
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Vladimír Rovenský

Workflow Modelling

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: doc. RNDr. Roman Barták Ph.D.

Study programme: Informatics

Specialization: Software Systems

Prague 2011

https://is.cuni.cz/studium/eng/predmety/redir.php?id=2c214f254f04629d25eac381de3c82b1&tid=1&redir=sezn_ucit&kod=11622

I would like to thank the following people for their support: Mr. Roman Barták for
supervising this thesis, Mr. Con Sheahan and Mr. Dang Thanh-Tung for their help
with the FlowOpt project and Mr. Filip Dvořák for his insights on the workflow
verification algorithms.

I declare that I carried out this master thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University in Prague has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In…...... date............

Název práce: Modelování workflows

Autor: Vladimír Rovenský

Katedra / Ústav: Katedra teoretické informatiky a matematické logiky

Vedoucí diplomové práce: doc. RNDr. Roman Barták, Ph.D., Katedra teoretické
informatiky a matematické logiky

Abstrakt: Cílem diplomové práce bylo navrhnout a implementovat grafický editor
umožňující modelování pracovních postupů (workflows) s důrazem na efektivitu
práce, jednoduchost a použitelnost pro běžného uživatele. Výsledná aplikace je
integrována do systému FlowOpt, ve kterém lze vytvořené pracovní postupy použít
k řízení výrobních procesů v malých a středně velkých továrnách. Vlastní editor by
měl sloužit mj. jako demonstrace použití modelu Nested TNA v reálném protředí.
Součástí práce je funkční implementace vlastního editoru, navržení a implementace
procedury pro automatickou verifikaci pracovních postupů a podpora standardního
formátu XPDL (BPMN) pro ukládání pracovních postupů (import i export).

Klíčová slova: Pracovní postupy, FlowOpt, XPDL

Title: Workflow modelling

Author: Vladimír Rovenský

Department / Institute: Department of Theoretical Computer Science and
Mathematical Logic

Supervisor of the master thesis: doc. RNDr. Roman Barták, Ph.D., Department of
Theoretical Computer Science and Mathematical Logic

Abstract: The goal of this thesis was to design and implement a graphical editor for
workflow modelling, focusing on productivity, simplicity and usability for the
common user. The resulting application is integrated into the FlowOpt project, in
which the workflows can be used to manage manufacturing processes in small and
medium size factories. The workflow editor should serve among other things as a
proof of concept of practical usability of the Nested TNA workflow model. The main
parts of the thesis include a working implementation of the editor, a procedure for
automatic verification of the workflows and support of the XPDL (BPMN) standard
for saving workflows.

Keywords: Workflows, FlowOpt, XPDL

http://www.mff.cuni.cz/fakulta/struktura/lide/562.htm
http://www.mff.cuni.cz/fakulta/struktura/lide/562.htm

Table of Contents

Introduction .. 1

1. Workflows in General.. 2

2. FlowOpt and MAKE ... 4

3. Existing Solutions .. 6

3.1 MAKE... 6

3.2 Nested TNA... 7

3.3 BPMN / XPDL .. 8

3.4 YAWL ... 10

3.5 Comparison .. 11

4. FlowOpt Workflows .. 13

4.1 Activities... 13

4.2 Tasks .. 13

4.3 Custom links ... 15

4.4 Example.. 16

5. Formal Definition of the Workflow Model.. 19

5.1 Workflow objects... 19

5.2 Constraints on workflow objects.. 21

5.3 Building FlowOpt workflows ... 24

6. Features of the Workflow Editor... 26

6.1 Visualization... 26

6.2 Navigation .. 27

6.3 Building workflows ... 29
Task decomposition ... 31
Activity assigning.. 32
Custom link creation.. 32
Other actions ... 33

6.4 Miscellaneous features.. 35

7. Workflow Verification... 36

7.1 Problem definition .. 36

7.2 Verifying workflows without custom links .. 37

7.3 General workflow verification algorithm ... 38

7.4 Core verification algorithm ... 40
Propagating constraints.. 40
The Verify method... 41
The IterateAlternative method.. 42
The ActivateTask method .. 43
The DeactivateTask method... 46
Propagating constraint type 6.c .. 47
Core algorithm complexity... 48

2

Core algorithm correctness... 48

7.5 Simplifying the workflow... 49
Modified algorithm.. 50
Simple way of collapsing tasks .. 52
Further optimizations... 53

7.6 Verification from the user’s perspective... 55

8. Import / Export of the Workflows... 57

8.1 MAKE Import / Export .. 57
Export into MAKE .. 58
Import from MAKE... 61

8.2 XPDL Import / Export ... 65
Export into XPDL.. 65
Import from XPDL.. 69
Import procedure ... 69
XPDL to FlowOpt mapping ... 71
XPDL packages and processes ... 71
XPDL activities ... 71
XPDL links ... 73
Routing information... 73
Participants.. 74
Pools, lanes, applications… ... 74
Standard workflow patterns ... 74

9. Conclusions .. 81

10. Future works.. 82

Bibliography ... 83

List of Figures ... 84

List of Abbreviations .. 85

Introduction

Workflows are a very important tool in business modeling, since they provide
intuitive visual representation of business processes. Such a representation can be
used for many purposes. Simple workflows may serve just for illustration of a
particular process, while more complex ones can actually be used to simulate and
even schedule the execution of a process.

Since utilizing such a tool in a business can increase its overall performance
considerably, various workflow solutions have been developed, both standardized
and proprietary, good examples being BPMN1, YAWL2 or MAKE3.

The purpose of this thesis was to implement a similar system for workflow modeling,
but with particular software requirements in mind. The presented system was to be
simple, effective and expressive enough to represent manufacturing processes
(workflows used in factories to manufacture various products). In particular, it
should utilize the Nested TNA4 workflow model presented in [1] and show its
usability in practical scenarios.

In the first part of the thesis, we describe general workflows and their various uses in
more detail to provide the necessary context for this thesis.

We briefly describe the background of this thesis and its connection to the FlowOpt
software project and the MAKE system, into which the presented application is fully
integrated, since these two systems determined most of the software requirements on
the presented application.

Then we mention some of the widely used workflow modeling tools that served as an
inspiration for this thesis while pointing out which of their features were of particular
importance for the presented application.

The rest of the thesis will describe all of the presented application’s most important
features, particularly the implemented workflow model, workflow visualization,
workflow verification and support for the standardized XPDL5 format.

Full documentation of the presented application is available as one of the
attachments of the thesis, together with the application itself.

1 Business Process Modeling Notation

2 Yet Another Workflow Language

3 ManOpt MAKE – a commercial system for modeling of manufacturing processes

4 Temporal Networks with Alternatives

5 XML Process Definition Language

2

1. Workflows in General

A workflow is essentially a special kind of graph describing some work process. The
nodes in such graphs usually represent units of work (commonly called activities)
and links represent the order of execution of these activities.

Depending on the complexity of the particular workflow model, other types of
objects may be defined, like events that happen while performing the process or
resources used by the activities.

As a visual representation, workflows are much more illustrative and concise than
full textual description of the process. Depending on how much information the
workflow contains, they can be used for anything from simple visual demonstration
to guiding and optimizing the actual execution of the process.

To illustrate the concept, we provide an example of a simple workflow describing
the general process of handling an order in a shop.

Figure 1: Example of a workflow

Figure 1 shows a simple workflow that was created using the BPMN notation, which
is widely used and understood by many users and organizations.

The workflow starts when the shop receives an order. This event is explicitly
represented by the green circle. After that, the order is processed to determine
whether the requested goods are available.

The order processing is an example of an activity – some unit of work that needs to
be done. Activities are the basic building blocks of all workflows and in this
particular notation, they are represented as green rounded rectangles.

Note that the order of execution is given by the black arrows – these are called flow
links in BPMN. Since the order of execution isn’t always linear, it is necessary to
have some constructs that can represent branching. In BPMN, these are called
gateways and they are represented as diamonds.

We can see that when the order is processed, the execution comes to one such
gateway – the ones marked with an ‘X’ symbol are exclusive gateways, meaning that
the flow can go in exactly one of several possible ways.

In this case the worker may determine that it is possible to fulfill the order or that the
order has to be rejected, for instance because the requested goods aren’t available at
the moment.

3

Notice that after the flow diverges in the exclusive gateway, it later converges again
in a gateway of the same type. Such patterns will be referred to as nests in this
document. Nests are a very important concept for the presented application, as we
will show in later chapters.

If the order can be fulfilled, the execution comes to another type of gateway – a
parallel gateway. This means that all the subsequent activities are to be performed in
parallel, since they are independent on each other.

Here we would prepare the order (a worker has to bring all the requested items from
the warehouse) and prepare shipping for the package. Since these activities are
independent, it is more effective to have them done in parallel.

After that, the execution flow comes to another parallel gate, which represents the
synchronization point for the two activities we performed in parallel. Both of the
activities must be finished before the process continues past the synchronization
point. The two parallel gateways and the activities between them are another
example of a nest.

When the order is handled (either fulfilled or rejected), we send a response to the
customer and mark the order as closed. The red event indicates the end of the
process.

Although this example is greatly simplified, it should be enough to illustrate the
general purpose and strengths of workflows (note that the textual description of the
process far exceeds the workflow in size, even for this simple example).

Depending on our requirements, we could utilize this workflow merely to explain the
process to new employees, or we could have complex software that automatically
receives orders, schedules the activities in time in the order described by the
workflow and assigns them to specific employees. The larger the shop gets, the more
important it is to do these things effectively.

Even though we used a specific workflow notation (BPMN), the objects introduced
in this workflow (activities, gateways, flow links and events) are defined by most of
the existing workflow models. They represent the basic building blocks that are
commonly used to create workflows.

4

2. FlowOpt and MAKE

This chapter briefly describes the background of this thesis to give the reader a
general idea of the context in which the presented application was developed.

The presented workflow editor is a part of the FlowOpt software project. The general
purpose of FlowOpt was to provide a feature-rich, easy to use framework for
designing and scheduling of manufacturing processes.

Manufacturing processes are a subset of general business processes. They describe
the manufacturing of various products in factories. The workflow models
representing them are usually not as expressive as those representing general
business processes, since manufacturing processes are not as complex.

Instead, the focus is on the ability to efficiently schedule the work described by the
workflow in time - there are specialized tools that can automatically generate a
complete plan of works based on a workflow. The workflow editor must support this
process with a suitable workflow model.

The FlowOpt project includes five cooperating modules – a workflow editor (the
presented application), a work order manager for entering orders placed by the
customers, an optimizer module that schedules the workflows, a schedule visualizer
that displays the schedules as Gantt diagrams and an analyzer module that can be
used to optimize the process.

The intended way that FlowOpt should be used is as follows:

1) The user creates a workflow in the workflow editor. This workflow describes
how a particular product is manufactured. It contains all the information
necessary to create a schedule, like resource requirements and durations of
various activities.

2) A work order is created in the work order manager module. A work order is
simply a list of requested products with quantities and some kind of deadline.

3) The optimizer creates a schedule for this work order. A schedule assigns an
exact time and performer for each activity that has to be done in order to
fulfill the work order. In other words, it automatically assigns work to
employees. Furthermore, the optimizer tries to assign the work so that the
overall cost of fulfilling the order is as low as possible, so its performance has
great impact on the productivity of the factory.

4) The schedules created by the optimizer can be visualized and modified in the
schedule viewer.

5) The schedules can also be analyzed by the analyzer module. This analysis
yields suggestions as to what actions should the factory perform to make the
process more effective, like buying a new resource for example.

There is a close connection between the FlowOpt project and the ManOpt MAKE
system – since the general goals of the two systems are quite similar, we cooperated
with the ManOpt Company during the development of FlowOpt.

ManOpt developers provided us with valuable technical insights, shared their
experiences in workflow modeling and provided us with some powerful commercial

5

tools that we could use to develop our application. In exchange, we integrated our
modules (including the presented application) into the MAKE system. This meant
unifying the workflow model (and the data model in general) across all the FlowOpt
modules. It also brought additional requirements on functionality and usability, since
the MAKE application is a commercial product.

The FlowOpt software project was successfully defended in June 2011. Once all of
its modules are fully integrated into the MAKE system, it will be possible to evaluate
its performance on real manufacturing scenarios.

Further description of the FlowOpt project is beyond the scope of this document,
however its full documentation (user, development and programmer) and installation
are available as an attachment to this thesis.

6

3. Existing Solutions

Since workflows are such a powerful concept, naturally there are many systems that
support and utilize them. An important part of this thesis was analyzing some of the
more successful workflow systems and combining their principles with some of our
own ideas to create an application that best suits our particular requirements.

We discuss the properties of four existing workflow models (and systems that
implement them) – MAKE, Nested TNA, BPMN and YAWL. These were the most
significant inspirations for the presented application.

3.1 MAKE

MAKE is a complex commercial system developed by an Irish company called
ManOpt1. It includes a workflow editor and a proprietary workflow model that
focuses on manufacturing processes.

Besides a workflow editor, MAKE provides other modules that let the user manage
work orders or even assign work to employees based on the defined workflows. It is
an example of a proven, powerful application that uses workflows to increase
business performance considerably.

This system was of particular importance, because we cooperated with ManOpt from
the very start of the development process and the presented application was intended
to provide an alternative to MAKE’s built-in workflow editor to determine the
viability of some proposed ideas (mainly the Nested TNA model).

The workflow model of MAKE is quite simple, as mentioned above it doesn’t model
general business processes, but it focuses on manufacturing only. This means that it
isn’t as expressive as other, more general models, but it is sufficient for its specific
purpose.

Furthermore, the simplicity of the model makes it possible to schedule and assign
work based on the defined workflows as mentioned above – this would be extremely
complicated for more general models like BPMN.

