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Study programme: Informatics

Specialization: Software Systems

Prague, 2011



I would like to thank my supervisor RNDr. Irena Mlýnková Ph.D., for her helpful
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1 Introduction

The XML is a popular data format and it has become the format of choice for data

representation for its simple but powerful design. To enforce a defined structure

of XML documents, one can use XML schema definition languages (for example

DTD [41], or XML Schema [36, 14]).

Although designing an XML schema is a simple task (especially in DTD lan-

guage), a half of randomly crawled documents [7, 30] does not link any associated

schema. In addition, schemas used are “quite simple, compared to the features

provided by these languages” [7].

To overcome this problem, the research of automatic schema inference from

XML documents has emerged. Each element in the XML schema has its con-

tent model defined with a regular expression [8]. Thus the problem of learning

a regular language from a finite set of positive examples arises and this can not

be solved in general [20]. Current solutions either define a subclass of regular

languages, that is learnable in the limit [5, 10], or solve the problem heuristically

[38, 34, 40]. This work belongs to the latter.

To infer a regular expression heuristic solutions usually construct a prefix tree

automaton (PTA) that accepts all positive examples given and then merges equiv-

alent states of the automaton to generalize the language accepted by it. When

the automaton is considered small enough, it is converted to an equivalent regular

expression. As there are infinitely many automatons that can be inferred, and

each of them can be converted into infinitely many equivalent regular expression

one has to design clever criteria and algorithms. The solutions differ in state

equivalence definitions, the decision of when to stop merging and how to convert

the automaton into regular expression.

But not only XML documents can be used to infer the schema. “In real-world

XML data the XML schema is usually considered as a kind of data documentation.

Since the schema is not used as it is supposed to be, i.e. for checking the correct

structure of XML documents, it is usually not updated in case the respective data

are.” [31] It is quite common that there is an obsolete schema available which

can be exploited for the inference. To our knowledge, only [31] deals with XML

schema inference with help of an obsolete one, but it lacks implementation and

experimental results.

Even though relatively many solutions proposed, none of them is implemented

in a user friendly and easy-to-use environment publicly available. The potential

users have only commercial solutions available.
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1.1 Aim of the Thesis

The aim of the thesis is to analyze recent approaches and find the aspects to

improve. We choose the previous work [38] as a starting point for our own solution

and refine it by employing new metrics (new MDL design) and schema input. By

using the additional information obtained from an obsolete schema we improve

the inference performance and satisfy the user expectations, that the inferred

schema should be similar to the old one. The key point is an implementation,

which should be ready-to-use and publicly available. We have integrated this

work into the jInfer framework [28] developed earlier as a software project, so it

is ready-to-use in a friendly environment and easy to extend in future work.

1.2 Structure of the Thesis

We define basic terms in Section 2; the precise problem formulation is in Section

3. An analysis of existing solutions can be found in Section 4, which is followed

by the core of the work, the proposed solution in Section 5. A brief description

of implementation details is in Section 6 and we complete the work with exper-

imental results in Section 7. Section 8 concludes the work done and discusses

the work left for future research. The attachment contains a source code of this

work, available under the GNU GPL.
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2 Basic Definitions

This section contains definitions and other prerequisites used in the rest of the

text.

2.1 Formal Languages Theory

2.1.1 Languages, grammars, etc.

Definition 1 (Alphabet). An alphabet is any finite, non-empty set of symbols.

Usually denoted as Σ.

Definition 2 (Word). A word over the alphabet Σ is any finite sequence of

symbols from set Σ. Empty sequence (empty word) is denoted by ε.

Definition 3 (Language). A language over the alphabet Σ is any set of words

over Σ. Languages are usually denoted L with an index.

Definition 4. The notation Σ∗ denotes set of all words over the alphabet Σ.

Definition 5 (Word concatenation). Let u = u1u2u3 . . . un, v = v1v2v3 . . . vm be

two words, then the word u · v = u1u2u3 . . . unv1v2v3 . . . vm is a concatenation of

u, v. The · concatenation operator is usually omitted.

Definition 6 (Language concatenation). Let L1, L2 be languages, then the lan-

guage L1 ·L2 = {uv|u ∈ L1∧ v ∈ L2} is a concatenation of languages L1, L2. The

· operator is usually omitted.

Definition 7 (Language iteration). Let L be a language, let n ∈ N \ {0}, let
L0 = {ε}, then the Ln is defined recursively: Ln = Ln−1 · L. Furthermore

L∗ =
⋃∞

i=0 L
i.

Definition 8 (Grammar). A grammar G is a tuple (N, T, P, σ), where N is a set

of non-terminal symbols, T is a set of terminal symbols, such that N ∩ T = ∅,
σ ∈ N is an initial non-terminal and

P ⊆ (N ∪ T )∗N(N ∪ T )∗ × (N ∪ T )∗

is a finite set of production rules. Rule (u, v) ∈ P is usually denoted as u −→
G

v

or u −→ v ∈ P .
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Definition 9 (Production step). Let G = (N, T, P, σ) be a grammar. Binary

relation =⇒
G
⊆ (N ∪ T )∗ × (N ∪ T )∗ defined as

x =⇒
G

y iff ∃w1, w2 ∈ T ∗∃u −→ v ∈ P such that x = wiuw2 and y = w1vw2

is called a production step.

Definition 10 (Regular grammar). A regular grammar G = (N, T, P, σ) is a

grammar where

P ⊆ (N × (T ∗(N ∪ {ε})))

Definition 11 (Context free grammar). A context free grammar G = (N, T, P, σ)

is a grammar where

P ⊆ (N × (N ∪ T )∗)

Definition 12 (Language generated by a grammar). Let G = (N, T, P, σ) be a

grammar. A language generated by G is L(G) = {w|w ∈ T ∗ ∧ σ =⇒
G

∗ w}. Where

=⇒
G

∗ is a transitive closure of binary relation =⇒
G

.

Definition 13 (Regular language). Language L(G), where G is a regular gram-

mar, is called regular.

Definition 14 (Regular Expression (RE)). A regular expression (RE) R is de-

fined recursively as follows:

• ε is regular expression corresponding to language ∅ (called the ε regular

expression),

• let a ∈ Σ, then a is regular expression corresponding to language {a} (token
regular expression),

• let R1, R2 be regular expressions corresponding to languages L1, L2, then

R1·R2 is regular expression corresponding to language L1·L2 (concatenation

regular expression),

• let R1, R2 be regular expressions corresponding to languages L1, L2, then

R1|R2 is regular expression corresponding to language L1 ∪L2 (alternation

regular expression),
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• let R be regular expression corresponding to language L, then R∗ is regular
expression corresponding to language L∗.

Theorem 1. A regular expression R corresponds to a regular language L(R).

Definition 15 (Extended context free grammar). An extended context free gram-

mar G = (N, T, P, σ) is a grammar where

P ⊆ (N ×R)

where R is a regular expression over the alphabet N ∪ T \ {ε}.

Definition 16 (Deterministic Finite-State Automaton (DFA)). A deterministic

finite-state automaton A is a tuple A = (Q,Σ, δ, q0, λ, F ), where:

• Q is a finite set of states, such that λ 6∈ Q,

• λ is a dummy state indicating immediate halt,

• Σ is an alphabet (finite set of symbols),

• δ : (Q× Σ)→ Q ∪ {λ} is a transition function,

• q0 ∈ Q is an initial state,

• F ⊆ Q is a set of final states.

Definition 17 (Configuration). A configuration of DFA A is a tuple (q, w) ∈
Q×Σ∗, where q is the current state of the automaton, and w is the word generated

so far.

Definition 18 (Computational step). Binary relation
À
⊆ (Q × Σ∗) × (Q × Σ∗)

defined as

(q, w)
À
(q′, wa) iff δ(q, a) = q′,

where w ∈ Σ∗ is word generated so far and a ∈ Σ is the symbol generated in this

step, is called a computational step.
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Definition 19 (Language generated by DFA). A language L(A) generated by

DFA A is a set of words defined as follows

L(A) = {w|w ∈ Σ∗ ∧ ∃qF ∈ F : (q0, ε)
À

∗ (qF , w)}

Where
À

∗ is a transitive closure of binary relation
À
.

We define the DFA as generative, starting with ε as output word. At each

computational step, one symbol is generated concatenated with the output word

of the automaton. Once a computation gets into λ state, it can not end, since

there is no way out of it.

Definition 20 (Prefix Tree Automaton (PTA)). Let A = (Q,Σ, δ, q0, λ, F ) be a

DFA. Let (V,E) be a directed underlying graph of A, where V = Q is a set of

nodes and E ⊆ Q×Q is a set of edges defined as follows

(q1, q2) ∈ E iff ∃a ∈ Σ : δ(q1, a) = q2.

A PTA is a DFA whose underlying graph is a tree rooted at the initial state

q0.

2.1.2 Deterministic Probabilistic Finite-State Automaton

Deterministic Probabilistic Finite-State Automaton (DPFA) is DFA extended

with probabilities

• at each transition: that this transition is followed,

• at each state: that the generation stops at this state.

Formal definition which follows is a restricted version of [37, def. 4], since this

version fits better programming purposes of this thesis.

Definition 21 (Deterministic Probabilistic Finite Automaton). A DPFA is a

tuple A = (Q,Σ, δ, q0, λ, F, P ), where:

• Q is a finite set of states, such that λ 6∈ Q,

• λ is a dummy state indicating immediate halt,

• Σ is an alphabet (finite set of symbols),

• δ : (Q× Σ)→ (Q ∪ {λ}) is a transition function,
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1|0

c|3

2|3a|4

d|1

3|4
b|2

b|2

(a) An example of DPFA, state λ and tran-
sitions leading to it are omitted

1|0.0

c|0.3

2|0.6
a|0.4

d|0.1

3|1.0
b|0.2

b|0.4

(b) Corresponding DPFA with probabilities

Figure 1: Example DPFA

• q0 ∈ Q is an initial state,

• P : δ → N is function of transition use counts,

• F : Q→ N is function of state final counts.

Use counts and final counts can be null (0 ∈ N). State λ serves as a dummy

state indicating immediate halting (or transition non-existence in other words).

Use counts and final counts can be easily converted into corresponding probabil-

ities of transitions and states, thus every DPFA is also DPFA in the sense of [37,

def. 4].

Example 1. Let A = (Q,Σ, δ, q0, λ, F, P ), where Q = {1, 2, 3}, Σ = {a, b, c, d},
q0 = 1, F (1) = 0, F (2) = 3, F (3) = 4 and

δ((1, a)) = 2 P ((1, a)) = 4

δ((1, b)) = 3 P ((1, b)) = 2

δ((1, c)) = 1 P ((1, c)) = 3

δ((1, d)) = 2 P ((1, d)) = 1

δ((2, a)) = λ P ((2, a)) = 0

δ((2, b)) = 3 P ((2, b)) = 2

δ((2, c)) = λ P ((2, c)) = 0

δ((2, d)) = λ P ((2, d)) = 0

δ((3, a)) = λ P ((3, a)) = 0

δ((3, b)) = λ P ((3, b)) = 0

δ((3, c)) = λ P ((3, c)) = 0

δ((3, d)) = λ P ((3, d)) = 0

The automaton is depicted in Fig. 1. Each state has its label in form name|final

count and each transition in form symbol|use count.
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Definition 22 (Probabilistic Prefix Tree Automaton). Let

A = (Q,Σ, δ, q0, λ, F, P )

be a DFPA. Let (V,E) be a directed underlying graph of A, where V = Q is a

set of nodes and E ⊆ Q×Q is a set of edges defined as follows

(q1, q2) ∈ E iff ∃a ∈ Σ : δ(q1, a) = q2.

