
 

Charles University in Prague 

Faculty of Mathematics and Physics 

 

MASTER THESIS 

 

Peter Piják 

 

Universal Constraint Language 

 

Department of Software Engineering 

 

Supervisor of the master thesis: Mgr. Martin Nečaský, Ph.D. 

 

Study programme: Computer Science 

Specialization: Software Systems 

 

Prague 2011  



 

I would like to thank to my advisor Mgr. Martin Nečaský, Ph.D. for his comments and 

advices, my thanks also belongs to RNDr. Irena Mlýnková, Ph.D., Martin Chytil, 

Karel Jakubec, Vladimír Kudelas and Marek Polák. Last but not least I want to thank 

to my family.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I declare that I carried out this master thesis independently, and only with the cited 

sources, literature and other professional sources. 

I understand that my work relates to the rights and obligations under 

the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that 

the Charles University in Prague has the right to conclude a license agreement 

on the use of this work as a school work pursuant to Section 60 paragraph 1 

of the Copyright Act. 

 

In Prague 03.08.2011 

  



 

Názov práce: Univerzálny jazyk pre integritné obmedzenia 

Autor: Peter Piják 

Katedra / Ústav: Katedra softwarového inženýrství 

Vedúci diplomovej práce: Mgr. Martin Nečaský, Ph.D. 

Abstrakt: 

Dnešné softvérové systémy sú zvyčajne zložené zo systému viacerých komponent. 

Pri navrhovaní a modelovaní systému sa pri jednotlivých častiach modelu vyjadrujú 

integritné obmedzenia v rôznych jazykoch pre zápis integritných obmedzení 

(napríklad jazyk OCL pre UML diagramy tried, Schematron pre model XML alebo 

SQL triggery pre relačné databázy). Výrazy integritných obmedzení musia byť 

prekladané do výrazov nad inými meta-modelmi do iného jazyka, čo je netriviálna 

úloha. 

V tejto práci je predstavený jazyk pre integritné obmedzenia Universal Constraint 

Language (UCL), ktorým je možné vyjadriť výrazy integritných obmedzení nad 

rôznymi dátovými meta-modelmi. Jazyk je formálne zadefinovaný a je 

implementovaný jeho analyzátor (parser). Ďalej popisujeme spôsob prevodu 

výrazov medzi jednotlivými meta-modelmi a odvodzovanie z výrazov v 

prezentovanom jazyku do existujúcich špecifických jazykov pre integritné 

obmedzenia. 

Kľúčové slová: jazyk pre integritné obmedzenia, Modelom riadená architektúra 

(MDA), univerzálny formalizmus 

 

 

Title: Universal Constraint Language 

Author: Peter Piják 

Department / Institute: Department of Software Engineering 

Supervisor of the master thesis: Mgr. Martin Nečaský, Ph.D. 

Abstract: 

Today’s software applications are typically compound of system of more application 

components. By modeling of software, various integrity constraint languages are 

used for particular parts of model (e.g. OCL for UML class diagrams, Schematron 

for XML or SQL triggers for relational databases). Constraint expressions need to be 

converted to expressions over different meta-models. These tasks are non-trivial. 

In this thesis, a new common language Universal Constraint Language (UCL) for 

expressing integrity constraints over various data meta-models is introduced. It is 

formally defined and also its parser is implemented. We also present semi-automatic 

translating between constraints over various meta-models; and deriving constraints 

from the introduced language to constraints in specific constraint languages. 

Keywords: constraint language, model-driven architecture, universal formalism 



1 

Contents 

Contents ....................................................................................................... 1 

1. Introduction.......................................................................................... 5 

1.1. Motivation ....................................................................................................................... 5 

1.2. Aim of the thesis ............................................................................................................ 6 

1.3. Structure of the thesis .................................................................................................... 8 

2. Data models introduction ................................................................... 9 

2.1. UML class diagrams ...................................................................................................... 9 

2.1.1. Constructs ......................................................................................................... 9 

2.1.2. Object Constraint Language ........................................................................... 10 

2.1.3. OCL constraints example ................................................................................ 11 

2.2. Relational model of databases .................................................................................... 11 

2.2.1. SQL Constraints .............................................................................................. 12 

2.3. XML technologies ........................................................................................................ 13 

2.3.1. XML documents .............................................................................................. 13 

2.3.2. Levels of the correctness in XML .................................................................... 14 

2.3.3. XML Schema ................................................................................................... 15 

2.3.4. Schematron ..................................................................................................... 16 

2.3.5. XQuery ............................................................................................................ 17 

2.3.6. XSEM .............................................................................................................. 18 

3. Related work ...................................................................................... 20 

3.1. Tools ............................................................................................................................ 20 

3.1.1. IBM OCL Parser .............................................................................................. 20 

3.1.2. ModelRun ........................................................................................................ 21 

3.1.3. OCTOPUS ...................................................................................................... 21 

3.1.4. USE ................................................................................................................. 21 

3.1.5. Enterprise Architect ......................................................................................... 22 

3.1.6. Dresden OCL .................................................................................................. 22 

3.1.7. Eclipse OCL .................................................................................................... 24 

3.1.8. Kent OCL ........................................................................................................ 25 

3.2. Deriving OCL to other constraint languages ................................................................ 25 

3.2.1. Demuth and Hussmann .................................................................................. 25 

3.3. Conclusion ................................................................................................................... 27 

4. Architecture, UCL Data meta-model ................................................ 28 

4.1. Meta-Object Facility ..................................................................................................... 28 

4.1.1. Modeling .......................................................................................................... 28 

4.1.2. Meta-modeling ................................................................................................ 28 

4.1.3. Four-layer architecture .................................................................................... 29 

4.1.4. Layer of UCL Data meta-model ...................................................................... 31 

4.2. Architecture .................................................................................................................. 31 

4.3. Analysis and elements in UCL Data meta-model ........................................................ 34 

4.4. UCL Data meta-model description ............................................................................... 36 



2 

4.5. Concept definition ........................................................................................................ 37 

4.5.1. Basic types ...................................................................................................... 38 

4.5.2. Elements ......................................................................................................... 38 

4.5.3. Entities ............................................................................................................ 38 

4.5.4. Relations ......................................................................................................... 39 

4.5.5. Lexicals ........................................................................................................... 39 

4.5.6. Generalization ................................................................................................. 40 

4.5.7. Lexicals restrictions ......................................................................................... 40 

4.5.8. Relations restrictions ....................................................................................... 40 

4.5.9. Entities restrictions .......................................................................................... 41 

4.5.10. Relations navigation names ............................................................................ 42 

4.5.11. Entities navigation names ............................................................................... 43 

4.5.12. Full entity descriptor ........................................................................................ 44 

4.5.13. Formal concept of UCL Data meta-model ...................................................... 46 

4.6. Sample meta-model and UCL Data meta-model ......................................................... 46 

4.6.1. Mapping of Sample meta-model to UCL Data meta-model ............................ 47 

4.6.2. Mapping of a model of Sample meta-model to UCL Data meta-model .......... 48 

5. UCL description ................................................................................. 50 

5.1. Introduction and comparison with OCL ........................................................................ 50 

5.1.1. Sample model for example UCL constraints .................................................. 51 

5.1.2. Lexical rules .................................................................................................... 51 

5.1.3. Precedence of operators rules ........................................................................ 52 

5.1.4. Constraint expression example....................................................................... 52 

5.2. Relation to UCL Data meta-model ............................................................................... 53 

5.2.1. Context definition ............................................................................................ 53 

5.2.2. Keyword "self" ................................................................................................. 53 

5.2.3. Invariants ......................................................................................................... 54 

5.3. Types, values and operations ...................................................................................... 54 

5.3.1. Basic types and operations ............................................................................. 54 

5.3.2. Types from the model ..................................................................................... 54 

5.3.3. Collections ....................................................................................................... 54 

5.3.4. Variables "def" and "let" definitions ................................................................. 55 

5.3.5. Type conformance .......................................................................................... 55 

5.4. Expressions ................................................................................................................. 56 

5.4.1. Simple steps navigation expressions from an entity ....................................... 56 

5.4.2. Simple steps navigation expressions from a relation...................................... 57 

5.4.3. Navigation expressions through relations ....................................................... 58 

5.4.4. Generalization ................................................................................................. 59 

5.4.5. Collection expressions .................................................................................... 59 

5.4.6. Collection operations ...................................................................................... 61 

5.5. UCL syntax .................................................................................................................. 62 

5.6. Confrontation of OCL and UCL .................................................................................... 63 

5.6.1. Unsupported constructions in UCL ................................................................. 63 

5.6.2. Added constructions to UCL ........................................................................... 63 

5.6.3. Navigation to an association class in OCL and in UCL .................................. 64 

5.6.4. Conclusion ...................................................................................................... 66 



3 

6. Meta-model of UCL constraints ........................................................ 67 

6.1. Structure of UCL meta-model ...................................................................................... 67 

6.2. Types ........................................................................................................................... 67 

6.3. Expressions ................................................................................................................. 69 

6.3.1. Contexts .......................................................................................................... 69 

6.3.2. Kinds of expressions ....................................................................................... 70 

6.3.3. Variables ......................................................................................................... 71 

6.3.4. Literals ............................................................................................................. 72 

6.3.5. Operations ....................................................................................................... 73 

6.3.6. Navigation expressions ................................................................................... 74 

6.3.7. Collection operations ...................................................................................... 76 

6.3.8. Collection expressions .................................................................................... 77 

6.3.9. Complex example ........................................................................................... 77 

6.4. Conclusion of UCL meta-model ................................................................................... 80 

7. Using UCL for UML Class diagrams ................................................ 81 

7.1. Notation of the model ................................................................................................... 81 

7.2. Mapping to UCL Data meta-model .............................................................................. 82 

7.3. UCL constraints over UML Class diagrams ................................................................. 85 

7.3.1. Context of constraints ..................................................................................... 85 

7.3.2. Expressions ..................................................................................................... 85 

7.3.3. Navigation ....................................................................................................... 85 

7.3.4. Simple steps navigation .................................................................................. 86 

7.3.5. Relation step through an association .............................................................. 87 

7.3.6. Relation stop to an association ....................................................................... 87 

7.3.7. Generalization ................................................................................................. 87 

8. Using UCL for XML schemas............................................................ 89 

8.1. Notation of the model ................................................................................................... 89 

8.2. Mapping to UCL Data meta-model .............................................................................. 90 

8.3. UCL constraints over XSEM PSM schemas ................................................................ 94 

8.3.1. Context of constraints ..................................................................................... 94 

8.3.2. Expressions ..................................................................................................... 95 

8.3.3. Navigation ....................................................................................................... 95 

8.3.4. Simple steps navigation .................................................................................. 95 

8.3.5. Relation step through an association .............................................................. 96 

8.3.6. Relation stop to an association ....................................................................... 97 

9. Mapping and deriving constraints ................................................... 98 

9.1. Deriving UCL for XML to Schematron ......................................................................... 99 

9.1.1. Context of constraints ..................................................................................... 99 

9.1.2. Types ............................................................................................................ 100 

9.1.3. Expressions ................................................................................................... 101 

9.2. Mapping between data models .................................................................................. 107 

9.3. Deriving UCL to different mapped model................................................................... 109 

9.4. Conclusion ................................................................................................................. 114 



4 

10. Implementation ................................................................................ 116 

10.1. DaemonX framework ................................................................................................. 116 

10.2. Constraints module, features ..................................................................................... 117 

10.3. Architecture ................................................................................................................ 118 

11. Conclusion ....................................................................................... 121 

Bibliography ............................................................................................. 125 

List of Figures .......................................................................................... 128 

Appendix A ............................................................................................... 130 

CD contents ......................................................................................................................... 130 

Appendix B ............................................................................................... 131 

Syntax of UCL ...................................................................................................................... 131 

Appendix C ............................................................................................... 140 

User documentation ............................................................................................................. 140 

Appendix D ............................................................................................... 144 

Programmer’s documentation .............................................................................................. 144 

Assemblies ................................................................................................................. 144 

Project UCLModel ...................................................................................................... 145 

UCL meta-model plug-ins .......................................................................................... 150 

Translating plug-ins .................................................................................................... 151 

Project UCLCore ........................................................................................................ 153 

 



5 

1. Introduction 

1.1. Motivation 

With the progress of advanced software architectures, such as Service-

Oriented Architecture, there is a situation where today's software applications are no 

longer composed of consistent monolithic software. Current applications consist of a 

complex system of several simpler components. The individual components are 

responsible for the specified data and functionality parts of the entire system. These 

components communicate with each other. This decomposition of the software 

architecture brings many advantages but also problems. Design and maintenance of 

such a complex system is a nontrivial task. 

By the design of each component, different meta-models are used. To model 

classes in a high-level object-oriented programming language, we use most 

frequently UML class diagrams [1]. To model relational databases, we use the 

relational model [4]. To design XML schemas, we can use conceptual model 

XSEM [3]. 

These data meta-models provide rich facilities for the description of 

functional and structural aspects of a software system or its sub-components. They 

can be expressed in a textual language as well as by a graphic notation. Direct 

expressive power of data models is limited for expressing complex integrity 

constraints. Often textual constraint languages are more suitable to solving this task. 

Individual models are semantically related and interconnected. For example 

UML class in PIM diagram models a runtime object. These objects are in a relational 

database stored as columns of a table; or in XML document, they are represented 

by elements with attributes. A table in an ER diagram and an XSEM class are 

interconnected with a related UML class in a PIM diagram. 

Integrity constraints are expressions which are used to express the 

consistency and the accuracy of modeled data. Simpler integrity constraints are 

applied to express the reference or the domain data integrity. They can be 

expressed directly using the data model. For example, the restriction that age of a 

person cannot be a negative number. More complex constraints must be expressed 

using more complex languages. For example, the condition that to a person whose 

age is less than 18 years cannot be assigned a car. 
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By a modeling of a software system, various integrity constraint languages 

are used for particular parts of model. By a designing of a relational database, 

simple domain constraints or referential constraints can be expressed directly using 

SQL statements by definition of columns of the tables. More complex constraints 

must be expressed using SQL check expressions or SQL triggers. Restrictions of 

the column’s domain data can be easily visualized in a graphical annotation. By 

UML class diagrams, we use to express complex restrictions expressions in Object 

Constraint Language (OCL) [2]. By a modeling of XML data, domain and reference 

restrictions can be expressed directly by schema languages DTD [5] or 

XML Schema [6]. Complex constraints can be noted using languages 

Schematron [7] or XQuery [9]. 

By a modeling of a software system, we often solve such a situation that an 

integrity constraint need to be noted duplicated in different data meta-models. We 

have to express constraints it in different integrity constraints languages. These 

integrity constraints must be translated into constraints over another meta-model to 

another language. This is a nontrivial task. Such a translation must be handled 

manually. In addition, system designers must thoroughly understand various 

integrity constraints languages for each meta-model. And they must be aware of 

their expressive power. More often, there is currently no solution. 

1.2. Aim of the thesis 

The aim of this thesis is to introduce a new common language for expressing 

integrity constraints. The new language will be named Universal Constraint 

Language (UCL) and it will be based on OCL. 

 The language must have a formally defined syntax and all kinds of its 

constructions, types, operations and expressions. 

 In UCL, it must be able to express integrity constraints over different data 

models (of different meta-models). E.g. it must be possible to represent an 

integrity constraint over UML class diagrams, relational databases or XML 

documents in UCL expressions. 

 To achieve the application of UCL over different meta-models, UCL will be 

based on a general data meta-model. We must propound and formally define 

this meta-model. 
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 It is necessary to formalize also a meta-model of UCL expressions and 

types. According this meta-model, it must be able to derive UCL constraints 

to different specific constraint languages for different meta-models. E.g. 

automatically translate a UCL constraint to an SQL trigger according defined 

rules. 

We may express a UCL expression over a model of one meta-mode) and a 

UCL expression over a model of another meta-model. These two expressions may 

represent semantically the same condition of allowed data; but these expressions 

must not be equal. Names and relationship between elements in different models 

and meta-models can be different. Then two UCL expressions over various meta-

models which reflect the same integrity constraint can be profoundly different too. 

 The aim of this thesis is also to define deriving of UCL constraints over one 

data model to UCL constraints over another data model. If elements in 

separate models and parts of a complex software system are related and 

interconnected then it must be possible (according this interconnection of 

models) to derive constraints over one model to constraints over another 

related model. 

The contribution of this thesis is to reduce the work by designing of complex 

software systems. We define UCL as a constraint language for various meta-

models. The aim is that software architects will not have to express integrity 

constraints manually for each individual model in several different constraint 

languages. The vision is to create a pivot constraint language. It ensures that it will 

be sufficient to express a constraint only in one language (the created UCL). It will 

be able to automatically translate constraints over one meta-model to constraints 

over other meta-models and in different constraint languages. 

Beside the theoretical work, the aim of this thesis is also to implement a 

software module which implements and demonstrates contributions of UCL. It must 

support and demonstrate: 

 the application of UCL over different meta-models, 

 the derivation of UCL constraints between different related meta-models, 

 the derivation from UCL constraints to specific constraint languages. 



8 

1.3. Structure of the thesis 

This thesis is organized as follows. In chapter 2, we provide a summary of 

several popular data meta-models. We also introduce constraint languages over 

these meta-models with their abilities and their expressive power. 

In next chapter 3, we present best-known existing frameworks and studies 

for OCL. Dome of these projects extend the usage of OCL to other meta-models. 

Some analyze the derivation of OCL constraints to other constraint languages. 

In chapter 4, we analyze ideas of the modeling and the meta-modeling. And 

we describe parts of the four-layer meta-modeling architecture (Meta-Object 

Facility). Then we introduce the architecture of our framework for modeling over 

various meta-models. This architecture supports UCL for integrity constraints over 

various data models. In this chapter, we define UCL Data meta-model. It is created 

to apply for different data meta-models. UCL expressions are based on this model. 

In chapter 5, an informal description of UCL is presented. All expression 

types, operations and kinds of navigation expressions over UCL Data meta-model 

are explained. Chapter 6 describes meta-model of UCL expressions. According this 

meta-model, it is possible to implement a parser of UCL expressions over UCL Data 

meta-model. Chapters 7 and 8 define the mapping of meta-models of UML class 

diagrams and XSEM diagrams to UCL Data meta-model. They analyze the using of 

UCL expressions over these two meta-models. Using these mappings, we can 

express integrity constraints in UCL over UML and XSEM models. Chapter 9 

continues in a utilization of UCL constraints. It describes the derivation of UCL 

constraints to Schematron rules (language for XML). And it presents the translation 

of UCL constraints over one meta-model to UCL constraints over another related 

meta-model which is interconnected by a mapping. 

The last chapter 10 introduces the implemented software module in 

framework DaemonX. This software module was developed as a part of this thesis. 

In this software component, it is able to express UCL constraints over UML class 

diagrams, derive them to related XSEM models and translate them to Schematron 

rules. This software system is also extensible for the support of other data meta-

models constraint using plug-ins. 
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2. Data models introduction 

In this chapter, a short introduction to used data meta-models UML class 

diagrams, relational model and XML is presented. There are also introduced 

languages to express integrity constraints over models of these meta-models. Meta-

models for UML class diagrams and for XML will be formally defined in 

chapters 7 and 8. Also the mappings from these meta-models to common data 

model of UCL will be defined. 

Universal Constraint Language which is defined in this thesis will be applied 

to these presented meta-models thereinafter in this document. It will be possible to 

express integrity constraints in UCL over models of these meta-models. 

2.1. UML class diagrams 

UML class diagrams [1] are part of Unified Modeling Language (UML). Class 

diagrams belong between the static structure diagrams. They represent the 

structure of a system; they describe system's classes, attributes, methods and 

relationships between the classes. They are used for conceptual modeling of the 

system and for translating the model into the classes in a high-level object oriented 

programming language. 

2.1.1. Constructs 

The main building element is a class; it represents an interaction or an object 

to be programmed. A class has its name and other additional information like 

a stereotype. It can contain inner attributes and operations. An attribute is an 

element of data which is maintained by the class. An attribute has its name, 

data type, multiplicity (and other information like a visibility or a default value). An 

operation is specification of a service provided by the class. It represents what the 

class can do. Operation has a name, parameters (with names and data types), 

return data type (and other information like a visibility). 

Relationships between two or more classes are represented by connecting 

lines elements: an association, an aggregation and a composition. They all can have 

a name. Ends of these lines are in connections to the classes adorned with role 

names and roles multiciplities. 
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A generalization is a relationship between two classes (the parent class and 

the child class), it indicates that the child class is a specialized form of the parent 

class and it has all inner elements and connected links of the parent class. 

Figure 2.1 shows an example of UML class diagram with the classes with 

attributes. Classes are connected by an association with filled role names and role 

multiciplities. 

 
Figure 2.1: Example of a UML class diagram 

2.1.2. Object Constraint Language 

Object Constraint Language (OCL) [2] is a language which enables to 

describe expressions and constraints on UML object-oriented and state models. It 

was developed in IBM. Its current version (Jule 2011) is 2.2; or 2.3 – Beta 2. OCL is 

a part of the specification of UML. 

By a modeling of an UML diagram, we typically need to describe additional 

information about the model, integrity constraints. Such constraints are typically 

specified in a natural language; but we need to describe them formally and 

unambiguously. OCL is a formal language based on the first-order predicate logic. 

Its syntax is very similar to programming languages. So it is usable for average 

system modeler without strong mathematical background. 

OCL is a pure declarative language; its expressions are evaluated without 

side effect changes in the model; its expressions just return a value. OCL is not a 

programming language; it is designated to execution but only to express constraint 

invariants. OCL expressions are only a specification for programs that will determine 

accomplishments of the constraints. 

OCL is a strong typed language. Each expression has a type which is 

defined statically before the interpretations. Each correct expression has to satisfy 

the type conformance language rules. The language has a predefined set of 

primitive types (integer, boolean, string and real); then each entity in the UML model 

represents a special type in OCL. Also structured types from the primitive types can 
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be created. Tuple as a structure of several values and collections Set, Bag, 

Collection and Sequence. 

There are four types of constraints in OCL: 

 Invariant is a constraint expressing a condition which must be satisfied 

(evaluated to true) all the time for all instances of defined context. 

 Pre-condition of an operation is a condition which must be true at the time 

before execution of the operation. 

 Post-condition of an operation is a condition which must be true at the time 

when the operation is ending its execution. 

 Guard is a constraint which restricts the Transition in UML state machine 

diagram; it is evaluated and it must be true in the time when the transition 

fires. 

2.1.3. OCL constraints example 

This chapter does not specify in detail all possibilities of OCL. The language 

is used as the ground of our created language UCL which is defined in this thesis. 

This subchapter shows only a short example of constraints in OCL in the 

context of the UML class diagram in Figure 2.1. 

Context Person 

inv: self.Age > 0 

inv: self.Age < 18 implies self.hasCars->isEmpty() 

Figure 2.2: Example of OCL constraints 

The first line in Figure 2.2 defines the context of constraint expressions; 

constraints describe restrictions over the class Person. In the second line, there is a 

constraint expression which specifies the domain of the attribute Age of the class 

Person; its value cannot be negative. In the last line, there is a complex expression 

which defines the condition that instances of the class Person cannot be connected 

to any instance of the class Car through the association. 

2.2. Relational model of databases 

Relational model for databases [4] was invented by Edgar Frank Codd in 

IBM in 1969. The relation model is based on the first-order logic. The relation model 

provides a declarative way to specify data and queries over the database. 
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The Relational model uses concept of relations and tables. Tables in a 

database schema are represented by predicate variables; the data of tables and 

results of queries are represented by n-ary relations; constraints and queries are 

represented by predicates. A tuple is an ordered set of attributes values; an attribute 

is an ordered pair of its name and its type. A relation consists of a set of the 

attributes and of a set of n-ary tuples. A table is a graphical representation of the 

relation; a tuple is similar to the concept of table’s rows. Tables contain definitions of 

columns which correspond to the relation’s attributes. 

If there are columns of the same type in different tables then these columns 

can create links between the tables. Other way to create links between tables is 

a foreign key. The foreign key is a reference to a key in other relation; the 

referencing table has the attribute with the value of the key in the referenced table. 

Figure 2.3 shows an example of a graphic notation of tables in the relational 

model. The table Cars contains the column PersonName which is the foreign key to 

the table Persons on its key Name. 

 
Figure 2.3: Example of the relation model 

2.2.1. SQL Constraints 

The usual way (to formal expression of integrity constraints over the 

relational model; at the implementation level of the design of database tables) is to 

use SQL expressions or SQL triggers. Structured Query Language [57] (SQL) 

provides standard opportunities to express different kinds of integrity constraints in 

relational databases. For the referential integrity, there are SQL statements 

FOREIGN KEY and REFERENCES, for the entity integrity, (e.g. a primary key cannot 

be null), for the domain and for the user defined integrity there are the statements 

NOT NULL, UNIQUE and CHECK. 



13 

CREATE TABLE Persons 

( 

  Name varchar(100) NOT NULL, 

  Age int DEFAULT NULL, 

  PRIMARY KEY (Name), 

  CONSTRAINT AgeIsNotNegative_ck CHECK (Age > 0)  

); 

CREATE TABLE Cars 

( 

  ID varchar(100) NULL, 

  CarMake varchar(100) NULL, 

  PersonName varchar(100) NULL 

  REFERENCES Persons(PersonName)  

); 

ALTER TABLE Persons 

ADD CHECK PersonsUnder18WithoutCar 

( 

  NOT EXISTS 

  ( 

    SELECT * 

    FROM Persons 

    JOIN Cars ON (Cars.PersonName = PersonName.Name) 

    WHERE Persons.Age < 18 

  ) 

); 

Figure 2.4: Example of constraints in relational databases 

Figure 2.4 demonstrates SQL expressions to create the tables Persons and 

Cars. By the definition of the table Persons, there is constraint 

AgeIsNotNegative_ck to set that Age value cannot be negative. There is also 

added CHECK constraint PersonsUnder18WithoutCar to the table Persons 

which checks that a person younger than 18 cannot have any car. 

2.3. XML technologies 

2.3.1. XML documents 

XML (Extensible Markup Language) [5] is a markup language designed to 

store and carry structured data. It was designed by international standards 

organization World Wide Web Consortium (W3C). First XML was designated to 

store documents; now it is also used for representation of wide data structures in 

databases or Web services. 
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An example of an XML document is shown in Figure 2.5. An XML document 

mainly consists of elements and attributes. An element is build from two markup 

tags (the beginning-tag and the ending-tag) or from one empty-element tag. Other 

elements can be nested in an element. There is a root element which contains all 

other elements. Cause these rules elements of an XML document create a tree 

structure. An attribute is a markup construct consisting of a name and a value in 

quotes. Attributes are placed within a beginning-tag or within an empty-element tag. 

