-independent process and energetic formulation

Let X be a Banach space, y(t) : [0, T ] → X a state variable(s) describing the system at
time t. A family of states (y(t))[0, T ] is called a process. The rate-independence of the
process means that the process is invariant with respect to any time rescaling. That is to
say, if y(t) is a process corresponding to some loading L and τ is any strictly monotone
time reparametrization, then y(τt) is a process corresponding to the loading L(τt).

The rate-independent process is defined through two energy functionals:

• the time-dependent energy-storage

E : [0, T ]×X → [0,∞],

71
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• the dissipation distance
R : X → [0,∞].

The fact that the process is rate-independent implies that R is 1-homogeneous and weakly
lower semi-continuous functional. The dissipation potential influences the evolution via
the dissipation distance D : X×X → [0,∞] defined by D(y1, y2) = R(y1− y2). We denote
the total amount of energy dissipated within the process y during a time interval [0, T ] by
DissD, with

DissD(y; [0, T ]) = sup{
N∑
j=1

D(y(tj−1), y(tj)), N ∈ N, 0 = t0 < ... < tN = T}.

Having the two constitutive functionals we may formulate the evolution law for a ma-
terial. Following [27] we use an extremum principle formulated e.g. in [23]. The principle
states that the change in the state occurs when it is thermodynamically admissible. In
terms of energy, the energy gain caused by transition from y to ŷ is greater than (or
equal to) energy dissipation connected with this transition. Simultaneously the first law of
thermodynamics has to be satisfied within every process, i.e. the sum of energy dissipated
within a process and work done by external forces (loading) is equal to the energy obtained
through the process.

Now, we are ready to define reasonably the solution for the evolutionary problem. Such
a formulation is sometimes called the energetic concept.

Definition 6.1.1. A process (function) y(t) : [0, T ] → X is called energetic solution to
the rate-independent model associated with E and R, if the mapping t 7→ ∂tE(t, y(t)) lies
in L1((0, T ),R) and if for all t ∈ [0, T ]:

Stability : ∀ŷ ∈ X : E(t, y(t)) ≤ E(t, ŷ(t)) +D(y(t), ŷ), (6.1)

Energy Balance: E(t, y(t)) + DissD(y, [0, t]) = E(0, y(0)) +

∫ t

0

∂τE(τ, y(τ)) dτ. (6.2)

The natural way to treat the evolutionary problem is to employ a time discretization
0 ≤ t0 <≤ t1 . . . tN−1 ≤ tN = T . Thus, the evolution is represented by sequence of
time-incremental minimization problems

Find minimizer yk ∈ X of functional E(tk, y) +D(yk−1, y).

The aim of our effort is to show that sets of incremental problem solutions converge to
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the solution of the evolutionary problem. Consequently, this strategy is a guideline to a
straightforward numerical implementation of the model.

It is worth mentioning that the evolutionary problem might be formulated in alternative
(local) way. We might search for y(t) satisfying differential inclusion

−DE(t, y(t)) ∈ ∂R(ẏ(t)), (6.3)

where ∂ stands of subdifferential of a convex function. However, the formulation via
(6.3) requires E to be strictly convex in order to obtain time continuous solutions. The
energetic formulation has not such property. Additionally, the derivative of t → y(t) nor
z → E(t, y(t) does not need to be provided. Nevertheless, it was observed in [26] that
energetic formulation is equivalent to (6.3) if E is quadratic and convex functional. So it
might be understood as a weak form of the inclusion (6.3).

6.2 FSMA energetic model

We shall be concerned with evolution of FSMA body within time interval [0,T]. The sample
is represented by domain Ω ∈ R3. In the case of FSMA, the state variable y(t) is compound
of displacement u(t), magnetization m(t) and volume fraction λ(t). To model the evolution
of FSMA we take advantage of the relaxed stationary formulation considering that all
variables are time-dependent now.

At each time level t ∈ [0, T ] we require u(t) to satisfy boundary conditions

u = 0 on Γ0, σn = g on Γ1,

where Γ0 ∈ ∂Ω denotes non-empty part of the boundary, n stands for unit outer normal to
the boundary ∂Ω and Γ1 = Ω \ Γ0. Hence, we define the set of admissible displacements

U =
{
u ∈ W 1,2(Ω,R3), u = 0 on Γ0

}
and the set of of admissible magnetizations

M =
{
m ∈ W 1,2(Ω,R3); |m| ≤ 1 a.e. in Ω

}
.
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We allow the volume fraction to belong to

L =
{
λ ∈ W 1,1(Ω,R2N), λi ≥ 0, i = 1...2N,

∑2N

i=1
λi = 1

}
.

Let for given t ∈ [0, T ] f(t) ∈ L∞(Ω,R3), g(t) ∈ L∞(Γ1,R3) be the mechanical volume
and surface loading respectively and H(t) ∈ L∞(Ω,R3) be the external magnetic field. We
might define the loading functional at time t

〈`(t), v〉 =

∫
Ω

f(t) · udx+

∫
Γ1

g(t) · udS +

∫
Ω

H(t) ·m dx.

The stored energy is described by functional E : [0, T ] × U ×M× L → [0,∞] which
reads as

E(t, u,m, λ) =

∫
Ω

W̄ (λ, v) dx−
〈
`(t), v

〉
+ ε

∫
Ω

|∇m|2 dx+Kλ

∫
Ω

|∇λ| dx+
µ0

2

∫
Rn

|∇um|2 dx.

(6.4)

Recall that v = (e,m) and W̄ (λ, v) denotes the relaxed magneto-elastic energy density

W̄ (λ, v) =
1

2

〈
C(v −

2N∑
i=1

λiv
i), (v −

2N∑
i=1

λiv
i)

〉
.

Again, at each the magnetostatic potential um is associated with magnetization through
Maxwell’s equations, namely

t ∈ [0, T ] div(−µ0∇um(t) +m(t)χΩ) = 0.

Contrary to 5.10 a term containing gradient of λ was added. The term (scaled by po-
sitive constant Kλ) penalizes martensitic phase oscillations. Since the volume fraction
is necessarily not continues, sharp interfaces between particular martensitic phases may
occur.

The energy dissipation is set by the dissipation functional

R(λ̇(t)) = Rλ

∫
Ω

|λ̇(t)| dx, (6.5)
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which naturally determinate the dissipation distance D : L × L → [0,∞].

D(λ1, λ2) = Rλ

∫
Ω

|λ1 − λ2| dx, (6.6)

with Rλ > 0 and for all λ1, λ2 ∈ L.
It is worth pointing out that our considerations are still based on the magnetostatic

version of Maxwell’s equations. That is to say, no cross coupling phenomena between
magnetic and electric field is involved as the time step goes to zero. Such a huge assumption
might be justified only when the relaxation processes within the material are fast compared
to evolution rate of the applied loading.

In order to make the notation well-arranged, let us define the sets S(t) of stable states
at time t:

S(t) =
{

(u,m, λ) ∈ U ×M×L : E(t, u,m, λ) <∞ and

∀(û, m̂, λ̂) : E(u,m, λ) ≤ E(û, m̂, λ̂) +D(û, m̂, λ̂)
}

and the stable graph S[0,T ] =
⋃

[0,T ](t,S(t)) ⊂ [0, T ]× U ×M×L.
The task is to find the energetic solution for the functionals E and R, that is to

say for a given initial state (u0,m0, λ0) ∈ S(0) and given loading (f(t), g(t), H(t)) find
(u(t),m(t), λ(t)) ∈ U ×M×L such that (u(0),m(0), λ(0)) = (u0,m0, λ0), and ∀t ∈ [0, T ] :

(u(0),m(0), λ(0)) ∈ S(t) and the energy balance (6.2) is satisfied.

6.3 Energetic solution existence

In this section we prove the existence of the energetic solution for the rate independent
FSMA model (described via functionals E and D). Our reasoning is based on now classical
theory for energetic solutions, see e.g. [26],[25]. We formulate the existence theorem for the
particular case of FSMA and show that it is a corollary of the existence result presented
in [28].

Theorem 6.3.1 (Existence for the FSMA model). Let us assume that the loading is
f ∈ C1([0, T ], L∞(Ω,R3)), H ∈ C1([0, T ], L∞(Ω,R3)) and g ∈ C1([0, T ], L∞(Γ1,R3)), and
(u0,m0, λ0) ∈ S(0). Then there exists an energetic solution for the rate independent model
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of FSMA determined by (6.4) and (6.5) with

u ∈ B([0, T ],W 1,2(Ω,R3)), m ∈ B([0, T ],W 1,2(Ω,R3)) and

λ ∈ L∞([0, T ],W 1,1(Ω,R2N)) ∩BV ([0, T ], L1(Ω,R2N)).

Proof. The existence proof is based on a time-incremental minimization problem. Assume
an arbitrary partition of the time interval 0 = t0 < ... < tN = T . Considering the 1-
homogeneity of the dissipation distance D, we are asked on each discrete time level to
solve a following problem:

For k ∈ 1, . . . , N and given (u0,m0, λ0) ∈ S(0) find on U ×M×L
minimizer uk,mk, λk of functional E(tk, u,m, λ) +D(λ, λk−1).

Step 1: Incremental problem solution

Lemma 6.3.2. Let the functionals E and D be defined via (6.4) and (6.5), with loading qua-
lification as in theorem . Then for every k ∈ 1, . . . , N there exists a minimizer (uk,mk, λk)

of the functional E(t, u,m, λ) + D(λ, λk−1) on U ×M×L. That is to say, on every time
level there exists a a solution of the time incremental problem.

