
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Marek Hanes

MS SQL Application Development Framework

Department of Software Engineering

Thesis supervisor: RNDr. Michal Kopecký, Ph.D.

Study programme: Informatics

Specialization: Database systems

Prague 2011

I would like to thank my family and my friends for the support during my
studies and to thank my supervisor. His advices and support have been invalu-
able.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague date 5.8.2011 Signature

Název práce: Nástroje pro vývoj MS SQL aplikaćı
Autor: Bc. Marek Hanes
Katedra / Ústav: Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: RNDr. Michal Kopecký, Ph.D.

Abstrakt: Tato práce pojednává o vývoji databázových aplikaćı a snaž́ı se naj́ıt
možnosti zefektivněńı nejčasteǰśıch problémů. Ćılem práce je návrh a imple-
mentace modulárńıch nástroj̊u, které zjednodušuj́ı vývoj databázových aplikaćı
a zabraňuj́ı nezkušeným uživatel̊um použit́ı nebezpečných SQL př́ıkaz̊u nebo
výraz̊u. Př́ıkladem mohou býti insert př́ıkazy bez seznamu sloupc̊u, nebezpečné
XPath výrazy a tak dále. Nástroje mimo jiné umožňuj́ı

• manipulaci s historickými tabulkami umožnuj́ıc verzováńı dat a vraceńı
nežádoućıch datových změn

• asynchronńı a paralelńı zpracováńı SQL př́ıkaz̊u, správu chyb a podporu
logováńı, monitorováńı změn schémat a též laděńı procedur a funkćı

Spolu s prostředky na manipulaci dat umožnuj́ı nástoje jednoduché zveřejněńı
uložených procedur v podobe webových služeb. Nástroje jsou doprovozeny pro-
gramátorskou a uživatelskou dokumentaćı umožňuj́ıćı daľśı vývoj.

Kĺıčová slova: vývoj aplikaćı, nástroje, modulárńı design, bezpečné výrazy, omezeńı

Title: MS SQL Application Development Framework
Author: Bc. Marek Hanes
Department: Department of Software Engineering
Supervisor: RNDr. Michal Kopecký, Ph.D.
Supervisor’s e-mail address: kopecky@ksi.mff.cuni.cz

Abstract: The thesis deals with a database application development and tries
to find ways to optimize the most common problems encountered. The goal
of this thesis is to design and develop a modular framework that simplifies the
database application development and prevents inexperienced users from using
unsafe SQL statements and/or expressions. The example of such a statement can
be the insert statement without explicit column list, unsafe XPath expression, etc.
The framework provides among others

• manipulation with history tables allowing versioning of data and reverting
unwanted data changes

• asynchronous and parallel SQL execution support, error management and
logging support, monitoring of schema changes as well as procedure and
function debugging

Together with means of data manipulation, the framework provides the simple
way of publishing stored procedure as web service as well. The framework is
accompanied by well-written programmers and users guide to allow its further
development.

Keywords: application development, framework, modular design, safe statements,
constraints

Contents

1 Introduction 7

2 Analysis 9
2.1 New feature . 9
2.2 Interface . 10
2.3 Processing . 10
2.4 Testing . 11
2.5 Deployment . 11
2.6 Feature change request . 12
2.7 Redeployment . 12
2.8 Alternatives . 12

2.8.1 Do-It-Yourself approach 13
2.8.2 ORM . 13
2.8.3 Linq . 13
2.8.4 NoSQL . 14

2.9 Summary . 14

3 Specification 15
3.1 System roles and use cases . 15
3.2 Requirements . 16

3.2.1 Configuration . 17
3.2.2 Logging . 18
3.2.3 Object model . 19
3.2.4 Object model manipulation 20
3.2.5 Changeset manipulation 21
3.2.6 Standard library . 21
3.2.7 Database services . 22

3.3 Summary . 24

4 Design and implementation 25
4.1 Environment . 25
4.2 Log . 25
4.3 Libraries . 26
4.4 Object model . 26
4.5 Enhanced tables . 27
4.6 Contracts . 30
4.7 EndPoint . 30

5 Programmers documentation 31
5.1 Introduction . 31
5.2 Configuration and environment 31
5.3 Logging . 32
5.4 Patterns . 34
5.5 Object . 35
5.6 Building objects . 37

5

5.7 Custom objects . 38
5.8 Custom processor . 40
5.9 Building changeset . 40
5.10 Endpoint service model . 41
5.11 Workspace table editing . 41

6 Results 43
6.1 Effectivity . 44
6.2 Adoption process . 44

7 Conclusion 45

A User documentation 46
A.1 Introduction . 46
A.2 Glossary . 46
A.3 Demo . 47
A.4 Configuration . 48
A.5 Database objects . 50

A.5.1 Data types example . 51
A.5.2 Table example . 51
A.5.3 Procedure example . 51
A.5.4 Enhanced table example 52
A.5.5 Enhanced procedure example 53

A.6 Console . 54
A.7 Tools . 55

1. Introduction

Database systems are very interesting systems to deal with. There is much
progress in the field. Many commercial as well as free products contain many
new features every year. Nevertheless most senior database professionals only
use the core features, which have been in existence for 10 years and more. Ar-
guably these new features are buggy in first couple of releases and after this
period they may still exhibit performance issues. Whatever the reasons, the final
result is that many programmers use only limited subset of the query language
and engine features.

From the programmer’s point of view, the comfort of working with SQL
language is comparable to coding in C language without preprocessor. There
are many situations where performance reasons require programmer to duplicate
large sections of code. In larger system with 200 tables or more this can be very
confusing for inexperienced developers. Moreover this approach tends to make
maintenance of the code rather hard, as further changes in one SQL statement
need to be propagated to many equal or similar ones spread among the applica-
tion. There are ways to share common code using views and functions, but these
are static in their nature and do not have any context. Database engines allow
execution of procedural languages, which help with the tasks where SQL is just
impractical[1]. These must be properly and seamlessly interfaced with the rest of
the system, since switching from procedural to SQL code and back adds overhead
and complexity for developers.

Last, but not least, there is a security aspect. If database systems are to face
an attacker directly, vast majority of applications just ignores this issue. Database
is used by single account with full rights and there is no effort to provide an ability
to recover from the attack.

This thesis analyzes problems specifically in Microsoft SQL Server database
engine in versions 2005, 2008 and 2008 R2. The engine allows execution of .NET
2.0 assemblies which can be used for procedural code[11, 1]. Simply put, developer
just needs set of tools that create thin abstraction over system catalogue and
give him or her ability to enforce patterns and use code templates. It is the
author’s opinion that roughly 50% of the database code can be pre-generated or
permanently generated from system catalogue.

This thesis is based on pre-existing tools author used to manage database
code. There are several commercial tools available to handle development[4] and
deployment[3]. However, their integration has proven to be somewhat problem-
atic and the solution was far from ideal. These tools are not considered during
analysis phase since they solve only singular problems and are not suitable for
the goals of this thesis. Author has also incrementally developed SQL-based ad-
hoc toolchain to enhance development and deployment before, but the resulting
performance and overall design features were not satisfactory. Since no existing
acceptable solution was found, a new database framework had to be built to
address all previously detected issues.

The next chapters enlist most of the recognized problems, analyze them in
more detail and try to provide viable solution. Later on, author will design
structure which holds system catalogue data and additional developer metadata,

7

and providers methods to solve the problems in questions.
The chapter 2 covers initial thoughts about how the development process

should look like in ideal case. Negative restrictions are specified as well to clar-
ify the goals. Specification chapter then contains more detailed descriptions of
individual use cases and features. Following chapter named design and implemen-
tation covers the project layout and responsibilities of each library or utility. User
documentation and programmer documentation describe the project functional-
ity from the programmer’s and user’s points of view. Results chapter compares
the initial goals with the resulting implementation.

2. Analysis

Let’s put ourselves in the shoes of typical junior developer. This developer has
theoretical knowledge of the database workings, understand notions of tables,
views and procedures. He or she can write queries of different complexity and
interface the database with the next application layer. He or she has to face
several problems:

• problem to remember whole system catalogue, dependencies between ob-
jects and all constraints

• problem to follow naming rules and coding conventions

• problem to write complex queries, so that they will work outside happy day
scenario

• problem being not reliable and leaving code unfinished without reporting
what he or she omitted

• problem avoiding injected bugs through copy-pasting SQL code

The situation may seem very bad, but our junior is not alone. There are senior
developers, which can write more complex queries correctly and can keep the
system catalogue up to defined standards. However these persons are overworked
and so our main goal is to catch and precede majority of problems caused by
junior developer(s) and increase the productivity. This should be done either
automatically or manually, but certainly before they can manifest in production
environment. This chapter follows the flow of a new feature requirement in larger
system as it is processed, implemented and deployed. Then a feature change
request will modify the application since out improvised client changes his mind
frequently.

2.1 New feature

Let’s have a small example of a simple application feature and try to walk through
the development process in its ideal form. A client requires new register of in-
coming invoices. Each invoice may contain several items. Project will therefore
contain two new tables: invoice and invoice item. Following steps are re-
quired:

• creation of tables - either directly to the database or to the external metabase

• description - semantical meaning of each column and value restrictions

• completion - primary keys, unique constraints, foreign keys and other con-
straints need to be created according to the specification.

In majority of cases, the last step can be almost completely automatized. Pri-
mary keys can be placed automatically on identity columns. Unique constraints
can be placed automatically on column sets based on their metadata attributes.

9

Foreign key creation based on custom database scalar data types will be also
automatic. All we need is a standardized definition of table that holds enough
information to support these mechanisms. More on this is discussed in next
chapter.

2.2 Interface

Direct access to the tables is considered a bad practice for the purpose of this
example. The database need to contain stored procedures to list, create, update
or delete data in our invoice and invoice item tables.

Procedural interface should provide following features:

• strong-typed contracts

• logging

• security awareness

• integration and publishing

Interface contracts, defined in a shared place, will serve as safeguard of what
database can return and what application can expect. Contract should contain
named results, pre-defined data types, both for input and output. These meta-
data can be now used in many ways. The application can contain automatically
generated wrappers for the interface. Parts of database code can be pre-generated
according to the contract and further checked for compatibility. Nothing can
break without developers knowing about it. There is no direct access to the ta-
bles, so restricting usage of interface should provide sufficient security barrier.
Metadata can be used to provide automatic and detailed log of interface usage.
This can be later reviewed or replayed for debugging, or user behavior analy-
sis. In case application layer cannot access database directly, interface can be
automatically published as a webservice[12].

2.3 Processing

Developers now have to implement the application code and the database code.
Let’s assume that application code is compiled and not scripted. Developers use
compile->fix error approach, until project is consistent and runnable. The same
should be enforced for database code. System should force developer to write con-
sistent code, which obeys given contracts and is lexically and syntactically valid.
All this should be made locally before modifying the database, since database
may be shared with other developers.