<?xml version="1.0" encoding="utf-8"?> 

<persons> 

   <person> 

      <name>George</name> 

      <age>12</age> 

   </person> 

   <person> 

      <name>Alice</name> 

      <age>30</age> 

      <cars> 

         <car id="00123"><carMake>ABC123</carMake></car> 

         <car id="00234"><carMake>ABC234</carMake></car> 

      </cars> 

   </person> 

   <person> 

      <name>Bob</name> 

      <age>16</age> 

      <cars> 

         <car id="00789"><carMake>BCD789</carMake></car> 

      </cars> 

   </person> 

</persons> 

Figure 2.5: Example of an XML document 

2.3.2. Levels of the correctness in XML 

We name that an XML document is well-formed if it satisfies the common 

syntax rules introduced in the specification. Such rules are that a document contains 

only legal Unicode [58] characters, the beginning-tag and the end-tag of elements 

are equal (case-sensitive equal) and elements are correctly nested without 

interaction overlapping; and next. These rules are common for all possible XML 

documents. 

Next definition is if an XML document is valid in respect of a specific schema 

of an XML document. Such a schema of an XML document defines the document’s 

structure, content and integrity constraints. There are various languages to express 
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the schema of XML. They have different expressive power and they use different 

way to specify the schema of XML. 

Document Type Definition (DTD) [5] defines the formal syntax of elements in 

XML documents, data types of elements and attributes and references between 

special attributes (with ID data type). 

2.3.3. XML Schema 

Language XML Schema (XSD, XML Schema Definition) [6] also defines the 

formal syntax like DTD but it is more expressive. It provides the greater support for 

data types, domain integrity constraints and the referential integrity between 

elements. Figure 2.6 shows an example of a schema of XML documents in 

language XML Schema. It is a definition of the schema of the XML document in 

Figure 2.5. It defines the syntax of a document and it defines the domain integrity 

constraints of element age in element person; its domain is a non-negative integer 

value. XML Schema has not the expressive power to define more complex integrity 

constraints. 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

  <xs:element name="persons"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element name="person" 

                    minOccurs="0" maxOccurs="unbounded"> 

          <xs:complexType> 

            <xs:sequence> 

              <xs:element name="name" type="xs:string"/> 

              <xs:element name="age" 

                          type="xs:nonNegativeInteger"/> 

              <xs:element ref="cars" minOccurs="0"/> 

            </xs:sequence> 

          </xs:complexType> 

        </xs:element> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 
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  <xs:element name="cars"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element name="car" maxOccurs="unbounded"> 

          <xs:complexType> 

            <xs:sequence> 

              <xs:element name="carMake" type="xs:string"/> 

            </xs:sequence> 

            <xs:attribute name="id" 

                          use="required" type="xs:string"/> 

          </xs:complexType> 

        </xs:element> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

</xs:schema> 

Figure 2.6: Example of a schema in XML Schema 

2.3.4. Schematron 

Another XML schema language is Schematron [7]. It is based on rules about 

a presence or an absence of patterns in XML trees. Its expressive power is very 

strong. It can express complex integrity constraints of XML. It is able to define the 

syntax of an XML document using the rules of a presence of an XML element in 

other XML elements. But such a schema in Schematron is too verbose. In this way 

complex constraints in Schematron are often combined with other languages like 

XML Schema. 

<?xml version="1.0" encoding="utf-8"?> 

<schema xmlns="http://www.ascc.net/xml/schematron"> 

  <pattern name="Persons constraints"> 

    <rule context="persons/person"> 

      <assert test="age &gt;= 0">Person's age can not be 

negative. 

      </assert> 

      <report test="age &lt; 18 and cars/car">Person younger 

than 18 cannot have assigned any car. 

      </report> 

    </rule> 

  </pattern> 

</schema> 

Figure 2.7: Example of constraints in Schematron 

Figure 2.7 demonstrates constraints in Schematron. A schema in 

Schematron is an XML document that consists of some elements pattern with inner 
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elements rule. Elements rule define the context of constraints. In elements rule are 

placed elements assert and report with constraints. Elements assert define 

conditions which must be satisfied; and elements report define conditions which 

cannot occur. Both elements assert and report contain a constraint expression in 

language XPath [8]. This expression is evaluated by the checking of validity of the 

XML document. 

XPath (XML Path Language) is a query language used to selecting nodes of 

an XML document. It is based on the tree structure of XML documents. It provides 

the navigation and the selection queries over XML trees. It can be also used to 

compute values from XML. Using of XPath provides the expressive power of 

Schematron. 

2.3.5. XQuery 

XQuery [9] is a functional query language over XML data. It is used to extract 

data of XML documents or transform documents. XQuery uses expressions in 

XPath to specify the source data in XML and FLWOR expressions (FOR, LET, 

WHERE, ORDER BY and RETURN) in a syntax similar to SQL to processing of the 

data. This syntax induces that the expressive power of XQuery is similar to the 

power of SQL. 

XQuery was designed for the creation of queries on XML but it can also be 

used for the definitions of integrity constraints. The integrity constraints are defined 

as queries that return if XML content contains only allowed data or if it contains any 

data restricted by the constraint. Figure 2.8 represents an integrity constraint 

expressed by XQuery. The FLWOR expression selects persons under 18 which 

have assigned any car; this is not allowed. If the result of this query is empty then 

the expression returns the content <result>true</result>. Else it returns 

<result>false</result> that indicates disallowed data by the constraint. 

let $bad_persons := 

  for $person in fn:doc("persons-cars.xml")/persons/person 

  where $person[age < 18 and cars/car] 

  return $person 

return <result>{(fn:empty($bad_persons))}</result> 

Figure 2.8: Example of a constraint in XQuery 
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2.3.6. XSEM 

XSEM [3] is a conceptual model for XML data. It is divided into the two 

layers; platform-independent model (PIM) and platform-specific model (PSM). PIM 

layer models real elements and relations between them without their concrete 

representation. It uses the standard elements of UML class diagrams: classes, 

attributes and binary associations. PSM layer models a concrete XML schema 

where PSM’s model elements represent XML elements and XML attributes with 

concrete types. The PIM diagram is only one. Usually there are more PSM diagrams 

which represent different views on the same model. PSM’s elements are semantic 

interconnected with PIM’s elements. 

For purposes of this thesis, we will use the XSEM PSM layer to model 

schemas of XML documents. XSEM diagram consist of classes, attributes, 

associations and content models. A class has a text name; a class contains 

attributes. An attribute has a name, a data type, cardinality and an XML form. The 

XML form of an attribute models its XML representation; there are two forms: 

a simple element (an XML element with simple content) or an attribute (an XML 

attribute of an XML element). An association is an oriented directed binary relation 

between two classes or content models; we call them the parent and the child. 

An association has two association ends, a name and cardinality. A content model 

element has a content model type. There are three possible types: a set, a choice 

and a sequence. A class which does not have any parent element connected 

through an association is called a top class. An XSEM PSM diagram can create 

graphs. In this graph classes and content models are vertices and associations are 

edges. The whole XSEM PSM diagram must represent a directed forest of graphs. 

A class models an XML complex content element (a sequence of XML 

elements and attributes); an attribute models an XML attribute or an XML element of 

a simple content. An association models an XML complex content with the 

association’s name (or if the association’s name is empty then with child class’s 

name) of complex type modeled by association’s child and association’s cardinality. 

A content model models a complex XML content which is a set, a choice or a 

sequence of XML elements; this complex XML content is modeled by associations 

connected to the content model. 

In Figure 2.9, there is an example of an XSEM PSM diagram with the two top 

classes purchase and persons. 
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Figure 2.9: Example of an XSEM PSM diagram 
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3. Related work 

Object Constraint Language (OCL) [2] was developed in 1995 at IBM. OCL is 

from version 1.1 (from 1997) a part of the official standard for UML. First, there was 

no significant support in existing case tools. Only several academic projects were 

created. 

On the present, there are many modeling CASE tools [10] which support 

creating of data models, first of all in UML class diagrams. They can create and edit 

diagrams following the UML graphical notation. They implement features like the 

code generation or the reverse engineering (creating models from a source 

code) [11] [12] [13] [14]. 

Some of today’s UML tools support the specification of OCL constraints on 

created models. However, most of them do not support the syntax and the semantic 

analysis of created OCL expressions over data models. 

In this chapter, we study existing tools with the support for OCL. And we 

compare their usage and their features. We compare the tools according the 

implemented degree of the analysis of constraint expressions. The simplest tools 

enable only to write and save OCL expressions without any syntax analysis. In the 

next level, more tools implement the syntax analysis and type checking of OCL 

expressions. But they cannot control the semantics; OCL expressions are not 

interconnected with models. Some advanced tools implement also the derivation of 

OCL constraints to a source code of programming languages. Some tools 

implement the dynamic validation of constraints over objects which are modeled in 

the tool. 

3.1. Tools 

3.1.1. IBM OCL Parser 

Probably, the first OCL available tool was IBM’s OCL Parser [15].  It was 

developed by the OCL authors at IBM [12]. It was implemented by the automatically 

generation from OCL’s grammar using JavaCC parser generator. Is functionality 

includes only a syntax checking and partial checking of the basic and collection 

types. Input models must be inserted in a special format. The application was not 

user friendly. 
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3.1.2. ModelRun 

ModelRun [16] was one of the first commercial tools with the support of 

OCL [13]. It was creates by company BoldSoft to validate models. ModelRun 

enables the OCL navigation over created models. 

In ModelRun, a user can define a model; set of classes and associations. 

Then he can create prototypes of the created model. He can create objects as 

instances of the classes and instances of the associations by drag-and-drop 

operations between the created objects. Then it is possible to execute OCL queries 

over the objects. And it is able to validate snapshots of the object model according 

expressed OCL invariants. 

ModelRun supports the syntactic, semantic analysis, type checking over the 

basic types and the models. It also supports the dynamic validation of invariants. 

3.1.3. OCTOPUS 

Octopus (OCL Tool for Precise UML Specifications) [18] was developed by 

company Klasse Objecten. It is an Eclipse [19] plug-in. It enables the syntactic and 

semantic analysis of OCL over UML data models. Octopus implements the 

transformation of UML class diagrams including OCL constraints into Java code. 

The component of the generating Java source code was initially developed 

as a study of Model-driven architecture (MDA) [20]. It demonstrates that it is 

possible to create a platform-independent model (including integrity constraints) and 

transform it to a platform-specific model and to platform-dependent source code. 

3.1.4. USE 

USE (UML-based Specification Environment) [12] [21] [22] is a system for 

the specification of information systems. It was developed at the University of 

Bremen, Germany. The current version USE 3.0.0 RC2 is from December 2010. 

A specification of an information system in USE is a UML model. It contains 

textual descriptions of classes, attributes, associations, operations and constraints. 

This textual description is not a standard. System requirements are represented as 

OCL constraints. USE has a feature for animating snapshots of a system of objects. 

These animations should provide to architect a feedback to achieve better design 

before implementation starts. 
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USE supports the full semantic analysis of constraints. It supports also 

validation of OCL invariants, pre- and post-conditions. 

3.1.5. Enterprise Architect 

Enterprise Architect (EA) [23] from Sparx Systems is a popular complex 

commercial visual modeling case tool. It supports modeling of software systems, 

business processes or industry based domains. It supports many industry modeling 

standards. It also supports the reverse engineering over source code in many 

programming languages. It is able to integrate EA with Eclipse [19] or Visual 

Studio [25]. 

A few years ago, EA did not have any support for OCL. In 2010 it supported 

the syntactic and semantic analysis of OCL over created models [11]. But it cannot 

derive OCL constraints to programming languages or other constraint languages. 

In the current version 9 Build 907 (June 2011), it is possible [24] to validate a 

UML element, relationship or attribute against an OCL constraint. Constraints are 

added individually for each element in a model by properties dialogs; the context of 

OCL constraints is defined implicitly by the property dialog. 

3.1.6. Dresden OCL 

Dresden OCL [26] is a software platform for OCL. It was developed at 

Technische Universität in Dresden, Germany. It is probably the most complex tool 

with the support for OCL. It provides the full evolution of OCL expressions. It is an 

open source platform and it is designed to extensible modularity. It enables to 

integrate it to existing UML tools in Java platform. 

There are 3 major versions of Dresden OCL: 

 Dresden OCL Toolkit, from 1999 which supports OCL 1.3; 

 Dresden OCL2 Toolkit, from 2005 which supports OCL 2.0; 

 Dresden OCL for Eclipse, which supports the current latest version which 

support OCL 2.2. 

The version Dresden OCL2 Toolkit is based on NetBeans Metadata 

Repository (MRD). MDR is a standalone implementation of MOF. It consists of 

several libraries and it is a part of NetBeans [28]. 

The whole application of version Dresden OCL for Eclipse is based on 

Eclipse SDK. Its architecture is based on Pivot model [28] [32] (but it is a meta-
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model; next Pivot meta-model). It is an exchange format for meta-models. It 

provides an abstraction for the evaluation of OCL expressions. It is possible to adapt 

different meta-models to Pivot meta-model. 

This Pivot meta-model is based on Eclipse Modeling Framework [30] (EMF). 

EMF is a modeling framework for building tools and other applications which are 

based on structured data models. EMF provides a set of tools which generate a set 

of Java classes for the created model. EMF includes a meta-model ECore [31] for 

describing models. ECore is a meta-meta-model (M3 level). Elements of ECore are 

in Figure 3.1. ECore E.g. ECore allows defining elements: 

 EPackage (contains EPackages and EClasses), EClass (contains 

EAttributes, EReferences, EOperations), EAttribute (has EDataType), 

EReference (a relation end), EDataType, EEnum, EOperation, EParamater. 

ECore use the class EClass also for UML associations – elements which 

connect other elements. Pivot meta-model is based on ECore. It extends ECore with 

Java classes in the package tudresden.ocl20.pivot.pivotmodel. It is demonstrated in 

Figure 3.2. Dresden OCL use OCL expressions which are based [35] over Pivot 

meta-model. 

 
Figure 3.1: ECore meta-model 
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Figure 3.2: ECore meta-model adapted to Dresden Pivot meta-model 

Other features of Dresden OCL are: 

 It is possible to translate a UML class diagram model with OCL constraints to 

Java code [34]; 

 It is possible to translate OCL constraints over UML to SQL expressions; 

 It is possible to express OCL constraints over a XML model which is adapted 

to model in Pivot meta-model. 

Dresden OCL is a complex universal framework. It is able to use OCL over 

each meta-model which can be adapted to Pivot meta-model based on ECore. It is 

possible to translate OCL expressions to another language. But it is not possible to 

interconnect different meta-models and their models. 

3.1.7. Eclipse OCL 

Eclipse OCL Project [36] is an independent isolated component of Eclipse. It 

is a library; set of Java packages. It provides a parser and an interpreter for OCL 

constraints over any meta-model which is instance of ECore meta-meta-model. It 

defines API for parsing of OCL expressions. It defines OCL abstract syntax model 

as a meta-model of OCL expression. It implements [37] the visitor design 

pattern [38] for analyzing or transforming the model of OCL expressions. 
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3.1.8. Kent OCL 

Kent Object Constraint Language Library [39] [40] (Kent OCL, KOCL) is an 

OCL implementation at University of Kent at Canterbury, England. It consists of an 

OCL parser, analyser and code generator. It defines Bridge [39] meta-model over 

various meta-models. It provides its libraries for Kent Modeling Framework project 

(KMF), EMF and for Java. Bridge meta-model is represented by Figure 3.3. Bridge 

is a more reduced meta-model than ECore. 

 
Figure 3.3: Kent Bridge meta-model 

3.2. Deriving OCL to other constraint languages 

There are also some studies which analyze derivation OCL constraints over 

UML models to other constraint languages for other meta-models, e.g. to relational 

databases [41] [11]. We have not found any study about derivation of OCL to XML 

constraint languages, Schematron or XQuery. 

3.2.1. Demuth and Hussmann 

In the paper “Using UML/OCL Constraints for Relational Database 

Design” [41] the mapping of OCL expressions to SQL code is presented. OCL is 

based on the first-order predicate logic. The result of the study is that almost all 

constructions of OCL (except iterate construct) can be derived to SQL queries. 
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Authors present mapping from construct of OCL to types of SQL queries according 

a family of patterns. Each pattern represents an idea of translating an OCL construct 

to an SQL query. Authors consider only the translation of OCL invariants to SQL 

CHECK constructs. 

The study first analyse the mapping of a relational database schema from a 

UML model. UML classes are mapped to relational tables. Associations which 

represent the relationship many to many or if they are connected to an association 

class are derived to database tables, too. Associations one to many or one to one 

even if they are recursive associations are mapped to foreign keys. 

Each OCL invariant in a context block: 

Context className 

inv invName: expression 

is mapped to a SQL predicate where variable self represent the row of the 

table: 

CREATE ASSERTION invName 

CHECK ( 

  NOT EXIST ( 

    SELECT * 

    FROM className AS self 

    WHERE not (expression) 

)) 

A pattern over basic column can not result in a collection: 

[Context Person] 

self.age > 18 and self.isUnemployed = true 

is mapped to: 

[from Person self] 

self.Age > 18 and self.IsUnemployed = true 

An OCL sub-expression which refers to an association: 

[Context Company] 

self.employee 

is mapped to a SQL query: 
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[from Company] 

SELCT ID FROM Person 

WHERE PID in ( 

  SELECT PID FROM Job 

  WHERE CID in ( 

    SELECT CID FROM Company 

    WHERE CID = self.CID)) 

The study map all OCL collection expressions and collection operations to 

SQL queries. 

3.3. Conclusion 

Many modeling CASE tools support creating and drawing models. Some of 

them enable the code generation and the reverse engineering. However, the 

support for integrity constraints in OCL is rare and infrequent. The most complex 

tool for OCL is Dresden OCL. It enables use OCL for different meta-model by 

mapping to Pivot meta-model. And it enables derive OCL to other constraint 

languages (SQL and Java code). 

The aim of our thesis is to express constraints in our language for different 

meta-models, too. As well, we want to support mapping between different meta-

models. And we plan to derive constraints between different interconnected meta-

models. We will use a constraint language based on OCL. It will be based on a 

different meta-model then ECore or Dresden Pivot meta-model. The meta-model will 

be not so common. But it will provide more possibilities for relationships between 

model elements; and it will provide more possibilities for navigation expressions for 

the created constraint language. But not all language constructs, structures and 

libraries of OCL will be used and implemented in our language and in our 

framework. 
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4. Architecture, UCL Data meta-model 

The task of this thesis is to introduce and define UCL. It is a constraint 

language which will be usable to express integrity constraints for different data 

meta-models. Expressions and types of UCL must be based on a specific meta-

model. We will name it UCL Data meta-model. E.g. OCL is based on the meta-

model of UML; Schematron is based on a meta-model of XML. The aim is to use 

constraints in language UCL for various meta-model. For two different 

interconnected models of different meta-models, it must be able to interconnect also 

the two mapped models of UCL meta-model, too. Our aim is also to derive 

constraints over different meta-models. UCL Data meta-model should be consisted 

of the widest possible types of data constructs and relationships between these 

constructs. 

In this chapter, we introduce and also formally define UCL Data meta-model. 

But first we explain the terms modeling, metamodeling and four-layer meta-modeling 

architecture. 

4.1. Meta-Object Facility 

4.1.1. Modeling 

In general, a model is anything that is used in any way to describe anything 

else. It is a way to capture ideas, relationships, decisions and requirements in a 

defined notation that can be used for different domains. Modeling allows a better 

understanding of the system. Data model in software engineering is a model which 

represents the structure of data. It enables storing and exchanging of data. 

4.1.2. Meta-modeling 

The model is a description of the system or part thereof expressed in a 

defined language or in a graphical representation. The mechanism of a creation and 

of a definition of such a modeling system is called a meta-modeling. 

It is important to distinguish between the concepts of the model and the 

meta-model. A model defines what elements and their properties may exist in the 

system; a model is an abstraction of the real world. A meta-model is an abstraction 

at the higher layer. A meta-model is the result of a process of the abstraction of the 
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model (or of the modeling language). A meta-model is methodologically a model of 

the model; it defines types of the elements of the model with type of their properties. 

Figure 4.1 shows the relationship between the model and the meta-model; it 

consists of two layers. The layer Model describes in UML class diagrams persons, 

cars and relationships between them. Further it models for persons their name and 

age; and for cars their ID and their mark. UML class diagrams created by software 

designers exist in the layer Model. The Layer Meta-model is an abstraction of the 

layer Model. It describes (models) all elements, properties of elements and 

relationships between elements in the layer Model. The meta-model that is used in 

the figure defines the element UML class, UML association and UML attribute. The 

element UML Class in the meta-model is the meta-class; the elements Person and 

Car in the model are its instances. Similarly, the attributes Name, Age, ID and 

CarMake are instances of the meta-class UML Attribute and the association in the 

model is an instance of the meta-class UML Association. 

 
Figure 4.1: Relation between the model and the meta-model 

4.1.3. Four-layer architecture 

Object Management Group defines the four-layer meta-modeling architecture 

Meta-Object Facility (MOF) [42] to define UML. The constituent layers are 

instances (M0), user model of the system (M1), meta-model (M2) and meta-meta-

model (M3). 

In the layer M0, there are real instances of the modeled system. For 

example, for an object-oriented information system there are instances of classes 

(e.g. instances of class Person: Alice or Bob) in the case of relational databases 

there are rows of the corresponding tables and in the case of an XML model there 

are the elements with their content. The layer M0 is an instance of the layer M1 

(model) which is located on one layer upper. By a modeling of the data in the layer 
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M0, there are computer representations of real entities; such as representations of 

people or cars. By a modeling of processes, there are the real elements; it means 

real persons, real objects and real processes. 

The layer M1 (model) represents models – diagrams that model rules of the 

modeled domain. It is for example a schema of XML documents or a UML diagram 

with concrete classes (Person, Car…), attributes and associations. Elements in this 

layer are the classifiers for the in the layer M0. 

The layer M2 (meta-model) defines constituent languages for specifying 

models. For example, in the case of UML class diagrams, the layer defines what a 

class, an attribute, an association is; and what their properties and rules are. In the 

case of relational databases, the layer defines what a table, a column and a foreign 

key is. Elements in this layer are the classifiers for the elements in the layer M1. 

Each element in the layer M2 (meta-model) is an instance of an element in 

the layer M3 (meta-meta-model). Layer M3 defines concepts that can be used in 

defining of modeling languages. This level of abstraction supports the creation of 

different models from the same set of basic concepts. 

 
Figure 4.2: Example of the four-layer meta-modeling architecture 
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Figure 4.2 illustrates an example of the four-layer meta-modeling architecture 

for UML class diagram inclusive the layer M0 with one instance of class Person and 

two instances of class Car. As an illustration, there is one class MOFClass in the 

layer M3. It is the classifier for all elements in the layer M2 which describe the UML 

meta-model. 

MOF is a standard for Model-driven engineering (MDE). MDE is a software 

development methodology to creating and exploiting domain models. MOF 

describes creating and manipulating of meta-models by definitions interfaces that 

describe those operations. An example of a supporting standard of MOF is XML 

Metadata Interchange (XMI) [59] which defines an exchanging format for models in 

the MOF layers. 

4.1.4. Layer of UCL Data meta-model 

UCL Data meta-model must be defined in one of the MOF layers. Various 

data meta-models (e.g. meta-models for UML class diagrams, for relational 

databases and for schemas of XML) are placed in the layer M2. For an integration of 

UCL Data meta-model there are two possibilities. The first is to place it at the same 

level and use the layer M3 only for a definition of a meta-meta-model. Then all 

elements in the layer M1 of different meta-models will be mapped to elements in M1 

of UCL Data meta-model.  Else we can lift UCL Data meta-model to the layer M3 to 

direct applying to different meta-models. Then all elements in the layer M2 of 

different meta-models will be mapped to elements in M2 of UCL Data meta-model. 

There are no differences in the meta-model of UCL expressions accruing from these 

two possibilities for the placing in the layers. Since we want to integrate UCL for 

existing different data models, we place the UCL Data meta-model into the layer M3. 

4.2. Architecture 

Figure 4.3 represent the architecture of a typically modeling software system. 

A software architect wants to model a complex software system. He creates models 

in the level M1. First he models the whole system in UML class diagrams in the PIM 

level. UML class diagram models also the runtime application. Then he creates 

some XSEM diagrams which model XML documents, messages or databases in M0 

level (grey arrows). And the architect can create diagrams in ER models which 

model storing of data in a database. 
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PIM diagram represents the whole system. PSM diagrams represent 

individual parts of the complex system. Elements from PSM diagrams are 

semantically related with elements in PIM diagram. The architect can create 

mapping between elements from the PIM diagram to elements in PSM diagrams 

(the interrupted red arrows). 

 
Figure 4.3: Architecture of a modeling framework with PIM, PSM XML and PSM ER 

A modelling software system must define meta-models. E.g. to achieve it is 

able to create an UML class diagram in the software system, the system must define 

the UML meta-model. Created UML / XML / ER diagrams are instances of UML 

meta-model / XML meta-model / ER meta-model (the orange arrows). 

Figure 4.4 introduces the architecture of a system with the support for UCL. 

In the layer M3, we have defined UCL Data meta-model, the common data meta-

model for purposes of UCL. 

In the layer M2, there are also UCL meta-models. For each meta-model, we 

must define concrete UCL Data meta-model. E.g. we have UML meta-model; it 

defines what a class or an attribute is. Then in the layer M2, we must define UML-

UCL-meta-model; it defines what is a class or an attribute in a view of UCL Data 

meta-model. 

In the layer M1, we must for each model create its UCL model. E.g. for an 

UML model (the orange rectangle in M1) we must create a UML UCL model (the 

blue rectangle in M1). The creation (the big blue arrows) of a UML UCL model from 
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an UML model is automatic; it is defined by rules in the UML-UCL-meta-model (in 

M2). UCL models (in M1) are instances of UCL meta-models (in M2) (the small blue 

arrows). 

UCL constraints are based on individual UCL models (in M1). Let we have 

an UML model and we want to express UCL constraints over it. We do not express 

these constraints over the UML model but over the created UML UCL model of this 

UML model. UCL constraints (the green rectangles) are based over the UML UCL 

model (the blue line). 

 
Figure 4.4: Architecture of a framework with UCL data models 

Figure 4.5 illustrates the derivation of UCL constraints over one model to 

UCL constraints over another model and derivation of UCL constraints to other 

constraint languages (the big blue arrows). 

Individual models (in M1) represent parts of the complex software system. 

These models are semantically related. A software architect must create the 
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mapping (interconnections) between elements in the individual models (the 

interrupted red arrows). 

The individual UCL models are interconnected, too (the blue lines). It is 

possible to deduce the mapping between the individual UCL models (the blue 

rectangles in M1) for the mapping between the models. 

 
Figure 4.5: Architecture of deriving UCL to other constraint languages 

If we have expressed UCL constraints over one model (e.g. over UML) then 

we can automatically derive the UCL constraints over another models (the big blue 

arrows). It is also possible to derive UCL constraints to specific constraint 

languages; e.g. derive UCL constraints over XML to Schematron rules. 