A PPTA is a DFPA whose underlying graph is a tree rooted at the state q0.

2.1.3 Interval Extended Regular Expression

For the purpose of this work, a interval extended regular expression is defined as

follows:

Definition 23 (Interval Extended Regular Expression). An interval extended

regular expression (IERE) R is a tuple R = (C,m, n), where C is a IERE defined

recursively (see below) and where numbers m ∈ N, n ∈ N∪{∞},m ≤ n represent

minimal and maximal repeat counts of C. C is defined recursively as follows:

• let R be a RE corresponding to language L, then (R, 1, 1) is IERE corre-

sponding to language L,

• let (R1,m1, n1), (R2,m2, n2) be IEREs corresponding to languages L1, L2,

then C = (R1,m1, n1) · (R2,m2, n2) is IERE corresponding to language

L1 · L2 (concatenation IERE),

• let (R1,m1, n1), (R2,m2, n2) be IEREs corresponding to languages L1, L2,

then C = (R1,m1, n1)|(R2,m2, n2) is IERE corresponding to language L1 ∪
L2 (alternation IERE),

• let (C, 1, 1) be IERE corresponding to language L, then (C,m, n); m,n ∈ N
is IERE corresponding to language

Lm ·

(
m−n⋃
i=0

Li

)
.

Moreover, the (C,m,∞) is IERE corresponding to language

Lm · L∗.

8



This definition is equivalent with Def. 14, but it establishes syntactic shorthands

for any kind of regular expression repeat specification in form of (m,n). Well

known shorthands C?; C+; C∗ are represented as (C, 0, 1); (C, 1,∞); (C, 0,∞)

respectively.

Example 2. Expression C = ((a, 1, 1)|(b, 1, 1), 0,∞) · (c, 1, 1) corresponds to

language L = {w = x1, . . . , xn|(∀i ≤ n − 1 : xi ∈ {a, b}) ∧ (xn = c)}. An IERE

can be visualized as a tree, see Fig. 2.

(concatenation, 1, 1)

(alternation, 0, inf)

child

(token:c, 1, 1)

child

(token:a, 1, 1)

child

(token:b, 1, 1)

child

Figure 2: Example IERE

When writing IEREs, we use syntactic shorthands: we omit m,n if they are

both equal to 1, well known shorthands ?+ ∗ represent m,n values (0, 1); (1,∞);

(0,∞) respectively, we omit () where possible, as priority of ? ∗ + operators is

higher then priority of |· operations and finally we omit · operator completely. A

shorthand notation of IERE from Example 2 is (a|b) ∗ c.

2.2 XML Documents and Schemas

An alphabet of element names ΣE is the set of all names appearing in XML

documents and schema files on input. All text nodes are named the same, e.g.

“textnode”, if it does not conflict with another element name.

An XML schema is ECFG S over the alphabet of element names [8]. The

XML schema consists of production rules called element type definitions. The

left-hand side of an element type definition is an element type and the right-hand

side is an element content model. An element content model is basically a regular

expression over the alphabet of element names. The XML schema can be written

in various schema definition languages, such as DTD [41] or XML Schema [36, 14].

An element instance is literally the element and its contents as it is found in an

XML document. An element instance content is a word over the alphabet of

element names.

9



The element instance in the XML document is valid against its element type

definition in the schema, if the element instance content is a word from a language

L(R), corresponding to a regular expression R - the right-hand side of the element

type definition. The XML document is said to be valid against the schema, if

all element instances in the document are valid against their appropriate element

type definitions.

Example 3. Consider the following XML document and its schema
<person> element instance

<info> element instance

Some text element instance

</info>

<note/>

</person>

person −→ (info+, note)

info −→ (textnode?)

note −→ (ε)

The alphabet of element names in this example is

ΣE = {person, info, textnode, note}.

Each line in the sample schema is an element type definition, the left-hand side
is element type, the right-hand side is a content model. The content of element
instance person from the example is a word info, note over alphabet ΣE. The
same schema represented in DTD language would be as follows

<!ELEMENT person (info+,note)>

<!ELEMENT info #CDATA>

<!ELEMENT note EMPTY>

2.3 MDL Principle

For the purpose of this work we utilize the minimum description length principle

(MDL), which is described in [23].

Example 4. Consider the data consisting of points in Figure 3(a). Consider the

x-axis as time and y-axis as the values coming from an unknown data source.

We want to predict the future y values. For this purpose, we have to exploit an

underlying data regularity (there must be at least minimal regularity unless the

data are produced by fair coin tosses).

If we hope that the data are generated using a polynomial and some random

noise. We can fit the data using a simple linear regression and clearly, this

does not capture the data regularity well. Looking for a 2nd and 10th degree

10
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(a) Points and 1st degree polynomial
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(b) Trade-off 2nd degree polynomial
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(c) Polynomial of degree 10 overfits the
data

Figure 3: An example of overfitting

polynomial with least error will result in data fitting as depicted in Fig. 3(b) and

3(c).

How to select the “best” data explanation? Instead of selecting too simple

(1st degree) or too complex (10th degree) polynomial, it makes sense to select

the trade-off polynomial as the best data explanation.

This is where MDL principle can be employed. It is a general method to select

the best data explanation among possible ones.

The possible explanation is also called a hypothesis explaining the data and

the set of possible explanations is usually denoted as model. The model has to

be designed artificially. Then the MDL suggests us to view the data as being

generated by a particular hypothesis. As we have seen in Example 4, the decision

of which hypothesis explains the data best, is not a trivial task. Care must be

taken to not over-fit the data and at the same time to capture the underlying

regularity.

2.3.1 MDL - The Basic Idea

Following the tutorial [23], learning data can be viewed from two points of view:

data prediction based on the data seen until now and data compression. Both

11



views point to the regularity underlying the data. Let us quote the basic idea

from [23]:

MDL: The basic idea

The goal of statistical inference may be cast as trying to find reg-

ularity in the data. ‘Regularity’ may be identified with ‘ability to

compress’. MDL combines these two insights by viewing learning as

data compression: it tells us that, for a given set of hypotheses H and

data set D, we should try to find the hypothesis or combination of

hypotheses in H that compresses D most.

2.3.2 Definition of Crude MDL

In this work, special version of MDL called “Crude MDL” as defined in [23] is

used:

Crude, Two-part Version of MDL Principle (Informally Stat-

ed) Let H(1),H(2), . . . be a list of candidate models (e.g., H(k) is the

set of k-th degree polynomials), each containing a set of point hy-

potheses (e.g., individual polynomials). The best point hypothesis

H ∈ H(1) ∪ H(2) ∪ . . . to explain the data D is the one which mini-

mizes the sum L(H) + L(D|H), where

• L(H) is the length, in bits, of the description of the hypothesis;

and

• L(D|H) is the length, in bits, of the description of the data when

encoded with the help of the hypothesis.

The best model to explain D is the smallest model containing the

selected H.

This basically tells us, that the best hypothesis is the one, that compresses the

data most. To define the L(H) we usually design an ad-hoc code of the hypothesis.

There are some universal codes, that may help us (for example the one from

Section 2.3.4 for integers). The L(D|H) is usually a probabilistic code, given

the H is a probabilistic source of the data which emits a particular value x with

probability p.

2.3.3 Probabilities and Codelengths

In the following text, the C denotes a code and LC the codelength function. The

codelength function returns the length of code (in bits) of the given data input
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encoded using code C.

Two most important observations from the tutorial are interesting in the scope

of this work:

Probability Mass Functions correspond to Codelength Func-

tions Let Z be a finite or countable set and let P be a probability

distribution on Z. Then there exists a prefix code C for Z such that

for all z ∈ Z, LC(z) = d−logP (z)e. C is called the code correspond-

ing to P . Similarly, let C ′ be a prefix code for Z. Then there exists a

(possibly defective) probability distribution P ′ such that for all z ∈ Z,
−logP ′(z) = LC′(z). P ′ is called the probability distribution corre-

sponding to C ′.

Moreover C ′ is a complete prefix code iff P is proper (
∑

z P (z) = 1).

Thus, large probability according to P means small code length ac-

cording to the code corresponding to P and vice versa. We are typical-

ly concerned with cases where Z represents sequences of n outcomes;

that is, Z = X n(n ≥ 1) where X is the sample space for one observa-

tion.

The P that corresponds to L minimizes expected codelength

Let P be a distribution on (finite, countable or continuous-valued) Z
and let L be defined by

L := arg min
L∈LZ

EP [L(Z)].

Then L exists, is unique, and is identical to the codelength function

corresponding to P , with lengths L(z) = −logP (z).

These two observations describe a relationship between probabilistic source of da-

ta and minimal codelength achievable when compressing the data. When the data

is believed to originate from probabilistic source, the only meaningful encoding

to use is the code C from Sec. 2.3.3.

2.3.4 Standard Universal Code for Integers

In [22, p. 100] a standard universal code for integer values is presented. The code

should be used for integers which are believed not to originate from probabilistic

source (and values are possibly unbounded). The codelength for integer value n
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is computed using formula:

LN(n) = log n+ log log n+ log log log n+ ...+ log c0

where c0 ≈ 2.865. It means “sum logarithms until the first negative value en-

counters (exclude it), then add log c0 constant”. The motivation and details of

the code can be found in [22], simplified version is described in [23], see also [35].

2.3.5 Uniform Code

When probabilistic source of data has a uniform distribution, that is: data con-

sists of n equally probable options, each with probability of appearance equal to
1
n
, then the codelength of each option equals

− log(
1

n
).

Which equals

log(n),

as one would expect.

2.3.6 Noninteger Codelengths

Some readers may be concerned why particular codelengths defined in next sec-

tions are not rounded to the next integer value. As this topic is far beyond the

scope of this work, let us just quote [22, p. 99] once again:

Summary: Integers Don’t Matter

There is NO practical application of MDL in which we worry about the

integer requirement for codelengths; we always allow for codelength

functions to take noninteger lengths. Instead, we call a function a

“code- length function” if and only if it satisfies the Kraft inequality,

that is, iff it corresponds to some defective probability distribution.
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3 Problem Statement

The basic problem studied in this work can be formulated as follows:

Problem 1 (XML schema inference). Given a set of input XML documents D,

we want to infer a schema SD, such that each input document d ∈ D is valid

against schema SD. It should be concise and precise enough, while, at the same

time, general.

A common way to solve the problem is to extract all element instances E

from input documents, cluster them into groups E1, . . . , En, assuming that in

each group element instances corresponding to the same element type definition

reside. The set E is often called the initial grammar, as each element e ∈ E can

be viewed as a production rule e −→ econtents of respective ECFG.

Example 5. Consider the two input XML documents as depicted in Fig. 4.

The initial grammar rules extracted from these two documents is depicted in

Table 1 where the right-hand sides are IEREs (see Def. 23) and horizontal lines

divide the rules into groups according to element names. As right-hand sides are

always concatenation IEREs, they can be also viewed as words over alphabet of

element names.

<person>

<info>

Some text

<note/>

</info>

</person> <person>

<more/>

<more/>

<more/>

</person>

Figure 4: Example XML documents

person −→ (info, 1, 1)
E1

person −→ (more, 1, 1) · (more, 1, 1) · (more, 1, 1)

info −→ (textnode, 1, 1) · (note, 1, 1) E2

note −→ (ε, 1, 1) E3

more −→ (ε, 1, 1)
E4more −→ (ε, 1, 1)

more −→ (ε, 1, 1)

Table 1: Initial grammar rules extracted from documents in Fig. 4

For every group Ei we extract the right-hand sides of rules into set Si of

positive examples - input strings (words). Then for every group Ei a regular ex-

pression Ri has to be inferred using positive examples Si from a regular language.

