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Abstrakt:

V této práci se zabýváme rizikově neutrální oceňovací formulí pro kreditní přirážku
k tržnímu oceňování v případech, kdy jsou jedna nebo obě strany kontraktu vys-
taveny riziku úpadku. V případě, kdy čelí úpadku jen jedna strana, je toto
riziko kvantifikováno pomocí tzv. Credit Valuation Adjustment (CVA). Pokud
této možnosti čelí obě strany, je riziko reprezentováno pomocí tzv. Bilateral
Risk Adjustment (BVA). Tyto kreditní přirážky (CVA, BVA) jsou zapracovány
ve vzorcích pro oceňování bezkupónových dluhopisu̇, kupónových dluhopisu̇ a
úrokových swapú. Rizikově neutrální pravděpodobnosti bankrotu, potřebné k
zahrnutí těchto přirážek do cen daných kontraktu̇, jsou odvozeny z tržních kotací
tzv. Credit default swaps. Pro jejich odvození použijeme tzv. bootstrap meto-
du. Pro modelovǎní pravděpodobností úpadku používáme tzv. reduced form
approach. V praktické části práce jsme se zaměřili na odvození rizikové neu-
trálních pravdépodobností úpadku pro Řecko a Českou Republiku v období let
2008-2010 včetně bouřlivého období v kvétnu 2010 na řeckém trhu. Následně je
kvantifikováno CVA pro 18 státních dluhopisu̇ kotovaných na trhu a ceny up-
raveny o CVA jsou porovnávány s reálnými tržními cenami. Také studujeme vliv
výběru bezrizikové úrokové míry na tento výpočet. V poslední sekci konstruu-
jeme úrokový swap mezi Českem a Řeckem, pro který určujeme CVA a BVA.

Klíčová slova: kreditní přirážku k tržnímu oceňování, rizikově neutrální pravděpodob-
nosti úpadku protistrany, riziko úpadku
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Abstract: In this work we are introducing a risk neutral valuation formula for
counterparty default risk adjustments in an unilateral and in a bilateral case. In
the unilateral case the adjustment is represented by a Credit Valuation Adjust-
ment(CVA) and in the bilateral case the adjustment is quantified by a Bilateral
Risk Adjustment(BVA). We are incorporating these adjustments into the values
of zero coupon bonds, coupon bearing bonds and interest rate swaps. For such an
incorporation, risk neutral default probabilities extracted from the market quotes
of Credit Default Swaps are needed. A Bootstrap method is used to derive them
and a reduced form approach is used to model the default times. In the practical
part, we are calculating Greek and Czech risk neutral default probabilities during
the years 2008-2010. We are calculating CVA for 18 quoted Greek government
bonds and we are comparing the adjusted prices with the market quoted prices of
these bonds. We study the impact of a risk free interest rate curve choice on such
a valuation. In the last sections, we construct an interest rate swap between the
Czech and the Greece. We compute and study CVA and BVA for this interest
rate swap.
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1. Introduction
Recently, we are witnesses to big private corporations bankruptcies and even
whole countries are balancing on the edge of state bankrupt. These situations
with connection of rapidly increasing so called over-the-counter(OTC) deals in
financial markets are yielding following question. What is the impact of such a
risk on a financial contract and its value? We are trying to answer this question
through an adjustment of default free prices of financial instruments. Measures for
quantification of default risk are expressed by CVA(Credit Valuation Adjustment)
and BVA(Bilateral Valuation Adjustment) respectively. The key relations in this
work that are representing these adjustments are

CVA = Vdefault free − Vexposed to default risk

BVA = VBi
exposed to default risk − V default free

where Vdefault free is the value for a contract in default free environment and
Vexposed to default risk and V Bi

exposed to default risk stand for the values of the instruments
in which is already incorporated unilateral and bilateral default risk exposure, re-
spectively. CVA adjustment represents the case, where we are assuming that just
one counterparty in the contract can default, thus CVA can be just nonnegative.
In more realistic case, where both counterparties are exposed to default risk, BVA
serves as a risk measure and it may be either positive or negative one. This thesis
is divided into two main parts, theoretical and practical. In the theoretical part,
we are summarizing the risk neutral approach to the valuation of bonds, swaps
etc. . In Chapter 4 we are introducing key theorems that later in Chapter 5 help
us to incorporate default risk into the price of financial contracts. We are dealing
with two types of risks here: unilateral default risk and bilateral default risk. For
quantification of default risk are crucial risk neutral default probabilities. We are
using implied risk neutral default probabilities from the market, extracted from
CDS quotes, this procedure is described in Section 8.1. Some of these theoretical
parts, mainly about unilateral default risk and risk neutral valuation, are based
on my prior diploma thesis that was submitted to Faculty of Sciences, Vrije Uni-
versity in Amsterdam in 2010.
In the practical part, we apply the whole theory on real market data. We use dis-
tressed situation around Greece in May 2010 to study CVA for Greek government
bonds. We are extracting risk neutral default probabilities from CDS quotes on
these bonds and then we use them to compute CVA for 18 coupon bonds quoted
on the market. Market implied risk neutral default probabilities are extracted
also for Czech Republic and are used in the last chapter. By the means of CVA,
we are trying to approach real market prices of bonds through our theory, from
default free price(cash-flows discounted by risk free interest rate) to real market
prices of these bonds. Here in this thesis we also study the impact of default
free interest rate curve choice. We are working with two most common curves;
Treasury curve and interest rate swap curve. In the last Chapter 11 we apply
the theory for unilateral and bilateral default risk for interest rate swaps. We
work with artificially constructed interest rate swap between Greece and Czech
Republic and computing CVA and DVA for it. From the price already adjusted
for credit risk we subsequently compute fixed rates, that already include default
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risk exposure of counterparties, payed in the interest rate swap contract.

4



2. Valuation of Default Free Bonds

2.1 Zero-coupon Bonds
Zero coupon bond (or discount bond) is a financial instrument that at the ma-
turity time, let denote it T , pays a certain amount of money (principal or face
value) to its holder; we will consider the face value that equals to 1 without
loss of generality. There are no payments between the issue of the bond and its
maturity. We are considering a continuous trading economy with trading within
interval [0, τ ] for τ > 0. We denote P (t, T ) the value of zero coupon bond at time
t, t ∈ [0, T ], for t ≤ T ≤ τ and hence we require P (T, T ) = 1 and P (t, T ) > 0
for all T ∈ [0, τ ] and t ∈ [0, T ]. We are excluding the existence of non-trivial
arbitrage opportunity in the market.

2.2 Interest Rate Term Structure
We are considering a zero-coupon bond with its maturity at time T ≤ τ and price
P (t, T ) for t ∈ [0, T ], trading in the market where bond price is strictly positive
and adapted process on probability space (Ω,F,P). Where Ω is state space, F is
a σ-algebra representing measurable events and P is a probability measure. The
term structure of interest rates is also known as a yield curve and it relates yields
to maturity times. Yield-to-maturity on zero coupon bond is defined as

Y (t, T ) = − 1

T − t
lnP (t, T ) for all t ∈ [0, T ) (2.1)

To a given yield curve uniquely corresponds the bond price process according to
the following formula

P (t, T ) = exp (−Y (t, T ) · (T − t)) for all t ∈ [0, T ] (2.2)

There are two possibilities how the initial interest rate term structure is repre-
sented. Either it is represented by the current bond prices P (0, T ) or by the
initial yield curve given by the following formula

P (0, T ) = exp(−Y (0, T )T ) for all T ∈ [0, τ ] (2.3)

2.2.1 Forward Interest Rates

The general view on bond price methodology is through the spot rates to the
forward rates. The interest rate in infinitesimal time interval [T, T + dT ] ob-
served from time t is called instantaneous continuously compounded forward rate
or simply instantaneous forward rate and is denoted by f(t, T ). This rate is not
observable in the market. Starting from this concept the zero-copon bond price
is

P (t, T ) = exp

(
−
∫ T

t

f(t, u)du

)
for all t ∈ [0, T ] (2.4)
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Alternatively, assume that prices P (t, T ) are continuously differentiable in T .
Then we define a forward rate by the way of bond price definition as follows

f(t, T ) = −∂ ln P(t,T)
∂T

(2.5)

We can look at the forward rate as a limit case of forward rate f(t, T, U) that is
observed at time t for borrowing over the future time interval [T, U ] for t ≤ T ≤ U .
If we use the zero coupon bond price it follows that

P (t, U)

P (t, T )
= exp(−f(t, T, U)(U − T )) for all t ≤ T ≤ U (2.6)

or equivalently

f(t, T, U) =
P (t, T )− P (t, U)

U − T
(2.7)

Granting continuity, we have Y (t, T ) = f(t, t, T ), that follows from introduced
formulas, but also from argument that lending money from time t to time T , t ≤ T
is equivalent to investing money at time t to bonds with maturity T .

2.2.2 Short-term interest rates

We consider stochastic interest rate models that, are then used, in pricing of
bonds based on short-term interest rate. Short-term interest rate is interpreted
as an interest rate for borrowing or lending money during time interval [t, t+ dt]
observed at time t. From the previous part we write rt = f(t, t).
In stochastic set up r is defined on probability space (Ω,F,P) and generally it is
assumed that stochastic process r is modeled as an adapted process with almost
all sample paths integrable on [0, τ ] with respect to the Lebegue measure.
We introduce the price process of continuously compounded risk free security
with interest rate r(we can refer to it as a saving account)

Bt = exp

(∫ t

0

rudu

)
for t ∈ [0, τ ] (2.8)

It is also possible to express Bt as a solution of stochastic differential equation.
For almost all ω ∈ Ω, the function Bt = Bt(ω) solves the equation dBt = rtBtdt
with initial condition B0 = 1 .
The Bt is amount that corresponds to the cash that is accumulated from time 0 to
time t, starting with one unit of cash and rolling over the bonds with infinitesimal
time to maturity.

2.3 Coupon Bearing Bonds
Coupon bearing bonds are financial instruments that pay to a holder c1, c2, . . . , cm
amounts of money at times T1, T2, . . . , Tm = T respectively. Typically, bonds
pay a fixed coupon c and repay the principal M ; cj = c for j=1, 2, . . .m − 1
and cm = M + c. If we are considering different cash flows during the dates
T1, T2, . . . , Tm, then the expression for a bond price Pc(t, T ) is given by

Pc(t, T ) =
m∑
j=1

cjP (t, Tj) (2.9)
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For comparative purposes we extend the notation of yield to maturity from zero-
coupon bonds to coupon bearing bonds. We are considering bonds that pay the
same amount of money c at times T1, T2, . . . , Tm and the principal M is paid at
time Tm. If the coupon is expressed as a preassigned interest rate times face value
c := r ·M , we called it coupon rate and then we have

Pc(0, T ) =
m∑
j=1

ce−Yc(0)j +Me−mYc(0) (2.10)

where Pc(0, T ) is the current market price of the coupon bearing bond at time 0.
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3. Default Free Valuation
This chapter is dealing with well known topic of risk neutral valuation of financial
instruments. We assume default free environment here. We introduce here short-
ly, the standard theory about a risk neutral valuation of bonds, coupon bearing
bonds and interest rate swaps. This serves as preliminaries to the valuation of
such instruments in the markets, where counterparties are exposed to a default
risk.

3.1 Risk-neutral Valuation Formula
In this section, we very shortly summarize the valuation process of contingent
claims, that is used further in this work for valuation of various financial in-
struments. For full derivation of Risk-neutral Valuation Formula, we refer to
Bingham&Kiesel [4] Chapter 6 and also we are following this publication here.
We are considering a market, let’s denote it M, where an investor can trade
continuously in time interval [0, T ]. The uncertainty in the market is modeled by
probability space (Ω,F ,P) and filtration F = (F)0≤t≤T , which satisfies the usual
conditions of completeness and right continuity. In our market, we have n + 1
primary traded assets that have price processes modeled by stochastic processes
S0, S1, . . . , Sn. We assume that S = (S0, . . . , Sn) follows an adapted, right con-
tinuous, with left limits and strictly positive semimartingale on (Ω,F ,P,F). As
it is usual we are considering the numeraire

Bt = exp

(∫ t

0

r(s)ds

)
where r(s) is well defined integrable process.

Definition 3.1.1. A stochastic process S = S(t), t = 0, 1, . . . T is called a mar-
tingale under the probability measure Q, sometimes called Q-martingale, and
with respect to filtration F, if the conditional expectation

EQ [S(t)|Ft−1] = S(t− 1), for all t,t = 1 . . . , T

Definition 3.1.2. Probability measure Q defined on (Ω,F) is called the equiv-
alent martingale measure if Q is equivalent to P and if the discounted process S̃
(S̃(t) := S(t)/Bt) is Q-martingale.

We assume that in our market model exists equivalent martingale measure
and denote our reference measure P̃ and we restrict our attention to contingent
claim C such that C/BT ∈ L1(F , P̃).
The next important thing is definition of attainable contingent claim. Freely
speaking attainable contingent claim C is such a claim, that its value is possible
to replicate in the marketM. It means that there exists trading strategy that by
the combination of assets S0, S1, . . . , Sn replicates the value of our desired claim.
It is possible to prove that the existence of a martingale measure implicates no
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arbitrage. Next we introduce the fundamental theorem of risk neutral pricing.
Since we have not built up mathematically rigorous risk neutral pricing theory
here, we are presenting it without a proof. For the proof see Bingham&Kiesel [4].

Proposition 3.1.3. Risk-Neutral Valuation Formula For any attainable
claim C is given the unique arbitrage price process by the the risk neutral val-
uation formula

ΠC(t) = BtEP̃

[
C

BT

∣∣∣Ft] for any t ∈ [0, T ] (3.1)

This proposition tells us that the expectation under the equivalent martingale
measure gives us the unique arbitrage free price of contingent claim.

3.2 Bonds
Basic building element in mathematical finance is zero coupon bond. From our
risk neutral valuation framework just by putting in Theorem 3.1.3 C = 1 we get
following proposition.

Proposition 3.2.1. In our risk neutral framework and existence of.. equivalent
martingale measure P̃ we have following:

i) the price of zero coupon bond with maturity T, at time t ≤ T is given by

P (t, T ) = EP̃

[
Bt

BT

∣∣∣Ft] = EP̃

[
exp

(
−
∫ T

t

r(u)du

)∣∣∣Ft] (3.2)

ii) the price of coupon bond with maturity T, at time t ≤ T defined as in Section
2.3 is given by

Pc(t) = EP̃

[
m∑
j=1

Bt

BTj

cj

∣∣∣Ft] = EP̃

[
m∑
j=1

cj exp

(
−
∫ Tj

t

r(u)du

)∣∣∣Ft] (3.3)

Proof. In case i) we simply use Theorem 3.1.3 for C = 1
In case ii) we use that for C =

∑m
j=1 cjP (t, Tj)

3.3 Swaps
A swap is a contract or agreement between two parties to exchange(swap) cash
flows at some future prescribed dates. Under the usual conditions, the value of
the swap at inception date and at the end of the swap’s life is zero. We will
consider the most usual fixed-for-floating forward swap called plain vanilla in-
terest rate swaps. In this contract, there are two positions. The first position,
long position, is when investor(payer) makes predetermined payments by a fixed
interest rate from nominal value M and receives the cash that is based on some
pre-specified floating rate. The second position is short and cash-flows are vice
versa. The usual floating rate in interest rate swaps agreements is LIBOR1.

1The London InterBank Offered Rate, or LIBOR, is the average interest rate at which
banks in the London interbank market can borrow unsecured funds from other banks
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Swaps can be settled in arrears and in advance .
•Settlement in advance: floating rate is determined at the beginning of the period
and payments are also settled at the beginning.
• Settlement in arrears: payments are settled in the end of the period and the
floating rate is determined at the beginning of the period.

Convention Now we work with the settlement in arrears.

Let’s denote future dates Tj, j = 0, . . . ,m, called reset dates and dates when
payments are settled(settlement dates) Tj, j = 1, . . . ,m, where δj = Tj−Tj−1 > 0
for every j = 1, . . . ,m. The floating rate for time period [Tj, Tj+1] is determined
at time Tj. At time Tj+1 received cash-flow is, let’s denote it L(Tj), by reference
to the price of zero coupon bond prevailing in this period, given as follows

L(Tj) =

(
1

P (Tj, Tj+1)
− 1

)
1

δj+1

for j = 0, . . . ,m− 1 (3.4)

This is simply the return of one unit investment per period [Tj, Tj+1]. The cash
flows at any settlement date Tj, j = 1, . . . ,m are from payer(long position) point
of view, L(Tj−1)δj+1M and −κδj+1M , where M is a notional principal and the κ
is predetermined fixed rate.
Convention We assume for simplicity and without loss of generality thatM = 1.
According to our formula from Section 3.1 we have following,

Proposition 3.3.1. Let us consider the payer interest rate swap with payments
defined as above. Then the value of such a swap at time t, t ≤ T0 in arbitrage
free framework is given by

Vκ(t) = BtEP̃

{
m∑
j=1

B−1
Tj

((L(T )j−1)δj − κδj))
∣∣∣Ft} (3.5)

Proof. Proof follows from Proposition 3.1.3 where C is replaced by interest rate
swap cash-flows.
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Furthermore we can write

Vκ(t) = EP̃

{
m∑
j=1

Bt

BTj

(L(Tj−1)δj − κδj
∣∣∣Ft}

using the term (3.4)

=
m∑
j=1

EP̃

{
Bt

BTj

(
P (Tj−1, Tj)

−1 − (1 + κδj)
) ∣∣∣Ft}

using the formula for zero-coupon bond pricing

=
m∑
j=1

EP̃

{
P (Tj−1, Tj)

−1 Bt

BTj−1

EP̃

(
BTj−1

BTj

|FTj−1

) ∣∣∣Ft}

−
m∑
j=1

(1 + κδj)EP̃

{
Bt

BTj

∣∣∣Ft}
using the information from filtration and equation (3.2)

=
m∑
j=1

EP̃

{
e−r(Tj−Tj−1) ert

erTj−1

∣∣∣Ft}− m∑
j=1

(1 + κδj)P (t, Tj)

From the previous lines we have proved the following result,

Proposition 3.3.2. The price of interest rate swap settled in arrears with the
same properties as were defined in the beginning of this chapter at time t,t ≤ T0

is

Vκ(t) =
m∑
j=1

(P (t, Tj−1)− (1 + κδj)P (t, Tj)) (3.6)

Small rearrangement of the proposition 3.3.2 leads to the following.

Proposition 3.3.3. For the price of interest rate swap settled in arrears holds
following,

Vκ(t) = P (t, T0)−
m∑
j=1

cjP (t, Tj), for t ∈ [0, T0] (3.7)

where cj = κδj for j = 1, 2, . . .m− 1 and cm = 1 + κδm.

Remark 3.3.4. As we see, the relationship 3.7 is just a combination of delivering
the specific coupon bearing bond and to receive zero-coupon bond at the same time.
It could easily be derived from a comparison of these two bonds that

Vκ(t) = P (t, T0)︸ ︷︷ ︸
zero-coupon bond

−
m∑
j=1

cjP (t, Tj)︸ ︷︷ ︸
coupon bearing bond

As it is mentioned above, the value of a swap at its time of initiation is 0.
This important swap property leads to the following definition.

Definition 3.3.5. The forward swap rate κ(t, T0,m) at time t for the date T0 is
the value of the fixed rate κ that makes the value of the m-period forward swap
zero,

Vκ(t) = 0
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Using the Equation (3.7) we obtain the explicit formula for m-period forward
swap rate, that is formulated in next proposition.