4.3. Analysis and elements in UCL Data meta-

model 

UCL Data meta-model must be sufficiently general to be able to model many 

different data models (meta-models). There are two ways how to proceed with the 

analysis of what and how many elements will contain UCL Data meta-model. The 

first option is that it will contain only a small count of elements that will be universal 

but it will define different kinds of relationships and connections between these 

elements. The second option is that UCL Data meta-model will include a wider count 

of elements which will be more concrete and they will fit easily specific elements in 

some selected modeling data models. The aim of this thesis is to create a 

framework which also enables the derivation of constraints (in our language) 
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between different meta-models. To define this derivation, we must first define a 

mapping between two models. The derivation between two models of meta-models 

will be based on this mapping. The mapping will map elements of one model (of 

UCL Data meta-model) to elements of another model (of UCL Data meta-model). 

Different meta-models can define different relationships between their elements. But 

we need map different kinds of elements to a general kind of element; and we need 

map different kinds of relationship to general kinds of relationships; because we 

must define the mapping between different meta-models. We have chosen the first 

option to achieve UCL Data meta-model more general, thinner and easier to 

formalize its concept and the mapping between different meta-models. 

Data meta-models typically contain simple elements that directly model the 

data values; e.g. a class’s attribute in UML, a column in relational databases, an 

attribute or a simple element in XML. These kinds of elements from M2 will be 

represented in M3 by the element UCL lexical. A UCL lexical will contain the 

properties Name (string) and Type (enumeration from the basic data types Integer, 

Real, Boolean and String). 

Data meta-models typically contain complex elements that contain simple 

elements (represented by UCL lexicals); e.g. a UML class, an XML complex element 

or a database table. These kinds of elements from M2 will be represented in M3 by 

the element UCL entity. A UCL entity has the property Name. A UCL entity can 

contain inner UCL lexicals. Some data meta-models contain elements to group other 

elements; e.g. a package in UML. These elements will be also represented by a 

UCL entity. In some data meta-models complex elements can contain other complex 

elements. So UCL entity can contain its inner UCL entities. UCL Data meta-model 

defines next relationships between UCL entities. It defines the neighborhood on an 

equivalent level and the generalization. The neighborhood between UCL entities can 

represent e.g. the relationship between UML classes in the same UML package. 

Many data meta-models define binary and n-ary links between their 

elements; e.g. a UML association or a foreign key in databases. These links are in 

UCL Data meta-model represented by the element UCL relation. A UCL relation is 

an n-ary link between UCL entities. A UCL relation has the property Name and it has 

two or more UCL relation ends. A relation end is connected to an UCL entity and it is 

adorned with the properties Name and Cardinality. 

A UCL entity can contain other inner UCL entities. Then a UCL entity can 

contain also inner UCL relations; e.g. when an UML association is inserted in a UML 



36 

package. IN UCL Data meta-model, there is also the neighbouring between a UCL 

entity and a UCL relation; e.g. when a UML association class is connected to a UML 

association. 

We consider the defined links (UCL relations) and the individual relationships 

between UCL entities so general that we do not define additional meta-model 

elements. All elements of data meta-models and relationships between them must 

be mapped to the presented elements in UCL Data meta-model and their 

relationships. 

 
Figure 4.6: Class diagram of UCL Data meta-model 

4.4. UCL Data meta-model description 

Figure 4.6 shows the class diagram of UCL Data meta-model elements. This 

meta-model contains the nonabstract elements: UCL entity, UCL relation, 

UCL lexical and UCL relation end (which belongs to an instance of UCL relation). 

Concerning the common properties and the relationships between the elements 

there are defined abstract classes UCLMetaConstruct and UCLMiddleEntity. 

UCLMetaConstruct is the base class for the other (three) elements (entity, relation 

and lexical). It has the attribute Name, because all elements have a name. The 

class UCLLexical contains the attribute Type, and the inherited Name. 

UCLMiddleEntity is the base class for the classes UCLEntity and UCLRelation; 

because of their common characteristics. The both elements may contain 
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UCLLexicals (the role InnerLexicals), they both can be inserted in another UCLEntity 

(the relationship OuterEntity) and they both can neighbour with other UCLEntity (the 

relationship NeighbourEntities). 

The class UCLEntity can contain UCLEntities and UCLRelations (the 

relationship InnerMiddleEntities). Then it can be connected to UCLRelations (the 

relation ConnectedRelations); it can neighbour with UCLRelations (the relation 

NeighbourRelations); it can be the child UCL entity by the generalization from one 

UCLEntity and it can be the generalization base UCL entity for mote other 

UCLEntities. The class UCLEntity inherits from the class UCLMiddleEntity, so 

inherits the attribute Name, it can contain UCLLexicals and it can neighbour with 

other UCLEntities, too. 

UCLRelation is a n-ary link between UCLEntities; it contains collection of 

UCLRelationEnds. A UCLRelationEnd represents a connection of the UCLRelation 

to a UCLEntity; it is adorned with the Name and the Cardinality of the connection. 

The class UCLRelation inherits from the class UCLMiddleEntity, so it has the Name, 

it can contain UCLLexicals and it can neighbour with other UCLEntities, too. 

4.5. Concept definition 

In this sub-chapter, the introduced UCL Data meta-model is formally defined. 

The presented formal definition gives the context for UCL expressions and it is also 

required for the later formal definition of the meta-model of UCL expressions. 

UCL Data meta-model has these components: the set of all UCL entities with 

their properties, inner elements, relationships and the generalization hierarchy, the 

set of UCL entities that has no outer UCL entity; the set of all UCL lexicals with their 

properties; the set of all UCL relations with their properties, inner elements and 

relationships; and the set of UCL relations that has no outer Entity. 

In the following sections, individual components are defined in detail. Then 

they will be combined to build the complete definition of UCL Data meta-model. 

Definition 4.1: For the naming of particular elements, we need assume an alphabet. 

Let   be the alphabet of letters, then      is the set of non-empty finite words for 

the naming of elements. And let set    is the set of all finite words inclusive   (the 

empty word). 

Definition 4.2 (Cardinality): 
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The set                                           is the set of all 

cardinalities. A cardinality is a pair            . The values     and     

determine the possible count of instances covered by the cardinality. 

4.5.1. Basic types 

Data types will be defined in depth later in the meta-model of UCL. But now, 

we must define the set of the predefined basic types Integer, Real, Boolean and 

String. 

Definition 4.3 (Basic types): Set                                  is the set of 

the predefined basic types. 

4.5.2. Elements 

Definition 4.4 (Elements): 

   is the finite set of all entities (UCLEntities). 

   is the finite set of all relations (UCLRelations). 

   is the finite set of all lexicals (UCLLexicals). 

    is the finite set of all relation ends (UCLRelationEnds) of all relations. 

4.5.3. Entities 

Definition 4.5 (Entities): A structure of entities is the tuple Entities: 

         

                                                                        , 

              assigns a name to each entity. 

               assigns a set of lexicals to each entity. 

               assigns a set of inner entities to each entity. 

                assigns a set of inner relations to each entity. 

                 assigns to each entity a set of relations which are 

connected to the entity. 

                   assigns to each entity a set of relations ends which 

are accessible (by a navigation) from the entity. 

               assigns a set of neighbouring entities to each entity. 

                assigns a set of neighbouring relations to each entity. 

 The partial order            is a generalization hierarchy on entities. 
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4.5.4. Relations 

Relations describe structural relationships between entities. A relation can 

connect two or more entities. Relations connect entities through their relations ends. 

The count n of all relation ends of the relation is called the degree of the relation. 

According the degree value, the relation is called the n-ary relation. An entitiy can be 

connected to any count of relations. Binary associations where both ends are 

connected to the same entity are allowed; they are called the recursive or the self-

relations. 

Definition 4.6 (Relations): A structure of relations is the tuple Relations and a 

structure of relation ends is the tuple RelEnds: 

                                        ,  

                                                  , where: 

                  assigns a name to each relation, the empty name is 

allowed. 

               assigns a set of lexicals to each relation. 

               assigns a set of neighbouring entities to each relation. 

                assigns a set of relation ends to each relation. Each 

relation has at least two relation ends.                     . 

                assigns a role name to each relation end. 

                    assigns to each relation end its (outer) relation. 

                  assigns a connected entity to each relation end. 

                assigns to each relation end the cardinality of the 

connection to the connected entity. 

4.5.5. Lexicals 

Lexicals describe properties of entities and relations. A lexical has a name 

and one of the basic types. 

Definition 4.7 (Lexicals): 

A structure of lexicals is the tuple:                           , where: 

             assigns a name to each lexical. 

              assigns a basic type to each lexical. 
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4.5.6. Generalization 

We define the generalization hierarchy over entities. The generalization is a 

partial order (a binary relation which is reflexive, transitive and antisymmetric) on the 

set of the entities  . We denoted it           . The generalization is a taxonomic 

relation between two entities. If entities         are in the generalization 

relationship            then    is the child entity of the parent entity   . 

A child entity inherits all lexicals, all inner entities, all neighbour entities and 

relations and all connected relations of the parent entity. We define an auxiliary 

function parents which returns all generalization parent entities of an entity. 

                   

                             

Relation        is reflexive:                                    . 

4.5.7. Lexicals restrictions 

Each lexical must be inserted into exactly one entity or a relation as the inner 

lexical:                                              . 

4.5.8. Relations restrictions 

Function Re.relation assigns to each relation end its relation. 

                                     

The role names of relation ends (a, b) for a relation (r) must be distinct. It is 

necessary because we use the role names to the navigation from UCL relations to 

the connected UCL entities. These names must be distinct. 

                                                        

All lexicals in a relation must have distinct names. We use the names of 

inner lexicals for UCL navigation expressions from the UCL relation to the inner 

UCL lexicals. 

                                                       

A relation can be inserted into an entity as the inner relation. It can be 

inserted into at most one entity or in no entity:                               

 . Relations which are not inserted in any entity are called root relations: 

          
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                                    

Root relations must have distinct names. We need the names of root 

relations to express the context of UCL expressions. 

                                            

The binary relationship neighbourhood between an entity (e) and a 

relation (r) is symmetric. 

                                            

All neighbour entities must have distinct names. We need the names of the 

neighbour entities of a relation to UCL navigation expression which navigate from 

the relation the neighbour entities. 

                                                     

4.5.9. Entities restrictions 

An entity can be inserted into other entity as the inner entity. It can be 

inserted into at most one entity or in no entity:                              . 

Entities which are not inserted in any other entity are called root entities: 

          

                                   

The root entities must have distinct names. We need the names of root 

entities to define the context of UCL constraints; they must be distinct. 

                                            

All lexicals in an entity must have distinct names. We need the names of 

inner lexicals of an entity for UCL navigation expression from the entity to the inner 

lexicals. 

                                                       

Entity can contain inner entities and inner relations; these inner entities and 

inner relations of an entity must have distinct names. We need names of inner 

elements (entities and relations) of an entity to navigation expressions and also for 

the definitions of the context of UCL expressions. 

                                                      

                                                       



42 

Function E.conRel gets relations (r) which are connected to the entity (e). 

These relations (r) must contain the relation end (a) which is connected to the 

entity (e). 

                                                             

Function E.accEnds gets all relation ends which are accessible (reachable 

by a navigation expression) from the entity. Such relations ends are all relation 

ends (a) of all relations (r) where exists a relation end (b) that is connected to the 

source entity (e). Relation ends a and b cannot be the same. 

                      

                                                              

Accessible relation ends from an entity must have distinct names. We need 

the names of the accessible relation ends from an entity to UCL relation step 

navigation relation stop navigation expressions. 

                                                           

The binary relationship neighbourhood between the entities (e, f) is 

symmetric. 

                                       

All neighbour entities must have distinct names. We need names of the 

neighbouring entities for the UCL navigation expressions from an entity to its 

neighbouring entities. 

                                                     

The binary relationship neighbourhood between an entity (e) and a 

relation (r) is symmetric. 

                                            

All neighbour relations must have distinct names. We need names of the 

neighbouring relation for the UCL navigation expressions from an entity to its 

neighbouring relations. 

                                                      

4.5.10. Relations navigation names 

Definition 4.8 (Simple steps from relations): 

For relations, names of lexicals, names of neighbour entities and names of relation 

ends are used by UCL in the same notation (navigation simple steps). All names of 
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elements connected by this relationship from an entity must be distinct; because we 

use the names for the navigation. 

                                          is set of lexical names. 

                                            is set of neighbour 

entities names. 

                                             is set of relation 

ends names. 

The collection of the sets            must be pairwise disjoint. 

                    . 

4.5.11. Entities navigation names 

Definition 4.9 (Simple steps from entities): 

For entities, names of lexicals, names of inner entities, names of inner relations, 

names of neighbouring entities and names of neighbouring relations are used by 

UCL in the same notation (navigation simple steps); all these names must be 

distinct. 

                                                   is the set of 

lexical names. 

                                                     is the set of 

inner entities names. 

                                                    is the set of 

inner relations names. 

                                                  is the set of 

neighbouring entities names. 

                                                    is the set of 

neighbouring relations names. 

Collection of sets               must be pairwise disjoint. All names of these 

elements must be distinct. 

                          . 

Definition 4.10 (Accessible relation steps from entities): Function 

                 gets for an entity the set of the names of all relation ends which 

are accessible from the entity. The function              gets all accessible 

relation ends for an entity. The names are used in UCL for navigation expressions 

connected relations step and connected relations stop. 

                                               
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4.5.12. Full entity descriptor 

A child entity implicitly inherits all lexicals, inner entities, inner relations, 

neighbouring entities, neighbouring relations and all connected relations of its parent 

entity. Like in the previous subchapters, we define the full structure of entities and 

the sets of names of simple steps and relation steps from an entity together with its 

inherited properties. 

Definition 4.11 (Full structure of entities): 

          

                                  

                                             , where: 

                                  assigns the set of the lexicals; including 

all inherited lexicals. 

                                   assigns the set of the inner entities; 

including all inherited inner entities. 

                                      assigns the set of the inner relations; 

including all inherited inner relations. 

                                        assigns the set of the relations 

which are connected to the entity; including all inherited connected relations. 

                                          assigns to each entity a set of 

relations ends which are accessible (by a navigation) from the entity; 

including all inherited connected relations. 

                                    assigns the set of the neighbouring 

entities; including all inherited neighbouring entities. 

                                     assigns the set of the neighbouring 

relations; including all inherited neighbouring relations. 

 

Given the definition of the full structure of entities, we define the following 

restrictions for the entities. The names of all elements which are accessible by a 

UCL navigation expression from an entity must by distinct; including the inherited 

elements: 

Lexicals with the same name can be defined only in one entity. 

                                                     

Inner entities with the same name can be defined only in one entity. 

                                                      
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Inner relations with the same name can be defined only in one entity. 

                                                       

Accessible relation ends with the same name can be defined only for one 

entity. 

                                                           

Neighbouring entities with the same name can be defined only in one entity. 

                                                      

Neighbouring relations with the same name can be defined only in one entity. 

                                                       

Definition 4.12 (Full simple steps from entities): 

Names for all kinds of simple step navigation from an entity must be distinct 

including all inherited names. 

         
                                             is the full set of 

the lexical names. 

         
                                               is the full 

set of the inner entities names. 

         
                                              is the full set 

of the inner relations names. 

         
                                            is the full set 

of the neighbouring entities names. 

         
                                              is the full set 

of the neighbouring relations names. 

Collection of sets          
      must be pairwise disjoint. The names of all 

inherited inner lexicals, all inherited inner entities, all inherited inner relations, all 

inherited neighbouring entities and all inherited neighbouring relations must be 

distinct. These names are used for UCL navigation expressions. It is possible to 

navigate the inherited element, too. 

                           
             

      . 

Definition 4.13 (Full accessible relation steps from entities): Names of all 

relation ends which are accessible from the entity including all inherited relation 

ends. 

                                                 
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4.5.13. Formal concept of UCL Data meta-model 

We combine together all previous defined components to formally define the 

full concept of UCL Data meta-model. 

Definition 4.14 (Concept of UCL Data meta-model): 

The general concept of UCL Data meta-model is a structure: 

                                        , where: 

           is the full structure of entities. 

           is the structure of relations. 

         is the structure of relation ends. 

          is the structure of lexicals. 

4.6. Sample meta-model and UCL Data meta-model 

 
Figure 4.7: Model of Sample meta-model in view of UCL Data meta-model 

Figure 4.7 shows a model (a diagram) of Sample meta-model. This Sample 

meta-model was invented only for the purpose of demonstrate UCL Data meta-

model. The model in the figure is an instance model of Sample meta-model. 
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Sample meta-model defines four kinds of elements: 

 SampleClass (e.g. Person in the model in the figure); 

 SamplePackage (e.g. Employees); 

 SampleAttribute (e.g. name of SampleClass Person); 

 SampleAssociations (e.g. Marriage). 

A SampleClass and a SampleAssociation can contain SampleAttributes. 

A SampleAssociation contains SampleAssociationEnds connected to 

SampleClasses. The generalization between SampleClasses is defined 

(e.g. Employee inherits Person). A SamplePackage can contain inner 

SampleClasses and SamplePackages. Two SampleClasses can be in the neighbour 

relationships (e.g. Company and Organization are neighbours). A SampleClass can 

be connected to a SampleAssociation in role of a SampleAssociationClass (e.g. Job 

is connected to CompanyEmployee); this SampleClass represents special 

information about the SampleAssociation. 

Elements and relationships between elements of Sample meta-model must 

be mapped to instances of elements of UCL Data meta-model. And elements in a 

model of Sample meta-model must be mapped to elements of a model of UCL Data 

meta-model. 

4.6.1. Mapping of Sample meta-model to UCL Data meta-model 

The elements in UCL meta-model are: 

 Elements SampleClass and SamplePackage are instances of UCL entity. 

 SampleAssociation is an instance of UCL relation (with corresponding 

UCL relation ends). 

 SampleAttribute is an instance of UCL lexical. 

The relationships between elements in UCL meta-model are: 

 A SampleAttribute of a SampleClass is an inner UCL lexical of UCL entity; 

and a SampleAttribute of a SampleAssociation is an inner UCL lexical of a 

UCL relation. 

 A SampleClass in a SamplePackage is an inner UCL entity of a UCL entity. 

 A neighbourhood between SampleClasses (e.g. Company and Organization) 

is a neighbourhood between UCL entities. 
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 A connection of a SampleClass to a SampleAssociation (e.g. Job with 

CompanyEmployee) is modeled to a neighbourhood relationship between a 

UCL entity and a UCL relation. 

 A generalization between two SampleClasses (Employee is child of Person) 

is modeled to a generalization between two UCL entities. 

4.6.2. Mapping of a model of Sample meta-model to UCL Data meta-model 

Without a formal definition of Sample data meta-model we note the model in 

the figure Figure 2.9 in view of UCL Data meta-model. 

The model in the figure Figure 2.9 in view of UCL Data meta-model is a 

structure:                         
                                      

according Definition 4.14; 

where: 

 the set of entities is                             ; 

 the set of relations is                          ; 

 the set of lexical is 

                                                                             ; 

 the set of relation ends is 

                                                                ; 

and where: 

 the names of the entities are         
          

              
 

 ; 

 the lexicals of the entities are        
                           

      
 

 , e.g. the 

entity Person has lexicals name, birthYear, isMarried and age; 

 the inner entities are         
              

      
 , the entity Employees has 

the inner entities Employee and Job; 

 the inner relations are          , entities in the diagrams have no inner 

relations; 

 the connected relations to entities are           
         

     
 

 , e.g. the entity 

Person is connected to Marriage, the entity Company has no connected 

relations; 
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 the accessible relation ends from entities are 

           
                 

     
 

 , e.g. from the entity Person the relation 

ends husband and wife of the relation Marriage are accessible; 

 the neighbouring entities of the entities are         
         

         

       

 , the entities 

Company and Organizations are in a neighbour relationship; 

 the neighbouring relations of the entities are          
           

       
 , the 

relation CompanyEmployee is the neighbour of the entity Job; 

 the generalization hierarchy on entities is the relation                     

Employee is the child entity of Person; 

 the names of the relations are         
          

              
 

 ; 

 the lexicals of the relations are        
               

       
 , the relation 

Marriage has the lexicals place and date, rest of the relations does not have 

any lexical; 

 the neighbouring entities of the relations are         
           

       
 , the 

entity Job is the neighbour of the relation CompanyEmployee; 

 the relation ends of the relations are         
                  

                        
 

   

e.g. the relation Marriage has the relation ends husband and wife; 

 the role names of the relations ends are          
             

 
 ; 

 the (outer) relations of the relation ends are              
         

 
 ; 

 the connected entities of the relation ends are            
         

 
 , 

e.g the relation end       husband is connected to the entity Person; 

 the cardinalities of the relations ends are          
           

 
 ; 

 the names of the lexicals are         
          

 
 ; 

 the (basic) types of the lexicals are         
           

 
 . 
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5. UCL description 

5.1. Introduction and comparison with OCL 

In this chapter, the Universal constraint language (UCL) is introduced 

informally. The formal definition of UCL (according its meta-model) is in the next 

chapter (Chapter 6: Meta-model of UCL constraints). 

UCL is a formal language to express integrity constraints over different data 

meta-models. Expressions of UCL are based on UCL Data meta-model. UCL Data 

meta-model is a general meta-model. It was created to enable the mapping of 

various data meta-models to UCL Data meta-model. Using this mapping, it is 

possible to express UCL expressions over different meta-models. We can express 

constraints in UCL over meta-models which we can map to UCL Data meta-model. 

Expressions in UCL typically express simple or complex invariants. A UCL 

expression can be also used as a query without any data side effect over data which 

is independent of the data model. 

UCL is based on Object constraint language (OCL). It is designated on UML 

object-oriented and state models. UCL is designed over UCL Data meta-model that 

is a general data meta-model. 

Similarly to OCL, UCL is based on terms and predicates of the first-order 

predicate logic. Its syntax is similar to programming languages. UCL is a typed 

language; each expression has a type defined statically before the interpretation. 

The language has the predefined set of primitive types (Integer, Boolean, String and 

Real). Then each UCL entity and each UCL relation in UCL model represents 

special type in UCL. Also collection types from other type can be created. All 

constraints in UCL are invariant expressions. An invariant is a constraint expression 

which expresses a condition which must be satisfied all the time for all instances of 

the defined context. Pre-conditions, post-conditions and guards from OCL are not 

supported. 

Not all language constructions of OCL are supported in UCL; e.g. collection 

literals, tuples, the iterate operation, constraints over operations and enumerations. 

And conversely UCL defines more kinds of navigational expressions; because it is 

based on more general data meta-model (UCL Data meta-model) than OCL (UML 

class and state diagrams). 

OCL defines only 3 kinds of standard navigation expressions: 



51 

 from a class to its attributes; 

 from a class to another class through an association; 

 from a class to an association class which is connected to an association. 

UCL defines 10 kinds of navigation expressions over UCL Data meta-model. 

UCL defines more possibilities by expressing the context of declaring 

constraint invariants. In OCL, we can define the context of constraint only by UML 

classes and packages or states. In UCL, we can define the context of expressions 

over each root entity, over each root relation and we can use the navigation to inner 

entities and inner relations as it is proposed in UCL Data meta-model. 

5.1.1. Sample model for example UCL constraints 

Examples of UCL expressions in this chapter are expressed in the context of 

the model in Figure 4.7. 

5.1.2. Lexical rules 

UCL expressions consist of Unicode [58] characters. String literals and 

comments can contain any valid Unicode character. Identifier names of elements 

and types in the model can contain only standard Latin alphabet letters (A-Z) in 

lower and upper case, digits and underscore (_). An identifier cannot start with a 

digit or an underscore. 

There are two styles of comments in UCL. A single line style comment which 

starts with two successive dashes (--) and ends at the end of the line. And a 

multiple line style opened with /* and closed with */. 

expressions… --this is a comment 

expressions… /* this is a 

comment */ expressions… 

Figure 5.1: Styles of comments in UCL 

A keyword is a reserved identifier which cannot be used in UCL expression 

as a name of a model element. Keyword in UCL are: and, asSet, boolean, 

collect, context, def, else, endif, exists, false, forAll, if, implies, 

in, integer, inv, isEmpty, let, max, min, mod, not, notEmpty, or, real, 

reject, select, self, size, string, sum, then, true and xor. The keywords 

are case-insensitive. 
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5.1.3. Precedence of operators rules 

The precedence order of operators in UCL, from the operators with the 

highest precedence is in the list: 

 parenthesis () 

 navigation operators dot ".", step arrow "->", stop arrow ":>" 

 unary "not", "+" and "-" 

 multiplicative "*" and "/" 

 additive "+" and "-" 

 relational "<", ">", "<=" and ">=" 

 equality "=" and "!=" / "<>" 

 "and" 

 "or" 

 "xor" 

 "implies" / "=>" 

 "if" … "then" … "else" 

 "let" … "in" … 

5.1.4. Constraint expression example 

Figure 5.2 demonstrates two constraint expressions in UCL. The keyword 

context defines the context entity or relation of the constraints. Here the context 

is the entity Person. The keyword inv specifies that we define an invariant 

constraint (however it is the only one possibility in UCL). In the code, there are three 

constraint invariants. After the keyword inv, there is an optional name of the 

invariant (e.g. yearBefore2012). The third invariant (in the fourth line) does not have 

any invariant name. After the colon, there are the invariant expressions. 

Context Person 

inv yearBefore2012: self.birthYear < 2012 

inv ageNotNegative: self.age >= 0 

inv: self.name <> "no name" 

Figure 5.2: UCL expressions example 
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5.2. Relation to UCL Data meta-model 

5.2.1. Context definition 

Each UCL constraint is written in the specified context of a UCL entity or 

a UCL relation of the source model. This model is an instance of UCL Data meta-

model. The context must be defined at the beginning of each block of UCL 

constraints. 

Context Person 

inv: … 

Context Marriage 

inv: … 

Figure 5.3: Context of UCL constraints 

Figure 5.3 demonstrates the definition of the context of UCL expressions. 

There are constraints in the context of the entity Person and in the context of the 

relation Marriage. Defining of the context is in UCL more complex than in OCL. In 

this way we can define context for root entities and for root relations. The entity 

Person is a root entity and the relation Marriage is a root relation. They are not an 

inner element in another UCL entity. To specify context for non root elements, we 

must notice the full path name to the element from the root entity through all inner 

entities transitive to the context entity or relation. Particular inner entities and 

relations in this path are syntactically separated by a double colon. The first is the 

root entity. Figure 5.4 shows definitions of complex context. 

Context Employees::Job … 

Context Employees::EmployeeHierarchy … 

Context RootEntity1::Entity2::Entity3::TargetEntity … 

Figure 5.4: Complex contexts of UCL constraints 

5.2.2. Keyword "self" 

Each constraint in UCL is defined in a context of an entity or of a relation. 