Proof. Following the procedure showed in the steady state, we have

E(t, u,m, λ) +D(λ, λk−1)

=

∫
Ω

W̄ (λ, v) dx−
〈
`(t), v

〉
+ ε ‖∇m‖2

L2 +
µ0

2
‖∇um‖2

L2 +Kλ ‖∇λ‖L1 +Rλ ‖λ− λk−1‖L1

≥ α‖v‖2
L2 − c1‖v‖L1 − c2 ‖v‖L2 + c3 ‖λ‖W 1,1 .

Therefore, we have coercivity:

E(t, u,m, λ) +D(λ, λk−1)→∞ for ‖u‖W 1,2 + ‖m‖W 1,2 + ‖λ‖W 1,1 →∞.

Both functionals E and D are convex and lower semi-continuous. Hence, they are weakly
lower semi-continuous. The minimizer existence is then guaranteed by the fundamental
lemma of calculus of variations.



CHAPTER 6. THE EVOLUTIONARY MODEL FOR FSMA 77

Lemma 6.3.3. Let the presumptions of the theorem 6.3.2 are fulfilled. Then for E(t, u,m, λ)

given by (6.4) there exist c0
E, c

1
E > 0 such that

E(t, u,m, λ) <∞ =⇒ |∂tE(t, u,m, λ)| ≤ c1
E(c0

E + E(t, u,m, λ)). (6.7)

Proof. Let us recall

E(t, u,m, λ) =

∫
Ω

W̄ (λ, v) dx−
〈
`(t), v

〉
+ ε ‖∇m‖2

L2 +Kλ ‖∇λ‖L1 +
µ0

2
‖∇um‖2

L2

≥ α

2
‖v‖2

L2 − C(1 + ‖`(t)‖L∞ ‖v‖L2) ≥ C̃ ‖v‖L2 −
1

2α

(
C̃ + C(1 + ‖`(t)‖L∞)

)2

,

where C > 0,Using this estimate and qualification of the loading, we arrive with

|∂tE(t, u,m, λ)| ≤
∥∥∥ ˙̀(t)

∥∥∥
L∞
‖v‖L2 ≤

∥∥∥ ˙̀(t)
∥∥∥
L∞

C̃

(
E(t, u,m, λ) +

1

2α

(
C̃ + C(1 + ‖`(t)‖L∞)

)2
)
.

As one can see c1
E =

‖ ˙̀(t)‖
L∞

C̃
and c0

E = 1
2α

(
C̃ + C(1 + ‖`(t)‖L∞)

)2

.

In fact, the Lemma 6.3.3 says that t 7→ E(t, u,m, λ) is uniformly bounded and differenti-
able on [0, T ]. Consequently, the lemma secures the uniform continuity of t 7→ E(t, u,m, λ)

on sublevels of E : take t1, t2 ∈ [0, T ]:

E(t2, u,m, λ) = E(t1, u,m, λ) +

∫ t2

t1

∂τE(τ, u,m, λ) dτ

c0
E + E(t2, u,m, λ) ≤ E(t1, u,m, λ) + c0

E +

∫ t2

t1

c1
E(c0

E + E(τ, u,m, λ))

E(t2, u,m, λ) ≤ (E(t1, u,m, λ) + c0
E)ec

1
E |t2−t1| − c0

E, (6.8)

where we used the 6.7 and Gronwall’s lemma respectively.
Additionally, the loading functions f, g,H are localy Lipschitz in time because they are

assumed to have continouos time derivative. Furthermore, E satisfied strenghened version
of 6.7: ∀E > 0 ∃ modulus of continuity ωE : [0, t] 7→ [0,∞) :

E(0, u,m, λ) < E =⇒ ∀t1, t2 ∈ [0, T ] : |∂tE(t1, u,m, λ)−∂tE(t2, u,m, λ)| ≤ ωE(t1− t2).
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Step 2: A priori estimates

Having an energy minimizer at each time level (i.e an incremental problem solution), we
wish to show that it is coherent with the energetic formulation. Following lemma shows
that energy minimizers have appropriate qualities and additionally it provides suitable a
priori estimates.

Lemma 6.3.4. let (u0,m0, λ0) ∈ S(0), then every solution of the incremental problem
satisfies the discrete version of the stability condition (6.1)

uk,mk, λk ∈ S(tk) (6.9)

and the discrete version of the energy balance (6.2):∫ tk

tk−1

∂tE(τ, uk,mk, λk) dτ ≤ Ek +Dk − Ek−1 ≤
∫ tk

tk−1

∂tE(τ, uk−1,mk−1, λk−1) dτ, (6.10)

for all k ∈ {1, . . . , N}. We denote Ek = E(tk, uk,mk, λk), Ek−1 = E(tk−1, uk−1,mk−1, λk−1)

and Dk = D(λk, λk−1). Furthermore, following a priori estimates are fulfilled

Ek ≤
(
E0 + c0

E

)
ec

1
Etk − c0

E and
N∑
j=1

Dj ≤
(
E0 + c0

E

)
ec

1
ET . (6.11)

Proof. The discrete stability condition follows from the definition of a minimizer and the
fact that D satisfies the triangle inequality

Ek +Dk ≤ E(tk, u,m, λ) +D(λ, λk−1) ≤ E(tk, u,m, λ) +Dk +D(λ, λk).

The upper estimate in the discrete energy balance (6.10) comes from minimality of (uk,mk, λk)

tested by (u,m, λ) = (uk−1,mk−1, λk−1

Ek +Dk ≤ E(tk, uk−1,mk−1, λk−1) +D(λk−1, λk−1)

≤ E(tk−1, uk−1,mk−1, λk−1) +

∫ tk

tk−1

∂tE(τ, uk−1,mk−1, λk−1) dτ.

To justify the lower estimate in (6.10), one has to test the stability of (uk−1,mk−1, λk−1)
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by (uk,mk, λk)

Ek−1 ≤ E(tk−1, uk,mk, λk) +Dk = Ek +Dk −
∫ tk

tk−1

∂tE(τ, uk,mk, λk) dτ. (6.12)

The a priori estimates are direct consequence of the upper estimate (??) combined with
(??). Using Gronwall’s lemma in a same as in we arrive with

Ek +Dk ≤ (Ek−1 + c0
E)(ec

1
E(tk−tk−1) − 1) = (E(tk−1 + c0

E)ec
1
E(tk−tk−1) − c0

E.

If we consider Dk ≥ 0, the induction over j = 1, . . . k gives

Ek + c0
E ≤ (E0 + c0

E)
k∏
j=1

ec
1
E(tj−tj−1) = (E0 + c0

E)ec
1
E(tk),

for k = 1, . . . , N . This is exactly the first estimate in (6.11). Show the second one, we take
the advantage of (6.12), namely we evaluate the dissipation distance Dj between two time
levels tj and tj−1 and sum over j = 1, . . . k, the rest of the computation is straightforward

k∑
j=1

Dj ≤ E0 − Ek +
k∑
j=1

(Ej−1 + c0
E)(ec

1
E(tj−tj−1) − 1)

≤ (c0
E + E0)− (c0

E + Ek) + (c0
E + E0)

k∑
j=1

(ec
1
Etj − etj−1)

≤ (c0
E + E0) + (c0

E + E0)(ec
1
Etk − 1) = (c0

E + E0)ec
1
Etk .

At this stage we are ready to define piecewise constant interpolant and show that it
satisfies the a priori bounds.

Lemma 6.3.5. For given time partition ΠN =
{

0 = t0 < tN1 . . . < tNN−1 < tNN = T
}

we
define the piecewise interpolant (uN ,mN , λN) : [0, t] 7→ U ×M×L of precise solution as

(
uN(t),mN(t), λN(t)

)
=

{
(uk,mk, λk) for t ∈ [tk, tk+1)

(uN ,mN , λN) for t = tN = T.
(6.13)
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Such a defined function meets following bounds:

E(t, uN(t),mN(t), λN(t)) ≤ (E + c0
E)ec

1
Et − c0

E,

DissD(λN ; [0, T ]) =
N∑
j=1

D(λj, λj−1) ≤ (E + c0
E)ec

1
ET .

Proof. The second inequality follows directly from (6.11). To obtain the first one, consider
t ∈ [tk, tk+1) and employ (6.7) together with (??) to

E(t, uN(t),mN(t), λN(t)) = E(t, uk,mk, λk) = E(tk, uk,mk, λk) +

∫ t

tk

∂τE(τ, uk,mk, λk) dτ

and follow the procedure leading to (6.11).

Consequently, taking advantage of E coercivity on [0, T ] ×W 1,2 ×W 1,2 ×W 1,1 and D
coercivity on L1 we may conclude

∥∥uN∥∥
L∞([0,T ],W 1,2)

≤ C,
∥∥mN

∥∥
L∞([0,T ],W 1,2)

≤ C,∥∥λN∥∥
L∞([0,T ],W 1,1)

≤ C, VarL1(λN , [0, T ]) ≤ C.

Step 3: Subsequence selection

We choose a sequence
{

ΠN
}∞
N=1

of the time interval parons in a way that ∀N : ΠN ⊂ ΠN+1

and τN → 0 for N →∞, where ∆N = maxj=1...N(tj − tj−1) stands for the largest time
step of the N th partition. The sequence of partitions generates a sequence of appro-
ximations {(uN ,mN , λN)}. Taking advantage of a special version of Helly’s selection
theorem introduced in [1] we may select a subsequence

{
λNk
}
k∈N such that there exists

λ ∈ L∞([0, T ],W 1,1) ∩ BV([0, T ],W 1,1) : ∀t ∈ [0, T ] :

λNk(t) −→ λ(t) weakly in W 1,1and strongly in L1.