The problem then boils down to the problem of
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Problem 2 (Regular Expression Inference). Given a set S of words (positive ex-

amples) over the alphabet of element names, we want to find a regular expression

R, such that S ⊆ L(R).

The solution to this problem is limited by the solution of a subproblem in-

corporated in it, and that is the problem of learning a regular language from

positive examples. In [20] has been shown, that no algorithm solving the latter

problem exists. Although regular expressions allowed in DTD/XSD correspond

to a subclass of regular languages called one-unambiguous regular languages, in

[9] is shown that even for this class no such algorithm exists. Thus Problem

2 has to be solved either by defining a subclass of regular languages for which

an algorithm capable of learning it from positive examples exists, or by ad-hoc

heuristic measures.

A variation of Problem 1 is also studied in this work (in Sections 5.2.1, 5.2.3):

Problem 3 (XML schema inference using an old schema). Given a set of input

XML documents D and an old schema Sold of these documents (possibly not all

documents are valid against the schema), we want to infer a new schema SD for

input documents, such that each document is valid against this new schema. It

should be concise and precise enough, while at the same time, general. We should

make it similar to the old schema or at least utilize the information provided by

it.

Problem 3 is solved using ideas from [31]. We extend this work by trying to

solve a third problem:

Problem 4 (XML schema inference using an old schema and input document

invalidation). Given a set of input XML documents D and an old schema Sold for

these documents (possibly not all documents are valid against the schema), we

want to infer a new schema SD for input documents, such that the majority of

documents are valid against SD. It should be concise and precise enough, while

at the same time, general. If the old schema Sold is available on the input, we

should make the new schema SD similar to it or at least utilize the information

provided by it. Some element instances e ∈ E in input documents may be tagged

as invalid, if they are excentric and it is believed that they should be repaired

to be valid against the new schema, rather than making the new schema too

complex by incorporating them into inference.

The Problem 4 is faced mainly in Section 5.2.8 by newly developed heuristic

measures.
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4 Related Work

Several approaches to the problem of schema inference for a set of XML doc-

uments (see Problem 1) have been proposed. Some of them define an identifi-

able subclass of regular languages and develop algorithm to identify the subclass

[5, 10, 12], others propose an ad-hoc heuristic, which infers no special subclass of

regular languages [40, 34, 38].

4.1 Generating Grammars for Structured Documents Us-

ing Grammatical Inference Methods

Paper [5] solves Problem 1 using two identifiable subclasses of regular languages:

k-contextual and (k, h)-contextual languages. “Our assumption behind is that

the grammars used in structured documents have only limited context in the

following sense. If a sufficiently long sequence of elements occurs in two places in

the examples, the elements that can follow this sequence are independent of the

position of the sequence in the document structure.” [5] Let us quote [5, lemma

5.5, p. 39] as the definition of a k-contextual language:

Definition 24 (k-contextual language). A regular language L is k-

contextual if and only if there is a finite automaton M such that L

= L(M), and for any two states p0 and q0 of M and any string v

with |v| = k we have: if there are states pk and qk of M such that

δ(p0, v) = pk and δ(q0, v) = qk, then pk = qk

An automaton M is said to be k-contextual, if it fulfills the conditions

from Def. 24.

and [5, lemma 5.10, p. 44] as the definition of the (k, h)-contextual language:

Definition 25 ((k, h)-contextual language). A regular language L is

(k, h)-contextual if and only if there is a finite automaton M such

that L = L(M), and for any two states p0 and q0 of M , and all

input symbols a1a2 . . . ak we have: if there are states p1, . . . , pk and

q1, . . . , qk such that δ(p0, a1) = p1, δ(p1, a2) = p2, . . . , δ(pk−1, ak) = pk

and δ(q0, a1) = q1, δ(q1, a2) = q2, . . . , δ(qk−1, ak) = qk, then pi = qi, for

every i with 0 < h ≤ i ≤ k.

An automaton M is said to be (k, h)-contextual, if it fulfills the con-

ditions of Def. 25.
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Authors define both in another way following the previous work [32], and then

prove equivalence with definitions based on automatons.

The inference proceeds as follows: first a PTA accepting all positive examples

is constructed, then it is modified by merging states to obtain a k-contextual or a

(k, h)-contextual automaton, which proceeds to a disambiguation procedure and,

finally, the disambiguated automaton is converted to a regular expression.

Example 6. We take the example from [5]. Consider the following initial gram-

mar rules for element Entry:

Entry −→ Headword, Inflection, Example, Example

Entry −→ Headword, Inflection, Parallel form,Example, Example, Example

Entry −→ Headword, Parallel form,Example, Example

Entry −→ Headword, Preferred form,Example

Entry −→ Headword, Inflection, Preferred form,Example, Example

The prefix tree automaton built from these rules is depicted in Fig. 5(a), a 2-

contextual automaton created by merging states (14, 16), (17, 5, 8, 9, 12), (7, 11)

is depicted in Fig. 5(b), and a (2, 1)-contextual automaton created from the

2-contextual automaton by further merging states (15, 13), (4, 16, 7, 5), (6, 10) is

depicted in Fig. 5(c).

Furthermore, authors propose an algorithm for converting PTA into a (k, h)-

contextual automaton in linear time in number of states. Large part of the work is

dedicated to disambiguation of content model into 1-unambiguous content model

(see [15] for 1-unambiguity).

4.2 Learning Deterministic Regular Expressions for the

Inference of Schemas from XML Data

Works [10, 12, 9] are implemented into the SchemaScope [13] environment and

are basically based on the following observation [10]:

In practice, regular expressions occurring in DTDs and XSDs are con-

cise rather than arbitrarily complex. Indeed, a study of 819 DTDs and

XSDs gathered from the Cover Pages (xml.coverpages.org) (including

many high-quality XML standards) as well as from the Web at large,

reveals that regular expressions occurring in practical schemas are

such that every alphabet symbol occurs only a small number of times
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(a) PTA constructed from the initial grammar
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(c) (2, 1)-context automaton created by merging states of the
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Figure 5: An example for (k, h)-context
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[29]. In practice, therefore, it suffices to learn the subclass of de-

terministic regular expressions in which each alphabet symbol occurs

at most k times, for some small k. We refer to such expressions as

k-occurrence regular expressions.

In this quotation references have been adjusted to guide the reader properly.

As the authors state, their work focuses on inference of k-occurrence regular

expressions, which are defined as follows

Definition 26 (k-occurrence regular expression (k-ORE)). A regular expression

is k-occurrence if every alphabet symbol occurs at most k times in it.

When k = 1, authors call such a regular expression as single occurrence regular

expression (SORE). Inference of SOREs is studied in [9]. Authors prove that

the class of 1-unambiguous regular expressions is not learnable in the limit [9]

and prove that k-ORE is learnable in the limit. The authors then propose an

algorithm for learning k-OREs and estimating the best k using various metrics.

4.3 The sk-strings method for inferring PFSA

In the work [34] first the PTA is constructed from given positive examples. Ad-

ditionaly, used PTA contains statistical information from examples, in particular

transition use counts are set during PTA construction. State final counts are

represented as a special out-transition of the final state with the meaning “end of

computation” (using a delimiter symbol “/” on such transitions). The automaton

model is equivalent with Def. 21, and it is called PFSA in the work.

Then, the problem of state equivalence is taken literally from the other side -

not the context preceding the state, but tails starting at the state are inspected.

For this purpose, the authors define a k-string:

Definition 27 (k-string). Let A = (Q,Σ, δ, q0, F ) be PFSA, let q ∈ Q be some

state of A. The set of k-strings of state q (denoted as k-strings(q)) is defined as:

k-strings(q) = {z|(z ∈ Σ∗, |z| = k ∧ (δ(q, z) ⊂ Q ∨ |z| < k ∧ δ(q, z) ∩ F 6= ∅)}

That is, the set of all words over the alphabet Σ, where

• each word is either of length k and starting at state q, following transitions

and reading symbols of the word, the automaton must not halt,

• or the word is shorter, and starting at state q, following transitions and

after reading all symbols of the word, one must end in a final state.
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Furthermore, the probability of the k-string is defined as a product of all proba-

bilities of each transition traversed in generating that string.

Several state sk-equivalence heuristics are proposed:

sk-OR The top s% of the k-strings of state 1 are k-strings at state 2, or vice-

versa,

sk-AND The top s% of the k-strings of state 1 are k-strings at state 2, and

vice-versa,

sk-LAX The top s% of the k-strings of state 1 is the same set as the top s%

of the k-strings of state 2, in the same order, but perhaps with a different

probability distribution,

sk-STRICT The top s% of the k-strings of state 1 is the same set as the top

s% of the k-strings of state 2 in the same order, with the same probability

distribution.

The top s percent of state k-strings are computed by ordering k-strings in de-

creasing order (according to probability), then taking just enough of them (from

the beginning) for which probabilities sum up to s. It is unclear what to do, when

some strings have the same probability and one must decide which of them take

into the top s% set.

Example 7. Merging based on sk-equivalence is depicted in Fig. 6. The starting

PTA is depicted in Fig. 6(a), then given s = 100%, k = 2, sk-AND heuristics,

merging of states (6, 7) is performed, which results in a non-determinism at state

6, so it is solved by merging states (6, 7, 8, 9). States (13, 16, 4, 6, 11) satisfy the

merge criterion and are merged. Once again a non-determinism appears at state 4,

it is solved by merging states (4, 14, 17, 5, 12). States (10, 15) satisfy the criterion,

so they are merged. The result is depicted in Fig. 6(b).

Clearly, using greedy merging, one may end up in a too general automaton.

Therefore, the authors define a measure to select the best trade-off automaton

from many options. First, using different parameters of the sk-equivalence, pos-

sible automatons are generated, and then they are evaluated using the quoted

MML [19] formula [39]:

N∑
j=1

(
mj + log

(tj − 1)!

(mj − 1)!
∏mj

i=1(nij − 1)!
+mj log V +m′

j logN

)
− log(N − 1)!

(1)
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(b) An automaton created by merging states of the PTA, s = 100%, k = 2,
sk-AND heuristics

Figure 6: An example for sk-strings

where N is the number of states in the PFSA, tj is the number of

times the jth state is visited, V is the cardinality of the alphabet

including the delimiter symbol, nij the frequency of the ith arc from

the jth state, mj is the number of different arcs from the jth state

and m′
j is the number of different arcs on non-delimiter symbols from

the jth state. The logs are to the base 2 and the MML is in bits.

The automaton with minimal MML value is selected.

4.4 On Structural Inference for XML Data

[40] builts on the previous work [34]. To search a wider space of solutions, au-

thors implement the Ant Colony Optimization (ACO, see [18]) coupled with the

previously defined MML measure (1). The ACO works in iterations. In each iter-

ation, several artificial ants search the possible automaton generalizations using

the sk-strings heuristic, after the whole iteration is done, each automaton inferred

is measured by a MML and the trail followed by the corresponding ant is tagged

with positive pheromone. The amount of pheromone is weighted with respect to

the MML measure of the automaton inferred. Each ant has only a limited life -
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a number of merges it can do until it dies.

The ant is selecting states to merge using the sk-strings heuristic alternatives.