The keyword self in UCL expressions refers to instances of the context entity or 

relation. The demonstrational invariant constraint1 does not refer to instances of the 

context entity because it does not contain the self expression. The second 

invariant constraint2 refers to instances of the entity Person. 

Context Person 

inv constraint1: 0 < 1 

inv constraint2: self.age >= 0 
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5.2.3. Invariants 

To define integrity constraints, UCL uses invariant expressions. An invariant 

is an expression of the Boolean type. It must be evaluated to true for all instances of 

the context element at any time. 

5.3. Types, values and operations 

5.3.1. Basic types and operations 

As in OCL, like in UCL there are 4 predefined basic types Boolean (true / 

false), Integer, Real and String ("text"). It is not possible to use other basic type. 

There are defined standard operations on the basic types: 

 Integer: =, != / <>, <, >, <=, >=, +, -,  *, /, unary +, unary – 

 Real: =, != / <>, <, >, <=, >=, +, -,  *, /, unary +, unary – 

 Boolean: xor, or, and, =, != / <>, not 

 String: =, != / <>, <, >, <=, >= 

There are defined standard operations on UCL entities and UCL relations: 

 =, != / <> 

5.3.2. Types from the model 

Each entity and relation from the model induces a special type in UCL 

expressions which are attached to UCL Data meta-model. E.g. type of expression 

self is the context UCL entity or UCL relation. 

5.3.3. Collections 

A UCL navigation expression over a UCL relation can result to a sequence of 

entities or relations. UCL contains also sequence types Sequence and Set. And the 

abstract base type Collection. A sequence is a collection of elements that can 

contain duplicates, a set cannot contain duplicates. Collection types are generic. 

They hold information about type of their elements. They can contain only elements 

of this type. It is possible to define collection of collection. 

Examples of collection types are: Sequence (Integer), Set (Person), 

Sequence (Sequence (Person)). 
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5.3.4. Variables "def" and "let" definitions 

Sometimes a part of an expression repeats in the invariant. It is useful to 

define this part of the expression as a constant or a variable. The let expression 

defines the variable of any kind of expression type. This variable can be used in the 

constraint. 

But the let expression defines the variable only in the context of itself; we 

cannot use the variable outside the expression. E.g. we cannot use the variable 

doubleAge outside the let expression as in the example: 

Context Person 

inv: 

  (let doubleAge = 2 * self.age in 

    doubleAge >=0 and doubleAge < 400) 

  or doubleAge mod 2 = 0 /* can not use doubleAge here */ 

To define a variable in the whole context block of invariants, we can use a  

def definition. The definition must be attached to the context of model element. Its 

syntax is similar to a let expression. 

Context Person 

def doubleAge = 2 * self.age 

inv: doubleAge >=0 

inv: doubleAge < 400 

The names of variables let and def in a scope cannot conflict. 

5.3.5. Type conformance 

Each expression has a statically defined type and each valid expression has 

to satisfy the type conformance rules. Operations on the basic types and navigation 

operations in UCL expressions can be used only over expressions of the allowed 

types. 

The types are organized in a tree type hierarchy which defines the 

conformance between different types. The type one conforms to the type two if an 

instance of the type one can be substituted by an instance of the type two. The 

relation type conformance is reflexive and transitive; the next rules exist: 

 Integer conforms to Real; 

 the entity type T1 conforms to the entity type T2 if the entity T1 is a child 

entity of the entity T2; 
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 Collection (T1) / Sequence (T1) / Set (T1) conforms to Collection (T2) / 

Sequence (T2) / Set (T2) if T1 conforms to T2 

 Sequence (T) conforms to Collection (T) 

 Set (T) conforms to Collection (T) 

5.4. Expressions 

In UCL, there are several kinds of expressions: 

 literals (a value of a basic type: Integer, Real, Boolean or String); 

 expression self (a variable referring to an instance of the context 

element); 

 variables (a variable referring to a let or to a def definition or to a 

collection expression); 

 operations on the basic types; 

 collection expressions (e.g. forAll); 

 collection operations (e.g. size); 

 navigation expressions over the input model (a model of UCL Data meta-

model). 

5.4.1. Simple steps navigation expressions from an entity 

Using the keyword self, an expression can refer to an entity from the input 

model. Simple step navigation from an entity is the technique how to access to other 

model element that is connected with the entity. It is possible to connect these 

elements: 

 lexicals of the source entity; 

 inner entities of the source entity; 

 inner relations of the source entity; 

 neighbouring entities of the source entity; 

 neighbouring relations of the source entity. 

According the formal definition of UCL Data meta-model, names of all these 

connected elements must be distinct. We can access these elements from an entity 

by the expression of the syntax: a dot operator (.) followed by the name of the 

connected element. For example: 
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-- in the context of Company: 

  self.name /* a) lexical of Company */ 

-- in the context of Employees: 

  self.Employee /* b) inner entity of Employees */ 

  self.EmployeeHierarchy /* c) inner relation of Employees */ 

-- in the context of Company: 

  self.Organization /* d) neighbouring entity of Company */ 

-- in the context of Job: 

  self.CompanyEmployee /* e) neighbouring relation of Job */ 

Figure 5.5: Simple steps navigation expressions from an entitiy 

Value of this expression is the value of the target lexical (in the case a) or an 

expression referring to the target model element (in the other cases). The type of the 

expression is the type of the target lexical (in the case a) or the type of the target 

model element (in the other cases). Using these navigation expressions we can 

express calculations over the model. For example domain constraint of lexicals (e.g. 

“The age of persons is always greater than zero.”) or we can define complex 

constraints based on the relationship between elements which are connected by 

these kinds of navigation. 

5.4.2. Simple steps navigation expressions from a relation 

In the similar way as by the entities, we can also access model elements 

which are connected with a relation. It is possible to connect these elements: 

 lexicals of the source relation; 

 neighbouring entities of the source relation; 

 relation ends of the source relation which are connected to an entity. 

Names of these connected elements and names of these relation ends must 

be distinct according the formal definition of UCL Data meta-model. Examples of 

expressions: 

-- in the context of Marriage: 

  self.place /* a) lexical of Marriage */ 

-- in the context of CompanyEmployee: 

  self.Job /* b) neighbouring entity of CompanyEmployee */ 

  self.employer 

      /* c) relation end of the relation CompanyEmployee; 

            it is connected to the entity Company; 

            the type of expression is the entity Company */ 

Figure 5.6: Simple steps navigation expressions from a relation 



58 

The value of these expressions is the value of the target lexical (in the case 

a) or an expression referring to the neighbouring entity (in the case a) or an 

expression referring to the connected entity (in the case c). The type of the 

expression is the type of the target lexical (in the case a) or the type of the target 

entity (in the cases b and c). 

Concrete examples of expressions: 

Context Employees 

inv: self.Job.position = "baker" 

       implies self.Job.CompanyEmployee.employer.name <> "IBM" 

Context Employees::EmployeeHierarchy 

inv: self.inferior.salary <= self.superior.salary 

Context Company 

inv: self.name = "ABC" => self.Organization.place <> "USA" 

Context Marriage 

inv: self.place = "Prague" => self.husband.age >= 18 

5.4.3. Navigation expressions through relations 

Starting from an entity, we can create a navigation expression to other entity 

through a connected relation. This navigation can be created using the name of an 

opposite relation end of a connected relation. 

For example, in context of the entity Employee we can navigate using 

expression self->employer to the entity Company. Or from the entity Company, 

we navigate to the entity Employee using self->manager. A value of such 

navigation expressions is the target entity or a sequence of the target entities; 

according the cardinality of the used opposite relation end to the navigation. If the 

cardinality is (0, 1) or (1, 1) then the value is an instance of the target entity; else it is 

a sequence of instances of the target entity. The type of the first exemplar 

expression is Sequence (Company), the type of the second expression is Employee. 

A navigation expression from an entity to other entity through a connected 

relation expressed with the operator -> is called a connected relation step 

expression. The second type of a navigation expression through connected relation 

is connected relation stop expression. It is expressed with the operator :>. The 

value of this expression is not the opposite entity but the relation which connects the 

entities. 

Concrete examples of expressions: 
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Context Company 

inv: self->manager –- expression referrs to entity Employee 

inv: self:>manager –- referrs to relation CompanyEmployee 

Context Employee 

inv: self->employer -– referrs to Sequence (Company) 

inv: self:>employer -– referrs to Sequence (CompanyEmployee) 

Context Company 

inv: self->manager.qualifications = "manager" 

Context Person 

inv: (self.isMarried and self:>husband.place = "StateX") 

       implies self.age >= 21 

5.4.4. Generalization 

In UCL Data meta-model, the generalization hierarchy on entities is defined. 

A child entity inherits all lexicals, all inner entities, all neighbour entities and relations 

and all connected relations of the parent entity. 

In the example, the entity Employee is a child entity of the entity Person. The 

entity Employee inherits all these inner and connected elements of the entity 

Person. It is possible to define these expressions in the context of the entity 

Employee: 

Context Employees::Employee 

inv: self.age >= 0 

inv: self->husband.age >= 18 

Context Company 

inv: self->manager.age >= 25 

5.4.5. Collection expressions 

The result of a navigation expression through a relation can be a collection. 

The language defines collection operation and collection expressions over 

collections. There are expressions to query items and expressions to express 

condition about (all or some) items of the collection. The collection operations and 

collection expressions are prefixed with the colon operator (:). 

The expressions select and reject select a subset of the source 

collection using a condition. The expression select takes the items that satisfy 

the condition; reject takes the items that do not satisfy the condition. The result 

of the expression is a collection of the same type of item as the input collection. 
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Syntax of the expressions looks: 

collection:select(variable | condition) 

collection:reject(variable | condition) 

A variable is used as the iterator over items of the input collection. The type 

of the variable is the type of the collection items. The condition is a boolean 

expression; it is used to specify which elements select (or not selects) to the result 

collection. The expression select gets the collection of the items for which the 

condition is evaluated to true; reject the items for which the consition is 

evaluated to false. 

The concrete examples of expressions: the first expression selects 

Employees with age over 50; type of the expression is Sequence (Employee). The 

second selects items of relation CompanyEmployee which are connected to the 

entity Job which salary is not under 100; the type of the expression is 

Sequence (CompanyEmployee). 

Context Company 

inv: self->employee:select(empl| empl.age > 50)… 

inv: self:>employee:select(comEmpl| comEmpl.Job.salary < 100)… 

The expressions select and reject result in sub-collection of the 

original collection of the original type of items. 

The operation collect gets the collection of results of the inside 

expression (collect-expression). The syntax of the expression looks: 

collection:collect(variable | collect-expression) 

The concrete examples of collect expressions: The first expression 

(inv1) selects the collection of salaries; its type is Sequence (Integer). The second 

(inv2) gets the collection of salaries above 100; its type is Sequence (Integer). The 

result of the thirst expression (inv3) is equivalent to the second. 

Context Company 

inv inv1: 

  self:>employee:collect(comEmpl | comEmpl.Job.salary)… 

inv inv2: 

  self:>employee:select(comEmpl | comEmpl.Job.salary > 100) 

  :collect(comEmpl | comEmpl.Job.salary)… 
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inv inv3: 

  self:>employee:collect(comEmpl | comEmpl.Job.salary) 

  :select(salaryValue | salaryValue > 100)… 

To express a constraint if all items of a collection satisfy a specified condition 

or if there is at least one variation of items which satisfies the inside condition, there 

are expressions forAll and exists. The syntax of the expressions is: 

collection:forAll(variables-list | condition) 

collection:exists(variables-list | condition) 

The type of the expression is boolean. The result values indicates if all items 

in collection satisfy the condition (forAll) or if there is at least one variation of 

items which satisfies the condition (exists). The type of the condition must be 

boolean. 

Context Company 

inv inv1: 

  self.numberOfEmployees > 100 

    implies self:>employee:forAll(ce | ce.Job.salary > 500) 

inv inv2: 

  self->employee:exists(emp | emp.qualifications = "manager") 

inv inv3: 

  self:>employee:collect(ce | ce.Job) 

  :forAll(job1, job2 | 

      job1.position = job2.position 

        => job1.salary = job2.salary) 

The concrete examples of constraints: The first (inv1) express that in a 

company over 100 employees must be all salaries over 500. The second (inv2) 

express that in a company must be at least one employee with the value of 

qualification manager. The third (inv3) tells that in a company must have all 

employees in the same position the same salary. 

5.4.6. Collection operations 

There are 7 predefined kinds of the operations on collections. They are 

accessed by the colon operator (:) and the name of the operation. 

The operation size() gets the count of items in a collection; its return type 

is Integer. The operations isEmpty() and notEmpty() get if a collection contain 

(or do not contain) any item; their return type is Boolean. The operation sum() gets 
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the sum of all items in collection of Integer or Real values. The operations min() 

and max() get the smallest (or the highest) number in a collection of Integer or 

Real values; the return type of these operations is a Integer or Real number. The 

operation sum() gets the sum of all items in a collection of Integer or Real values; 

its return type is Integer or Real. The operation asSet() converts type 

Sequence (T) to the type Set (T); it removes duplicity elements from the input 

collection. 

The examples of collection operations: 

Context Company 

inv inv1: 

  self.numberOfEmployees = self->employee:size() 

inv inv2: 

  self:>employee:collect(comE | comE.Job.salary):min() > 0 

inv inv3: 

  self:>employee:collect(comE | comE.Job.salary):max() 

    <= self:>employee:collect(comE | comE.Job.salary):sum() 

inv inv4: 

  self:>employee:collect(ce | ce.Job.position) 

  :asSet():size () > 2 

inv inv5: 

  self:>employee 

  :select(comE | comE.Job:>superior:isEmpty()) 

  :notEmpty() 

5.5. UCL syntax 

In Appendix A (CD contents), there is the syntax of UCL constraints. Is 

defines the syntax of UCL expressions in Extended Backus–Naur Form (EBNF) [43]. 

EBNF is a metasyntax notation for expressing the grammar of formal languages. 

There are also syntax diagrams (or railroad diagrams). It is a graphical 

alternative to EBNF for representing a context-free grammar. They are easier to 

read for people. A grammar of a language is in syntax diagrams expressed by a set 

of diagrams. Each diagram represents rules for a nonterminal. Each diagram has an 

entry and an end point. All possible paths from the entry to the end through other 

terminals and nonterminals describe production rules of the nonterminal. Terminals 

are depictured by round boxes, nonterminals by square boxes. 
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Syntax diagrams in the appendix were generated from EBNF by the 

application Railroad Diagram Generator [44]. 

5.6. Confrontation of OCL and UCL 

The aim of this thesis is not to introduce a constraint language with many 

various constructions to express integrity constraints and with a very strong 

expressive power. Or aim is to introduce a simple language with base constructions 

and with the expressive power of the first-order predicate logic. Its expressive power 

must be suitable to express complex integrity constraints. But the contribution of the 

language is to use it for different meta-models, to enable mapping between different 

meta-models. This mapping must be suitable for the derivation of UCL constraints 

between different meta-models. 

5.6.1. Unsupported constructions in UCL 

Not all language constructions of OCL are supported in UCL. UCL does not 

support constrains for operations. It defines only constraints over data. Therefore 

pre- and post- conditions over operations and conditions of results of operations are 

not supported, too. Constraints for initial and derived values are not included. It is 

possible only to express invariants in UCL; invariants are conditions which must be 

satisfy at all the time for all instances of the context elements. Enumeration types 

and enumerations literals are not supported in UCL; they can be expressed using 

string literals. OCL defines 4 kinds of generic collections: a set, a sequence, a bag 

and an ordered set. Then there is the base collection type collection. UCL defines 

only a sequence (a collection of items) and a set (a distinct collection of items). UCL 

do not support collection literals and tuples. The standard library of functions in OCL 

defines some re-typing and casting functions; they are not included in UCL. These 

functions are: oclIsTypeOf, oclIsKindOf, oclInState, oclIsNew and oclAsType. UCL 

do not use the iterate collection operation and messages. 

5.6.2. Added constructions to UCL 

UCL defines more kinds of navigation expression over the input model 

(instance of UCL Data meta-model) than OCL. It defines more kinds of navigation 

because we need to use or for different meta-models, we need ma these meta-

models and derive UCL expression between these mapped models. 

OCL defines only 3 kinds of standard navigation expressions: 
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 from a class to its attributes; 

 from a class through an association to another class; 

 from a class through an association to an connected association class. But 

this kind of navigation is very specific only for UML class diagrams. 

UCL defines 10 kinds of navigation expressions over models of UCL Data 

meta-model. We derive these navigations to different mapped meta-models. 

5.6.3. Navigation to an association class in OCL and in UCL 

OCL defines the navigation to class attributes, the navigation through 

association and the navigation to association classes. But this navigation is in OCL 

very specific and it is usable only for the UML meta-model. 

 
Figure 5.7: Association classes in UML 

Figure 5.7 shows a UML model with association classes. To specify 

navigation to a navigation classes from a class, UCL use a dot notation. From a 

class we use the name of a connected association class; the result if this expression 

is the collection of instances of the target association class. E.g. from the class 

Employee we can navigate to the association class Job which is connected to the 

association between Employee and Company. The result of the first invariant (inv1) 

is the collection of instances of the association class Job. The second invariant 

defines the constraint that the salary value must be greater than 0. 

Context Employee   /* in OCL */ 

inv inv1: self.job…   /* "job" with the small "j" */ 

inv inv2: self.job->forAll(job | jobs.salary > 0) 

We must notice that the association or the association end is not in the OCL 

expression. However, it is used in the navigation path over the model. 
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The navigation in OCL to an association class which is connected to a 

recursive association is even more complex. When we want to navigate from the 

class Person to the association class Marriage, we must also express the used 

association end of the association (husband or wife). It is important because the 

path from the class Person to the association class must be unambiguous. 

OCL defines the special syntax for the navigation to recursive association 

classes: 

Context Person 

inv1: self.marriage[husband]… 

inv2: self.marriage[husband].Year <= 2011 

The used association end in the navigation is expressed in square brackets. 

The both kinds of the navigations to association classes are not suitable for 

UCL. In UCL, we must express constraints over different mapped meta-models. In 

different mapped models, association classes are mapped to other types of 

elements; e.g. in relational databases they are represented by tables which in UML 

models correspondent to the connected association. 

The next problem is that in non-recursive association class in OCL we do not 

use the name of used association end. This is a problem because we must map this 

association end to the different mapped model. Otherwise the mapping will be not 

enough defined to derive UCL expressions to the mapped model. 

UCL use the next syntax for the navigation to association classes. When we 

navigate from the class Employee, we must first navigate to the connected 

association using relation stop expression: 

Context Employee 

inv: self:>employer… 

This expression ends in the association. It returns a sequence of instances of 

the association. To continue, we must access to this collection by a collection 

operation: 

Context Employee 

inv: self:>employer:forAll(association |… ) 

And from the association, we can navigate to the association class Job using 

the simple step expression. The association class is a neighbour UCL entity of the 

UCL relation. (But it depends on the definition of UCL meta-model for UML meta-

model). We can express: 
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Context Employee 

inv: self:>employer:forAll(association | association.Job… ) 

inv: self:>employer 

       :forAll(association | association.Job.salary > 0) 

When we use this syntax for the navigation to association classes, we can is 

map to different mapped meta-models. And we can derive UCL expression over 

UML mote-model to UCL expressions over different models. 

5.6.4. Conclusion 

Our aim is to create a framework to express constraints in one created 

language. It will be possible to derive constraints over one meta-model to a different 

mapped meta-model. Then we want to derive constraints from this language to 

different constraint languages. 

In this chapter we have introduced this language. It is called UCL and it is 

based on OCL. Not all constructions of OCL are included in UCL. But UCL has the 

expressive power of the of the first-order predicate logic. OCL is based for the UML 

meta-model. It defines only navigation expressions over this meta-model. It defines 

only the navigations to attributes, through associations and to association classes. 

For example the navigation to association classes is very specific for UML. The 

navigations of OCL are not sufficient for our purposes. We need to define more 

possibilities for navigation expression in UCL because we need derive all kinds of 

navigations to different mapped meta-models. UCL is based on the general UCL 

Data meta-models. UCL defined more kinds for navigation expressions according all 

kinds of relationship between elements in UCL Data meta-model. 

 In the next chapter, we define the meta-model of UCL constraints. 
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6. Meta-model of UCL constraints 

In the previous chapters, we have introduced UCL. It is important to define a 

meta-model of the whole UCL. We have yet defined UCL Data meta-model. It is a 

general data meta-model. UCL navigation expressions are based on this meta-

model. In this chapter, we propose the meta-model of the whole UCL. It is the meta-

model of UCL types and expressions. According this meta-model, it will be possible 

to represent all legal UCL expressions. 

Then according it, we can derive UCL constraints to other constraint 

language or to UCL constraints over other data meta-model. 

6.1. Structure of UCL meta-model 

We present UCL meta-model. It is the meta-model of UCL in UML class 

diagrams. The model is separated into two parts: 

 Types 

 Expressions 

The part (or the package in the terminology of UML) Expressions depends 

on the package Types. And the package Types depends on UCL Data meta-model; 

elements in model of UCL Data meta-model induce types in package Types. 

A model of a concrete constraint language over a specific data meta-model 

(i.e. OCL over UML or Schematron over XML) should be separated into parts: 

Types, Expressions and Values. But for aims of this thesis, we are not going to 

describe and implement an interpretation of UCL expressions. We just describe and 

define the semantics of UCL expression informally. The individual parts of UCL 

meta-model represent different aspect. We get UML diagram of classes of these 

parts, we explain their classes and relationships between them. And we present 

some examples (UCL expression) as instances of this meta-model. 

6.2. Types 

A UCL expression has a type which is statically defined. Before the package 

Expressions we have to define the package Types as the part of UCL meta-model. 
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Figure 6.1: Meta-model of UCL types I 

 
Figure 6.2: Meta-model of UCL types II 

Figure 6.1 and Figure 6.2 show classes of the package Types of UCL meta-

model. Instances of these classes represent the types of UCL expressions and UCL 

variables. The base abstract class for a type is UCLExpressionType; it models all 

available UCL types. Special class UCLTypeInvalid represents the type of 

expressions that do not satisfy the type conformance rules; the class is singleton, 

there is exactly one instance of class which represents this special type. 

The class UCLBaseType and its child classes in Figure 6.2 represent the 

basic types Real, Integer, Boolean and String. These four classes are singletons; 

their instances represent the individual basic types. The class UCLIntegerType for 

the type Integer is the child class of the class for the type Real. An Integer 

expression conforms to a Real expression. 

The class UCLEntityType is the type which is induced by an entity 

(UCL entity) from UCL Data meta-model. An instance of this class holds a reference 

to the UCL entity. An instance of UCLEntityType represents a type of UCL 
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expression derived from the referenced entity. E.g. if there is an entity Car in the 

model then instance of UCLEntityType that refers to entity Car represents the type 

of UCL expressions which represent the entity Car. Two instances of UCLEntityType 

over the same entity can exist coexistent; two instances of this class are equals if 

they refer to the same entity. 

Analogue the class UCLRelationType represents the type induced by a 

relation (UCL relation) from the UCL Data meta-model. The abstract classes 

UCLBaseConstructType and UCLMiddleEntityType are parent classes of 

UCLEntityType and UCLRelationType. 

UCLBaseCollectionType is the base class for collection types a sequence 

(UCLSequenceCollectionType) and a set (UCLSetCollectionType). The collection 

types hold the type of their items. E.g. Set (Integer) is represented by an instance of 

UCLSetCollectionType which refers to the (singleton) instance of UCLIntegerType. 

The nesting depth of collection types is not restricted; structured types like 

Sequence (Sequence (Car)) are allowed. 

6.3. Expressions 

In this subchapter, we define meta-model of UCL expressions; including 

meta-model of definitions UCL contexts and UCL variables. The abstract class 

which defines an UCL expression is the class UCLBaseExpression. Instances of all 

its child classes represent all possible expressions. 

6.3.1. Contexts 

A block of UCL expressions consists of contexts blocks. These blocks are 

represented by instances of the class UCLContextDefinition; in the Figure 6.3. 

 
Figure 6.3: Meta-model and integration of contexts of UCL expressions 
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Each context refers to a UCL entity or to a UCL relation from the model. The 

attribute ContextType holds the type of this model element. A context can contain 

some (no or more) "def" variable definitions (instances of UCLVariableDefinition) 

and it contains at least one invariant (instances of UCLInvariant). A variable 

definition holds a unique variable name and an expression defining a value of the 

variable. An invariant has an optional name and it holds an UCL expression of the 

Boolean type; this expression defines the invariant condition. 

6.3.2. Kinds of expressions 

The abstract class UCLBaseExpression represents all possible expressions. 

Figure 6.4 shows the classes (some these classes are abstract) inherited from 

UCLBaseExpression which represent all individual possible kinds of expressions: 

 UCLLetsExpression (a "let" variable) 

 UCLLiteralBaseExpression (a literal value) 

 UCLInvalidExpression (an incorrect expression; it does not satisfy the type 

conformance rules or it uses navigation over the input model in a wrong way) 

 UCLBaseOperationExpression (an operation over the basic types) 

 UCLBaseCollectionOperationExpression (and operation over collections) 

 UCLBaseCollectionExpression (an expression over collections) 

 UCLBaseNavigationExpression (a navigation referring the input model) 

 
Figure 6.4: Meta-model of all kinds of UCL expressions 

In next subchapters, we define the individual kinds of expressions according 

the classes in UCL meta-model. 
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6.3.3. Variables 

Figure 6.5 shows the meta-model of variables definitions in UCL 

expressions. The class UCLCollectionVariable represents a variable which is 

defined in a collection expression; e.g. variable varName in expression 

collection:select(varName | varName.age >= 18). It contains the 

variable name and the type of the previous (collection) expression. 

The class UCLVariableDefinition represents "def" and "let" definitions of 

variables. It contains the variable name and holds the expression that defines the 

variable value (in the connected instance of UCLBaseExpression). 

The abstract class UCLVariable is the parent class of these two classes. An 

expression which refers to a variable (UCLVariableExpression) holds a reference to 

instance of UCLVariable. This expression need not to know if the variable is a 

collection variable or if it is a "def" or a "let" variable definition. 

 
Figure 6.5: Meta-model of UCL variables definitions 

Figure 6.6 illustrates the meta-model of expressions which contain "let" 

variable definition. Such an expression (UCLBaseExpression) is wrapped in an 

instance of UCLLetsExpression. This class holds definitions of "let" variables 

(instances of UCLVariableDefinition) and the internal expression 

(internalExpression). 

 
Figure 6.6: Meta-model of UCL expressions with inner "let" variables definitions 
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Figure 6.7 demonstrates an example of a "let" variable definition. It defines in 

the invariant invariantName two "let" variables doubleAge and tripleAge. 

These variables are visible only in the scope of the inner expression 

(expression…). 