Here, we use the compact embedding W 1,1 b L1 which holds in three dimensions. Con-
sequently, we might deduce that ∀t ∈ [0, T ] there exists δ(t) such that

lim
k→∞

DissD(λNk , [0, t]) = δ(t).

Let us denote θNk = ∂tE(t, uNk(t),mNk(t), λNk(t)). The inequality 6.7 and the esti-
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mate ?? imlies that θNk is bounded in L∞((0, T )). Therefore, it is possible to extract a
subsequence (still denoted by same index) such as

θNk ⇀∗ θ∗ in L∞((0, T )).

Simultaneously, we define θ : [0, T ] → R as θ(t) = lim supk→∞ θ
Nk(t). Regarding the

Fatou’s lemma we have θ∗(t) ≥ θ(t) for a.e. t ∈ [0, T ].
Thus, for fixed t ∈ [0, T ] we might select sebsequence Nl(t) of Nk, whereas the selection

is dependent on the choice of t, such as

θNl(t)(t)→ θ(t) for l→∞,

uNl(t)(t)→ u(t) weakly in W 1,2 for l→∞,

mNl(t)(t)→ m(t) weakly in W 1,2 for l→∞.

Altogether, we obtain that for all t ∈ [0, T ] :

(uNk(t),mNk(t)λNk(t)) ⇀ (u(t),m(t)λ(t)) in W 1,2 ×W 1,2 ×W 1,1.

and we have to show that the limit function (u(t),m(t)λ(t)) : [0, T ] → U ×M× L is a
energetic solution. That is to say to verify the stability condition (6.1) and the energy
balance (6.2).

Step 4: Stability of the limit function

The stability of (u(t),m(t)λ(t)) is secured due to the weak closeness of the stable graph in
W 1,2 ×W 1,2 ×W 1,1. We have (uNk(t),mNk(t)λNk(t)) ∈ S(τk), with τk = max{τ ∈ ΠNk :

τ ≤ t}, whereas τk ↗ t for k →∞.
Take (tj, uj,mj, λj) ∈ S[0,T ] with tj → t, uj ⇀ u in W 1,2, mj ⇀ m in W 1,2 and

λj ⇀ λ in W 1,1. Since D is strongly continuous on L1 (hence, weakly continuous on W 1,1

due to the compact embedding) and E is weakly lower semi-continuous, we have for all
(û, m̂, λ̂) ∈ U ×M×L :

E(t, u,m, λ) ≤ lim inf
j→∞
E(tj, uj,mj, λj)

≤ lim inf
j→∞
E(tj, û, m̂, λ̂) +D(λj, λ̂) = E(t, û, m̂, λ̂) +D(λ, λ̂).
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Hence, we might conclude that for all t ∈ [0, T ] the limit function (u(t),m(t)λ(t)) ∈ S(t).

Step 5: Energy balance for the limit function

Lemma 6.3.6 (Upper energy estimate). Let t ∈ [0, T ]. For the stored energy E and
dissipation distance D defined via (6.4) and (6.6), the following upper energy estimate
holds

E(t, u(t),m(t), λ(t))+DissD(λ, [0, t]) ≤ E(0, u(0),m(0), λ(0))+

∫ t

0

∂τ .E(τ, u(τ),m(τ), λ(τ)) dτ.

Proof. First of all, the weakly lower semi-continuity of E gives

E(t, u(t),m(t), λ(t)) ≤ lim inf
k→∞

E(t, uNk(t),mNk(t), λNk(t)).

At the same time, the weak continuity on W 1,1 of D and stability condition imply

E(t, u(t),m(t), λ(t)) = lim
k→∞
E(t, u(t),m(t), λ(t)) +D(λNk(t), λ(t))

≥ lim sup
k→∞

E(t, uNk(t),mNk(t), λNk(t)).

Altogether, we might conclude that E converges along the approximation sequence, i.e.

E(t, u(t),m(t), λ(t)) = lim
k→∞
E(t, uNk(t),mNk(t), λNk(t)).

Since ` ∈ C1([0, T ], (W 1,2)∗), we have ∂tE(t, u,m, λ) = −
〈

˙̀(t), v
〉
. Hence, the time

derivatives of the stored energy functional converge as well

∂tE(t, u(t),m(t), λ(t)) = lim
k→∞

∂tE(t, uNk(t),mNk(t), λNk(t)).

The desired energy estimate on [0, T ] is a consequence of the discrete upper estimate
(6.10). Considering the definition of approximate solution (6.13), we have

(uNk(t),mNk(t), λNk(t)) = (uNk(τk),m
Nk(τk), λ

Nk(τk)) with 0 ≤ t− τk ≤ ∆k.

Recall that ∆k stands for the largest step of the time discretization ΠNk , whereas ∆k → 0
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for k →∞. Thus, we obtain

E(t, uNk(t),mNk(t), λNk(t)) + DissD(λNk ; [0, T ])

≤ E(τk, u
Nk(τk),m

Nk(τk), λ
Nk(τk)) + DissD(λNk ; [0, T ]) + C∆k

≤ E(0, u(0),m(0), λ(0)) +

∫ τk

0

∂sθ
Nk(s) ds+ C∆k

≤ E(0, u(0),m(0), λ(0)) +

∫ t

0

∂sθ
Nk(s) ds+ 2C∆k.

Taking advantage of θ ⇀ θ∗ and DissD(λNk ; [0, T ])→ δ(t), the limit passage gives

E(t, u(t),m(t), λ(t)) + δ(t) ≤ E(0, u(0),m(0), λ(0)) +

∫ t

0

∂sθ∗(s) ds.

However, θ∗ ≤ θ = ∂tE(t, u(t),m(t), λ(t)) and the energy dissipation is a lower semi-
continuous function. Thus we arrive

E(t, u(t),m(t), λ(t))+DissD(λ, [0, t]) ≤ E(0, u(0),m(0), λ(0))+

∫ t

0

∂τ .E(τ, u(τ),m(τ), λ(τ)) dτ.

and the proof is completed.

Lemma 6.3.7 (Lower energy estimate). Let t ∈ [0, T ]. For the stored energy E and
dissipation distance D defined via (6.4) and (6.6), the following upper energy estimate
holds

E(t, u(t),m(t), λ(t))+DissD(λ, [0, t]) ≥ E(0, u(0),m(0), λ(0))+

∫ t

0

∂τ .E(τ, u(τ),m(τ), λ(τ)) dτ.

Proof. The estimate follows from the stability condition. Take a paron of the time interval
ΠM : 0 = t0 < . . . < tM = T with the fineness ∆M . The stability of (u(tj−1),m(tj−1), λ(tj−1))

tested against (u(tj),m(tj), λ(tj)), j = 1, . . . ,M reads

E(tj−1, u(tj−1),m(tj−1), λ(tj−1)) ≤ E(tj−1, u(tj),m(tj), λ(tj)) +D(λ(tj), λ(tj−1))

E(tj, u(tj),m(tj), λ(tj)) +D(λ(tj), λ(tj−1))−
∫ tj

tj−1

∂tE(s, u(tj),m(tj), λ(tj)) ds.
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Summing over j = 1, . . . ,M gives

E(t, u(t),m(t), λ(t)) + DissD(λ, [0, t]) + E(t, u(s),m(s), λ(s))

≤
∑M

j=1

∫ tj

j−1

∂tE(s, u(tj),m(tj), λ(tj)) ds

=
∑M

j=1
(tj − tj−1)∂tE(s, u(tj),m(tj), λ(tj)) ds+

∑M

j=1
(tj − tj−1)εj, (6.14)

where εj = 1
tj−tj−1

∫ tj
j−1

[∂tE(s, u(tj),m(tj), λ(tj))− ∂tE(tj, u(tj),m(tj), λ(tj))] ds. However,
the modulus of continuity (??) provides a uniform bound |εj| ≤ ωE(tj − tj−1) ≤ ωE(∆j).
This pushes the last sum in (6.14) to zero, since wE(∆M)T → 0 as ∆M → 0. Additionally,
the first term in (6.14) in fact represents an approximation of the Lebesgue integral via
Riemann sums. Therefore, passing the ∆M → 0 we obtain the desired estimate.

The lemma 6.3.6 and lemma 6.3.7 hold at the same time. Thus, we conclude that the
limit function satisfies the energy balance and so it is a energetic solution.



Chapter 7

Numerical simulations

In this chapter several we present several examples in order to demonstrate numerically
the mathematical model developed in the previous chapter(s). The first section refers to
chapter 5 by performing the steady state model. In the second section we demonstrate
the evolutionary model developed in chapter 6. We are concerned with a magnetoelastic
tablet, so our simulations are done in 2D.

Let us recall the problem and the notation we use. The sample is represented by a
bounded domain Ω. The state of the sample at point x ∈ Ω is described by the value

v(x) =

[
e(u(x))

m(x)

]
,

where e(u(x)) stands for the symmetric part of the displacement gradient at point x:
e(u(x)) = ∇u(x) +∇u(x)T and m(x) is magnetization at x.