In case the developer works in test-driven environment, situation can go even
further since his work is not finished until everything is checked out. Strong typed
interface should give a solid degree of stability and reduce developer’s mistakes to
a minimum. Written database code should be checked for unsafe or bad practices,
for example unsafe statements, bad procedural flow and invalid scope access. This
has one main purpose and that is partially substitute senior developer’s review
capability. Whole process has to be fast, so developer is encouraged to use the

system during every step of development and not only at the end for checking.
The goal is to detect errors early in the development phase and not in testing
phase.

2.4 Testing

Feature testing can be done by entirely different person, so there are few addi-
tional requirements for:

• merged event logging

• relevant and complete information

• readable presentation

Logging recognizes two types of events. User level actions (button clicks, ...)
or execution actions (procedure calls, ...). During a single user action, more than
one execution actions can be made and therefore more than one error can occur.
These action type logs can exist separately, however, by merging them together,
tester and developer gain the overall picture of what really happened during an
error. Log presentation should be unified and human readable. Simply put, in
whole stack trace, usually the most important part of data is the first file name
and line number of the user code.

The goal for a tester is not writing long or meaningful bug descriptions. Devel-
oper should recognize the source of the bug by consulting the log. Tester’s role is
to confirm use case functionality and stress the system to unspecified conditions.
Very important aspect is the reproducibility. Database-wise, with a support of
historical data, this can be achieved easily by reverting the data changes to a
point of failure.

Automated tests are not covered since their availability greatly depends on
scriptability of application layer and are usually not written directly against
database layer.

2.5 Deployment

Fully developed and tested code now needs to follow these steps:

• review with visualization

• merging and integration

• deployment

• smoke test

Responsible person, usually designated senior developer, needs to push the
feature to the production environment. Since final responsibility cannot be put to
junior developer, using a code review the senior transfers the blame for potentially
bad code onto himself or herself. Review therefore must be accompanied with
entire testing history and communication between developers and testers. Then

he or she can check for common weak spots and concentrate on problematic or
more discussed code parts. These parts are the most-likely suspects to contain
hidden bugs or problems.

Deployment usually concerns more than one feature. Merging them into pro-
duction code can result in inconsistent code. All these problems need to be fixed
and then automatically check against the same rules and restrictions as developer
follow. Let’s assume that integrity verification is sophisticated and for the most
cases the only remaining step before the deployment itself. The system should
enforce code quality to the point where only a integrity check and smoke test is
required to successfully deploy the application features.

2.6 Feature change request

Even though the client has approved application specification, when real data are
entered in our new tables, changes in schema could be required. In our example,
let’s say that entries stored in invoice item are still quite unstructured and
entered values need to be stored in more separate columns.

Only required step should be modifying metadata and supplying description
for the changes (ideally directly in the metadata). Since we changed table and
procedural interface definitions, whole compilation process should break auto-
matically. Appointed junior developer fixes compilation errors until application
and database code checks out.

The goal is to enforce occurrence of compilation and integrity errors for every
change in metadata in the largest scale possible. If the change in the database
structure will not cause any error in the application layer, the change could remain
unnoticed and the old code may work wrongly. Change request implementation
should only consist of fixing errors. In case of refactoring or more complex change,
this should be the killer feature of the whole framework - allowing any developer
to make changes into existing code without having previous experience with it.

2.7 Redeployment

Redeployment follows the same rules as deployment of a new feature, with the
exception of existing data. Database developers have to consider migrating ex-
isting data from an old to a new version of table structures. This is not always
easy and in extreme cases it has to be executed with no application downtime.

It is not a goal of this project to provide seamless data migration support,
however when needed, the framework should allow for this extension.

2.8 Alternatives

There are several frameworks available[4, 10], that try to eliminate problems of
development of database application. Most common problem being eliminated is
unnecessary duplication of similar code, mainly by pre-generating of procedures
from table definitions. Combined with the use of schema-binding[6], this provides
partial viable solution, but still rather limited.

2.8.1 Do-It-Yourself approach

This variant is then most common. Every common part of database code is
manually copied and every new project has to face same problems over and over.
This approach does not constrain the development part of the application life as
much as the maintenance part. Any changes in a long running and not actively
developed project are problematic and costly. Since none is really sure, whether
application would break or not, every small change usually requires significant
re-testing.

Main disadvantages are higher time requirements and occurrence of many
errors in linking application and database layer together.

2.8.2 ORM

In the end we cannot fundamentally change the nature of database engine. Table
data area just a table data, not objects, and we have to treat them that way.
Object abstractions can be used, but we cannot sacrifice our options.

Main problems with objects are:

• performance

• transaction processing

• versioning and data migration

• security

Especially in OLTP environment[16], table structure does not follow logical
object structure. Denormalisation and precomputing of statistical data are main
tools how to deal with performance requirements in multi-user databases. ORM
principle is not compatible with this approach and it suited better for smaller or
single user databases. The framework can be easily modified to support ORM
functionality, however it is not the goal, nor it is considered a good practice. Main
disadvantages are limited variability and systematic problems like caching data
in application server.

2.8.3 Linq

Linq[14] is very useful feature, but also very dangerous one in the hands of junior
developer.

Main problems are:

• some part of database code is in database while other parts are in the
application

• some popular Linq implementations does not support basic features such
as joining[2]

• database code is non-procedural in its nature

Junior developer is always tempted to take shortcuts when working with
database. He or she mixes procedural code with non-procedural at the applica-
tion level, which will almost certainly result in very bad application performance.
Linq code is also harder to subject to a static integrity check. Main disadvantages
are limited variability and database code scattering.

2.8.4 NoSQL

Quite young are the Non-SQL databases[15]. They target the applications with
massive number of active users. This framework is RDBMS oriented and in no
way tries to compete with specialized solutions. It is also very unlikely that for
example a bank would create information system using key-value storage.

2.9 Summary

Although this project tries to solve many problems at once, which are in more
detail described in next chapter, there are few key aspects that were taken into
consideration.

Key goals of this project are:

• transfer workload away from senior developer

• reduce repetitive work

• automate common operations

Key features of this project are:

• creation of database objects is accompanied with semantics documentation
and functional metadata

• majority of problems must be solved in compile time

• deployment must be accompanied with approval process

• everything should work fast, even on large projects

3. Specification

This chapter describes in more detail several framework features. It starts with
the preview of system roles and their use cases and is followed by detailed feature
enumeration in its full-featured version. Several specialized features are not to be
implemented in the scope of this thesis. They are enlisted to provide the bigger
picture.

3.1 System roles and use cases

• Supervisor

Usually it is a senior developer. He or she is responsible for the project as
a whole.

– project creation - database schema & configuration

– project modification - mainly structural

– database architecture design (conceptual model)

– code rules definition

– code review

– deployment - configuration & smoke tests

• Developer

Usually it is a junior. He or she does not do any major decisions. For the
most part, he or she writes the code that cannot be automatically generated.

– database schema adjustment

– code writing

– simple bug fixing

– writing tests (if available)

• Tester

He or she verifies whether application follows specification.

– use case testing

– special condition testing

– bug reporting

• Administrator

He or she manages application on client’s side.

– system errors processing

– preliminary error type guessing1

1In case of a configuration type error, it is most likely his or hers fault.

15

– recovery from backup

• Hacker

Hacker is the only person who is allowed to modify the production data
directly. He or she has very good knowledge about application.

– production data modification (according to defined scenarios)

– application error correction

• System

– static code checks

– static configuration checks

– data backup

– inter-project communication

3.2 Requirements

Due to pre-existing applications, which were considered to be migrated using this
framework, several requirements were made.

• application consists of multiple co-operating databases spread across mul-
tiple servers - Due to different backup configurations, pre-existing appli-
cations contain separate databases for temporary data like session or task
queues, log data, binary material data and main data.

• application interfaces with other framework based application, so the in-
tegration must be as seamless as possible. Pre-existing applications are
written either in customized ASP.NET or written using special web devel-
opment framework. They both use different kinds of automatically gener-
ated procedure interfaces. The latter partially uses metadata like enums
for user inputs.

• configuration of multiple sibling application should be centralized - Several
pre-existing applications contain shared database code, which needs to up-
dated on every database once a change is made. It is vital not to lose track
of new versions of database code.

• database may be used for log rotation - Applications contain separate
database for each quarter of the year. Table partitioning could not be
used due to environment storage constrains.

• database have different backup configuration depending on their workload
types
Database workload modes:

– read-write - normal database operation

– append-only - specialized database operation, custom backup consid-
eration are required

– read-only - former append-only database (for example rotated log
database)

Database backup scenarios:

– no backup - pure temporary database (for example web application
sessions)

– full backed up - used for read-only databases

– logshipped - different server keeps and up-to-date standby copy of
database. Author considers this to be a default backup scenario for
most of non-mission-critical databases.

• database code is under revision control, however there is no need for inte-
gration. Configuration and schema files are to be organized in such manner,
so they do not require any revision control system.

• out-of-process database services must be scalable - In case database re-
quires transaction-less procedural computation (for example manipulation
with images), this can be implemented as a database service supported by
external processes. Total count of these processes is not limited and can be
facilitated by several machines.

• support for MSSQL 2005, 2008 and 2008R2

• support for integrated security[8, 5]

• integration with application framework can be indirect using metadata ex-
ports - Direct access to database object collections may be impractical to
integrate with other frameworks. In that case an automatically generated
metadata export intended specifically for integration is to be used.

• use Glacier design patterns2 - The main principles are reducing usage of
System namespace and categorizing assembly types in order to enforce de-
sign patterns.

3.2.1 Configuration

Application configuration must honor following restrictions:

• modular design - Each non-essential module should be registered in config-
uration and replaced later on.

• named references are used to register database instances, database tem-
plates, CLR assembly references, database schema references

2Further explained in programmer documentation

app_schema = file1.xml file2.xml file3.xml

app_clr_assembly = file1.dll

app_database_template = app_schema app_clr_assembly

development_database = app_database_template

production_database = app_database_template

• XML format with schema

The configuration should be centralized in order to define configuration mas-
ter. Application will use configuration directly or use an automatically exported
subset of the data.

3.2.2 Logging

Framework logging capabilities must allow following:

• centralized log management and storage - It is not possible to store log data
for longer periods of time at hosted environments with limited resources.
The solution is moving log data to an offsite location where it can be stored
cheaply. It is also possible that offsite can became offline due to unreliable
internet connection.

• user events are logged - For user behavioral analysis and detection of user
interface performance problems.

• execution events are logged - For bug reproduction and database perfor-
mance analysis.

• events can be merged together to keep context - For bug report coherence
and completion.

• log retention period can be upto 3 years - Mainly due to contractual obli-
gations.

• multiple application share the same log management and storage - The
applications share the same support crew and produce similar log data.

• same user can use multiple applications

• only one log entity per user

• development and testing logs are to be separated from production logs -
These data do not need to be kept for long period of time.

• exception and error handling has to be standardized - In order to optimize
the log data presentation, error types must be categorized and have to
contain relevant data in one place.

3.2.3 Object model

Database objects have to be represented in following manner:

• support for all native SQL object types - for compatibility and migration
reasons. Framework may be deployed onto existing project and needs to
support its structure. Its purpose may only be to support schema integrity
checks or to support asynchronous execution.