The object diagram in the figure shows the object representation of the 

expression according UCL meta-model. There is one instance of 

UCLLetsExpression which represents the whole expression. It holds one instance of 

UCLBaseExpression (which represents the inner expression expression...) and 

two instances of UCLVariableDefinition; they represent variables doubleAge and 

tripleAge. These two objects also hold instances of UCLBaseExpression 

representing expression which define the values of the variables. 

Context Person 

inv invariantName: 

  let doubleAge = 2 * self.age 

  let tripleAge = 3 * self.age in 

    expression… 

 
Figure 6.7: Example of "let" variables definitions with the Object diagram 

6.3.4. Literals 

The abstract class UCLLiteralBaseExpression inherits from the class 

UCLBaseExpression. It represents a constant lexical value in a UCL expression. 

Figure 6.8 shows the four non-abstract classes which represent separate literal 

values of the individual basic types Real, Integer (which conforms to Real literal), 

String and Boolean. 
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Figure 6.8: Meta-model of lexical values in UCL 

6.3.5. Operations 

The class UCLBaseOperationExpression inherits UCLBaseExpression. It 

defines the large group of all possible operations over expressions of the basic 

types and expressions if-then-else. We decompose operations into the three 

groups (and diagrams) according the count of their operands. 

Figure 6.9 shows the model of unary operations expressions. All operations 

are represented by the abstract class UCLUnaryBaseOperationExpression. It holds 

an expression which represents the inner operand. There are child classes for the 

separate unary expressions: arithmetic unary plus and unary minus, logical unary 

not and parenthesis as expression wrapping the expression in the paranthesis. 

 
Figure 6.9: Meta-model of UCL unary operations 

Figure 6.10 represents the meta-model of all binary operations. The abstract 

class for all binary operations is UCLBinaryBaseOperationExpression. It holds two 

expressions (UCLBaseExpression) which represent the left and the right operand of 

the operation. Then, there are the four non-abstract classes for all possible 

operations. Operations are divided into the classes according the precedence and 

type properties of the operations; classes hold kind of the concrete operation in a 

value of an attribute: 

 multiplicative operations (*, /) over numerical types 

 additive operations (+, –) over numerical types 
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 relational operations (=, !=, <, >, <=, >=) 

 logical operations (xor, or, and, =, implies) 

 
Figure 6.10: Meta-model of UCL binary operations 

Figure 6.11 shows the meta-model of expressions if-then-else. The 

class UCLIfExpression holds three instances of UCLBaseExpression. The first is a 

condition; it must be of the Boolean type. The second represents the true (then) 

branch and the third expression represents the false (else) branch. The type of the 

third expression must be equal or must conform to the type of the second branch. 

 
Figure 6.11: Meta-model of UCL if-then-else expressions 

6.3.6. Navigation expressions 

Figure 6.12 shows the meta-model of starting navigation expressions. An 

expression self is an instance of UCLSelfEntityExpression or 

UCLSelfRelationExpression. It refers to the context UCL entity or UCL relation. 

These two classes are connected through an association to the instance of 

UCLEntity or UCLRelation from UCL Data meta-model. 

A navigation expression can start also by a reference to a variable. This 

variable must defined as a "def" or a "let" definition or it is a variable defined in a 

collection expression. Such an expression is an instance of UCLVariableExpression. 

This class is in an association with the class UCLVariable; which defines the 

variable. 
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Figure 6.12: Meta-model of UCL navigation expressions – navigation start 

Figure 6.13 shows the meta-model of navigation expressions relation step 

(expressed by ->) and relation stop (by :>). Both kinds of expressions are 

navigated from an entity through a connected relation according the name of an 

opposite relation end. The both classes UCLBaseNavigationStepExpression and 

UCLBaseNavigationStopExpression inherit UCLBaseNavigatonPathExpression in 

which they hold the source expression of the navigation (previousStep). The both 

classes contain reference to the source entity (sourceEntity) and to the connected 

relation (navigatedRelation / targetRelation). Class for the relation step contains also 

a reference to the target entity (targetEntity). 

 
Figure 6.13: Meta-model of UCL navigation expressions – relation step and stop 

Figure 6.14 shows the meta-model of simple steps navigation expressions. 

There are 8 non-abstract classes which represent the individual kinds of simple 

steps expressions. They all inherit from UCLBaseNavigatonPathExpression in which 

they hold the source expression of the navigation (previousStep). Then they inherit 

UCLSimpleStepExpression; the generic class that is templated according the types 

of the source and of the target model element (UCL entity, UCL relation or 
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UCL lexical). These individual 8 classes hold references to the source model 

element (5 classes have sourceEntity, 3 classes have sourceRelation) and to the 

target model element (4 classes have targetEntity, 2 classes have targetRelation 

and 2 classes have targetLexical). E.g. the class UCLStepEntityLexical represents 

the simple step navigation from an entity to its inner lexical; it holds references to the 

source entity and to the target lexical. 

 

 
Figure 6.14: Meta-model of UCL navigation expressions – simple steps 

6.3.7. Collection operations 

Figure 6.15 shows the meta-model of collection operations. There are 

7 nonabstract classes which represent the individual kinds of collection operations: 

size(), sum(), max(), min(), isEmpty(), notEmpty() and asSet(). All 

these classes inherit from the abstract class UCLBaseCollectionOperation. It holds 

the source expression of the collection operation (previousStep). These classes do 

not contain any other information. 
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Figure 6.15: Meta-model of UCL collection operations 

6.3.8. Collection expressions 

Collection expressions differ from other kinds of expressions. They contain 

the source expression like other navigation expressions. But they contain also the 

argument (or condition) expression and definitions of context variables over items of 

the source collection. 

In Figure 6.16, there is the meta-model of collection expressions. The 

individual 5 non-abstract classes represent collection expressions forAll, 

exists, select, reject and collect. They inherit from the abstract class 

UCLBaseCollectionOperationExpression. This class keeps the source expression of 

the collection expression (previousExpression). Then it contains the argument 

expression of the expression’s condition (argumentExpression). And it keeps the 

definitions of all expression’s variables (collectionVariables). Expressions forAll 

and exists can contain more variables definitions, the rest of the collection 

expressions can contain exactly one variable definition. The 5 classes for collection 

expression do not store any other information. 

 
Figure 6.16: Meta-model of UCL collection expressions 

6.3.9. Complex example 

In the Figure 6.17, there is an example of a complex constraint in UCL. The 

constraint is used in the context of the example of the UCL Data meta-model in 
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Figure 4.7. The expression defines, that for all instances of the entity Company the 

next invariant must be fulfilled. The collection (sequence) of all its employees above 

30 years must contain at least one person. 

Context Company 

inv: self->employee:select(p | p.age > 30):notEmpty() 

Figure 6.17: Sample UCL constraint for the demonstration of UCL meta-model 

We apply the presented UCL meta-model to the expression in Figure 6.17. 

We create an instance of the UCL meta-model for this expression. The part of the 

expression self->employee gets the collection of all employees of the source 

Company. Its result is an expression of the type Sequence (Employee). This 

expression is used as the source expression of the collection expression select. 

The select expression defines a variable p of the type Employee (type of items 

of the source collection) which is bound to each item of the collection and for each 

item the condition of the argument expression (p.age > 30) is evaluated. The 

select expression creates a sequence with items of the source collection which 

satisfy the condition. The whole select expression (including its source 

expression, variable and the condition) is the source expression of the collection 

operation notEmpty() which gets if the result of the source expression’s collection 

is not empty. 

Figure 6.18 shows an Object diagram of the UCL constraint in Figure 6.17 as 

an instance of UCL meta-model. The model of the expression is created by a syntax 

tree according UCL meta-model; the root element of the tree is the collection 

operation notEmpty(). Operations of the expression which are evaluated at the 

end are placed in the tree as the parent elements of the operation which are 

evaluated at the beginning. The element for notEmpty() has one child element; its 

source expression – the select expression. The select expression has tree child 

branches: the first is the source expression (self->employee), the second is the 

definition of the variable (p) over the collection. And the third is the argument 

expression of the condition (p.age > 30). 

The source expression (self->employee) is an expression relation step 

(instance of UCLConnectedRelationStepExpression). It has a child branch the 

source expression (self) and it is connected by associations with the source entity 

(Company), with the relation (CompanyEmployee) and with the target entity 

(Employee). Its source expression is the expression self; it refers to the context 
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entity Company and it is associated with the instance of the entity (UCLEntity) of 

UCL Data meta-model. 

 

 
Figure 6.18: Object diagram of the sample UCL constraint 

The definition of the variable p of the select expression is represented by an 

instance of UCLCollectionVariable. It holds the name of the variable and it is 

associated through an instance of UCLEntityType which represents the type of the 

entity Employee to the entity Employee (instance of UCLEntity). The instance of 

UCLCollectionVariable is also in an association with the using of the variable in the 

condition of the select expression. 

The argument expression of the select expression (p.age > 30) is 

represented by the relational expression (UCLRelationalExpression). The binary 

relational operation > has two operands – two child branches. The first is the 

navigation expression (p.age) and the second is the literal integer value 30 

(UCLLiteralIntegerExpression). The navigation expression (p.age) represented by 

UCLStepEntityLexical is the simple step from the entity Employee represented by 

the variable p (UCLVariableExpression) to its lexical age (UCLLexical). 
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6.4. Conclusion of UCL meta-model 

In this chapter, we have defined UCL meta-model. It is the model of UCL 

types, constraints and expressions. The meta-model was defined as a set of class 

diagrams which were is separated into packages Types and Expressions. It contains 

classes which represent all possible types of expressions and all possible UCL 

expressions. 

We have illustrated the usage of the meta-model in the example of a 

complex expression. The concrete model of a UCL expression (an instance of UCL 

meta-model) is represented by an abstract syntax tree according UCL meta-model. 

The last operation of an expression is the root of the syntax tree. Operations which 

are evaluated at the end are the parent elements of operations which are evaluated 

at the beginning. 

The presented meta-model expresses a different, more detailed view to UCL 

expressions. It defines the abstract syntax of expressions. The presented UCL 

meta-model is a suitable form (which represents UCL constraints) for a computer 

representation and for purposes like the adaptation of UCL expressions when the 

input model evolves or the derivation of UCL constraints to other constraint 

languages. 
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7. Using UCL for UML Class diagrams 

In the previous chapters, we have formally defined UCL Data meta-model, in 

semi-formal way in English text we have defined language UCL for constraints and 

we have formally defined syntax and model of UCL expressions. Now we have 

established all the necessary facilities to demonstration and formal definition how to 

use constraints in UCL for different data models. In this chapter, we apply UCL 

constraints to UML Class diagrams; and in the next chapter to XML. 

Using UCL for UML Class diagrams is trivial task because UCL is based on 

language OCL for UML Class diagrams. Difference is that UCL is based on more 

general data model; so for example navigation to Association classes is bit different. 

First we must formally define model of schemas in UML Class diagrams and 

we map this model to UCL Data meta-model. Afterwards we semi-formally apply 

model of UCL to UML Class diagrams; we analyse all possible navigations through 

elements in UML. 

7.1. Notation of the model 

Definition 7.1 (Model of UML Class diagram): 

UML Class diagram is a structure                                         

                                                       . 

Structure of classes is                                                

             ; structure of associations is                                  

                       ; structure of association ends is                     

                                                            structure of 

attributes is                                            ; 

where: 

      is a finite set of all classes; 

                       is a set of association classes, it is a subset of 

classes                           ; 

      is a finite set of all associations; 

       is a finite set of all association ends; 

       is a finite set of all attributes; 

      is generalization hierarchy on classes, it is a partial order over     ; 
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then: 

                    assigns to each class a name; 

                                 assigns to each class a set of its 

attributes; 

                         assigns to each class a set of associations 

which are connected to the class; 

                            assigns to each class a set of association 

ends which are accessible (by a navigation) from the class; 

                    assigns to each association a name; 

                                               assigns to each 

association one or no association class which is connected to the 

association; 

                         assigns to each association a set of its 

association ends; 

                      assigns to each association end a role name; 

                                assigns to each association end its 

association; 

                          assigns to each association end a connected 

class; 

                      assigns to each association end the cardinality; 

                     assigns to each attribute a name; 

                     assigns to each attribute a type (name of the type). 

7.2. Mapping to UCL Data meta-model 

In this chapter, we define a mapping of elements of UML Class diagrams to 

UCL Data meta-model; we formally define how to create a schema in UCL Data 

meta-model from an existing schema in UML Class diagrams. 

Definition 7.2 (Mapping model of UML Class diagram to UCL Data meta-

model): 

Let be      a schema in UML Class diagrams (Definition 7.1), then mapping of this 

schema to UCL Data meta-model (Definition 4.14) is schema                

                           , where: 

         set of UML classes is directly mapped to UCL entities; 

         set of UML associations is directly mapped to UCL relations; 
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          set of UML class attributes is directly mapped to UCL lexicals; 

           set of UML association ends is directly mapped to UCL relation 

ends; 

where: 

                   , name of an UML class is mapped to name of the 

mapped UCL entity; 

                , attributes of an UML class are mapped to inner lexicals of 

the mapped UCL entity; 

                    and                      there is no 

relationship between UML elements which is mapped to relationship inner 

entities or inner relations of an UCL entity, UCL entity has no inner entities or 

inner relations. All UCL entities and UCL relations are root entities and root 

relations; 

                       connected associations to an UML class are 

mapped to connected relations to the mapped UCL entity; 

                          accessible association ends from an UML 

class are mapped to accessible relation ends from the mapped UCL entity; 

                     there is no relationship between UML elements 

which is mapped to relationship neighbouring between UCL entities, UCL 

entity has no neighbouring entities; 

              
                       

    
   
  

                         

 
  

relationship between an UML association and a connected UML association 

class is mapped to UCL relation and UCL entity which are in neighbourhood 

relationship, function            assigns to a class that is not an association 

class an empty set and to an association class it assigns set of UCL relations 

which are connected to this association class (condition                 

 ); 

                                                  generalization 

hierarchy on UML classes is mapped to generalization on the mapped UCL 

entities; 

                   , name of an UML association is mapped to name of 

the mapped UCL relation; 

                    UML association cannot contain attributes so UCL 

relation does not contain any UCL lexicals; 

                        relationship between an UML association class 

and a connected UML association is mapped to UCL entity and UCL relation 

which are in neighbouring relationship, if an UML association is not 

connected to any UML association class then its mapped UCL relation does 

not have any neighbouring entity; 
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                    association ends of an UML association are mapped 

to relation ends of the mapped UCL relation; 

                      role name of an UML association end is mapped 

to role name of the mapped UCL relation end; 

                                 UML association of an UML association 

end is mapped to an UCL relation of the mapped UCL relation end; 

                        UML class connected through an UML association 

end is mapped to an UCL entity which is connected through the mapped 

UCL relation end; 

                       cardinality of an UML association end is mapped to 

cardinality of the mapped UCL relation end; 

                      name of an UML attribute is mapped to name of the 

mapped UCL lexical; 

            

                       

                    

                       
    

        
     
        
       

 , type of an UML 

attribute (of string type) is mapped to the type of the mapped UCL lexical 

(item of the set of predefined basic type according definition Definition 4.3) 

according this function. Type with name "Integer" is mapped to the basic 

type Integer, etc. and all other types are mapped to the basic type String. 

 

We have formally defined how to create a schema in UCL Data meta-model 

but it is also important to check all restrictions of UCL Data meta-model of distinct 

names which are presented in chapters 4.5.7 – 4.5.12. Otherwise the created 

schema in UCL Data meta-model will be not valid, it will contain duplicate navigation 

names (e.g. the same name for an association end and for connected association 

class) and created UCL expressions can be ambiguous. 

 
Figure 7.1: Sample UML Class diagram 
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In the Figure 7.1: Sample UML Class diagram, there is example of UML 

Class diagram. It contains 4 classes with attributes and 3 associations. Class Job is 

also an association class connected to the association CompanyEmployee; 

association Marriage is a recursive association; class Employee is the child class of 

class Person, it inherits its attributes and connected associations. 

When we map this schema to UCL Data meta-model according Definition 

7.2, we create a schema with 4 UCL entities with UCL lexicals and 3 UCL relations. 

Mapped entity Employee is the child entity of entity Person; entity Job is in 

neighbourhood relationship with relation CompanyEmployee. All these entities and 

relations are root entities and root relations. Types of UML attributes are mapped to 

UCL basic types. 

7.3. UCL constraints over UML Class diagrams 

7.3.1. Context of constraints 

UCL constraints over UML can be expressed in context of all classes and 

associations. All UML classes are UCL root entities and all associations are UCL 

root relations. We can define contexts of constraints: 

Context Person 

inv: self… 

Context Job 

inv: self… 

Context CompanyEmployee 

inv: self… 

7.3.2. Expressions 

In UCL constraints over UML are allowed definitions of "def" and "let" 

variables and using of their values in expressions. In UCL expressions are allowed 

literal expressions of all basic types, expression if-then-else, all standard unary 

and binary operations over basic types, all collection operations (e.g. :size()) and 

all collection expressions (e.g. :forAll(…)). 

7.3.3. Navigation 

Not all UCL navigation expressions are supported, if some kind of 

relationship in UCL Data meta-model mapped from UML Class diagram is not 



86 

defined then kind of navigation expressions which use this relationship is not used. 

Navigation expression can start using expression self in an entity or in a relation; 

or it can start with a reference to a variable. 

7.3.4. Simple steps navigation 

UCL defines 5 kinds of simple step navigation expressions (operator dot and 

followed by a name of a connected element) from an entity; in this way it is possible 

to navigate UML attribute of UML Class: 

Context Person 

inv: self.age… 

Context Person 

inv: self.age > 0 

inv: self.isMarried implies self.age >= 18 

From an UML association class it is possible to navigate the connected UML 

association through the name of the UML association: 

Context Job 

inv: self.CompanyEmployee… 

Context Job 

inv: self.position = "baker" 

     implies self.CompanyEmployee.employer.name <> "IBM" 

Other kinds of simple steps from an entity are not used. It is not possible to 

navigate inner entities and inner relations of an entity because an entity cannot 

contain inner entities and inner relations. It is not possible to navigate a 

neighbouring entity of an entity because this relationship is not defined in UML 

mapped to UCL. 

UCL defines 3 kinds of simple step navigation from a relation. From an UML 

association we can navigate a connected UML association class using the name of 

the association class: 

Context CompanyEmployee 

inv: self.Job… 

Context CompanyEmployee 

inv: self.Job.salary > 100 

It is possible to navigate to a connected class through a role name of an 

association end: 
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Context Marriage 

inv: self.wife… 

Context Marriage 

inv: self.wife.age >= 18 

It is not possible to navigate UCL lexicals from an UCL relation because UML 

association cannot have any UML attributes. 

7.3.5. Relation step through an association 

In context of a class, we can navigate to a connected class through an 

association using operator -> and name of an opposite association end of the 

association. The example expression starts in class Employee, goes through 

association CompanyEmployee and ends in class Company. The type of expression 

is Sequence (Company): 

Context Employee 

inv: self->employer… 

Context Employee 

inv: self->employer:forAll(comp | comp.numberOfEmployees > 0) 

7.3.6. Relation stop to an association 

In context of a class, we can navigate to a connected association using 

operator :> and name of an opposite association end of the association. The 

example expression starts in class Employee and ends in association 

CompanyEmployee. The type of expression is Sequence (CompanyEmployee): 

Context Employee 

inv: self:>employer… 

Context Employee 

inv: self:>employer:collect(ce | ce.Job.salary):sum() > 1000 

7.3.7. Generalization 

The generalization on UML classes in mapped to the generalization on UCL 

entities. In context of an UML class, we can navigate connected elements of parent 

classes. We can navigate attributes, connected associations and in case of an 

association class also the connected association. 

It is possible to express: 
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Context Employee 

inv: self.age >= 0 

inv: self->husband.age >= 18 

Context Company 

inv: self->employee:forAll(em | em.age >= 15) 
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8. Using UCL for XML schemas 

In the previous chapter, we have applied UCL for model of UML Class 

diagrams. It was not difficult task because UCL is based on OCL which is constraint 

language for UML; the difference is that UCL is based on more general UCL Data 

meta-model and it has more kinds of navigation expressions over the data model. 

In this chapter, we apply UCL to XML data; we apply UCL over schemas of 

XML documents in PSM layer of XSEM model. In a similar way as in the previous 

chapter, we define XSEM PSM schema and we map it to UCL Data meta-model. 

Then we apply model of UCL to XSEM and we analyse all possible navigation 

expressions over XSEM schemas. 

8.1. Notation of the model 

Definition 8.1 (Model of XSEM PSM schema): 

XSEM PSM schema is a structure: 

                                                               

               .  

Structure of classes is                                                    

             , structure of attributes is                                     

                                structure of associations is                  

                                                        structure of 

association ends is                                                      

structure of content models is                                       

where: 

       is a finite set of classes; 

        is a finite set of attributes; 

       is a finite set of associations; 

        is a finite set of association ends; 

        is a finite set of content models; 

then: 

                      assigns to each class a name; 
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                            assigns to each class a set of its attributes; 

                            assigns to each class a set of all parent 

and child associations which are connected to the class; 

                              assigns to each class a set of 

association ends which are accessible from the class; 

                       assigns to each attribute a name; 

                          assigns to each attribute a data type (name 

of the data type). 

                                          assigns to each attribute an 

XML form (a simple element or an attribute) of the XSEM attribute; 

                     assigns to each association a name; 

                           assigns to each association an association 

end which is connected to association’s parent class or content model; 

                          assigns to each association an association 

end which is connected to association’s child class or content model; 

                      assigns to each association cardinality; 

                                  assigns to each association end its 

association; 

                                  assigns to each association end a 

connected participant element (a class or a content model); 

                                          assigns to each content 

model its type (a sequence, a choice or a set). 

8.2. Mapping to UCL Data meta-model 

Now, we define a mapping of elements of an existing XSEM PSM schema to 

a schema in UCL Data meta-model. 

Definition 8.2 (Mapping model of XSEM PSM schema to UCL Data meta-

model): 

Let be       a XSEM PSM schema (Definition 8.1), then mapping of this schema 

to UCL Data meta-model (Definition 4.14) is schema                         

                 ; 

where: 
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                 classes and content models are directly mapped to 

UCL entities; 

          associations are directly mapped to UCL relations; 

              association ends are directly mapped to UCL relations ends; 

           attributes are directly mapped to UCL lexicals; 

where: 

              
       

        
 
 
 

 
             

                          
  

In the first case (       ), name of a class is mapped to name of the 

mapped UCL entity (e). 

In the second case (        ), a content model does not have any name, 

name for the mapped UCL entity is taken from the name of the content 

model’s parent association. Function                          

      assigns to a class and a content model the parent association: 

                                                       ; 

          
       

        
 
 
 

             

 
  In the first case, attributes of a 

XSEM class are mapped to inner lexicals of the mapped UCL entity; in the 

second case, a content model and the mapped UCL entity does not have 

attributes; 

            
       

        

  
 

 
                                   
 

;  In the 

second case, the entity mapped from a content model does not have inner 

entities. In the first case, inner entities of an entity are child entities 

connected through an association (                ); and child entities of a 

child content model of the entity e (                  ). 

Where function                            assigns to an entity set of 

entities (f) for which exist an association which connects entities e and f: 

                                          ; 

Predicate                                     gets for a pair of entities 

(e and f) if there exist an association (a) whose parent ends is connected to 

the entity e and child end to the entity f: 

                         
                                  

                                
  ; 

Function                              assigns to a XSEM class (e) set 

of its grandchildren (g) which are child of content model (f): 
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                                                       . 

                      UCL entities have no inner relations. All UCL 

relations which are mapped from XSEM associations are root relations with 

an empty name; 

                        connected associations to a class are mapped to 

connected relations to the mapped UCL entity; 

                           accessible association ends from a class are 

mapped to accessible relation ends from the mapped UCL entity; 

                    and                     there is no 

relationship between XSEM elements which is mapped to relationship 

neighbouring between two UCL entities or between an UCL entity and UCL 

relation; 

            generalization hierarchy is not defined; 

           , all UCL relations (they all are root relations) has an empty 

name; 

                    so UCL relations do not contain any UCL lexicals 

because XSEM association cannot contain attributes; 

                     there is no relationship between XSEM elements 

which is mapped to relationship neighbouring between an UCL entity and 

UCL relation; 

                                              the parent and the child 

association ends of an association are mapped to relation ends of the 

mapped UCL relation; 

             
            

    
 
 
 

 
        

                                  
   

where                               gets if the association end is 

connected to the parent class or content model; it is a predicate, a set of 

association ends whose are connected to the parent class or content model: 

                                                           ; 

XSEM association ends do not have a name. Function         assigns to 

an association end to the parent element name "parent" and to an 

association end to the child element name of the association (expression 

          ); 

                                  an association of an association end is 

mapped to an UCL relation of the mapped UCL relation end; 
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                        participant (class or content model) connected 

through an association end is mapped to an UCL entity which is connected 

through the mapped UCL relation end; 

             
            

    
 
 
 

 
     

                                  
   

XSEM association ends do not have cardinality. Function         assigns to 

an association end to the parent element cardinality       because an XML 

element can be placed in exactly one parent element. And to an association 

end to the child element it assigns cardinality of the association (expression 

          ); 

                       name of an attribute is mapped to name of the 

mapped UCL lexical; 

            

                               

                              
                            

    

        
     
        
       

 , data type of 

an XSEM attribute (of string type) is mapped to the type of the mapped UCL 

lexical (item of the set of predefined basic type according definition Definition 

4.3) according this function. Type with name "xs:integer" is mapped to the 

basic type Integer, etc. and all other types are mapped to the basic type 

String. 

 

Schema in UCL Data meta-model which is created according Definition 8.2 is 

valid only if all restriction defined in chapters 4.5.7 – 4.5.12 are satisfied. Otherwise 

there can be duplicate navigation names in the model and ambiguous UCL 

navigation expressions can be created. 

Figure 8.1 shows a sample XSEM PSM diagram. There are two XML trees 

with root classes Company and Person. Classes contain attributes, attributes with 

XML form simple element are prefixed by a character "-", attributes of XML form 

attribute are prefixed by "@". Class Company contains as child a content model a 

sequence, class Person contains a choice. Associations have a name and 

cardinality. 

Figure 8.2 shows mapping a sample XSEM PSM diagram to UCL Data meta-

model according Definition 8.2. Root classes Company and Person are mapped to 

two root entities Company and Person. For simplicity, the UCL lexicals are not 

marked. Company connected is through the association manager connected to its 

child class Manager; in UCL entity Person has the inner entity Manager and they are 

connected through the relation with relation end names parent and manager. Child 

classes Employee and Job of content model sequence are inner entities of entity 
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Company. Class Person contains class Cars which contains class Car; this 

relationship is to UCL mapped to entities Person which contains inner entity Cars 

which contains inner entity Car; entities are connected by UCL relations too. 