To illustrate what MAKE workflows look like, we present the same workflow as in
the introductory chapter, modeled in MAKE.

Figure 2: MAKE workflow example

1 Recently renamed to Entellexi (http://www.entellexi.com)

7

We can see that the workflow in Figure 2 looks very similar to the introductory
example. That is because all the general concepts are the same – there are activities
representing the actual work, links representing the order of execution and gateways
(here they are called semaphores) that affect the execution flow.

An important property of the activities is the list of their resource requirements (not
visible in the figure) - it is possible to specify which resources the activity needs in
order to be performed (employees, machines). These requirements are used later to
create a detailed schedule of works.

The only objects that weren’t in the previous example are the decorators – MAKE
workflow model allows for the gateways (semaphores) to actually be placed directly
on activities – they “decorate” them, hence the term decorators. This makes sense,
since gateways generally do not represent any actual work, so it is convenient to just
place them on other objects.

In MAKE, decorators look like rectangles attached to an activity’s border with a
triangle sign representing the decorator’s type (green / blue represent parallel nests,
pink / yellow represent exclusive nests).

These are actually all the objects defined by the MAKE workflow model, which
makes it very simple and easy to work with, yet expressive enough to describe even
complex manufacturing processes.

3.2 Nested TNA

Nested TNA (Temporal Networks with Alternatives) is an academic workflow model
presented in [1]. It represents mostly manufacturing processes in a way resembling
the MAKE model. Its key distinguishing feature is a tree-like hierarchy of the
workflows - unlike the other presented models, Nested TNA actually requires that
the workflow is organized hierarchically.

Simply put, a Nested TNA workflow is a tree structure whose inner nodes represent
work that has to be broken down into smaller units, which are represented by the
children of the node. In the leaves of this tree are the activities – elementary units of
work that we do not decompose further. It is a concept similar to the well-known
WBS1.

The fact that the workflow has to be organized like this limits the expressivity of
Nested TNA to a certain degree, but it has considerable advantages, like more
effective scheduling or easier workflow verification.

Nested TNA is especially important for this thesis, since it is (with some extensions)
implemented by the presented application to demonstrate its usability and various
consequences of the nested structure.

A notable feature of the Nested TNA model is the simple and intuitive way in which
workflows are defined. Other models usually define all the objects that can exist in a
workflow separately, together with the semantics on their use. Nested TNA uses a
different approach.

1 Work Breakdown Structure

8

It first describes a trivial workflow that is a valid Nested TNA by definition. In the
original article, this workflow consists of two nodes connected by a link. In the
presented application, it is a single node. This minor difference will be explained
further in this document.

The other part of the definition of Nested TNA is a precise set of actions that can be
performed on a valid Nested TNA to extend it that preserve validity. These actions
are called decompositions. Decomposition can convert a single node into a nest of
new nodes, building the workflow and the tree hierarchy (top to bottom).

This incremental definition is convenient to implement, since it explicitly defines
how the user should build the workflow.

An example of the ordering process in the Nested TNA model is given below.

Figure 3: Nested TNA workflow example

Figure 3 shows a Nested TNA workflow that was created in the presented
application. It looks very similar to the MAKE workflow, because it defines the same
basic objects: activities represent work (blue rectangles) and links represent the order
of execution.

The only major difference between the above workflow and the workflow in Figure 2
is the workflow hierarchy – nests that were created via decomposition are
represented explicitly in this model (visually emphasized by gray boxes).

The flow control is not represented by semaphores or decorators. It is given by the
type of decomposition – serial, parallel and alternative decomposition represents
sequences, parallel and exclusive branching respectively.

Like in the MAKE workflow model, the focus of the Nested TNA model is on
simplicity. While Nested TNA is not powerful enough to represent general business
processes, it suffices for manufacturing processes, which is what the model was
meant for.

Nested TNA together with our extensions and modifications will be described in
more detail in the chapter dedicated to the FlowOpt Workflows.

3.3 BPMN / XPDL

BPMN (Business Process Modeling Notation) is an example of a standardized
workflow model. Currently it is the most widely used notation representing business

9

processes. It is maintained by the OMG1 group, which also develops the widely used
UML2 notation. It is interesting to note that UML also defines a special kind of
diagram to represent workflows, which is in many ways similar to BPMN.

BPMN is a very general and powerful model, which can be used to represent a much
wider range of processes than the MAKE model or Nested TNA. It defines all of the
basic concepts (activities, gateways, events…) and it adds some more advanced
objects like message flow to represent communication, pools and lanes to represent
the performers of a particular part of the workflow or subprocesses to bring hierarchy
to the workflow (this hierarchy is not required though).

Technically, BPMN is not a single system like MAKE or YAWL. It is a standard on
visual representation of workflows, which is implemented by many software
solutions (for example Together Workflow Editor3 or BizAgi Process Modeller4).

Since version 2.0, the BPMN standard also includes the definition of several formats
for data exchange. However in previous versions the standard only defined what the
workflows should look like, but not how they should be stored. That is why the
XPDL format was developed. XPDL is a standardized XML format for saving
workflows adhering to the BPMN workflow model.

We’ve already mentioned that the first example used was actually created using
BPMN. We present one more example to show some of the more advanced features
of this notation.

Figure 4: A more complex BPMN example

The example in Figure 4 describes the process of asking a hypothetical bank for a
loan. Source: http://www.bizagi.com/eng/downloads/BPMNbyExample.pdf.

First step is to record the information on the new loan application. Then the
information provided by the applicant is verified to determine whether a loan can
even be considered (the applicant must be a client of the bank for instance).

1 Object Management Group

2 Unified Modeling Language

3 http://www.together.at/prod/workflow/twe

4 http://www.bizagi.com/index.php?option=com_content&view=article&id=95&Itemid=107

10

This is done in a separate subprocess. A subprocess is a self-contained workflow
embedded into the parent workflow that is to be performed in place of the
placeholder activity (these look like ordinary activities, but they are marked with a
‘+’ sign in the middle center part).

Subprocesses allow modelers to create hierarchical workflows, which is very useful
for more complex processes. BPMN standard accounts for both a collapsed view of
subprocesses (like in the example above) and for an expanded view, in which the
nested workflow is actually visible within the placeholder activity. This concept is
very important for the presented application, since we implemented the hierarchy in
our workflows in a similar way.

Getting back to the example, the loan application verification can have one of two
results (indicating an exclusive gateway) – if the loan is not possible, the process
ends. Otherwise the process continues.

At this point, we need a more detailed document with information about the
applicant to determine the exact amount we can loan, the interest etc. The problem is
that providing the document is up to the applicant, we have no control over it. This is
a typical situation in which events have to be used.

In this case, two possible events can happen – either the user provides the necessary
documents, or some specified period of time passes (a timeout occurs). If the
documents are provided, we can analyze them and, based on the information, we can
either reject the loan or agree on specific terms of the loan (this is again done in a
separate subprocess).

If the user does not provide the necessary documents in time, a follow up is made
with the client to determine whether the request for loan stands. If not, the process
ends. If it does, the flow returns to the state of waiting for the necessary documents.
This is an example of a cycle in a workflow – a pattern that allows for (conditional or
unconditional) looping of various parts of the workflow.

It should be apparent from this example that BPMN describes more general
processes than MAKE or Nested TNA. While we were able to describe the entire
workflow model of MAKE on a simple example, the full extent of BPMN is beyond
the scope of this thesis. For further reference, please see [2].

3.4 YAWL

YAWL (Yet Another Workflow Language [12]) is a workflow model with academic
origins. It was created in part by Wil van der Aalst, one of the leading authorities on
workflow design.

The research of Wil van der Aalst is particularly important since it identifies a
number of standard workflow patterns that are commonly used to describe workflow
processes. For more information on these, please refer to [3].

The support of these patterns can be a viable measure of a workflow model’s
expressivity (we will show which of these patterns can be represented by our model
later in this document). YAWL was designed with the specific goal of supporting
these patterns while presenting a relatively simple workflow model.

11

Besides the workflow model, YAWL also implements a complex system similar to
MAKE including a workflow editor and other modules that utilize the created
workflows for business management.

An example of the ordering process modeled in YAWL is presented below.

Figure 5: YAWL workflow example

As we can see from Figure 5, the model is visually very similar to the model of
MAKE. All of the basic concepts are here (activities, gateways / semaphores,
decorators). YAWL is more expressive though and can represent processes beyond
the scope of manufacturing. It supports additional objects similar to BPMN’s events
and subprocesses, making it a very flexible solution.

3.5 Comparison

This chapter showed several different workflow models that served as an inspiration
for the presented application. MAKE and Nested TNA are rather simple workflow
models that are meant to represent a specific subset of general business processes
(manufacturing processes). BPMN and YAWL are examples of more powerful and
complex workflow models that can represent wider array of processes.

There is a subtle but important difference between MAKE / Nested TNA and BPMN
/ YAWL. Both MAKE and Nested TNA utilize constraint programming for flow
control. This means that the links in both the workflow models represent a temporal
relation – a link from an activity A1 to an activity A2 means that A1 should be
executed before A2 (in the general case the link may carry the minimal and maximal
temporal distance between the two activities).

BPMN and YAWL do not work like that. They are based on Petri nets [4], which use
different execution semantics. In Petri nets, flow links do not represent precedence
relation. Instead, they actually define the exact way that the workflow has to be
executed.

Intuitively, Petri nets define an execution token that travels within the workflow,
moving over the flow links and causing whatever activities it encounters to execute.
Although this may not seem particularly important, this semantics can be more
powerful.

12

For example it is impossible to model looping when the execution flow is
represented (just) by precedence constraints – a cycle of precedences is always
invalid. However if we use the execution semantics of Petri nets, looping is well
defined, the execution token simply moves in a cycle, causing the activities to
execute in a loop.

Since the purpose of the presented application was to model manufacturing processes
in particular, Nested TNA was our chosen workflow model. This model is very
simple while being able to represent the vast majority of manufacturing processes. In
order to increase its expressivity, we extended this model by some additional
concepts, which will be described later in this document.

MAKE workflow model is also important for this thesis, since it represents the same
class of processes. The main difference is that MAKE workflows do not utilize the
nested hierarchy as much as Nested TNA does. In particular, the authors of MAKE
were interested in utilizing the nested model in scheduling and schedule
visualization.

That is why the presented application is fully integrated into the MAKE system and
it is possible to import and export workflows from and to the MAKE model,
allowing the potential user to utilize both models.

BPMN and YAWL served as an inspiration for additional features both of the
workflow model and of the workflow editor. Fully implementing one of them
seemed to be much too complicated and unnecessary, considering the specific
requirements of manufacturing processes.

Knowing how these models represent some of the more advanced workflow concepts
can be very useful however, since the same approaches can be utilized in certain
parts of our model. For instance the visual representation of workflow hierarchy in
our application follows the example of BPMN and YAWL subprocesses.

Also, examining multiple systems allowed us to get a general overview of the most
useful features of a typical workflow editor. We tried to implement all the features
we encountered that were common or seemed especially useful, so that the potential
user of the presented application find its environment familiar.

In the future, we would like to implement some of the more advanced workflow
patterns that are supported by BPMN/YAWL. In particular the patterns involving
multiple instances and reusable subprocesses (see the Future works chapter for
details).

13

4. FlowOpt Workflows

This chapter informally describes the workflow model of the presented application.
As mentioned previously, the model is based on the Nested TNA model, but it is
extended with some additional features to be more expressive.

The presented model is extremely simple. There are only three types of objects in our
workflows – activities, tasks and custom links. It is designed to be roughly as
expressive as the MAKE model, meaning it should be sufficient to represent typical
manufacturing processes.

All of the objects that are used to build FlowOpt workflows are informally described
below. A formal description of the model is provided in a separate chapter.

4.1 Activities

Activities serve the same purpose as in all the other workflow systems presented in
this document – they represent elementary units of work that need to be done in order
to complete the workflow.

For scheduling purposes, activities contain a list of resources on which they can be
performed. These resources can be employees, machines or their combination. Every
activity also has a duration.

When we described the MAKE workflow model, we listed the same properties for
activities. This is not a coincidence – the two systems actually share the activities,
since they represent the same concept in both MAKE and FlowOpt. This has some
nice benefits, like simplifying the process of converting a workflow from one model
to the other or consistent use of activities from the user’s perspective.

4.2 Tasks

Tasks are the biggest difference between the presented workflow editor and the one
in MAKE (and most other workflow solutions). We have emphasized the tree
structure of the Nested TNA workflows as the key feature of our workflow editor
multiple times in this document. Tasks are the objects that we use to represent this
structure.

A task represents some portion of the workflow – when the user creates a new
workflow, it contains a single task that represents the whole process. Every task is
created empty, which means that it has no defined “implementation” of the work it
represents. This implementation can be either via an elementary activity, or through
decomposition into child tasks that will represent smaller portions of the work. In
order for a FlowOpt workflow to be complete, all the empty tasks have to be either
decomposed, or populated with activities.

There are three types of decomposed tasks – serial, parallel and alternative. These
hold the execution flow, in place of semaphores or decorators, which do not exist in
FlowOpt workflows. Based on the type of the task, the execution semantics are as
follows:

14

 A serial task executes all of its children in a sequence. The order of this
sequence is a part of the serial task’s definition.

 A parallel task executes all of its children in parallel.

 An alternative task executes exactly one of its children (it forms an exclusive
nest in terms of BPMN).

Figure 6: Task types

Figure 6 shows all three types of decomposed tasks. As we can see, decomposed
tasks are represented as gray boxes containing the nest of their child tasks. Serial
tasks form a sequence to indicate the order of execution of their children, parallel and
alternative tasks form a fan in / fan out subgraph (in Nested TNA terminology).