• support for creating complex object types - specialized or generated objects.
User may want to enforce special functionality on subset of database objects.
New object type can restrict functionality of base object type or enhance it
by generated auxiliary objects (for example see enum types).

• type aliasing - Basis for any advanced functionality is strong typing. User
defined types can be used to categorize columns or to allow advanced ma-
nipulation.

• enum types with inheritance - A scalar type, derived from char(1). Meta-
data will contain list of available values with their semantics. Enums can be
combined using inheritance. When used in column, an appropriate check
constraint will be automatically generated.

• enhanced table

– automatic history keeping - Auxiliary table will be automatically gen-
erated to hold data of previous versions of the records. A trigger will
be generated to fill this table. Structure of auxiliary table will be
automatically kept up-to-date with the source table.

– generated utility triggers - Displaying statistics about inserted and
deleted data to database console as a visual confirmation, that DML
execution modified the table entries.

– generated utility views - The view of all but large sized columns for ad-
hoc queries, so user do not pointlessly transfers large amount data. The
view with all XML columns converted to text from as a workaround
for linked server restrictions[7].

– automatic foreign key generation - When primary key is created over
column set with aliased types, this can be used as a basis for foreign
key generation. Column set forms a type signature, which can be
matched against every table. A positive match will mean a reference
is required.

– automatic disjoint identities - For code development and ad-hoc queries,
it is a very useful feature to have the identity columns use disjoint se-
quences. This way, wrong column join or filter will most likely result in
empty dataset. It is prevention for typing errors in update or delete
statements.

• enhanced procedure - partially generated

– generated correct logging implementation - every procedure call will
be logged. This will be provided automatically. SQL statement can
of course be logged from application layer, this however will not cover
direct execution, ad-hoc execution or maintenance tasks.

– generated correct transaction handling - Transaction may become valid
but uncommitable[9]. This requires special exception handling and can
be source of problems if not done properly.

– workspace table editing - Simplified editing of table data. The proce-
dure code fills memory tables with desired valid and invalid data.
Automatically generated code then propagates changes to table en-
tries. This mechanism can be applied to referenced tables with logical
columns and can greatly reduce user code complexity.

– contracted strong type input and output - The generated procedure
interface in application layer guaranties correct input. The procedure
input will be automatically parsed into generated memory tables and
scalar variables3. Output is not returned directly, but inserted into
generated memory table. The output is returned in a way that al-
lows the procedure random debug output that does not interfere with
interface contract.

• partial object loading - Underlying procedure/function code be only loaded
when needed. This is crucial in order to effectively access object collection
on remote databases. The database code should be loaded only after objects
hashes do not match.

• detailed relation and dependency keeping - In order to correctly apply
schema changes or to detect references on missing objects, it is important
to parse as much dependency information as possible. Given the table col-
umn, the full version of this feature should allow listing of all places in the
database code where it is being read or written to.

3.2.4 Object model manipulation

• creating objects from XML definition files - There should be several schemas
to support database objects.

– catalog - XML schema to store pure system catalog without addi-
tional metadata.

– master schema - XML schema to store enhanced tables and generated
procedures

– custom user schemas - In case the application requires custom object
types, they must be contained in a separate schema. This schema can
be instructed do contain any of types from catalog or master schema

schemas using XML namespace references.

– creating objects from database system catalog - Database must be able
to store all metadata within itself. This allows full-feature comparison
of two databases without the need of any XML schema files.

3In author’s experience, the input parsing errors are by far the most common.

• creating objects programmatically - Used for generated objects. There is
a strong chance, that in order to guarantee fast performance for very large
projects, a specialized UI application will be needed to keep object collection
in memory at all times. Schema manipulation would be done using UI, so
there is no need to re-parse every schema file. It is not goal of this to work
to optimize work with database schema to this degree.

• introspection - relations and dependencies - Provides basic support for ex-
ports of metadata.

• object collection construction hooks - Support for generating objects. The
object processors must be hooked into object collection building process
in such a way, that does not hinder the performance. The preferred way
is to hook the addition of a object to the collection. The processor than
constructs full-outer-join-like data structure that compares desired object
definitions and existing objects. The changes are afterwards processed to
generate missing objects, or report inconsistent objects, or report orphaned
objects.

• object collection comparison - Framework has to allow comparing XML
schema files with database and two databases together. Both XML schema
files and system catalog of database must be complete sources of object
metadata. The comparison will consist of full-outer-join by the object
names, followed by matching the object hashes.

3.2.5 Changeset manipulation

• reporting inconsistent objects - During process of object generation or ob-
ject specialization an inconsistency may occur. Most common source is
manual alteration of system catalog. These differences need to be reported
before a changeset can be generated.

• reporting orphaned objects - When a source of generation object is removed
manually from the system catalog, any dependant generated object becomes
orphaned. These objects need to be deleted before a changeset can be
generated.

• generating SQL scripts to apply changeset to target database

• support for user guided script generation - In case a table or a column is
renamed and it already contains data, dropping and recreating the object is
not acceptable solution. It is not goal of this project to detect these changes
using heuristics. User should be allowed to fill in additional information
manually.

3.2.6 Standard library

• extending included system functions

– string manipulation - Mainly join aggregate functions, which are very
practical for both database code and ad-hoc queries.

– date manipulation - Mainly temporal vector sum. The operation takes
set of (key, value, from, to) and returns (from, to, key, value

sum). Returned dataset contains disjoint (from, to) intervals that form
continuous interval starting from minimum from ending at maximum
of to.

– repository utils - Access to SVN and GIT commands by invoking con-
sole applications. Preexisting applications require reading several files
directly from repositories. File system access must be reasonably se-
cure.

– secure filesystem access - Read/write access to file system subdirec-
tories. The access must be restricted for every database. Security
configuration should be transparent and well defined.

– secure network access - Support for client side of UDP, TCP, SMTP,
HTTP, and SOAP protocols. Same restrictions as for the filesystem
apply.

• session emulation - The database execution has no reasonable notion of
sessions. Using context info mechanism, this can be emulated. Main
reason is to transfer data between separate commands which belong to the
same sql process. Data will contain execution start of set of commands in
order to keep same stamp in history tables, user logon data and data for
merging log events together.

3.2.7 Database services

The MS SQL database engine in current version has been enhanced with features
such as SQL Agent, Database Mail, SQL Broker or procedure publishing. These
are however not suitable for universal use and usually require more work than
do-it-yourself solution. Database engine supports execution of CLR assembly,
however it cannot support any isolated long-running code. Database can exist
without application layer and provide functionality to external application using
standardized protocols.

• asynchronous execution - This feature can be emulated using integrated
SQL Agent. There are however security4 and practical5 issues. Framework
must allow execution of SQL statements in a background thread. There is
also a need for throttling background execution since preexisting applica-
tions are able to generate several hundreds of background execution requests
in small amount of time. The statements can be generally divided into fast
and slow work queues. Number of queues should reflect machine’s ability
to process concurrent requests.

• network services

– SOAP service - Simple way of publishing procedural interface using
standardized protocol[12].

– WWW service - Simple way of publishing procedural interface, mainly
for use with AJAX[13].

– TCP and UDP socket services - For specialized services like commu-
nication with embedded devices.

• debugging and performance tuning - Microsoft SQL Server Management
Console allows tuning of single statements to a reasonable degree. There
is however no support for tuning high performance computation functions.
In case where SQL scalar or table function is being called in a loop, it is
important that function has low running time for all possible inputs. Imag-
ine system in production where all code has already been tuned up. Code
reuse caused creation of several nested high performance functions. If users
start reporting slow responses, though their reports are subjective in na-
ture, it is necessary to collect objective data and identify which function
is really responsible for the slowdown. Since functions are nested together,
the only way to do this is collect debug output from every function. Scalar
and table functions have no output parameters, therefore this task require
quite a lot of manual labor. This problem should be eliminated by call-
ing CLR socket functions and collecting performance or debug data from
within procedures and functions without the need to modify any interfaces.
Reporting mechanism should not add much overhead to the execution.

• computation and snapshot service - Several preexisting application require
specialized search structures which cannot be emulated by database struc-
ture. There is need to facilitate these structures, ensuring incremental up-
dates and effortless scalability.

• enhanced monitoring - Support crew, that is responsible for stability of
applications, needs to monitor currently running tasks across several ma-
chines. Each part of framework, that runs background tasks, should produce

4There is no good way to set database account permissions to run SQL Agent jobs without
compromissing whole engine instance.

5Starting jobs works when job is in started or stopped state. However when job is in
starting state, which can be achieved rather easily, sp job start raises uncatchable excep-
tion, that can only be handled using unsafe clr assembly code. For more information see
System.Thread.ResetAbort()

interface allowing to examine currently running tasks and integration into
monitoring software.

3.3 Summary

The majority of functions will be contained within shared libraries. Many will be
apparent only to developer using the framework within a real application. From
the outside, framework will be controlled using simple console application. This
may induce the feeling of simplicity, however, the total extent of the specification
cannot be completed within one man-year. It is not the goal of this thesis to
present fully-working application, but to create an extensible skeleton structure
which can demonstrate the viability of the design and can perform non-complex
database operations.

4. Design and implementation

This chapter will describe several important design features of the project. The
most noticeable are object model that is used to represent database objects and
used design patterns.

4.1 Environment

For CLR assembly to be deployable in default safe mode, these conditions must
be met:

• no unsafe code - restricted manipulation with mainly with arrays

• no access to external resources - for example local and remote filesystems
as well as network socket access.

• no static fields in classes.

Using assembly in unsafe or external mode can be achieved, however, this
severely compromises database security. Moreover, there are practical problems
with unsafe assemblies1.

Access to external resources needs to be further restricted and concentrated
into single database. The framework uses msdb system database, which is already
eligible for unsafe and external assemblies. There is also a problem of privilege
escalation. Dynamic queries executed from SQL or CLR code does not use privi-
leges of a owner of procedure or function. Calling user account must have enough
permissions to execute dynamic code directly. This means that unsafe CLR pro-
cedures cannot be called directly from safe CLR code. All accounts that use
network or filesystem resources need therefore full execute access to unsafe pro-
cedures. Unsafe procedures need to maintain their own security restrictions since
database interworkings are not able to facilitate the security aspect. These re-
strictions are stored in configuration file stored outside the reach of any database
code.

The last condition is the most severe. As a direct result, singleton classes
cannot be used in a classic manner. Each of these classes need to propagated
manually to every class that uses them. The framework tries to concentrate
most of functionality to Environment class. This restriction also applies to all
dependency assemblies. In case of third-party assembly, a modification and re-
compilation may be required.

4.2 Log

Framework supports unified logging into console, database procedure and win-
dows event log. The logging is implemented using Glacier library which restricts
log messages and exceptions to only own classes and interfaces2.

1If database administrator dettaches database and reattaches it under different owner ac-
count, all unsafe assemblies priviledges may be revoked and assemblies need to be redeployed.

2Glacier library was initialy developed as part of this framework, but later in development
was separated into own project.