 
Figure 8.1: Sample XSEM PSM diagram 

 
Figure 8.2: Mapping of XSEM PSM diagram to UCL Data meta-model 

8.3. UCL constraints over XSEM PSM schemas 

8.3.1. Context of constraints 

UCL constraints over XSEM can be expressed in context of all classes and 

content models; they cannot be expressed over associations. To specify context for 

element which is not a root entity, we must specify the full path to the element from 

its root entity through all inner entities: 

Context Company 

inv: self… 
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Context Company::Job 

inv: self… 

Context Company::companyEmployee 

inv: self… 

Context Person::Cars::Car 

inv: self… 

8.3.2. Expressions 

UCL constraints over XSEM support definitions of "def" and "let" variables 

and references to their values in UCL expressions. Literal expressions of all basic 

types, expression if-then-else, all standard unary and binary operations over 

basic types, all collection operations (e.g. :size()) and all collection expressions 

(e.g. :forAll(…)) are allowed in standard syntax and semantics. 

The generalization on entities is in the mapping from XSEM schemas not 

defined. 

8.3.3. Navigation 

Not all kinds of UCL navigation expressions are supported because not all 

kinds of relationship in UCL Data meta-model mapped from XSEM are defined. 

Relationships between entities and between an entity and a relation are not defined. 

Navigation expression can start in an entity, in a content model and in a variable. 

8.3.4. Simple steps navigation 

UCL defines 5 kinds of simple step navigation expressions (operator dot 

followed by a name of a connected element) from an entity. It is possible to navigate 

attribute of a class: 

Context Person 

inv: self.age… 

Context Person 

inv: self.age > 0 

It is possible to navigate inner class and inner content model of a class: 

Context Company 

inv: self.Manager… 

inv: self.Job… 

inv: self.companyEmployee… 
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Context Company 

inv: self.Job.salary > 0 

It is not possible to navigate inner relations of an entity; entities do not have 

inner relations, all relations are root relations without a name. It is not possible to 

navigate a neighbouring entity and a neighbouring relation because this relationship 

is not defined in the mapping from XSEM to UCL Data meta-model. 

UCL defines 3 kinds of simple step navigations from relations. From a 

relation we can navigate to the connected entity (class or content model) using a 

name of a relation end name. To navigate the child element we use the name of the 

association and to navigate the parent element we use name "parent" (according 

definition of the mapping XSEM to UCL Data meta-model): 

(expression ending in association "manager").manager... 

(expression ending in association "manager").parent... 

Context Company 

def variable = self:>manager 

inv: variable.manager.age >= 18 

inv: variable.parent.numberOfEmployees >= 1 

It is not possible to navigate lexicals of a relation because an association 

cannot have attributes. 

8.3.5. Relation step through an association 

In context of a class or a content model, we can navigate to a connected 

class or content model through an association using operator -> and name of an 

opposite association end of the association. Relation end name to the child element 

is name of the association and relation end name to the parent element is "parent". 

The expression starts in class Person::Cars, goes through association cars 

to class Car. The type of expression is Sequence (Person::Car ::Car): 

Context Person::Cars 

inv: self->cars… 

Context Employee 

inv: self->employer:forAll(comp | comp.numberOfEmployees > 0) 

The second example starts in class Person::Cars::Car and goes through 

navigation cars (using the relation ends name "parent") to class Person::Cars. 
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Context Person::Cars::Car 

inv: self->parent… 

Context Person::Cars::Car 

inv: self->parent->parent.age >= 18 

Context Person 

inv: self.age < 18 

     implies self->cars->cars:forAll(c | c.carMake = "moped") 

8.3.6. Relation stop to an association 

Although the defined mapping XSEM PSM schemas to UCL does not 

support definitions of constraints in the context of associations, but it is possible to 

use relations stop navigation expressions which navigate to associations. 

In context of a class or content model we can navigate to a connected 

association using operator :>. The example expression starts in class Company 

and ends in association manager. The type of expression is Sequence (manager): 

Context Company 

inv: self:>manager… 

Context Company 

inv: self:>manager.manager.age >= 20 
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9. Mapping and deriving constraints  

In chapter 6, we presented UCL meta-model (model of UCL types and 

constraints). As we mentioned, it is a suitable form to formal representation of UCL 

constraints and to deriving UCL constraints to a different model or to a different 

constraint language. A model (according UCL meta-model) of a UCL expression 

represents its abstract syntax tree. An operation of an expression which is evaluated 

at the end is the root element of the syntax tree of the expression. 

In this chapter, we define deriving of UCL expressions for XML to 

Schematron constraints. We formally define the mapping between different models 

of different meta-models. And according this mapping between different models we 

define deriving of UCL constraints over one model to UCL constraints over a 

different mapped model. 

First we define a collection of UCL constraints over a schema. 

Definition 9.1 (UCL constraints over a schema): 

Let be                                          a schema of UCL Data 

meta-model. 

Then a set of UCL expressions over the schema   is a set              which 

contains instances of the class                   (Figure 6.4) with navigation 

expressions over the schema  . 

A set of variables definitions over the schema   is the set                 which 

contains instances of classes                       and                       

(Figure 6.5). The attribute            of                       defines the 

variable’s value; the value of this attribute must be member of the set 

            , the set of expressions over schema  . 

A collection of UCL context definitions over the schema   is the a              

which contains all instances of the class                      (Figure 6.3). All 

variables definitions must be member of                 , all invariant expressions 

must be members of             . And context type of the context must be 

              over the set of entities in schema   of                 in the 

schema   (Figure 6.1). 
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9.1. Deriving UCL for XML to Schematron 

In this subchapter, we define the algorithm UclToSchematron which derives 

UCL constraints for XML to constraint rules in Schematron. We define the recursive 

function ExpressionToSchematron which derives all kinds of UCL expressions (all 

kinds of UCL expressions according UCL meta-model) to Schematron rules. The 

function TypeToSchematron derives context type to XPath navigation to the type. 

9.1.1. Context of constraints 

Definition 9.2 (Deriving UCL to Schematron): 

The function UclToSchematron generates from a set of UCL constraints on XML 

             the constraint rules in Schematron. 

function 

UclToSchematron(contextDefs : list of UCLContextDefinition) 

{ 

  print <?xml version="1.0" encoding="utf-8"?> 

  print <schema xmlns="http://www.ascc.net/xml/schematron"> 

  print <pattern name="Schematron rules"> 

  //a) all blocks of context definitions 

  foreach (contextDef in contextDefs) 

  { 

    typeName := TypeToSchematron(contextDef.ContextType) 

    print <rule context="typeName"> 

    //b) all "def" variable definitions 

    foreach (variable in contextDef.DefVariablesDefinitions) 

    { 

      value := ExpressionToSchematron(variable.Expression) 

      print <let name="variable.Name" value="value" /> 

    } 

    //c) all context’s invariants 

    foreach (invariant in contextDef.InvariantExpressions) 

    { 

      name := invariant.Name 

      expr := ExpressionToSchematron(invariant.Expression) 

      print <assert test="expr">name</assert> 

    } 

    print </rule> 

  } 
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  print </pattern> 

  print </schema> 

} 

The function first prints the XML header and Schematron root elements 

schema and pattern. In the first loop (a) it parses all blocks of UCL context 

definitions. 

For each block it creates the XML element <rule> with its invariants. In 

element <rule>, there is the attribute context with XPath navigation to the context 

entity. This XPath navigation is derived by function TypeToSchematron. 

The second loop (b) derives all "def" variables definition in the context block 

to Schematron let variables. Schematron can define a variable in the scope of an 

element rule. A variable definition is represented by an element <let 

name="name" value="value" />. To reference the variable we must prefix the 

variable name with $, e.g. $variableName. The variable name in Schematron is 

assigned from variable name in UCL. Expression of the variable’s value is derived to 

Schematron by function ExpressionToSchematron. 

The third loop (c) derives all invariants in the context block to Schematron 

rules. Invariants are in Schematron represented by an element <assert 

test="expression">name</assert>. The invariant’s name is the UCL 

invariant’s name. Attribute expression is the constraint expression which must be 

satisfied for each instance of the context element type. It is derived from UCL by 

function TypeToSchematron. 

9.1.2. Types 

The function TypeToSchematron converts UCT entity type over XML to 

XPath navigation expression. An XSEM class or a content model is represented by 

an inner entity of the parent XSEM class or content model. XPath expression 

representing the type begins with / and the name of the root UCL entity. It follows 

by / and the name of the inner entity. And it ends by the name of the searched UCL 

entity which represents converted XSEM class or content model. But a content 

model does not represent real XML element, so name of a content model is not 

added to the created XPath expression. 
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Definition 9.3 (Type name of UCL entity in XPath): 

function TypeToSchematron(uclEntity : UCLEntity) 

{ 

  //search parent entity (if uclEntity is inner entity of e) 

  parentEntities := {e | uclEntity   E.inEn(e)} 

  //uclEntity is a root entity 

  if (parentEntities == empty set) 

    return /E.name(uclEntity) 

  parentEntity := e   parentEntities 

  parentEntityName := TypeToSchematron(parentEntity) 

  if (uclEntity is XSEMContentModel) 

    return parentEntityName 

  return parentEntityName/E.name(uclEntity) 

} 

E.g. for UCL entities mapped from XSEM diagram in Figure 8.1, function 

assigns: for root class Company expression /Company, for class Car expression 

/Person/Cars/Car and for content model partner (in class Person) expression 

/Person. Content models does not represent real XML element, only a content of 

their parent element. 

9.1.3. Expressions 

In this subchapter we define the function ExpressionToSchematron. It 

derives all kinds of UCL expressions (expressions according UCL model in chapter 

6) to XPath expressions for Schematron rules. 

Definition 9.4 (Deriving UCL expressions to XPath expressions): 

The function ExpressionToSchematron assign to an UCL expression uclExpression 

from the set              an XPath expression. According kind of UCL expression 

it assigns: 

 If uclExpression is a literal value (UCLLiteral-Expression); the function 

assigns directly the literal value of uclExpression. 

An XPath expression can contain literal values of basic types real, integer, 

string and boolean. 

 If uclExpression is a unary operator (UCLUnaryBaseOperation-Expression): 

+  expression, – expression, not (expression), (expression); 
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the function gets an XPath expression which is the same as the UCL 

expression. The function calls recursive the function 

ExpressionToSchematron to the operand op. 

XPath defines unary operators +, –, not and parentheses. 

 If uclExpression is a multiplicative operation (UCLBinaryMultiplicative-

Expression) op1 * op2 or op1 / op2; the function gets XPath expression 

op1 * op2 or op1 div op2. The function calls recursive function 

ExpressionToSchematron to the operands op1 and op2. 

 If uclExpression is an additive operation (UCLBinaryAdditive-Expression) 

op1 + op2 or op1 – op2; the function gets XPath expression op1 + op2 

or op1 – op2. The function calls recursive the function 

ExpressionToSchematron to the operands op1 and op2. 

 If uclExpression is a relational operation (UCLBinaryRelational-Expression) 

op1 = op2, op1 != op2, op1 < op2, op1 > op2, op1 <= op2, or 

op1 >= op2; the function gets XPath expression op1 = op2, 

op1 != op2, op1 &lt; op2, op1 &gt; op2, op1 &lt;= op2, or 

op1 &gt;= op2. The function calls recursive the function 

ExpressionToSchematron to the operands op1 and op2. 

Characters "<" and ends with ">" must be replaced by XML entities "&lt;" and 

"&gt;". 

 If uclExpression is a logical operation (UCLBinaryLogical-Expression) 

op1 or op2, op1 and op2, op1 implies op2 or op1 xor op2; the 

function gets XPath expression op1 or op2, op1 and op2, 

not(op1) or op2, 

(op1 and not(op2)) or (not(op1) and (op2)). The function calls 

recursive the function ExpressionToSchematron to the operands op1 and 

op2. 

XPath does not define operations implies and xor. They are replaced by 

equivalent expressions. 

 If uclExpression is an if-then-else expression (UCLIf-Expression); the 

function does not get any result. XPath does not define if-then-else 

expression. 
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 If uclExpression is a "let" variable definition (UCLets-Expression); the 

function does not get any result. Schematron cannot define a variable in a 

scope of an XPath expression. It is possible to use "def" variable definitions. 

 If uclExpression is self expression (UCLSelfEntity-Expression); the function 

gets XPath expression dot (".") which refers to the current node. 

An expression self can refer only an UCL entity because context cannot be 

expressed only over an UCL relation. 

 If uclExpression is a reference to a "def" variable definition (UCLVariable-

Expression which refers UCLVariableDefinition); the function gets the 

variable’s name prefixed by $, e.g. $variable. 

 If uclExpression is a reference to a variable in a collection expression; 

(UCLVariable-Expression which refers UCLCollectionVariable); the function 

gets XPath expression dot (".") which refers to the current node in context of 

a collection expression. XPath current node refers to the context of condition 

expression inside the collection expression. 

 If uclExpression is a relation step expression expression->R from entity A 

through relation end R to entity B (UCLConnectedRelationStep-Expression), 

expression is the source expression; 

In the case of navigation from class A to child class B; the function gets 

expression expression/B. The expression navigates to the child node; 

In the case of navigation from class A to parent class B; the function gets 

expression expression/... The expression navigates to the parent node; 

In the case of navigation from content model A to parent entity B; the 

function gets only the source expression expression. A content model 

does not represent real XML node; 

In the case of navigation from class A to child content model B; the function 

gets only the source expression expression. A content model does not 

represent real XML node; 

The function calls recursive the function ExpressionToSchematron to the 

source expression expression. 

E.g. constraint in UCL and in Schematron: 

Context Company 

inv: self->manager.age >= 20 
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<rule context="/Company"> 

 <assert test="./Manager/age &gt;= 20"></assert> 

</rule> 

Context Person::Cars::Car 

inv: self->parent->parent.age >= 18 

<rule context="/Person/Cars/Car"> 

 <assert test="./../../age &gt;= 18"></assert> 

</rule> 

 If uclExpression is a simple step expression expression.B from XSEM 

class A to its inner XSEM attribute B (UCLStepEntityLexical), expression 

is the source expression: 

In the case if XML form of attribute B is XML simple element; the function 

gets expression expression/B. The expression navigates to the child XML 

node; 

In the case if XML form of attribute B is XML attribute; the function gets 

expression expression/@B. The expression navigates to the XML 

attribute; 

The function calls recursive the function ExpressionToSchematron to the 

source expression expression. 

Context Company 

inv: self.numberOfEmployees >= 0 

<rule context="/Company"> 

 <assert test="./numberOfEmployees &gt;= 0"></assert> 

</rule> 

Context Person::Cars::Car 

inv: self.id != "0" 

<rule context="/Person/Cars/Car"> 

 <assert test="./@id != '0'"></assert> 

</rule> 

 If uclExpression is a simple step expression expression.B from XSEM 

class A to its inner XSEM class B (UCLStepEntityInnerEntity), expression 

is the source expression; the function gets expression expression/B. The 

expression navigates to the child XML node; 

The function calls recursive the function ExpressionToSchematron to the 

source expression expression. 
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Context Company 

inv: self.Job.salary > 0 

<rule context="/Company"> 

 <assert test="./Job/salary &gt; 0"></assert> 

</rule> 

 Other kinds of simple step expressions are not supported to by UCL over 

XML or it is not possible to derive them to an XPath navigation expression. 

 If uclExpression is a collection operation: 

In the case of operation size collection:size() (UCLSize-Expression); 

the function gets an XPath aggregate the function count (collection); 

In the case of operation sum collection:sum() (UCLSum-Expression); 

the function gets an XPath aggregate the function sum (collection); 

In the case of operation isEmpty collection:isEmpty() (UCLIsEmpty-

Expression); the function gets an XPath sequence the function 

empty (collection); 

In the case of operation notEmpty collection:notEmpty() 

(UCLNotEmpty-Expression); the function gets an XPath sequence the 

function exists (collection); 

In the case of operation max collection:max() (UCLMax-Expression); 

the function gets an XPath aggregate the function max (collection); 

In the case of operation min collection:min() (UCLMin-Expression); 

the function gets an XPath aggregate the function min (collection); 

In the case of operation asSet collection:asSet() (UCLAsSet-

Expression); the function gets an XPath sequence the function 

distinct-values (collection); 

The function calls recursive the function ExpressionToSchematron to the 

source expression collection which returns a collection; 

Context Company 

inv: self.numberOfEmployees 

     = self->companyEmployee:collect(ce | ce->employee):size() 

<rule context="/Company"> 

 <assert test="./numberOfEmployees=count(././Employee)"> 

 </assert> 

</rule> 

 If uclExpression is a collection expression: 
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In the case of expression select (UCLSelect-Expression) 

collection:select(variable | condition); the function gets an 

XPath expression with a predicate collection[condition]. This 

predicate selects from the collection items that satisfy the condition. 

In the case of expression reject (UCLReject-Expression) 

collection:reject(variable | condition); the function gets an 

XPath expression with a predicate collection[not(condition)]. This 

predicate selects from the collection items that do not satisfy the condition. 

In the case of expression collect (UCLCollect-Expression) 

collection:collect(variable | navigation); the function gets an 

XPath navigation expression collection/navigation. This expression 

navigates according the expression navigation. 

In the case of expression exists (UCLExists-Expression) 

collection:exists(variable | condition); the function gets an 

XPath sequence function with a predicate 

exists(collection[condition]). This predicate finds if there is at 

least one item that satisfies the condition. 

In the case of expression forAll (UCLForAll-Expression) 

collection:forAll (variable | condition); the function gets a 

composite XPath expression: 

count(collection[condition]) = count(collection). 

XPath does not have expressive power to find if all items in a collection 

satisfy a condition. This complex example get if size of a collection is equal 

to size of a collection with items that satisfy the condition. 

The function calls recursive the function ExpressionToSchematron to the 

source expression collection and also to the condition expression 

condition.  

Collection expressions derived to Schematron do not use collection variables 

from UCL. Collection variables refer to the current node, they are derived to 

a dot ("."). 

Context Person 

inv: 

  self.age < 18 

  implies self->cars->cars:forAll(c | c.carMake = "moped") 
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<rule context="/Person"> 

 <assert test= 

  "not(./age &lt; 18) 

   or 

   (count(./Cars/Car[./carMake = 'moped']) 

  = count(./Cars/Car))"> 

 </assert> 

</rule> 

In this subchapter, we have defined algorithm UclToSchematron and the 

functions TypeToSchematron and ExpressionToSchematron which automatically 

derive UCL constraints over XSEM PSM schema to Schematron rules for XML 

documents. 

9.2. Mapping between data models 

Today’s complex software systems consist of more individual software 

components. Individual components are responsible for different parts of the 

software system. The whole software system used to be modeled by PIM (platform-

independent-model). It is typically modeled using of UML Class diagrams. Particular 

software components are modeled using various data meta-models. To represent 

data of an application in a relational database we use an ER diagram. To represent 

structure of XML documents or SOAP messages send by an application we can use 

a XSEM diagram. 

Elements in one model are semantically related and interconnected with 

elements in other model. For example UML Class in PIM diagram models a runtime 

object. This object is in a relational database stored as a column of a table; or in 

XML document it is represented by an element with attributes. A table in an ER 

diagram and an XSEM class are interconnected with a related UML class in PIM 

diagram. 

In this subchapter, we define a directed mapping between elements of two 

different schemas of UCL Data meta-model. Such mapping must be created 

manually by a software architect or automatically by deriving a model to a different 

model. 

Definition 9.5 (Directed mapping between two different models of UCL Data 

meta-model): 

Let   is a schema in data model        and   is a schema in data model       . 
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   is UCL Data meta-model schema (Definition 4.14) which has been created by 

mapping of elements from   to UCL Data meta-model. And    is UCL Data meta-

model schema which has been created by mapping of elements from   to UCL Data 

meta-model. 

              
                                ; 

              
                                ; 

Mapping from UCL Data meta-model    to UCL Data meta-model    is a function: 

                                ; which 

 is an injective function, it does not maps distinct elements of its domain to 

the same element, 

                                       ; 

 maps entities from    to entities in   , 

                    ; 

 maps relations from    to relations in   ; 

                    ; 

 maps relation ends from     to relation ends in   ; 

                      ; 

 maps lexicals from    to lexicals in   ; 

                    . 
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Figure 9.1: Mapping between UCL entities 

Figure 9.1 illustrates by arrows the mapping from a UCL Data meta-model of 

UML class diagram to a UCL Data meta-model of XSEM PSM schema. In the figure, 

there is only mapping of UCL entities. The mapping function defines mapping of 

UCL relations, lexicals and relation ends, too. 

9.3. Deriving UCL to different mapped model 

By modeling of complex software systems we must often express a 

constraint over several models. E.g. we must define a constraint for PIM model in 

UML diagram and also the same constraint for databases in ER diagram.  In UCL it 

is possible to express constraints over various models. We can express an UCL 

constraint expression over one model and another UCL constraint expression over 

different model. Although these expressions can semantically represent the same 

constraint, textual notation of these expressions may be different. Names of 

elements and relationships between them can be in individual UCL Data meta-

model schemas different. 

E.g. the same constraint in UCL over different models: 

Context Person 

inv: self.Age < 18 implies self->hasCars:isEmpty() 

Context company::companyBranch::employer 

inv: self.age < 18 implies self->cars:isEmpty() 
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Consider a situation by modeling a complex software system. We have two 

models and we have created schemas of UCL Data meta-model of these schemas. 

And we have created mapping of elements from the first UCL Data meta-models to 

elements of the second UCL Data meta-models. We have expressed integrity 

constraints in UCL over the first model. 

Then it is possible to derive UCL constraints for the second model according 

the mapping between models. UCL constraints for the second model can be created 

only if relationships between elements of the first models are similar to relationships 

between elements of the second model. For example a mapping between UCL 

entities must correspondent with mapping of their inner UCL lexicals. Next definition 

formalizes the derivation of UCL constraints to a mapped data model. 

Definition 9.6 (Derivation of UCL constraint to a mapped UCL Data meta-

model): 

Let               
                                 is an UCL Data meta-

model schema over model  . And               
                      

           is a UCL Data meta-model schema over model  . 

Let                                  is a mapping function from 

UCL Data meta-model    to UCL Data meta-model    (Definition 9.5). 

Let we have expressed UCL constraints over model  . They consist of a sequence 

of context blocks that is a subset of              
. Constraints contain definition of 

variables                 
 and they are compound of expressions from the set 

             
 (Definition 9.1). 

Then function: 

                          
                   

               
 

             
                   

               
 derives UCL constraint over 

model A to UCL constraint over model B if the mapping is correct defined. 

The recursive function              assigns to a source UCL constraint source an 

UCL constraint according the kind of the source constraint: 

 If source is a context block (UCLContext-Definition); function creates a 

context block where: 

Context type is                           , if the context UCL entity or 

UCL relation is not mapped to model B, context block is not created; 
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The set of "def" variable definitions is the set of derived variables definitions 

                                                        if the variable 

value’s derivation is defined; 

The set of invariants is derived to set of invariants. The name of created 

invariant is the source invariant name. Value of the invariant expression if the 

derived value of the source invariant expression. If the derived value is not 

defined then the derived invariant is not defined, too.  

                                  ; 

 If source is a "let" variable definition (UCLLets-Expression); function gets a 

"let" variable definition with the same name and derived variable’s value 

                               , if it is defined; 

 If source is a literal value of a basic type (UCLLiteralBase-Expression); 

function get directly the literal value source; 

 If source is an if-the-else operation (UCLIf-Expression) 

if condition then expression1 else expression2 endif;  

function gets: 

if              condition  

then              expression1  

else              expression2  endif; 

where the inside expressions are derived. If one of the derived expressions 

is not defined then the whole derived expression is not defined, too; 

 If source is a unary operation (UCLUnaryBaseOperation-Expression) 

                   ; function gets the unary operation where the operand 

expression is derived                                  ; if the derived 

operand expression is not derived then the whole expression is not define, 

too; 

 If source is a binary operation (UCLBinaryBaseOperation-Expression) 

                                ; function gets the binary operation where 

the operand expressions are derived: 

                                                            ; If one of 

the derived expressions is not defined then the whole derived expression is 

not defined, too; 

 If source is a self expression which refers the content UCL entity or 

UCLRelation (UCLSelfEntity-Expression, UCLSelfRelation-Expression); 

function gets a self expression which refers to the mapped entity or relation 
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                      . If the mapping function is for the context element 

not defined then the whole expression is not defined, too, but then all context 

block is not defined; 

 If source is a reference to a variable (UCLVariable-Expression); function gets 

the name of the variable; 

 If source is a simple step expression from relation R through relation end A 

to entity E (UCLStepRelationConnectedEntity) prevStep.A; 

If the derivation of the previous expression is not defined then the whole 

expression is not defined. 

Let derivPrevStep                         is the derivation of the 

previous expression. It must refer to relation          . 

Let mapA            is the mapping of relation end A. If mapA does not 

belong to mapped relation           or it is not connected to mapped entity 

          then the whole expression is not defined. 

Else function gets derivation of the expression derivPrevStep.A’. Where 

A’ is name of the mapped relation end              . 

 If source is another kind of simple step expression from element (UCL entity 

or UCL relation) A to element B (UCLSimpleStep-Expression) prevStep.B; 

If the derivation of the previous expression is not defined then the whole 

expression is not defined. 

Let derivPrevStep                         is the derivation of the 

previous expression. It must refer to element          . 

Let mapB            is the mapping of the target element. 

If the mapping mapB is not defined or if navigation from           to mapB 

does not exist then the whole expression is not defined. 

Else function gets a simple step derivation of the expression 

derivPrevStep.B’. Where B’ is name of the mapped target element (UCL 

entity or UCL relation)              . 

 If source is a relation step (or stop) expression from entity A through relation 

R with relation end X to entity B (UCLConnectedRelationStep-Expression or 

UCLConnectedRelationStop-Expression) 

prevStep->X or prevStep:>X; 
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If the derivation of the previous expression is not defined then the whole 

expression is not defined. 

Let derivPrevStep                         is the derivation of the 

previous expression. It must refer to entity          . 

Let mapR            is the mapping of relation R; mapX            is 

the mapping of relation end X; and mapB            is the mapping of 

entity B. 

If there mapR does not contain any relation end connected to the source 

entity           or if mapX is not the relation end of relation mapR or mapX 

is not connected to entity mapB then the whole expression is not defined. 

Else function gets derivation of the expression derivPrevStep->X’ or 

derivPrevStep:>X. Where X’ is name of the mapped relation end 

             . 

 If source is a collection expression (UCLBaseCollection-Expression) 

prevStep:expression(variables | argument); 

Let derivPrevStep                         is the derivation of the 

previous expression; and derivArgument                         is the 

derivation of the argument expression. If expression derivPrevStep or 

derivArgument is not defined then the whole expression is not defined. 