Our aim is to minimize the free energy of the sample, with respect to the existence of
several preferred states - the martensitic phases. The free energy is given by

Ī(λ, u,m) =

∫
Ω

W̄ (λ(x), v(x)) dx−

−
∫

Ω

f · udx−
∫

Γ1

g · udS−

−
∫

Ω

H ·m+
µ0

2

∫
Rn

|∇um|2 dx,

(7.1)

85



CHAPTER 7. NUMERICAL SIMULATIONS 86

with magneto-elastic energy density

W̄ (λ, v) =
1

2

〈
C(v −

2N∑
i=1

λiv
i), (v −

2N∑
i=1

λiv
i)

〉
.

The minimization is subjected to the constraints:

2N∑
i=1

λi = 1 |m| ≤ 1. (7.2)

In addition, the magnetostatic potential um satisfies

div(−µ0∇um +mχΩ) = 0. (7.3)

Please consider that the following notation is being used

Ω ... domain representing the sample

Γ1 ... part of the domain boundary

f ... loading: external body force

g ... loading: external surface force onΓ1

H ... loading: external magnetic field

um ... magnetostatic potential

vi ... the i-th martensitic variant

λi ... volume fraction of the i-th martensitic variant

λ ... (λ1, . . . , λ2N).

To solve this minimizing problem, we use the software MATLAB, which provides the
optimization toolbox. Concretely, we take advantage of the function FMINCON, which
is designed for finding a minimum of constrained nonlinear multi-variable problem

min
x
f(x) such that


c(x) ≤ 0, ceq(x) = 0

A · x ≤ beq Aeq · x = beq

lb ≤ x ≤ ub

,
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where the right side of the vinculum assigns the constrictions. The functions c(x) and
ceq(x) stand for nonlinear constrictions, the matrices A, Aeq with vectors b, beq give the
linear constrictions, and lob and upb define a set of lower and upper bounds on the design
variables in x.

The CD with all MATLAB source codes is attached to the thesis. In appendix A the
list of all used functions is provided. Consequently, in appendix B several key MATLAB

are listed.

7.1 Stationary 2D model

In this section we introduce the 2D numerical model. We presume all variables to be time-
independent. We examine the response of a magnetostrictive tablet to external loading.
In the first instance we apply magnetic field, afterwards we use external stress. Since we
deal with two dimensional model, the unknown variables are

u(x) =

[
u1(x)

u2(x)

]
, m(x) =

[
m1(x)

m2(x)

]
, λ(x).

The aim is to find approximate minimizer of the free energy functional 7.1 with respect to
constraints 7.2 and 7.1. For simplicity, we assume that the tablet represented by the domain
Ω is a rectangle of size 0.2× 0.1. We divide the domain into triangular elements following
standard rules for triangulization, see the figure 7.2 on the left. Delaunay1 triangulation
TD is used here.

To construct approximative solution we use element-wise affine functions for the com-
ponents of u and element-wise constant functions for components of m and λ.

u ∈ V1, where V1 =
{
v ∈ C(Ω); vi

∣∣
K
∈ P 1 ∀K ∈ TD, i = 1, 2

}
m ∈ V2, where V2 =

{
v : Ω→ R2; vi

∣∣
K
∈ P 0, i = 1, 2, |v

∣∣
K
| ≤ 1 ∀K ∈ TD

}
λ ∈ V3, where V3 =

{
v : Ω→ R; v

∣∣
K
∈ P 0, 0 ≤ v

∣∣
K
≥ 1 ∀K ∈ TD

}
Hence, the displacement u is evaluated in the vertexes of the grid and magnetization m

and volume fraction λ are evaluated on elements. Since the components of u are element-
wise affine, components of e(u) are element-wise constant functions. To calculate values of

1The triangulization for set of points P is called Delanoy if no point from P is inside the circumcircle
of any triangle in DT(P).
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e(u) at each element, the equation for the components of u at each element is needed. Let
us take arbitrary element from TD with corners A,B,C. Being given values of ui, i = 1, 2 in
the corners, we may evaluate ui in every point (x,y) of the element (except for the constant
k which we use in order to make u continuous on Ω)

ui(x, y) =
yCAuBAi − yBAuCAi
xBAyCA − xCAyBA

x+
xBAuCAi − xCAuBAi
xBAyCA − xCAyBA

y + k, i = 1, 2,

where we denote xBA = Bx − Ax, xCA = Cx − Ax, yBA = Bx − Ax, yCA = Cx − Ax,
uBAi = uBi − uAi , uCAi = uCi − uAi . To understand the notation see the figure 7.1.Then the
value of e(u) on the same element is

e(u) =

(
yCAuBA

1 −yBAuCA
1

xBAyCA−xCAyBA

xBAuCA
1 −xCAuBA

1

xBAyCA−xCAyBA

yCAuBA
2 −yBAuCA

2

xBAyCA−xCAyBA

xBAuCA
2 −xCAuBA

2

xBAyCA−xCAyBA

)
.

A= [A ;A ]x y

B= [B ;B ]x y

C= [C ;C ]x y

uA
i

uC
i

uB
i

x

yui

Figure 7.1: The triangle ABC is an arbitrary element of triangulization TD, ui is piece-wise
affine function on ABC. Hence, ui is determinated by three values of uAi ,uBi and uCi . The
equation describing ui on the triangle ABC is equation of a plane passing through points
[Ax, Ay, u

A
i ], [Bx, By, u

B
i ] and [Cx, Cy, u

C
i ]

.
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To handle the external loading f and g in 7.1 we take into consideration that

−divT = f, Tn = g, T = T T

where T stands for the Cauchy stress tensor. Therefore, we may write∫
Γ1

g · udS +

∫
Ω

f · udx =

∫
Γ1

Tn · udS +

∫
Ω

f · udx

=

∫
Ω

divT · u+ T · ∇udx+

∫
Ω

f · udx

=

∫
Ω

T · e(u)dx.

The constrains 7.2 are implied in the choice of the spaces V2 and V3. The constrain 7.1
and consequently the last integral in 7.1 need to be treated separately. In each cycle of
the minimization routine the equation 7.1 needs to be solved. Regarding the fact that m
is piece-wise constant we can not search for approximation of um as a classical solution.
However, taking advantage of Lax-Milgram lemma we know that equation 7.1 has a unique
weak solution, i.e. um satisfies

−µ0

∫
R2

∇um∇v dx =

∫
Ω

m∇v dx ∀v ∈ C∞0 .

To calculate the integral over R2 we benefit from the fact that the magnetostatic potential
decreases to zero being far enough from the source of the magnetic field. Thus, we set
um = 0 on ∂Ω̃, where Ω̄ ⊂ Ω̃, measΩ << measΩ̃ and we wish to solve

−µ0

∫
Ω̃

∇um∇v dx =

∫
Ω

m∇v dx ∀v ∈ C∞0 .

Hence, the finite element method might be used to find approximation of um. We take box
(square 2 × 2 with centre in origin) as Ω̃ and we construct the triangulization T̃D of Ω̃ so
that it matches with TD on Ω, see the figure 7.2 on the right. Again, we approximate um
with piece-wise affine function with zero trace on ∂Ω̃, that is to say

um ∈ Ṽ1, where Ṽ1 =
{
v ∈ C(Ω̃), v

∣∣
∂Ω̃

= 0; v
∣∣
K
∈ P 1 ∀K ∈ T̃D

}
.

At the moment all involved variables are defined on elements. Thus, we may proceed to
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Figure 7.2: The triangulation of domains Ω̃ (on the right) and Ω (on the left), Ω ⊂ Ω̃ .
The domain Ω represents the sample, the Ω̃ corresponds to the area so that we may set
um
∣∣
∂Ω̃

= 0. In the following text we dentote the upper part of the rectangle border ΓU and
the lower part ΓL.

the discretization of the energy functional 7.1. Let us denote eK(u) = e
∣∣
K

(u), mK = m
∣∣
K
,

λK = λ
∣∣
K
, TK = T

∣∣
K
, HK = H

∣∣
K
, ∀K ∈ TD and ∇uK̃m = (∇um)

∣∣
K̃
, ∀K̃ ∈ T̃D. Considering

that u ∈ V1,m ∈ V2, λ ∈ V3,um ∈ Ṽ1 we arrive with

Ēd =
1

2

∑
K∈TD

〈
C(vK − λKv01 − (1− λK)v02), (vK − λKv01 − (1− λK)v02)

〉
−

−
∑
K∈TD

TK · eK(u)−HK ·mK +
∑
K̃∈T̃D

|∇uKm|2,

where K runs over all elements from TD and K̃ runs over all elements from T̃D.
As described at the beginning of the chapter the minimization is implemented in

MATLAB using the minimization toolbox, namely the function FMINCON . See the code
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script for more detail. In the following we present responses of the FSMA tablet on several
different types of loading. We also show behaviour of different martensitic phases.

Magnetic tension

Let the sample be homogeneous having two martensitic phases described by

v1 =

 0.05 0

0 −0.05

1 0

 and v2 =

 −0.05 0

0 0.05

−1 0


As one can see the phase v1 prefers the enlargement in x-direction at the expense of
the y-direction, on the contrary v2 supports the y-extension and x-shortening. The both
martensitic phases are illustrated in figure 7.3.

We apply constant external magnetic field only. The direction of the field is contrary to
y-axes. We set the boundary conditions uy = 0 on ΓU and ux = 0 at the upper right corner
of the sample (at the point (x, y) = (0.1, 0.2)). The results are plotted in the figure 7.1,
the deformed configuration, magnetization are depicted in the figure , the distribution of
the volume fraction is shown in the figure . For completeness’ sake we add the figure 7.5
that shows the magnetostatic potential of the sample.