As a further indication of the decomposition type, the input and output ports of the
nest have specific shape – a triangle for serial task, a little AND gate for parallel
tasks and a little OR gate for alternative tasks. For convenience, every task can have
a name that appears in the top part of the task.

The combination of using decomposition and elementary activities to model the
process naturally leads to a top-down kind of approach to workflow design, in which
the user starts with a complex task and keeps decomposing it into smaller and
smaller tasks, until the units of work are so finely grained that they can be
represented by an activity. The concept is similar to the well-known Work
Breakdown Structure [5].

A FlowOpt workflow can be thought of as a tree. The inner nodes of this tree are
(decomposed) tasks, while activities are in the leaves. Technically, the leaves are also
tasks that are populated with a single activity. The root of this tree is referred to as
the root task in this document. It shouldn’t be hard to see that tasks are an explicit
representation of the nests introduced in the Nested TNA model.

There are two minor differences between our model and the original Nested TNA
that should be pointed out:

1) The original model decomposes links, whereas we chose to decompose nodes
instead. We think that decomposing nodes is more intuitive for the user, as in
most workflow models, the work is stored in the nodes, not in the links.

2) The original Nested TNA model uses general temporal links (meaning that
the links specify the minimum and maximum temporal distance between the

15

tasks they connect) while our model only uses general precedences (meaning
that one task should be performed before the other). This change was made
simply because the users didn’t seem to utilize the general temporal
constraints too much.

In terms of the presented workflow models, tasks could be compared to BPMN or
YAWL subprocesses, except for the fact that they play a much more crucial role in
FlowOpt, since their use is not optional - every FlowOpt workflow has to have the
tree hierarchy of nested tasks.

While we are aware of the fact that imposing such a hierarchy on the workflow
model may potentially be limiting for the user, there are many advantages to this
approach. The workflow editor itself utilizes it to simplify workflow creation,
navigation and layout. Other FlowOpt modules take advantage of the tasks as well.
For instance the optimizer uses them to create schedules more effectively and the
schedule viewer uses them for better visualization.

We believe it could be a viable alternative to other commonly used systems.
Providing a working implementation as a proof of concept for this model is the main
goal of this thesis.

4.3 Custom links

The third and final type of objects that can appear in FlowOpt workflows are custom
links. These aren’t a part of the original Nested TNA model. They are our own
attempt to extend the model and make it more expressive. We made no other
extensions to the Nested TNA model – if the user does not use custom links, the
workflow conforms to Nested TNA.

Custom links are a special kind of links that the user can place between almost1 any
pair of tasks in the workflow to impose a specific (binary) constraint on these two
tasks. There are several types of constraints that can be created using custom links:

 Precedence – general precedence relation, indicating that one task should be
performed before the other.

 Logical constraints:

o Implication – if a certain task is performed, some other task also has
to be performed.

o Equivalence – a certain task has to be performed if and only if some
other task is also performed.

o Mutual exclusion – at most one of a given pair of tasks can be
performed (not both).

 Synchronization constraints – these indicate that two tasks should be
synchronized in time. It is possible to synchronize tasks in the following
ways:

o Start-Start – both tasks start at the same time.

1 The verification procedure will not allow the user to create some custom links that would

create an invalid workflow. See the chapter on verification for details.

16

o End-End – both tasks end at the same time.

o End-Start – the second task starts precisely when the first ends.

o Start-End – the first task starts precisely when the second ends.

Custom links are meant to make the model more flexible and usable in more
complex manufacturing processes. Figure 7 shows an example of a custom
synchronization link of type End to End (between activities ‘Sawing’ and
‘Welding’).

Figure 7: Custom synchronization link of type End to End

Figure 7 shows a simple task that executes three activities in parallel. Two of them
(sawing and welding) will be planned so that they end at the same time. The custom
links can be easily identified, since they are connected to a special port in the top
right of every task (the blue square port). The type of a custom link can be
determined from its color and label.

Custom links are called custom to emphasize the fact that they can be created and
deleted by the user and connected to any task in the workflow. All the other links in
the workflow are integral parts of the tasks, the user cannot create or modify them.

4.4 Example

As we can see, the workflow model of FlowOpt is extremely simple, containing only
three types of objects. It was designed to be as lightweight and intuitive as possible,
while preserving (and extending) the expressivity of Nested TNA. Now that we
described the entire model, we provide an example of a complete FlowOpt workflow
that utilizes all of the described objects.

17

Figure 8: A complete FlowOpt workflow

The workflow in Figure 8 describes the process of manufacturing a piston. The
structure of the workflow (the way it is built) follows the top to bottom approach to
problem solving – we decompose larger processes into smaller ones and repeat until
the units of work are small enough to be represented by activities.

First we have to collect the necessary materials, then manufacture the components of
the piston, assemble them together and finally ship the piston to the customer. These
tasks have to be done in a sequence, therefore the root task is serial.

Collecting materials, assembly and shipping are specific enough to be represented by
elementary activities, but creating components is more complex. There are two
components of a piston – a tube and a rod. These can be manufactured
independently, so we used a parallel task.

To manufacture the tube, we first need to get the tube part and then weld it on the kit
that attaches to the piston. The welding is an activity, but getting the part is not as
easy. Let’s say that there are two ways to obtain the part – we can make it ourselves
(cut it from a piece of metal) or we can order it from a third party. This leads to
alternative decomposition (the ‘Get tube’ task).

To make the rod, we have to once again get the parts somehow and then screw them
together, which we model as an activity. The parts can be created in parallel, so we
create a parallel task. We will need a rod part and a kit.

To create the rod part, we cut it from metal and make sure that its dimensions are just
right to fit in the tube (inspection). To create the kit, we also have to cut some metal,
plus we have to polish it so it can be attached to the rod.

Finally, we can also see that some custom links were used – in this case we know
that cutting is expensive, so we make sure that we start all the cutting at the same
time, so that the tool used to do the cutting doesn’t have to run multiple times.

Once we have a workflow, we can utilize other FlowOpt modules to plan and
visualize the manufacturing process. First, we can use the FlowOpt optimizer module

18

to create a schedule of works that will assign the workflow’s activities to specific
employees at specific times, effectively managing all the work that needs to be done
in order to manufacture a piston.

Once we have the schedule, we can use the FlowOpt schedule visualizer module to
display it as a Gantt charter1. One possible schedule for the piston workflow is shown
in Figure 9.

Figure 9: A schedule for a FlowOpt workflow

Figure 9 shows a schedule generated by the FlowOpt optimizer module for the
workflow in Figure 8. In the left part, we can see all the tasks that were defined in the
workflow. In the right part, we can see the exact times when the tasks should run,
together with their expected durations (represented as a simple bar graph).

Notice that the workflow structure created in the workflow editor is still present here
in the schedule – the user can still see the task hierarchy and any custom links
between the tasks. In this example, we can see that the three ‘Cutting’ activities were
synchronized to start at the same time (the blue link labeled ‘SS’).

Two activities are grayed out in the above schedule (both are named ‘Cutting’). That
is because they are children of an alternative task and they weren’t chosen to be
performed.

1 A well-known and widely used schedule notation.

19

5. Formal Definition of the Workflow Model

Let us now describe our model more formally. This is done in three parts – first we
define the three types of objects that can exist in a FlowOpt workflow (activities,
tasks and custom links). Then we define all the constraints on these objects that have
to hold in a FlowOpt workflow. Finally, we describe the process of building FlowOpt
workflows (which similar to that in Nested TNA).

5.1 Workflow objects

We have already introduced the three types of objects that can exist in a FlowOpt
workflow (tasks, activities and custom links) in the FlowOpt Workflows chapter. We
will now define these objects and their properties formally.

A FlowOpt workflow is a tuple (Activities, Tasks, Constraints):

 Activities is the set of all the activities in the workflow.

 Tasks is the set of all the tasks in the workflow.

 Constraints is the set of all the custom constraints (constraints defined by
custom links) in the workflow.

The semantics of our workflow model is given by a number of constraints on these
objects and their properties.

First, every task can be in one of five states, depending on the way in which it
should be implemented. It can be empty, meaning it has no defined implementation
yet, it can be implemented via an activity, or it can be decomposed in one of three
ways (serial, parallel, alternative):

 Empty = {T ∈ Tasks|T is empty}

 ���ℎ�������� = {� ∈ �����|� �� ����������� �ℎ����ℎ �� ��������}

 ������ = {� ∈ �����|� �� ���������� ����� ������ �������������}

 �������� =
{� ∈ �����|� �� ���������� ����� �������� �������������}

 ����������� =
{� ∈ �����|� �� ���������� ����� ����������� �������������}

 ���������� = ������ ∪ �������� ∪ �����������

 ����� = ����� ∪ ���ℎ�������� ∪ ����������

 Serial, Parallel, Alternative, Empty and WithActivity are mutually disjunctive

Similarly, custom links are divided into several sets based on their type. There are
precedence custom links, logical custom links (these can represent an implication, an
equivalence or mutual exclusion) and synchronization custom links (of types start-
start, end-end, start-end and end-start):

 ����������� = {� ∈ �����������|� ���������� � ����������}

 ������������ = {� ∈ �����������|� ���������� �� �����������}

20

 ������������ = {� ∈ �����������|� ���������� �� �����������}

 ������� = {� ∈ �����������|� ���������� � �����}

 ������� = ������������ ∪ ������������ ∪ �������

 �� = {� ∈ �����������|� ���������� �� �� ����ℎ����������}

 �� = {� ∈ �����������|� ���������� �� �� ����ℎ����������}

 �� = {� ∈ �����������|� ���������� �� �� ����ℎ����������}

 �� = {� ∈ �����������|� ���������� �� �� ����ℎ����������}

 ����ℎ����������� = �� ∪ �� ∪ �� ∪ ��

 ����������� = ����������� ∪ ������� ∪ ����ℎ�����������

 Precedences, Implications, Equivalences, MUTEXes, SS, EE, SE and ES are
mutually disjunctive

Now that we have introduced all the objects that can exist in a FlowOpt workflow,
we define their properties. We will later introduce a number of constraints on these
properties that will define a valid FlowOpt workflow (see Constraints on workflow
objects and Workflow Verification chapters).

Every activity has a duration that indicates how long does it take to perform it. This
duration is measured in some abstract units (same for every activity).

∀� ∈ ����������: ��������(�) = �ℎ� �������� �� �������� �

For every task implemented via an activity, we introduce a predicate that will
reference the activity.

∀� ∈ ���ℎ��������: ��������(�) = � ∈ ����������, � ���������� �

Every decomposed task is implemented by a nest of child tasks. The following
predicate defines this (ordered) set of children.

 ∀� ∈ ����������: �ℎ������(�) = (��, ��, … ��), �� ∈ �����,
�� �� ���ℎ�� �ℎ� ���� �� �

Since the tasks form a tree hierarchy, we will also need to reference the parent task
for a given child task.

 ∀� ∈ �����:

o Parent(t) = � ∈ �����|� ∈ �ℎ������(�)
�� ��� �� �� ���ℎ � ������

o ∃! �������� ∈ �����: ������(��������) = ���

For a custom link, we will need to reference the pair of tasks that it connects.

 ∀� ∈ �����������:

o ����(�) = � ∈ �����|� ���� ���� �

o ��(�) = � ∈ �����|� ���� �� �

o ��ℎ����, ����(�)� = ��(�), ��ℎ����, ��(�)� = ����(�)

o Parent(c) = the task containing c - the first common parent of From(c)
and To(c).

21

o FromTop(c) = the direct child of Parent(c) from which c leads.

o ToTop(c) = the direct child of Parent(c) into which c leads.

Figure 10: Custom link notation example

Figure 10 illustrates the introduced notation for custom links. The logical implication
link is referred to as c.

Since the workflow may contain alternative tasks, we have to be able to determine
whether a task should be performed or not. This information is stored in the logical
domain of a task, i.e. a subset of {true, false} indicating whether the task is to be
performed.

 ∀� ∈ �����: LogicalDomain(t) ∈ 2{����,�����}

o �������������(�) = {����, �����} ⇔ � ��� �� ��� ��� �� ���������

o �������������(�) = {����} ⇔ � ���� �� ��������� (t is active)

o �������������(�) = {�����} ⇔ � ���� ��� �� ��������� (� �� ��������)

o �������������(�) = ∅ ��������� � ���������� ��������(������� ��������)

Also, since the workflow has to eventually be scheduled, we have to maintain some
temporal information about when a particular task should be executed. Specifically,
we define two time points corresponding to the start and end time of each task (again
in some abstract units, like the durations).

 ∀t ∈ Tasks:

o Start(t) = start time of t

o End(t) = end time of t

 TimePoints = {Start(t)|t ∈ Tasks} ∪ {End(t)|t ∈ Tasks}

We will not explicitly represent the (temporal) domains of these time points. Instead,
we will place constraints on distances between them.

 ∀p�, p� ∈ TimePoints: Dist (p�, p�) = [min, max]

o min ≤ p� − p� ≤ max

5.2 Constraints on workflow objects

FlowOpt defines a number of constraints that describe a valid workflow. These
constraints restrict both logical domains of tasks and temporal distances between the
time points given by the tasks. They are all implied by the informal definitions of the
workflow objects, but we need to express them formally to be able to verify or
schedule the workflow properly. The constraint definitions are listed below.