Function gets derivation of the expression: 

derivPrevStep:expression(variables | derivArgument); 

 If source is a collection operation (UCLBaseCollection-Expression) 

prevStep:operation(); 

Let derivPrevStep                         is the derivation of the 

previous expression. If the derivation of the previous expression is not 

defined then the whole expression is not defined. 

Function gets directly the derived previous expression with the collection 

expression derivPrevStep:operation(). 

Function              derives UCL constraints over one model A to 

another model B; if there is mapping        from UCL Data meta-model for A to 

UCL Data meta-model for B and it satisfies conditions in the definition of 

            . 
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9.4. Conclusion 

In this chapter, we have formally defined UCL constraints over a model of 

UCL Data meta-model. We have defined the directed mapping between two such 

models. This mapping must be created manually by software architects. And last we 

have defined how it is possible to derive UCL constraints over one model to UCL 

constraints over another model if the created mapping satisfies specific conditions. 

A significant limitation is that this mapping must be a mapping one to one. To 

one element of the source model we can assign only one element in the target 

model. Otherwise the derivation algorithm is not defined. 

We have also defined the derivation of UCL constraints over XML schemas 

to rules in Schematron. According all these definitions it is possible to convert UCL 

constraints over PIM schema to Schematron rules or other specific constraint 

languages for various meta-models. 

For example in the context of UML model and mapped XSEM PSM model in 

Figure 9.1, we have UCL constraints over a UML diagram: 

Context Car 

inv: self.NumberOfWheels >= 2 

inv: self.NumberOfWheels >= 4 implies self->ownedBy.Age >= 18 

Context Person 

inv: self.Age < 18 implies self->hasCars:isEmpty() 

Context Company 

inv: 

self->branches:forAll(branch | 

  branch->employee:select(empl | empl.Age > 30):size() > 10 

) 

Constraints can be derived to UCL constraints over XSEM: 

Context company::companyBranch::employer::car 

inv: self.numWheels >= 2 

inv: self.numWheels >= 4 implies self->parent.age >= 18 

Context company::companyBranch::employer 

inv: self.age < 18 implies self->cars:isEmpty() 



115 

Context company 

inv: 

self->branches:exists(branch | 

  branch->employees:select(empl | empl.age > 30):size() > 10 

) 

Constraints can be derived to Schematron rules: 

<?xml version="1.0" encoding="utf-8"?> 

<schema xmlns="http://www.ascc.net/xml/schematron"> 

  <pattern name="Constraints"> 

    <rule context="/company/companyBranch/employer/car"> 

      <assert test="./numWheels &gt;= 2"></assert> 

      <assert test= 

        "not(./numWheels &gt;= 4) or ./../age &gt;= 18" /> 

    </rule> 

    <rule context="/company/companyBranch/employer"> 

      <assert test="not(./age &lt; 18) or empty(./car)" /> 

    </rule> 

    <rule context="/company"> 

      <assert test= 

        "exists(./companyBranch 

          [count(./employer[./age &gt; 30]) &gt; 10] 

        )" 

      /> 

    </rule> 

  </pattern> 

</schema> 
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10. Implementation 

The aim of this thesis is also to implement a software component with the 

support for UCL constraints. This software component must demonstrate the 

described applications of UCL to different data meta-models. We must create a 

universal and extensible framework. When the framework supports a data meta-

model, it must be possible to add the support for mapping this of this data meta-

model to its UCL Data meta-model. E.g. if the framework supports creating of UML 

Class diagrams then the it must be able to extend the framework to the support for 

creating of mapped UML-UCL models. 

The framework must implement a parser of UCL expressions over UCL Data 

meta-model. It must be able to express UCL constraints over various data meta-

models. The framework must also implement the presented derivation of UCL 

constraint over one model to UCL constraints to another mapped model. 

And finally, the framework must support the derivation of UCL constraint to 

different specific constraint languages for different data meta-models. It must be 

able to add to the framework a support for a derivation to different other constraint 

languages. 

10.1. DaemonX framework 

DaemonX [45] is an existing software system for modeling. It was developed 

as a student software project in Faculty of Mathematics and Physics, Charles 

University in Prague. The whole DaemonX system was not developed as part of this 

thesis. Only the support for UCL is the part of this thesis. 

DaemonX is a modeling framework. It is able to add the support for various 

data meta-models. DaemonX defines its own general meta-meta-model and it 

enables adding of plug-ins to the framework. According the documentation of the 

meta-meta-model, a programmer can create his own (data or process) meta-model. 

A programmer can develop a plug-in for this meta-model. And he can add it to the 

framework to enable creating models of the created meta-model in the DaemonX 

framework. The version DaemonX 1.0.1 contains plug-ins for meta-models PIM (as 

subset of UML class diagrams), relational model of databases, UML class and state 

diagrams, XSEM PSM model and BPMN. The demonstration of modeling in 

DaemonX is in Appendix C (User documentation). 
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Individual models of real complex software systems are related. DaemonX 

framework enables to create directly mapping between models. Such a mapping 

must be created manually by software architects. Or it is possible to derive a PSM 

diagram from a PIM diagram, in such a case the mapping between the PIM and the 

created PSM diagram is created automatically. An illustration of a mapping is in 

Appendix C (User documentation). 

DaemonX supports an evolution process between mapped models. When a 

software architect modifies a PIM model, this change is propagated to all mapped 

models. 

10.2. Constraints module, features 

As a part of this thesis, we have implemented a software component in 

DaemonX framework. It must demonstrate the usage of UCL constraints over 

different data meta-models. DaemonX is an existing framework; it supports adding 

of data meta-models as plug-ins to the framework. DaemonX also implements 

creating of mapping between data models. We can use the existing implementation 

of this mapping for demonstration of deriving UCL constraints over one model to 

UCL constraints over the other mapped model (of different meta-model). 

Using the implemented software component and UCL plug-ins, it is 

implemented and it is possible to: 

 Create UCL Data meta-model for UML class diagrams meta-model (it is 

called UML-UCL Data meta-model); 

 Create UCL Data meta-model for XSEM meta-model (it is called XSEM-UCL 

Data meta-model); 

 It is possible to create automatically UCL Data meta-model for a UML Class 

diagrams model and UCL Data meta-model for an XSEM model (UML-UCL 

Data meta-model). This is implemented by individual UCL Data meta-models 

in the previous point; 

 We can express UCL constraints over a diagram of the general UCL Data 

meta-model. So we can express UCL constraints over a UML class model 

and over an XSEM model; 

 We can manually create mapping from elements of a UML model to 

elements of an XSEM model (This is provided by DaemonX framework); 
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 According this mapping, UCL constraints module deduces the mapping from 

elements of the UML-UCL model to elements of the XSEM-UCL model. And 

according this mapping we can automatically derive UCL constraints over a 

UML-UCL model to UCL constraints over an XSEM-UCL model; 

 We have implemented also the derivation from UCL constraints over XSEM 

models to Schematron rules. 

The user’s guide with an example of the supported operations is in 

Appendix C (User documentation). 

10.3. Architecture 

 
Figure 10.1: Architecture of the whole framework 

Figure 10.1 shows the architecture of the whole framework DaemonX with 

the implemented component for UCL. The architecture is described in detail in 

Appendix D (Programmer’s documentation). 
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Label A shows to the general UCL Data meta-model. It is a set of classes for 

UCL entity, UCL relation and UCL lexical and relationship between them. 

To add the support of UCL for a data meta-model, we must create plug-in for 

it (label B). E.g. a plug-in to add the support of UCL for UML meta-model, we 

created UML-UCL meta-model. It defines mapping from elements from UML (class, 

attribute) to element in UCL Data meta-model (entity, relation, lexical) and 

relationships between them. The elements in UML UCL meta-model inherit element 

in UCL Data meta-model. 

In the layer M1, concrete UCL meta-model plug-ins (e.g. UML UCL meta-

model) (label B) creates UCL models from models (label C), e.g. a UML UCL model 

from a UML model. 

Label D shows to the most complex and most comprehensive part of the 

implemented software component. It is the parser of textual UCL constraint 

expressions. It includes the lexical analyzer, the syntax parser and the semantic 

analyzer. It searches elements in UCL model in according navigation expressions; it 

checks type conformance rules of expression and operations. And it creates a 

syntactical tree of UCL expressions according UCL meta-model. We can express 

UCL constraints only in context of a UCL model (label C). This part was 

implemented in the software component of UCL as a part of this thesis. 

Part E represents a direct mapping from one model to other model. This 

mapping must by created manually by a software architect – a user of DaemonX. 

The support of this mapping is implemented in DaemonX; its development was not a 

part of this thesis. 

We have a mapping from one model to another model (created by a user, 

label E). We have mapped the first model to elements of its UCL model and 

analogue we have mapped the second model to elements of its UCL model. We can 

create the mapping from the first UCL model to the second UCL model (label F). 

This mapping is created automatically according the mentioned mappings. 

According the mapping from one UCL model to another UCL model (label F) 

we can derive UCL constraints over the first model to UCL constraint over the 

second model (label G). This deriving is processed automatically. It is implemented 

in the developed component. 

The implemented software component supports creating plug-ins to 

derivation of UCL constraints into other specific constraint languages (label H). E.g. 
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we have implemented plug-in which derives Schematron rules from UCL constraints 

over a XML model. 
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11. Conclusion 

Today’s software systems are typically composited of a complex system of 

several components. These individual components are responsible for different 

parts of the whole system; they communicate with each other. By modeling of these 

components, software architects use various meta-models for model individual 

components. E.g. UML class diagrams, ER models, XSEM. Models of these 

components are related and interconnected. 

By modeling of software systems, we need integrity constraints. We need to 

express the consistency of modeled data. We often need to express conditions 

which must be satisfied by modeled data. To express these conditions a graphic 

annotation is not suitable. We must express them in textual constraint languages. 

When we model a complex system, we must use different constraint languages for 

different data meta-models; e.g. OCL, SQL expression, Schematron. 

We often solve a task that one integrity constraint over one meta-model must 

be expressed also over other meta-model in a different constraint language. We 

must translate the same constraint from one language in one language to another 

language over a different related model. This is a nontrivial task which must be 

handled manually. The expressive power of individual constraint languages can be 

different, too. 

The aim of this thesis was to automate this process. Our aim was to achieve 

a situation that it will be sufficient to express integrity constraints only over one 

meta-model. Typically in the meta-model UML class diagrams in the state that it is 

the platform-independent model. A software architect defines the interconnection 

between all meta-models which represent individual software component of the 

complex modeled system. When a software architect defines the mapping, it will be 

automatically possible to derive constraints from the PIM to other meta-models. 

First, our aim was to define a new common language for integrity constraints 

in which it will be possible to express integrity constraints over different meta-

models. 

 In chapter 5 (UCL description), we introduced Universal Constrain Language 

(UCL). We have defined its syntax and its meta-model, in chapter 6 (Meta-

model of UCL constraints). UCL is based on OCL. It does not support all 

language constructions of OCL. But it adds more possibilities for navigation 

expressions over the input model. For example, it uses different way for the 
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navigation to association classes as OCL; because OCL is based on the 

meta-model for UML. 

The aim was that the created language must be suitable to express integrity 

constraints over different data meta-models. E.g. we want to express constraints 

over UML, over XML, over relational databases in this language. 

 In UCL, it is possible to express constraints over different meta-models. UCL 

is a language which is based on the general data meta-model (UCL Data 

meta-model). Individual meta-models can be mapped to UCL Data meta-

model; so we can express integrity constraints over these meta-models in 

UCL. In chapter 7 (Using UCL for UML Class diagrams), we have defined 

how to map meta-model of UML class diagrams to UCL Data meta-model. 

And we have defined how we can express constraints in UCL over UML 

models mapped to UCL Data meta-model. Then in chapter 8 (Using UCL for 

XML schemas), we have defined the mapping of XML models to UCL Data 

meta-model. In UCL, we can express constraints over an XML model. 

Formulations of integrity constraints in UCL over different meta-models are 

possible through the general meta-model (UCL Data meta-model). UCL is based on 

this meta-model. The aim of this thesis was to analyse and formally define this 

general meta-model. 

 In chapter 4 (Architecture, UCL Data meta-model), we have analyzed 

elements of the general meta-model. We have formally defined its elements 

and relationship between these elements. Then we defined a set of 

restrictions which must be satisfied for an instance of UCL Data meta-model. 

We defined which names of elements must be distinct because the names of 

elements are used in UCL navigation expression. Created UCL expressions 

cannot be unambiguous. 

The aim was that it must be possible to translate constraint in UCL to other 

constraint languages. 

 According meta-model of UCL, we have defined in chapter 9.1 (Deriving 

UCL for XML to Schematron) the derivation from UCL constraints over an 

XML model to constraint rules in language Schematron. But various 

constraint languages can have different expressive power. Derivation 

between different constraint languages must not be possible for all kinds of 

expression and for all pairs of constraint languages. 
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Some current modeling CASE tools support to define integrity constraints in 

OCL over created model. They can also check if instances of model satisfy the 

constraint. Some tools can also derive constraints in OCL to other constraint 

languages (to SQL expression over relational databases). In some tools, we can 

also express OCL constraints over other meta-models (over databases). 

This thesis goes on in the process of the automation. Our aim was to support 

mapping between different meta-models. And we wanted to derive constraints in 

UCL between different related meta-models. 

 In chapter 9.2 (Mapping between data models), we have formally defined the 

directed mapping from elements of one model (of one meta-model) to 

elements of other model (of different meta-model). This mapping must be 

created manually by a software architect. This mapping must map 

UCL entities to UCL entities, UCL relations to UCL relations, UCL lexicals to 

UCL lexicals and UCL relation ends to UCL relation ends. The next 

significant restriction is that this mapping must map one element to one 

element. To an element of the source model we can assign most one (one or 

no) element in the target model. And last we have defined how it is possible 

according the created mapping to derive UCL constraints over one model to 

UCL constraints over another model. 

 The aim of this thesis is also to define deriving of UCL constraints over one 

data model to UCL constraints over another data model. If elements in 

separate models and parts of a complex software system are related and 

interconnected then it must be possible (according this interconnection of 

models) to derive constraints over one model to constraints over another 

related model. 

The aim of this thesis was also to implement a framework which 

demonstrates the contribution of the theoretical work in this thesis. Our aim was to 

implement the application of UCL over different meta-models which are mapped to 

UCL Data meta-model. Then we wanted to demonstrate the derivation of UCL 

constraints between related meta-models; and the derivation from UCL constraints 

to other constraint languages. 

 As we have described in chapter 10 (Implementation), we have implemented 

the support for UCL constraints into modeling framework DaemonX. In this 

framework data meta-models can be inserted as plug-ins. And then it 

support to create directed mapping from one model to other model. As a part 
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of this thesis, we have implemented the software module into this framework. 

This module implements the support for UCL. It is possible create a plug-in 

which map a concrete meta-model to UCL Data model. The implemented 

module contains a parser of UCL expressions. It is possible to express UCL 

constraints over different meta-models. 

 Then we have implemented the derivation of UCL constraints over one meta-

model to UCL constraints over a different meta-model. When a user of this 

framework creates a directed mapping from one model (of one meta-model) 

to other model (of a different meta-model), our component derives UCL 

constraints over the source model to UCL constraints over the target model. 

We have implemented the algorithm in chapter 9.3 (Deriving UCL to different 

mapped model). 

 We have also implemented the support for the derivation from UCL 

constraints to other constraint languages. It is possible to implement a plug-

in which derives UCL constraints over a model on a concrete meta-model to 

expressions in other constraint languages. We have implemented the plug-in 

which derives UCL constraints over a XML model to Schematron rules. We 

have implemented the algorithm in chapter 9.1 (Deriving UCL for XML to 

Schematron). 

The contribution of this thesis is to reduce the work by designing of complex 

software systems. We have defined the common constraint language UCL. It can be 

used for integrity constraints over different meta-models which are mapped to the 

general UCL Data meta-model. Using UCL, software architects have not to express 

constraints manually for each individual meta-model in different constraint 

languages. They express constraints only in one language over one meta-model. 

And it is possible to derive these constraints automatically over other meta-models; 

and into other constraint languages. 

Existing tools enable to use OCL for different meta-models. We created the 

tool which can use our constraint language over different meta-models. And then it 

can derive constraints to constraints over other meta-models and into other 

languages. We have implemented the tool in which user can define constraint over 

UML model in UCL; he can derive this constraint over XSEM model; and he can 

derive it to a Schematron rule. 
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Appendix A 

CD contents 

The attached CD contains: 

 An electronic version of the text of this thesis (directory /thesis_text); 

 The whole implemented application with sample projects 

(directory /application_binary); 

 The source codes of the whole DaemonX framework with implemented 

component for purposes of this thesis (directory /application_sources); 

 The documentation of the whole DaemonX framework 

(directory/ daemonX_documentation). 

The sample projects are in the directory /application_binary/DaemonX/Save. There 

are files: 

 ucl_sample_data_model-examples.dx 

Demonstration UCL expressions over the sample model in Figure 4.7; 

 ucl_sample_data_model-chapter-4.dx 

UCL expressions which over the same sample model (Figure 4.7). There are 

all UCL expressions from UCL description; 

 ucl_for_uml.dx 

The project with the UML Class diagram in Figure 7.1 with all UCL 

constraints over this model which are used in Using UCL for UML Class 

diagrams (Using UCL for UML Class diagrams); 

 ucl_for_xsem.dx 

The project with the XSEM PSM diagram in Figure 8.1 Figure 7.1with all 

UCL constraints over this model which are used in Using UCL for XML 

schemas  (Using UCL for XML schemas); 

 ucl_derivation.dx 

The project with the UML Class diagram and the mapped XSEM PSM 

diagram in Figure 9.1 with UCL constraints over the UML diagrams. It is able 

to derive these constraints to constraints over the XSEM model; and to 

derive into Schematron rules according Mapping and deriving constraints 

(Mapping and deriving constraints). 
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Appendix B 

Syntax of UCL 

This appendix describes the syntax of UCL expressions in Extended 

Backus-Naur Form (EBNF) and railroad syntax diagrams. 

Legend and conventions 

 'string' terminal symbol 

 string nonterminal symbol 

 ::= definition 

 symbol* repetition (no or more occurrences) of symbol 

 symbol+ repetition (one or more occurrences) of symbol 

 symbol? option (no or one occurrence) of symbol 

 one | two choice from more symbols or rules 

 (* string *) comment 

Headers and common symbols 

Block of UCL expressions consists of some blocks with context definitions. 

Contexts is the start nonterminal. 

Contexts ::= ContextDefinition* 

Contexts: 

 

The context block contains Context keyword, definition of the context 

model element (ContextPath), some 'def' variables definitions (DefDefinition) and at 

least one invariant expression definition (Invariant). 

ContextDefinition ::= 

   'Context' ContextPath DefDefinition* Invariant+ 
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ContextDefinition: 

 

The context of model element contains at least one name of root element 

and it can continue with names of inner entities or relations separated by the double 

colon. 

ContextPath ::= Identifier ('::' Identifier)* 

ContextPath: 

 

A definition of 'def' variable consists from the keyword def, an identifier 

(name of the variable); optionally type of the variable (Type) can be presented; and 

from the expression (ExpressionBody) which defines a value of the variable. This 

expression cannot contain any 'let' variable definition. If the type (Type) is presented 

then it must be equal to type of the expression. 

DefDefinition ::= 

  'def' Identifier (':' Type)? '=' ExpressionBody 

DefDefinition: 

 

A definition of 'let' variables is similar. Definitions of variables are terminated 

by in to determine where the end of the last variable expression is and where the 

invariant expression starts. Definitions of 'def' variables are part of context headers; 

definitions of 'let' variables are part of particular expressions. 

LetExpressions ::= 

  ('let' Identifier (':' Type)? '=' ExpressionBody)+ 'in' 
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LetExpressions: 

 

Type (of defined variable) can be type of model element (ContextPath) or 

one of basic types. 

Type ::= 

  ContextPath | 'boolean' | 'integer' | 'real' | 'string' 

Type: 

 

Definition of an invariant constraint consists from inv, optional name of the 

invariant (Identifier) and an UCL expression of boolean type. 

Invariant ::= 'inv' Identifier? ':' Expression 

Invariant: 

 

Literals for all basic types: 

ExpressionLiteral ::= 

  IntegerValue | RealValue | StringValue | BooleanValue 

Operation expressions 

Nonterminal symbol Expression represents an UCL expression. Optionally it 

can contain definitions of 'let' variables which can be used in the expression. 

Expression ::= (LetExpressions)? ExpressionBody 
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Expression: 

 

Nonterminal ExpressionBody describes UCL expression without any 

definition of let variables. It has rules for implies-expression and for if-expression. 

Condition of if-expression must be of boolean type; the true and false branches must 

be of the same type; their type is also the result type. 

ExpressionBody ::= 

  ExpressionImplies | 

  'if' Expression 'then' Expression 'else' Expression 'endif' 

ExpressionBody: 

 

In ExpressionBody are nonterminals which refer to operations of individual 

operator according their operators precedence; from the lowest to the highest 

precedence. 

Operands of expression implies must be of boolean type. It is allowed to use 

aggregated occurrence of operator; the first nonterminal of the second ruler is also 

ExpressionImplies. 

ExpressionImplies ::= 

  ExpressionXor | 

  ExpressionImplies ('implies' | '=>') ExpressionImplies 

ExpressionImplies: 

 

Operands of xor must be of boolean type; operator can be aggregated. 
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ExpressionXor ::= 

  ExpressionOr | 

  ExpressionXor 'xor' ExpressionOr 

  ExpressionXor: 

 

Operands of or must be of boolean type; operator can be aggregated. 

ExpressionOr ::= 

  ExpressionAnd | 

  ExpressionOr 'or' ExpressionAnd 

  ExpressionOr: 

 

Operands of and must be of boolean type; operator can be aggregated. 

ExpressionAnd ::= 

  ExpressionRelational | 

  ExpressionAnd 'and' ExpressionRelational 

ExpressionAnd: 

 

Comparing operators (equals to and not equals to) can be used with 

expressions of all types, relational operators can be used with basic types Integer, 

Real and String; operators cannot be aggregated 

ExpressionRelational ::= 

  ExpressionAdditive | 

  ExpressionAdditive 

    ('=' | '!=' | '<>' | '<' | '>' | '<=' | '>=') 

    ExpressionAdditive 
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ExpressionRelational: 

 

The operators addition and subtraction can be aggregated. 

ExpressionAdditive ::= 

  ExpressionMultiplicative | 

  ExpressionAdditive ('+' | '-') ExpressionMultiplicative 

ExpressionAdditive: 

 

The operators multiplying and dividing can be aggregated. 

ExpressionMultiplicative ::= 

  ExpressionTerm | 

  ExpressionMultiplicative ('*' | '/') ExpressionTerm 
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ExpressionMultiplicative: 

 

Unary operators + and - (for Real and Integer types), not (for Boolean) and 

parentheses has the highest priority. 

ExpressionTerm ::= 

  ('+' | '-' | 'not') ExpressionTerm | 

  '(' UCLExpression ')' | 

  ExpressionLiteral | 

  Navigation 

ExpressionTerm: 

 

ExpressionLiteral: 
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Navigation and collections 

Navigation and collection expressions and operations have several forms. 

The first two rules define the starts of navigation over data model (self referring the 

context element and a variable referring the definition of variable). The rest 

nonterminals have Navigation as the prefix which defines the source of the 

navigation over data model. There is rule for the simple step navigation (from 

entities and relations) which is distinguished by a dot; for the relation step and the 

relation stop distinguished by -> or :>. Collection operations and collection 

expressions are prefixed by a colon. Collection expressions contain identifier of 

expression’s variable and the internal expression; in the case of expressions 

forAll and exists more variables can be defined. 

Navigation ::= 

  'self' | 

  Identifier (* variable name *) | 

  Navigation '.' Identifier (* simple step *) | 

  Navigation '->' Identifier (* relation step *) | 

  Navigation ':>' Identifier (* relation stop *) | 

  CollectionOperation | 

  CollectionExpression1 | 

  CollectionExpression2 

CollectionOperation ::= 

  Navigation ':' ('size' | 'isEmpty' | 'notEmpty' | 

    'max' | 'min' | 'sum' | 'asSet') '()' 

CollectionExpression1 ::= 

  Navigation ':' 

    ('forAll' | 'exists') 

   '(' Identifier (',' Identifier)* '|' ExpressionBody ')' 

CollectionExpression2 ::= 

  Navigation ':' ('select' | 'reject' | 'collect') 

    '(' Identifier '|' ExpressionBody ')' 
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Navigation: 

 

CollectionOperation: 
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Appendix C  

User documentation 

Launch and open a project in DaemonX 

Before the executing of the system, copy the whole directory with the 

application (directory /application_binary/ in the CD) to a directory where the current 

user has permissions to read and write files. 

To launch the application, execute file /application_binary/DaemonX.exe. 

The application starts and loads all plug-ins from directory 

/application_binary/Plugins. To load a project, press Ctrl-O or click to the DX icon in 

the top Ribbon panel and click to “Open project”. The sample projects are in the 

directory /application_binary/DaemonX/Save. 

Modeling and mapping 

 
Figure C.1: Modeling in DaemonX, PIM and XSEM diagram 

In the top Ribbon panel, there is the item “Home” and there is one item for 

each modeling plug-in. In the Ribbon panel items of meta-models, there are buttons 

for adding and editing diagrams and element of the meta-model. In the Ribbon panel 
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“Home”, there are buttons to access individual DaemonX modules, e.g. “Evolution” 

(mapping between elements) and “UCL constraints”. 

 
Figure C.2: Mapping from elements of UML model to elements of XSEM model 

Figure C.2 shows the “Evolution window”. Here a user can create a directed 

mapping from elements of one model to elements of another model. E.g. there is the 

mapping from the UML model to the XSEM model. 

Constraints window 

In the “Home” item in the Ribbon panel, there is the button “Constraints” to 

show windows the “UCL constraints” window. We can see this window in Figure C.3. 

In the combo box (label M), we can select a data meta-model for which exist at least 

one diagram in actual opened project. E.g. for the sample project in file 

“ucl_derivation.dx”, there are models of meta-models UML and XSEM. According 

the architecture of the framework (Figure 10.1), we select the modeling plug-in. 

When we select a model, we can write UCL constraints in text box (label K). 

When we have selected a model, we can select in the combo box (label N) 

a UCL meta-model plug-in for the selected model. This plug-in creates the UCL 

model of the selected model; in the framework architecture (Figure 10.1) it is the 
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UCL model at label C. We implemented UCL meta-model plug-ins for UML and 

XSEM meta-models. 

 
Figure C.3: UCL constraints over created models,  

derivation to another model and derivation to another constraint language 

When we select a meta-model plug-in, we can click to button “Create UCL 

Data meta-model and parse expressions”. Then the UCL Data meta-model is 

created and UCL expressions in the text box (label K) are parsed and processed 

according the model. The parser of expressions is in the architecture (Figure 10.1) 

represented by label D. If any lexical, syntax or semantic (type or model) error in the 

UCL expressions is found then such an error is printed the “Output” text box 

(label L). 