Each alternative has its value calculated as a combination of an immediate MML

change h when alternative would be merged and the positive pheromone p left

from previous iteration:

value = pα + hβ

where α, β are mixing parameters of the algorithm. From this value, the proba-

bility of selecting the alternative x is calculated:

P =
value∑

all alternatives value

To compute the heuristic measure h, the authors use an immediate MML value

change:

h =
−δMML(A,merge) +MML(A)

MML(A)

where δMML(A,merge) is the immediate change of MML value for the au-

tomaton A, when the merge alternative is applied. The value h is therefore

a ratio of the new automaton MML value to the old automaton MML value.

The pheromone spread by an ant is calculated by weighting an individual ant

performance compared with average of the iteration:

p =
averageMML

mmlOf(a.solution)

The authors finally propose a hybrid heuristic called sk-ANT, which combines

the ACO and the sk-equivalence in such a way that for small automatons more

merging alternatives are considered, thus the heuristic is more driven by ants

searching the space. For large automatons, a stricter sk-equivalence applies and

the heuristic is more driven by sk-equivalence criteria.

4.5 Even an Ant Can Create an XSD

In [38], the previous method is extended and refined. The main improvements

are as follows: advanced element clustering considering not only element name,

but the structure of element contents to identify distinct elements, and inference

of a xs:all particle in XML Schema output. The XML document can be rep-

resented as a tree, then the element content is represented as a subtree of the

document tree. The metric used to cluster elements according to their contents

is a modified tree edit distance based on [33]. The clustering algorithm used is
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a a modification of mutual neighborhood clustering (MNC) algorithm [25]. The

clustering of elements is a big improvement, since it is common that two elements

with same element name, but with a different semantic appear in XML files. For

example element named “name” is commonly used, and in a book archive may

be used as a name of the author with subelements surname, etc. or as a name

of the book, where the schema should define only string content model. These

two versions of the element name can be exploited using the element clustering

proposed in [38].

The second big addition of the work is an ability to infer xs:all particle and

thus shortening the regular expression in the output schema (in comparison to a

complicated regular expression naming nearly all possible permutations).

Minor improvements were added to the ACO heuristic, particularly, the nega-

tive feedback, which is assigned to merge alternative immediately (not after whole

iteration) forces ants to explore even wider space of possible solutions. The dif-

ference is also in the evaluation of a solution. In [40] the PFSA is evaluated using

MML, but in [38], each PFSA is first converted into a corresponding regular

grammar and that grammar is evaluated using a simple MDL measure.

4.6 On Inference of XML Schema with the Knowledge of

an Obsolete One

We build our solution also on work [31]. It deals with the problem of schema

inference given not only XML input documents, but with the knowledge of an

old schema of these files. Not all input documents have to be valid against the old

schema. The work proposes merging of grammar rules from the initial grammar

with rules extracted from the schema into one common automaton. This concept

helps with schema generalization, all input documents are valid against newly

inferred schema, while the schema is kept as similar with the old one as possible.

The authors propose the concept of schema specialization, where schema con-

structs unused in input documents should be removed from the schema. Inference

of tight bounds of minOccurs, maxOccurs are proposed in the [31].

The majority of the proposed solutions from [31] were implemented in this

work.
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5 Proposed Solution

The proposed solution is a composition work built on ideas from [38, 5, 34, 31].

The work provides a complete schema generation environment, incorporated into

the jInfer framework [28], which makes it ready-to-use for potential users. The

main improvements introduced in the proposed solution are as follows:

• schema files input - possibly an old schema of XML documents on input

(implementation of [31]) - the user can select whether to use a schema

inferredon the basis of the old one or a schema inferred purely from input

XML documents,

• new (more accurate) MDL measures of automaton and input data,

• possibility to automatically tag selected input grammar rules as invalid,

excluding them from inference (deviations, misspelled words or too excentric

data) and thus generate more accurate schema for valid inputs (and letting

the user repair invalid parts of input documents),

• great and easy extensibility of proposed algorithms and ready to use envi-

ronment.

. Thorough description of whole solution together with the proposed improve-

ments follows. Sections 5.2.7, 5.2.1 and 5.2.8 contain descriptions of main im-

provements.

5.1 Solution Overview

We follow a two step design proposed in [38]. First, positive examples (element

instances from input documents) are clustered, grouping instances of XML ele-

ments corresponding to one element type definition into one cluster. Input mod-

ules of jInfer framework ([28]) parse XML schema files into grammar rules. These

are clustered together with element instances originating from XML documents.

Clustering of both is done based on the element name. After the clustering, each

cluster can contain one rule from schema input files and zero or more rules from

XML input documents.

Since in both XSD and DTD the element content model is basically specified

by a regular expression, we consider positive examples (actual contents of XML

elements in input XML files) as being generated by some DPFA (as defined in

Def. 21) and try to infer this automaton. If there is a regular expression from

schema input, then a DPFA torso is constructed (see Section 5.2.1) from it.
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Figure 7: Solution overview

Starting with an empty automaton or with a torso, we run the same algorithm

for building DPFA in the form of PPTA from positive examples (see Section

5.2.2).

The automaton is then modified by merging its states. When states are

merged, the language generated by the automaton becomes more general. Merg-

ing states process is driven by merge criterion testers, which search for candidate

states for merging.

The inferred automaton is then converted into an equivalent regular expression

using the state removal algorithm (see [24]) and the regular expression is added

into a list of all XML element definitions (output grammar). On the output,

schema is generated by naming all element definitions from output grammar and

specifying their content model definitions in the selected schema language (DTD

or XML Schema). Converting of output grammar into the schema language is

done using output modules of the jInfer framework (see [28]). The whole process

is depicted in Fig. 7.
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5.2 Automaton Inference

As stated before, element instances of one cluster, found in input XML documents

are considered to be generated by DPFA. If there is a regular expression extracted

from the schema input file, automaton torso is built at first. Then the algorithm

of building probabilistic prefix tree automaton takes place.

5.2.1 Building DPFA Torso from Regular Expression

A grammar rule of each element definition are extracted from input schema files.

The right-hand side of the rule is a regular expression - content model of the

element defined in the schema.

To build an DPFA torso from this regular expression, Algorithm 1 and Alg.

2 are used. The transitions are set up by this algorithm with use counts set to 0.

As schema is assumed to be the model of data, use counts are to be incremented

when traversing these transitions in Algorithm 4 to extend this automaton torso

to generate all input strings. Analogical explanation holds for final count values

of states. The process of building the DPFA torso is depicted in Fig. 8.

Algorithm 1 Build DPFA Torso
Input:

R - A set of initial grammar rules extracted from schema files
A - an empty DPFA

Output:
Modified automaton A, such that it would generate a language corresponding
to regular expressions in R, if it had correct probabilities set up

1: for each r ∈ R do
2: buildTorsoOnRegex(A, q0, r.getRightHandSide())

3: end for

5.2.2 Building DPFA as Probabilistic Prefix Tree Automaton

Algorithm to build a PPTA is simple: for each input string (positive example),

read its symbols and follow transitions of the automaton while it is possible

(transition exists). Then create new transitions and states while reading symbols

of the string. The last state created in this process gets incremented its final

count value, also increment use count values of transitions along the way. After

reading one input string, one is sure, that the automaton is extended to generate

the string. The algorithm is depicted in Algorithms 4, 5, and the building process

is depicted in Figures 9, 10.

If there is an automaton torso on input of this algorithm, everything works the

same way, but instead of building the automaton as a prefix tree, it is a mixture
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Function 2 buildTorsoOnRegex(A, q, S)

Input:
A - Automaton
q - State to start building from
S - Regular expression, denote its components as (R,m, n) = S

Output:
Creates a structure corresponding to S starting at state q recursively. Returns
the state, in which building ended.

1: if (R,m, n) = (ε, 0, 0) then
2: F (q)← F (q) + 1
3: return q
4: else if (R,m, n) is in the form of token: (R,m, n) = (a, 1, n); a ∈ Σ then
5: q′ ← δ(q, E) if there is a transition, follow it
6: if q′ = λ then there is no transition, create it
7: q′ ← createNewState(A) create a new state
8: δ(q, a)← q′ add transition
9: P ′(q, a, q′)← 0 new transition is not used
10: end if
11: else if (R,m, n) is in the form of concatenation: R = (S1, 1, n1) · (S2, 1, n2) · . . . · (Si, 1, ni)

then
12: q′ = q
13: for each (Sk, 1, nk) ∈ R do
14: q′ = buildTorsoOnRegex(q′, (Sk, 1, nk)) recurse, keep the last state
15: end for
16: else if (R,m, n) is in form of alternation: R = (S1, 1, n1)|(S2, 1, n2)| . . . |(Si, 1, ni) then
17: E = new list
18: for each (Sk, 1, nk) ∈ R do
19: E.addLast(buildTorsoOnRegex(q, Sk)) build alternations
20: end for
21: mergeStates(A,E) merge ending states into the first state from the list
22: q′ = E.getF irst()
23: else
24: error permutation is not supported
25: end if
26: if n =∞ then occurrence is unbounded (*)
27: mergeStates(A, q, q′) use merging of states to produce cycle
28: return q building should continue from here
29: end if

30: return q′

Function 3 createNewState(A)

Input:
A - Automaton

Output:
Creates new state q′, with no out transition and returns it.

1: q′ ← new state create new state
2: Q← Q ∪ {q′} add new state to the set of states
3: F (q′)← 0 new state final count set to 0
4: for each x ∈ Σ do
5: δ(q′, x)← λ no transition out of new state
6: end for

7: return q′ return the new state
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1|0

(a) At the begin-
ning, empty au-
tomaton

1|0

2|0
a|0

3|0

b|0

(b) After recursing once to
solve alternation, before line
21 is executed. State q is the
state 1|0

1|0 2|0
a|0

b|0

(c) After line 21 is executed,
at the next line, q′ is set to the
state 2|0

1|0

a|0

b|0

(d) After line 27
is executed, the
Kleene closure is
solved by merging
of states q and q′

1|0

a|0

b|0

4|0
c|0

(e) After the building is com-
plete. The automaton imple-
mentation never denotes two
states with same name (that is
why the name 4 is used for the
new state)

Figure 8: Building of a DPFA torso from regular expression (a|b) ∗ c

of the given torso (remember that the algorithm follows transitions if they exist)

and some branches to generate strings not represented by the regular expression

from schema input.

Algorithm 4 Build DPFA as PPTA
Input:

R - A set of initial grammar rules
A - An empty automaton

Output:
Automaton A which generates strings from right-hand sides of R.

1: for each r ∈ R do
2: buildPTAonString(A, r.getRightHandSide())

3: end for

5.2.3 Automaton Minimization

Remember the Fig. 9, where, after reading all input strings, transitions with use

counts set to zero remained. Such transitions originating from DPFA torso and

never used in real-worl XML data are useless in the schema, so they are removed

by procedure called automaton minimization (see [24]). When minimizing an au-

tomaton, first, all transitions with 0 use count are removed. Then the automaton

is searched for states that remained unreachable from the initial state and states,
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Function 5 buildPTAonString(A, S)

Input:
S - Input string (sequence of alphabet characters)
A - Automaton

Output:
Modifies automaton A to generate S

1: q = q0
2: for each a ∈ S do traverse symbols of S
3: q′ ← δ(q, a)
4: if q′ = λ then no transition exists
5: q′ ← createNewState(A) create new state
6: δ(q, a)← q′ add transition
7: P (q, a, q′)← 0 new transition is not used
8: end if
9: P (q, a, q′)← P (q, a, q′) + 1 increment transition use count along the way
10: q ← q′ move on to the next state
11: end for

12: F (q)← F (q) + 1 increment the final count

1|0 2|0
a|1

3|1
b|1

(a) After parsing input string ab

1|0 2|0
a|2

3|1
b|1

4|1

c|1

(b) After parsing input strings ab, ac

1|1 2|0
a|2

3|1
b|1

4|1

c|1

(c) After parsing input strings ab, ac, ε

Figure 9: An example of building DPFA as PPTA

1|0

a|0

b|0

4|0
c|0

(a) DPFA torso from Fig. 8(e)

1|0

a|1

b|0

4|1
c|1

5|1

d|1

(b) After parsing input strings
ac, d

Figure 10: An example of building DPFA as PPTA starting from DPFA torso
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1|0

a|1

2|1
a|2

3|1
b|1

(a) An example DPFA

1|1

a|1

a|2

3|1
b|1

(b) After merging of state 2 into
state 1. Final count of state 1 is
already incremented

1|1

a|3

3|1
b|1

(c) After transition and loop col-
lapsing of state 1

Figure 11: An example of merging states process

from which no final state can be reached and these are removed as well. Min-

imization is done at the beginning of each Merging State Strategy (see Section

5.2.6).