25

Log messages and exceptions where designed to be fully serializable and dese-
rializable using XML format. Only own exception classes are used and all external
exceptions are being converted to custom structures. These steps are part of a
greater goal to create a unified centralized log storage.

4.3 Libraries

Most of the code is written C# since the nature of the code is mainly proce-
dural. Several database routines were predecessors of this project. They were
mainly written in T-SQL. Since there were many problems using nonprocedural
language3, a procedural language had to be used.

• Glacier.Common - Shared library to substitute or wrap functionality of
System namespace.

• Meander.Common - Shared library containing configuration classes, database
objects model classes and many SQL utility classes.

• Meander.Local - Provides advanced functionality when libraries are used
within desktop environment.

• Meander.SqlClr - Provides advanced functionality when libraries are used
within MSSQL engine4

• Meander.Console - Console application that can be used to compare and
deploy databases, check database integrity and import existing databases
for use with the framework.

• Meander.EndPoint - Provides features, that cannot be implemented within
MSSQL engine. Asynchronous and parallel execution, dynamic compilation
of .NET code, function performance debugging and monitoring.

• Meander.Tools - CLR library that enhances database with string, binary,
date and many more utilities. Contains all procedures that can be deployed
and used in safe mode.

• Meander.ToolsEx - CLR library that enhances database with unsafe pro-
cedures. Provides access to filesystem and network resources.

4.4 Object model

The model tries to keep as many classes immutable as possible. Object data are
loaded from XML files and SQL catalog into the same representation which can be
found in code under definition classes. These are immutable and do not contain
any dependencies since they are cyclical in nature and it would be impractical to

3The biggest problem by far was inability of scalar function to produce sideeffects and modify
any data outside the scope. All data must have been returned as output which is very ineffective
for complex computation.

4MSSQL engine does not allow dynamical compilation of .NET code. This need to be
facilitated by external process.

compute them immediately. When all definitions are created, framework builds
an object collection. First, definitions are converted into object builders, which
are used to compute relations, dependencies, hashes and other metadata. After
everything is computed, builders are converted into final objects and a immutable
object collection is constructed 5

Comparing two databases takes as an input two database collections and pro-
duces a changeset. The changeset consists of a set of differences between the two
collections with computed scripts, prerequisite checks and metadata updates.
Scripts must be generated in correct order using object dependencies. This is
a non-trivial task, however, the most challenging problem is to support object
renaming tables and columns and avoiding dropping and recreating tables. This
is problematic mainly because table may already contain data. Although recre-
ating can be done safely, it requires application downtime and more importantly
can take considerable amount of time. When database is in full backup mode,
operation forces engine to produce considerable amount of data into log.

These problems are addressed using ordered set of rules handling collection
difference processing. The framework contains basic set of rules, which are able to
successfully create objects into an empty database. These rules allow for simple
object modifications. Rules also allow external data input. External data may
contain information specifying which objects were renamed6. Rules are aware of
this information and use them to generate more optimized scripts. Specialized
rules are created to process differences that require recreating of objects. Chang-
ing data type of a column, which has a check constraint bound to it, requires
dropping the constraint, altering the column and recreating the constraint. For
every situation framework can contain specialized rule in order to achieve the best
result possible. This approach is also applied to avoid dropping and recreating
tables. It reduces the necessity of drop only to enforcing the order of columns and
few operations on identity columns. External data may also contain information
how to transform data between structural changes of the database.

Databases, that contain several hundred procedures and functions, face per-
formance problems during comparison. Loading every SQL module7 may mean
transferring several megabytes over a substandard network connection. It is vital
to hash these modules in order to avoid long load times. Hashes are applied to
every object and are used to detect differences. Database may also contain virtual
objects. These may contain metadata designated for further processing8. SQL
modules and virtual objects are loaded only after a difference is found.

4.5 Enhanced tables

Tables contain usually these types of columns

• primary key column - usually an identity column

5The reader may have noticed that it is impossible to create set of immutable containing a
reference cycle. This is achivied by using indirect index references.

6supplied by combination of user interface input and heuristics
7definition of a procedure, function or trigger
8XML definition files are great place to store logical non-database objects. Metadata are

then stored in single place and it is easier to maintain single data master.

• logical key column - textual representation of record (for example sequenced
invoice number with user defined prefix).

• key column - has function of both primary and logical key column - can be
used in simple tables, where there is no distinction between the two.

• attribute column - only holds data. Its value can be changed any time,
unlike key column with are usually considered immutable.

• auxiliary column - computed or temporary columns.

Majority of tables can be represented using these column types. Framework
can automatically create primary key constraint and create unique index on log-
ical key columns. In certain cases this model can reduce complexity of adding
data to referenced table structure. Consider situation:

• database code tries to insert records into master and detail table.

• master table has primary key over single identity column

• master table has set of columns creating logical key

• detail table references identity column of master table

• developer tries to insert multiple records into both master and detail tables

Using T-SQL, inserting into detail table requires a manually written join with
master table to match logical key values to previously created ID’s in master
table. When more than two tables are involved, developer is required to write
multiple joins which can be source of many bugs.

Inserting into detail table should be done using logical key of master table in-
stead of primary key. This can be achieved by not inserting data directly. Records
will be inserted into pre-generated table variables. Table variable replacing mas-
ter table will follow the definition of master table. Table variable replacing detail
table will follow the definition of detail table with the exception of column refer-
encing master table. This column is to be replaced with columns used in logical
key of master table. This method is for the purpose of this thesis call workspace
mode.

This way there is no need to join master table when inserting detail table
records. Records will be inserted into real tables later, after all memory table are
filled. Logical key joins are pre-generated in order to avoid developer mistakes.
This greatly simplifies the way how to edit multiple tables in normal form. This
approach has been proven very effective to reduce developer’s time while adding
negligible performance overhead.

Another important operation is update. To create optimal statements, every
update should check in where clause whether it actually modifies the data in order
to prevent only touching the data9. Creating full-proof comparison expressions for
every attribute column, that takes into account nullability is very time consuming.

9Touching data means updating table record without any changes. This operation generates
transaction log entries and causes triggers to fire over unchanged records, which in turn creates
unwanted data in history tables

Figure 4.1: Workspace data manipulation example
Table person

id name birthday
1 John Doe 1.1.1980
2 Jane Doe 1.6.1980

Table contact
id person id type value
1 1 email john.doe@gmail.com
2 1 skype john.doe
3 2 email jane.doe@gmail.com

Standard commands:

--@person_input and @contract_input table variables contain data application wants inserted

insert into [person[([name], [birthday])

select pi.[name], pi.[birthday]

from @person_input pi

insert into [contact] ([person_id], [type], [value])

select p.[id], ci.[type], ci.[value]

from @person_input pi inner join

@contact_input ci on pi.[element_id] = ci.[parent_element_id] inner join

/* element_id & parent_element_id are columns supplied by input parser */

[person] p on pi.[name] = p.[name]

Commands using workspace editing mode:

insert into @person_valid ([name], [birthday])

select pi.[name], pi.[birthday]

from @person_input pi

insert into @contact_valid ([person_name], [type], [value])

select pi.[name], ci.[type], ci.[value]

from @person_input pi inner join

@contact_input ci on pi.[element_id] = ci.[parent_element_id]

Having one memory table for both new and updated data also eliminates problems
with manually checking whether logical record key already exists10. Detailed
description of workspace editing mode is available in User documentation.

The given example may seem trivial, but the difference becomes apparent
when logical keys consist of several columns and 3 or more tables are edited at
once. It has been authors experience that workspace mode increases developer’s
capability to write database code from five to tenfold.

Performance problems become noticeable when memory tables contain several
thousands of records. The reason is rather obvious and that is using both primary
key and logical key at once in multiple generated statements. Since only one of
them can be clustered, engine is required to process data in unsorted form, which
causes overhead. While this can be battled using query optimizer hints11, there
is no need to concern the senior developer with optimalisation when contents of
memory tables are limited to hundreds of records.

10T-SQL contains merge statement, however it is impractical to use and has several limita-
tions.

11The biggest improvement was achieved using general merge join preference.

4.6 Contracts

Communication between several components of framework cannot be direct and
requires serialization and deserialization of data. It is vital to concentrate both
parser and generator into same class in order to maintain consistency. This
is a necessity for remote procedure calls. Framework contains contract classes
whose only role is to serialize and deserialize data. These are placed into shared
libraries and used by both caller and recipient of remote call. The goal is to break
application at compile time when modifications are made. Classes can be easily
subjected to unit testing to provide quality assurance.

4.7 EndPoint

EndPoint component is used for features that cannot be executed within MSSQL
engine. The database registers services with can in turn be performed by several
endpoint instances. EndPoint uses M:N model in relation to databases. EndPoint
instances can be easily organized to provide computation farm.

This configuration requires reasonable monitoring support. Each database
service and their respective running jobs must be accounted for and must be
monitored for irregular behavior. One of the irregular behaviors is job being cre-
ated and destroyed so fast that, the problem cannot be detected by consulting the
list of active jobs. Monitoring therefore needs to work more like a accumulator.
Information about database services and jobs need to logged for a limited amount
of time to provide adequate output. These data can be also easily represented in
graph form.

5. Programmers documentation

5.1 Introduction

As was mentioned earlier, the framework was during the development split into
two. The separated part consists of utility and wrapper classes. These are used as
storage containers, XML serialization and deserialization, logging and exception
processing. The goal is for production code to use System namespace as little as
possible, since it is author’s belief, that many classes within this namespace are
not safe to use by junior developers.

The source code is organized using pre-defined coding style and classes are
complemented with metadata attributes, used for code ownership1 and design
patterns2.

Since most of the code is within libraries, test-driven-development model was
used. To successfully run tests, you need an instance of MS SQL Server en-
gine with three databases. For more information please see Common class in
Meander.Tests library.

It is worth mentioning that for any assembly to be deployable with safe
permissions-set, no static fields can be created, which prohibits usage of sin-
gleton pattern. This chapter describes the most interesting parts of the source
code. For further implementation details, please refer to the supplied generated
documentation.

5.2 Configuration and environment

All libraries and executable are targeted to use Microsoft .NET Framework 2.0
which makes the projects buildable by both Microsoft Visual Studio 2005 and
Microsoft Visual Studio 2008. The latter is the only one actively maintained,
although reverse-conversion may be performed manually. The projects can be
build without any external utilities or libraries. In order to run tests or execute
example applications, you will need access to a SQL Server instance, preferably
MS SQL Server 2008 or MS SQL Server 2008 R23. In order to successfully run
EndPoint application, you need to have ability to open TCP ports and access
these directly ports from SQL server engine.

Database engine need to contain these databases with full owner access:

• meander tests 1 - Main testing database

• meander tests 2 - Auxiliary testing database

• meander tests 3 - Auxiliary testing database

• msdb - System database

1See Maintainer attribute
2See TypeCategory enum
3MS SQL Server 2005 contains several bugs in XML processing, which the framework cur-

rently does not take into account during deployment.