Proposition 3.3.6. The m-period interest rate swap rate settled in arrears at
time t,t ≤ T0 is given by

κ(t, T0,m) =
(P (t, T0)− P (t, Tn))∑m

j=1 δjP (t, Tj)
(3.8)

3.4 Swaptions
In the next step, we consider an option on interest rate swap(IRS), swaption. We
assume same setup for IRS as in previous chapter. The owner of a payer(receiver)
swaption with strike κ maturing at time T = T0, has the right to enter at time T
to the underlying payer(receiver) swap settled in arrears. The payer swaption is
an option that gives the buyer the right to enter into a swap from which he/she
receives fixed payments. On the other hand the seller of a payer swaption gives to
the investor right to enter into the payer swap in which the investor will receive
payments based on floating rate and will pay fixed payments. From our standard
risk neutral theory follows.

Proposition 3.4.1. Let’s denote Swap(κ, T ) the value of the payer interest rate
swap, at time T with fixed swap rate κ and with the same payments and their
pattern as defined in the beginning of Section 3.3. Then the price of the payer
swaption with maturity T , at time t, t ≤ T equals to

PS(t) = EP̃

(
Bt

BT

(Swap(κ, T ))+

∣∣∣Ft) (3.9)

Analogously for the receiver swaption is

RS(t) = EP̃

(
Bt

BT

(−Swap(κ, T ))+

∣∣∣Ft) (3.10)

Convention: for simplicity and without loss of generality here we assume
M = 1 as well. If we plug in for the swap expression from Proposition 3.3.2 then
we obtain following,

PS(t) = EP̃

 Bt

BT

(
EP̃

{
m∑
j=1

BT

BTj

(L(Tj−1)δj − κδj)
∣∣∣FT})

+

∣∣∣Ft
 (3.11)

and for the receiver swaption

RS(t) = EP̃

(
Bt

BT

(
EP̃

{
m∑
i=1

BT

BTj

(κδj+1 − L(Tj−1)δj+1)
∣∣∣FT})

+

∣∣∣Ft) (3.12)

If we use property, that any function can be spread as follows f = f+ − f− =
f+−(−f)+ 2 and combine two formulas from above it yields following swap parity:

2f : R→ R and f+ := f+(x) = max(f(x), 0) and f− := f−(x) = −min(f(x), 0)
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Proposition 3.4.2. For the value of receiver swaption and the value of payer
swaption, both are expiring at the same date, holds following "parity" to a value
of interest rate swap

Payer Swaption-Receiver Swaption= Interest Rate Forward Swap

Remark 3.4.3. Structure of Swaption Trading strategy
If we look at the payer swaption, we can describe the strategy of the swaption
owner, who wants to enter into a swap as follows,
Strategy
1st case If κ is less then a swap rate of a market swap at time T , then the owner
exercises the swaption and in the future his predetermined payments will be less
than the market fix payments at the time of swap initiation.
2nd case If a swap rate is less than κ of the swaption at time T , the owner does
not exercise the swaption but he has the possibility to enter into the swap anyway
at the market swap rate.
From these two cases, we can conclude that the fixed rate paid by the owner of
the swaption who wanted to enter into swap is always smaller or equal to the κ.

Formulas from above give us a good picture what is the price of swaption,
but for our purposes in practical part of this work we need an analytical formula
that is easily computable. In the beginning of this section we have started that
swaption is an option on IRS. From this fact one can expect that the easily com-
putable pricing tool comes from Black Scholes formula. Black Scholes formula is
proved in Appendix 12A in Hull(2002) [13] and in the same publication is derived
formula for european swap option. This formula is called Black’s Model( some-
times known as the Black-76 model).

Black’s Model

Vcall = A[F0N(d1)− κN(d2)] (3.13)
where

d1 =
ln(F0/κ) + σ2T/2

σ
√
T

d2 =
ln(F0/κ)− σ2T/2

σ
√
T

• T:Time to maturity of the option

• F0: forward swap rate

• κ: Strike price of the option

• VT : Value of V at time T

• σ : Volatility of F0

• A=
∑m

i=1
P (0,Ti)

n
where n is number of payments during the year
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This formula is used to compute payer swaption price. It gives the owner
of the swaption right to enter into a swap in which he/she is paying fixed rate
κ. The equivalent situation is for receiver swaption, where the swaption value is
given by

Vput = A[κN(−d2)− F0N(−d1)] (3.14)

All notations remains the same as for the payer swaption. We will see, that this
formula is essential for a computation of defaultable IRS price.
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4. Counterparty Credit Risk
Framework
In this section, we introduce the framework for treating with the counterparty
credit risk, also referred to as a default risk or a counterparty default risk1. By
the term credit quality we mean an exposure of given entity to this risk. It
means a possibility that a counterparty in a financial contract will not fulfill its
contractual commitment to meet his or her obligation stated in the contract. For
later purposes we need to distinguish two types of counterparty risk, because in
each contract exists at least two sides: an investor(who buy defaultable financial
instrument) and a counterparty (who sell/issue instrument) and hence there exist
two default events as well. So we need to distinguish

• Unilateral counterparty risk

• Bilateral counterparty risk

Unilateral risk means, that just one counterparty faces default risk and on
the other hand, the bilateral counterparty risk exposes both sides to default risk.
We need to consider unilateral counterparty risk in instruments, that are either
assets or liabilities for an investor, during the whole life of the contract. To this
category of instruments belongs e.g. bonds; it does not matter if the investor will
default, because only he/she can lose money. For a bond issuer bond is booked
on his/her liability site as a credit, so issuer can not lose any money. So there is
no need to assume bilateral credit risk for this type of instrument, because even
if we assume that also bond investor can default, it does not affect the price of
the bond in any way.
On the other hand there, exist contracts that can be during their lifetime a liabil-
ity and also an asset for both participants, depending on market conditions. For
this type of contracts we need to consider bilateral credit risk because both sides
can lose money, in the case of others default. To this group belong e.g. a swap; for
a buyer of the swap it can be either assets or liabilities depends on the difference
between floating rate and fixed rate. So in this case, both the buyer and the seller
are exposed to counter party risk and can lose money and therefore the price of
swap is affected. The reason why we are introducing this kind of risk besides the
others, is that there is high increase in over the counter(OTC) trades during last
decades. This kind of trades are directly negotiated between two private parties,
there is no supervised intermediary between them or any clearing house. So there
is no middle step between contractual sides that can alleviate the loss. The pos-
sible default exposure of counterparty is crucial in evaluating the contract. Good
evidence of steep increasing OTC trades is the half year period from June 2008
to December 2008, when was recorded one of the steepest increase, gross market
value increased from $ 20 trillion to $34 trillion ( 70 %)2.
The concept of the default risk can be easily illustrated on the following con-
sideration: an investor, who is trading on OTC market with entities that can

1we are using these terms equivalently with any further notice in the text
2data from Bloomberg publication Counterparty Valuation adjustments

http://ssm.com/abstract=1463042
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default, wants to be rewarded for this risk. This investor requires an additional
risk premium. Clearly, it is possible to see on the bond markets, even if the bonds
are not usual OTC instruments, that market participants who are investing into
bonds, issued by lower credit quality entities, require to have higher yields. The
difference between yields from risky instruments and non risky , in the meaning
of default risk, is called credit spread.

To include the impact of the default risk to the value of financial instrument
we need to model it somehow firstly. There exists two main categories of credit
risk models
(i) Reduced form models also known as intensity-based models
(ii) Structural models also known as models based on the value of the firm .

Reduced form models describes the default by the means of exogenous jump pro-
cess. This type of models are also called intensity models or hazard rate models.
The main tool in this approach is the exogenous specification of conditional prob-
ability of default, given that default has not yet happened. The family of reduced
form models, is suited to model credit spreads and it is in relatively simple way
calibrate-able to the Credit Default Swap (CDS), see Section 6.1. Default events
are modeled directly by probabilities of occurrence of such an event. We are using
also this type of model to calculate risk neutral default probabilities.

Structural models represent different approach how to model defaults. These
type of models deal with the firm’s economics fundamentals. The market value
of the company is the main stream of uncertainty that drives credit risk. They
are mostly based on the work of Merton(1974) [19]. We can motivate to use such
a model by the following consideration. Let us assume, that the company has
issued a bond to finance its business activities. If at the maturity date T the
firm can not repay all its commitments to the bond holders, we can conclude,
that there has been a default. We can also consider more sophisticated and more
reality capturing models, where the default can happen not only at the maturity
date but also before this date. They are called first-passage-time approach model
see Black ans Cox(1976)[5]. The default happens when the value of asset hit from
above the certain barrier, this barrier may be either deterministic or a random
process itself calling barrier process. First-passage-time approach allows to adapt
the model to the real world conditions such as those mentioned; default before
maturity or in many other possible ways, precisely specified the recovery payoff
associated with default event or bankruptcy costs or taxes. Structural models
assume that the company value follows the stochastic process, that is similar to
the random process that describes the behavior of stocks. Because of this feature,
the value of the company can be observed at any time and the default process
can be completely monitored on default free market. For more properties of these
model see Chapter 3 of Bielicky and Rutkowsky(2002) [3]. The disadvantage of
these models is that they can not be easily calibrated on publicly accessible data,
for example as CDS quotes.
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4.1 General Pricing Formula
In this section, we introduce two types of general pricing formula for unilateral
credit risk and also for bilateral credit risk. In the process of deriving the pricing
formula of general payoff with no specified default, we follow the paper Brigo and
Masseti(2004)[11] for unilateral case and for bilateral case we follow the article
Brigo and Capponi(2008) [9]. In the beginning, we set up the framework for the
probabilistic part and then we derive the pricing formula for general payoff.

4.1.1 Probabilistic set up

We construct the probability space (Ω,G,Gt, P̃). The measure P̃ is risk neutral
measure and Gt represents the flow of all information. The sub filtrations Ft, that
is right continuous and complete, represents the information about market but
without default (Ft ⊆ Gt := Ft ∨ Ht), where Ht = σ({δ1 ≤ u}, {δ2 ≤ u});u ≤ t
is the right filtration generated by the default events. We use two default events
since, we are going to use both of them for bilateral credit risk pricing formula.

In previous sections there was no need to monitor default events because we
did not use this information. The information included in filtration Ft was suffi-
cient. Now we want to incorporate the information about default events into the
price of financial instrument. We need to model it by σ− algebra Gt. The differ-
ence in the probability space for non-default case and default case of the market
is in information included in filtration. To the further notice, we are assuming all
expectation with respect to risk neutral probability measure P̃.

Assumption: We are assuming that default times are independent from the
interest rate term structure .

4.1.2 Valuation Formula:unilateral counterparty risk

Here we are considering just the possibility of one counterparty default, so we are
working with filtration Ht = σ({δ ≤ u};u ≤ t), generated by default event of the
counterparty. The next step is to determine a pricing formula of a general payoff
with maturity τ . We do not need, at least now, to specify a model for the default
time. Now we introduce required notation
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C(t, τ) Net cashflow from the claim during the time interval [t, τ ]
discounted to time t

NPV (δ) := EP̃[C(δ, τ)|Gδ] Net Present Value, expectation with respect
to a risk neutral measure

R The fraction of the payoff from a face
value paid to an investor in case of default

LGD := 1−R Loss Given Default;loss in a value
if default occures

D(t, δ) := Bt
Bδ

Discounting factor at time t for maturity δ

In the process of payoff determination we need to distinguish two cases of possible
default time. If δ > τ or δ ≤ τ respectively. If the default happened and the
counterparty could not fulfill its obligations, or there was no default and all
obligations from the contract were fullfiled.
• δ > τ there was no default up to time τ , so the payoff is

1{δ>τ}C(t, τ) (4.1)

where 1{δ>τ} is indicator function of the set of all events in Ω for which δ > τ .

• δ ≤ τ The counterparty defaulted during the life of the contract so, could
not fully repay the investment. We need to compute the net present value(NPV)
of the residual payoff from time of default δ until maturity τ . If the NPV is posi-
tive for the defaulted counter party it is completely received by the counterparty
itself.
If it is negative for defaulted counterparty, only the recovered part is payed.

1{δ≤τ}(R(NPV (δ))+) (4.2)

where (x)+ := max{0, x} for any real x.
If we combine two terms from above, we get the following pre-result

Proposition 4.1.1. The payoff of the defaultable claim, discounted to time t,
let’s denote it Π(t)D, is given by

ΠD(t) = 1{δ>τ}C(t, τ) + 1{δ≤τ} [C(t, δ) +D(t, δ)(R(NPV (δ)+)− (−NPV (δ))+)]
(4.3)

Remark 4.1.2. We can see that, if a default does not occur, the formula is
reducing to standard expression for non-defaultable payoff, because the last term
vanishes.

From the previous lines we formulate the General Counterparty Risk Pricing
Formula as an expectation of 4.3.
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Theorem 4.1.3. General Unilateral Counterparty Risk Pricing Formula.
Let assume that a counterparty does not default before valuation date t and LGD
is deterministic, then the price of payoff under the counterparty risk exposure is

EP̃{Π
D(t)|Gt} = EP̃{Π(t)|Gt}−LGD×EP̃{1{t<δ≤τ}D(t, δ)(NPV (δ))+|Gt} (4.4)

where EP̃{Π(t)|Gt} is expected value of the net cash-flows, discounted to time t of
the claim without, any default risk consideration, nor investor’s nor counterpar-
ty’s(further just a default free cash-flows).

Proof. We can expand the terms inside the right hand expectation of 4.4 as follows

1{δ>τ}C(t, τ)+1{δ≤τ}C(t, τ)+R1{δ≤τ}D(t, δ)(NPV (δ)+)−1{δ≤τ}D(t, δ)(NPV (δ))+

(4.5)
since we know that

Π(t) = C(t, τ) = 1{δ>τ}C(t, τ) + 1{δ≤τ}C(t, τ)

Now we take the expected value of the second and the fourth term of 4.5 condi-
tioned at time δ and use these two facts.

f = f+ − f− = f+ − (−f)+

and
1{δ≤τ}C(t, T ) = 1δ≤τ (C(t, δ) +D(t, δ)C(δ, τ))

it follows

EP̃[1{δ≤τ}C(t, τ)− 1{δ≤τ}D(t, δ)(NPV (δ))+|Gδ]
= EP̃[1{δ ≤ τ}[C(t, δ) +D(t, δ)C(δ, τ)−D(t, δ)EP̃([C(δ, τ)]|Gδ)+]|Gδ]
= 1{δ≤τ}[C(t, τ)−D(t, δ)(EP̃[C(δ, τ)]|Gδ)−]

= 1{δ≤τ}[C(t, τ)−D(t, δ)(EP̃[−C(δ, τ)]|Gδ)+]

When we combine result from the above computation with 4.5 we get

1{δ>τ}C(t, τ) +

1{t<δ≤τ}[C(t, τ) +D(t, δ)(R(NPV (δ))+ − (−NPV (δ))+)]

which is the 4.3.

Remark 4.1.4. From Theorem 4.4, the price of defaultable instrument is default
free price minus a discounted option term, more precisely a call option with zero
strike price on the residual NPV, in case of δ ≤ τ = T . From this follows that
even if the original non default payoff is interest rate term structure independent,
the optionality in the formula requires for some other valuations interest rate term
structure model. We will see it in the following chapter, where we are dealing with
defaultable interest rate swaps.
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4.1.3 Valuation Formula:bilateral counterparty risk

A logical extension of the unilateral counterparty risk pricing formula is incorpo-
ration of the second possible default into the the payoff. Let’s denote investor’s
default time δ1 and counterparty’s default time δ2. Now we are working with

Ht = σ({δ1 ≤ u}, {δ2 ≤ u});u ≤ t

as it was previously defined. The whole notation is the same as before, just it
needs to be distinguished between two recovery rates R1 and R2 and correspond-
ing LGD1 and LGD2. It is because the participants of the contract can come
from different environments with different bankrupt laws and policies. We make
an analysis of possible outcomes that come from different combinations of default
times δ1, δ2 and maturity time τ . All statements in the following bullet points
are from investor’s perspective. From the perspective, of the counterparty per-
spective each cashflow is with different sign(e.g. investor pays so counterparty
receives, for investor positive NPV, it is negative for counterparty etc).

• δ1 > τ and δ1 > τ The investor nor the counterparty defaults, the payoff is
original default free payoff.

• δ1 ≤ δ2 ≤ τ If the NPV is positive for a defaulted investor, it is completely
received by the investor. If the NPV is negative for defaulted investor, only
recovery fraction is paid(R1).

• δ2 ≤ δ1 ≤ τ If the NPV is positive for an investor, the investor receives just
a recovery fraction from the residual payoff(R2). If it is negative for the
investor it is completely paid by the investor.

We denote the discounted net cashflows from a claim exposed to bilateral
default risk as follows CD

B (t, τi), for i = 1, 2 and the discounted net cashflow that
does not face any credit risk remains the same as C(t, τ). From the previous
statements follows next pre-result.

Proposition 4.1.5. The payoff of a defaultable claim facing to the bilateral credit
risk is given as follows

CD
B (t) = 1{δ1>τ,δ2>τ}C(t, τ) (4.6)

+ 1{δ2≤δ1≤τ∪δ2≤τ≤δ1} [C(t, δ2) +D(t, δ2)(R2(NPV (δ2)+)− (−NPV (δ2))+)]

+ 1{δ1≤δ2≤τ∪δ1≤τ≤δ2} [C(t, δ1) +D(t, δ1)((NPV (δ1)+)−R1(−NPV (δ1))+)]

Finally we are approaching the pricing formula of the claim that is exposed
to bilateral the default risk.

Theorem 4.1.6. General Bilateral Counterparty Risk Pricing Formula
The payoff at time t, of the claim with maturity time τ ,τ ≥ t under the bilateral
default risk is given by

EP̃{C
D(t, τ)|Gt} = EP̃{C(t, τ)|Gt} (4.7)

+ LGD1 × EP̃{1{δ1≤δ2≤τ∪δ1≤τ≤δ2}D(t, δ)(−NPV (δ1))+|Gt}
− LGD2 × EP̃{1{δ2≤δ1≤τ∪δ2≤τ≤δ1}D(t, δ)(NPV (δ2))+|Gt}
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where LGD1 and LGD2 are corresponding Loss Given Defaults of the investor
and the counterparty respectively. Defaultable claim value consists of the a value
of a default free claim plus a long position in a put option, with a zero strike price
on the residual NPV, when the investor defaults before counterparty and before
the maturity of the contract. The last term that contributes to the value of the
defaultable claim is a short position in a call option with zero strike price on the
residual NPV, conditioned by the earliest default of the counterparty and before
the contract maturity.