5.2.4 Merging States

Merging two states proceeds as follows: select one state as preserved (usually

the first one) and the second one to be removed from the automaton. All in-

transitions of the removed state are reconnected to the preserved state. All out-

transitions of the removed state are reconnected to begin from the preserved state,

and all loops of the removed state are copied to the preserved state.

With DPFA, a care must be taken, to preserve invariant of use count and

final count properties. After the merging, all in-transitions of the preserved state

are divided into clusters by the transition source state. For each cluster of in-

transitions, second grouping by the alphabet symbol is performed. Finally, each

group is ensured to have exactly one transition: if there are 2 or more transitions

in the group, these are merged into one transition so that the use count is set as

the sum of merged transitions. Analogical algorithm is run for out-transitions and

loops. We call this process “collapsing state transition and loops” and it preserves

the use count property. To preserve the final count property, the preserved state

final count value is simply incremented by the removed state final count value.

Merging states and collapsing transitions is depicted in Fig. 11.
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5.2.5 Selecting States to Merge

To select states to merge in some clever way we employ two state equivalence

criteria: sk-strings [34] heuristic criterion and k, h-context [5] criterion. Mod-

ules responsible for providing candidate alternatives for merging are called Merge

Criterion Testers. From the available alternatives a module called Merging State

Strategy can select which to merge and which not (cooperation of these two blocks

is depicted in Fig. 7).

5.2.6 Merging State Strategies

We have implemented several Merging State Strategies called: Greedy, Greedy-

MDL, HeuristicMDL and DefectiveMDL. First three are no surprise, the last is

our new proposal (it is discussed in Sec. 5.2.8).

Greedy The Greedy strategy simply merges all the candidate states provided

by Merge Criterion Testers. For example for the k, h-context tester this means,

that it simply creates a k, h-context automaton as defined in [5]. Algorithm is

depicted in Alg. 6.

Algorithm 6 Greedy Merging State Strategy
Input:

M - A list of Merging State Testers
A - An automaton

Output:
Returns an automaton modified by merging all alternatives provided to it
from testers

1: repeat
2: L← empty list
3: for each m ∈M do
4: L.addAll(m.getAlternatives(A))
5: end for
6: for each alternative ∈ L do
7: for each listOfStates ∈ alternative do
8: mergeStates(A, listOfStates)
9: end for
10: end for
11: until L = ∅
12: return A

GreedyMDL The GreedyMDL strategy uses the MDL to evaluate a DPFA

and input strings encoded with help of the automaton. The precise MDL code

used is described later in the next section. For now, it is sufficient to assume the

existence of an objective function mdl(A, S) which is given the automaton and

32



input strings on input and returns a non-negative real value, the overall quality

of solution, where a lower value signifies a better solution (remember this is the

description length function).

While trying to merge candidate alternatives, the GreedyMDL strategy always

keeps current minimum quality value achieved (and the associated automaton). A

space of possible solutions is explored in greedy way, but some sort of a complete

scanning of continuation possibilities is done: all candidate alternatives to merge

are tried. The algorithm stops when there are no more candidates to merge, or

when all alternative candidates returned by merge criterion testers end up in an

automaton with higher quality value than actually achieved. The algorithm is

depicted in Alg. 7.

Algorithm 7 GreedyMDL Merging State Strategy
Input:

M - A list of Merging State Testers
A - An automaton
S - Input strings (positive examples from XML documents)
mdl(A, S) - Quality measure function

Output:
An automaton modified by merging only those alternatives provided by
testers, which lead to lower quality value

1: ϕm ← mdl(A,S) Quality of best automaton
2: repeat
3: staggering ← true
4: L← empty list
5: for each m ∈M do
6: L.addAll(m.getAlternatives(A))
7: end for
8: A′ ← clone(A) Test it on copy of automaton
9: for each alternative ∈ L do
10: for each listOfStates ∈ alternative do
11: mergeStates(A′, listOfStates)
12: end for
13: ϕ← mdl(A′, S)
14: if ϕ < ϕm then
15: ϕm ← ϕ
16: A← A′

17: staggering ← false
18: else
19: A′ ← clone(A)
20: end if
21: end for
22: until staggering = true

23: return A

HeuristicMDL The HeuristicMDL as a simple heuristic strategy works basi-

cally the same way as GreedyMDL, but it holds n best minimal solutions instead
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of only one. At each iteration, merge criterion testing for one randomly selected

automaton of the n best automatons is done. All the alternatives returned are

attempted to be merged and only the automatons with lower quality value than

the current worst solution are stored in capacity-constrainted sorted list (thus it

always holds the best n solutions). The algorithm stops when it is staggering

- when the set of best n solutions is not modified for a whole iteration. The

algorithm is depicted in Alg. 8.

Algorithm 8 HeuristicMDL Merging State Strategy
Input:

M - A list of Merging State Testers
A - An automaton
S - Input strings (positive examples from XML documents)
mdl(A, S) - Quality measure function
n - How many intermediate solutions to keep

Output:
An automaton modified by merging states with heuristic approach

1: solutions← new sorted list of pairs
2: ϕold ← mdl(A,S)
3: solutions.insert((ϕold, A))
4: stagger ← 0
5: repeat
6: A′ ← randomSelectFromList(solutions)
7: L← empty list
8: for each m ∈M do
9: L.addAll(m.getAlternatives(A))
10: end for
11: A′′ ← clone(A′)
12: for each alternative ∈ L do
13: for each listOfStates ∈ alternative do
14: mergeStates(A′′, listOfStates)
15: end for
16: ϕ← mdl(A′′, S)
17: if ϕ < solutions.last.ϕ then
18: solutions.insert((ϕ,A′′))
19: end if
20: if solutions.size > n then
21: solutions.removeLast()
22: end if
23: end for
24: if solutions.first.ϕ = ϕold then
25: stagger = stagger + 1
26: end if
27: ϕold ← solutions.first.ϕ
28: until stagger < 10

29: return solutions.first.A
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5.2.7 Objective Quality Function (MDL)

Before we describe DefectiveMDL strategy, we stop to describe the MDL designed

to evaluate solutions. In the sense of the crude MDL (see Sec. 2.3.2), one has

to design a code for a hypothesis and a code for data compressed using the

hypothesis. Since in this work a basic assumption is that positive examples were

generated by some DPFA, the hypothesis is the DPFA itself. And as described

in Sec. 2.3.3, if a hypothesis is of probabilistic character, the best code to use is

the complete prefix code with codelengths equal to −log(p) for the one option,

whose probability of appearance in data equals to p.

When generating strings using the DPFA in each state of the automaton the

algorithm decides which transition to follow or whether to output a whole word

(end generation process) at random. This random choice is always driven by a

probability density function defined by probabilities:

• of each transition that it is followed,

• the actual state that it is final.

Given a state q, the computation of these probabilities is straightforward. First

we compute a unity value

uq = F (q) +
∑

q′∈Q,a∈Σ

P (q, a, q′).

Then function P ′
q : Σ× (Q ∪ {λ})→ [0, 1] is defined as

P ′
q(a, q

′) = P (q,a,q′)
uq

(∀q′ ∈ Q, a ∈ Σ)

P ′
q(a, q

′) = 0 (q′ = λ)

The function P ′
q together with the value f ′

q = F (q)
uq

forms a probabilistic density

function of a discrete probability random variable Xq i.e. “what is done next, if

we are in the state q” defined as

P [Xq = (a, q′)] = P ′
q(a, q

′)

P [Xq = terminate] = f ′
q

Using the set of random variablesXq (one for each state q), encoding input strings

is simple. When the automaton generates a string, the configuration sequence is

the same, as if it had the string on input and the automaton was accepting the

string. Thus computing a codelength of all input strings can be done easily - for
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each input string, traverse automaton while reading it and record probabilities of

transitions along the way.

Let us consider input string s = a1, a2, . . . , an. Let probabilities p1, . . . , pn be

recorded transition probabilities, and pn+1 the probability f ′
q of the state, where

reading of the string ended (accepted). Codelength C of the string s then equals

to

C(s) =
n+1∑
i=1

−log(pi).

By summing logarithms one gets

C(s) = −log

(
n+1∏
i=1

pi

)
. (2)

This naturally corresponds with seeing the problem from the other side: prob-

ability ps of the whole string generated equals the product of probabilities of

decisions taken at each configuration. If one designs a complete prefix code over

probability density function of probabilities ps, the codelength of a single string

equals exactly (2).

There is no need to traverse the automaton with each input string to obtain

the total codelength of all input strings. When DPFA was built, each input string

incremented the use count value of each transition passed and incremented the

final count value of the state it ended in. When DPFA is traversed for each input

string, each transition is passed exactly its use count times and traversing ends

in each state exactly its final count times. From this, it is easier to compute the

total codelength of input strings S (encoded with help of DPFA A) as

L(S|A) =
∑

q∈Q,a∈Σ,q′∈Q

(
P (q, a, q′) · −log

(
P (q, a, q′)

uq

))
, (3)

where {uq|q ∈ Q} are precomputed unity values for each state.

The key problem is how to encode the DPFA. There is no universal way,

DPFA is an ad-hoc model to solve a custom ad-hoc problem and we propose an

ad-hoc code for it. Let us denote the states of an automaton as q1, . . . , q|Q|. The

proposed code is

|Q|, |Σ|, alphabet, 〈q1〉, . . . , 〈q|Q|〉. (4)

Where |Q| is the cardinality of the set of states encoded using standard universal

code for integers (SUCI, see Sec. 2.3.4), |Σ| is the cardinality of Σ encoded using

SUCI. The symbols of an alphabet are named using a uniform code in the table
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alphabet, which is a translation table from uniform encoding of each symbol into a

prefix code. The prefix code for alphabet symbols is established using a histogram

of symbol occurrences over all transitions of the automaton. Probability of an

individual symbol a for this code is therefore

pa =
occurences of symbol a

occurences of all symbols
.

Each 〈qi〉 is a code of one state in the automaton:

|Q′
i|, 〈t1〉, . . . , 〈t|Q′

i|〉 (5)

Where Q′
i is a set of all states immediately reachable from the state qi, formally

Q′
i = {q; q ∈ Q,∃a ∈ Σ : δ(qi, a) = q}. Each 〈tj〉 is a code of one out-transition

of the state qi . Each in form:

q, P (q, a), a (6)

Where q is a code for a destination state encoded using a uniform code over all

states, P (q, a) is a use count value of the transition encoded using SUCI, a is a

symbol of alphabet encoded using the prefix code for the alphabet established

earlier.