22

1) Any serial or parallel task T is active if and only if all of its children are also
active:

∀� ∈ ������ ∪ ��������:
�������������(�) = {1} ⟺ ∀c �� �ℎ������(�): �������������(�) = {1}

2) Every active alternative task must have exactly one active child (this child is
called the active child):

∀� ∈ �����������:
�������������(�) = {1} ⟺ !∃c� ∈ �ℎ������(�):
�������������(��) = {1} & ∀��, � ≠ �: �������������(��) = {0}

3) If any task becomes active, all the tasks on the path from this task to the root
task must also be active:

∀� ∈ �����: �������������(�) = {1} ⟹
∀p ∈ � ������(�), �������������(�)�, … , ���������:

�������������(�) = {1}

4) The children in any active serial task must be performed in the order given by
the serial task:

∀� ∈ ������, �������������(�) = {1}, �ℎ������(�) = (��, ��, … , ��):

Dist����(��), �����(��)� = [0, ∞],

Dist����(��), �����(��)� = [0, ∞],
...

Dist����(����), �����(��)� = [0, ∞]

5) Every active task T containing (directly) an activity A must have its duration
equal to the duration of the activity:

∀� ∈ ���ℎ��������, �������������(�) = {1}:

����(�����(�), ���(�)) = [�����������������(�)�, ��������(��������(�))]

23

6) Any active decomposed task t must start exactly when the first of its children
starts and end exactly when the last of its children ends. For different task
types, this yields different constraints:

a. t is serial – synchronize the start of the parent with the start of the first
child in the sequence and the end of the parent with the end of the last
child in the sequence:

∀� ∈ ������, �������������(�) = {1}, �ℎ������(�) = (��, ��, … , ��):

����������(�), �����(��)� = [0,0]

��������(�), ���(��)� = [0,0]

b. t is alternative – synchronize the start of the parent with the start of
the active child and the end of the parent with the end of the active
child:

∀� ∈ �����������, �������������(�) = {1}:

���� ������(�), �������������ℎ���(�)�� = [0,0]

���� ����(�), �����������ℎ���(�)�� = [0,0]

c. t is parallel – all the children must be performed after the parent starts
and before the parent ends. Furthermore, synchronize the start of the
parent with the start of the first child and the end of the parent with
the end of the last child:

∀� ∈ ��������, �������������(�) = {1}:

∀c ∈ �ℎ������(�): ����������(�), �����(�)� = [0, ∞]

∀c ∈ �ℎ������(�): ��������(�), ���(�)� = [0, ∞]

���� ������(�), ����∈��������(�)������(�)�� = [0,0]

���������∈��������(�)����(�)�, ���(�)� = [0,0]

7) Any precedence link between active tasks t1 and t2 means that t1 must be
performed before t2:

∀� ∈ �����������:

������������������(�)� = {1} & ����������������(�)� = {1} ⟹

Dist ���������(�)�, ��������(�)�� = [0, ∞]

8) Any logical implication link between tasks t1 and t2 means that if t1 becomes
active, t2 must also become active:

∀� ∈ ������������:

������������������(�)� = {1} ⟹ ����������������(�)� = {1}

9) Any logical equivalence link between tasks t1 and t2 means that t1 is active if
and only if t2 is active:

∀� ∈ ������������:

������������������(�)� = {1} ⟺ ����������������(�)� = {1}

10) Any logical mutex link between tasks t1 and t2 means that at most one of the
tasks can be active at a time:

∀� ∈ �������:
������������������(�)� = {1} ⟹ ����������������(�)� = {0}

����������������(�)� = {1} ⟹ ������������������(�)� = {0}

24

11) Any SS synchronization between active tasks t1 and t2 means that the tasks
start at the same time:

∀� ∈ ��:

������������������(�)� = {1} & ����������������(�)� = {1} ⟹

���� �����������(�)�, ��������(�)�� = [0,0]

12) Any EE synchronization between active tasks T1 and T2 means that the tasks
end at the same time:

∀� ∈ ��:
������������������(�)� = {1} & ����������������(�)� = {1} ⟹

���� ���������(�)�, ������(�)�� = [0,0]

13) Any SE synchronization between active tasks T1 and T2 means that T1 starts
precisely when T2 ends:

∀� ∈ ��:
������������������(�)� = {1} & ����������������(�)� = {1} ⟹

���� �����������(�)�, ������(�)�� = [0,0]

14) Any ES synchronization between active tasks T1 and T2 means that T1 ends
precisely when T2 starts:

∀� ∈ ��:
������������������(�)� = {1} & ����������������(�)� = {1} ⟹

���� ���������(�)�, ��������(�)�� = [0,0]

We will refer to the constraints above as workflow constraints. We can divide
workflow constraints into two categories – general constraints, which are defined by
the task hierarchy and task decomposition – that is constraints 1) through 6) and
custom constraints, which are defined by custom links – that is constraints 7) through
14).

5.3 Building FlowOpt workflows

We have defined the three basic objects that can exist in a FlowOpt workflow, as
well as the constraints on their properties. We will now briefly describe the process
of building the workflow.

This chapter’s purpose is to emphasize the connection between Nested TNA and
FlowOpt workflow model - as we will see, the way workflows are built is almost
identical in both these models. For a description of the process from the user’s point
of view, please refer to the Building workflows chapter.

A newly created FlowOpt workflow contains a single empty task. At any time, the
user may perform one of three basic actions:

 Decompose an empty task to convert it into a decomposed task with given
type (serial, parallel or alternative) and a given number of children.

 Assign an activity into an empty task.

 Connect two tasks with a custom link of given type (precedence, implication,
equivalence, MUTEX, SS, EE, SE or EE).

25

The workflow editor actually provides a number of additional actions that can
change the workflow structure, but they are all just for user convenience, they will
not create any workflow that cannot be created using the above actions (this is
apparent after a brief analysis of the other actions, we didn’t feel it was necessary to
show this formally).

It shouldn’t be hard to see that this way of building a workflow leads to a tree
hierarchy of tasks, where the inner nodes are decomposed, while the leaves have
assigned activities (or are empty).

If we assume no custom links in the workflow, we can see that the underlying
network corresponds to a Nested TNA, since the way of building workflows in our
model is defined analogically to the way used to define Nested TNA.

26

6. Features of the Workflow Editor

This chapter describes the most important features of the workflow editor. It is only
meant as an overview of the workflow editor’s capabilities, complete user
documentation is beyond the scope of this document, but it is one of its attachments.

Two of the features are particularly interesting (workflow verification and import /
export to and from other workflow models), because they were implemented outside
the scope of the FlowOpt software project, specifically for this thesis. That is why
they will be described in separate chapters.

6.1 Visualization

Perhaps the most basic, yet crucial feature of any workflow editor is its ability to
visualize workflows in a user-friendly way. The bigger the workflow gets, the more
important it is to layout its parts so that the workflow can still be interpreted easily.

The FlowOpt workflow editor utilizes the task hierarchy in visualization. Since the
structure of workflows is so clearly defined, it is possible to implement an automatic
layout procedure that takes care of positioning the tasks on the screen. The layout in
the previous piston example was done by the application, not by the user.

This is one of the more significant differences between the FlowOpt workflow editor
and other similar systems – the workflow editor fully controls the visualization, the
user can only influence it marginally. For instance, it is possible to move the top-
level tasks on the canvas, change the order of the child tasks within their parent or
collapse and expand tasks, but the exact positions and sizes of the workflow objects
are calculated automatically by the application.

On one hand, this may be a bit limiting in some scenarios, but it increases the
productivity considerably, since the user doesn’t have to worry about the layout at
all, it is updated automatically as the workflow changes.

Many other workflow systems also implement some kind of automatic layout
procedure, but it is usually more general and static (it doesn’t update automatically to
reflect the structure of the workflow). This means that the results typically aren’t as
good and the user has to make manual adjustments to the layout. Since our procedure
is so closely connected to the workflow’s nested structure, the layout is much more
precise.

To make the visualization as convenient as possible, the workflow editor allows the
user to choose orientation (horizontal or vertical) and the way child tasks are aligned
with respect to their parent.

27

Horizontal orientation, child
tasks to the left

Horizontal orientation, child
tasks centered

Horizontal orientation, child
tasks to the right

Vertical orientation, child
tasks up Vertical orientation, child

tasks centered

Vertical orientation, child
tasks down

Figure 11: Orientation and child task align

Figure 11 shows different layouts of the same task based on changing orientation and
child task alignment.

The editor also supports standard features like zooming (zoom in, zoom out, zoom to
fit…), box selection, panning (moving the view by dragging the mouse) and
collapsing / expanding tasks arbitrarily.

6.2 Navigation

Since workflows can get very large, it is important to provide features which make it
easier to navigate them. The nested hierarchy makes this task somewhat easier, since
navigating a tree is simpler than navigating a general graph.

Probably the most basic feature in terms of navigation is task collapsing. If the
workflow gets large, it is useful to be able to collapse some portions of it to hide the
details and only focus on tasks on a higher level.

Another feature that should make navigating larger workflows easier is the mini
overview. It is a smaller view of the workflow at reduced scale, so that the user can
see a larger area. It also lets the user quickly move the view by dragging the selection
within the overview.

28

Figure 12: Task collapsing and overview

Figure 12 shows the piston workflow with two tasks collapsed and the overview
visible.

We mentioned that the task hierarchy is also utilized to make navigating large
workflows easier - the user can display a simple outline that displays the workflow’s
structure in a practical tree view.

Selecting a node in this outline also selects it in the workflow and the view moves
over the selected task. Right clicking on a node in this view shows the same context
menu as right clicking on the corresponding task in the workflow. This makes the
outline a useful tool when the workflow gets more complex.

Figure 13: Workflow outline

Figure 13 shows what the outline looks like for the piston workflow example.

29

One more tool that should make navigating through larger workflows easier is the
ability to focus on a particular task. When the user focuses on a task, all the tasks
outside the selected task’s subtree will be hidden. This makes it easier to concentrate
on one particular task without accidentally changing other tasks.

Once the modifications to that task are done, the focus may be cleared and the whole
workflow becomes visible again. It is even possible to focus multiple times, diving
deeper and deeper into a particular subtree.

Figure 14: Task collapsing

In Figure 14, we focused on the ‘Tube’ task in the previous piston example. This
caused the rest of the workflow to become hidden. Notice how the port on the
‘Cutting’ activity is highlighted to indicate that there are custom links connected to
the activity and deleting the activity will also delete these links.

6.3 Building workflows

This chapter describes the actual process of building workflows in the FlowOpt
workflow editor. Like visualization, this process is quite different to the approaches
used in most other workflow solutions and it is also based on the nested structure of
our workflow model.

There is one thing that almost all the workflow models presented earlier in this
document have in common - the way of building workflows (technically, BPMN
defines no such thing, but all the solutions that use BPMN that we examined
followed this approach).

The usual approach lets the user of the workflow editor arbitrarily create and link
workflow objects. The user first places activities, semaphores, events or other
workflow objects on the canvas and then connects these objects with links to mark
the order of execution. A simple example of this process is presented below.

The user starts with some trivial workflow, usually just the start and end activities,
with nothing in between.

The user adds some activities to the canvas.

30

The activities are either decorated, or semaphores are added to create branching.

More activities are added as the workflow is being built.

The user connects the activities with links to mark the execution flow.

Figure 15: Traditional way to build workflows

The examples in Figure 15 are from the MAKE application, but the process is very
similar in most of the other systems we tried out (the exception being Nested TNA).

While this approach is very intuitive and unrestrictive for the user, it doesn’t seem
very productive, considering the fact that the user has to create all the objects within
a workflow manually.

In a general graph, the number of links is �(��), where n is the number of nodes.
Workflows are generally not dense in terms of the number of links, but the total
number of objects is still rather large. Let us consider three of the most basic and
common patterns present in virtually every workflow model: the sequence, the
parallel nest and the alternative (exclusive) nest.

31

 In a sequence of n activities, there are n tasks plus n − 1 links, that is 2� − 1
objects in total.

 In a parallel or an alternative nest, we have n tasks, 2n links (two links for
every child task), and two decorators / semaphores to mark the routing type.
That is 3� + 2 objects.

That is a lot of objects to create manually. FlowOpt workflow editor attempts to
utilize the nested hierarchy inherent to FlowOpt workflows to alleviate this problem.
The user doesn’t build workflows in the traditional way described above. Instead, the
workflow editor defines a set of actions that can be used to build workflows,
following the definition of the Nested TNA model.

There are a number of those actions, but only a few of them are needed to build
workflows, the others are only for users’ convenience. There are three basic actions:
task decomposition, activity assigning and custom link creation. Using just these
three actions, the user can create any workflow in the FlowOpt model. It should be
apparent from the names of these actions that they create the three basic objects of
the FlowOpt workflow model – tasks, activities and custom links.

Task decomposition

We already introduced decomposition when we described the Nested TNA model.
This action implements the Nested TNA decomposition, except for the fact that it
decomposes nodes (tasks) instead of links.

Decomposition can be performed on any empty task. The user chooses the type of
decomposition (serial, parallel or alternative to determine the routing within the task)
and the number of children that should be in the resulting nest. The workflow editor
automatically creates the resulting nest.

There are two ways to do this. The user can invoke a special dialog in which the
number of children and the decomposition type can be chosen, but there is also a
more streamlined way: the workflow editor overrides the resize function on empty
tasks, so that the user can simply drag the border of an empty task to decompose it.
Dragging horizontally creates a serial task, dragging vertically creates a parallel task
(which can be quickly changed to alternative by double clicking on one of its ports).

Figure 16: Decomposing tasks

Figure 16 illustrates the decomposition process.

32

This way the user can create the entire nest with a single drag of the mouse. It is still
necessary to assign activities in the child tasks (or decompose them), but the process
is generally much faster than creating the workflow manually (not to mention the
automatic layout). Using this approach, the user only has to perform �(�) actions to
create a workflow containing n objects.

This way of building workflows is a bit more restrictive for the user than the
traditional approach, but its advantages should be worth the compromise. You may
notice that this is a similar idea as the one we used in Visualization – we try to make
the work faster and more productive at the cost of restricting the user a bit more than
the other editors do.