Proof. Since the proof is just technical manipulation with cash-flows and expec-
tations, same as for the proof of the formula 4.4, we just sketch here the main
steps of the proof. For the full proof see Appendix A of Brigo and Capponi(2008)
[9].
The expectation is linear, so we can rewrite the right hand side term in 4.7 as
follows

EP̃{C(t, τ) + LGD1{1{δ1≤δ2≤τ∪δ1≤τ≤δ2}D(t, δ)(−NPV (δ1))+

− LGD2 × {1{δ2≤δ1≤τ∪δ2≤τ≤δ1}D(t, δ)(NPV (δ2))+|Gt}

We decompose cash-flows as follows

C(t, τ) = 1{δ2≤δ1≤τ∪δ2≤τ≤δ1}C(t, τ)

+ 1{δ1≤δ2≤τ∪δ1≤τ≤δ2}C(t, τ)

+ 1{δ2>τ,δ1>τ}C(t, τ)

By using the relation from above, we can rewrite the formula 4.8 as follows

EP̃{1{δ1≤δ2≤τ∪δ1≤τ≤δ2}C(t, τ) + (1−R1){1{δ1≤δ2≤τ∪δ1≤τ≤δ2}D(t, δ1)(−NPV (δ1))+

+1{δ2≤δ1≤τ∪δ2≤τ≤δ1}C(t, τ) + (R2 − 1){1{δ2≤δ1≤T∪δ2≤T≤δ1}D(t, δ2)(NPV (δ2))+

+1{δ2>T,δ1>τ}C(t, τ)|Gt}
= EP̃{1{δ2>τ,δ1>τ}C(t, τ)|Gt}
+ EP̃{1{δ2≤δ1≤τ∪δ2≤T≤δ1}C(t, τ) (4.8)
+ (R2 − 1){1{δ2≤δ1≤τ∪δ2≤τ≤δ1}D(t, δ2)(NPV (δ2))+|Gt}}
+ EP̃{1{δ1≤δ2≤τ∪δ1≤τ≤δ2}C(t, τ)

+ (1−R1){1{δ1≤δ2≤τ∪δ1≤τ≤δ2}D(t, δ1)(−NPV (δ1))+|Gt}}

With some reformulation of the above expected values and cash-flows it is possible
to show that the above expectations corresponds exactly with expected values of
cash flows from Equation 4.6, in the same order. So this equality proves the
theorem.
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5. Incorporation of Counterparty
Risk
In this section, we incorporate a possibility of a default before maturity of the
financial instruments to our previous valuation model. For the first two bond
cases we are using just the unilateral version of pricing formula for a defaultable
claim. Since only an investor is exposed to a default risk of bond issuer. This
chapter basically combines results from Chapter 3 and Chapter 4.

In the case of interest rate swap, we derive a formula for the unilateral default
risk and for the bilateral default risk as well. We use these formulas in the second
part of this work where we study particular interest rate swaps and their prices.
We assume the same probabilistic framework and notation as we have developed
earlier in Chapter 4.
Assumption: For the simplicity, in the whole chapter we are assuming indepen-
dence between interest rates and risk neutral default probabilities.

5.1 Defaultable Zero Coupon Bonds
Now we are implementing to our valuation framework of zero coupon bonds the
possibility of default by adapting formulas for a zero coupon bond price derived
in Section 3.2. We are aware that there is no need to incorporate the default risk
into the bond prices because the mechanism of the market already incorporating
such risk into the bond prices, but as we see, the concept of CVA serves us a good
tool to quantify the contribution of a credit risk into the bond prices. It is clear
that the price of a bond is affected just by credit quality of a bond issuer. So as it
is already mentioned, we need to assume just unilateral default risk in this case.
The zero coupon bonds P (t, T ) are one of the possible fundamental quantities
describing the interest rate curve. We consider the defaultable zero bond PD(t, T )
as one of the possible instrument describing the defaultable market yields.
In non-default case a bond at maturity time T delivers one unit of money to a
bond holder and the value of such a bond is given by 3.2. In this case it is

PD(t, T ) = BtEP̃[B−1
T 1{δ>T}|Gt] (5.1)

where G represents the flow of information about the possible occurrence of a
default before time t. In this particular case we have ignored any recovery, so at
time T the contract pays the desired payoff. If the date of default is after T , then
on the other hand contract does not deliver any payoff, if δ ≤ T (defaulted before
maturity date T ). So such a payoff of zero coupon bonds satisfies the description
of defaultable zero coupon bonds.
In the view of previous section we assume that bond holder not receiving anything
after the bond’s default is not reflecting the reality. We need to include recovery
rate R, so the payoff and the price of such a bond will be given by the following
result

Proposition 5.1.1. In the case of a risk neutral framework and an existence of
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equivalent martingale measure P̃ for a defaultable zero coupon bond with maturity
T and with payoff discounted to time t, t ≤ T given as

Bt

BT

1{δ>T} +R
Bt

Bδ

1{δ≤T}

where R is recovery rate, the value of such bond is given by

PD(t, T ) = EP̃

[
Bt

BT

1{δ>T} +R
Bt

Bδ

1{δ≤T}

∣∣∣Gt] (5.2)

.

Proof. The proof is straight forward using Risk-Neutral Valuation Formula for
C = 1{δ>T} +R1{δ≤T}

We can also use our General Counterparty risk pricing formula to prove the
following proposition

Proposition 5.1.2. The price of the defaultable zero coupon bond at time t with
maturity T is

PD(t, T ) = P (t, T )− LGD ×
∫ T

t

P̃[δ ∈ [u, u+ du)|Gt]
Bt

Bu

P (u, T )du (5.3)

where P (t, T ) is the value of the default free zero coupon bond at time t, t ≤ T
with maturity T .
Probabilities are with respect to the filtration Gt that means, that they are observed
at time t with information up to this time.

Proof. We simply use Theorem 4.1.3, from that follows

PD(t, T ) = P (t, T )− LGD × EP̃

[
1{δ≤T}

Bt

Bδ

(
EP̃

[
Bδ

BT

∣∣∣Gδ])
+

|Gt
]

and the last term can be rewritten as follows

EP̃

[
1{δ≤T}

Bt

Bδ

(
EP̃

[
Bδ

BT

∣∣∣Gδ])
+

∣∣∣Gt]
default can happen in time interval from t to T

= EP̃

[∫ T

t

1{δ∈[u,u+du)}
Bt

Bu

(
EP̃

[
Bu

BT

∣∣∣Gu])
+

∣∣∣Gt] du
thanks to the independence between
the interest rate and the default time we have

=

∫ T

t

EP̃[1{δ∈[u,u+du)}|Gt]
Bt

Bu

P (u, T )du

As we see we get to the value of defaultable bond in two different ways and
with a small reformulation of 5.2, these two results coincides.
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Remark 5.1.3. In practice, if we want to calculate the expression from 5.3,the
integral needs to be approximated by the sums so assumptions about the time of
possible defaults needs to be made.
We divide the time interval from the beginning to the end of the bond life into m
equidistant time intervals. If δ is in interval (Ti−1, Ti], then we postpone it to the
time Ti, for i = 1, . . . ,m. So we approximate the formula 5.3 by the following

PD(t, T ) ≈ P (t, T )− LGD ×
m∑
i=1

P̃[δ ∈ (Ti−1, Ti]]t
Bt

BTi

P (Ti, T ) (5.4)

The number of intervals depends on a default probability term structure that is
available.

5.2 Defaultable Coupon Bearing Bonds
Analogously with section 2.3, we derive the price of a coupon bearing bond,
paying coupons c1, c2, . . . cm at times T1, T2, . . . Tm = T with a recovery rate R
and we assume M = 1 as well.

Proposition 5.2.1. In our risk neutral framework and under the existence of an
equivalent martingale measure P̃, we are considering a defaultable coupon bearing
bond with maturity T , coupons as defined above and with payoff given by

PayOff =
m∑
i=1

ci
Bt

BTi

1{δ>Ti}+
Bt

BTm

1{δ>Ti}+R
m∑
i=1

Bt

BTi

ci1{δ∈(Ti−1,Ti)}+R1{δ∈(Tm−1,Tm)}

(5.5)
then the value at time t,t ≤ T1 of such bond is risk neutral expectation of its
payoff

PC,D(t, T ) = EP̃ [PayOff] (5.6)

The first two terms correspond simply to-non defaultable coupon bearing bond
and the last term is a recovery payment, if an early default happens. The no-
tation correspond with the previous sections, so PC,D(t, T ) means the value of
defaultable coupon bearing bond at time t with maturity T.

By applying the general pricing theorem for defaultable securities we can prove
easily following proposition.

Proposition 5.2.2. Let’s be PC(t, T ) the default free value of the coupon bearing
bond at time t, paying coupons c1, c2, . . . cm at times T1, T2, . . . Tm, then the value
of the same coupon bearing bond with a defaultable counterparty(issuer of the
bond) has price given by

PC,D(t, T ) = PC(t, T )− LGD ×
∫ T

t

P̃(δ ∈ [u, u+ du)|Gt)
Bt

Bu

Pc(u, T )du (5.7)

where P (t, T ), t ≤ T is the value of coupon bearing bond at time t with maturity
T .
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Proof. In this proof we are following exactly the same steps as in the proof of
Theorem 5.1.2 . From Theorem 4.1.3 follows

PC,D(t, T ) = PC(t, T )

− LGD × EP̃

1{δ≤T}Bt

Bδ

EP̃

(
m∑
j=1

1{Tj≥δ}cj
Bδ

BTj

+ 1{Tm≥δ}
Bδ

BTm

∣∣∣Gδ)
+

∣∣∣Gt


The indicator functions in the second expectation secure that just the residual
payments from the coupon bearing bonds are included. As the default can happen
from the inception of the bond to its maturity we write

EP̃


∫ T

t

1δ∈[u,u+du)
Bt

Bu

EP̃

(
m∑
j=1

1{Tj≥δ}cj
Bu

BTj

+ 1{Tm≥δ}
Bu

BTm

∣∣∣Gu)
+︸ ︷︷ ︸

pay-off of coupon bearing bond

∣∣∣Gt
 du

using the same computations and the same adjustments as
in the proof of Theorem 5.1.2 we get

=

∫ T

t

P̃(δ ∈ [u, u+ du)|Gt)
Bt

Bu

PC(u, T )du

that is exactly what we claim in theorem.

Remark 5.2.3. In this case we also need to make the approximation about
default times, if we want to use the formula in practice. If default occurs in time
interval (Ti−1, Ti] we put δ = Ti for all i = 1, . . .m, where time moments Ti’s do
not have to coincide with coupon payments. So we can approximate the integral
in the expression 5.7 by a sum, the value of a defaultable coupon bearing bond in
this case is given by

PC,D(t, T ) ≈ PC(t, T )− LGD ×
m∑
i=1

P̃(δ ∈ (Ti−1, Ti]|Gt)
Bt

BTi

PC(Ti, T ) (5.8)

In the case study in the end of this work we use a month as discretization step
for Greek governments bonds. The same approach was made also in Brigo(2008)
[7].

5.3 Defaultable Interest Rate Swap
We have already introduced the valuation of interest rates swap in Section 3.3.
In this section we incorporate the default component to the pricing. Now it is
important to distinguish what kind of counterparty risk we are going to consider,
because as it has been mentioned earlier, swaps can be asset or liability for both
participants of the contract. The situation for bonds has been straight forward
since just bond investor can be rewarded for the default risk. For the interest
rate swap it is different, since both participants of the contract can require price
adjustment, in respect of the counterparty default risk. In the following two
sections we compute prices of IRS with the consideration of both types of default
risk; unilateral and bilateral.
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5.3.1 Defaulable IRS: unilateral case

In this case we are considering an unilateral default risk, a default free counter
party is exchanging fixed payments κ(t, T0, Tm)M for floating payments L(Tj−1)M
for 0 ≤ j ≤ m from defaultable counterparty at time T1, T2, . . . Tm. Where M
is a notional principal and κ is predetermined fixed rate and L(Tj−1) is floating
rate determined at time Tj−1 for period (Tj−1, Tj] for all j, 1 ≤ j ≤ m. The
cash settlements are at times T1, T2, . . . Tm = T . As we have derived earlier in
Section 3.3, the formula for discounted payoff for swaps in non default case looks
as follows,

C(Ti, Tm) =
m∑
i=1

(L(Tj−1)δj+1M − κδj+1M)

and the swap rate that makes the value of the swap at time T0 equal to zero is

κ = κ(t, T0, Tm) =
(P (t, T0)− P (t, Tm))∑m

j=1 δjP (t, Tj)
, for t ≤ T0

now we are considering the possibility of a counterparty default. The swap
rate should be lower because the counterparty should be rewarded for bearing
the risk of possible default.

Proposition 5.3.1. If we consider the same IRS as defined in the beginning of
this chapter where the fixed a leg payer is default free and a floating leg payer is
exposed to default risk, the value of such IRS( let denote it IRSD(t)) from the
perspective of a default free counterparty, at time t, t ≤ T0 is given by

IRSD(t) = IRS(t)− LGD ×OptionPart (5.9)

where IRS(t) is the value of a default free IRS as it is defined in Chapter 3.3.
The OptionPart is the option term from Remark 4.1.4. After applying the ap-
proximation about possible default time; if default happened in (Ti−1, Ti] then we
put δ = Ti then the OptionPart is approximately given by

OptionPart ≈
m∑
i=1

P̃[δ ∈ (Ti−1, Ti]]PayerSwaptiont(Ti, Tm, κ, σTi , κ(t, Ti, Tm))}

(5.10)
where PayerSwaptiont(Ti, Tm, κ, σTi , κ(t, Ti, Tm)) is the value of a payer swaption
at time t with maturity Ti and with underlying swap with maturity Tm, strike
price κ, underlying swap rate κ(t, Ti, Tm), volatility σTi. Time moments T1, .., Tm
are the same as the payment dates in original default free IRS. The value of de-
faultable IRS can be express as follows:

Default Free IRS +LGD×stream of default probability weighted Swaptions val-
ues at time t

Proof. From 4.4 follows that the payoff of defaultable IRS is in general as follows

IRSapproxD (t) = IRS(t)− LGD ×OptionPart
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where OptionPart is expected value of the residual payoff after the default. In
this case the residual payoff is just the residual payoff of the interest rate swap
after time δ (by our approximation after first Ti that follows δ), so for case of the
IRS we have

OptionPart = EP̃[1{δ≤Tm}
Bt

Bδ

(NPV (δ))+|Gt]

we divide the life of the contract into to the subintervals
that correspond with the time period between payments

= EP̃

[
m∑
i=1

1{δ∈(Ti−1,Ti]}
Bt

Bδ

(EP̃[C(δ, Tm)|Gδ])+|Gt

]
default times postponed to the following payment moments

≈ EP̃

[
m∑
i=1

1{δ∈(Ti−1,Ti]}
Bt

BTi

(EP̃ [C(Ti, Tm)|GTi ])+|Gt

]

= EP̃

[
m∑
i=1

1{δ∈(Ti−1,Ti]}
Bt

BTi

(EP̃[C(Ti, Tm)|GTi ])+|Gt

]
using independency of default time and the interest rate

=
m∑
i=1

EP̃
[
1{δ∈(Ti−1,Ti]}

]
EP̃

[
Bt

BTi

(Payer Swap)+|Gt
]

︸ ︷︷ ︸
swaption’s pay off

=
m∑
i=1

P̃[δ ∈ (Ti−1, Ti]]PayerSwaptiont(Ti, Tm, κ, σTi , κ(t, Ti, Tm))

If we have computed the value of IRS that already contains the credit risk of
the counterparty, we are able to derive new fair fixed rate that also contains the
adjustment for the default risk of the counterparty. We illustrate this method in
the end of this work, where we are constructing imaginary IRS between Czech
Republic and Greece.

5.3.2 Defaulable IRS: bilateral case

We have mentioned that in the case of IRS, both counterparties could be affected
by a default of other entity from the contract. If the payer of the fixed leg is
more exposed to a higher default risk(lower credit quality), the floating leg payer
wants to be rewarded for such a risk and contrary. So it is fair, if the default
risk of both is incorporated to the fixed rate. We use our standard formula
for the incorporation of the default risk into the payoff of IRS. In the previous
section, we have shown that the incorporation of default risk into the value of
IRS is basically a subtraction of the swaption prices weighted by the risk neutral
default probabilities from the value of default free IRS. Very similar it is for IRS
in the environment of bilateral default risk. In the following proposition, we are
assuming the same IRS as at the beginning of this chapter with same payments,
but now both fixed leg payer and floating leg payer are exposed to default risk.
For such a defaultable IRS, it holds following proposition.
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Proposition 5.3.2. For the IRS as defined in the beginning of this Chapter 5.3.1
and under the consideration of bilateral default risk the value of such IRS, let’s
denote it IRSBD(t) at time t, t ≤ T is given by

IRSBD(t) = IRS(t) +OptionPart1 −OptionPart2 (5.11)

OptionPart1 ≈

≈
m∑
i=1

LGD1

(
P̃[Ti−1 < δ1 ≤ Ti, Ti ≤ δ2 ≤ Tm] + P̃[ Ti−1 < δ1 ≤ Ti, δ2 ≥ Tm]

)
× ReceiverSwaptiont(Ti, Tm, κ, σTi,Tb)}

OptionPart2 ≈

≈
m∑
i=1

LGD2

(
P̃[Ti−1 < δ2 ≤ Ti, Ti ≤ δ1 ≤ Tm] + P̃[ Ti−1 < δ2 ≤ Ti, δ1 ≥ Tm]

)
× PayerSwaptiont(Ti, Tm, κ, σTi,Tb)}

where Payer(Receiver)Swaptiont(Ti, Tm, κ, σTi , κ(t, Ti, Tm)) is the value of pay-
er(receiver) swaption at time t with maturity Ti and with underlying swap with
maturity Tm, strike price κ, underlying swap rate κ(t, Ti, Tm) and volatility σTi.
Time moments T1, .., Tm are the same as the payments dates in the original de-
fault free IRS.

Proof. The proof is straight forward by using the Theorem 4.1.6 and by using the
same calculation as for optionpart in Proposition 5.3.1. From the equation 4.7
and the first right hand side expectation and replacing C(t, T ) by the IRS payoff,
we get that it is equal to the value of default free IRS at time t.
The second right hand side expectation from equation 4.7 is giving us

LGD1 × EP̃{1{δ1≤δ2≤T∪δ1≤T≤δ2}D(t, δ1)(−NPV (δ1))+|Gt}
we divide the life of the contract into to the subintervals
that correspond to the period between the payments

= LGD1

× EP̃

[
m∑
i=1

{1{δ1∈(Ti−1,Ti],δ2∈(Ti,Tm]∪δ1∈(Ti−1,Ti],δ2≥Tm}
Bt

Bδ

(−EP̃[C(δ1, Tm)|Gδ1 ])+|Gt}

]
default times postponed to the following payment moments

≈ LGD1

× EP̃

[
m∑
i=1

{1{δ1∈(Ti−1,Ti],δ2∈(Ti,Tm]∪δ1∈(Ti−1,Ti],δ2≥Tm}
Bt

BTi

(−EP̃[C(Ti, Tm)|Gδ])+|Gt}

]
we are considering C(Ti, Tm) for IRS cash-flows from Chapter 3.3
and assume once more independence between the default time and the interest rate

= LGD1

m∑
i=1

(
P̃[Ti−1 < δ2 ≤ Ti, Ti ≤ δ1 ≤ Tm] + P̃[ Ti−1 < δ2 ≤ Ti, δ1 ≥ Tm]

)
×ReceiverSwaptiont(Ti, Tm, κ, σTi,Tb)
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The last term from the above is exactly the value of optionpart1, The same we
can do with the optionterm2 and with the third right hand side expectation from
the equation 4.7 and this proves our proposition.

For the unilateral case, we have prepared the formula for a defaultable IRS to such
a form that it is almost straight forward to use it, if one has a marginal default
probability term structure. For the bilateral case it is not so straight forward
since we are dealing with joint default probabilities of the two counterparties.
For a further practical use one need to choose appropriate form of a statistical
structure to gain joint default probabilities from the marginal ones.
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6. Credit Derivatives
Credit derivative is financial derivative, value of which is dependent on the credit-
sensitive asset. This asset can be any financial instrument that is subjected to
a default risk. Nowadays, this type of derivatives is hugely used to transfer or
mitigate the credit risk. First agreements about credit risk transfer were signed
in 1990s but the similar agreements about credit derivatives were use much more
earlier. In these days, bonds issuers pay to the banks premium or annual fee in
exchange for the bank’s promise to make debt payments on behalf of the issuers.
However these contracts have one big disadvantage and that is that they have not
been sold separately from underlying assets. Current types of credit derivatives
are traded on OTC market separately from the underlying credits.
Two main categories of the credit derivatives are Single-name derivatives and
Multi-name credit derivatives .