31

Database names can be changed in Common class in Meander.Tests project.
In default test configuration, MS SQL engine should be default local instance,
accessible by (local) and EndPoint test will use 127.0.0.1:14331 address.

5.3 Logging

Whether it is a user message or a warning from within shared library, there is a
need for common interface to report several kinds of messages. The concept is to
create shared library that solves these problems:

• unified interface should allow to output log data to many destinations

• log messages should be accompanied with meaning full data4

• exceptions should be logged without losing important information over het-
erogeneous stacks

• exception classes must be sealed not allow junior developers to create dozens
of custom application exceptions

• log representation must be in human readable form, which includes limiting
stack to only meaningful entries and highlighting parameters5

• some log messages need to be shown to application user and therefore must
undergo translation and must presented in UI.

Figure 5.1: Log interfaces

ILog

ConsoleLogWindowsEventLog TestLog

DatabaseLog

Common ILog interface provides ability to report ad-hoc messages and to
report exceptions. The log data output can be redirected to system console,
where it is printed which restricted character buffer with coloring ability. For
services, log can be redirected directly to Microsoft Window’s Application event
log. This is much better alternative than logging into text files, where each service
needs to configure log rotations. To help test-driven-development, log data can
be reported by using TestContext class, where test is automatically stopped
when exception or error occurs. The TestLog can be used to expect predefined
messages to test rainy-day scenarios.

4The default assumption is that containers does not contain sensitive data, therefore
KeyNotFoundException is allowed to include which key has not been found and in some cases
also included list of all the keys in the container for debugging purposes.

5When exception occurs, developer needs to see the last non-framework and non-runtime
stack entry and highlighted parameters that caused the exception.

In order to provide central log management, DatabaseLog can be used, the
class serialized log data and store them into common storage. The storage can
sustain multiple applications and allows for merging several events together. The
class can be configured to fallback log data storage to console or windows event
log, in case of a fatal database error.

Figure 5.2: Heterogeneous stack

Application

Socket

Meander.EndPoint

SQL

MSSQL CLR

When exception is thrown in the last node of the chain, in MSSQL CLR code,
framework tries to transfer all the relevant data back to the source application.
During this processing, the exception must be accompanied with all the stacks and
must be serialized and deserialized several times. Transporting exception data
over socket is an easy task, however the problem is with the SQL stack. When
a exception is thrown, reading SqlPipe gives Meander.EndPoint only Message

and StackTrace properties of the exception. All the data need to be stored into
exception message and therefore the whole exception needs to be serialized into
a single string within exception class’s creator base class initialization list. For
more detail see nested Input and Data classes. Since constructing exception class
is rather difficult, this effectively discourages junior developers to cause exception
class polution.6

Glacier library implements several types of exceptions. Each type has des-
ignated purpose, so developer is always able to choose one quickly.

• NullArgumentException - for simple input checking

• InvalidArgumentException - for input checking, provides description of
the problem and the invalid value.

• UserException - exception to be shown to the application user

• CompilerException - error accompanied with location and debugging in-
formation

• CompositeException - encapsulates set of multiple exceptions, so more
than one error reported during compilation or verification process

6When developers are monitored or payed by the number of lines they write, they tend to
create exception subclasses for every error type.

• IntegrityException - assertion checks within the code, designed mainly
to check sanity of computation outputs

• RuntimeException - wrapper for native and nested exceptions

• NotImplementedException - mark not implemented sections of the code,
forces developer to define severity of the missing code

• NotSupportedException - mark invalid state, mainly used for default branches
of switch statements

5.4 Patterns

Every class in .NET code has been assigned a type category using a system type
attribute. These information are processed in order to maintain several code
restrictions.

• Immutable - the type contains only read-only data, data cannot be changes
in any way and class is thread-safe

• Helper - the type contains only static members

• Container - the type represents long living object, that can change its con-
tent over time

• Adapter - the type encapsulates third-party class

• Builder - the type instance is used only for limited period of time.

The helper types are required to be static, with only static members. No construc-
tor can be present. The adapter is a fallback option, upon which no restrictions
can be placed since it by definition interfaces foreign code. The builder is sup-
posed to be a temporary type, whose only purpose is to create another object (in
most cases immutable or container). The builder references should not be stored
in heap and should only live for short period of time. The container marks a dy-
namic structure, for example List or Dictionary or any other type that logical
represents living object, that changes contents. The immutable marks type to
be thread-safe and for read-only access only. All used interfaces and base class
must be also marked immutable, all fields must be immutable. In order to access
read-only data effectively, read-only interfaces such as IMap or IDictionary are
provided for the common containers7. Therefore, they do not allow modifying
the data and are also considered immutable and thread-safe. The immutable or
container types must be XML writable, so they can be easily used as exception
input.

A unit test controls type designations and the metadata. Each class must have
be designated a maintainer. The nested classes inherit maintainer from parent
class.

7As opposed to the IList or IDictionary interfaces from System.Collections namespace.
.NET Framework requires developer to create read-only collection manually

5.5 Object

The term object in Meander framework is meant to represent its counterpart in
SQL Server. Object types and their properties are designed to be compatible
with MS SQL Server system catalog. The framework will in its full specification
contain all the parsing and object storage capability of MS SQL engine.

The object model has been through several iterations. The model was rewrit-
ten every time a required operation on the model was either difficult or impossible
to execute. These constraints have been discovered during the refactoring:

• The resulting objects need to be immutable. The builder type is also an
option, but too much effort needs to be done to prevent undesired ma-
nipulation with objects. The best found structure to support building the
objects consists of an immutable object definition, an object builder and an
immutable built object. The definition contains object attributes in scalar
form (string)8, no direct references are created between the definitions. The
built object contains direct references to other built objects such as parents,
containers, children, members, forward or reverse dependencies. These ref-
erences are constructed using a builder class. The object collection build is
described in more detail in next section.

• For usability reasons, object references must be in form of direct properties.
Indirect referencing using object names or indexes, can leave the collection
potentially broken.

• The object needs to storage additional metadata. Almost every object type
contains data, that cannot be stored within the system catalog. This data
can be stored using MS SQL’s external attributes, however because of a
bad performance, a custom table is used as storage.

• The objects need to be hashed. Certain object types need to be loaded only
partially, in order to prevent unnecessary delays. The procedure or function
definitions should be transmitted after it has been confirmed, that content
is different9.

• There is no need to handle generated and user-created objects differently.
Only difference is that the user-created object hashes user inputs, where
generated object hash metadata of referenced objects and the version of
the generator.

• It is bad idea to allow for object collection modification. If the object
collection were of a container type instead of immutable type, either the
collection would allow to exist in broken state when it is not usable or
every modification would have to be executed in precise order and the logic
would have to be too complex. It is impractical to implement object model
where any reference can be broken and every part of code must check for
validity. This would greatly hurt the extensibility, because it would be very
difficult to implement object handling correctly.

8For example, when a column definition is created, it only contains indirect string reference
to its parent table.

9In larger applications, the size of sql source code can reach upto several tens of megabytes

• There needs to be a virtual object. The object specialization may require
storage of object types that does not exist in MS SQL object model. For
further detail see class ProcedureBlockModule.

• The construction of object definitions from XML schema files and SQL
catalog differ in several ways, every user-created or generated object’s def-
inition must be fully constructible from XML schema file, SQL catalog or
programmatically during generation.

• The object references cannot be resolved all in one pass. In order to resolve
dependency references, all objects must have already resolved parent, con-
tainer, member and child references. Since several object types add their
dependencies into hash input, the hashing can be performed only after all
the dependencies have been resolved.

• During the construction of the collection, an error may occur on object
data. Either some object is missing altogether or its definition does not
match what is expected. These errors cannot be solved programmatically,
since during the building of object collection, the collection has no notion
of created changes in SQL database. Its only role is to create a coherent
set of objects, regardless of the further use.

Object names have been standardized using ObjectName class. The class is a
utility class to safely handle qualified object names and enforce case-insensitive
comparison for object names. Object identification is accompanied with ObjectType

enum value. The combination of type and name forms a unique key, although it
is applicable only to columns and parameters of table or inline table functions.
Most objects are required being uniquely identified only by their name.

The collection build process allows plugins. These are called object processor
are used to inspect, validate or export object data, or to append new objects to
the collection. More about processors is described in next section.

Figure 5.3: Table and column object inheritance

IObject

ObjectBase

Table ColumnNative object types

Table PrimaryKeyColumn
LogicalKeyCol-

umn KeyColumn
AttributeColumn

Specialized
object types

Note: The object type PrimeryKeyColumn may be confused with index col-
umn object type (sys.index columns), but the sub-class specifies semantic use
of the column.

The object class inheritance provides ability to freely specialize object without
having problems with further use. When the framework later tries to generate
change scripts between the two object collections, generally no specialized change-
set code is required to support existence of specialized objects.

The framework works with two set of objects. Their internal names are
Catalog and MasterSchema. The Catalog objects follow the SQL Server engine
object model as closely as possible in order to support the whole model. The
MasterSchema objects are optimized for rapid application development and pro-
vide usability and productivity. There are several occasions where MasterSchema
is not able to hold a specific object configuration10. MasterSchema is implemented
by sub-classing the Catalog objects. Developers can create their own schema sub-
classes or replace object system altogether. Only requirement is the support of
IObjectDefinition, IObjectBuilder and IObject interfaces.

5.6 Building objects

Every object type is subjected to the same building processes. The process takes
for an input set of object definitions. The result is immutable object collection.

10For example having primary key non-clustered and logical-key clustered

Figure 5.4: Build flow diagram

Object definitions

Create builders

XML Factories SQL Factories

XML
Schema files

SQL System
Catalog

Populate relations

Populate dependencies

New
builders?

Ensure definitions
Mark inconsistencies

Call processor logic

Run next pass

Notify processors

Attributes and hashes

Create objects
and the collection

This flow satisfies conditions defined in section 5.5. The processors handle ob-
ject builders which have already successfully resolved relations and dependencies.
Processors are designed, not to cause any performance problems and have O(n)
complexity with relation to the number of new builders in each pass. Processors
internally create full-outer-join-like structures, which can be marked dirty if a
change occurs. After notifications about new builders are complete, processor
logic handles all dirty entries. When processor generates new definitions, these
are converted to new builders and processed as any other new builder. For XML
input, this means that processor handles generated objects twice. In first pass,
the processor generates definitions of missing generated objects. In second pass,
it verifies that constructed builders match desired definitions. For SQL input,
generated definition are already supplied by SQL factories. This time, usually
only verification pass is required.

5.7 Custom objects

Custom object can be created easily. There are several components required to
achieve this goal:

• definition sub-class

• builder class

• object sub-class

• XML factory support

• SQL factory support

Figure 5.5: Catalog enum type inheritance

IObjectDefinition

ObjectDefinitionBase

ScalarTypeDefinition

EnumTypeDefinition EnumType

ScalarType

ObjectBase

IObject

IObjectBuilder

IScalarTypeBuilder

ScalarTypeBuilder

IEnumTypeBuilder

EnumTypeBuilder

ObjectBuilderBase

The inheritance can be seen on the example. Definition and object follow di-
rect inheritance, whereas the builders follow different inheritance model. The
builder sub-classes manually create base builder class and reimplement all re-
quired methods. In most cases, the methods just call the equivalent base builder
methods. In few cases, the subclass restricts available features. This scenario
may have been supported by direct inheritance, however, it become apparent
that many programmer’s errors occur when builders are created using copy-and-
paste11. Generic arguments supplied to the ObjectBuilderBase guarantee, that
any of these errors are detected during-compile time.