Note that once again, this way of doing things takes advantage of the strict hierarchy
of the nested workflows. Features like these are what distinguishes our workflow
editor from other workflow solutions.

Activity assigning

Once the tasks are created, we have to say how they should be “implemented”. We
can either decompose them (see above) or assign an elementary activity into them.
The latter means that the task can be performed by performing the activity –
assigning an activity into an empty task essentially creates a leaf in the tree
hierarchy.

Figure 17: Assigning an activity

The way to do this is simple - the user just drags the activity from the list of defined
activities into an empty task, as shown in Figure 17.

Figure 18: Streamlined decomposition

To streamline the process further, the user can also drop activities directly into
decomposed tasks. This is illustrated in Figure 18.

Custom link creation

Custom links are created in the traditional way – connecting nodes manually. Since
the user can link any two tasks with a custom link, there is probably no simpler way.

To create a custom link, the user simply drags the mouse between two task ports
(blue squares in the top right of all tasks) and chooses the type of the link from the
context menu that appears.

33

Figure 19: Custom links creation

Figure 19 shows the process of creating a custom end-end synchronization link in a
workflow.

Other actions

Though the three actions described above are sufficient to build any FlowOpt
workflow, the editor defines many more actions for user convenience. This chapter
briefly goes through the more interesting ones.

To provide an alternative to the top to bottom approach implied by decomposition,
we provide a way to create workflows the other way – bottom to top. The user can
first create the child tasks and then group them into the parent task. This is more
intuitive for some users, since it may be easier to start by adding activities to the
workflow and build the task hierarchy from them.

Figure 20: Task grouping

Figure 20 shows how several tasks can be grouped into a new decomposed (serial)
task. The workflow editor preserves the order of the children based on their
positioning before they were grouped.

34

Other actions implemented in the workflow editor include:

 Deleting tasks

 Changing order of the child tasks by dragging them within their nest.

 Inserting new tasks into the nest at any position.

 Changing the decomposition type or removing the decomposition entirely and
making the task empty again.

 Copy, cut and paste operations on all the task types in order to make it easier
to duplicate or move an entire subtree of the workflow hierarchy.

 Saving tasks as separate workflows so they can be reused later.

 Embedding (copying) other workflows into empty tasks.

 Enclosing existing tasks within the workflow in a new parent that is inserted
in place of the original task.

It is likely that this list will be extended in the future based on the users’ priorities.

35

6.4 Miscellaneous features

The workflow editor implements many other features that weren’t listed above.
While these features are mostly technical and not particularly interesting from the
workflow design point of view, we would still like to briefly point them out, since
they may be interesting from the implementation point of view.

Some of the more notable features are:

 Saving and loading of workflows to and from a database.

 Full undo and redo support for all the actions that the user can perform.

 Organizing workflows and activities into folders for user convenience.

 Maintaining preferred route - the user can mark one of the children of any
alternative task as preferred, which may be somehow interpreted by the
optimizer.

 Creating a picture from the workflow. Supported formats are PNG1, SVG2
and JPEG3. The last may seem a strange choice for representing diagrams,
but for very large workflows it can produce considerably smaller files due to
its flexible compression.

 Printing the workflow (can be used to create a PDF4 file from the workflow
with the help of some virtual printer like PDFCreator5).

1 Portable Network Graphics, a raster format with lossless compression

2 Scalable Vector Graphics, a vector format

3 Joint Photographic Experts Group, a lossy raster format

4 Portable Document Format, a vector format for document exchange

5 http://sourceforge.net/projects/pdfcreator/

36

7. Workflow Verification

Workflow verification is the process of determining whether there are any errors in
the design of a given workflow. Although the workflow model of FlowOpt is
relatively simple and transparent, it is possible to create such errors – specifically by
adding conflicting custom constraints.

As a consequence of imperfect design, some of the workflow’s tasks may never be
performed or, in the worst case, the entire workflow may be impossible to schedule.

That is why it is necessary to provide the user with a way to determine whether a
particular workflow is valid or whether there are any problems that should be fixed
prior to running the optimizer.

This chapter works with terms defined in the Formal Definition of the FlowOpt
model. Please refer to that chapter for more information on the model or the notation
used.

7.1 Problem definition

Problem: Decide whether a FlowOpt workflow is valid.

Definition: A process is a workflow in which the root task is active and all the
workflow constraints hold. Specifically, every alternative task has exactly one active
child in any process.

Intuitively, a process corresponds to a specific way how the workflow may be
executed (specific assignment of values to LogicalDomains and Dist so that all the
workflow constraints hold).

Definition: A FlowOpt workflow is valid if and only if the following conditions
hold:

a) The workflow contains no empty tasks

b) ∀� ∈ ����� ∃ ������� �: �������������(�) = 1 �� �

The first part of this definition states that a valid FlowOpt workflow cannot contain
empty tasks. This should be obvious - we cannot schedule an incomplete workflow.

The second part states that in a valid workflow, all the tasks can actually be
performed in some process – there is no constraint conflict that would mean that
some task can never become active. Specifically, this condition requires that every
child of an alternative task can become active in some process. In the rest of this
document, we will call the children of an alternative task alternatives.

If an alternative is valid in the sense of b), we will call it an accessible alternative,
otherwise we will call it inaccessible.

The presence of empty tasks (part a) can be determined trivially in linear time by
going through all the tasks in the workflow. For the rest of this chapter, let us assume
that there are no empty tasks in the workflow.

The second part is the more difficult one and determining whether all the alternatives
can be a part of some process is the core of the verification.

37

7.2 Verifying workflows without custom links

Let us first focus on the case when the user does not create any custom links. As it
turns out, verifying workflows with no custom links is trivial, because they are
always guaranteed to be valid (provided that they do not contain empty tasks).

Proposition: A workflow containing no empty tasks and no custom links is always
valid.

Proof: We can prove the above proposition through simple induction over
complexity of the workflow. We will follow the way that FlowOpt workflows are
built (see Building FlowOpt workflows) and show that at every point, we have a
valid workflow.

We assume that the workflow contains no empty tasks, otherwise the workflow is by
definition invalid. In other words, all empty tasks have either been decomposed or
assigned an activity. It should be apparent that the induction is still correct, since the
structure of the workflow is built through decomposition only, assigning an activity
cannot change it.

A trivial workflow consists of a single task with an assigned activity. We can create a
process for this workflow by performing just this one task. All the workflow
constraints will trivially hold.

Let us assume we decomposed an empty task T in a valid workflow (and assigned
activities in the new tasks). From induction we know that for every task in the old
workflow there is a process that performs it. We now extend each of these processes
to include the tasks newly created by decomposition.

If T is performed in the original process then:

a) If T is serial, perform all the tasks in the newly created nest in the order
given by T.

b) If T is parallel, perform all the tasks in the newly created nest in parallel.

c) If T is alternative, perform any single task in the newly created nest
(create a new separate process for each of the alternatives).

We need to show that this way of performing the new tasks will not create a
constraint conflict (in other words, we will still have a process after the above
extension). If that holds, we know that we have a process for every task in the new
workflow and it is therefore valid.

To show that no constraint conflicts can occur, we can first note that if we assume no
custom links, only the general constraints are in effect. We can also notice that due to
the tree structure of the workflow, the only task that has any effect on the new tasks
what so ever (in terms of logical domains or temporal distances) is their parent. The
other tasks cannot restrict the new tasks in any way due to the definition of the
general constraints. The reasoning for all six types of general constraints is given
below:

 Constraints of types 1 and 2 cannot create a conflict, because the only task
that has any impact on the new task’s logical domains is their parent. Since
the new process is created exactly so that the parent’s constraint holds, there
cannot be a conflict.

38

 Constraints of type 3 will cause no conflict due to the fact that we only
perform the new children if their parent is performed in the old process.

 Constraints of types 4, 5 and 6 will also not create a conflict, since there is no
upper bound on the tasks’ durations and the workflow forms a DAG1, so no
cycles can appear either. Both of these facts can be easily observed from
induction (they hold for a single activity, decomposing an empty task will not
change them). This means we can set the durations and order of the new tasks
however we want.

Since there are no constraint conflicts, the new process is valid and therefore (from
induction) the new workflow is also valid.

This result is not too surprising, due to the fact that our model is based on Nested
TNA. However, notice that unlike our model, Nested TNA does not guarantee
temporal consistency, which is due to the fact that it uses general temporal
constraints on its links (they specify minimal and maximal distance between the
nodes they connect). Our model is less expressive in this regard, since we only use
general precedences. Consequently, there is no upper limit on the durations of the
tasks, which results in guaranteed temporal consistency.

To summarize, unless the user creates a custom link in the workflow, checking
validity is trivial – we simply go through all the tasks in the workflow and look for
empty tasks and custom links. If there are none, the workflow is valid.

Unfortunately, we have reason to believe that if the user does use a custom link, the
problem becomes NP-complete (proof will be presented in [13]). It seems that any
kind of custom link (precedence, logical or synchronization) is enough to move the
problem into the NP-complete class.

In the following sections we describe the general algorithm used in FlowOpt to
verify workflows that do contain custom links, then we show how the workflows can
be simplified without the loss of generality prior to running the algorithm to speed it
up considerably.

7.3 General workflow verification algorithm

The full verification process consists of several parts:

1) Preprocessing

2) Generating a common FlowOpt representation of the workflow (CDM2).

3) Core verification algorithm

Preprocessing is essentially a number of simple checks that make sure that there is no
custom constraint that is obviously invalid or redundant. These ad-hoc checks are
useful in the sense that the user can immediately see the problem and the core
verification algorithm need not even start. They are simple and fast and can even be

1 Directed Acyclic Graph

2 Common Data Model of FlowOpt, for details please see FlowOpt development /

programmer documentation.

39

performed while the user works with the workflow. Currently, the following
problems are detected by the preprocessing phase:

 Any duplicate link (a link of the same type is already in place).

 Any link L where Parent(L) is an alternative task. Such a constraint is always
redundant, because at most one of the tasks it affects will ever be active.

 Any logical link L where both From(L) and To(L) are always active, meaning
there is no alternative task on the path from From(L) to the root task or from
To(L) to the root task. Since both the tasks are active, the constraint is either
redundant (implication, equivalence) or invalid (mutual exclusion).

 Any precedence link L where Parent(L) is a serial task. Such a constraint is
always either redundant (if the link follows the sequence direction) or invalid
(if it goes in the wrong direction)1.

 Any synchronization link L where Parent(L) is a serial task and type of L is
not ES or SE. Also the link has to go in the right direction (ES links must
follow the sequence, SE link must go in the opposite direction). The
reasoning here is similar as in the point above.

 Any precedence link where From(L) is a (direct or indirect) parent of To(L)
or vice versa. Such a constraint is always invalid, since the children must
always occur within the temporal bounds of their parent.

If the preprocessing step finds no errors, the second part of the algorithm starts. In
this phase, the workflow is translated into the data model used across FlowOpt
modules (CDM – please see FlowOpt project documentation for details).

While there is no semantic difference between the data model used by the workflow
editor and CDM, this step is still worth mentioning from the technical point of view,
since it has some notable advantages:

 CDM represents the actual data model of FlowOpt as a whole, so if we verify
a workflow in CDM, we know it will be valid in all the other FlowOpt
modules besides the workflow editor.

 The workflow editor’s data model carries a lot of additional information that
isn’t semantically important for the verification purposes (for example visual
representation of the workflow). On the other hand the CDM is designed to
be as simple and lightweight as possible, which in turn makes the verification
process simpler and more transparent.

 It is likely that the workflow editor’s model will be extended in the future
with some additional workflow patterns. As long as CDM remains the same,
no changes in the verification algorithm will be needed, only the procedure
that generates CDM from the workflow editor model will have to be
extended.

1 One could argue that if all the tasks within the sequence have zero duration, then the

precedence might not be outright invalid, as all the tasks could be scheduled into a single point in

time. However we still consider this a conceptual error, because an uninterruptible cycle in the

workflow usually implies an error in design.

40

The third and final part of the verification process is the core verification algorithm,
which is described in the next chapter.

7.4 Core verification algorithm

The algorithm used to verify FlowOpt workflows is based on the techniques
commonly used to solve the disjunctive temporal problem (DTP) – constraint
propagation with forward checking [6].

The algorithm basically goes through all the possible valuations of the tasks‘ logical
domains while trying to create a process by propagating all of the workflow
constraints. As a consequence of the definition of the general constraints (particularly
constraint types 1 and 2), this boils down to trying every possible choice of active
child for every alternative task in the workflow while making sure that all the
workflow constraints hold.

If a constraint conflict is detected at some point, the algorithm goes to the next
possible combination of active children. If all the constraints are propagated
successfully, the algorithm marks a new process and remembers the alternatives that
were performed in that process – we know that these are accessible.

This explicit evaluation of (potentially) all alternative combinations means that the
algorithm is exponential, which is to be expected, since the problem it solves is NP-
complete.

Eventually we either find a process for every task in the workflow or we examine all
of the possible alternative combinations. The rest of this chapter describes this
algorithm formally.

Propagating constraints

When we propagate the workflow constraints, we have to make sure that they do not
conflict with each other in any way - detecting a constraint conflict is a crucial part
of the verification algorithm. In general, we will be propagating two kinds of
constraints – logical constraints, which restrict logical domains of tasks, and
temporal constraints, which restrict distances between the time points.

It is relatively easy to detect a conflict when changing the logical domains of tasks –
all we have to do is make sure that we aren’t trying to activate a task that was
previously deactivated or deactivate a task that was previously activated. In other
words, we cannot assign logical domain of {1} to a task that has logical domain of
{0} or vice versa. This check can of course be done in constant time.