• Single-name credit derivatives: are derivatives that protect against the
risk of one particular counterparty for example, asset swap, credit linked notes
or credit default swaps.
• Multi-name credit derivatives: are credit derivatives that protect against
the default of one or more counterparties. The dependence on the pool of counter-
parties leads to a strong impact of default dependent structures of pool’s members
on derivatives price. Examples of this type are basket default swaps and collat-
eralized debt obligation (CDO). For a different approaches to valuation of these
instruments see Witzany(2010)[27] Chapter 5.
In the following part, we introduce basic product of a credit derivatives market
and also one used at most for the purposes of extracting default probabilities
from market data.

6.1 Credit Default Swaps
Credit default swap(CDS) is the basic protection contract that become quite liquid
in recent years. It is used as an insurance against a default of the reference party.
Let’s describe the standard situation, when a company, let’s denote it "A" buys
protection from another company "B" against the possible default of a reference,
third, company "C", in nominal value M . The contract secures, that if "C" will
default, the company "B" will deliver to "A" the certain cash amount. This cash
amount is denoted as LGD×M where LGD(Loss Given Default and has the same
sense as was defined earlier). Typically company "C" is a bond issuer, so company
"A" buys the protection against loss given by the bond1(with nominal value M)
issued by the company "C". In this case the LGD is equal to cash equivalents
of the difference between a face value of a bond and post-default value of the
bond or equal to the face value of the bond while taking the physical delivery
of defaulted bond. Duration of the contract is up to the default time δ or up
to the end of the contract Tb, so the life of the contract is represented either by
interval (Ta, Tb) or by (Ta, δ). During the life of the contract "A" pays to "B" a

1It is not obligatory to own this bond. CDS buyer can buy these instrument from speculation
purposes as well.
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rate R2(called CDS spread) from nominal value, at time Ta+1, Ta+2, . . . Tb = τ for
protection. Usually these two cashflows from "A" to "B" respectively "B"to "A"
are called premium leg and protection leg respectively. There exist two types of
CDS’s. When a protection payment is payed at time Tb, it is called "protection
at maturity". If the protection is payed at the time δ(default time) it is called
"protection at default".
The value R is sets at the beginning of the contract, in such a way that make the
present value of the contract fair. It means that the difference between premium
leg and protection leg equals to zero. For further purposes, we assume without
loss of generality that M = 1.

Figure 6.1: How CDS works

Note: Here are illustrated cash-flows from CDS contract on not discounted value basis,
R represents the whole premium leg here.

From the description of CDS cash-flows we can summarize

premium leg payments
∑b

i=a+1
(Ti−Ti−1)

∆
R1{δ≥Ti}

accrued payment in case 1{Ta≤δ≤Tb}R
(δ−T{( of default the first i following δ) −1})

∆

of default between last Ti before δ and δ

protection payments 1{Ta≤δ≤Tb} × LGD
at the time of default

2we need to emphasize that this is not recovery rate as was used in previous chapters
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where ∆ is a number of i during one year(e.g. if we consider four payments during
the year then we have (Ti−Ti−1)

∆
= 3/12). The accrued term is the case when refer-

ence entity default between two premium payment dates and the investor should
pay the accrued premium from the last payment to the contract seller; let’s say a
credit event occurs after 2 months from the previous payment, protection buyer
still has to pay a proportion of the accumulated premium for 2 months.

6.2 Credit Default Swaps:valuation
In the following section we introduce pricing of CDS contract. We are assuming
a default free case of CDS here. To avoid confusions, we need to explain what is
the difference between a default free case and a default case of CDS pricing. We
need to emphasis that the default free case has nothing to do with the reference
entity. Here the default free case means that there is no default risk for either of
protection buyer or protection seller, but the reference entity is still defaultable.
We are discussing the possible outcomes of CDS pricing just in default free envi-
ronment(from the point of view of protection seller and protection buyer) later.
By putting together cash-flows from above we are obtaining following result

Proposition 6.2.1. At time t, t ≤ Ta the discounted payoff of general CDS buyer
is

ΠCDS(t) = protectionlegt +R× premiumlegt (6.1)
where

protectionlegt =
Bt

Bδ

1{Ta≤δ≤Tb} LGD

premiumlegt = −
b∑

i=a+1

Bt

BTi

(Ti − Ti−1)

∆
1{δ>Ti}

−Bt

Bδ

1{Ta≤δ≤Tb}
(δ − T{( the first i following δ)−1})

∆

To avoid the last "accrued term " in the premium leg, there is a possibility to use
two approaches how to deal with the accrued part as it is proposed in Brigo[7]
Approach (1) if the default occurs in interval (Ti−1, Ti] we simply move it in to
the time Ti and set the accrued part R equal to zero
Approach (2) we also move the default in to the time Ti, but set the accrual
period to the whole period (Ti−1, Ti] so the whole R is payed.
The third approach is, to approximate the last accrued term by the half of the
whole premium for a given period that could be a good approximation if one can
expect the uniform distribution of a default between payments.

By applying two approaches from above, it yields following preposition.

Proposition 6.2.2. If we apply the Approach (1) the discounted payoff of CDS,
let denote it ΠCDS1 at time t is equal,

ΠCDS1(t) =
b∑

i=a+1

Bt

BTi

1{Ti−1≤δ≤Ti} LGD−
b∑

i=a+1

1{δ≥Ti}
Bt

BTi

R
(Ti − Ti−1)

∆
(6.2)

32



and when we apply the Approach (2) the CDS payoff, let denote it ΠCDS2 is given
by

ΠCDS2(t) =
b∑

i=a+1

Bt

BTi

1{Ti−1≤δ≤Ti} LGD−
b∑

i=a+1

1{δ>Ti−1}
Bt

BTi

R
(Ti − Ti−1)

∆
(6.3)

To decide which approximation is better we need to know if δ = Ti + ε or if
δ = Ti − ε. So the first approach or second approach will be more suitable.

Remark 6.2.3. It is good to notice that 1{δ>Ti−1} = 1{δ>Ti} + 1{δ∈(Ti−1,Ti]} for
i = {a, a+ 1 . . . , b} so for ΠCDS1(t) and ΠCDS2(t) we have following

ΠCDS2(t)− ΠCDS1(t) =
b∑

i=a+1

Bt

BTi

R1{δ∈(Ti−1,Ti]}

If we use the risk neutral valuation formula, the value of the CDS obtained
at time t is the expected value of discounted payoff to time t. We summarize the
pricing of CDS by three different approaches in the following proposition

Proposition 6.2.4. The price of CDS at time t for three different approaches is

CDS(t) = EP̃ [ΠCDS(t)| Gt] (6.4)

CDS1(t) = EP̃ [ΠCDS1(t)|Gt] (6.5)

CDS2(t) = EP̃ [ΠCDS2(t)|Gt] (6.6)
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7. Value of the Credit Risk
In this section we are discussing value of the credit risk that comes out from any
failure to perform on agreements with the counterparty. We are introducing the
Credit Valuation Adjustment(CVA) as a measure for the unilateral credit risk and
BVA(Bilateral Valuation Adjustment) as a measure of the bilateral credit risk.
This chapter is mostly summarizing our previous findings and giving previously
derived formulas into the concept of these two adjustments.

7.1 CVA
Definition 7.1.1. Under the consideration of the unilateral default risk from
investor’s perspective(the investor is default free and the counterparty is exposed
to the default risk), CVA is the difference between the value of a financial instru-
ment on a default free basis and the value that includes in the price possibility
of counterparty’s default. So it is defined by following equation

PD = PND − CVA (7.1)

where

• PD is the value of financial instrument (or of a whole portfolio value), taking
into account the unilateral counterparty risk

• PND is the value of financial instrument (or a whole portfolio value) without
the counterparty risk

CVA may be represented as a cost of hedging, to insure the investor against the
credit risk.
We have performed computations in Chapters 5 that yield analytical formulas for
the instruments exposed to a credit risk. Unfortunately this procedure is only
possible in some basic cases and some fundamental types of financial instruments.
This obstacle leads to the fact that we can distinguish two different approach-
es for CVAs calculations: i) Analytical approach those performed here. The
second one is using simulation technics, let’s call it ii) Simulation approach.
For more details about this approach see Pykhtin and Zhu(2007) [24]. We have
already incorporated contribution of the counterparty default risk into the valu-
ation of financial instruments. The main result that is shown below is that the
value of financial instrument with the counterparty risk is the value of the de-
fault free instrument with subtracted option term on the residual value after the
default.
With our definition of CVA and Theorem 4.1.3 we are getting to following prepo-
sition.

Proposition 7.1.2. If we define CVA as in the Definition 7.1.1, then the value
of CVA at time t is given by following formula

CV A(t) = LGD × EP̃{1{t<δ≤τ}D(t, δ)(NPV (δ))+|Gt} (7.2)

Proof. Combine the result from Theorem 4.1.3 and Definition 7.1.1.

34



CVA is an expected value of the positive residual payoff after the default. We
have applied the General Counterparty Risk Pricing Formula 4.4 to the bonds and
swaps where we have derived analytical, relatively easily computable formulas.
For the summary of previous computations see Table 7.1.

Table 7.1: Credit Valuation Adjustment

Instrument CVA
Zero-coupon

Bond LGD×
∑m

i=1 P̃[δ ∈ (Ti−1, Ti]|Gt]t BtBTi
P (Ti, T )

Coupon-bearing
bond LGD ×

∑m
i=1 P̃(δ ∈ (Ti−1, Ti]|Gt) Bt

BTi
PC(Ti, T )

Interest rate
Swap LGD ×∑m

i=1 P̃[δ ∈ (Ti−1, Ti]]PayerSwaptiont(Ti, Tm, κ, σTi , κ(t, Ti, Tm))}

Note: all notations are in coherence with previous findings and setups and instruments
are with the same features as were defined earlier

As we see the value of CVA is always positive. The value of a financial
instrument, from the investor’s perspective in case of unilateral default risk in-
corporation into the prices, is always lower than non deaultable price. In the
same contract, is adjustment from defaultable counterparty perspective equals to
-CVA. Consequently, is the price of the instrument for defaultable counterparty
after the incorporation of default risk(its own) higher than default free price.

7.2 BVA
As we have mentioned at the beginning of this chapter, in the case of bilateral
default risk consideration, we are not speaking about the credit adjustment but
about the bilateral adjustment. There is no debit or credit expression since, it is
not predetermined if the adjustment is positive or negative for the value of a given
instrument. From Theorem 4.1.6 we see that the value of adjustment depends
on two non negative terms acting in opposite way. One is with a plus sign and
second one is with a minus sign. We can define BVA in the similar way as CVA.

Definition 7.2.1. Under the consideration of the bilateral default risk, BVA is
the difference between the value of financial instruments on the default free basis
and the true value that includes in the price possibility of counterparties’ default.
So it is defined by the following equation

PBiD = PND + BVA (7.3)

where
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• PBiD is the value of a financial instrument (or of a whole portfolio value)
taking into account the bilateral counterparty risk

• PND is the value of a financial instrument (or a whole portfolio value)
without the counterparty risk

and further BVA can be split into

BVA=DVAbi − CVAbi (7.4)

where CVA is an adjustment from one counterparty’s perspective and DVA(Debit
Valuation Adjustment) is an adjustment from the other counterparty’s perspective.

Remark 7.2.2. For an illustration how BVA works, let’s assume following sim-
plified example. Let’s say that there are two counterparties in a contract. Coun-
terparty "A" and counterparty "B". For a simplicity let’s assume that the con-
tract has the maturity one year and that A’s credit quality is worse(probability of
default within following one year) than credit quality of B. We assume that the
value of CVABi and DVABi depends directly on the credit quality of the entity(if
the credit quality is worse CVABi or DVABi is higher and other way around). For
this simple example we have, that CVABi represents a measure of the counterpar-
ty risk adjustment of A against the default risk of B and DVABi represents the
measure of counterparty risk adjustment of side B against default risk of A. In
this particular case CVABi is lower than DVABi thus BVA is positive.

Remark 7.2.3. Symmetry of risk Sometimes the bilateral default risk is also
called symmetric default risk. It is because, for BVA holds that, if it is computed
from the perspective of the investor, the adjustment has value BVA(t) and if
it is computed from the counterparty’s perspective it has value -BVA(t). This
holds because both counterparties aggree with this adjustment because there is no
advantage for any of them.

From Theorem 4.1.6 follows this general terms for BVA.

Proposition 7.2.4. If we define BVA as in Definition 7.2.1, then the value of
BVA at time t is given by following formula

BVA(t)=DVA(t)Bi − CVA(t)Bi (7.5)

where

DVA(t)Bi=LGD1 × EP̃{1{δ1≤δ2≤T∪δ1≤T≤δ2}D(t, δ)(−NPV (δ1))+|Gt} (7.6)

CVA(t)Bi=LGD2 × EP̃{1{δ2≤δ1≤T∪δ2≤T≤δ1}D(t, δ)(NPV (δ2))+|Gt} (7.7)

With same notation as in Section 4.1.3. We have computed BVA for the
interest rate swap and it is given as follows

BV A(t)IRSBD = DV A(t)IRSBD − CV A(t)IRSBD
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DV A(t)IRSBD ≈

≈
m∑
i=1

LGD1

(
P̃[Ti−1 < δ1 ≤ Ti, Ti ≤ δ2 ≤ Tm] + P̃[ Ti−1 < δ1 ≤ Ti, δ2 ≥ Tm]

)
× ReceiverSwaptiont(Ti, Tm, κ, σTi,Tb)}

CV A(t)IRSBD ≈

≈
m∑
i=1

LGD2

(
P̃[Ti−1 < δ2 ≤ Ti, Ti ≤ δ1 ≤ Tm] + P̃[ Ti−1 < δ2 ≤ Ti, δ1 ≥ Tm]

)
× PayerSwaptiont(Ti, Tm, κ, σTi,Tb)}

All terms from above are with the same notation as before. We are investigating
the real development of DVA in the case of the IRS in the last chapter of this
work.
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8. Term Structure of Default
Probabilities
We have already prepared the theory for valuation and quantification of the credit
risk and now we need to introduce technics to gain default probabilities. As it is
mentioned in Bluhm et al.[6] generally, there exist three possible approaches to
obtain the default probabilities.

• From the historical default rates

• From Merton’s option theoretic approach

• From the market( spread of defaultable bonds or swap, or other securities)-
also known as implied default probabilities

Because we have already introduced the valuation of derivatives that are directly
working with default probabilities, we are following in this work the approach
mentioned as the last bullet point.
The main idea is to extract default probabilities from the values that are already
quoted in the market. It is possible to do it from different contracts and securities,
but here we are focusing on CDS’s and their market quotes. As we have indicated
at the beginning of Chapter 4, we are using here Reduced Form Model. This type
of model is mostly based on the work of Jarrow and Turnbull (1995) [16], where is
the credit event(default) considered to be the first event of Poisson counting pro-
cess. This approach is commonly used and it is adapted by many other authors
see e.g series of paper Brigo [9],[8], [10] or O’Kane and Turnbull(2003) [22]. As
before, we denote the default time δ. In notation of Poisson process is the prob-
ability of default occurrence within a short time interval [t, t + dt), conditioned
that δ ≥ t, expressed as follows

P(δ < t+ dt|δ ≥ t) = h(t)dt (8.1)

where h(t) is time dependent function known as a hazard rate. It can be shown
that the survival probability to time T , conditioned on survival to time t, t ≤ δ
is given by

P(δ ≥ T |δ ≥ t) = exp

{
−
∫ T

t

h(s)ds

}
(8.2)

This expression follows from the fact that the time between events in Poisson
counting process has exponential distribution for a proof, see Prás̆ková and La-
chout (2003) [23] Chapter 3. Further we have

P(δ < T |δ ≥ t) = 1− exp

{
−
∫ T

t

h(s)ds

}
(8.3)

If we are assuming that hazard rate is constant, h(t) = α for some t, it follows
that

P(δ < T |δ ≥ t) = 1− exp{α(T − t)} (8.4)
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For later purposes, let’s assume that

h(u) = αk for u ∈ [Tk−1, Tk]

So hazard rate is a piecewise constant function and the cumulative probability of
default is given by

P̃(δ ≤ Tj) = 1− exp

{
−

j∑
i=1

αi(Ti − Ti−1)

}
(8.5)

where T1, T2, . . . , Tj denotes the time moments in the time period of our interest.
More precisely, these moments are maturities of available CDS’s. For more details
see following section, where we are connecting default probabilities and CDS
valuation formulas.

8.1 Risk Neutral Default Probabilities Extracted
from CDS Quotes

In Section 6.1 we have introduced general formulas for CDS payoffs, but these
formulas are not really useful for our purposes. In the following two propositions,
we make two assumptions that help us to prepare these formulas for using.

Proposition 8.1.1. The value of CDS contract at time t, with the same cash-
flows as are defined in 6.2.1 and under the assumption of independence between
the default times and the interest rates, is given by

CDS(t, P̃(δ ≤ .|Gt)) = ProtectionLegt + R× PremiumLegt (8.6)

where

ProtectionLegt = LGD ×
∫ Tb

Ta

Bt

Bδ

P̃(u < δ ≤ u+ ∆u|Gt)du (8.7)

PremiumLegt = −
b∑

i=a+1

Bt

BTi

(Ti − Ti−1)

∆
(1− P̃(δ ≤ Ti|Gt) (8.8)

−
∫ Tb

Ta

Bt

Bδ

(δ − T(ε)−1)

∆
P̃(u ≤ δ < u+ ∆u|Gt)du

where T(ε) is first Ti after default time δ.

Proof. From the risk neutral valuation framework follows that the value of finan-
cial derivative is an expected value from its payoff with respect to a risk neutral
measure. Then from the Proposition 6.2.1, that gives us CDS payoff formula,
follows that we need to compute following expected value

CDS(t, P̃(δ ≤ .|Gt)) = Term1 + R× Term2 (8.9)

where

Term1 = E

[
Bt

Bδ

1{Ta≤δ≤Tb} LGD
∣∣∣Gt]
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and

Term2 =

− E

[
b∑

i=a+1

Bt

BTi

(Ti − Ti−1)

∆
1{δ>Ti} +

Bt

Bδ

1{Ta≤δ≤Tb}
(δ − T{( the first i following δ)−1})

∆

∣∣∣Gt]

By assuming the independence of the default times and the interest rates, we can
rewrite Term1 and Term2 as follows

Term1 = LGD ×
∫ Tb

Ta

Bt

Bδ

P̃(u < δ ≤ u+ ∆u|Gt)du (8.10)

and

Term2 = R×
b∑

i=a+1

Bt

BTi

(Ti − Ti−1)

∆
(1− P̃(δ ≤ Ti|Gt) (8.11)

− R×
∫ Tb

Ta

Bt

Bδ

(δ − T(ε)−1)

∆
P̃(u ≤ δ < u+ ∆u|Gt)du

Integrals from the above formulas represent that the default can happen at
each time moment in the interval [Ta, Tb], so we approximate this fact by following
consideration. We divide the time interval [Ta, Tb] into smaller time subintervals,
during which a default may occur. If the default event happens in one of these
subintervals, we shift it into the following right bound of this subinterval. It actu-
ally follows, what we have been assuming, that default can happen just in these
discrete time moments. There need to be made a decision between sufficiently
fine division of the interval and computational complexity. In Chapter 9.4 we are
using monthly division of the year. As it is usual in practice we also assume that
there is no accrual premium payments. Same assumptions were made in O’Kane
and Turnbull(2003) [22].
Following result gives us very suitable and simple formula to use.