(a) The phase v1 (b) The phase v0

Figure 7.3: Magnetic tension - the ilustration of the two martensitic phases.
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(a) Deformation and magnetization (b) Volume fraction distribution

Figure 7.4: Magnetic tension - the FSMA in a shape of tablet exposed to the external
magnetic field. The sample is loaded by magnetic field H = [0 − 0.2]. The reference
configuration is represented by the black rectangle. The magnetization and deformation
of the sample are depicted on the left, the distribution of volume fraction is shown on the
right. The value λ = 1 is associated with v1 and λ = 0 with v0. Used parameters: C = I,
µ0 = 1
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(a) Magnetostatic potential pictured by colormap

(b) Magnetostatic potential pictured by flux lines

Figure 7.5: Magnetic tension - the magnetostatic potential of the FSMA tablet exposed to
the external magnetic field. The sample is loaded by magnetic field H = [0 − 0.2]. The
reference configuration is represented by the black rectangle. Used parameters: C = I,
µ0 = 1
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Mechanical bending

To demonstrate the response of the tablet to the mechanical loading we study bending of
the sample by external force. Again, we take two martensitic phases, however here we use

v1 =

 0 0.05

0.05 0

1 1

 and v0 =

 0 −0.05

−0.05 0

−1 −1

 . (7.4)

The phase v1 corresponds to the upper right shear and v2 referes to the upper left one, cf.
figure 7.6. We considere the tablet completely fixed on upper and lower boundary, that is to

(a) The phase v1 (b) The phase v0

Figure 7.6: Mechanical bending - the ilustration of the two martensitic phases.

say u
∣∣
ΓL

= u
∣∣
ΓU

= 0 . The sample is loaded by constant body force F = [0.40]. The results
for the plotted in the figure 7.7. As one would expect, the sample bends in the direction
of the applied force, see the figure 7.7(a). We observe that the volume fraction changes
along the tablet. Whilst, in the upper part the phase v0 is more energetically convenient
for the material, in the lower part the phase v1 is preferred, clarify the figure 7.7(b). For
the illustration we also plot the magnetostatic potential in figure 7.8.
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(a) Deformation and magnetization of the sample

(b) Distribution of the colume fractin within the sample

Figure 7.7: Mechanical bending - volume fraction distribution. The FSMA in a shape of
tablet loaded by external force F = [0.20]. The reference configuration is represented
by the black rectangle. The value λ = 1 is associated with v1 and λ = 0 with v0. Used
parameters: C = I, µ0 = 1
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(a) Magnetostatic potential pictured by a colormap

(b) Magnetostatic potential pictured by flux lines

Figure 7.8: Mechanical bending - the magnetostatic potential. The reference configuration
is represented by the black rectangle. The FSMA in a shape of tablet loaded by external
force F = [0.2 0] Used parameters: C = I, µ0 = 1

.
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7.2 Evolutionary 2D model

Contrary to the section 7.1 we now assume that the loading is time dependent. We take
advantage of the energetic formulation introduced in chapter 6 since it offers direct way
for implementation. We take discretization of the time interval [0, T ]. At every time step
we solve the time incremental problem which reads

∀k ∈ 1, . . . , N and given (u0,m0, λ0) ∈ S(0) we search for minimizer
(uk,mk, λk) ∈ U ×M×L of functional E(tk, u,m, λ) +D(λ, λk−1).

Since we work with piecewise affine and piecewise constant approximations of (u,m, λ) we
actually deal with the approximate time incremental problem

∀k ∈ 1, . . . , N and given (u0,m0, λ0) ∈ S(0) we search for minimizer
(uk,mk, λk) ∈ V1 × V2 × V3 of functional Ed(tk, u,m, λ) +Dd(λ, λk−1),

where Ed, Dd stand for discretized versions of E , D with respect to used triangulations TD
and T̃D.

Ed =
1

2

∑
K∈TD

〈
C(vK − λKv01 − (1− λK)v02), (vK − λKv01 − (1− λK)v02)

〉
−

−
∑
K∈TD

TK · eK(u)−HK ·mK +
∑
K̃∈T̃D

|∇uKm|2,

Dd = Kλ
∑
K∈TD

|λK − λKk−1|.

As in the previous section we are concerned with a sample that has shape of rectangular
tablet, we set the dimension of the tablet to 0.2× 0.4. We introduce both types (magnetic
and mechanic) loading with various martensitic variants.

Mechanical bending

First, let us consider the martensitic phases as in 7.4, i.e.

v1 =

 0 0.05

0.05 0

1 1

 and v0 =

 0 −0.05

−0.05 0

−1 −1

 .
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Additionally, we set the hysteresis constant to be 10−6. We expose the sample to the
external body force which time evolution is defined via

f(t) =

[
Fx sin(t)

0

]
.

For simplicity, we take the force to be spatial constant. We consider Dirichlet boundary
conditions u|ΓU

= u|ΓL
= 0 and for the initial state (t = 0) we use v = 0, λ = 0.5.

The resulting sequence of states which approximates the response of the sample in time is
plotted in the following figures. The reference and the deformed configuration of the sample
together with magnetization are plotted in the figure 7.9. The distribution of martensitic
phases is shown in the figure 7.10. In both figures we plot 25 states which cover response
to one cycle of the loading force fx = 1→ −1→ 1.

Magnetic twisting

Secondly, we examine the response of the tablet to the changing magnetic field. Again,
we use two preferred types of deformation (upper right shear and the lower left shear).
However, for this case, let us assume that there are two different directions of magnetization.
Thus, there are four matensitic phases

vA =

 0 0.05

0.05 0

1 1

 ,vB =

 0 0.05

0.05 0

−1 −1

 , vC =

 0 −0.05

−0.05 0

−1 1

 ,vD =

 0 −0.05

−0.05 0

1 −1

 .
See figure 7.11 for an illustration. We load the sample by a spatially constant magnetic
field which we allow to ”rotate” in time. Being precise, the magnetic field is set by

H(t) =

[
Hx cos(t)

Hy sin(t)

]
,

where we use Hx = 2, Hy = 2. The numerical result is depicted in 7.12.
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Figure 7.9: Mechanical bending - respose of the sample exposed to a changing body force.
The sequence of 25 subfigures shows the evolution of the sample deformation and magne-
tization within one cycle of the force.

vA vB vC vD
Figure 7.11: Four martensitic phases vA, vB, vC , vD used for magnetic twisting.

As might be seen in the figure 7.12, the magnetization of the sample follows the evolution
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Figure 7.10: Mechanical bending - response of the sample exposed to a changing body
force. The sequence of 25 subfigures shows the evolution of volume fraction distribution
within one cycle of the force.

of the external magnetic field. It jumps from one phase to an other in order to let the
magnetization be as aligned as possible with the external field. Consequently, the phase
transformations are associated with spatial change. Thus, we observe slight shearing of
the sample.

7.3 Magnetic Field-induced Strain Experiment

In order to demonstrate the qualitative agreement of the model with experimentally obser-
ved behaviour of FSMA, we wish simulate the FSMA loading sequence described in section
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Figure 7.12: Magnetical twisting - response of the sample exposed to a rotating magnetic
field. The sequence of subfigures shows the cycle.

2.3, clarify the figures 2.6 and 2.11. For this purpose we consider four energy wells

vA =

 0.05 0

0 −0.05

0 1

 ,vB =

 0.05 0

0 −0.05

0 1

 , vC =

 −0.05 0

0 0.05

1 0

 ,vD =

 −0.05 0

0 0.05

1 0

 .
As in the previous examples we use the rectangular tablet 0.2 × 0.4. However, the

non-trivial tensor of magnetoelastic constants C is considered. Since C is symmetric, it
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has no more than 15 non-zero elements in the 2D case. Let us use C of the following form

C =


c11 c12 0 c14 c15

c12 c11 0 c15 c14

0 0 c33 0 0

c14 c15 0 c44 0

c15 c14 0 0 c55

 .

The choice of the tensor structure is motivated by crystallography considerations. Initially,
the sample is loaded pressure in y-direction. Afterwards, the homogeneous time-dependent
magnetic field is applied in x-direction. The results are plotted in figure 7.13.

(a) Strain vs. magnetic field curve (b) Magnetization vs. magnetic field curve

Figure 7.13: The response of the sample to the loading sequence described in section 2.3.
The sample is loaded by pressure in y-direction of value 0.2. The magnetic loading runs
0 → 0.4 → −0.4 → 0.4. Magnetoelastic coefficients were set as follows: c11 = c22 = c33 =
c44 = c55 = 100, c12 = 10, c15 = −50, c14 = 0. The value of CHys was set to 0.1. For the
permeability of vacuum the physical value was used.

The above presented examples demonstrates that the model reacts reasonably with
respect to the applied loading. However, the rigorous analysis of the model whether it is
realistic or not can be done only through comparison with experimental data. The key
ingredient for such analysis is complete set of experimental data, namely information about
the volume fraction distribution is essential for correct calibration of the model.



Chapter 8

Conclusion

The thesis focuses on describing phenomenon of ferromagnetic shape memory alloys in
terms of mathematical modelling. We studied the theory of linear elasticity and micro-
magnetism in order to analyse relevant physical effects and reflect them accordingly in the
mathematical model. We formulated appropriate thermodynamic functionals of a linear
elastic material as well as a ferromagnetic material, and combined them in order to model
magneto-elastic behaviour.