Detecting a temporal conflict is a bit more difficult. It essentially means solving the
Simple Temporal Problem [7]. Let us define this problem formally.

An instance of the simple temporal problem (STP) consists of a set of time points
� = {��, ��, … , ��} and a set � = {��,�|�� , �� ∈ �} of binary temporal constraints on

time differences between these time points.

Each constraint ci,j has a defined ����ℎ� ∈ ℤ, which is an upper bound on the time
difference between the time points pi and pj:

����ℎ�(��,�) = � ⟺ �� − �� ≤ �

41

A solution to an STP instance is an assignment of exact values to all the time points
so that all the constraints hold. An instance of STP is called consistent if it has at
least one solution.

Detecting a conflict while propagating temporal constraints is equivalent to deciding
whether a specific instance of STP is consistent. This instance is defined by the time
points and temporal constraints imposed by the workflow:

� = ����������
� ∼ �������� �������� �����������

In other words, we will maintain an instance of STP describing the temporal
properties of the workflow that we are verifying. Every time we need to propagate a
temporal constraint, we do so by adding this constraint into the STP instance. The
propagation succeeds if and only if the resulting STP instance is still consistent.

There are many ways how we can solve an STP, for instance the well-known
Bellman-Ford algorithm. The problem is that most of these traditional algorithms
work on a static temporal network, meaning we would have to re-run the whole
temporal verification every time we add a new constraint to the network. This would
be very inefficient, since the workflow verification procedure gradually builds the
temporal network and the temporal verification is invoked very often.

For our purposes the incremental algorithms presented in [7] are much more
interesting, since they take advantage of the fact that we are trying to add a constraint
to an already consistent temporal network and generally perform better as a result.

That is why the verification procedure currently implements one of these algorithms
(namely IFPC1).

The Verify method

Let us now describe the core verification algorithm together with pseudocode of its
key methods. First we have a method called Verify that is to be called on the
workflow’s root task and that encapsulates the whole verification process.

FUNCTION Verify(Task rootTask):

������������ = ⋃ �ℎ������(�)�∈�����������

���� = ∅
∀� ∈ �����: �������������(�) = {����, �����}
∀��, �� ∈ ����������: ����(��, ��) = [−∞, +∞]

IF (NOT ActivateTask(RootTask))
RETURN false

IF (IterateAlternative())
IF(|Inaccessible| > 0) RETURN ProcessExists
ELSE RETURN FullyVerified

ELSE RETURN NoProcessExists

Figure 21: The Verify method pseudocode

The method in Figure 21 accepts the root task of the workflow and returns either
NoProcessExists if there is no process what so ever for the workflow due to
some serious constraint conflict, ProcessExists if some process does exist, but

1 Incremental Full Path Checking

42

some alternatives are inaccessible or FullyVerified if all the alternatives are
accessible.

First, we initialize some values that will be used throughout the verification
procedure. To keep track of which alternatives are inaccessible, we will define a set
of tasks called Inaccessible which will hold them. When the verification starts,
let all the alternatives be inaccessible. As the algorithm progresses, we will remove
those alternatives that we know are accessible (whenever we find a process, we
remove all alternatives that are active in that process).

We will also need to maintain a set of alternative tasks that have yet to be examined.
This set is called TODO. Whenever we encounter an alternative task, we will add it to
this set so that we can later determine which of its children are accessible.

When the verification starts, all the logical domains are set to {true, false} and all the
temporal weights are equal to infinity (meaning there is no restriction on any of the
values).

We start by activating the root task and propagating all the workflow constraints that
this implies. This is done by the ActivateTask method, which accepts a task that
should be activated and returns true if the propagation succeeds or false if it fails
(that is if some kind of conflict is found).

If the root task was activated successfully, we start examining all the possible
alternative combinations in the workflow to determine which ones are accessible –
this is done in the IterateAlternative method. IterateAlternative
succeeds if at least one process exists for the workflow.

If that is the case, we can check whether there are any inaccessible alternatives. If
not, the workflow is valid. If there are inaccessible alternatives, the workflow is not
valid in the sense of the definition we used, but we can still let the user know that at
least one process exists.

Notice that the Verify method directly follows the definition of a process that we
established: we first activate the root task and propagate all the constraints to make
sure they hold. We then go through all the possible alternative combinations,
activating all the alternatives one at a time to find out which ones can be in a process.
If we manage to examine all of the alternatives and propagate all the constraints
correctly, the Verify method must also be correct.

The IterateAlternative method

The IterateAlternative method goes through all the unresolved alternative
tasks in the workflow and determines which of their children are accessible. The
method returns true if there is at least one accessible alternative, i.e. if any process
exists for the workflow.

43

FUNCTION IterateAlternative():

IF(|Inaccessible| = 0 OR |TODO| = 0)
������������ = ������������ ∖ ⋂ {�������ℎ���(�)}�∈�����������
RETURN true

Task next = Pop(TODO)
bool validAlternativeFound = false

IF(next already has an active child)
RETURN IterateAlternative()

State = current values of LogicalDomains and Dist
FOREACH(Task A ∈ Children(next))

Set LogicalDomains and Dist to values stored in State

IF(NOT ActivateTask(A))
Skip to the next alternative

IF(IterateAlternative())
validAlternativeFound = true

IF(all alternatives are accessible)
RETURN true

RETURN validAlternativeFound

Figure 22: The IterateAlternative method pseudocode

The method in Figure 22 first makes sure there are still some (potentially)
inaccessible alternatives. If there are none or if there are no more alternative tasks to
go through (TODO is empty), we have a complete process. That makes all the
currently active alternatives accessible. We note which alternatives they are and end.

If there are more alternative tasks to be examined, we will take any of them and
determine which of its children can be activated. Note that the decision on which
alternative task to choose can affect the algorithm performance considerably. Our
current implementation simply chooses the first one.

Once we have chosen an alternative task to examine, we will first check whether one
of its children is already activated (this could happen during previous propagation of
some custom constraint). If that is the case, we have no choice but to try a different
alternative task. If no children are activated yet, we try to activate all of them, one at
a time, in order to determine which ones can be in a process.

In order to do this correctly, we have to remember the values of all the logical
domains and temporal distances before we start activating the children, because
activating a child will cause changes to these values that we need to revert when we
want to activate a different child (only one child of an alternative task can be active
at a time).

If activating a child fails, we cannot mark it as an accessible alternative, so we just
go to the next child. If the activation succeeds, we have to iterate through the rest of
the alternative combinations in the workflow, trying to complete the process.

In the end, we return true if we managed to find any process, using any of the
children.

The ActivateTask method

Next is the ActivateTask method, which activates a single task and propagates
all the workflow constraints. We will emphasize the parts where some constraint is

44

being propagated by marking the respective line with the number of the constraint
type.

FUNCTION ActivateTask(Task T):

IF(LogicalDomain(T) = {1}) RETURN TRUE

FOREACH(t ∈ {Parent(T), Parent(Parent(T)),… RootTask})
ActivateTask(t)

IF(LogicalDomain(T) = {1}) RETURN TRUE
ELSE LogicalDomain(T) = {1}

IF(Parent(T) ∈ Alternative)
FOREACH(Task t ∈ Children(Parent(T)), t != T)

DeactivateTask(t)

Dist(Start(Parent(T)), Start(T)) = [0,0]
Dist(End(T), End(Parent(T)) = [0,0]

IF(T ∈ WithActivity)
Dist(Start(T), End(T)) =

 [Duration(Activity(T)), Duration(Activity(T))]

IF(T ∈ Serial, Children(T) = (c1,c2,… cn))
Dist(Start(T), Start(c1)) = [0,0]
Dist(End(cn), End(T))) = [0,0]

FOR(i = 1 … n - 1) Dist(ci, ci+1) = [0,∞]

IF(T ∈ Parallel)
FOREACH(Task C ∈ Children(T))

Dist(Start(T), Start(C)) = [0,∞]
Dist(End(C), End(T)) = [0,∞]

IF(T ∈ Alternative) TODO = TODO ∪ {T}

IF(T ∈ Serial ∪ Parallel)
FOREACH(Task C ∈ Children(T))

ActivateTask(C)

FOREACH(newly active custom constraint C)
PropagateConstraint(C)

RETURN true if there are no constraint conflicts, false otherwise

(3)

(2)

(6.b)
(6.b)

(5)

(6.a)

(4)

(6.c)

(1)

(7-14)

Figure 23: The ActivateTask method pseudocode

The method in Figure 23 activates a given task and propagates all the workflow
constraints (with one exception - constraints of type 6.c are not fully propagated here
for reasons described later). If there is any conflict during the constraint propagation,
the method returns false, otherwise it returns true indicating a successful activation.

In other words, whenever any of the methods that are called in the process of
activating a task fails, so will the whole activation – we require that all of the
constraints hold. For the sake of simplicity, we didn’t explicitly test the return values
of those methods in the pseudocode above, simply having the method end whenever
a conflict occurs should be understandable.

45

The method first checks whether the task is already activated – if that is the case, we
do not have to do anything. Otherwise we activate both the task and all of its
predecessors on the way to the root task to make sure that workflow constraint type
3) holds. A task could potentially have inactive parent if it was activated by a custom
link.

If we want to activate a child of an alternative task, we have to deactivate all of its
siblings (all the other children of the alternative task) to make sure that constraint 2)
holds. Also, we must synchronize the start and end of the child with the start and end
of its parent to make sure that all the constraints of type 6.b hold.

If the task contains an activity, we just set an exact distance between the task’s start
and end points to the activity’s duration (constraint type 5).

If the task is serial, we can synchronize the task’s start point with the start point of its
first child and the end point of its last child with the end point of the task. We also
have to propagate all the precedences given by the serial task’s ordering (constraints
4 and 6.a).

If the task is parallel, then all we know at this point is that all of its children must
start after the parent starts and end before the parent ends (part of constraint type
6.c), so we can only add general precedences. Note that this isn’t precise enough –
we need the task to start at the exact moment its first child starts and end at the exact
moment its last child ends in order to enforce constraint type 6.c, but we do not have
that information about the task’s children yet.

We need to propagate constraints of type 6.c in later stages of the algorithm, when
we know for certain which child starts first and which child ends last. Specifically,
we can do it in the IterateAlternative method – before we mark a valid
process, we try to propagate all the constraints of type 6.c. One way to do the actual
propagation is described in Propagating constraint type 6.c.

After that, we propagate the activation to any children the task may have. For serial
and parallel tasks we have to activate all the children. If the task is alternative we just
add the alternative task to the context’s TODO list of alternative tasks, so that we can
later examine all of its children separately.

Finally, we must also propagate the custom constraints that became active as a result
of activating some tasks. By definition, logical constraints are active if and only if

LogicalDomain�From(C)� = {1} ⋁ LogicalDomain(To(C)) = {1}
Precedence and synchronization constraints are active if and only if

LogicalDomain�From(C)� = {1} & �������������(��(�)) = {1}

This should be intuitive, since as soon as one end of a logical constraint is active, it
may affect the logical domains of other tasks. On the other hand, precedence and
synchronization constraints need both their end tasks to be active, since if a task is
not performed, no temporal constraints should be enforced on it.

The custom link propagation is done in the PropagateConstraint method,
which simply changes the verification context based on the constraint type. Suppose
we want to propagate a custom constraint C, as a result of activating a task T
(meaning that T is active and either From(C) = T or To(C) = T).

Based on the type of the constraint, the PropagateConstraint method would
do one of the following actions:

46

Constraint Action

Precedence (7) Dist(End(From(C)), Start(To(C))) = [0,∞]

Logical Implication (8) IF(From(C) = T) ActivateTask(To(C))

Logical
Equivalence

(9) ActivateTask(Other(C,T))

Logical Mutex (10) DeactivateTask(Other(C,T))

Synchronization SS (11) Dist(Start(From(C)), Start(To(C))) = [0,0]

Synchronization EE (12) Dist(End(From(C)), End(To(C))) = [0,0]

Synchronization SE (13) Dist(Start(From(C)), End(To(C))) = [0,0]

Synchronization ES (14) Dist(End(From(C)), Start(To(C))) = [0,0]

Figure 24: The PropagateConstraint method behavior

Figure 24 describes the behavior of the PropagateConstraint method for all the
possible constraint types. We felt it wasn’t necessary to provide pseudocode for this
method, since it would only be a switch operation on the constraint type.

Since activating tasks is a very significant part of the algorithm, let us briefly show
why this method works correctly and determine an upper bound on its worst-case
complexity.

Correctness

All the workflow constraints (except 6.c) are propagated correctly, since the
propagation follows the definitions of the workflow constraints. Also, tasks can only
be activated via this method, so we know that whenever a task is activated at any
point, all the constraints will be propagated.

Complexity

It is apparent that we can only activate each task once (we check whether the task is
already activated in the very start of the method). Activating one task involves
changing both logical domains and temporal distances. The former can be done in
constant time, while the latter (IFPC algorithm) has worst case complexity of �(��),
where n is the number of tasks in the workflow.

There can be up to �(�) children within a decomposed task, making the time
complexity of a single call to ActivateTask �(��) due to having to propagate some
kind of temporal constraint to every child. However, in the worst case we have to
account for the fact that the method can also call itself recursively.

To determine the complexity of all the calls, we can observe that we can call both
ActivateTask and DeactivateTask at most once per task. Calling the same method
twice does nothing, since both check whether the task is already active / inactive
when they start. Calling both the methods (in any order) on the same task results in a
conflict (a task cannot be both active and inactive).

All in all, we have �(�) calls in the worst case, each one having time complexity
�(��), which makes the worst-case complexity of the method �(��).