Let us denote pa the probability of each symbol a in the alphabet. Then the

codelength of this ad-hoc code of the automaton is:

L(A) = suci(|Q|) + suci(|Σ|) + |Σ| · log(|Σ|)− log

(∏
a∈Σ

pa

)
+

+

 |Q|∑
i=1

suci(|Q′
i|)

+

+

|Q|∑
i=1

|Q′
i|∑

j=0

(log(|Q|) + suci(P (q, a))− log(pa)) , (7)
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where
suci(|Q|) is the SUCI length for state count,

suci(|Σ|) is the SUCI length for alphabet size,

|Σ| · log(|Σ|) is the sum of lengths of each left side in the alphabet

translation table - each symbol with the codelength

log |Σ|,(∑|Q|
i=1 suci(|Q′

i|)
)

is the sum of all SUCI lengths for transition counts of

each state,

−log
(∏

a∈Σ pa
)

is the sum of lengths of each right side in the alphabet

translation table - each symbol a with the codelength

−log(pa),
the last double sum is the sum of the sum of codelength of each transition.

Destination state with uniform codelength of log |Q|,
SUCI length for use count and prefix codelength for a

symbol a from the alphabet.

The whole codelength function is given as the sum of (3) and (7):

mdl(A, S) = L(S|A) + L(A) (8)

And since S is not used anywhere in computation of L(S|A), it may be omitted

as a parameter of mdl(A, S). Precisely, it should be removed from Algorithms 7,

8.

5.2.8 DefectiveMDL Merging State Strategy

A user can chain merging state strategies and what really makes sense, is to

attach this strategy at the end of chain. Now, the automaton is ready to be

converted into a regular expression, but before the conversion step, we propose

DefectiveMDL strategy. It is an algorithm to decide which input strings are

so excentric that they probably are “mistakes” and should be repaired in input

documents rather then incorporated into the output schema. The strategy to

identify possibly excentric input strings is based on the following ideas. Let T

be the set of input strings we suspect as excentric. Try removing T from the

inference process if the inferred schema can be much simpler then, we consider

T to be excentric. But this would simply remove all input strings, since no

documents fit EMPTY construct exactly.

Here, a trade-off thinking applies and that is where MDL can help. Try to

remove input strings T and if the MDL valuemdl(A, S\T ) is smaller enough than

the value mdl(A, S) consider T as excentric. To formalize the “smaller enough”,
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we define a criterion: When the description length of a new automaton and

input strings, together with the description length of the removed input strings

(encoded by typing them in alphabet) is smaller than the description length of

an old automaton + all input strings, the strings are considered excentric. To

formalize this, we define an error code for one input string a1, . . . , an as a sequence

of prefix codes for each symbol (established the same way as in the previous code

(7)), thus a codelength of the error code for one input string equals to

Lerror(s) =
n∑

i=1

−log(pai) = −log

(
n∏

i=1

pai

)
(9)

where pai is the probability of symbol ai in the established prefix code for the

alphabet. Since by removing input strings it may occur that we also remove

some symbol from the alphabet used in the automaton, the prefix code for the

alphabet is established with a histogram not only over the automaton, but also

over removed input strings. Basically, the prefix code for the alphabet remains

the same, since it has to encode all input strings no matter they are used in the

automaton or in the error code. So the codelength of the error code of all removed

strings is

Lerror(S) =
∑
s∈S

Lerror(s) (10)

We denote mdl(A, S, Sr) the MDL codelength of an automaton A, strings S

encoded using the automaton A and strings Sr removed. Then mdl(A, S, Sr)

equals:

mdl(A, S, Sr) = mdl(A, S) + Lerror(Sr) (11)

The MDL comparison can be likened to a compression of a text document using

zip compression. When the length of the zip-file plus length of some removed

sentences from the document is smaller than the length of the original zip-file

with all sentences, it makes sense to deduce from the phenomena that the removed

sentences are so excentric that they corrupt underlying data regularity (which is

exploited during compression).

A complete algorithm of DefectiveMDL is depicted in Alg. 9. Input strings are

removed from the automaton easily: the automaton is traversed while reading an

input string (remember that the automaton is deterministic) and each transition

gets its use count value decremented along the way. The final state gets its

final count value decremented. Since only strings that previously builtup the

automaton are removed, use counts and final counts can never reach negative

values. Function tryRemoveInputString(A, s) is depicted in Alg. 10, function
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Algorithm 9 DefectiveMDL Merging State Strategy
Input:

A - An automaton
S - Input strings (positive examples from XML documents)
mdl(A, S, Sr) - a quality measure function (see Equation (11))

Output:
An automaton possibly modified by removing input strings

1: Sr ← ∅ Strings removed until now
2: S′ ← getSuspectedStrings(A,S)
3: while S′ 6= ∅ do
4: ϕ← mdl(A,S, Sr)
5: for each s ∈ S′ do
6: tryRemoveInputString(A, s))
7: end for
8: ϕ′ ← mdl(A,S \ S′, Sr ∪ S′)
9: if ϕ′ ≥ ϕ then
10: for each s ∈ S′ do
11: undoRemoveInputString(A, s))
12: end for
13: else
14: S ← S \ S′

15: Sr ← Sr ∪ S′

16: end if
17: S′ ← getSuspectedStrings(A,S)
18: end while

19: return minimalize(A)

undoRemoveInputString(A, s) works oppositely (incrementing use counts and

final count). The remaining question is which input strings to try to remove? We

propose a program interface called Suspect, which should return input strings it

is suspecting as excentric. Checking strings one by one is one simple strategy

implemented. However, with removing one input string, the automaton may not

become any simpler. So we propose so-called transition suspecting. If we remove

all input strings that pass one transition, the transition is rendered as unused, so

it is removed by automaton minimization resulting in a simpler schema.

This merging strategy is called defective, since not all input strings are rep-

resented by the output automaton.

5.3 Obtaining Regular Expression

When the merging strategy finishes its work, the automaton is considered to be

the best trade-off representation of XML element’s content model. The automa-

ton is converted into a regular expression by a state removal algorithm (see [24]).

As the order in which states are removed influences the regular expression com-

plexity, we provide an interface to implement various heuristics to select a proper
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Algorithm 10 tryRemoveInputString(A, s)

Input:
A - An automaton
s - An input string

Output:
An automaton without an input string

1: q = q0
2: for each a ∈ s do traverse symbols of s
3: q′ ← δ(q, a)
4: P (q, a, q′)← P (q, a, q′)− 1 decrement transition use count along the way
5: q ← q′ move on to the next state
6: end for

7: F (q)← F (q)− 1 decrement the final count

state to remove each time. Two basic strategies of removing states are imple-

mented in this work: ordered and heuristic. Ordered strategy is a modification of

the state removal algorithm described in [24]. First, super final and super initial

states are created. The super initial state precedes the initial state and has only

one ε-transition leading to the initial state. For each state with positive final

count, a new ε transition to the super final state is created. The algorithm then

removes one state at a time (except for super initial and super final states). The

process of removing one state is thoroughly explained in [24] and it is depicted in

fig. 12. The decision which state to remove is delegated to an Orderer submodule.

After removing all but 2 super-states, the automaton can have several transitions

from the super initial to the super final state (no transition can have opposite

direction). These transitions are combined into one transition with an alternation

regular expression and that regular expression is the result. The state removal

ordered strategy is depicted in Alg. 11. Orderer based on state weighting [17]

is used as the default (according to [21] it still outperforms other methods). It

is possible to replace the submodule of Orderer which measures the regular ex-

pression length. Originally, [17] proposes the length of regular expression to be

a terminal count. We add two more length functions of regular expression: a

number of characters needed to represent the regular expression in DTD syntax

(complete with (), ∗? characters) and a custom bitcode.

Heuristic strategy is a form of “lookahead”, it does basically the same, but

tries to remove several different states in one step and keeps best n solutions in

each step. It is very similar to Alg. 8 in basic heuristic design.
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1
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c
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(b) State loops are combined
into one loop with an alterna-
tion regular expression of orig-
inal loops

1

3

(a | b | c)

2

a

(x | y)*

4
(d | e)

(c) Multiple in/out-transitions ending
in the same source/destination state
are combined to form one transition
with an alternation regular expression
of original ones

1

3

(a | b | c)

4

(a | b | c), (x | y)*, (d | e)

2

a

a, (x | y)*, (d | e)

(x | y)*

(d | e)

(d) For each combination of in-transition and out-
transition, a new bypass transition is added with
a concatenation regular expression

1

4

(a | b | c), (x | y)*, (d | e)

2

a, (x | y)*, (d | e)

(e) Finally, the state and transi-
tions are removed

Figure 12: An example of removing a state

Algorithm 11 State Removal Ordered
Input:

A - An automaton
Output:

A regular expression representing the same language as the input automaton

1: qsi = createNewState(A) create super initial state
2: δ(qsi, ε)← q0 ε transition to the original initial state
3: qsf = createNewState(A) create the super final state
4: for each q ∈ Q do
5: if F (q) > 0 then
6: δ(q, ε)← qsf out transition to super final state
7: end if
8: end for
9: while |Q| > 2 do
10: q ← getStateToRemove(A)
11: removeState(A, q)
12: end while

13: return getCombinedRegex(A)
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6 Implementation

All features described in Section 5 were implemented in the jInfer framework

[28], implying that we use the NetBeans Platform [3] and the Java Platform [2].

Overview of all modules in context of jInfer framework is depicted in Fig. 13.

Packages and classes not mentioned in this section are a part of jInfer frame-

work, not this work. Packages mentioned in this section are part of this work,

together with all their subpackages, unless stated otherwise. Packages named

properties inside packages that are mentioned in this section, are part of this

work, but contain properties panels to present the configuration properties of a

module to the user, and thus are not very interesting. Nevertheless, we men-

tion them to emphasize the fact that all modules in the work are configurable

using configuration panels with a user-friendly interface and so the work is ready

to use by potential users (it is not only an experimental implementation, but a

ready-to-use solution).

Package cz.cuni.mff.ksi.jinfer.base.automaton contains our PFSA im-

plementation. Class Automaton is the automaton itself, its method mergeSta-

tes() merges states exactly as described in Section 5.2.4. The thing to note

is that our automaton implementation is always aware of states removed when

merging states. Merging criterion testers searching an automaton for states to

merge do not have to bother with details which naturally appear, such as: states

2,3 are considered equivalent and states 3,4 are considered equivalent, but when

the first merge occurs, the state 3 disappears and the second request would be

invalid.

The place to look in the source code of jInfer where the root of this work is

located, is package cz.cuni.mff.ksi.jinfer.twostep.processing.automaton

mergingstate. Here, merging state algorithms are implemented.

The subpackage conditiontesting contains implemented merge condition

testers: sk-strings, (k, h)-context and combined (in which a user can select a

combination of other testers). The deterministic tester is used only to make an

automaton deterministic when it is needed, it only searches for non-determinisms.

New merge condition tester can be added following the tutorial [26], and imple-

menting interfaces MergeConditionTester(Factory) defined in this package.

The subpackage evaluating contains all MDL-related evaluation classes. The

automatonNaiveAlphabet and the automatonNaiveDefective are part of pro-

posed solution, the former (calculating the value of equation (8)) is proposed to

be used with GreedyMDL and HeuristicMDL merging state strategies (see Sec-

tion 5.2.6), and the latter (calculating the equation (11)) with the DefectiveMDL
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strategy (see Section 5.2.8). The package universalCodeForIntegers contains

what it claims, the class for calculating the SUCI (see Section 2.3.4). Packages

regexp* contain various metrics of regular expressions and are used in the state

removal strategy (see Section 5.3) of converting an automaton into a regular ex-

pression to weight states of the automaton. Once again, new evaluators can be

added easily by implementing interfaces defined in the package evaluating.