Our primary goal is not to create a formally faultless model of a magnetostrictive ma-
terial, but we aim to come up with a mathematical description of concerned phenomena
with respect to practical usage and numerical implementation of the model (as shown in
chapter 7). Thus, we show the complexity of the problem and then we introduce its simplifi-
cations with appropriate discussion about potential cost of quality of the obtained results.
Such a simplification represents the usage of the volume fraction λ, whose qualification
λ ∈ L∞(Ω,R) was postulated. It is a rather statistical than physical value, since λ(x)

characterizes the surrounding of the point x instead of giving precise information about
the behaviour directly at point x.

This brings us to the issue how to potentially extend the work (in accordance with length
and quality). Natural direction of further research would be to incorporate the temperature
into the model, so that the austenite-to-martensite transformation could be described.
Another possibility is to advance in the direction of mathematical theory, study methods
of the calculus of variations and introduce other mathematical tools for dealing with the
multiple-well problem, e.g. Young measures approach, see [20]. Finally, implementation
of the 3D model for FSMAs would be very valuable. Since experimental data is always
related to the real (3D) world, having 3D simulations of FSMA loading response would
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enable physical calibration of the model via comparison with available experimental results.
In conclusion, the work lays out the procedure of extending the linear elasticity theory

to magnetically active materials. Such a model is then applied to describe a special family
of materials - ferromagnetic shape memory alloys. The author is aware of complexity and
complicacy of the problem and considers the text as a prologue to future work.

The author is pleased to write that the thesis was awarded the first place in the students’
research competition1 in mathematics in 2011, which was organized by The Union of Czech
Mathematicians and Physicists (JČMF).

1Studentská vysokoškolská odborná činnost (SVOČ 2011) organizována matematickou sekcí Jednoty
českých matematiků a fyziků.
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Appendix A

List of Functions

There is a CD attached to the thesis. Besides the text it contains all matlab-codes which
were used for numerical implementation of the model. To make it easier to read we provide
a list of several functions and commentary on their particular role. The list does not contain
all of the functions. The first free functions are used as command files. To give the reader
an insight into the codes a listing of the command files is provided in appendix B.

• function [dl,corners, CORNERS, p, e, t, ti, iind, NumP, NumT, IinBox, PI, TI, BD1,
BD2, LeftBoundaryIndex, RightBoundaryIndex, UpperBoundaryIndex, LowerBoun-
daryIndex] = Setting;
The function prepares the setting of the computation. The values dl, corners and
CORNERS specify the geometry. Variables p, e and t give information about the
mesh.

• function [sm,teziste,BaseGradient,TS] = PrepMag;
The function prepares the computation of the magnetostatic potential.

• function [U0,M0,L0,x0] = Initial;
The function computes the inital values for the minimizetion procedure. The function
assumes a material with two energy wells.

• function [U0,M0,L0,x0] = Initial4;
The function computes the inital values for the minimizetion procedure. The function
assumes a material with four energy wells.

• function [Aeq,beq,lob,upb]=constrains(case,U0,M0,L0,x0,UpperBoundaryIndex,...
LowerBoundaryIndex,LeftBoundaryIndex,RightBoundaryIndex)
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The function sets the linear constrains for the minimization procedure. The variable
case = 1 . . . 6 specifies the type. The function assumes a material with two energy
wells.

• function [Aeq,beq,lob,upb]=constrains4(case,U0,M0,L0,x0,UpperBoundaryIndex,...
LowerBoundaryIndex,LeftBoundaryIndex,RightBoundaryIndex)
The function sets the linear constrains for the minimization procedure. The variable
case = 1 . . . 6 specifies the type. The function assumes a material with four energy
wells.

• function [c,ceq,gradc,gradceq] = nonlincon(x) The function sets the nonlinear con-
strains for the minimization procedure. The function also computes gradients of the
constrains. The function assumes a material with two energy wells.

• function [c,ceq,gradc,gradceq] = nonlincon4(x) The function sets the nonlinear con-
strains for the minimization procedure. The function also computes gradients of the
constrains. The function assumes a material with four energy wells.

• function [E, Egrad] = Energie1(x)
The function computes the value of free energy E of the whole sample associated
with state specified in x. Additionally it computes vector of partial derivatives of E
with respect to state variables. The function is designed for the mechanical loading.
The material is assumed to have two energy wells.

• function [E, Egrad] = Energie2(x)
The function computes the value of free energy E of the whole sample associated
with state specified in x. Additionally it computes vector of partial derivatives of
E with respect to state variables. The function is designed for the magnetic and
mechanical loading. The mechanical loading has to be defined via stress tensor. The
material is assumed to have four energy wells.

• function [E, Egrad] = Energie3(x)
The function computes the value of free energy E of the whole sample associated
with state specified in x. Additionally it computes vector of partial derivatives of E
with respect to state variables. The function is designed for the magnetic loading.
The material is assumed to have two energy wells.
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• function [E, Egrad] = Energie34(x)
The function computes the value of free energy E of the whole sample associated
with state specified in x. Additionally it computes vector of partial derivatives of E
with respect to state variables. The function is designed for the magnetic loading.
The material is assumed to have four energy wells.

• function EE = EnergieElement(C,va,vb,vc,vd,trisurf,e1,e2,e12,e21,mx,my,...
lam1,lam2,lam3,lam4,LoadH,LoadT)
The function computes the value of free energy EE of one element. Two energy wells
are assumed.

• function EE = EnergieElement4(C,va,vb,vc,vd,trisurf,e1,e2,e12,e21,mx,my,...
lam1,lam2,lam3,lam4,LoadH,LoadT)
The function computes the value of free energy EE of one element. Four energy wells
are assumed.

• function [e11,e12,e21,e22] = GradU(x,y,ux,uy)
The function computes the values of gradient of displacement. The components of
displacement are assumed to be piece-affine functions.

• function C = MagElasTensor(pripad);
The function computes the tensor of magnetoelastic constants. For pripad = 1, C is
as in section 7.3. If pripad = 2, C is identity.

• function EGEU = EnergyGradElemU(x1,x2,x3,y1,y2,y3,ux1,ux2,ux3,uy1,uy2,uy3,...
mx,my,lam,der,k,TS,f)
The function computes the value of energy gradient with respect to u1 or u2 (specified
by der). The function is designed for a material with two energy wells.

• function EGEM = EnergyGradElemM(C,v1,v2,trisurf,e11,e12,e21,e22,...
mx,my,lam,der,H)
The function computes the value of energy gradient with respect to m1 or m2 (spe-
cified by der). The function is designed for a material with two energy wells.

• function EGEL = EnergyGradElemL(C,v1,v2,trisurf,e11,e12,e21,e22,...
mx,my,lam,lamPrev)
The function computes the value of energy gradient with respect to λ. The function
is designed for a material with two energy wells.
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• function EnergyGradElemU4(x1,x2,x3,y1,y2,y3,ux1,ux2,ux3,uy1,uy2,uy3,...
mx,my,lam1,lam2,lam3,lam4,der,k,TS,T)
The function computes the value of energy gradient with respect to u1 or u2 (specified
by der). The function is designed for a material with four energy wells.

• functionEGEM = EnergyGradElemM4(C,va,vb,vc,vd,trisurf,e11,e12,e21,e22,...
mx,my,lam1,lam2,lam3,lam4,der,H)
The function computes the value of energy gradient with respect to m1 or m2 (spe-
cified by der). The function is designed for a material with four energy wells.

• function EGEL = EnergyGradElemL4(C,va,vb,vc,vd,der,trisurf,e11,e12,e21,e22,...
mx,my,lam1,lam2,lam3,lam4,lamPrev)
The function computes the value of energy gradient with respect to λ. The function
is designed for a material with four energy wells.

• function [U,NablaU] = MagnetoStatics(M)
For given magnetization of the material the function computes the magnetostatic
potential U nad its gradient nablaU . As explained in section 7.1 the magnetostatic
potential is computed on square 2 × 2 with centre in (0, 0). For computation finite
element method is used.



Appendix B

Details on numerical simulation

1 clear a l l ; clc ; cla ;
2 t1 = cputime ;
3 global p e t t s t i TI PI C v1 v2 T H f alpha co rne r s CORNERS . . .
4 NumP NumT sm BaseGradient IinBox TS pin i i nd
5 % SPECIFY THE SETTING AND CREATE MESH
6 [ dl , corners , CORNERS, p , e , t , t i , i ind ,NumP,NumT, IinBox , . . .
7 PI , TI ,BD1,BD2, ts , LeftBoundaryIndex , RightBoundaryIndex , . . .
8 UpperBoundaryIndex , LowerBoundaryIndex ] = Se t t i ng ;
9 [ sm , t e z i s t e , BaseGradient ,TS ] = PrepMag ;