11New builder needs different definition and produces different object. The definition and ob-
ject class types are referenced multiple times whithin the builder code and one or two referencies
always remained unchanged, without a compilation error

5.8 Custom processor

The processors can perform multiple functions:

• object introspection

• object generation

• rule enforcement

• metadata export

The processor must implement IObjectProcessor interface and supplier the spe-
cialized constructor. For future compatibility reasons, processor should not use
builder classes, but use builder interface instead. Since builder’s inheritance is
interface-based, this is the only way to ensure, that processor will correctly rec-
ognize every new user created object types.

The processor is given IObjectProcessorOutput interface to produce out-
put. It can report warning or errors, create new and check existing builders us-
ing EnsureDefinition method and report orphaned12 or inconsistent objects13.
When working with generated objects, it is important to take into account, that
not all relations or dependencies may be resolved successfully.

The processor may be used to generate additional source code. The source
code is used to simplify interfacing developed application with the database. The
source code may either be directly created from processor, or it can be performed
into two phases. First phase is the export of required metadata and second is
the external source code generation. This allows for wide range of integration
possibilities.

5.9 Building changeset

When source and target object collections are constructed, they can be compared
to enlist differences and generate list of actions to propagate differences from the
source onto the target. The differences are detected on the object level using
hashes. The differences are then aggregated to the most common object parent
and form changes. The parent-child relation is defined for example between tables
and columns or between functions and parameters. Decision between container-
member type relation and parent-child relation is based on available the DDL
statements. Create table statement also creates columns so the relation is parent-
child, whereas the table trigger is created separately and table is considered not
changed when trigger is added or removed, so the relation is container-member.

Changes contain parent object from the source and the target collection.
Change can be converted into SQL scripts that modify target database, however
and order of DDL statements must be enforced. Changes need to topologically
sorted honoring the fact that sort order is reversed when object are being dropped
in contrast to the order of object creation.

12For example, when table with dependent history table is manually deleted, the history table
becomes orphaned.

13For example, attributes of generated objects are manually altered.

Change does not procedure only DDL statements. A prerequisite check may
be required to successfully execute the statements. For example setting nullable
column to not-nullable column requires checking where any nullable data exist
in the table. Prerequisite checks may be applicable for unique index creation or
manipulation with enum types.

It has been mentioned that generating correct changes may require user input
to support operation such as renaming the table, renaming the column or more
complex table structure conversion. The class structure has been designed to
support this requirement, however no workable implementation is ready.

5.10 Endpoint service model

The database service model only needs to solve one problem - the security. Con-
sider following configuration:

Figure 5.6: Endpoint configuration

Database
A

Database
B

Service S Service Q

EndPoint 1 EndPoint 2

Database A and B are considered hostile. They must not be able to read
each other’s table data. This can be achieved using database permissions. The
databases must also not be able to access services of the other database. This
needs to be enforced by using safe RPC call accesslists and secret access tokens.
Access token is pre-shared key between the database and the endpoint. It is not
readable from the outside and can serve as a sufficient security measure. RPC
call accesslists is only an additional security mechanism in case the access tokens
were compromised.

5.11 Workspace table editing

As was mentioned earlier, it is preferable to edit table indirectly using specialized
memory variables. Standard insert, update, delete or merge are replaced with
insert into valid and invalid memory tables. The valid memory table contains
record data that should be inserted or updated. The invalid memory table marks
records for deletion. Full implementation of workspace edition requires solving
these problems:

• nesting - When editing multiple referenced table in one code block, The
primary key columns must be substituted with logical key columns to an
unlimited level. While it is easy to generate memory table definitions, it
is not easy to generated DML statement fragments that map logical key
columns back to primary key columns.

• KeyColumn with identity - When edited table does not contain separate
primary and logical key and the column holding key values is a identity col-
umn, measures must be taken to support workspace editing. An additional
virtual logical key must be supplied to successfully match master and detail
tables with the newly generated identity values.

• performance - Workspace editing is best suited for smaller input sizes. In
case you require editing of several tens of thousands records, an automati-
cally generated code may add significant overhead. The problem lies with
the necessity to re-sort data when joining for primary key values. No one
can guarantee that primary and logical key will preserve the same order.
Merge join hint supplied to every statement has been proven a viable solu-
tion, however processing that amount of data within user initiated actions
is considered a bad practice, since the whole application seem slow and un-
responsive. The action should be either executed in background, or a table
design should be considered.

6. Results

This work achieved to provide a functional set of developer tools. The current
implementation supplies:

• fully configurable and extensible environment

• working object model that represents larger part of SQL database.

• CLR assembly deployment

• working mechanism to compare and deploy databases

• error management and logging capabilities with log merging

• automatic foreign key generation

• history tables

• generated procedures with strong-typed input and output contracts

• simplified workspace editing mode

• working interface with application level

• rudimentary dependency detection

• basic asynchronous execution

• scalable multi database support

• practical T-SQL tools

Much effort was dedicated to the purity of the design. It has been the previous
experience of the author, that if there is something design-wise wrong with the
framework project, it will certainly turn into blocker problem in near feature. Not
all functionality has been transferred from the previous tools chains and is yet
to be implemented. During the development several priorities have to be shifted.
The framework needed to be functional for use for a real project.

Following functions have been omitted and their implementation is pending.

• advanced functionality in generated procedures

• full-featured workspace editing mode

• network services

• T-SQL lexer and parser for complex statement and expression verification

• full CLR support

43

6.1 Effectivity

Creating database objects using local XML files is much less time consuming
than clicking into SSMS1 or typing DML commands manually. SSMS is easily
usable for small databases, but once the database contains hundreds of tables
and procedures, it becomes difficult to work with. The gap becomes even greater
when database is on a remote location, where SSMS performs very badly due to
long latencies.

The most common error in SQL is typing error in object names. This is
partially eliminated by code completion in SSMS, however, the IntelliSense system
becomes unusable for combination of large database(in number of objects) and
long scripts. In current version it contains several bugs, where it either stops
working altogether when XML functions are used, or it provides the user with
internal system objects instead of user created objects. It is best suited for
ad-hoc queries, but not for procedure development. MSSQL engine does not
compile procedures until all objects exist. If you misspell table name, you will
find out that procedure is broken only by running it. You can create schema-
bounded procedures which compile upon creation and modification, but it is
not recommended during development, since it adds too much overhead when
refactoring is needed. The framework detects breakage before deployment and
importantly, checks the older code if it has not broken. Furthermore invalid
joins, invalid expressions can be detected, which are not detected by intellisense
nor schema binding2. Their occurrence is quite frequent and they are very hard
to find, especially when database is full of similar id values.

6.2 Adoption process

There is definite learning curve needed to work with the framework. An initial
configuration is needed, best executed by senior developer or DBA administrator.
Many database developers are accustomed to develop procedures directly against
database engine. The procedure is being written until it contains no lexical errors.
After that, it is being debugged by repetitive executions. This process needs to be
adjusted by moving development away from management console. The procedure
should reach database only when it is in usable state.

The framework is best suited for new projects. Integration with existing code
is available using import, but using advanced framework features may require
refactoring. Imported schema files usually require additional metadata like de-
scriptions and comments.

The framework is designed to interface with custom web-based framework.
This has been achieved using metadata export. This way it can integrated with
any kind of project. Several applications are already being written using this
configuration and so far no major problems have been reported by the developers.

1Microsoft SQL Server Management Console
2Once the T-SQL parser will be implemented

7. Conclusion

It is the author’s opinion, that the thesis fulfilled its goals. The resulting ap-
plication is able to support database development and is able to interface with
application layer. Although the work is far from completion, the project is on
the good way to become a stable part of database developer’s toolset.

Compared to the other database frameworks, the main difference is the phi-
losophy. The database layer should remain responsible for transactional integrity
and it should not be used as mere storage container. The framework considers
database layer to be a complete and self-sustaining part of an application. It
should have a well defined interface with the rest of the application. This all is
possible and applications can go even further. Developers can create customized
database objects and database can take over data-bound functionality from the
application layer.

The framework can be extended in many ways. The design allows for the ob-
ject model to be substituted completely in order to be targeted to other database
engines. The extension can even further and create unified representation of
database schemas with full procedural support. There also room for improve-
ments in user interface. Mechanisms used within the framework can be used to
provide superior code-completion.

45

A. User documentation

A.1 Introduction

This framework is allows you to:

• manage multiple database’s source code

• share database code between databases

• improve database code quality and stability

• speed up database development

This manual will help you set up initial configuration and show you how to
use several of the main framework features. It is designated for application
and database developers. This manual presumes you are familiar with creat-
ing MSSQL databases as well as XML files with schemas. Within the manual
you will be instructed to create XML files, modify XML files and create MSSQL
databases and access MSSQL databases. Before you start, please read first the
glossary section. The manual is accompanied with demo application. Several
features will be demonstrated using the demo as an example.

A.2 Glossary

• Schema file - a XML file containing full or partial definitions of various
database objects

• CLR - Common Language Runtime, mainly refers to integrated .NET exe-
cution support within the database engine

• Assembly - a library or executable written in any .NET language, usually
ment for usage within the database

• Database template - set of schema files and assemblies, that provide com-
plete set of database objects

• Instance - a database running in MSSQL engine.

• System catalog - set of database views, that describe database objects.

• Schema - refers to a set of objects sharing the name prefix1. It can be in
form of system catalog subset or union several schema files.

• Catalog schema - set of framework objects, that represent database objects
as closely as possible

1Level 1 object name

46

• MasterSchema - set of framework objects, that represent database objects in
a way to provide faster development. Object definitions require less input
data than catalog schema and they derive the rest of object attributes
automatically, which in turn restricts a few options.

• SQL module - definition of stored procedure, scalar function or table func-
tions

• SQL module header - region of a SQL module from create or alter key-
word upto as keyword.

• SQL module body - region of a SQL module from as keyword upto the end
of SQL module.

A.3 Demo

A console application written in C#, that exhibits several framework features.
Demo project directory contains these files:

• Configuration.xml - main framework configuration file

• App/App.csproj - project file

• App/Constants.cs - helper project file

• App/Program.cs - main project file

• App/Interface.cs - automatically generated database interface

• Invoices/Schema.xml - definition of database objects

• Invoices/partner store.data.sql - SQL module fragment

• Invoices/partner store.output.sql - SQL module fragment

• Invoices/invoice new.data.sql - SQL module fragment

• Invoices/invoice list.output.sql - SQL module fragment

• Invoices/invoice detail.output.sql - SQL module fragment

• Invoices/invoice delete.data.sql - SQL module fragment

Several other framework files are referenced and are located in parent direc-
tories. Listed files demonstrate configuration of single database template. The
template exists in three instances: demo dev, demo test and demo. Database
procedures can be accessed using automatically generated interface. Application
itself does not contain any logic. Its main function is only to execute several
procedure calls.