Proposition 8.1.2. Let’s assume that CDS contract has following properties:

i) n premium payments are at times{Ta′+1, Ta′+2, ...Ta+n}

ii) Ta′+1 is equal to the date of contract’s inception and Ta′+n is equal to the
maturity date of the contract

If we assume that reference entity can default only at discrete time moments
{Ta, Ta+2, ...Tb}, where Ta is the inception day of the contract and Tb = Ta′+n is the
maturity and at the same time {Ta′+1, Ta′+2, ..., Ta′+n} are at the same time grids as {Ta, Ta+2, ..., Tb},
then the price of such CDS at time t, t ≤ Ta is approximated by

CDS(t, P̃(δ ≤ .)) ≈ Termprotection + R× Termpremium (8.12)
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where

Termprotection = LGD ×
b∑

k=a+1

Bt

BTk

(P̃(δ ≤ Tk)− P̃(δ ≤ Tk−1)|Gt)) (8.13)

gives expression for approximated protection leg of the contract

Termpremium = −
a′+n∑
k=a′+1

Bt

BTk

(Tk − Tk−1)

∆
(1− P̃(δ ≤ Tk)|Gt)

gives expression for approximated premium leg of the contract

Default probabilities are defined as in Section 8.

Proof. The premium leg remain the same, because premium was already payed
at the discrete time moments. We know that

P̃(u < δ ≤ u+ ∆u) = (P̃(δ ≤ u+ ∆u)− P̃(δ ≤ u))

Since the default can happen only at the discrete time moments, we replace the
integral in ProtectionLeg by the sum. So we have

LGD ×
b∑

k=a+1

Bt

BTk

P̃(Tk−1 < δ ≤ Tk)

= LGD ×
b∑

k=a+1

Bt

BTk

(P̃(δ ≤ Tk)− P̃(δ ≤ Tk−1))

In this stage, if we know the interest rate term structure and CDS quotes(spreads),
we are almost ready to extract default probabilities from the market. Just one
last parameter in protection leg needs to be determined and it is LGD rate or a
recovery rate, respectively.

Remark 8.1.3. Recovery rate assumption we can see, to determine default
probabilities from CDS prices, we need to determine a recovery rate as well. Those
rates are mostly estimated on the basis of best "market knowledge" of a model
developer or a trader and on the basis of historical values. If we go further, there
is possibility to model these rates as stochastic processes.

According to historical data and experience the market norm and the usual
corporate recovery rate is 40%, that is average historical rate. This number al-
so support study that was made by rating agency Moody’s Default and Recovery
Rates of Corporate Bond Issuers, 1920-2005, see Figure 8.1.
But for the purposes of this work, we need to estimate the proxy of recovery

rates for sovereign bonds. This task is more complicated since the lack of data
to estimate such rate historically. There was a relatively small number of coun-
tries that announced state bankrupt( see Table8.1). We use the estimation from
Moody’s(2007)[20], where they study 12 state defaults and estimate average recov-
ery rate on the level of 54%. They use 30-day post-default price or pre-distressed
exchange trading price as the measure of recovery rates.
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Figure 8.1: Historical Recovery Rates

Moody’s Special Comment 13

A number of factors may explain why average recovery rates have recently been elevated, such as a reduced supply
of or increased demand for defaulted assets, a reduction in high-yield spreads, cyclically higher asset values, or
increased risk preferences among vulture investors. Moody's and other researchers have documented that recovery
rates tend to be higher when default rates (and the commensurate supply of defaulted debt) are low.  The resulting
negative correlation between default rates and recovery rates is apparent in Exhibit 12. 
 

A simple linear regression model shows an R2 of 0.64 between issuer-weighted average annual recovery rates and
annual corporate default rates. Although not shown here, similar but weaker correlations are also evident between
issuer-weighted average annual recovery rates and annual speculative-grade default rates and between value-weighted
recovery rates and annual aggregate default rates.  

While recovery rates have been high in recent years, we are likely to see a decline in average recovery rates going
forward as default rates rise from their current lows. Over the 24-year period from 1982 to 2005, the issuer-weighted
and value-weighted recovery rates have fluctuated around a long-term mean of about 41%, as shown in Exhibit 13. In
past two years, recovery rates have exceeded the long-term mean, but between 1997 and 2002 - when default rates
were above average - they were below the long-term mean.  If the default rates rise as forecasted by Moody's for 2006,
and beyond, a decline in recovery rates seems likely. Exhibit 24 in Appendix B presents annual recovery rates from
1982 to 2005 for instruments with different seniority in the capital structure.

Exhibit 12 - Correlation between Defaults and Recoveries, 1983-2005

Exhibit 13 - Annual Average Sr. Unsecured Recovery Rates, 1982-2005

Recovery Rate  = 0.538 - 7.6272 x Default Rate
R2 = 0.6443
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Note: source Default and Recovery Rates of Corporate Bond Issuers, 1920-
2005,www.moodys.com.br/brasil/pdf/Default2006.pdf Exhibit 13

Table 8.1: Recovery Rates of Defaulted Countries
Country Default Year Recovery Rate
Argentina 2001 27%

Belize 2006 76%
Dominican Republic 2005 95%

Ecuador 1999 44%
Grenada 2004 65%

Ivory Coast 2000 18%
Moldova 2002 60%
Pakistan 1999 52%
Russia 1998 18%

Ukraine 2000 69%
Uruguay 2003 66%

Average 54%
Note: source Moody’s(2007)[20]
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Now we know everything what we need to calibrate our model to market data.
Calibration process
First: Make assumption about recovery rate.
Progressively for each given CDS quote( subscript i stays for different CDS ma-
turities) we are proceeding in following steps
Step 1: we take CDS(Ti, P̃(δ ≤ Ti)) = 0 and compute αi.
Step 2: compute probability of default P̃(δ ≤ Ti)

Figure 8.2: Illustration of the bootstrap procedure

Ilustration of the calibration procedure

α1

T0 T1

T2

T3

T4

α1 α1α1

T0

T0

T0

T0

Bootstrapping of default probabilities step by step

Remark 8.1.4. To compute particular hazard rates, one needs to compute a set
of nonlinear equations. Because we can express αi in terms of αi−1, we can start
from time interval [T0, T1] to compute α1 and so on. This approach is generally
known as "bootstrap" method and it is illustrated in Figure 8.2

From the bootstrap we get implied risk neutral default probabilities. We are
talking about implied risk neutral default probabilities, because they are implied
by the market and are coming from the risk neutral valuation formula for CDS’s.
For the rest of the work we are speaking about implied default probabilities,
except where explicitly noted otherwise. See the discussion about another type
of default probabilities in Remark 8.1.5.

Remark 8.1.5. Real World vs. Risk Neutral World
It need to be emphasized that there is a difference between the real world default
probabilities estimated from historical data and probabilities implied by the market.
These historical probabilities are mostly lower than probabilities gained from the
market by the risk neutral valuation framework. Historical default probabilities
can be given into the context of real expectations of market participants about
defaults.
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If we are talking about probabilities extracted from bonds1 the reason is that in-
vestors require higher yields for possible default of the issuer plus they also require
some extra safety margin that is ultimately increasing extracted default probabil-
ities. One of the first academic publication about this topic was Altman(1989)
[1] where are described discrepancies between bonds prices and historical data.
In Hull(2009) [14] are presented and compared historical and risk neutral default
probabilities obtained from bonds of different rating classes. Results there show
that the risk neutral default probabilities are more than ten times higher than his-
torical default probabilities for studied bonds.
The same situation is taking place for a protection seller in CDS contract and
his view on default probability of the reference entity. Protection seller wants to
be also protected by some risk margin against the possible wrong or not accurate
estimate of the reference entity’s default probability. This margin is enhancing
default probabilities extracted from CDS’s.
This argumentation is in line with the theory of risk neutral pricing as well. In
this approach, probabilities of each possible price scenarios can be adjusted in such
a way that expected value of a security’s or a contract’s discounted payoff, by risk
free interest rate, is a martingale that implicates no arbitrage on the market, see
Chapter 3.
Even though that risk neutral default probabilities does not give us the clear pic-
ture about the real market expectation about defaults, they are essential for the
valuation of other contracts and securities in a risk neutral framework.

1see Chapter 26 of Hull(2002) [13] for this procedure
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9. Case Study: Greek Debt Crisis
In the second half of this work we use the previous theory to study recent events
and conditions on a government bond market. Circumstances on financial mar-
kets and financial health of some countries in Southern Europe gave us a good
opportunity to study the default risk of a contract, where as an obligor is a whole
country. Credit risk theory was mostly developed to determine and to manage
the default risk of the big corporations. This fact causes that there are not many
academic papers and publications dealing with sovereign default risk and so, there
are not many academic papers as result benchmarks for our study. The debt cri-
sis that almost caused the bankruptcy of Greece in May 2010 and events around
Portugal and Spain during this year showed us an importance of being aware of
a state default possibility as well.
We apply the framework from previous chapters to study default components,
CVA in our notation, in case of real market quotes of sovereign Greek bonds. In
the second part, we study CVA and BVA in the case of interest rate swap between
Greece and Czech Republic.
This highly stressed period on the bond market provides us an opportunity to
study interactions and relations between credit derivatives market, especially CDS
market, and a sovereign bond market. The aim, is to use CVA concept to calcu-
late modeled prices1 of Greek bonds and compare them to real quotations on the
market during the debt crisis in May 2010. The idea is to use default free interest
rates for discounting of bond’s cash-flows and subtract CVA, the default compo-
nent. Modeled prices, computed by our formulas for incorporation of default risk,
are mostly driven by default free interest rates, by which bond cash-flows are dis-
counted and by risk neutral default probabilities, extracted from CDS premium
quotes. Undoubtedly the choice of risk free curve has an impact on the results so
we also investigate the impact of right choice of risk free interest rate curve.
The process of valuation includes an extraction of the risk neutral default prob-
abilities from CDS quotes. This part of the process is also interesting because
we can study reactions of CDS spreads and risk neutral default probabilities on
events and political discussions about the solutions of Greek government debt.

The first task and data needed for it are good preliminary steps to calculate
CVA and DVA for IRS between two countries. The concept of IRS between
Greece and Czech Republic is not based on a real IRS quoted on the market.
We use another data that we have to construct such a swap, see Section 11. On
the following pages we would like to describe in detail the whole procedure, with
emphasis on all obstacles and possible issues that accompany such procedures.

9.1 Data
Very often in such a study the main problem is not the computation process itself,
but the problem is to gain enough data with appropriate quality. It is possible to
get yield curves and some bond prices for free from different websites e.g European

1modeled by formulas derived in Chapter 5.2 by which we can calculate fair price of the
bond. For this is just needed risk free interest rate term structure and default probabilities of
the bond’s issuer
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Central Bank website. But it is very hard, if not impossible, to get quotation
of CDS’s for free, even for academic purposes. Because CDS contract is traded
over the counter, data needs to be gained directly from traders and brokers. Of
course there exist many different private companies that are collecting this sets
of data, but they are gathering them for commercial purposes and they are not
providing it, for academic purposes. In our case, all data used in this work are
downloaded from Thomson Reuters2. For our calculation, we are using three
main data sets: CDS spreads quotes,Greek bonds prices/yields and default-free
interest rate curves.
•CDS quotes: to determined default risk of government bonds that are issued
by Greece, we need to extract default probabilities from CDS’s with Greece as a
reference entity. We have downloaded CDS prices for 8 different maturities from 6
to 120 months. Data set contains quotes(spreads) from 5/11/2008 to 6/12/2010.
Together 536 daily observations. CDS’s are quoted in percentage basis points
and a premium/spread is payed quarterly, which is the mostly used payment
frequency. From CDS quotes, for different maturities and for each trading day
we can extract the whole term structure of risk neutral default probabilities. By
the term structure of default probabilities, we mean that for each day we have
default probabilities for different default times(in our case default times are same
as CDS maturities). For the second task of computing BVA for IRS we use CDS
quotes with Czech Republic as the reference entity.

Table 9.1: Credit Default Swap:Greece as Reference Entity

Maturity(in months) Average premium Premium Range
Min Max

6M 389.438 46.000 1267.680
12M 389.543 46.000 1268.700
24M 387.097 58.000 1191.586
36M 384.407 70.000 1122.575
48M 378.177 80.000 1049.817
60M 371.025 88.000 977.590
84M 360.940 91.200 945.600
120M 344.473 89.000 898.890

•Bonds: we apply our defeaultable coupon bearing bonds Formula 5.6 to all
outstanding bonds issued by Greek government, that are possible to download
from Thomson Reuters on 6th December 2010. We are working with daily yields
of eighteen coupon bonds with maturities varying from June 2010 to June 2019.
Bonds with maturities longer than 10 years are excluded. Coupon range is from
3.6% to 6.25%. Total number of trading days, during which we have at least one
price/quotation of bond is 1225 (from 29/01/2008 to 6/12/2010). If we consider
only the days containing yields of all 18 bonds, data shrinks to 143 observation
points from 08/04/2010 to 6/12/2010. These 143 trading days contain almost
3000 yields observations and serve us as a good sample to our study(further just

2we get an access to Thomson Reuters Financial Lab terminal of University of Economics in
Prague with kindly permission of the supervisor of this thesis Mr. doc. RNDr. Jiří Witzany,
Ph.D.
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main sample). Our sample exactly match with the distressed period on the Greek
sovereign bond market. List of all bonds from main sample is in Table 9.2

Table 9.2: Greek Bonds Overview

Bond Maturity Coupon Mean Yields Range Mean Price Range
Rate Min Max Min Max

GR010714 01/07/14 4.50% 10.61% 14.87% 6.58% 674,012 560,670 762,812
GR180511 18/05/11 5.35% 8.81% 18.27% 5.91% 995,581 935,529 1,040,864
GR180512 18/05/12 5.25% 9.96% 18.29% 6.14% 948,728 842,370 1,028,702
GR190719 19/07/19 6.00% 10.50% 13.05% 6.74% 409,867 322,426 546,523
GR200311 20/03/11 3.80% 17.41% 37.96% 11.74% 987,402 893,781 1,015,307
GR200312 20/03/12 4.30% 9.68% 17.96% 6.02% 939,439 801,358 982,715
GR200417 20/04/17 5.90% 10.52% 13.95% 6.69% 509,652 401,772 634,609
GR200513 20/05/13 4.60% 10.65% 17.37% 6.39% 878,929 757,344 989,677
GR200514 20/05/14 4.50% 10.81% 15.93% 6.48% 677,000 548,708 772,420
GR200715 20/07/15 3.70% 10.62% 14.43% 6.53% 605,551 493,458 715,217
GR200716 20/07/16 3.60% 10.17% 13.75% 6.57% 558,301 446,840 669,427
GR200717 20/07/17 4.30% 10.50% 13.65% 6.72% 497,558 395,438 621,965
GR200718 20/07/18 4.60% 10.24% 12.60% 6.72% 458,573 375,752 582,819
GR200811 20/08/11 3.90% 8.78% 18.28% 6.10% 974,239 873,617 1,008,185
GR200812 20/08/12 4.10% 10.16% 18.20% 6.19% 915,655 779,475 979,949
GR200813 20/08/13 4.00% 10.69% 16.42% 6.35% 854,413 726,492 953,883
GR200814 20/08/14 5.50% 10.89% 16.47% 6.62% 658,489 518,179 755,923
GR200815 20/08/15 6.10% 10.44% 14.57% 6.49% 604,210 485,584 714,097

To our analysis we also include 5 bonds, for which we have yields observa-
tions from 5/11/2008 to 6/12/2010. This second sample is used to investigate
the default components during trading days with a smaller volatility of bond
yields(further second sample). See the mean and standard deviation comparison
of these 5 bonds in Table 9.3.

Table 9.3: Overview of Bonds from Second Sample

Period Period
(5/11/08-6/12/10) (5/11/08-31/03/10)

Bond ID Mean Stdv Mean Std
GR180512 5.79% 3.23% 3.77% 1.14%
GR200311 9.50% 5.96% 6.12% 2.54%
GR200513 6.34% 3.37% 4.20% 1.03%
GR200715 6.61% 3.08% 4.62% 0.83%
GR200716 6.61% 2.81% 4.81% 0.79%

•Default Free Yield Curve: many discussions about the yield curve that rep-
resents default free investments, lead us to use and to make computation for
two different yield curves. One is a plain vanilla interest rate swap yield curve
and other one is yield curve extracted from German Governments bonds, since
these bonds can be considered as default free bonds. These bonds are also used
for the curve that we have downloaded from Reuters and that is referred as EU
Benchmark curve. As a basis for further work, it is used 38 quotes of swap rates
with maturities varying from 1 to 120 months, for the period from 5/11/2008 to
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2/12/2010. Actually, we are using these quotes for a shorter period. The second
curve, treasury bond curve, is defined by 14 quotes for the same period as the
swap rates with maturities also varying from 1 to 120 months. Later, we are
discussing required interpolation procedure between this fixed maturities. Both
these curves are downloaded from Thomson Reuters as well.

9.2 Default Free Interest Rate Term Structure
One of the most essential input parameter and also one of the most discussed
input to any fixed income financial instrument pricing models is a default free
interest rate term structure3. It is an essential for our valuation procedure and
for the risk neutral default probabilities extractions, as well. Discussion about
this issue is so complex and wide that it is not in the scope of this work to even
fully list all academic and practitioners papers about it. Currently, there are two
main groups of interest rate term structure users. Practitioners are using the
plain vanilla interest rate swap curve( later just swap curve) on the other hand in
academic sphere they are mostly using Treasury yield curves. In the academics
and practitioners research articles and literature to secure a robustness of the
results it is usual to use more definitions of default free interest rate curve. To
make our analysis also more robust, we use two different yield curves, the swap
curve and the Treasury curve. Swap curve, represents fixed payment rate against
floating LIBOR rate. Swap curves are starting to be quite popular because they
are considered to be less risky instruments than treasuries even though they are
based on the LIBOR which is risky rate, since also big financial institutions are
exposed to the default risk ( e.g. Lehman Brother case ). We can just mention
that there is no face value to lose, one counterparty lose only if it is receiver
position and there is very often a collateral required(security or a bond) which
other party receive in case of the default.
The second yield curve is derived from high rated German Government bonds and
it is also downloaded from Reuters 4. Germany is the strongest economy in EU
so it is reasonable to consider it as a non default-able bond issuer. It is commonly
assumed that such bonds imply yields that are not containing any premium for
default risk.

One big difference between these two instruments is the liquidity. Liquidi-
ty5risk influences the level of interest rates/yields6 as well. The sensitiveness on
this risk is not on the same level for swaps and for treasury bonds. Swaps are
contracts not securities and this distinction is important, because there is just
fixed amount of securities but swap as contracts can be in arbitrary large amount
available on the market. So the swaps do not have a tendency to be influenced by
any supply-demand premium. The difference in liquidity, one can see just from
the number of quotation of different maturities in our data sets.

3further in the text we are equivalently using terms as benchmark curve, risk free curve
4Further in the text, we are using equivalently default free curve, risk free curve and some-

times also benchmark interest rate curve as the term for default free interest rate curve.
5In finance, liquidity risk is the risk that a given security or asset cannot be traded quickly

enough in the market to prevent a loss (or make the required profit).
6It influence yields as well because yields are function of interest rates and time to maturity
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9.3 Preparation of Default Free Interest Rate Curve
for Modeling

For the exact time match of interest rates for all needed cashflows we need to
interpolate values between downloaded fixed quotes of swap rates and treasury
yields. As we have already mentioned in the data section, we have 38 swap
yield quotes for each trading date, vary from 1 to 120 months maturity and for
German treasuries we have 14 quotes varying from 1 to 120 months maturity. For
the summary of basic statistical properties, see tables in Appendix A Tables A.2
and A.1.