10 %SET THE MINIMIZATION INITAL VALUES
11 ca s s e = 2 ;
12 [U0 ,M0, L0 , x0 ] = I n i t i a l ;
13 [ Aeq , beq , lob , upb]= con s t r a i n s ( casse ,U0 ,M0, L0 , x0 , . . .
14 UpperBoundaryIndex , LowerBoundaryIndex ) ;
15 %RUN THE MINIMIZATION RUTINE
16 %mater ia l p r o p e r t i e s v = [ e1 e2 e12 e21 mx my]
17 C = eye (6 ) ;
18 %v1 = [ 0.05 −0.05 0 0 1 1 ] ;
19 %v2 = [−0.05 0.05 0 0 −1 −1];
20 v1 = [ 0 0 0 .1 0 .1 1 1 ] ;%lambda = 1 , cervena
21 v2 = [ 0 0 −0.1 −0.1 −1 −1];%lambda = 0 , modra
22 alpha = 0 . 1 ;
23 %DEFININE LOADING
24 ZATEZ = 3 ;
25 Hx = 2 ;
26 Hy = 0 ;
27 f = [ 0 0 ] ;
28 T = zeros (4 , s ize (TI , 2 ) ) ;
29 T( 2 , : ) = 0∗ ones (1 , s ize (TI , 2 ) ) ;
30 H( 1 , : )= ones (1 , s ize (TI , 2 ) ) ∗Hx;
31 H( 2 , : ) = ones (1 , s ize (TI , 2 ) ) ∗Hy;
32 %r e s u l t = zeros (N, s i z e ( x0 , 2 ) ) ;
33 %lamPrev = x0 ( numel ( x0 )−s i z e (TI , 2 ) +1:numel ( x0 ) ) ;
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34 Hess = HessFun ;%napoc i ta hes s ian
35 opt ions = opt imset ( ’GradObj ’ , ’ on ’ , ’ GradConstr ’ , ’ on ’ , ’ TolFun ’ ,10^(−13) , . . .
36 ’TolCon ’ ,10^(−13) , ’ HessPattern ’ , Hess ) ;
37 %CHECK THE TYPE OF THE LOADING
38 i f ZATEZ == 1 ;%za t i z e n i s i l o u
39 [ x , f va l , e x i t f l a g , output ,LAMBDA, grad , he s s i an ] = . . .
40 fmincon (@Energie1 , x0 , [ ] , [ ] , Aeq , beq , lob , upb , @nonlincon ) ;
41 r e s u l t= x ;
42 e l s e i f ZATEZ == 2 ; %za t i z e n i popsano tenzorem nape t i
43 [ x , f va l , e x i t f l a g , output ,LAMBDA, grad , he s s i an ] = . . .
44 fmincon (@Energie2 , x0 , [ ] , [ ] , Aeq , beq , lob , upb , @nonlincon ) ;
45
46 %lambda ( i , : ) = lamPrev ;
47 e l s e i f ZATEZ == 3 ;%magneticka z a t e z
48 H( 1 , : ) = ones (1 , s ize (TI , 2 ) ) ∗Hx;
49 H( 2 , : ) = ones (1 , s ize (TI , 2 ) ) ∗Hy;
50 %ru t in e
51 [ x , f va l , e x i t f l a g , output ,LAMBDA, grad , he s s i an ] = . . .
52 fmincon (@Energie3 , x0 , [ ] , [ ] , Aeq , beq , lob , upb , @nonlincon , opt ions ) ;
53 end
54 t2 = cputime ;
55 time = t2−t1

Listing B.1: CommandFileSteadyState

1 clear a l l ; clc ; cla ;
2 t1 = cputime ;
3 global p e t t s t i TI PI C v1 v2 T Chys alpha co rne r s CORNERS . . .
4 NumP NumT sm BaseGradient IinBox TS pin i i nd lamPrev
5 % SPECIFY THE SETTING AND CREATE MESH
6 [ dl , corners , CORNERS, p , e , t , t i , i ind ,NumP,NumT, IinBox , . . .
7 PI , TI ,BD1,BD2, ts , LeftBoundaryIndex , RightBoundaryIndex , . . .
8 UpperBoundaryIndex , LowerBoundaryIndex ] = Se t t i ng ;
9 [ sm , t e z i s t e , BaseGradient ,TS ] = PrepMag ;

10 %SET THE MINIMIZATION INITAL VALUES
11 %casse==1 znamena d v o j i v e t k nu t i
12 %casse==3 znamena v e t k nu t i nahore
13 ca s s e = 1 ;
14 [U0 ,M0, L0 , x0 ] = I n i t i a l ;
15 [ Aeq , beq , lob , upb]= con s t r a i n s ( casse ,U0 ,M0, L0 , x0 , . . .
16 UpperBoundaryIndex , LowerBoundaryIndex ) ;
17 %RUN THE MINIMIZATION RUTINE
18 %mater ia l p r o p e r t i e s v = [ e1 e2 e12 e21 mx my]
19 C = eye (6 ) ;
20 %v1 = [ 0.05 −0.05 0 0 0 1 ] ;
21 %v2 = [−0.05 0.05 0 0 0 −1];
22 v1 = [ 0 0 0 .05 0 .05 1 1 ] ;%lambda = 1 , cervena
23 v2 = [ 0 0 −0.05 −0.05 −1 −1];%lambda = 0 , modra
24 alpha = 0 . 1 ; %konstanata
25 Chys = 0 ; %konstanta h z s t e r e z e
26 N = 30 ;
27 %krok = l i n s pa c e (−1 ,1 ,N) ;
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28 %lamPrev = 0;
29 F = 1 . 5 ;
30 Hx = 0 ;
31 Hy = 0 ;
32 T = 0∗ ones (4 , s ize (TI , 2 ) ) ;
33 r e s u l t = zeros (N+1, s ize ( x0 , 2 ) ) ;
34
35 %lamPrev = x0 ( numel ( x0 )−s i z e (TI , 2 ) +1:numel ( x0 ) ) ;
36 Hess = HessFun ;
37 opt ions = opt imset ( ’GradObj ’ , ’ on ’ , ’ GradConstr ’ , ’ on ’ , ’ TolFun ’ ,10^(−13) , . . .
38 ’TolCon ’ ,10^(−13) , ’ HessPattern ’ , Hess ) ;
39 %CHECK THE TYPE OF THE LOADING
40 l am i n i t i a l = 0 .5∗ ones (1 , s ize (TI , 2 ) ) ;
41 i f sum(sum(abs (Hx)+abs (Hy) ) ) == 0 && sum(sum(T) )==0;
42 for i = 1 :N
43 global f lamPrev
44 f = [F∗ sin (2∗pi∗ i /N) 0 ] ;
45 i f i == 1
46 lamPrev = l am i n i t i a l ;
47 else
48 lamPrev = r e s u l t ( i −1,numel ( x0 )−s ize (TI , 2 ) +1:numel ( x0 ) ) ;
49 end
50 f f ( i , : ) = f ;
51 LL( i , : ) = lamPrev ;
52 [ x , f va l , e x i t f l a g , output ,LAMBDA, grad , he s s i an ] = . . .
53 fmincon (@Energie1 , x0 , [ ] , [ ] , Aeq , beq , lob , upb , @nonlincon ) ;
54 r e s u l t ( i , : )= x ;
55 clear f lamPrev
56 end
57 e l s e i f sum(sum( f ) ) == 0 && sum(sum(T) )==0;
58 for i = 1 :N+1
59 global H lamPrev
60 i f i == 1
61 lamPrev = l am i n i t i a l ;
62 else
63 lamPrev = r e s u l t ( i −1,numel ( x0 )−s ize (TI , 2 ) +1:numel ( x0 ) ) ;
64 end
65 H( 1 , : ) = ones (1 , s ize (TI , 2 ) ) ∗Hx∗cos ( i ∗2∗pi /(N) ) ;
66 H( 2 , : ) = ones (1 , s ize (TI , 2 ) ) ∗Hy∗ sin ( i ∗2∗pi /(N) ) ;
67 hh( i , : ) = [H(1 , 1 ) ,H(2 , 1 ) ] ;
68 LL( i , : ) = lamPrev ;
69 %ru t in e
70 [ x , f va l , e x i t f l a g , output ,LAMBDA, grad , he s s i an ] = . . .
71 fmincon (@Energie3 , x0 , [ ] , [ ] , Aeq , beq , lob , upb , @nonlincon ,

opt ions ) ;
72 r e s u l t ( i , : )= x ;
73 clear H lamPrev
74 %lambda ( i , : ) = lamPrev ;
75 end
76
77 end
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78 t2 = cputime ;
79 time = t2−t1 ;

Listing B.2: CommandFileEvolutionA

1 clear a l l ; cla ;
2 t1 = cputime ;
3 global p e t t s t s i n t i TI PI C va vb vc vd T alpha co rne r s CORNERS . . .
4 NumP NumT sm BaseGradient IinBox TS pin i i nd Chys lamPrev Hess
5 % SPECIFY THE SETTING AND CREATE MESH
6 [ dl , corners , CORNERS, p , e , t , t i , i ind ,NumP,NumT, IinBox , . . .
7 PI , TI ,BD1,BD2, ts , LeftBoundaryIndex , RightBoundaryIndex , . . .
8 UpperBoundaryIndex , LowerBoundaryIndex ] = Se t t i ng ;
9 [ sm , t e z i s t e , BaseGradient ,TS ] = PrepMag ;

10 ITI = find ( t ( 4 , : )==2) ; %InnerTr iang le Index
11 t s i n = zeros (1 , numel ( ITI ) ) ;
12 for i = 1 : length ( ITI )
13 t s i n ( i ) = t s ( ITI ( i ) ) ;
14 end
15 %SET THE MINIMIZATION INITAL VALUES
16 ca s s e = 5 ;
17 [U0 ,M0, L0 , x0 ] = I n i t i a l 4 ;
18 [ Aeq , beq , lob , upb]= con s t r a i n s 4 ( casse ,U0 ,M0, L0 , x0 , UpperBoundaryIndex , . . .
19 LowerBoundaryIndex , LeftBoundaryIndex ,