The subpackage simplifying contains strategies for generalizing the PP-

TA/Torso (see Sections 5.2.2, 5.2.1). Apart from strategies described in Section

5.2.6 which are in appropriate packages, the package contains also the chained

strategy, which enables user to chain 2 or more strategies using a properties win-

dow. In the package khgrams, we have implemented the method [5], which creates

a (k, h)-context automaton. Same effect can be achieved using the Greedy strate-

gy and the (k, h)-context merge condition tester. The package userinteractive

is a part of jInfer framework. Extensibility is ensured through AutomatonSimpli

fier(Factory) interfaces.

The subpackage regexping contains the state removal method of converting a

PFSA into an equivalent regular expression. Package regexping.stateremoval.

ordered.ordering.userinteractive is a part of jInfer framework, all other

packages are part of this work.
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Figure 13: Overview of all modules in context of jInfer framework, filled boxes
are part of this work
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7 Experimental Results

To test the proposed algorithms, we have generated random testfiles using an

XML data generator called ToXGene [6] and its supplemented templates for

XMark benchmark [4]. The XMark benchmark is a simulation of an auction

website, a typical e-commerce application. Three files were generated, with dif-

ferent length: auction big.xml (∼1MB), auction small.xml (∼100kB) and auc-

tion tiny.xml (∼30kB). We used the available auction.dtd [1] (it is listed in Ap-

pendix C) for the benchmark as an input schema Sold in tests. Sample fragment

of the data generated can be found in Appendix C.

In jInfer, we have tested combinations of Greedy, GreedyMDL, HeuristicMDL

with alternatives combined from the merge condition testers: (2, 1)-context and

sk-OR heuristic (s = 50%, k = 2). Greedy strategy coupled with (2, 1)-context

condition tester served as a simulation of [5]. Each of these were tested with and

without the schema on input. We have tested the SchemaMiner experimental im-

plementation [38] without schema input (as it infers only from XML documents).

The publicly available application Trang [16], which is a converter between vari-

ous schema formats (Relax-NG, XSD, DTD), is also able to infer a schema from

the given set of XML documents. Precisely, it infers the subclass of SOREs, the

chain regular expressions [10], which are defined in [11].

The SchemaMiner was not able to finish computation within a reasonable

time, thus only results for the tiny dataset are available.

7.1 Overall Quality of Inferred Solution

First interesting comparison involves regular expressions generated using various

methods. To shorter the expressions printed here, we substitute element names

using this substitution Table 2. Let us explore the inferred regular expressions for

element shortcut element shortcut element shortcut
initial i reserve r bidder b

current c privacy p itemref f
seller s annotation a quantity q
type t interval l

#PCDATA c bold b keyword k
emph e

interest i business b education e
age a

Table 2: Substitution table of element names into shortcut names

element open auction. The DTD specifies regular expression ir?b∗cp?fsaqtl for
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Method Regular expression
2, 1-context i((c|(rc))|((b|(rb))b ∗ c))(f |(pf))saqtl
Greedy i(r|b) ∗ cp ∗ fsaqtl
GreedyMDL i(c|((b|r)b ∗ c))(f |(pf))saqtl
HeuristicMDL i(c|((b|r)b ∗ c))(f |(pf))saqtl
Trang ir?b ∗ cp?fsaqtl

Table 3: Element open auction, dataset auction big.xml

Method Regular expression
2, 1-context i((c|(rc))|((b|(rb))b ∗ c))(f |(pf))saqtl
Greedy i(r|b) ∗ cp ∗ fsaqtl
GreedyMDL i(b|r) ∗ cp ∗ fsaqtl
HeuristicMDL i(b|r) ∗ cp ∗ fsaqtl
Trang ir?b ∗ cp?fsaqtl

Table 4: Element open auction, dataset auction small.xml

this element. The resulting regular expressions for each inference algorithm are

depicted in Tables 3, 4, 5 for big, small and tiny input dataset respectively. As we

can see the (k, h)-context method did not performed very well. GreedyMDL and

HeuristicMDL preferred more complex regular expression for the big dataset,

since it better fitted the data (lower MDL value), than Greedy, which simply

merged everything it could. Trang is able to learn chain regular expression and

since the DTD expression is a chain regular expression, being given any big enough

dataset, Trang is always able to learn exactly the DTD expression (as this ex-

pression was used to generate the data). Thus if the user is expecting only very

sipmle REs on the output of the algorithm, Trang is able to satisfy this user

needs. SchemaMiner probably fell into a common problem of converting an au-

tomaton into corresponding regular expression. When bad state removal order is

used, the regular expression constructed can be such as the one on SchemaMiner

output. In Fig. 14 we have depicted the bad ordering causing exactly the error,

which is a probable cause of SchemaMiner output.

Method Regular expression
2, 1-context i(b|(rb))b ∗ cpfsaqtl
Greedy i(r|b) ∗ cpfsaqtl
GreedyMDL i(b|r) ∗ cpfsaqtl
HeuristicMDL i(b|r) ∗ cpfsaqtl
Trang ir?b+ cpfsaqtl
SchemaMiner i(bb ∗ cpfsaqtl)|(rbb ∗ cpfsaqtl)

Table 5: Element open auction, dataset auction tiny.xml

47



1 2
i

3
b

5

r

b

4
c

b

(a) Original automaton
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(b) Removed state 3

1 2
i

4
bb*c

rbb*c

(c) Removed state 5

1 4
i(bb*c|rbb*c)

(d) Removed state 2

Figure 14: Bad state removal ordering ending in longer RE

method regular expression
2, 1-context too long regular expression (917 characters)
Greedy (e|b|c|k)∗
GreedyMDL (((c|k) ∗ |(e, e∗, (c|k)))∗

|((b|(e, e∗, b)), (b ∗ |(e, e∗, b))∗
, ((c|k)|(e, e∗, (c|k)))))∗,
((e, e∗)?|((b|(e, e∗, b)),
(b ∗ |(e, e∗, b))∗, (e, e∗)?))

HeuristicMDL (c, c∗)|(((b|e|k)|(c, c∗, (b|k|e))),
((k|e|b) ∗ |(c, c∗, (b|k|e)))∗, (c, c∗)?)

Trang (c|b|k|e)∗

Table 6: Element text, dataset auction big.xml

7.2 Influence of Input Size

Let us explore the inferred regular expressions for element text. The DTD spec-

ifies regular expression (c|b|k|e)∗ for this element. The results are in Tables 6, 7,

8. GreedyMDL was able to infer the same RE as defined in the original DTD

(i.e. (c|b|k|e)∗) using the tiny dataset, but the RE inferred using the small one is

more complex than RE inferred using the big one, which is peculiar. According

to MDL principle and theory behind it, MDL should prefer smaller hypotheses

for smaller data input. HeuristicMDL was not any better, however. It was unable

to infer the RE (b|c|k|e)∗ even using the tiny dataset. We investigated this be-

havior by capturing the PFSA inferred by GreedyMDL, before it was converted

to RE. The respective PFSAs are depicted in Fig. 15. One explanation of the

phenomena may be, that being given less data, more regularity can be exploited.
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method regular expression
2, 1-context too long regular expression (716 characters)
Greedy (c|b|k|e)∗
GreedyMDL too long regular expression (462 characters)
HeuristicMDL ((k|b|e) ∗ |(c, (k|e|b)))∗, c?
Trang (c|b|k|e)∗

Table 7: Element text, dataset auction small.xml

method regular expression
2, 1-context (k, k∗)|(e|(k, k∗, e, e))|

((((c|(b, c))|(k, k∗, c))|((e|(k, k∗, e, e)),
(c|(b, c)))), (((b, c) ∗ |(k, k∗, c)) ∗ |((e|(k, k∗, e, e)),
(c|(b, c))))∗, ((k, k∗)?|(e|(k, k∗, e, e))))

Greedy (b|c|k|e)∗
GreedyMDL (e|b|c|k)∗
HeuristicMDL ((b|k|e) ∗ |(c, (e|b|k)))∗, c?
Trang (c|b|k|e)∗
SchemaMiner1 (eb?)|(bk∗)|(kk ∗ (ee ∗ |b))
SchemaMiner2 (be|kk ∗ |e)
SchemaMiner3 ee ∗ bb∗

Table 8: Element text, dataset auction tiny.xml

Let us consider fair coin tosses: 10 trials vs. 10000 trials. In the former case, it is

more probable that one can exploit regularity, which originally was not intended

to be there. Probably the automaton depicted in Fig. 15(c) fits the data better

than the more general automaton in Fig. 15(b). The RE may be complex due to

the automaton-to-RE conversion procedures, too.

The SchemaMiner output in this test is divided into 3 REs, since SchemaMiner

uses advanced element clustering techniques. It has recognized 3 versions of the

text element in the input data:

• the one used inside listitem element (the first RE),

• the one used inside mail, item/description and category/description

element contexts (the second RE),

• the one used inside annotation/description context (the third RE).

Here, the strong side of SchemaMiner has taken the advantage, the advanced

clustering enables to define element text using different content models in differ-

ent contexts. That is exactly the feature XSD provides us, and it had also lead

to much simpler REs in each case.

49



1|641

#CDATA|1218

keyword|306
423|55

bold|327

214|67

emph|315

keyword|31

#CDATA|243

bold|24

emph|19

#CDATA|232

keyword|14

bold|21 emph|27
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bold|2
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bold|2

emph|1

(c) auction small.xml

Figure 15: The PFSA inferred by GreedyMDL for text element using various
input datasets

7.3 Influence of Schema Input

The regular expressions from the input schema were more general than the ones

inferred. In this case, it lead to enforcing the output REs to be in the form of the

schema ones, rather than making them more specific. In particular, for element

text, the RE inferred using the input schema was nearly always (e|b|c|k)∗, that
is the same as in the input schema. The cause is, that DFSA torso is built before

parsing input strings, thus enforcing the DFSA the form of regular expression

from the input schema. Since DFSA torso is built exactly in form depicted in

Fig. 15(b), there are no input strings which would create any new branches.

Let us inspect the particular profile element. The original DTD specifies

RE i∗, e?, g?, b, a? for it.

The RE for element profile, using GreedyMDL+schema input:

i∗, ((b|(e, b))|((g|(e, g)), b)), a?

Now we see, how useful it would be to have a heuristic rewriting rule (let us

denote it the optionality rule), that rewrites REs of the form (a|ba) to b?a. For
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now, we rewrite this RE by hand:

i∗, ((e?, b)|(e?, g, b)), a?

One more heuristic rule indicated by this example is to rewrite RE (abc)|(ade)
to a(bc)|(de) (let us denote it the factor rule). For now, we rewrite this RE by

hand:

i∗, e?, (b)|(g, b), a?

Using an optionality rule again, we can rewrite it even further:

i∗, e?, g?, b, a?

Developing these rewriting rules is left for the future work. For now, we can see

how useful they would be.

Let us consider the RE for element profile, using GreedyMDL (without

schema input):

(e|i)∗, (b|(g, b)), a?

Let us rewrite it by hand using an optionality rule:

(e|i)∗, g?, b, a?

Even though the schema input improved the inferred RE in term of not en-

abling unlimited occurrence of education element, other parts of the overall

algorithm perform so bad, that a heuristic rule rewriting after the inference is

needed to obtain a good-quality result.