For further use we need to interpolate both curves on a monthly basis. To
interpolate monthly values from given set of observed rates we are using Nelson
Siegel Model and following paper from Gilli et. al. 2010 [12]. They argue that
the function used in Nelson Siegel Model, given as 9.1 can capture all types
of yields curves(steep, flat, humped or inverted). This method is also used by
European Central Bank to present daily benchmark curves7. We are following
their suggestions and proposals and incorporate them in to the the interpolation
procedure.

yt(τ) = β1 + β2

[
1− exp(−τ/γ1)

(τ/γ1)

]
(9.1)

+ β3

[
1− exp(−τ/γ1)

(τ/γ1)
− exp(−τ/γ1)

]
+ β4

[
1− exp(−τ/γ2)

(τ/γ2)
− exp(τ/γ2)

]
In this equation yt(τ) represents yields at time t with maturity τ . Parameters
β1, β2, β3, β4 and γ1, γ2 are estimated for each day(for each t) in our samples. We
are using this particular type of Nelson Siegel function but there are also used
just 3 parameters variation of this function, without the last term after β4 and
γ1 is considered to be a constant.
For the best estimates of six parameters, we are using build in function in Matlab
program called lsqcurvefit() for all six parameters for each day in the samples.
This function finds the best estimate of the parameters in a least-squares sense.
For parameters statistics overview see Appendix A. After the estimations of pa-
rameters we construct the complete interest rate term structure, see surfaces in
Figure 9.1 and Figure 9.2.

CVA for coupon bearing bonds, in equation 10 is calculated as a sum of default
free bond prices at each possible moment of a default, weighted by risk neutral
default probabilities at these moments. In our case, it is one month interval in
which defaults are possible, from the day of the bond inception to maturity of the
bond. Because we have to price default free bonds not just as of today, but also
in the future moments of their life time, we compute forward rates from our spot
interest yield curves. This allow us to compute the price of the bond at future
time moments. In both of our samples, bonds are with maturities less than 10
years, so we also need just forward rates up to 10 year maturity.

7for closer information see technical notes of ECB yields method-
shttp://www.ecb.int/stats/money/yc/html
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Figure 9.1: Swap rate term structure

9.4 From CDS Quotes to Default Probabilities
As we have already mentioned couple of times from CDS quotes for a given
reference entity, we are able to extract default probabilities for this entity. To
be more precise, we are able to extract a hazard rate and then compute risk
neutral default probabilities. Let us recall the formula which is essential for the
extraction of the risk neutral default probabilities and the whole process stands
on it. From Proposition 8.1.2 we have

CDS(t, P̃(δ ≤ .)) ≈ Termprotection + Termpremium (9.2)

where

Termprotection = LGD ×
b∑

k=a+1

Bt

BTk

(P̃(δ ≤ Tk)− P̃(δ ≤ Tk−1)|Gt)) (9.3)

gives expression for approximated protection leg of a contract

Termpremium = −R×
a′+n∑
k=a′+1

Bt

BTk

(Tk − Tk−1)

∆
(1− P̃(δ ≤ Tk)|Gt)

gives expression for approximated premium leg of a contract

where {Ta′+1, Ta′+2, ..., Ta′+n} are the time moments when premium is payed and
{Ta, Ta+2, ..., Tb} are the possible default times. All variables have the same mean-
ing as in the previous chapters and sections. Market value is quoted through the
R, premium or spread. Bonds from the sample have the longest maturity of ten
years, so we are focusing particularly on these quotes [6,12, 24, 36, 48, 69, 84,
120] in months. We have mentioned in Section 8 that it is appropriate to work
with partially constant hazard rates. Also now we are assuming that the hazard
rate is picewise flat function of maturity time. This implies that we are able
to derive hazard rates valid on the following time intervals (0,6],(6,12], (12,24],
(24,36], (36,48], (48,60], (60,84], (84,120] expressed in months. For each trading
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Figure 9.2: Treasury rate term structure

day we get 8 hazard rates that are applicable on these intervals. Hazard rate on
in each interval is computing from the spread for CDS with maturity given as the
right bound of the interval e.g. hazard rate that is valid on time between today
and next six months is computed from CDS quote with maturity of 6 months.
As reasonable approximation of possible default times, we are assuming time
steps one month. Discretization of interval, index k, in Termprotection is regarding
to time step of one month given by the number of months from valuation day to
maturity. The formula for the risk neutral default probability which is applicable
with given 8 different quotes and monthly discretization of possible default times,
is given as follows.

P̃(δ ≤ Tj) =



1− exp
(
− j

12
α0,6

)
if 0 < j ≤ 6

1− exp
(
−α0,6 − j

12
α6,12

)
if 6 < j ≤ 12

1− exp
(
−α0,6 − α6,12 − j−12

12
α12,24

)
if 12 < j ≤ 24

...

. . .

. . .

1− exp{−α0,6 − α6,12 − α12,24 − α24,36 − α36,48 − α48,60

−α60,84 − j−84
36
α84,120}

if 84 < j ≤ 120

(9.4)

where α(i−1,i), i ∈ {6, 12, 24, 36, 48, 69, 84, 120} represents the piecewise constant
hazard rate, in a period (i− 1, i].
As a computational platform, we use Microsoft Office Excel and its programming
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extension VBA. We use this environment because we are working with lots of
data and tabular software Excel is a very useful tool to handle such amount. In
VBA it is easy to implement any needed structures for our computations.
Terms 9.4 together with CDS formulas are directly coded to VBA8 to compute
risk neutral default probabilities. By this way we can calculate default probabil-
ity to any needed time horizon, from 0 to 120 months.
Premium R that is paid for a protection, is paid quarterly, so there is no need to
adjust it, since it fits to our discretization steps. The last thing that needs to be
answer before the calculation itself, is the recovery rate or LGD, respectively. We
are assuming, that the recovery rate is 54 % as it is mentioned and reasoned in
Remark 8.1.3. According to latter facts and assumptions, we build up the VBA
program that compute hazard rates for Greece with both interest rate curves. As
an input to this program are interpolated interest rate term structure on monthly
basis(swap curve and treasury curve) and CDS quotes.

9.5 Greece Debt Crisis
To better understand recent circumstances around Greece, we should recapitulate
events that almost caused the bankrupt of this country at the end of April and
the beginning of May 2010.9 This helps us to better interpret and take the
results of our calculation into context of these days events. To shortly illustrate
the atmosphere on financial markets, we use the average yield of bonds from the
main sample10 and their maximums and minimums. The following Chart 9.4 with
comments is a sketch of the situation.

9.6 Greek Implied Default Probability Term Struc-
ture

Implementation of the previously mentioned facts about default probabilities cal-
culation, to VBA code, finds for each day in the CDS sample and for each ma-
turity, corresponding hazard rate. As an example, see computed hazard rates as
on 5/11/2008 and implied default probability curve, Figure 9.3.

In the example in Figure 9.3, we have computed hazard rates for the first day
of our CDS sample, for 5/11/2008. These days was the sovereign bond market
not so distressed as it is recently, so implied hazard rates and cumulative default
probabilities are not so high. Ten years default probability of Greece at the level
of 25% is pretty good comparing to 75% in May 2010. For more details to this
curve see Table 9.5, where are some characteristic of this particular credit curve
in detail. We see that hazard rate is piecewise constant between available CDS
quotes.

Last three columns of Table 9.5 give us a good opportunity to shortly clari-
fy outputs and relations of our model. From the previous pages we know, that

8All VBA codes used in this work are on accompanying CD to the master thesis.
9This is observed from December 2010, status in July 2011 is that Greece is still balancing on

the edge of state bankrupt and receiving another billions of EUR from IMF and other countries
10Defined earlier as a the sample of 18 Greek governments bonds
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Figure 9.3: Example of Hazard Rate and Default Probability Curve

Note: Hazard rate and default probabilities extracted from CDS quotes on 5/11/2008,
using treasury curve as benchmark interest rate.

Table 9.5: An Example of Hazard Rates: premium leg and protection leg com-
puted

CDS Hazard Premium Protection Modeled
Maturity Spread Rates** Leg Leg Spread

6 M 99.000 1.0701% 0.00484 48.855% 99.023
12M 98.500 1.0596% 0.00950 96.446% 98.511
24M 106.000 2.4627% 0.01991 187.791% 106.018
36M 113.500 2.8054% 0.03105 273.544% 113.513
48M 118.750 2.9506% 0.04198 353.465% 118.760
60M 124.000 3.2147% 0.05303 427.610% 124.008
84M 126.800 5.8619% 0.07104 560.215% 126.806
120M 131.000 9.4023% 0.09497 724.945% 131.005

*discounted by swap curve
CDS Hazard Premium Protection Modeled

Maturity Spread Rates** Leg Leg Spread
6 M 99.000 1.0728% 0.00487 49.097% 99.183
12M 98.500 1.0599% 0.00957 97.050% 98.590
24M 106.000 2.4598% 0.02007 189.383% 105.986
36M 113.500 2.8040% 0.03139 276.617% 113.491
48M 118.750 2.9473% 0.04257 358.497% 118.743
60M 124.000 3.2077% 0.05393 434.919% 123.995
84M 126.800 5.8592% 0.07259 572.445% 126.814
120M 131.000 9.3790% 0.09750 744.342% 130.991

*discounted by treasury curve

** hazard rates represent not annualized hazard rates they are valid between the last
quote and current maturity, according to 9.4
Spreads are quoted in basis points (bpb).
Computed hazard rates for CDS quotes on Greek bonds as at 5/11/2008. In the col-
umn Protection Leg is the value of discounted protection leg for given maturity and in
the column Premium Leg is discounted value of premium leg as it is described in the
beginning of the Section 6.1. All values in these two tables are outputs of our VBA
model.
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we are computing hazard rate based on the assumption that the value of CDS
at the inception of a contract is fair, the value is equal to zero. We use the
formula for protection and for premium leg from Proposition 6.2.1. Value of
protectionleg−spread∗premium should equal to zero. We see that for all matu-
rities in Table 9.5 it holds. For example see 12 months maturity in the first part of
the table(discounted by swap curve), 48.855%×98.500bpb−0.00484 = −0.000027
that is close enough to zero. Difference is caused by a root finding11 algorithm
and its precision. The last column called Model Spread is the spread computed as
the value of the protection leg divided by the premium leg. All modeled spreads
in this table are equal to real market spreads. Such analysis was done for each
quote to clarify results of our model.
From Tables B.2 and B.1, where basic statistical properties of both default prob-
ability term structures are presented, we clearly see that the choice of benchmark
curve has not any significant effect on computed hazard rates and thus implied
default probabilities. This is expected because discount rate has the similar im-
pact on both legs of the contract.
Following Picture 9.4 presents Risk Neutral Implied Default Probability Term
Structure with corresponding hazard rate term structure. For the same picture
just for the swap curve see Appendix C Figure C.1.

Pictures 9.4 give us a clear view on the reactions of default probabilities to
sovereign debt crisis. Years 2008 and 2009 with quite flat default probability
curves are replaced with highly distressed and steeply increasing credit curves in
April 2010. Long term default probabilities dramatically increased from about
40% to almost 80% during April 2010. It means that CDS market implies that
Greece will default during following ten years with a probability 80%. This num-
ber is quite high but could be expected according to circumstances around the
Greek sovereign debt. Similar values for Greece can be found e.g. in a research
European Liquidity Review(2008) [26], where 10 years cumulative default prob-
abilities are around 70%12 at the end of April 2010. In our case they are around
80% see Table C.2. But they are using recovery rate of 40% so this perhaps caus-
es 10% difference. Also 5 years default probabilities are comparable with this
study, one compare chart on the page 4 of this study and it is inline with Chart
C.2(output from our model). So we see that recovery rate assumption could have
perceptible impact on the risk neutral default probabilities computations.

Confusing situation; hundreds of announcements of government heads of po-
tential state rescuers of Athens, dramatical public riots and strikes of public sec-
tors in the whole Greece contributed to rough movements of financial markets.
One of the movements, more than 14% decrease in long term default probabil-

11we are using standard additional component to Microsoft Office Excel, Solver and this
component is using Generalized Reduced Gradient algorithm to find solution to non linear
equations

12another source can be website of CMA company http://www.cmavision.com/market-data/,
leading source of independent OTC market data, where e.g. 8.7.2011 was Top 3 of Highest
Default Probabilities leading by Greece, Ireland and Portugal with 5 year cumulative default
probabilities from 54% to 84%. We are not able to present here the complete list of countries
and their default probabilities since we have only access to demo account on this webpage.
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Figure 9.4: Default Probability Term Structure with corresponding hazard rate
term struture

Note:here the treasury curve is used as a benchmark curve. These two pictures show
risk neutral default probability term structure and corresponding hazard rates as
implied by data.
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ities, was caused by the IMF approval of the rescue package during the second
week in May 2010. This is illustrated in Figure 9.5

Figure 9.5: Comparison of Default Probabilities between 7th and 17th May

Illustration of how the approval of rescue package from IMF influences implied Greek
default probabilities

To see the development of default probabilities for main 8 possible default time
horizons see Figure C.2 in Appendix C.
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10. Application Of Defaultable
Coupon Bearing Bond Formula
Following section recapitulates and evaluates our approach to incorporate the
default risk into the value of coupon bearing bonds. Here we are considering two
types of risk free interest rate curves that serve us to get risk free discounted
values of cash flows from given bonds. These values should be stripped of any
risks that can influence the price of bonds. Let us refer to the risk free bond as to a
bond value of which is not affected by any risk, simply cash flows corresponding
with given bonds discounted by a risk free interest rate to the valuation date.
The concept of CVA tells us that the the difference between the value of a risk
free bond and risky bond should be caused by credit risk. Of course, bonds
values already contain risks that are coming from the market in their prices,
but our analytical formula for CVA lets us quantified just default component of
bond prices. Let’s recall the formula for a defaultable coupon bearing bond from
Section 5.2.

PC,D(t, T ) ≈ PC(t, T )− LGD ×
m∑
i=1

P̃(δ ∈ (Ti−1, Ti]|Gt)
Bt

BTi

PC(Ti, T ) (10.0)

Where PC,D(t, T ) is the price of defaultable coupon bearing bond at time t
and PC(t, T ) is a risk free bond price of coupon bearing bond at time t. As we
have already mentioned and it is also possible to see from the previous formula
CVA is given as a sum of a risk free price weighted by default probabilities at
each possible time of a default multiplied by a Loss Given Default, in our case
46%. If we assume that the price of bond is sensitive only to credit risk, we expect
that, if we calculate the risk free discounted value of cashflows from a given bond
minus the corresponding CVA, it approaches the real price quoted on the market.
Unfortunately it is not so straightforward. Since the price is determined by at
more possible types of risks, like: inflation risk, interest rate risk, downgrade risk,
liquidity risk and reinvestment risk. It implies that the spread between risk free
bonds and risky bonds is not explainable just by credit risk. So we would expect
that the price from our model will get closer to the real market price than risk
free price of a bond, but the spread corresponding to other risks, remains. Our
findings also support this expectation. This considerations is presented in the
following example.

We clearly see in the Figure 10.1 how different prices behave. According to
our expectations, the risk free prices are much more higher than the risky ones.
Also the relation between price discounted by the swap curve and by the treasury
curve is inline with our expectations. Since the treasury rates were slightly lower
than the swap rates, price discounted by swap rates is, in average, under the price
discounted by treasury rates.

As we see, modeled price that is using the treasury curve as riskless curve
is always higher than market price. It implies that non default component con-
tribute to the the market price as well. By nondefault component, we mean
another type of risks than default risk. Modeled price computed with the swap
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Figure 10.1: Example of Modeled Prices and Market Price

Here we are presenting different "types" of prices of Greek bond with maturity
18/05/2012 and coupon 5.25% of the nominal value of 1 Million EUR.This bond has
code GR18051210G in our main sample. In the legend it is always, in parenthesis,
denoted with respect to what risk free curve is the price computed. Market price is
the price observed on the market, defaultable price is price after applying of our

formula 10 by using two different discount rates. Risk free price is a price computed as
outstanding cash-flows discounted to the valuation date by the risk free interest rates.

curve is in some cases under the real market price. That implies overestimations
of the default component in this case. This may be the consequence of having
already included some part of default risk in the swap rates. That is coming from
LIBOR curve. We can conclude that for this particular bond modeled price, at
least, copied market prices by their shapes and trends. Following picture shows
us development of CVA for the particular bond. Once more for two different
benchmark curves, see Figure 10.2.

Development of CVA for both risk free curves for this particular bond, also
corresponds with the development of the Greek Crisis. We see increasing trend
in CVA value since the beginning of year 2010. Investors to Greek bonds already
in January 2010, started to require a higher compensation for the possibility of
thr default. The value of relation CVA computed by Swap curve minus CVA
computed by Treasury curve as a benchmark curve is always negative. This is
caused by above mentioned higher swap rates. However, it needs to be emphasized
that this fact does not imply that modeled price computed with Swap curve as
the benchmark is higher than one computed with Treasury curve as a benchmark
curve. This holds, because the same interest rate is applied to the default free
part of Equation 10 that also reduces the final modeled price of the bond.

Now we extend our analysis of a default component for the whole sample of
bonds. We investigate how good is the spread between risk free bond and the
market price of the bond covered by CVA. Basically, we investigate which part of
the spread between these two types of bonds corresponds to the credit risk. The
ratio in Table 10.1 and Table 10.2 is computed as: CVA divided by the spread
between the risk free price and the market price. We are always comparing CVA

59



Figure 10.2: Example of CVA

Here we are presenting CVA for the Greek bond(right axis) with maturity 18/05/2012
and coupon 5.25% and nominal value of 1 Million EUR. In our sample it is bond with
a code GR18051210G. In the legend it is, in parenthesis, denoted with respect to what
risk free curve is the CVA computed. The difference(left axis) is computed as CVA
computed by Swap curve as a benchmark curve minus CVA computed by Treasury

curve as a benchmark curve.

to a default free price computed with respect to the same benchmark rates.
Ratio under 100% means that the spread between the risk free bond and the

market price of such a bond is not explainable only by credit risk. On the other
hand, the ratio bigger than 100% means that CVA computed by our model is
overpricing the default risk for a given bond. From the previous tables, we see
that such a situation, significantly occurring in the case of CVA computed on
the basis of swap curve, as a benchmark curve. We have mentioned earlier that
the swap rates include default risk, so it implies that they are already adjusted
for this type of risk. This fact causes that for some bonds in our sample, is our
modeled price under the market price and so the ratio is more than one hundred
percent. More significantly is such a phenomena visible in Table 10.2 for our
second sample. This sample also includes the dates before the debt crisis and
the ratio is almost in all cases higher than 100%, so the CVA average value is
much higher. We also need to take a closer look at the case, where the ratio is
more than 100 percent, for bonds for which we have used Treasury curve as a
benchmark. In this case, the ratio has slightly exceeded one hundred percent, for
same bonds as for those discounted by the swap curve. This holds just for our
main sample, which contains mostly highly distressed period, so such situation
may causes this type of discrepancies. For a longer period, for the second sample
Table 10.2, we do not observe such an exceeding Ratio above 100% for Treasury
curve. On the other hand the Ratio for swap case increased significantly for each
bond in the second sample. For such a small sample of bonds it is not possible
to conclude anything and generalize it. We can just guess, why is the ratio for
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Table 10.1: Credit Component Ratio of Bond Spreads
SWAP TREASURY

CVA(EUR) RATIO CVA(EUR) RATIO
GR01071410YG 223,237 78.57% 227,964 73.58%

GR18051110G 67,576 113.99% 68,249 105.79%
GR18051210G 134,644 93.54% 136,461 86.93%
GR19071910G 336,658 66.56% 344,755 63.69%
GR2003113YG 54,153 57.26% 54,686 55.47%
GR2003123YG 123,311 97.16% 124,889 90.13%
GR2004177YG 301,356 71.11% 308,354 67.40%
GR20051310G 184,298 83.19% 187,598 77.64%
GR20051410G 219,997 77.41% 224,606 72.60%

GR20071510YG 242,274 73.69% 247,783 69.40%
GR20071610YG 261,120 74.36% 267,189 70.12%
GR20071710YG 285,748 70.42% 292,465 66.84%

GR20071810G 301,715 69.87% 308,899 66.49%
GR2008115YG 84,958 111.80% 85,853 103.47%
GR2008125YG 146,426 90.19% 148,575 83.90%
GR2008135YG 192,421 81.65% 196,055 76.28%
GR2008145YG 233,077 75.65% 238,057 71.09%
GR2008155YG 263,808 75.05% 269,747 70.59%

Average 203,154 81.19% 207,344 76.19%
Swap and Treasury denote which risk free curve was used. CVA values are averages

for each bond, during the observed period in EUR.