The DeactivateTask method

Deactivating a task is much simpler than activating one. All we have to do is set a
task’s LogicalDomain to {false} and make sure that this didn’t create a logical

47

conflict.. We can also do some forward checking to improve performance, but this is
not necessary, since ActivateTask will eventually detect any conflicts due to the way
it traverses the workflow.

Figure 25 shows the pseudocode for the DeactivateTask method, described above.

Propagating constraint type 6.c

The last code fragment we present here briefly describes one way of propagating
constraint type 6.c. This should be done when all the other constraints have been
propagated, for example right before we mark a new process.

FUNCTION FixParallel(Task T)

IF(LogicalDomain(T)={0})
RETURN true

IF(T ∈ WithActivity)
RETURN true

//task is decomposed
FOREACH(Task C ∈ Children(T))

IF(NOT FixParallel(C)) RETURN false

IF(task ∈ Parallel)
Task earliest = the child C of T with the minimal Start(C)
Task latest = the child C of T with maximal End(C)
Dist(Start(T), Start(earliest)) = [0,0]
Dist(End(latest), End(T)) = [0,0]

RETURN true if no constraint conflict was detected, false otherwise

Figure 26: The FixParallel method pseudocode

The only responsibility of the method in Figure 26 is to propagate constraint type 6.c.
It adds synchronization constraints to a parallel task so that it starts exactly when the
first of its children starts and ends exactly when the last of its children ends.

We couldn’t propagate this constraint in the ActivateTask method like all the
other constraints, because we didn’t know which child will start first or end last. This
method should be called when all the other constraints have been propagated, so
nothing else can change in this sense.

The process is simple, if the task is not active or contains an activity, we do not have
to do anything. If the task is decomposed, we first fix all the children.

Once the children are fixed, all that is left to do is to fix the parent in case it is a
parallel task. If so, we synchronize the start of the parent with the start of its first
child and the end of the parent with the end of its last child.

To see that this approach is correct, note that whenever we try to add the
synchronization constraints of type 6.c, all the other constraints affecting the children
of the task have already been propagated. In fact, all the constraints except those of
type 6.c have been propagated before this method even started.

FUNCTION DeactivateTask(Task T)

IF(LogicalDomain(T)={1}) RETURN FALSE
LogicalDomain(T)={0}

RETURN TRUE

Figure 25: The DeactivateTask method pseudocode

48

Constraints of type 6.c are propagated by this method and we call it on the children
before we call it on the parent task. Therefore by the time we try to propagate the
synchronizations in the parent, we already have all the temporal information about
the children – we know which one starts first and which one ends last.

We can also see that we propagate the 6.c constraints for every parallel task in the
workflow, due to the way we traverse all the tasks – we call the method on the root
task an move through the workflow in a DFS manner.

Core algorithm complexity

Since the problem is NP-complete, it is not surprising that the algorithm is
exponential with respect to the number of tasks in the workflow in the worst case.
This is due to the fact that the algorithm explicitly examines all the possible
alternative combinations – the number of those grows exponentially with the number
of alternative tasks.

Even if there are no alternative tasks in the workflow, the algorithm needs at least
linear time to traverse the workflow, detect whether there are any custom links and if
so, propagate the activation of the root task.

That is why the resulting complexity of the core verification algorithm is �(2� + �),
where a is the number of alternative tasks in the workflow and n is the total number
of tasks in the workflow.

Core algorithm correctness

The correctness of the algorithm comes from the correctness of the general approach
to DTP solving that our algorithm is based on and from the fact that we managed to:

a) We examine every possible alternative combination and

b) We propagate all the constraints correctly.

Point a) holds due to the definition of ActivateTask and IterateAlternative
methods. We essentially traverse the workflow in a DFS-like manner (in the
ActivateTask method) and explicitly examine all the children of any alternative
tasks that we find (in the IterateAlternative method).

To show that part b) holds, we can note that all the workflow constraints except for
type 6.c are propagated in the ActivateTask method and constraints of type 6.c
are propagated separately once we know we have enough information to do so. We
have showed that all of these constraints are propagated correctly in the definition of
those methods.

All together, we know we examine every possible alternative in the workflow and we
propagate all the constraints correctly, therefore the algorithm must be correct.

49

7.5 Simplifying the workflow

Now that we have the basic algorithm defined, we would like to improve on its
performance. We already showed that if a task contains no custom links (or empty
tasks), it must be valid. Following that idea, we would like to determine which parts
of the workflow do not have to be examined thoroughly due to the absence of any
custom links.

Notation:

 Expanded ⊆ ����� – A set of tasks that need to be explicitly examined
during the verification process. Alternatively, if a task is not in Expanded, we
do not have to examine alternatives within its subtree.

In other words, we are going to determine which tasks in the workflow have to be
examined thoroughly, that is in which tasks we actually have to examine all of the
alternative combinations in order to get the correct results. We will call these
expanded tasks.

On the other hand, we will be able to determine that some tasks cannot contain any
inaccessible alternatives and therefore they do not need to be examined thoroughly.
These will be referred to as collapsed tasks. The whole idea of simplifying the
workflow now comes down to determining which tasks have to be expanded and
which tasks can be collapsed.

Intuitively, we can collapse tasks that aren’t affected by any custom constraint. In
terms of the verification algorithm, custom constraints can affect logical domains and
temporal distances only. Let us define the following for a task T:

 Descendants(T) = All the direct or indirect children of T1.

 TimePoints(T) ⊆ ����������, ����������(�) =
{�����(�)| � ∈ �. �����������} ∪ {���(�)| � ∈ �. �����������} ∪
{�����(�), ���(�)} – The subset of all time points that is defined by the
subtree of T.

We claim that a task can be collapsed if:

a) ∀� ∈ �����������(�): � is not incident with any custom logical link.

b) ∀��, �� ∈ ����������(�): ����(��, ��) is not restricted by any custom
constraint.

The above conditions make sure that any custom links in the workflow will not affect
either logical domains or temporal distances of time points within collapsed tasks,
which leads to the fact that collapsed tasks cannot contain any inaccessible
alternatives and therefore need not be explicitly evaluated by the verification
procedure.

1 Formally:

��(�) = �ℎ������(�)

��(�) = ⋃ �ℎ������(�)�∈����∩����������

�����������(�) = ⋃ �����..�

50

Condition a) implies that any custom logical links may only affect the root of any
collapsed subtree, not its descendants. This means that the only way that the rest of
the workflow can affect the logical domains of Descendants(T) is through the logical
domain of T (and propagation of constraint types 1 or 2).

In other words, custom logical constraints can cause the whole collapsed subtree to
activate or deactivate, but this cannot cause any of T’s descendants to become an
inaccessible alternative, due to the way general constraints are defined.

Condition b) works analogically for temporal constraints. It requires that any custom
temporal constraints (precedence, synchronization) cannot restrict the temporal
distances of time points in TimePoints(T) in any way. This means that the custom
temporal constraints do not affect the collapsed tasks at all. Specifically, they cannot
cause an inaccessible alternative within a collapsed task.

To summarize, if the above necessary conditions hold, it is easy to see that there can
be no inaccessible alternatives in any collapsed task. We know that if a task is
collapsed, it contains no custom links or empty tasks, so on its own it must be a valid
workflow with all alternatives accessible (following the reasoning from the Verifying
workflows without custom links chapter).

Furthermore, since the logical domains and temporal distances of all the collapsed
tasks are not restricted by the rest of the workflow, all its alternatives must still be
accessible even in the context of the whole workflow, provided that there is no
problem in the expanded parts (which we still verify explicitly).

Notice that condition b) is somewhat stronger and more difficult to ensure than a).
That is because in our particular workflow model, logical constraints propagation is
rather easy while temporal constraints propagation is more complicated and we have
to be more careful while collapsing tasks to make sure we don’t lose any information
that we need to produce correct results.

Modified algorithm

Once we have determined which tasks have to be expanded and which tasks can be
collapsed, we propose several changes to the verification algorithm:

In the ActivateTask method we check whether the task we are trying to activate
must be expanded. If not, we just set the distance between its start and end points to
some constant value, which corresponds to treating the collapsed tasks as „black
boxes“ with an arbitrary positive duration:

51

FUNCTION ActivateTask(Task T):

IF(LogicalDomain(T) = {1}) RETURN TRUE

FOREACH(t ∈ {Parent(T), Parent(Parent(T)),… RootTask})
ActivateTask(t)

IF(LogicalDomain(T) = {1}) RETURN TRUE
ELSE LogicalDomain(T) = {1}

IF(Parent(T) ∈ Alternative)
FOREACH(Task t ∈ Children(Parent(T)), t != T)

DeactivateTask(t)

Dist(Start(Parent(T)), Start(T)) = [0,0]
Dist(End(T), End(Parent(T)) = [0,0]

IF(T ∈ ��������)

IF(T ∈ WithActivity)
Dist(Start(T), End(T)) =

 [Duration(Activity(T)), Duration(Activity(T))]

IF(T ∈ Serial, Children(T) = (c1,c2,… cn))
Dist(Start(T), Start(c1)) = [0,0]

Dist(End(cn), End(T))) = [0,0]

FOR(i = 1 … n - 1) Dist(ci, ci+1) = [0,∞]

IF(T ∈ Parallel)
FOREACH(Task C ∈ Children(T))

Dist(Start(T), Start(C)) = [0,∞]
Dist(End(C), End(T)) = [0,∞]

IF(T ∈ Alternative) TODO = TODO ∪ {T}

IF(T ∈ Serial ∪ Parallel)

FOREACH(Task C ∈ Children(T))
ActivateTask(C)

ELSE Dist(Start(T), End(T)) = [1,1]

FOREACH(newly active custom constraint C)
PropagateConstraint(C)

RETURN true if there are no constraint conflicts, false otherwise

(3)

(2)

(6.b)
(6.b)

(5)

(6.a)

(4)

(6.c)

(1)

(7-14)

Figure 27: The modified ActivateTask method pseudocode

Figure 27 describes the modified ActivateTask method that doesn’t fully
evaluate the collapsed tasks (modified parts are highlighted). Note that even if the
task is collapsed, we still need to represent it in the workflow somehow – if we just
deleted the collapsed tasks, the workflow could easily become invalid (for instance,
we could delete all the accessible alternatives of an alternative task).

As for the duration of the collapsed tasks, since we know that there are no temporal
constraints restricting them, we can set it to any value we want, it will not create a
constraint conflict.

Also, when filling the Inaccessible collection, we only consider the alternatives in
the expanded tasks as we will no longer explicitly enumerate alternatives within
collapsed tasks.

52

This modification should increase performance considerably, as we will only
explicitly evaluate the expanded tasks. This can easily be a mere fraction of the
original workflow, depending on how many custom links were used. The worst-case
complexity remains unchanged of course.

To show the correctness of this approach, we need show that both verification
algorithms (the original and the modified) detect the exact same inaccessible
alternatives.

First, we can note that both the algorithms work identically on expanded tasks.
Collapsing some tasks cannot change this, since we only collapse tasks that aren’t
affected by any custom link, meaning both the algorithms propagate the exact same
custom constraints in the same tasks.

Second, we know that the collapsed tasks cannot ever contain an inaccessible
alternative. In other words, any inaccessible alternatives have to be in expanded
tasks, where both the algorithms behave identically and thus yield identical results.

Simple way of collapsing tasks

As a simple way of improving the performance of the verification algorithm, we
compute Expanded as follows:

�������� = ∅

FOREACH(� ∈ �����������)
�������� = �������� ∪
�������(�), �������������(�)�, … , ��������� ∪ �����������(������(�))

Figure 28: Simple way of collapsing tasks

Figure 28 shows a basic way of expanding tasks that simply makes sure that every
task that contains a custom constraint (directly or indirectly) is expanded. We go
through every custom constraint defined and expand both the path from the root task
to the link’s parent and the parent itself together with all of its children (recursively).

Below is an example of how a workflow with a single precedence link L would look
like after applying this simple procedure.

53

Figure 29: Example of task collapsing

Figure 29 shows an example of the simple collapsing procedure described in Figure
28. The tasks that are not in Expanded after the procedure finishes are shown
collapsed in Figure 29 for illustration.

To show the correctness of this procedure, we have to show that we only collapse
tasks that cannot contain an inaccessible alternative, that is tasks that aren’t affected
by any custom link.

Suppose we have a precedence or synchronization custom constraint C. We know
that this constraint only affects temporal distances between tasks. Since both the
tasks it connects are contained within the constraint link’s parent, we know that the
link cannot directly influence any other tasks beyond those within the subtree of
Parent(C), due to the tree structure of the workflow and the definition of the
workflow constraints.

The only way that the constraint affects the rest of the workflow beyond the subtree
of Parent(C) is by changing Dist(Start(Parent(C)), End(Parent(C))). This doesn’t
restrict temporal distances between any other time points that aren’t in the subtree of
Parent(C) though.

For a logical constraint, the situation is similar, except instead of temporal distances
we have logical domains. Using the same reasoning as before, a custom logical
constraint can only affect the rest of the workflow beyond Parent(C) by changing the
logical domain of Parent(C). The only way that this can affect other task’s logical
domains is through propagation of constraint type 4. This doesn’t affect the tasks’
descendants though, so both the necessary conditions we defined for collapsing tasks
hold and the new algorithm provides equal results as the old one.

Further optimizations

The above way of collapsing tasks is by no means optimal. We can certainly collapse
more tasks based on some further observations.