Object definitions can be within Schema.xml. File declares database schema
invoices which contains 3 tables and 4 procedures. Procedure bodies are par-
tially generated. Non-generated fragments can be found in SQL files in the same
directory.

In order to successfully run demo application you need to:

• create empty demo dev, demo test and demo databases on (local) server.

• build release configuration of Meander solution - located under name
Meander-vs10.sln in main directory. Demo application is built within the
solution.

• deploy database code using following commands from within Schema/Demo

directory:

..\..\River.Meander.Console.exe . deploy all

• set Demo project as startup application and run the project.

The details about configuration and usage of console application are available
in next sections. Sections contain several snippets from the demo project.

A.4 Configuration

Usual framework configuration contains following relations:

App 1
Development

Db

App 1
Production Db

App 1
Development

Db

App 1
Production Db

App 1
Db Template

App 2
Db Template

App 1
Schema

App 2
Schema

Common
Schema

To create a initial configuration you must:

1. create own schema file - will contain information about database objects

2. create configuration XML file - will contain information about databases

3. reference framework schema files and own schema files in configuration

For initial configuration, please create an empty schema file:

<?xml version="1.0" encoding="utf-8" ?>

<c:Schema Name="invoices" xmlns:c="urn:river:meander:catalog:v1" >

</c:Schema>

Next, please create a minimal configuration file Configuration.xml:

<c:Meander.Configuration xmlns:c="urn:river:meander:configuration:v1">

<c:Instance Name="demo_dev" Template="demo" ServerName="(local)" />

<c:Template Name="demo">

<c:IncludeSchema Reference="Meander/Types"/>

<c:IncludeSchema Reference="Meander/Build"/>

<c:IncludeSchema Reference="Meander/Tools"/>

<c:IncludeSchema Reference="Meander/EndPoint"/>

<c:IncludeSchema Reference="Meander/Log/Frontend"/>

<c:IncludeSchema Reference="Meander/Log/Backend/Storage"/>

<c:IncludeAssembly Reference="Meander/Tools"/>

<c:IncludeSchema Reference="Demo/Invoices" />

</c:Template>

<c:SchemaReference Name="Demo/Invoices" FilePath="Invoices/Schema.xml" />

<c:SchemaReference Name="Meander/Types" FilePath="../Meander/Types.xml"/>

<c:SchemaReference Name="Meander/Build" FilePath="../Meander/Build.xml"/>

<c:SchemaReference Name="Meander/Tools" FilePath="../Meander/Tools.xml"/>

<c:SchemaReference Name="Meander/EndPoint" FilePath="../Meander/EndPoint.xml"/>

<c:SchemaReference Name="Meander/Log/Frontend" FilePath="../Meander/Log.Frontend.xml"/>

<c:SchemaReference Name="Meander/Log/Backend/Storage" FilePath="../Meander/Log.Backend.Storage.xml"/>

<c:AssemblyReference Name="Meander/Tools" FilePath="../../Bin/River.Meander.Tools.dll" PermissionSet="Safe"/>

<c:RegisterAssembly Name=".">

<c:RegisterFactory ClassName="River.Meander.Catalog.SqlFactory" />

<c:RegisterFactory ClassName="River.Meander.Catalog.XmlFactory" />

<c:RegisterFactory ClassName="River.Meander.MasterSchema.SqlFactory"/>

<c:RegisterFactory ClassName="River.Meander.MasterSchema.XmlFactory"/>

<c:RegisterProcessor

Name="AutomaticForeignKeys" ClassName="River.Meander.Catalog.Processors.AutomaticForeignKeys"

/>

<c:RegisterProcessor

Name="EnumCheckConstraints" ClassName="River.Meander.Catalog.Processors.EnumCheckConstraints"

/>

<c:RegisterProcessor

Name="DefinitionDependencies" ClassName="River.Meander.Catalog.Processors.DefinitionDependencies"

/>

<c:RegisterProcessor

Name="UnsafeStatementDetection"

ClassName="River.Meander.Catalog.Processors.UnsafeStatementDetection"

/>

<c:RegisterProcessor

Name="HistoryTables"

ClassName="River.Meander.MasterSchema.Processors.HistoryTables"

/>

<c:RegisterProcessor

Name="Procedures"

ClassName="River.Meander.MasterSchema.Processors.Procedures"

/>

<c:RegisterProcessor

Name="CSharpInterface"

ClassName="River.Meander.MasterSchema.Processors.CSharpInterface"

/>

<c:RegisterNameProvider

Name="Standard"

ClassName="River.Meander.Definition.StandardObjectNameProvider"

/>

</c:RegisterAssembly>

</c:Meander.Configuration>

This configuration requires you to have a database project directory, which
contains files:

• Configuration.xml - configuration file

• Invoices/Schema.xml - project schema file

• ../../Bin/River.Glacier.Common.dll - framework shared library

• ../../Bin/River.Meander.Common.dll - framework shared library

• ../../Bin/River.Meander.Tools.dll - framework shared library

• ../../Bin/River.Meander.Console.exe - framework application

• ../Meander/Types.xml - core of standard library

• ../Meander/Build.xml - core of standard library

• ../Meander/Tools.xml - standard library

• ../Meander/EndPoint.xml - standard library for EndPoint services sup-
port

• ../Meander/Log.FrontEnd.xml - standard library for logging

• ../Meander/Log.Backend.Storage.xml - standard library for log storage

Framework files are part of the distribution. Several more can be found at
the same location. Configuration file contains these XML element types:

• RegisterAssembly - reference to a .NET Assembly containing classes needed
to construct object model of databases. When no customization is needed,
section of the file can used as shown in this manual.

• SchemaReference or MasterSchemaReference - named alias for a schema
file. Specifies relative file location.

• AssemblyReference - named alias for a CLR assembly file. Specifies rela-
tive file location. In case an assembly references other assemblies that also
need to be deployed, these must be contained within the same directory as
the deployed assembly. Assembly deployment is governed using the assem-
bly version. It is necessary to manually increment version or use automatic
versioning.

• Template - named configuration of schema and assembly files. Template
should contain a valid and complete set of database objects in order to be
successfully deployed

• Instance - named reference to a MSSQL database. In case integrated
security cannot be used to access the database for full owner access a
ConnectionString attribute can be specified.

In case you need to maintain more databases that share the same name, you
can easily distinguish database instances using prefixes or postfixes. However,
now, you have to remove ServerName attribute and supply full connection strings
to given databases using ConnectionString attribute.

In case only a portion of database should be under the control of the frame-
work. Instance can specify IgnoreSchema and IgnoreAssembly options. Using
them hides whole schemas and can be used to provide backward compatibility.

Complete XML configuration file options are defined within Configuration.xsd.

A.5 Database objects

Standard work of database developer consists of creating and modifying database
objects. This is done by modifying respective XML files. After modifications are
complete, you check the consistency of database schemas. This section contains
examples of representation of several basic database objects. Next section will
show how to propagate those changes onto the database itself. Please note, that
there are two sets of database objects Catalog and MasterSchema.

A.5.1 Data types example
<?xml version="1.0" encoding="utf-8" ?>

<c:Schema Name="demo_schema" xmlns:c="urn:river:meander:catalog:v1" >

<c:Type Name="record_id" Definition="int"/>

<c:EnumType Name="record_state_enum">

<c:Item Id="A" Ident="Active"/>

<c:Item Id="X" Ident="Cancelled"/>

</c:EnumType>

</c:Schema>

Now demo schema will contain an int-based scalar type record id and char-
based enum scalar type record state enum. These types can later used as data
types of table columns or procedure parameters. It is a good practice to define
limited set of data types used across the database. It can save you problems with
potential data loss, precision loss or conversions.

A.5.2 Table example
<?xml version="1.0" encoding="utf-8" ?>

<c:Schema Name="demo_schema" xmlns:c="urn:river:meander:catalog:v1" >

<c:Table Name="record">

<c:Column Name="id" TypeName="record_id" Identity="disjoint" />

<c:Column Name="value" TypeSchemaName="meander" TypeName="identifier" />

<c:PrimaryKey Name="pk_record">

<c:Column Name="id"/>

</c:PrimaryKey>

</c:Table>

</c:Schema>

Now demo schema will contain also table record with columns id and value.
Here you can see an identity column using automatic disjoint sequences2. Since
value column references data types from a different schema TypeSchemaName

attribute has to be specified.

A.5.3 Procedure example
<?xml version="1.0" encoding="utf-8" ?>

<c:Schema Name="demo_schema" xmlns:c="urn:river:meander:catalog:v1" >

<c:StoredProcedure Name="proc">

<c:Parameter Name="id" TypeName="record_id"/>

<c:Definition>

<![CDATA[

begin

set nocount on

--TODO insert code here

end

]]>

</c:Definition>

</c:StoredProcedure>

</c:Schema>

Now demo schema will contain also stored procedure proc with single input
parameter. Procedure definition is supplied without the header3. Procedure body
can be stored externally by using element External instead of Definition. The

2Alternatively you specify identity in the same format as in create table statements.
3Everything that follows after as keyword. It is a deliberate design limitation of the frame-

work, that comments before the as keyword are not permitted and have to be moved to the
body of the procedure. Many developers misuse the fact that procedure can contain text before
the header and after the end of the body to store auxiliary statements or comments.

body must be saved in the same directory as the XML file, named in our instance
demo schema.proc.sql.

As was shown here urn:river:meander:catalog:v1 schema follows very
closely MSSQL database structure and object names. You should have no prob-
lem creating other object types not shown in this manual. Elements are defined
within Catalog.xsd.

A.5.4 Enhanced table example

The XML schema shown so far is used to represent database objects as closely
as possible to their form in real database4. Now you will see a MasterSchema.
A different XML schema, that allows you to create specialized types of objects.
Please note that only one type of xml schema can used to represent the target
database schema. MasterSchema also uses different configuration elements. In
order to register it in the configuration, please use RegisterMasterSchema and
IncludeMasterSchema configuration elements.

<m:Schema

Name="demo" Description=""

xmlns:m="urn:river:meander:master-schema:v1"

xmlns:p="urn:river:meander:procedure:v1"

>

<m:Table Name="test" Description="">

<m:Options Identity="false" History="false" Referencable="true" />

<m:KeyColumn Name="id" Type="test_id" Description=""/>

<m:Column Name="value" Type="meander.identifier" Description=""/>

</m:Table>

</m:Schema>

The first thing, you may have noticed, is a Description attribute on every
database object. It is accompanied with optional Comment attribute. Their func-
tion is to provide semantical documentation of the objects. Attribute values can
be used for automatically generated documentation.

New table test have considerably more options. Columns have to be desig-
nated one of following types:

• primary key column - non-nullable column, that will be part of primary key.

• logical key column - nullable column, that will be part of unique index.

• key - non-nullable column, that is both primary and logical key5

• attribute column - nullable column, that stores table data.