Table 10.2: Credit Component Ratio of Bond Spreads:Second Bond Sample
SWAP TREASURY

CVA(EUR) RATIO CVA(EUR) RATIO
GR18051210G 75,002 128.99% 76,083.7 88.89%
GR2003113YG 34,808 47.81% 35,156.4 43.28%
GR20051310G 102,607 115.00% 104,447.9 84.80%

GR20071510YG 141,560 115.28% 144,669.3 87.34%
GR20071610YG 154,895 110.47% 158,405.4 86.26%

Average 101,774 103.51% 103,753 78.11%
Swap and Treasury denote which risk free curve was used. CVA values are averages

for each bond, during the observed period.
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our five bonds from the second sample so high. For better understanding of such
increase of the ratio in this case, we plot four properties of bonds from the second
sample, see Figure 10.3. This helps us to analyze such increase in the satio.

Figure 10.3: Detail of Ratio for Bonds from Second Sample

Here are presented values, computed as averages for bonds from second sample. Ratio
and Default Probabilities are on the left axis and other values are on the right axis.
Blue line represent the average difference between default free price of bond and

defaultable price, discounted by swap curve.

We clearly see in the Picture 10.3 that in the second half of the year 2009
spread between the risk free price of Greek bonds (from second sample) and the
market price of these bonds has been shrinking. It means that these bonds were
considered to be less risky than before. However, risk neutral default probabilities
implied from CDS market did not suggest any improvement in Greek credibility,
they were not decreasing, thus CVA was not rising. From this consideration, we
can conclude that such high ratio of spread coverage is implied by a small spread
between the market price of bonds and the risk free price of bonds, computed
with the swap rates as a benchmark. From the average ratios for each bond in
our main and the second sample, we can conclude that our valuation formula for
coupon bearing bond CVA covers more than 75 percent of spread between default
risk exposed bonds and risk free bonds. Our results also support the fact that
swap rates already include the adjustment of a default risk. In both tables we
see the ratio computed with help of swap rates is higher than the ratio computed
with help of treasury rates.
Similar results were achieved in Longstaff(2005) et. al. [18], where they computed
such ratio on the sample of the corporate bonds for different ratings. They used
three curves as benchmarks: treasury, swap curve and Refcorp1 curve. They

1Resolution Funding Corporation:An agency established by the Financial Institutions Re-
form, Recovery and Enforcement Act of 1989 to fund the Resolution Trust Corporation, funded
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argued that the spread between corporate bonds and benchmark curves are mostly
caused by credit risk. They have computed that the coverage of the spread by
credit risk varies from 51% to more than 81%. They noticed the same fact that
the swap curve probably already include some credit risks and so the ratio is
higher than one hundred percent sometimes. They are using the similar reduced
form approach to compute default component of a bonds as we are using.

If we assume that the prices of bonds are sensitive to more risks than that
represented by CVA, it seems that for our bond samples it is more appropriate
to use Treasury curve as default free curve. It is better, since it gives better
interpretation of possible spreads between the risky and risk free bonds. The
main part of the spread is explainable by credit risk and the rest of the spread is
explainable by another market risks.

It needs to be emphasize that even into the price of CDS it is possible to in-
corporate or separate the default component of the issuer or investor. In that case
protection buyer wants to be rewarded for possible future default of protection
seller, he/she wants to pay less premium for the protection. In that case lower
premium implies lower default probabilities and thus lower CVA.

its own activities by issuing zero-coupon bonds through the US Treasury,U.S. Treasury Refcorp
Strips. These bonds have the same credit risk as Treasury bonds, but they do not enjoy the
same liquidity as Treasury bonds. (source: http://financial-dictionary.thefreedictionary.com/)
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11. Interest Rate Swap Spread:
Adjusted to Counterparty Risk
Up to now, we have been dealing with more or less only testing of the theory on
the market data. Now we are focusing on one practical question that can arise
in front of all types of the professionals dealing with interest rate derivatives,
particularly with the interest rate swaps. What is a fair fixed rate that makes
an interest rate swap contract fair, under consideration of a counterparty default
risk? We are creating an artificial1 interest rate swap contract between the Czech
National Bank and the Greek National Bank. These two banks are stating as two
counterparties in this contract. From our data set, we have used before, we have
almost everything that we need for the calculation, except default probabilities
of Czech Republic. We have derived these probabilities from CDS quotes in the
same manner as we did it in Section 9.4 for Greek default probabilities. The
following Chart 11.1 is comparing ten years default probabilities of Greece and
Czech Republic.
Risk neutral default probabilities around 20% in December 2010 for Czech Re-
public are higher as one would expect, even if we take into consideration the
Remark 8.1.5. Unfortunately, we have not found any academic paper about im-
plied risk neutral default probabilities of Czech Republic, so we can not directly
compare our results. But from the study that we have already mentioned, Eu-
ropean Liquidity Review(2008) [26] follows that e.g. 10 year default probability
of Italy is 29.1%, of France 14.3% (recovery rate 40%). In the context of other
countries from Europe Region, 20% for 10 year Czech default probability seems
to be reasonable2. For more details about the Czech default probabilities see
Appendix B and Tables B.4 and B.3 and Chart C.3.

Figure 11.1: Development of 10 Years Greek and Czech Default Probabilities

Note: used swap curve for discounting

1We are not aware that such swap actually exists so we considered it as something created
just for computation purposes

2Computation of Czech default probabilities was done with the same VBA program as
for Greece and as we have already mentioned Greece risk neutral default probabilities are
completely in line with other sources. It implies that there should not be any systematic error
in our computation.
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We divide this section into two parts. In the first one, we are assuming just
the unilateral default risk (Section 5.3.1), once for Czech Republic and once for
Greece as an investor. In the second part we are dealing with more realistic
situation, with the bilateral default risk from Section 5.3.2.

11.1 Unilateral Credit Risk
From Section 5.3 we know how to compute the price of interest rate swap with
one defaultable counterparty. It is a default free price of IRS minus CVA, where
for IRS it is defined as the sum of swaptions on IRS spread weighted(assumption
of independence of default and interest rate) by risk neutral default probabilities.
Here, we are computing CVA for one theoretical IRS and deriving knew implied
"fair" interest rate spread. Assumption about the contract on which one default-
able counterparty participates and one default free entity is mostly used when
there is a big difference in the credit quality of participated entities. This can be
the case of our two participants mainly in year 2010, as follows from Chart 11.1.
Our imaginary swap can be between the the National Bank of Greece(GNB) and
the Czech National Bank(CNB). We compute CVA for two cases; firstly, we are
assuming that CNB is default free, Case I on the Picture 11.2, and the second case
is when GNB is paying fixed rate and we computes CVA from its prospective, so
we assume that it is default free3, Case II on the Picture 11.2. Even though that
both these assumptions, especially the second one, look not realistic we are using
it to demonstrate the effect of different default probabilities term structure on
fair swap price. For both of these cases we are assuming that default free entity
is paying a fixed interest rate.

Swap Specification
Default free entity is paying the fixed interest rate semiannually against six month
LIBOR rate that is also payed semiannually and in the same time-grids, so there
is no time lag between these two payments. Maturities of the swap are 3,5,7 and
10 years.
We compute the new fair fixed rate that contains a reward for the possible default
of a counterparty. We use already shown formulas from Chapter 3.6 for swap
rate that makes the contract value equal to zero at the date of inception. We are
considering different maturities of such swap, to demonstrate sensitivity of CVA
on contract duration. We recall 5.3.1 for defaultable swap price.

IRSD(t) = IRS(t)− LGD ×OptionPart (11.0)

where

OptionPart ≈
m∑
i=1

P̃[δ ∈ (Ti−1, Ti)]PayerSwaptiont(Ti, Tm, κ, σTi , κ(t, Ti, Tm))}

3this is so unrealistic assumption that reader can imagine in this case that a counterparty
that is paying to Czech Republic fixed rate is e.g. Germany instead. We just did not want to
confuse reader with another country.
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Figure 11.2: Interest Rate Swap

We are using the same LGD value (LGD = 0.46 = 1 − RecoveryV alue)
estimated from historical data. For valuation of the swaption we use formula
Black’s3.13. All input parameters are known. Forward swap rates that are re-
quired as inputs are known since we have spot swap rates. The second required
input is a volatility that we have estimated from time series of spot rates. We
have estimated the volatility for different maturities of swaptions by standard
method that is described e.g. in Hull(2002) [13]4Chapter 17. The average of
unbiased estimates through the all maturities is 37% and this constant is used in
the valuation of swaption by Black’s model.

Remark 11.1.1. We are dealing here with interest rate swap paying both legs
semiannually, but the standard swap on the European market is paying the floating
leg semiannually and the fixed leg annually. So there is not the same number of
payments during the contract validity. Frequency of payments would also be one
of the factor affecting the CVA and BVA, respectively.

We implement the formula 11.1 for CDS in to the VBA code. We are comput-
ing fair swap fixed rates for each trading day from 5/11/2008 to 6/12/2010. For
each of these days, firstly we compute default free swap spread and then through
CVA we derive adjusted fixed swap rates for default possibility of counterpar-
ty(further just adjusted swap rate). For each day we compute a corresponding
CVA for a given swap, then we know that the price of such a swap is a default free
swap price minus CVA. As we mentioned couple of times swap value should be at
the day of inception equal to zero, thus by using the formula 3.8 we get implied,
credit risk adjusted, swap rate. We are repeating this procedure for a swap with

4We have computed the unbiased estimate σ2
n = 1

n−1

∑n
i=1(ui−µu)2 where ui = ri−ri−1

ri−1
and

µu = 1
n

∑n
i=1 ui, ri, i = 1, ... is spot rate time series. From daily volatility we have converted it

to year volatility σyear = σday

√
252,
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Table 11.1: Unilateral Credit Risk Effect on Fixed Swap Rate
Period

Default Free from 05/11/2008 to 31/12/2009
Swap Spread Maturity Survival Probability Spread(in BPS)

2.331% 3Y 90.78% -2.15
2.887% 5Y 83.40% -5.18
3.230% 7Y 77.54% -8.72
3.518% 10Y 69.96% -13.86

from 01/01/2010 to 06/12/2010
1.689% 3Y 65.68% -8.30
2.207% 5Y 53.68% -14.48
2.595% 7Y 44.29% -20.60
2.974% 10Y 35.59% -28.67

Note: Values presented in this table are computed as averages of given variables, for
corresponding time periods. Default Free Swap Fixed Rate is computed without any
exposure to default risk. Survival probabilities represent a probability of survival until
the swap maturity. Spread is computed as a Risk Adjusted Rate - Default Free Rate
and is given in basis percentage point unit. Negative spread implies that the adjusted

rate is lower than the default free rate.

different maturities to see if and how the duration of the contract affects CVA
and consequently the adjusted swap rate. Intuitively, we are are expecting that
during periods with higher default probabilities and also with a longer duration of
the contract, swap rate, that contains adjustment for a default risk, is decreasing.
It is decreasing because the investor(fixed leg payer) wants to be rewarded for
the higher risk of unfulfilled obligations from the contract.
Firstly, we are assuming that CNB is paying a fixed rate, so it is default free.
We are making our analysis separately for the period before year 2010 and for
the period from the beginning of 2010. This separation helps us to better under-
stand the influence of different default probabilities term structure on the CVA
for swaps and subsequently on fair fixed rates. Outputs from our model are in
Table 11.1.

We see that the differences, caused by the credit risk of Greece are relative-
ly small. They are basis points under the default free rates. It is more or less
expectable, since there is no face value that is interchanges between the counter-
parties, so the possible loss is much smaller than e.g. the for bonds. To compare
our results we found just one article Brigo and Masseti(2005)[10] where similar
analysis was presented, but with closely unspecified swaps. Their results are
presented in Table 11.2.

We do not have all information about parameters used for spreads calculation
in Table 11.2, so we can not exactly say the reason of minor differences between
our results and theirs. We see that our results are mostly inline, except of the
10 year swap with survival probability 53 % and spread 12.26BPS. From the
last row of our Table 11.1 we perhaps can say that our model slightly overpricing
the credit risk. Unfortunately, without more detailed information we can not
conclude anything or determined which factor caused it.

Now we compute the fixed rate adjustment for case in which is the GNB
paying fixed rate and want to be rewarded for default exposure of CNB. The
situation is that GNB wants to step into the swap contract with CNB and wants
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Table 11.2: Results from Brigo and Masseti(2005)[10]
Default Free as at 10/03/2004

Swap Fixed Rate Maturity Survival Probability Spread(in BPS)
3.249% 5Y 96.380% -0.51
4.074% 10Y 89.310% -2.16
3.249% 5Y 88.570% -1.80
4.074% 10Y 75.270% -5.80
3.249% 5Y 74.780% -4.25
4.074% 10Y 53.420% -12.26

Note: Results are from Brigo and Masseti(2005)[10], computed at 10th March 2004 with
flat volatility 15%. There are missing information about LGD used and about payment
frequency

Table 11.3: Unilateral Credit Risk Effect on Fixed Swap Rate
Period

Default Free 05/11/2008 31/12/2009
Swap Spread Maturity Survival Probability Spread(in BPS)

2.331% 3Y 92.184% -1.74
2.887% 5Y 85.909% -4.30
3.230% 7Y 81.142% -7.20
3.518% 10Y 74.495% -11.49

01/01/2010 06/12/2010
1.689% 3Y 95.185% -1.09
2.207% 5Y 90.830% -2.78
2.595% 7Y 86.866% -4.98
2.974% 10Y 80.871% -8.67

Note: Values presented in this table are computed as averages of given variables, for
corresponding time periods. Default Free Swap Spread is computed without any

exposure to default risk. Survival probabilities represent a probability of survival until
the swap maturity. Spread is computed as Risk Adjusted Rate - Default Free Rate

and is given in basis percentage point unit. Negative spread implies that adjusted rate
is lower than default free rate.

to know the adjustment to fixed rate.
We clearly see that according to the expectation, if GNB wants to enter in to

the swap contract with CNB the adjustment for fixed swap rate is much small-
er than the adjustment for CNB. It is implied by the default probability term
structures of both countries. Following chart compares adjusted rates for both
cases.

It is obvious that such assumption about just one defaultable counterparty
is not realistic. The biggest disadvantage of this approach is that it is certainly
expensive for the defaultable counterparty. Because investor is exposed(mostly)
to default risk as well and this fact can decrease the price of the instrument for
the counterparty as well. We are dealing with such a situation in the following
section.
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Figure 11.3: 10 Year Fixed Swap Rates for CNB and GNB

Adjusted rate from Czech default risk is the fixed rate that is paid by GNB and
Adjusted rate from Greek default risk is the fixed rate that is paid by CNB.

11.2 Bilateral Credit Risk
In this section we are assuming same conditions and setup as in previous section.
One thing that is different is that both parties are facing the default risk. From
Section 5.3.2 we know how to price this risk and let us recall the formula for the
bilateral default risk for the interest rate swap.

IRSBD(t) = IRS(t) +DV A− CV A (11.0)

DV A ≈
m∑
i=1

LGD1

(
P̃[Ti−1 < δ1 ≤ Ti, Ti < δ2 ≤ Tm] + P̃[ Ti−1 < δ1 ≤ Ti, δ2 > Tm]

)
× ReceiverSwaptiont(Ti, Tm, κ, σTi,Tb)}

CV A ≈
m∑
i=1

LGD2

(
P̃[Ti−1 < δ2 ≤ Ti, Ti < δ1 ≤ Tm] + P̃[ Ti−1 < δ2 ≤ Ti, δ1 > Tm]

)
× PayerSwaptiont(Ti, Tm, κ, σTi,Tb)}

Indexes 1 and 2 denote the investor and the counterparty, respectively. For the
sake of simplicity, we are using same LGD = 0.46 for both participants. Ad-
justment that is made about the swap price can be positive or negative, as it
has been already mentioned. From the investor’s perspective, who pays a fixed
rate, it is negative if the counterparty is more risky than the investor itself and
it is positive if investor is more risky than the counterparty. As follows from IRS
formula in a bilateral case we have to deal with a joint default distribution. So we
need to incorporate into our valuation process the dependence between default
probabilities of both banks/states. It would be not very realistic to assume that
the probability of Greek default is totally independent from the Czech default
probabilities and contrary. Today’s mathematical finance especially with connec-
tion to CDO’s has a great interest in the dependence structure between default
events. We use one of the most elegant and straight forward method to use,
Gaussian copula. This structure helps us to make one joint distribution from our
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two marginal distributions. Copula5 approach is very useful when we need firstly
to analyze and work with the marginal distributions separately and then when
we need to incorporate their dependence structure in the relatively transparent
manners. We are following here Li(2000) [17] one of the most famous and also
most discussed working paper about using copulas in finance, more precisely in
default correlation topic. For an introduction to copula theory see Nelsen(2006)
[21]. The key theorem, Sklar’s Theorem is telling us that for a given joint dis-
tribution and marginals distribution respectively exists a copula that binds these
marginal distributions into one joint distribution. To see the original text we re-
fer to original work Sklar(1959) [25]. The above statement is just freely speaking
and does not claim to be complete or mathematically rigorous, We use it just to
shortly present main idea of the copula theory. We have two entities to "bind"
together so we need to deal with bivariate case of copula. More precisely, we
are dealing with bivariate Gaussian copula. First we introduce general copula
function and then follows Gaussian copula.

Definition 11.2.1. A function C:[0, 1]I → [0, 1] is a Copula function if there are
uniform random variables U1, . . . , UI taking values in [0, 1] such that C is their
joint distribution.

The copula C is a joint distribution of marginal random variables U1, . . . , UI .
In our case it is enough to have I=2. It can be easily shown that for marginal
distribution function F1, F2, the function

F (x1, x2) = C(F1(x1), F2(x2)) , x1, x2 ∈ R (11.-4)

defines a multivariate distribution function with marginals F1, F2

Definition 11.2.2. Bivariate Gaussian Copula: let R be a positive symmetric
matrix with main diagonal consists from 1 and ΦR be the standardize multivariate
normal distribution with correlation matrix R, then Bivariate Gaussian Copula
is defined as follows

C(u1, u2, R) = ΦR(Φ−1(u1),Φ−1(u2))

where Φ−1(u) denote the inverse of the normal cumulative distribution function.