RightBoundaryIndex ) ;
20 %RUN THE MINIMIZATION RUTINE
21 %mater ia l p r o p e r t i e s v = [ e1 e2 e12 e21 mx my]
22 C = MagElasTensor (1 ) ;
23
24 % va = [ 0 0 0.0 0.0 1 1];% lambda = 1 , cervena
25 % vb = [ 0 0 0.0 0.0 −1 −1];%lambda = 0 , modra
26 % vc = [ 0 0 −0.0 −0.0 −1 1];% lambda = 1 , cervena
27 % vd = [ 0 0 −0.0 −0.0 1 −1];%lambda = 0 , modra
28 va = [ −0.05 0 .05 0 0 1 0 ] ;%lambda = 1 ,
29 vb = [ −0.05 0 .05 0 0 0 −1];%lambda = 0 ,
30 vc = [ 0 .05 −0.05 0 0 0 1 ] ;%lambda = 1 ,
31 vd = [ 0 .05 −0.05 0 0 −1 0 ] ;%lambda = 0 ,
32 ZATEZ = 1 ;
33 alpha = 10^(−6) ; %konstanata
34
35 Chys = 0 . 1 ; %konstanta h z s t e r e z e
36 n = 30 ;
37 N = 2∗(n+1) ;
38 %krok = l i n s pa c e (−1 ,1 ,N) ;
39 %lamPrev = 0;
40 %f = [ 0 ;
41 Hx = 0.4∗10^(0) ;
42 Hy = 0 ;
43 T = zeros (4 , s ize (TI , 2 ) ) ;
44 T( 2 , : ) = −0.2∗10^(0)∗ ones (1 , s ize (TI , 2 ) ) ;
45 r e s u l t = zeros (N, s ize ( x0 , 2 ) ) ;
46



APPENDIX B. DETAILS ON NUMERICAL SIMULATION 117

47 H( 1 , : )= ones (1 , s ize (TI , 2 ) ) ∗Hx;
48 H( 2 , : ) = ones (1 , s ize (TI , 2 ) ) ∗Hy;
49 %lamPrev = x0 ( numel ( x0 )−s i z e (TI , 2 ) +1:numel ( x0 ) ) ;
50 Hess = HessFun4 ;
51 %opt ions = opt imse t ( ’ Algorithm ’ , ’ Active−Set ’ , ’ GradObj ’ , ’ on ’ , ’ GradConstr ’ , ’ on

’ ) ;
52 % opt ions = opt imse t ( ’ Algorithm ’ , ’ i n t e r i o r−point ’ , ’ Display ’ , ’ i t e r ’ , ’ GradObj

’ , ’ on ’ , . . .
53 % ’GradConstr ’ , ’ on ’ , ’ Hessian ’ , ’ user−supp l i ed ’ , ’ HessFcn ’ ,

@HESSIAN) ;
54 %opt ions=opt imse t ( ’ GradObj ’ , ’ on ’ , ’ GradConstr ’ , ’ o f f ’ , ’ Algorithm ’ , ’ t r u s t−

region−r e f l e c t i v e ’ ) ;
55 opt ions = opt imset ( ’GradObj ’ , ’ on ’ , ’ GradConstr ’ , ’ on ’ , ’ TolFun ’ ,10^(−13) , ’

TolCon ’ ,10^(−13) , ’ HessPattern ’ , Hess ) ;
56 %CHECK THE TYPE OF THE LOADING
57 %opt ions = opt imse t ( ’ Algorithm ’ , ’ i n t e r i o r−point ’ , ’ Hessian ’ , ’ f in−d i f f −grads

’ , . . .
58 % ’ SubproblemAlgorithm ’ , ’ cg ’ , ’ GradObj ’ , ’ on ’ , ’ GradConstr ’ , ’ on ’ ) ;
59
60 i f ZATEZ == 1
61 for i = 1 :N+3∗(n+1)
62 i
63 global H lamPrev
64 i f i<=n+1
65 H( 1 , : ) = ones (1 , s ize (TI , 2 ) ) ∗Hx∗( i −1)/n ;
66 e l s e i f i >3∗(n+1)
67 H( 1 , : ) = ones (1 , s ize (TI , 2 ) ) ∗(Hx∗( i −1)/n−4∗Hx) ;
68 else
69 H( 1 , : ) = ones (1 , s ize (TI , 2 ) ) ∗(2∗Hx−Hx∗( i −1)/n) ;
70 end
71 % ru t in e
72 i f i == 1
73 [ x , f va l , e x i t f l a g , output ,LAMBDA, grad , he s s i an ] = . . .
74 fmincon (@Energie2a , x0 , [ ] , [ ] , Aeq , beq , lob , upb , @nonlincon4 ) ;
75 else
76 lamPrev = r e s u l t ( i −1,numel ( x0 )−4∗s ize (TI , 2 ) +1:numel ( x0 ) ) ;
77 [ x , f va l , e x i t f l a g , output ,LAMBDA] = . . .
78 fmincon (@Energie2 , x0 , [ ] , [ ] , Aeq , beq , lob , upb , @nonlincon4 , opt ions ) ;
79 LL( i −1 , : ) = lamPrev ;
80 e x i t f l a g
81 end
82 r e s u l t ( i , : )= x ;
83 hh( i , : ) = [H(1 , 1 ) ,H(2 , 1 ) ] ;
84 clear H lamPrev
85 end
86 e l s e i f ZATEZ == 2
87 for i = 1 :N
88 global H lamPrev
89 i f i == 1
90 lamPrev = l am i n i t i a l ;
91 else
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92 lamPrev = r e s u l t ( i −1,numel ( x0 )−s ize (TI , 2 ) +1:numel ( x0 ) ) ;
93 end
94 i
95 H( 1 , : ) = ones (1 , s ize (TI , 2 ) ) ∗Hx∗cos ( i ∗2∗pi /(N) ) ;
96 H( 2 , : ) = ones (1 , s ize (TI , 2 ) ) ∗Hy∗ sin ( i ∗2∗pi /(N) ) ;
97 hh( i , : ) = [H(1 , 1 ) ,H(2 , 1 ) ] ;
98 LL( i , : ) = lamPrev ;
99 ru t i n e
100 [ x , f va l , e x i t f l a g , output ,LAMBDA, grad , he s s i an ] = . . .
101 fmincon (@Energie34 , x0 , [ ] , [ ] , Aeq , beq , lob , upb , @nonlincon4 ) ;
102 r e s u l t ( i , : )= x ;
103
104 clear H lamPrev
105 lambda ( i , : ) = lamPrev ;
106 end
107
108 end
109 %P l l t ( r e s u l t ) ;
110 %save ( ’ vys l edek1 ’ , ’Ux ’ , ’Uy ’ , ’mx’ , ’my’ , ’ lambda ’ , ’H’ )
111 t2 = cputime ;
112 time = t2−t1
113 PlotTest1 ( r e su l t , hh ) ;

Listing B.3: CommandFileEvolutionB



Appendix C

Used statements

Several important theorems were mentioned and used witin the thesis, however no precise
formulation was given. Therefore we include these into the Appendix to make the work
more comprehensive and transparent. We state theorems without proofs. The reader is
supposed to use links referring to individual theorem. More information about relaxation
theory as well as proof of the theorem C.2 might be found in [6], for the proof of the
theorem C.3 see [24]. For the proof of theorem C.4 clarify [34].

Theorem C.1. Let X be a Banach space and let I : X → R̄ = R ∪ +∞ be convex and
lower semicontinuous, then I is weakly lower semicontinuous.

Definition C.1. f : Rm×n → R is said to be quasiaffine if f and −f are quasiconvex (see
the definition 5.1.3).

Theorem C.2. (The relaxation theorem)
Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. Let f : Rnm → R be continuous
and satisfying

a+
N∑
i=1

bi|Φi(A)|βi ≤ f(A) ≤ c+
N∑
i=1

di|Φi(A)|βi

for every A ∈ Rnm and for some a, c ∈ R, N ≥ 1, βi > 1, di ≥ bi > 0 and where
Φi : Rnm → R, i = 1, ..., N are quasiaffine. Let u ∈ W 1,∞(Ω,Rm), then there exists
{us}∞s=1, us ∈ W 1,∞(Ω,Rm) such that

i) us = u on ∂Ω,

ii) Φi(∇us) ⇀ Φi(∇u) in Lβi(Ω), i = 1, ..., I, as s→∞,
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iii)
∫

Ω
f(∇us(x)) dx→

∫
Ω
Qf(∇u(x)) dx as s→∞,

where Qf is quasiconvex envelope of f .

Definition C.2. Let X∗ be dual space to normed vector space X over R (or C) and X∗∗ be
dual space to Banach space X∗. We define continuous linear transformation κ : X → X∗∗

κf (x) = f(x) ∀x ∈ X and f ∈ X∗.

Since mapping κ preserve the norm, it is injective. The space X is called reflexive, if κ is
bijective.

Theorem C.3. (Equivalent definition of reflexive space)
Let X be a Banach space, then the following are equivalent

1. The space X is reflexive.

2. The dual space of X is reflexive.

3. Every bounded sequence in X has a weakly convergent subsequence.

4. Every continuous linear functional on X attains its maximum on the closed unit ball
in X.

Theorem C.4. Let Ω ∈ Rn be a bounded set with Lipschitz boundary, p ∈ 〈1, n), then

∀q ∈ 〈1, p∗) W 1,p(Ω) ↪→↪→ Lq(Ω),

where p∗ = pn
n−p .