When the UCL constraints over the model are correctly parsed, we can 

derive the UCL constraints to a specific constraint language or we can derive UCL 

constraints over another mapped model. 

When we want to derive the UCL constraints over one data model to UCL 

constraints over another model, we must in the combo box (label Q) select the 

target model. We must select the meta-model of the target model. If there is created 

a mapping from the source model to the target model (in the “Evolution window”) 

and the UCL Data meta-model of the target model was created then the framework 
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derives the UCL constraints over the target model. In the framework architecture, 

the derivation is label G. 

E.g. we open the sample project “ucl_derivation.dx”. We open “Constraint 

window”. We select the model XSEM and we create the XSEM-UCL Data meta-

model by click to the button “Create UCL Data model and parse expressions”. Then 

we select the model UML and we click to the same button again. The UML-UCL 

Data meta-model is created. The framework parses the UCL expressions in the text 

box. Then we must select the target model for deriving of the UCL constraints. We 

select the XSEM meta-model to derive the UCL constraints over UML to UCL 

constraints over XSEM. Then we click to the button “Derive UCL expressions”. In 

the output text box the derived UCL constraints are printed. Or if a mapping between 

data model does not exist or it is not correct, error messages are printed. 

In the combo box (label P) we can select a plug-in which translates the UCL 

constraints over the selected UCL meta-model to constraints in a specific constraint 

language. We have implemented the plug-in which translates UCL over XSEM to 

Schematron rules. When a user click to the button (label Q), Schematron rules are 

printed in the “Output” text box. Or if the derivation is not possible, error messages 

are printed. 
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Appendix D 

Programmer’s documentation 

The source codes of the framework are in directory /application_sources. 

The framework’s documentation is in directory /documentation. 

Assemblies 

The whole framework (Microsoft Visual Studio .NET solution) is divided into a 

few .NET assemblies (Visual Studio projects). Projects of the DaemonX framework 

are AppLayer, Command, Controller, DaemonX, EvolutionManager, Model, 

ResourceLibrary, UndoRedo, Utilities and View. These projects were not 

implemented as a part of this thesis. But we added functionality to some of these 

projects. All changes in the framework’s projects are in pre-processor’s directives 

#if UCL_CA … #endif. 

 Into the project DaemonX, class MainWindow, we added the Ribbon panel 

button to open “Constraint window”.  

 Into the project Applayer, class AppController, we added the call to the 

initialization of the constraints module (UCLCore.UCLManager.Init()). 

Then there are calls to methods which save a load UCL expressions in 

“Constraint window” to a project file by loading and saving the whole project. 

Method AppController.Load calls method UCLManager.Load and 

method AppController.Save calls method UCLManager.Save. 

 In the project Applayer, class PluginManager, we added functionality of 

loading plug-ins for the constraints module. The whole framework loads also 

plug-ins which are represented by interfaces 

UCLModel.Plugins.IUCLModelPlugin (a kind of plug-ins which represent 

UCL Data meta-model of a concrete data meta-model) and 

UCLModel.Plugins.IUCLTranslatingPlugin (a kind of plug-ins which derive 

UCL constraints to expression in another constraint language). 

In the solution folder Plugins.Modelling, there are projects which represent 

modeling plug-ins – meta-models: BPMNPlugin, ERPlugin, PIMPlugin, UMLPlugin 

and XSEMPlugin. In the solution folder Plugins.Evolution, there are plug-in projects 

which represent a directed mapping from one meta-model to another meta-model. 
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They also implement an evolution propagation of changes from the source model to 

the target model. 

All projects in the solution folder Constraints were implemented as a part of 

this thesis. The projects UCLModel and UCLCore represent the software component 

of the UCL support. Projects in the folder Constraints.UCLModelPlugins represent 

UCL Data meta-model plug-ins and projects in the folder 

Constraints.UCLTranslatingPlugins represent plug-ins which derive UCL constraints 

to other constraint languages. In the folder UCLModelPlugins, there are the plug-ins 

Test_UCLModel (plug-in which creates the sample model from Figure 4.7), 

UML_UCLModelPlugin (UCL Data meta-model plug-in for UML meta-model), and 

XSEM_UCLModelPlugin (UCL Data meta-model plug-in for XSEM meta-model). In 

the folder UCLTranslatingPlugins, there is the plug-in 

XSEMSchematron_UCLTranslatingPlugin which derives UCL constraint over XSEM 

to Schematron rules. The relevant difference between the projects UCLModel and 

UCLCore is that UCLModel defines mainly data structures and interfaces and 

UCLCore defines the functionality of the UCL expressions parser. Constraints plug-

ins refer to the project UCLModel but they cannot refer to the project UCLCore. 

Project UCLModel 

Project UCLModel defines data structures and interfaces. They are used by 

parsing of UCL constraints. The project UCLCore and all constraints plug-ins refer 

this project. 

Project defines: exceptions used in all UCL projects and plug-ins; class 

model for representing UCL expressions; read-only interfaces for plug-ins; class 

models for UCL Data meta-model; abstract factory which creates UCL expressions; 

classes for all lexical, syntax and semantic errors in parsed UCL expressions and 

interfaces for plug-ins. 

Exception 

Classes in the namespace UCLModel.Exceptions represent all exceptions 

which can be thrown by creating of UCL Data meta-model or derivation of UCL 

constraints. The base exception class is UCLException. 

The exception UCLInvalidDerivationToOtherModel represents invalid 

derivation of UCL constraints to UCL constraint over another model. 
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The all remaining exceptions represent an incorrect creation of UCL Data 

meta-model. There are thrown if the created UCL Data meta-model does not satisfy 

the restrictions in Chapter 4.5 (UCL Data meta-model Concept definition). There are 

exceptions: UCLDupplicateAccessibleRelationEndName (there are relation ends of 

the same name which are accessible from a UCL entity); 

UCLDupplicateRelationRelationEndName (there are relation ends of the same 

name in a UCL relation); UCLDupplicateSimpleStepName (there are multiply 

possible simple step navigations from an entity or a relation); 

UCLDupplicateTopMiddleEntityName (there are more root entities or relations with 

the same name); UCLGeneralizationCycle (the generalization hierarchy over entities 

is not a partial order, there exist a cycle in the hierarchy) and 

UCLGeneralizationEntityAlreadySet (a generalization parent of an entity was 

already set). 

UCL Data meta-model 

Classes in the namespace UCLModel.Model represent elements of UCL 

Data meta-model which is presented in Chapter 4.5 (UCL Data meta-model Concept 

definition). The class model correspondents with the diagram in Figure 4.6. There 

are classes UCLMetaConstruct (the base class of UCL Data meta-model), 

UCLMiddleEntity (the base class for UCL entity and UCL relation), UCLEntity, 

UCLRelation, UCLRelationEnd, UCLLexical and UCLModelHelper (static class with 

methods to creating neighbourhood and generalization relations between elements). 

All these classes are abstract. Plug-in for a concrete UCL meta-model must 

create child classes for these classes. E.g. UML-UCL meta-model must define class 

UML-UCL-Class which must inherit class UCLEntity. 

UCL meta-model 

The collection of 80 classes in the namespaces UCLModel.Expressions, 

UCLModel.Types and UCLModel.Manager represent UCL meta-model of UCL 

constraints which is presented in Chapter 6 (Meta-model of UCL constraints). 

The classes in the namespace UCLModel.Types (14 classes) represent 

types of UCL expressions according diagrams in Figure 6.1 and Figure 6.2. The 

base class representing a UCL expression type is UCLExpressionType. There are 

classes representing the all basic types (they are singleton classes), collection types 

and types which refer UCL entities and UCL relations of UCL Data meta-model. 

Classes representing a type of UCL expressions override methods Name and 

DeriveToOtherModel. Method Name gets the name of the type, in case of the type 



147 

of UCL entity of UCL relation it gets the name including its outer entities. Method 

DeriveToOtherModel derives the type to the type over other mapped model; it is 

called by deriving UCL constraint to constraints over another model. 

The classes in the namespace UCLModel.Expressions (61 classes) 

represent all possible kinds of UCL expressions. There are classes for the concrete 

literal values, operations over expression of the basic types, collection operations, 

collection expressions, navigation expressions and "let" variables definitions 

according Chapter 6.3 (Expressions). Classes representing a UCL expression 

override methods GetTextExpression and DeriveToOtherModel. Method 

GetTextExpression gets the textual representation of the expression. Method 

DeriveToOtherModel derives the expression to the type over other mapped model. 

The classes in the namespace UCLModel.Manager (5 classes) represent 

definitions of variables, blocks of UCL expression and collections of these blocks. 

Classes UCLVariable, UCLCollectionVariable and UCLVariableDefinition represent 

definitions of "def", "let" and collection variables, according Chapter 6.3.3 (Variables) 

and Figure 6.5. Class UCLInvariantExpression represent invariant UCL expression 

of boolean type with a name; class UCLContextDefinition represent block of context 

definition of UCL constraint over a UCL entity or a UCL relation, according 

Chapter 6.3.1 (Contexts). 

UCL model and UCL expressions 

Class UCLModelManager represents UCL model (e.g. UML-UCL model) with 

instances of UCL entities, relation and lexicals and parsed UCL constraints. It is 

created by class UCLModelManager. It holds all UCL entities and al UCL relations 

which are root entities or relations. They are stored in attribute topMiddleEntities; 

they are mapped according their names. Attribute contextsDefinitions holds all 

instances of UCLContextDefinition; all blocks of context definitions with UCL 

invariants. Attribute allVariablesList holds all definition of UCL variables. Instance of 

this class is created by the creating of UCL model from a model. Root elements of 

UCL model are inserted into it. 

By the parsing of UCL constraints, created context blocks are inserted into it. 

Attribute variablesLayers holds layers of variables and attribute actualVariablesMap 

holds all variables which valid are the current scope. By the parsing of a context 

block with "def" definitions of variables, new layer in variablesLayers is created and 

the variables are inserted to actualVariablesMap. Analogue, by the parsing of 

expression with "let" definitions of variables, new layer in variablesLayers is created 
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and the variables are inserted to actualVariablesMap. After the parsing of a context 

block or the parsing of a let expression, the top layer in variablesLayers is removed 

and the variables are removed from actualVariablesMap. 

Class holds also descriptions with all founded errors in UCL expression in 

attribute modelErrors. 

Class implements two proxy interfaces with specific methods which are 

accessible only from certain classes. Interface IModelManagerProxy is a proxy 

interface with methods which can read and add elements of UCL model. This proxy 

interfaces is used by plug-ins which create UCL model (e.g. 

UML_UCLModelPlugin). The second proxy interface is 

IModelManagerTranslatingProxy. It contains only one method to read all blocks of 

context definitions. It is used by plug-ins which derives UCL constraints to another 

constraint language. 

Class UCLDiagramManager is responsible for the creating of UCL model. It 

is created by class UCLManager from project UCLCore. It holds an instance of 

UCLModelManager, UCL model plug-in, expression factory which creates instances 

of UCL meta-model and container with errors found in UCL constraints. 

Expressions factory 

Interface IUCLExpressionFactory is designed following the design pattern 

Abstract factory. It creates instances of classes of UCL meta-model. The parser of 

UCL constraints does not create concrete instances of class in UCL meta-model but 

it calls the expressions factory to create instances of concrete classes which inherit 

base class from UCL meta-model. 

E.g. UCL meta-model contains class UCLForAllExpression which represents 

forAll expressions. But plug-in which derives UCL constraints to Schematron rules 

defines its own class for forAll expressions; because it must override methods of 

class UCLForAllExpression. This plug-in defines expressions factory which does not 

create instances of class UCLForAllExpression but instances of its own class. 

Errors in UCL expressions 

The collection of 32 classes in the namespace UCLModel.Parser.Errors 

represents all possible lexical, syntax and semantic errors in parsed UCL 

expressions which can occur by parsing of UCL constraints. The base class for the 

errors is ExpressionError. 
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The lexical errors are a bad format of a literal number, an overflow value of a 

literal number, an unexpected character, an unterminated string or comment. The 

syntax errors are unexpected token or unexpected end of UCL expressions. The 

semantic errors are: an unknown identifier (of a root entity or relation, of an inner 

entity or relation, of all possible navigation expressions), a bad type of an expression 

(of a source expression, of a collection argument expression), a collection 

expression / operation over a not collection type, an invariant of not boolean type, an 

aggregation operation (sum, min, max) over not numerical collection, a set operation 

over not a sequence type, a duplicate name of a variable, an illegal type of an 

operations over basic types. 

Plug-ins interfaces 

In the namespace UCLModel.Plugins, there are interfaces which represent 

kinds of plug-ins. 

Interface IUCLModelPlugin represent plug-in with UCL meta-model. This 

plug-in creates UCL Data meta-model for a model. E.g. for UML Class diagrams 

meta-model, we can implement UCL-UML meta-model plug-in. This plug-in creates 

from a UML model UML-UCL model. 

The interface contains properties PluginInfo with information of the plug-in 

and ModelPluginInfo about information the plug-in which represents the data meta-

model. It contains method GenerateModel which generates UCL model of. 

Interface IUCLTranslatingPlugin represents plug-in which derives UCL 

constraints over to constraints in other constraint language. E.g. plug-in 

XSEMSchematron_UCLTranslatingPlugin derives UCL constraints over XSEM to 

Schematron rules. 

The interface contains property PluginInfo with information of the plug-in. It 

contains method CanTranslateModel, which gets if the plug-in can translate UCL 

constraints over it. (E.g. the plug-in for Schematron gets true value only for 

UCLModelPlugin over XSEM.) Method GetExpressionsFactory gets an expression 

factory which creates instances of UCL meta-model for UCL constraints. Method 

TranslateExpressions derives UCL constraints to the target constraint language. 
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UCL meta-model plug-ins 

How to create a UCL meta-model plug-in (UCLModelPlugin) 

To create a UCL meta-model plug-in of over an existing meta-model plug-in 

we must create a .NET project. Then we must: 

 create a plug-in class – a class which implements interface 

IUCLModelPlugin; 

 create UCL meta-models – we must create a class for each element in the 

source meta-model, these classes must inherit a class from UCL Data meta-

model (UCLEntity, UCLRelation or UCLLexical). 

UML_UCLModelPlugin 

UML-UCL meta-model plug-in (UML_UCLModelPlugin) is UCL meta-model 

plug-in over UML meta-model (UMLPlugin). 

Plug-in defines UML-UCL meta-model according the algorithm in Chapter 7.2 

(Mapping to UCL Data meta-model). Class UCL_UMLClass inherits UCLEntity; it 

represents a UML class or a UML Association class. Class UCL_UMLAttribute 

inherits UCLLexical; it represents a UML attribute. Class UCL_UMLAssociation 

inherits UCLRelation; it represents a UML association, a composition or an 

aggregation. 

The plug-in class is class UML_UCLModelPlugin. It implements interface 

IUCLModelPlugin. Class contains the default constructor. It overrides properties 

PluginInfo and ModelPluginInfo (the meta-model plug-in is UMLPlugin). 

Class overrides method GenerateModel which generates the UML-UCL 

model from a UML model. UML classes and UML Association classes are mapped 

to instances of class UCL_UMLClass. UML attributes are mapped to instances of 

class UCL_UMLAttribute and they are inserted into mapped instances of class 

UCL_UMLClass. UML associations, compositions and aggregations are mapped to 

instances of class UCL_UMLAssociation and they are connected with mapped 

connected UML classes. The generalization between UML classes is mapped to the 

generalization between instances of class UCL_UMLClass. Connections between 

UML Association classes and connected associations are mapped to 

neighbourhood relationships between instances of class UCL_UMLClass and 

instances of class UCL_UMLAssociation. 
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XSEM_UCLModelPlugin 

XSEM-UCL meta-model plug-in (XSEM_UCLModelPlugin) is UCL meta-

model plug-in over XSEM meta-model (XSEMPlugin). 

Plug-in defines XSEM-UCL meta-model according the algorithm in 

Chapter 8.2 (Mapping to UCL Data meta-model). Class UCL_XSEMClass inherits 

UCLEntity; it represents an XSEM class. Class UCL_XSEMContentModel inherits 

UCLEntity; it represents an XSEM content model. Class 

UCL_XSEMBaseAssociationEnd is the base class of UCL_XSEMClass and 

UCL_XSEMContentModel. Class UCL_XSEMAttribute inherits UCLLexical; it 

represents an XSEM attribute. Class UCL_XSEMAssociation inherits UCLRelation; 

it represents an XSEM association. 

The plug-in class is class XSEM_UCLModelPlugin. It implements interface 

IUCLModelPlugin. Class contains the default constructor. It overrides properties 

PluginInfo and ModelPluginInfo (the meta-model plug-in is XSEMPlugin). 

Class overrides method GenerateModel which generates the XSEM-UCL 

model from an XSEM model. XSEM classes are mapped to instances of class 

UCL_XSEMClass; and they are inserted into the mapped parent class (it such a 

class exists) XSEM content models are mapped to instances of class 

UCL_XSEMContentModel; and they are inserted into the mapped parent class (it 

such a class exists). XSEM attributes are mapped to instances of class 

UCL_XSEMAttribute; and they are inserted into mapped instances of class 

UCL_XSEMClass. 

XSEM associations are mapped to instances of class 

UCL_XSEMAssociation; and they are connected with mapped connected XSEM 

classes or content models. The XSEM association name is used as the name for the 

relation end to the child class. Name “parent” is used as the name for the relation 

end to the parent class. The XSEM association cardinality is used as the cardinality 

for the relation end to the child class (or content model). Cardinality (1, 1) is used as 

the cardinality for the relation end to the parent class (or content model). 

Translating plug-ins 

A translating plug-in is plug-in which derives UCL constraints over to 

constraints in other constraint language. 
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E.g. plug-in XSEMSchematron_UCLTranslatingPlugin derives UCL 

constraints over XSEM to Schematron rules. 

How to create a Translating plug-in (UCLTranslatingPlugin) 

To create a Translating plug-in of over an existing meta-model plug-in we 

must create a .NET project. Then we must: 

 create a plug-in class – a class which implements interface 

IUCLTranslatingPlugin; 

 create special UCL meta-model – a set of classes which inherits class in the 

namespace UCLModel.Expressions. In the namespace, there is a class for 

each kind of UCL expressions. We must create a child class for each class in 

this namespace. And we must override method GetTextExpression.  This 

method prints the textual representation of expressions. We must override 

this method with the implementation which derives UCL constraints to 

constraints in another constraint language. 

 create an expression factory – a class which creates instances of classes 

from the created special UCL meta-model. 

XSEMSchematron_UCLTranslatingPlugin 

Plug-in XSEMSchematron_UCLTranslatingPlugin is a plug-in 

(UCLTranslatingPlugin) which derives UCL constraint over XSEM model to 

Schematron rules. The derivation is implemented according the algorithm in 

Chapter 9.1 (Deriving UCL for XML to Schematron). 

In project’s directory Expressions, there is a set of classes. These classes 

represent special type of UCL meta-model. Each class inherits a class from UCL 

meta-model (classes in namespace UCLModel.Expressions). E.g.: In UCL meta-

model, there is class UCLSelfEntityExpression which represents a self UCL 

expression. Method GetTextExpression of this class returns expression "self". It is 

an UCL expression which refers to the context entity or relation. In this plug-in, there 

is class SchematronSelfEntityExpression which inherits UCLSelfEntityExpression. 

Method GetTextExpression of class SchematronSelfEntityExpression returns XPath 

expression ".". It is an expression which refers to the current XML node. 

Some kinds of UCL expressions cannot be derived to Schematron rules. 

Classes which represent these kinds of expressions implement method 

GetTextExpression but they throw exception UCLInvalidDerivation. 
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Class XSEMSchematronExpressionFactory represent abstract factory. It 

inherits IUCLExpressionFactory (the interface for creating UCL expressions). It 

creates instances of classes in directory Expressions which represent UCL 

expressions. 

The main plug-in class is class XSEMSchematron_UCLTranslatingPlugin. It 

implements interface IUCLModelPlugin. Class contains the default constructor. It 

overrides property PluginInfo. It overrides method CanTranslateModel, this plug-in 

derives UCL constraint over model plug-in XSEM_UCLModelPlugin. Method 

GetExpressionsFactory returns an instance of class 

XSEMSchematronExpressionFactory. Method TranslateExpressions prints 

Schematron document with constraint rules. It calls methods to derive UCL 

expressions over all UCL context blocks. 

Project UCLCore 

Project UCLCore consists of: 

 lexical and syntax parser of UCL expression; 

 “Constraint window”; 

 manager class UCLManager. 

Lexical analyzer 

Lexical analyzer [46] is a component which converts a sequence of 

characters to a sequence of tokens. A token is an order of characters; e.g. an 

identifier, a keyword. Lexical analyzer is class UCLCore.Parser.LexicalAnalyzer. 

This class was generated according the rules specifying the lexical analyzer in file 

UCLCore/Parser/LexRules.lex. A lexical generator [46] is software which creates 

source code according rules specifying the lexical analyzer. The best-known and 

most used lexical generator is lex [47]. The popular version of lex is Flex. We used 

as a lexical generator C# lex [48]. It is C# version of lex. It is version of well 

documented software which creates .NET source code. C# lex was developed from 

JLex [49] what is a version of lex for Java. 

Lexical analyzer class LexicalAnalyzer implements interface 

UCLCore.Parser.YYParser.ILexer. It contains methods to get next token identifier, 

its position in text and other information about the token. This interface is used by 

parsers. Values of tokens are integer constants in class UCLCore.Parser.Token. 

The type of a token is not the entire Information about the token. With a token, 
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advanced values are associated. E.g. for an integer literal, type of a token is 

Token.INTEGER and the associated value is its integer value. Complex token 

information are represented by enums in namespace 

UCLCore.Parser.TokenValues. E.g. it is kind of the basic type and type of operators. 

Static class TokenToText converts type of tokens to its textual representation for 

message expression errors. 

Lexical analyzer contains method SetErrorsContainer to set the container to 

inserting of founded lexicals errors in input expressions. 

Parser generator 

A syntactic analysis [50] is the process of analyzing a structure of tokens. It 

determines if the structure satisfies the syntax of the input language. It also creates 

an abstract syntax tree in the hierarchical structure according the syntax of the input 

language. A parser generator is software which creates the source code of a 

syntactic analyzer from the grammar of an input language in BNF. 

Lex is commonly used [47] with the yacc parser generator (Yet Another 

Compiler Compiler). It is an LALR parser (Look-Ahead LR parser) [50]. Well-known 

parsers which use YACC input grammar notation and generate C# code are [51] 

GPPG (Gardens Point Parser Generator) [52], jay [53] or C# cup [54]. We use jay 

parser generator because it is best-known and most used of these parser 

generators. File ParserRules.jay it the input of the parser generator. It contains the 

list of all tokens and the grammar of UCL in YACC-BNF notation. The created 

parser is represented by class UCLCore.Parser.UCLParser. 

The parser calls the lexical analyzer using methods of interface 

UCLCore.Parser.YYParser.ILexer. The lexical analyzer and parser are created, 

interconnected and launched by: 

System.IO.TextReader inputTextReader = … 

UCLDiagramManager diagramManager; 

var lexAnalyser = new LexicalAnalyzer(inputTextReader); 

var uclParser = new UCLParser(diagramManager); 

uclParser.ParseInput(lexAnalyser); 

The parser class’s constructor has as a parameter instance of 

UCLDiagramManager. To this class is inserts parsed expressions and founded 

syntax and semantic errors. 
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Semantic analysis 

Class UCLParser contains many methods in file Parser_partial.cs. These 

methods respond to the semantic analysis. The methods are called by parsing of 

UCL expressions according rules in file ParserRules.jay. 

Semantic analysis creates the abstract syntax trees from UCL expressions. It 

processes all kinds of UCL expression according UCL meta-models. It does not 

create instances of classes from UCL meta-model; it calls the expression factory to 

create instances of these classes. Semantic analysis does not check the type 

conformance rules by operations over the basic types. This control is provided by 

classes of UCL meta-model. 

Semantic analysis processes navigation expressions. It searches root UCL 

entities or root UCL relations according it names. It searches accessible elements 

by simple step navigation, relation step and relation stop navigation. 

Semantic analysis processes collection expressions and collection 

operations. In that case, it controls type rules. 

Constraints window 

Class ConstraintsWindow represent the “Constraint window”. The 

visualization is created by Windows Presentation Foundation (WPF) [55]. It is 

represented by an Extensible Application Markup Language (XAML) [56] document 

in file ConstraintsWindow.xaml. It is a singleton class. The instance is accessible by 

property Instance. 

Combo box modelComboBox holds items with meta-models (modeling plug-

ins) which are used in the current project. (There exists a diagram of this meta-

model.)  The items (meta-models) are filled in method 

ChangeModelComboBoxData. By change of the selected item, method 

ModelComboBox_SelectionChanged is called. This method calls method 

ChangeSelectedModel. It loads UCL constraints for model of the selected meta-

model. Then it calls FillUCLModelPlugins to load UCL meta-model plug-ins; and 

FillDerivationOtherModelPlugins to get list of other meta-model for derivation UCL 

constraint to other model. 

Combo box modelPluginComboBox contains UCL meta-model plug-ins for 

the selected meta-model. Its items are filled by method FillUCLModelPlugins. By the 

change of the selected item, it calls ChangeSelectedUCLModelPlugin. This method 
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calls FillUCLTranslatingPlugins to get list of translating plug-ins and enable button 

generateModelBtn. 

Click to button generateModelBtn, method UCLManager.GenerateUCLModel 

is called. It generates UCL model of the current selected meta-model; and parses 

UCL expressions over the model. 

Combo box uclTranslatingPluginComboBox contains translating plug-ins 

from UCL constraints over the selected meta-model to another constraint language. 

Its items are filled by method FillUCLTranslatinglPlugins. Combo box 

derivationOtherModelComboBox contains list of meta-models as the target models 

to derive UCL constraints over the current source model.  Its items are filled by 

method FillDerivationOtherModelPlugins. 

UCLManager 

UCLManager is the main class of project UCLCore. It holds all UCL meta-

model plug-ins and all translating plug-ins. It implements DaemonXModuleInfo to set 

information about the module “UCL constraints” of DaemonX framework. 

Method GenerateUCLModel creates UCL model according the selected UCL 

meta-model plug-in. It sets the expression factory from the selected translation plug-

in; or it set the default expression factory. It initializes DiagramManager, lexical 

analyzer and parser to parse UCL constraints. 

Method DeriveUclExpressionsToOthermodel derives UCL constraint over the 

selected model to constraint over another model. It calls method 

DeriveToOtherModel to all context block of UCL constraints. 

Method TranslateToUCLToPsmExpressions derives UCL constraints to 

constraints in another constraint language. It calls the translating plug-in. 