In our case u1, u2 are representing default probabilities. Third input parameter
to copula is correlation matrix as we see in copula definition. This matrix is
reducing, in two dimensional case, to estimation of the one element of this matrix,
since it contains four elements from which just one is unknown; two of them are
ones(on main diagonal) and two of them are identical correlation coefficients,
from symmetry. Estimation of the default correlation between two countries is
another really wide and complicated topic. It is also hard to find the references
to use already estimated results. New regulatory principles for bank institutions
Basel III [2], propose to increase current6 default correlation range 12%− 24% to

5from the Latin for ’join’.
6by current we mean Basel II
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15%− 30% for big financial institutions that have asset in the value at least 100
billions US dollars. We use this number as a hint and since we are assuming even
bigger entities, we consider the upper bound plus 10 %. Correlation on the level of
40% seems as reasonable value for our calculation. In article Chen et al.(2011) [28]
they are dealing with correlation within South America countries. They estimated
default correlation coefficients 7between Argentina, Brazil, Mexico, Venezuela and
they vary from 0.2 to almost 0.9. Of course these results tell us almost nothing
since these countries are in totally different environment but we see that our hint
value 40%, is more less somewhere in these bounds. From the previous definition
easily follows that by using copula, we compute the probability as follows,

P̃[Ti−1 < δ1 ≤ Ti, δ2 > Tm] = P̃[δ1 ≤ Ti]−P̃[δ1 ≤ Ti−1]−C(p1,i, p2,m)+C(p1,i−1,p2,m)

where
pj,i = P̃[δj ≤ Ti], for j = 1, 2

By this way we reach the point where each needed probability is known straight
forward from our default probabilities term structures or is relatively easily com-
putable by using copula. We are aware that the issue of dependence structure is
much more complicated and certainly can be the key factor of further improve-
ment of this approach to quantify the default component for financial derivatives.
Here we are using such simplified approach just because of the limited scope of
this work.
With increasing maturity the dependence structure is having higher and higher
impact on the joint default probabilities. Longer time interval gives more op-
portunities to bankrupt together. To demonstrate the impact of dependence we
draw joint default probabilities for independent case and for correlated case, see
Chart 11.4.
In Table 11.4 we are presenting comparison of CVA in the case of unilateral
credit risk with the adjustment(DVA-CVA) computed in case of bilateral credit
risk. Here, it is computed for the case when CNB is paying fixed rate to GNB. We
are observing the high decrease of fixed rate because of BVA during the period
before year 2010. Comparing the difference between default free fixed rate and
"unilaterally" adjusted fixed to the difference between the default free fixed and
"bilaterally" adjusted fixed rate we see the decrease about 50% e.g. from almost
13 bps in unilateral case to 6 bps in bilateral case(for ten year swap).
During the Greek Crisis when the difference between ten year default probability
of Czech Republic and Greece was on average around 60% (see Figure 11.1) the
incorporation of Czech credit exposure into the fixed rate has the minor impact,
from 28,5 to 27,6 bps(for 10 year swap). This support our consideration from
previous section that the assumption about just one defaultable counterparty is
appropriate, when there is a big difference in credit quality of contract participants
and can serves as a good upper bound estimation of swap rate.

From the development of 10 year default probabilities from Figure11.1 we
would expect that at the end of 2008 and the beginning 2009 the fixed rate that
CNB is paying should be higher than the default free rate(BVA is positive ), or at
least is closer to the rate(BVA is close to zero) that does not contain any default

7they used Pearson’s correlation coefficient that is defined as the covariance of the two
variables divided by the product of their standard deviations
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Figure 11.4: Joint Default Probability of Greek and Czech Republic

Joint default probability of Czech Republic and Greece computed on 30/12/2009 by
using Gaussian Copula with correlation 0.5(red line) and computed as two

independent events(blue line). It represents the joint default probability that both
Greece and Czech Republic default before time i where i is number of months on the

horizontal axis.

Table 11.4: Unilateral Credit Risk Versus Bilateral Credit Risk
Maturity Default Free CVA DVA-CVA

Swap Rate in BSP in BSP
Period from 05/11/2008 to 30/12/2009

3 Y 2.33% -2.15 -1.23
5 Y 2.89% -5.18 -3.49
7 Y 3.23% -8.72 -6.26
10 Y 3.52% -13.86 -10.16

Period from 04/01/2010 to 06/12/2010
3 Y 1.69% -8.30 -6.82
5 Y 2.21% -14.48 -13.18
7 Y 2.60% -20.60 -19.24
10 Y 2.97% -28.67 -27.18

Note: third and last column are presenting differences between default free fixed rates
and rates adjusted by unilateral and bilateral credit credit risk. CVA is computed as
in first case for Czech Republic paying fixed rate and in same for same case is BVA.

Difference values are in BPS. Values are computes as averages for given period.
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risk. It is because GNB wants to be rewarded for higher credit risk on the side
of CNB. In Figure 11.5 we clearly see that bilateral DVA is higher than bilateral
CVA at the beginning of year 2009, this implies that the difference adjusted rate
- default free rate is positive or close to zero. It also needs to be emphasize that
bilateral adjustments are also affected by forward swap rates that are inputs to
Black’s model. So there is no straight forward implication that if one company
has higher default risk than another, adjustment has be positive or negative,
respectively.

Figure 11.5: Bilateral Credit Risk Fixed Rate Adjustment

Here is presented the difference computed as Bilateral Risk Adjusted Spread-Default
Free Spread. Positive numbers indicate that entity that is paying fixed rate is exposed

to higher default risk than its counterparty.

We have computed also differences for three options for the correlation coef-
ficient, that is a driving parameter of dependence in copula. As we see in the

Table 11.5: Comparison of different input correlation parameters ρ = 0.1, 0.6, 0.8

Correlation Variants
Maturity Default Free CVA BVA(ρ = 40%)

Swap Rate in BSP in BSP 0.1 0.3 0.8
Period from 05/11/2008 to 30/12/2009

3 Y 2.33% -2.15 -1.23 -1.31 -1.15 -3.21
5 Y 2.89% -5.18 -3.49 -3.75 -3.27 -9.25
7 Y 3.23% -8.72 -6.26 -6.74 -5.88 -16.40
10 Y 3.52% -13.86 -10.16 -10.93 -9.59 -25.78

Period from 04/01/2010 to 06/12/2010
3 Y 1.69% -8.30 -6.82 -6.90 -6.80 -7.81
5 Y 2.21% -14.48 -13.18 -13.27 -13.21 -13.26
7 Y 2.60% -20.60 -19.24 -19.31 -19.37 -17.34
10 Y 2.97% -28.67 -27.18 -27.12 -27.49 -21.04

Note: we compare here the effect of the change in the correlation coefficient from used
40% to another values.

Table 11.5 also the default correlation coefficient, as an input to copula function,
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has significant effect on fair fixed swap rate. This input seems to be one of the
key factors that needs to be determined and studied properly.
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12. Conclusion
In this work we went through a valuation process of defaultable financial instru-
ments represented by a risk neutral valuation concept, from the very beginning,
to the practical application of CVA and BVA framework Chapter 7 on a real mar-
ket data in Chapter 9. In the theoretical part it turns out how many assumptions
and approximations need to be done on the way to derive computable formulas
for quantification of a default risk. The most discussed and used approximation
is about the possible default times. This approximation was crucial during the
bootstrap process from CDS’s. For each of our formulas, from the summary table
7.1, we assume that a credit event can only occur on a finite number of discrete
points per year, in our case 12 points are representing 12 months. For the boot-
strap of risk neutral default probabilities and also for the formulas for defaultable
cases, for each type of the introduced contract, one of the essential input param-
eter is LGD ratio. We have estimated the recovery rate and subsequently LGD
ratio from historical data. We have used data about state bankruptcies of 12
countries, because in the practical part we are dealing with government bonds
and interest rate swaps between two countries. We have estimated LGD ratio of
46% from the data used in the table 8.1.
In the practical part, firstly, we are estimating implied risk neutral default prob-
abilities of Greece and also of Czech Republic. As it was expected almost 80%
10-year Greek risk neutral default probability follows from the CDS quotes in
May 2010. Slightly unexpected was the 10 year implied risk neutral default prob-
ability of Czech Republic that is around 20 % in December 2010. Even thought
the risk neutral default probabilities are not reflecting real expectations of mar-
ket participants about the real default of Czech Republic, as it is explained in
Remark 8.1.5, we have not expected such high values.
After the estimation of the whole probability term structure for both countries,
we have started to study how a defaultable coupon bond formula is incorporating
and covering the credit risk of Greek government bonds quoted on the market.
We have tested it on 18 coupon bonds issued by Greece by using two risk free
curves; a swap curve and a treasury curve to obtain some level of robustness.
From our computations in Chapter 10 follows that approximately 75% of spread
between the risk free bonds and the risky bonds(in this particular case Greek
bonds) can be the consequence of credit risk. By using the swap curve as a
benchmark curve, our results were even slightly higher than 75 percent, since the
swap curve already contains some credit risk component coming from LIBOR.
We were witnesses to the situation, when the credit risk implied by our formulas
had overestimated the real market price of a default risk, table 10.1 and 10.2,
represented by the difference between the risk free price and the market price of
bonds. Perhaps this was another effect of having credit risk included in the swap
curve.
In the very last section, we have constructed an artificial interest rate swap be-
tween Czech Republic and Greece. We have used the theory for IRS for default
free case Section 3.3 and defaultable case Section 5.3 and computed a fixed leg
payment rate that includes default exposure of the counterparty . We were con-
sidering both types of credit risk; unilateral and bilateral.
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In the case of unilateral risk, difference between the default free fixed swap rate
and the rate that already contains default risk(of Greece) was in basis points. It
varies from one to almost thirty basis points on average. As we have expected,
CVA while considering the Greek default exposure, see table 11.1, is higher than
in the case of the Czech exposure to the default, see table 11.3. Later on, when
Greece is computing unilateral CVA from its own perspective against Czech Re-
public, the adjustment varies from two to nine basis points on average.
For the bilateral risk consideration, we had to use a copula function to compute
joint default probabilities of both countries. Bilateral case is more realistic, since
not just Czech Republic wants to pay less in IRS because of the Greek bad credit
quality. After the incorporation of Czech default exposure through BVA, the ad-
justed fixed rate differs from the default free fixed rate in the range from one to
twenty seven basis points. The reduction in the value of BVA in comparison to
CVA happened because of both entities default exposure. The difference between
the unilateral CVA and BVA is greater during the periods, when both partici-
pants have a stable and similar level of risk neutral default probabilities. During
the period when participants on the contract differ in credit quality significantly
the incorporation of bilateral adjustment has not such high impact, in comparison
to incorporation just unilateral adjustment.

As a possible improvement of our computations in this thesis can be, definite-
ly, a deeper investigation of the recovery rates and an incorporation of another
methods to represent them. The second thing that definitely can improve quan-
tification of the bilateral default risk, is an incorporation of more sophisticated
structures into the valuation of joint default probabilities. As we have already
mentioned, dependence structure issue is vigorously discussed in practice and al-
so in the academic sphere. It would be also interesting to investigate effects of
incorporation of protection seller’s and protection buyer’s default risk exposure
into the price of CDS and consequently the effect on implied risk neutral default
probabilities.
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A. Descriptive Statistics of Used
Data and Parameters Estimations

Table A.1: Summary of basic treasury yields’ statistical properties from
5/11/2008 to 2/12/2010(in total 531 trading days)

Months to Yield Range
maturity Mean Standard Deviation Min Max

1 0.672% 0.628% 0.133% 3.973%
3 0.628% 0.525% 0.130% 2.742%
6 0.703% 0.502% 0.160% 2.778%
9 0.766% 0.454% 0.322% 2.755%
12 0.856% 0.424% 0.354% 2.698%
24 1.167% 0.409% 0.407% 2.510%
36 1.490% 0.461% 0.586% 3.030%
48 1.872% 0.477% 0.917% 3.240%
60 2.136% 0.421% 1.198% 3.084%
72 2.414% 0.421% 1.492% 3.365%
84 2.639% 0.418% 1.675% 3.573%
96 2.826% 0.401% 1.860% 3.734%
108 2.940% 0.375% 2.005% 3.753%
120 3.041% 0.368% 2.109% 3.771%
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Table A.2: Summary of basic statistical properties of swap rates(from 5/11/2008
to 2/12/2010(in total 577 trading days))

Months to Yield Range
maturity Mean Standard Deviation Min Max

1 0.869% 0.836% 0.296% 4.611%
2 0.991% 0.862% 0.371% 4.696%
3 1.154% 0.835% 0.428% 4.410%
6 1.387% 0.729% 0.767% 4.201%
9 1.420% 0.644% 0.783% 3.832%
12 1.420% 0.569% 0.869% 3.483%
15 1.468% 0.529% 0.902% 3.394%
18 1.526% 0.504% 0.929% 3.362%
21 1.627% 0.480% 1.039% 3.377%
24 1.761% 0.450% 1.187% 3.433%
27 1.868% 0.437% 1.263% 3.488%
30 1.951% 0.437% 1.297% 3.533%
33 2.023% 0.441% 1.363% 3.574%
36 2.092% 0.445% 1.393% 3.613%
39 2.163% 0.446% 1.391% 3.652%
42 2.234% 0.445% 1.427% 3.690%
45 2.305% 0.441% 1.484% 3.724%
48 2.373% 0.438% 1.532% 3.757%
51 2.438% 0.434% 1.578% 3.790%
54 2.500% 0.430% 1.623% 3.819%
57 2.560% 0.426% 1.667% 3.848%
60 2.618% 0.423% 1.711% 3.876%
63 2.674% 0.420% 1.755% 3.903%
66 2.728% 0.417% 1.800% 3.928%
69 2.781% 0.414% 1.842% 3.955%
72 2.832% 0.411% 1.884% 3.983%
75 2.881% 0.408% 1.922% 4.014%
78 2.928% 0.406% 1.959% 4.041%
81 2.973% 0.403% 1.996% 4.071%
84 3.016% 0.401% 2.032% 4.101%
87 3.058% 0.399% 2.066% 4.128%
90 3.097% 0.398% 2.099% 4.155%
93 3.135% 0.396% 2.132% 4.180%
96 3.172% 0.395% 2.164% 4.205%

102 3.240% 0.392% 2.223% 4.252%
108 3.304% 0.391% 2.277% 4.300%
114 3.364% 0.390% 2.329% 4.349%
120 3.422% 0.389% 2.377% 4.394%
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Table A.3: Basic Properties of Nelson Siegel Interpolation Parameters for Swap
Curve

Range
Mean Standard deviation Min Max

Beta1 4.365 0.327 3.199 4.985
Beta2 -2.559 1.346 -4.312 5.009
Beta3 -3.763 1.408 -7.258 0.000
Beta4 -3.364 1.935 -15.648 -0.396

Gamma1 18.785 5.902 6.380 30.000
Gamma2 0.529 0.184 0.026 1.105

Note: The graph shows estimation of Nelson Siegel curve parameters interpolation
model. RHS stands for Right Hand Side axis and LHS stands for Left Hand Side Axis
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Table A.4: Basic Properties of Nelson Siegel Interpolation Parameters for Trea-
sury Curve

Range
Mean Standard Deviation Min Max

Beta1 4.241 0.310 3.468 4.85791
Beta2 -3.289 0.797 -4.878 -0.799
Beta3 -4.101 1.587 -7.393 0.01912
Beta4 -0.541 3.617 -5.595 30

Gamma1 19.338 3.745 13.259 30
Gamma2 1.040 0.998 0.028 8.48653

Note: The graph shows estimation of Nelson Siegel curve parameters interpolation
model. RHS stands for Right Hand Side axis and LHS stands for Left Hand Side Axis
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B. Computed Hazard Rates and
Default Probabilities

Table B.1: Summary of Greek Hazard Rates and Default Probabilities: treasury
curve used for discounting

Hazard Rate
Maturity Mean Standard Deviation Min Max

6 4.17% 3.65% 0.50% 13.32%
12 4.17% 3.67% 0.50% 13.34%
24 8.22% 6.66% 1.52% 23.32%
36 8.06% 6.20% 2.06% 23.03%
48 7.46% 4.72% 2.44% 19.17%
60 6.92% 3.86% 1.00% 17.83%
84 13.57% 8.69% 3.90% 33.96%

120 16.92% 9.60% 5.33% 43.47%

Default Probability
Maturity Mean Standard Deviation Min Max

6 4.02% 3.46% 0.50% 12.47%
12 7.76% 6.56% 0.99% 23.40%
24 14.47% 11.28% 2.49% 39.22%
36 20.34% 14.64% 4.48% 50.04%
48 25.37% 16.53% 6.78% 57.06%
60 29.76% 17.54% 9.26% 63.88%
84 37.18% 19.63% 13.13% 74.02%

120 45.26% 20.50% 17.64% 82.34%
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Table B.2: Summary of Greek Hazard Rates and Greek Default Probabilities:
swap curve used for discounting

Hazard Rate
Maturity Mean Standard Deviation Min Max

6 4.17% 3.65% 0.50% 13.32%
12 4.17% 3.67% 0.50% 13.33%
24 8.22% 6.66% 1.52% 23.29%
36 8.06% 6.20% 2.07% 23.05%
48 7.45% 4.71% 2.45% 19.15%
60 6.91% 3.84% 0.88% 17.79%
84 13.55% 8.66% 3.90% 33.89%

120 16.86% 9.55% 5.32% 43.30%

Default Probabilitie
Maturity Mean Standard Deviation Min Max

6 4.02% 3.46% 0.50% 12.47%
12 7.76% 6.56% 0.99% 23.39%
24 14.47% 11.28% 2.49% 39.19%
36 20.34% 14.64% 4.49% 49.99%
48 25.37% 16.52% 6.79% 56.97%
60 29.76% 17.52% 9.27% 63.85%
84 37.17% 19.60% 13.15% 73.97%

120 45.23% 20.48% 17.65% 82.28%

Table B.3: Summary of Czech Hazard Rates: swap curve used for discounting

Average Standard Range
Maturity (months) Deviation Min Max

6 0.755% 0.630% 0.163% 3.079%
12 0.927% 0.623% 0.316% 3.172%
24 2.290% 1.276% 0.870% 6.807%
36 2.785% 1.340% 1.423% 8.433%
48 2.988% 1.422% 1.430% 9.396%
60 3.100% 1.274% 9.099% 1.668%
84 5.257% 1.901% 3.060% 13.027%
120 8.104% 2.497% 5.135% 18.696%

Table B.4: Summary of Czech Default Probabilities: swap curve used for dis-
counting

Average Standard Range
Maturity (months) Deviation Min Max

6 0.750% 0.622% 0.000% 3.032%
12 1.660% 1.217% 0.478% 6.060%
24 3.864% 2.364% 1.512% 12.078%
36 6.467% 3.459% 2.903% 18.300%
48 9.165% 4.514% 4.281% 25.627%
60 11.877% 5.359% 32.095% 5.864%
84 16.282% 6.447% 8.701% 40.389%
120 22.635% 7.529% 13.271% 50.554%
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C. Charts

Figure C.1: Greek Default Probability Term Structure with Corresponding Haz-
ard Rate Term Ttruture

Note:here is used treasury swap curve as a benchmark curve. These two pictures are
showing risk neutral default probability term structure and corresponding hazard rates
as implied by the model
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Figure C.2: Development of Greek Cumulative Default Probabilities

Implied cumulative risk neutral default probabilities for maturities from 6 months to 10
year. Recovery rate is 54% and swap curve is used as a benchmark default free curve,
in this case

Figure C.3: Development of Czech Cumulative Default Probabilities

Implied cumulative risk neutral default probabilities for maturities from 6 months to 10
year. Recovery rate is 54% and swap curve is used as a benchmark default free curve,
in this case
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