In case your table cannot be represented in this manner, you have to use previous
schema.

Options XML sub-element allows you these options:

• History - when true, a table holding record modification history will be
created. Using a generated trigger, each insert, update or delete will make
of record in the history table allowing you to review previous versions

4It is also necessary for providing backward compatibility.
5When primary key values are defined by user input or table is append only with no separate

logical key.

of the records. When schema does not specify HistorySchemaName at-
tribute, the same schema is used to contain the history table under name
other schema.test history6. History table also contains information about
user account that modified the data. Please see
meander.session push in Tools section for more details.

• Identity - specifies whether primary key column or key column is an iden-
tity column. When true, there can only be one primary key column or key
column. Identity is disjoint by default.

• Referencable - specifies whether primary key or key columns should be
used as a signature for generating foreign key references.

• Immutable - when true, table record cannot be modified or deleted, only
added. When referenced by a table with history, column data type is not
changed to meander.id, but kept to provide reference integrity.

A.5.5 Enhanced procedure example
<?xml version="1.0" encoding="utf-8" ?>

<m:Schema

Name="invoices" Description=""

xmlns:m="urn:river:meander:master-schema:v1"

xmlns:p="urn:river:meander:procedure:v1"

>

<m:Procedure Name="proc_test" Description="">

<p:Input>

<p:Scalar Name="id" Type="meander.id"/>

<p:Vector Name="idents">

<p:Scalar Name="ident" Type="meander.identifier"/>

</p:Vector>

<p:Scalar Name="id2" Type="meander.id"/>

<p:Vector Name="idents2">

<p:Scalar Name="ident" Type="meander.identifier"/>

</p:Vector>

</p:Input>

<p:Block Name="data">

<p:Edit TableName="test"/>

</p:Block>

<p:Block Name="output" />

<p:Output>

<p:Scalar Name="result_id" Type="test_id"/>

<p:Vector Name="result_idents">

<p:Scalar Name="ident" Type="meander.identifier"/>

</p:Vector>

</p:Output>

</m:Procedure>

</m:Schema>

The main difference between standard stored procedures and enhanced pro-
cedures is pre-defined input and output. I/O contract is specified in procedure
definition. Body of the procedure is partially generated. You can specified non-
generated regions using Block element. Definition of block is external only a
should be stored under name invoices.proc test.data.sql where data is the
name of the block. The procedure can contain more than one block depending
on the desired use. It is a good practice to separate data table modification from
generating procedure output. Vector input and output are translated into table
variables whereas Scalar input and output are translated into simple variables.

6Naming conventions can be modified, please see IObjectNameProvider

Since generated procedure body is quite large, it is best viewed directly in
SQL server after deployment. In the procedure body, you will clearly see several
sections. For every Block, there is a named region created.

A.6 Console

Once database objects are assembled, you can use console application7 to compare
or deploy objects to the database. Console application follows diagram:.

Configuration

Development DbXML files Production Db

Console

CheckTargetCheckSource

Print errors Compare Print errors

Deploy
Print differ-

ences and errors

Print progress
and errors

Application can invoked using:

River.Meander.Console.exe <Configuration XML file> <Command> <Instance> <Switches>

Configuration XML file is a relative path to a xml file with configuration.
In case current working directory contains only one configuration file a short-
cut ”.” can be used. Instance parameter is matched against Name attribute
of Instance elements in configuration. Value ”all” can be specified to execute
command against all instances.

Available Commands are:

• check-source or cs - Creates object collection from xml schema files of
the specified instance. Prints any problems with the schemas8.

• check-target or ct - Creates object collection from database catalog.
Prints any problems with the schemas.

• compare or co - Creates changeset between XML schema files and database
catalog of the specified instance. Prints differences and problems with the

7Application is designed to be very simple. It is planned that the framework will be com-
pleted with UI application, that will superseed Microsoft SQL Server Management Console.
Therefore application is designed with functionality in mind.

8By far the most common error is referencing the non-existent object because of the typing
error.

schemas. May fail if the desired operation is not supported9. In case a
--verbose switch is specified, every change is printed by name, otherwise
only cummulative statistic is shown.

• deploy or de - Creates changeset between XML schema files and database
catalog of the specified instance and executes prerequisite checks and gen-
erated scripts. May fail when prerequisites are not met, for example setting
column non-nullable when it already contains null values. Prints any errors
and problems that ocurred during the deployment.

A.7 Tools

Meander database schema is supplied with several utility functions and proce-
dures. Next follows the listing of more notable ones.

• meander.print - Prints text data into SQL console. It solves problem, that
standard print command shows statements delayed and cannot print texts
beyond 8KB.

• meander.applock acquire and meander.applock release - Wrapper for
application locks. When in transaction, you can create your own exclusive
locking mechanism.

• meander.sequence* - allows customized sequence generation. It is designed
for integer and string sequences with dependent factors such as current year.
The sequences are global within the database and can be shared among
many tables.

declare @year [meander].[id]

set @year = datepart(year, getdate())

declare @id [meander].[id]

exec [meander].[sequence_get_next_id]

@context1 = ’noris_commission.commission’, --used only for specified table

@context2 = @year, --every year sequence resets

@format = ’{C2}{V:#####}’, --output id is a concatenation of context2 and

--padded current value

@next_id = @id out

• meander.regexp* - utility functions for text manipulation.

select s.[index],

s.[output]

from [meander].[regexp_split](

’A|B|C|D’,--input data

’\|’,--pattern

1 --options: 0 -> case-sensitive, 1 -> case-insensitive

) s

• meander.hash* - utility functions for hashing. Integrated hashbytes func-
tions has problems with string truncation.

select [meander].[hash_sha512](

0xDEADBABE

)

9At some point, senior developer may disable automatic table recreation.

• meander.hex - converts binary input into hex-formatted string output

• meander.session* - initializes session data such as session start, current
account name and log merge guid. It is necessary to initialize session before
calling enhanced procedure or modifying table with history table.

exec [meander].[session_push]

@entity = ’john.doe’,

@session_start = @session_start

@merge_guid = @merge_guid

/* insert code here */

exec [meander].[session_pop]

In case you use SQL accounts:

exec [meander].[session_push_native]

/* insert code here */

exec [meander].[session_pop]

• meander.string join* - an aggregate function, that concatenates string
values. Aggregate output is limited to 8KB. Functions are available in
several variants.

select a.[class],

meander.string_join_comma(a.[member]) [members]

from (select ’Class’ [class],

’Member1’ [member]

union all select ’Class’ [class],

’Member2’ [member]

) a

group by

a.[class]

• meander.temporal vector sum - calculates sum aggregate function over
time-aware keys.

select *

from [meander].[temporal_vector_sum](

’ select 123 [group_id], --int key representing group-by-key

0 [vector_index],--position is vector

2 [count], --value

convert(datetime, ’’2011-01-01’’) [valid_from],

convert(datetime, ’’2011-10-01’’) [valid_to]

union all select 123 [group_id],

0 [vector_index],

3 [count],

convert(datetime, ’’2011-06-01’’) [valid_from],

convert(datetime, ’’2011-12-01’’) [valid_to]

’, 1

) a

Output time intervals are continuous with second precision spanning from
minimal valid from to maximal valid to.

Bibliography

[1] Comingore D.; Hinson D. (2006): Professional SQL Server 2005 CLR Pro-
gramming: with Stored Procedures, Functions, Triggers, Aggregates, and
Types. Amazon.

[2] Developer Express Inc. (2011), Specifics of joining data from multiple tables
in XPO.
URL www.devexpress.com/Support/Center/p/K18431.aspx

[3] Red Gate Sofware Limited (2011), SQL Comparison SDK.
URL www.red-gate.com/products/sql-development

[4] CodeSmith Tools LLC (2010), CodeSmith GENERATOR.
URL www.codesmithtools.com/product/generator#templates

[5] Sledge O.; Spenik M. (1999): Microsoft SQL Server 7.0 DBA Survival Guide.
Amazon.

[6] Microsoft, CREATE FUNCTION.
URL msdn.microsoft.com/en-us/library/aa258261(v=sql.80).aspx

[7] Microsoft, Limitations of the xml Data Type.
URL msdn.microsoft.com/en-us/library/ms187107(v=sql.90).aspx

[8] Microsoft, SSPI.
URL msdn.microsoft.com/en-us/library/aa380493(v=vs.85).aspx

[9] Microsoft, XACT STATE (Transact-SQL).
URL msdn.microsoft.com/en-us/library/ms189797.aspx

[10] Simple Talk Publishing (2011), SQLServerCentral.com.
URL www.sqlservercentral.com

[11] Ben-Gan I.; Kollar L.; Sarka D.; Kass S. (2009): Inside Microsoft SQL Server
2008: T-SQL Querying. Microsoft Press.

[12] W3C, Simple Object Access Protocol.
URL www.w3.org/TR/soap12-part1/

[13] Wikipedia, Ajax (programming).
URL en.wikipedia.org/wiki/Ajax_(programming)

[14] Wikipedia, LINQ.
URL msdn.microsoft.com/en-us/netframework/aa904594

[15] Wikipedia, NoSQL.
URL en.wikipedia.org/wiki/NoSQL

[16] Wikipedia, Online transaction processing.
URL en.wikipedia.org/wiki/Online_transaction_processing

57

www.devexpress.com/Support/Center/p/K18431.aspx
www.red-gate.com/products/sql-development
www.codesmithtools.com/product/generator#templates
msdn.microsoft.com/en-us/library/aa258261(v=sql.80).aspx
msdn.microsoft.com/en-us/library/ms187107(v=sql.90).aspx
msdn.microsoft.com/en-us/library/aa380493(v=vs.85).aspx
msdn.microsoft.com/en-us/library/ms189797.aspx
www.sqlservercentral.com
www.w3.org/TR/soap12-part1/
en.wikipedia.org/wiki/Ajax_(programming)
msdn.microsoft.com/en-us/netframework/aa904594
en.wikipedia.org/wiki/NoSQL
en.wikipedia.org/wiki/Online_transaction_processing

	Introduction
	Analysis
	New feature
	Interface
	Processing
	Testing
	Deployment
	Feature change request
	Redeployment
	Alternatives
	Do-It-Yourself approach
	ORM
	Linq
	NoSQL

	Summary

	Specification
	System roles and use cases
	Requirements
	Configuration
	Logging
	Object model
	Object model manipulation
	Changeset manipulation
	Standard library
	Database services

	Summary

	Design and implementation
	Environment
	Log
	Libraries
	Object model
	Enhanced tables
	Contracts
	EndPoint

	Programmers documentation
	Introduction
	Configuration and environment
	Logging
	Patterns
	Object
	Building objects
	Custom objects
	Custom processor
	Building changeset
	Endpoint service model
	Workspace table editing

	Results
	Effectivity
	Adoption process

	Conclusion
	User documentation
	Introduction
	Glossary
	Demo
	Configuration
	Database objects
	Data types example
	Table example
	Procedure example
	Enhanced table example
	Enhanced procedure example

	Console
	Tools