7.4 Performance

We have tested the implementation using 2GHz Turion CPU coupled with 4GB

RAM in NetBeans 7.0 under Ubuntu 11.04 OS. The performance of all but

HeuristicMDL strategy was satisfying, inferring a schema in less than minute

in the worst case (1MB dataset GreedyMDL) and instantly in most other cas-

es. HeuristicMDL had the running time of approx. 60 minutes (1MB dataset),

which is undesirable. The user can not afford to wait such a long time. Compare

it to the SchemaMiner, which for tiny dataset (∼30kB) ran instantly (under 10

seconds), for the small dataset (∼100kB) we interrupted the inference after 12

hours, when it was only inferring the content model for element open auction,

and had even more complex element text in front. According to debug output,
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the computation did not halt nor cycle, but little progress was made.

Compare it to the Trang, which worked flawlessly for any size of input and

as a bonus inferred exactly the REs from original DTD (or sometimes even more

accurate). But Trang infers only the subclass of regular expression (CHAREs),

that enables it to infer very efficiently.
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8 Conclusion

The aim of this thesis was to propose optimization and refinements of classical

algorithms for automatic inference of an XML schema. We have proposed three

main refinements:

• exploiting an additional information for the purpose of schema inference -

the original, possibly incorrect or too general schema,

• designing a finer MDL measure for evaluation of solutions in heuristic meth-

ods,

• possibility of generating a simpler schema and guides for user to repair his

input documents to be valid against it.

By incorporating the schema input, the resulting schema inferred is enforced not

to deviate much from original schema. It is highly practical for users, who have

the old schema available and want to infer the schema, accurate for the data.

Experimental results confirm that this goal was accomplished, but there is still a

space for improvements.

The designed MDL measure is more appropriate than measures used in com-

mon, as it employs a lot of probability codes, which are codelength optimal. It

provides the solution with the superiority feature to prefer simpler DFSA with

smaller input dataset. This behavior is somewhat in coincidence with DFSA to

RE conversion routines, which are unsatisfying at the moment, as they increase

the regular expression complexity rapidly with increasing number of DFSA states.

The possibility of generating a simpler schema by invalidating input element

instances was implemented and tested, but did not find its use case. Only a

minimum of element instances were invalidated, if any. Maybe the MDL code

used to decide input excentricity, although consistent in theory, is not the right

decision rule for such a problem. We describe possible improvements to deal with

this problem in future work.

Nevertheless,the biggest pros of the solution remains: its incorporation into

freely and publicly available jInfer framework, developed earlier as a software

project. This gives the algorithms user-friendly interface (not a command-line)

and great extension possibilities. Anyone can extend the proposed solution and

test new features.

The application performance is satisfying and it can be used for instant schema

inference without any prior theoretic knowledge of the user. In default config-
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uration, the best of algorithms available are run to produce the best available

output.

8.1 Future Work

By experimental testing, we have identified possible places to improve our solu-

tion. Let us name the top priority ones:

• We would like to implement a set of heuristic rules for output regular ex-

pression refinement based on practical observations from Section 7. Since

the automaton merging state algorithm has some common pitfall constructs

it produces, these should be refined after the main inference is run.

• As the state removal algorithm [24] behaves poorly, even when coupled with

best heuristic available now [17, 21], we should rethink the automaton-to RE

conversion step. This would need testing of recent conversion approaches

and selecting the best one for our purposes, but this is a topic for one whole

thesis.

• A simple, but maybe powerful change is to add a possibility to build the

automaton torso from input schema after the PPTA is constructed. This

would enable better schema specialization at low cost of changes made.

• We should also design a new DefectiveMDLuser module which would be

more driven by user opinion on how many element instances (s)he is willing

to repair by hand to gain a profit of better schema. Of course, the possibility

of automatic repairs would be also a tremendous improvement.
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Appendix A Content of CD

Attachment 1 (Binary Distribution). A binary distribution of this thesis im-

plementation consists of NetBeans module files (.nbm), located on CD included

in this thesis printed version in folder bin/. The distribution can be also built

from source files (see Attachment 3). The modules have to be installed into

working NetBeans installation as plugins. See jInfer Tutorial [27] for step-by-step

instructions.

Attachment 2 (Testing Projects). Testing projects are located in folder test

projects/. These are the projects we created when testing thesis implementation

(the results can be found in Section 7). Project files have to be opened in a work-

ing jInfer installation. Each project has input XML files and DTD schema already

set up, the experimental results are in the project output folder. Nevertheless,

one can test the inference process with various options set up in project properties

(see Appendix B).

Attachment 3 (Source code). The source code of this thesis is located in folder
src/. The source code is a checkout of public jInfer svn repository trunk/ folder1

to the date 2.8.2011. The same source code can be obtained by issuing command

svn co -r 1758 \

https://jinfer.svn.sourceforge.net/svnroot/jinfer/jinfer/trunk/

1https://jinfer.svn.sourceforge.net/svnroot/jinfer/jinfer/trunk/
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Appendix B User Guide

In this section, we briefly describe the steps needed to use the thesis implemen-

tation. The implementation is Attachment 1 and can also be built from sources

Attachment 3. After opening a sample project from the Attachment 2 (see Ap-

pendix A) or creating a new project, one may be interested in changing the

modules in inference chain. To access project properties, right click on project

and Properties, as depicted in Fig. 16. Then, the Merging State Strategy module

can be selected by selecting “Automaton Merging State” branch of the left pane

and then using the combo boxes on the right pane as depicted in Fig. 17. For

a particular Merging State Strategy, the Merge Condition Tester can be set as

depicted in Fig. 18. To run the inference, right click on project and select Run,

or use the green arrow to run the default project as depicted in Fig. 19. The

result of the inference is opened in editor, as depicted in Fig. 20.

Figure 16: How to open project Properties

56



Figure 17: Selecting the Merging State Strategy

Figure 18: Setting Merge Criterion Tester for GreedyMDL
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Figure 19: Running the inference

Figure 20: Inference result
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Appendix C Experimental Data

The DTD for the XMark benchmark [1] is depicted in Fig. 22. An example of

XML fragment of data generated is depicted in Fig. 21

<open_auction id="open_auction1">

<initial>20.90</initial>

<reserve>33.44</reserve>

<bidder>

<date>10/23/00</date>

<time>01:41:33</time>

<personref person="person172"></personref>

<increase>12.90</increase>

</bidder>

<current>33.80</current>

<itemref item="item206"></itemref>

<seller person="person195"></seller>

<annotation>

<author person="person183"></author>

<description>

<text>nicel ver a orswor uiltiness

saf aurenc alic efug ecur ompeius

decei as urpose hereo njus

<keyword>brav ui etter orse aid

bristl un ortune aptain

</keyword>

odd hought eep oa houlde bhors

win an niqu aintl uttin eonato

</text>

</description>

<happiness>3</happiness>

</annotation>

<quantity>1</quantity>

<type>Featured</type>

<interval>

<start>09/06/01</start>

<end>04/19/00</end>

</interval>

</open_auction>

Figure 21: An example of data generated, one instance of open auction element
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<!ELEMENT site (regions, categories, catgraph, people, open_auctions, closed_auctions)>

<!ELEMENT regions (africa, asia, australia, europe, namerica, samerica)>

<!ELEMENT item (location, quantity, name, payment, description,\

shipping, incategory+, mailbox)>

<!ATTLIST item id ID #REQUIRED

featured CDATA #IMPLIED>

<!ELEMENT person (name, emailaddress, phone?, address?, homepage?,\

creditcard?, profile?, watches?)>

<!ATTLIST person id ID #REQUIRED>

<!ELEMENT open_auctions (open_auction*)>

<!ELEMENT open_auction (initial, reserve?, bidder*, current, privacy?,\

<!ATTLIST open_auction id ID #REQUIRED>

itemref, seller, annotation, quantity, type, interval)>

<!ELEMENT profile (interest*, education?, gender?, business, age?)>

<!ATTLIST profile income CDATA #IMPLIED>

<!ELEMENT address (street, city, country, province?, zipcode)>

<!ELEMENT closed_auctions (closed_auction*)>

<!ELEMENT closed_auction (seller, buyer, itemref, price, date, quantity, type, annotation?)>

<!ELEMENT text (#PCDATA | bold | keyword | emph)*>

<!ELEMENT bold (#PCDATA | bold | keyword | emph)*>

<!ELEMENT keyword (#PCDATA | bold | keyword | emph)*>

<!ELEMENT emph (#PCDATA | bold | keyword | emph)*>
<!ELEMENT categories (category+)>

<!ELEMENT category (name, description)>

<!ATTLIST category id ID #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT description (text | parlist)>

<!ELEMENT parlist (listitem)*>

<!ELEMENT listitem (text | parlist)*>

<!ELEMENT catgraph (edge*)>

<!ELEMENT africa (item*)>

<!ELEMENT asia (item*)>

<!ELEMENT australia (item*)>

<!ELEMENT namerica (item*)>

<!ELEMENT samerica (item*)>

<!ELEMENT europe (item*)>

<!ELEMENT location (#PCDATA)>

<!ELEMENT quantity (#PCDATA)>

<!ELEMENT payment (#PCDATA)>

<!ELEMENT shipping (#PCDATA)>

<!ELEMENT reserve (#PCDATA)>

<!ELEMENT edge EMPTY>

<!ATTLIST edge from IDREF #REQUIRED\

to IDREF #REQUIRED>

<!ELEMENT incategory EMPTY>

<!ATTLIST incategory category IDREF #REQUIRED>

<!ELEMENT mailbox (mail*)>

<!ELEMENT mail (from, to, date, text)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT date (#PCDATA)>

<!ELEMENT itemref EMPTY>

<!ATTLIST itemref item IDREF #REQUIRED>

<!ELEMENT personref EMPTY>

<!ATTLIST personref person IDREF #REQUIRED>

<!ELEMENT people (person*)>

<!ELEMENT emailaddress (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT province (#PCDATA)>

<!ELEMENT zipcode (#PCDATA)>

<!ELEMENT country (#PCDATA)>

<!ELEMENT homepage (#PCDATA)>

<!ELEMENT creditcard (#PCDATA)>

<!ELEMENT interest EMPTY>

<!ATTLIST interest category IDREF #REQUIRED>

<!ELEMENT education (#PCDATA)>

<!ELEMENT income (#PCDATA)>

<!ELEMENT gender (#PCDATA)>

<!ELEMENT business (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!ELEMENT watches (watch*)>

<!ELEMENT watch EMPTY>

<!ATTLIST watch open_auction IDREF #REQUIRED>

<!ELEMENT privacy (#PCDATA)>

<!ELEMENT initial (#PCDATA)>

<!ELEMENT bidder (date, time, personref,\

increase)>

<!ELEMENT seller EMPTY>

<!ATTLIST seller person IDREF #REQUIRED>

<!ELEMENT current (#PCDATA)>

<!ELEMENT increase (#PCDATA)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT interval (start, end)>

<!ELEMENT start (#PCDATA)>

<!ELEMENT end (#PCDATA)>

<!ELEMENT time (#PCDATA)>

<!ELEMENT status (#PCDATA)>

<!ELEMENT amount (#PCDATA)>

<!ELEMENT buyer EMPTY>

<!ATTLIST buyer person IDREF #REQUIRED>

<!ELEMENT price (#PCDATA)>

<!ELEMENT annotation (author, description?,\

happiness)>

<!ELEMENT author EMPTY>

<!ATTLIST author person IDREF #REQUIRED>

<!ELEMENT happiness (#PCDATA)>

Figure 22: DTD for the XMark benchmark: auction.dtd
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Vitásek. jinfer module developer’s tutorial. http://jinfer.sourceforge.

net/doc_tutorial_dev.html.

[27] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej
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