54

For instance, it isn’t hard to see that we do not need to fully expand tasks containing
custom logical links. Based on condition a) for collapsing tasks, we can expand much
fewer tasks, as shown in the following method:

�������� = ∅

FOREACH(� ∈ ����������� ∖ �������)
�������� = �������� ∪
�������(�), �������������(�)�, … , ��������� ∪ �����������(������(�))

FOREACH(� ∈ �������)
�������� = �������� ∪

������������(�)�, ������ ������������(�)�� , … , ��������� ∪

����������(�)�, ������ ����������(�)�� , … , ���������

Figure 30: Expanding tasks with custom logical links

Figure 30 shows a procedure that determines which tasks have to be expanded based
on all the custom logical links in the workflow. The other custom links (precedence
and synchronization) still use the procedure in Figure 28.

This procedure will only expand tasks on the paths (From(C), RootTask] and (To(C),
RootTask]. Notice that this is the bare minimum, if we expand anything less, we lose
the information about which tasks the custom link connects.

This still satisfies both the necessary conditions for collapsing a task that we
established, since the procedure for temporal constraints remains unchanged and
condition a) obviously holds.

The situation with custom temporal constraints (precedences and synchronizations) is
more complicated, since propagating temporal constraints is not as simple as
propagating logical constraints. We certainly cannot use the same procedure as
above, as illustrated by the simple contra-example below.

Figure 31: Problem with synchronizations

Figure 31 shows a simple workflow where the user requires that two tasks start and
end at the same time (in other words, that they have identical durations). In order to
verify this workflow, we need to fully expand both tasks incident with one of the
links, otherwise we do not know their durations.

In general, temporal constraint propagation is much less transparent and
straightforward than logical links propagation. For this reason, the verification
procedure currently uses no further optimization for temporal constraints.

55

7.6 Verification from the user’s perspective

Despite the underlying complex processes, we tried to make verification as simple as
possible for the user. The user only has to invoke the verification dialog and run the
process. When the verification ends, the result is displayed next to the workflow.

There are three possible results (see The Verify method for details). The workflow
can either be valid (all alternatives accessible), or invalid with either some or all
alternatives inaccessible (the former means that at least one process exists for the
workflow, while the latter means that there is no process at all). The results are
simply visualized as green, orange and red “tick” respectively.

If any problems were detected, the editor displays them in an interactive list, which
can be used to navigate to the particular problem (the view automatically moves over
the relevant object) and to get a simple description of the problem.

Specifically, all the inaccessible alternatives will be in this list. In some cases, this
list will even contain the custom links that caused some inaccessible alternative, but
that is not always possible (due to the way constraints are propagated).

The results of the verification process are saved together with the workflow, so they
can be reviewed later.

Figure 32: Verification example

In Figure 32, the user created an implication custom link from a task that will always
be selected to a child of an alternative task, making the other children inaccessible.
The verification procedure detects this and lets the user know where the problem is.

56

The workflow editor also allows the user to verify a specific way of choosing
alternatives in the workflow. Specifically, it is possible to have the verification
algorithm always choose the preferred alternative (the task on the preferred route) as
the active child in any alternative task.

Due to the fact that the verification procedure only evaluates a single combination of
alternatives, the process becomes polynomial. Also, it can only yield one of two
results – workflow is fully verified, or workflow is invalid (as soon as there is an
inaccessible alternative, the workflow becomes invalid, since we cannot choose
another alternative instead).

This partial verification may be useful if the user is only interested in a particular
way that the process can be executed.

Figure 33: Partial verification

Figure 33 shows a workflow that was verified using only the preferred alternatives
(preferred route is painted red). Activities A1, A2 and A3 have durations equal to 4,
0 and 1 respectively.

The partial verification procedure marks the above workflow as invalid for this
particular choice of alternatives. Although there is a way to satisfy all the constraints
(namely by performing A3 in all the alternative tasks), partial verification only
considers the alternatives on the preferred route, and those do not satisfy the
constraints (A1 has duration of 4, the alternative tasks have total duration of 2 and
the synchronization constraints require those to be equal).

57

8. Import / Export of the Workflows

FlowOpt workflow editor implements both import and export of workflows to
(currently) two formats:

1) MAKE workflows

2) XPDL 2.1

The need to support MAKE workflows comes from the fact that one of the goals of
the FlowOpt workflow editor is full integration into the MAKE application. Since
MAKE uses a different workflow model than FlowOpt, it is very convenient to have
a way of converting one into the other, otherwise FlowOpt workflows couldn’t take
advantage of some of MAKE’s advanced features and vice versa.

XPDL is supported because it is a well-known, standardized format used and
understood by many users and applications, so being able to import / export to and
from XPDL greatly adds to FlowOpt workflow editor’s usability.

8.1 MAKE Import / Export

The workflow model used in MAKE is similar to that of FlowOpt, but it lacks the
tree hierarchy that is characteristic for FlowOpt workflows. Essentially, MAKE
workflow model is a general temporal network with alternatives, as defined in [8].

There are several kinds of objects in MAKE workflows:

 Activities – elementary units of work just like in FlowOpt. Correspond to
nodes in a Simple TNA.

 (Temporal) links – define the order of execution through the precedence
relation (again, same as in FlowOpt). Correspond to temporal links in Simple
TNA.

 Start and end event marking the start and end of the workflow respectively.
There is exactly one start and exactly one end event in a MAKE workflow.

 Activity decorators – any activity can have a parallel or alternative split
decorator and a parallel or alternative join decorator. These mark the parallel /
alternative subgraphs in Simple TNA terminology.

 Semaphore – a special activity that doesn’t correspond to any real work, but
is only meant to carry some decorator. Route activities in XPDL or gateways
in BPMN are a similar concept.

All things considered, MAKE workflows are relatively close to FlowOpt workflows,
which is not surprising considering the fact that FlowOpt workflow editor was
greatly influenced by its counterpart in MAKE. Some workflow objects are even
shared between the two models (activities for instance), which also helps to simplify
the implementation part of the import process.

58

Figure 34: MAKE workflow example

Figure 34 shows a MAKE workflow together with names of the objects in it.

There are several restrictions on the degrees of nodes (activities) in a MAKE
workflow that the import and export procedures take advantage of:

 An activity with no decorators must have input degree = output degree = 1. In
other words, every activity with no decorators must have exactly one
incoming and exactly one outgoing link.

 A start event must have exactly one outgoing link and no incoming links.

 An end event can have no outgoing links.

 An activity decorated with a split decorator must have at least two outgoing
links.

 An activity decorated with a join decorator must have at least two incoming
links.

Export into MAKE

Export into MAKE is rather straightforward – we can take advantage of the tree
structure of FlowOpt workflows and define the procedure of exporting a task
recursively. Exporting a workflow of course means exporting its root task. It also
involves setting some properties that both workflow models have in common to
match, but this isn’t semantically important.

We will describe the export procedure in detail below. We will use the following
notation:

 ��� � ∈ �����: Exported(t) = the fragment of the exported MAKE workflow
that corresponds to t (subgraph that was created by exporting t).

 ��� � ∈ �����: First(t), Last(t) = first and last node of the exported subgraph
corresponding to t. The export procedure uses these to connect the exported
links correctly.

Pseudocode for the procedure that exports a task into MAKE is given below.

59

Figure 35 shows the pseudocode of the procedure that can export a task into the
MAKE workflow model.

In other words, if we want to export a task T into MAKE, then depending on the type
of the task we do the following:

 If the task contains an activity, we don’t have to do anything, just export the
activity. Note that MAKE and FlowOpt actually use the exact same activity
definitions, so this is trivial.

 If the task is serial, export all of its children and connect them with
precedence links in order given by the serial task.

 If the task is parallel or alternative, we need to do several things:

a. Export all of its children

b. Create a semaphore holding a parallel / alternative split depending on
the type of decomposition.

c. Create a semaphore holding a parallel / alternative join depending on
the type of the decomposition.

d. Create a link from the split semaphore into every exported child and
from every exported child into the join semaphore.

In the end, we also have to add the start and end events and connect it to the exported
root task to create a valid MAKE workflow.

We do not define an export procedure for incomplete workflows, that is workflows
that contain an empty task. We could easily modify the above procedure to change
this, for instance by exporting empty tasks as some special activities, but that did not
seem necessary.

Unfortunately the export procedure ignores custom links, since the MAKE workflow
model does not explicitly support them.

First, MAKE only defines temporal links, not logical links. Second, the restrictions
on node input and output degrees listed above complicate things further. For

Procedure ExportTask(Task T)

IF(T ∈ WithActivity)
Export Activity(T)
First(T) = Last(T) = Exported(T)

IF (T ∈ Serial, Children(T) = (c1,c2,…,cn))
ExportTask(ci) for all i = 1..n
FOR (i = 1..n-1)

Add a link between Last(ci) and First(ci+1)
First(T) = First(c1)
Last(T) = Last(cn)

IF(T ∈ Parallel ∪ Alternative)
Create a semaphore S with a parallel / alternative split
Create a semaphore J with a parallel / alternative join
FOREACH(Task c ∈ Children(T))

ExportTask(c)
Create a link between S and First(c)
Create a link between Last(c) and J

First(T) = S
Last(T) = J

Figure 35: Procedure for exporting FlowOpt workflows into MAKE

60

instance, every non-decorated activity must have exactly one incoming and exactly
one outgoing link in MAKE. It should be apparent from the export procedure above
that it will never create an activity with zero incoming or outgoing links. This means
that even if we managed to export the custom link somehow, we couldn’t connect it
to the exported activity without decorating it.

When we decorate an activity, we can connect it to multiple links, however
decorating an activity carries some additional logical constraints – a parallel
decorator implies that all of the nodes connected to it should be executed in parallel,
whereas an alternative decorator implies that exactly one node of those connected to
it should be executed.

This makes it very difficult to find an intuitive way of exporting the custom links that
wouldn’t violate MAKE workflow model and still be intuitive for the user. That is
why we opted not to export the custom links at all. If they prove to be a useful
construct, it should be rather easy to add them to MAKE workflow model, which
would in turn make it easy to export them in a much cleaner way.

All the other information besides the custom links is exported – aspects like layout,
preferred route or activity to resource mapping are preserved. The way this is
implemented is mostly technical and not very interesting conceptually.

61

Figure 36: A workflow exported into MAKE

Figure 36 shows a FlowOpt workflow and its equivalent exported into MAKE.

Import from MAKE

Import is the more interesting problem, because MAKE workflow model does not
define hierarchy and we therefore have to build it somehow. Since MAKE
workflows are essentially Simple TNAs, we can use the algorithm described in [1]
that manages to convert a Simple TNA into a Nested TNA (~FlowOpt workflow
model) in polynomial time, provided that the Simple TNA has a nested structure.

62

Let us now briefly describe the procedure currently used in the presented application
to import workflows from other formats (specifically MAKE and XPDL) into
FlowOpt.

It is based on the algorithm presented in [1], but we made some slight modifications
to reflect the details in which our model differs from Nested TNA – mainly the fact
that we decompose nodes instead of links. Also, the algorithm currently used in the
presented application automatically filters out semaphores / gateways, transferring
the information they carry to the type of the created task.

Below is the pseudo code of the original algorithm presented in [1]. We use the same
notation as in [1], that is:

 The workflow being imported is represented as a graph G whose nodes are
the activities and arcs are the temporal links.

 ∀���� �: ����(�) = {�: (�, �) �� � ����} - predecessors of x in the graph

 ∀���� �: ����(�) = {�: (�, �) �� � ����} - successors of x in the graph

Figure 37 shows pseudocode for the DetectNested procedure that can detect
whether a given Simple TNA is a Nested TNA and if so, it can be used create the
nested structure. The importing procedure for MAKE (and for XPDL as well) is
based on this procedure.

The modified algorithm that is used in the presented application is shown below.

algorithm DetectNested(input: graph G, output: {success, failure})
1. select all nodes x in G such that |pred(x)| = |succ(x)| = 1
2. sort the selected nodes lexicographically according to index

(pred(x), succ(x)) to form a queue Q

3. while non-empty Q do
4. select and delete a sub-sequence L of size k in Q such that

all nodes in L have an identical index ({x}, {y}) and

either |succ(x)| = k or |pred(y)| = k
5. if no such L exists then stop with failure

6. if k > 1 & outLab(x) ≠ inLab(y) then stop with failure

7. remove nodes z∈L from the graph

8. remove nodes x, y from Q (if they are there)

9. add arc (x,y) to the graph (an update succ(x) and pred(y))
10. if |pred(x)| = |succ(x)| = 1 then insert x to Q
11. if |pred(y)| = |succ(y)| = 1 then insert y to Q
12.end while

13.if the graph consists of two nodes connected by an arc then
14. stop with success

15.else stop with failure

Figure 37: The original algorithm for recognizing Nested TNA as presented in [1]

63

algorithm ImportTNA(input: graph G, output: {success, failure})

1. select all nodes x in G such that |pred(x)| = |succ(x)| = 1
2. sort the selected nodes lexicographically according to index

(pred(x), succ(x)) to form a queue Q
3. while non-empty Q do
4. select and delete a sub-sequence L of size k >= 2 in Q such that

all nodes in L have an identical index ({x}, {y}) and
either |succ(x)| = k or |pred(y)| = k

5. if no such sequence exists then
select and delete a sub-sequence L = (x = c1, c2, …, y = ck)

of size k >= 2 in Q such that ∀� = 1. . � − 1: (ci, ci+1) is an arc in G

if no such sequence exists either then stop with failure
6. else if outLab(x) does not match inLab(y) then stop with failure

7. remove nodes z∈L from the graph

8. remove nodes x, y from Q (if they are there)
9. add a new node d and arcs (x,d) and (d,y) to the graph

Create a new task from L and associate it with d
10. if |pred(x)| = |succ(x)| = 1 then insert x to Q

11. if |pred(y)| = |succ(y)| = 1 then insert y to Q
if |pred(n)| = |succ(n)| = 1 then insert n to Q

12.end while

13.if the graph consists of a single node then
14. stop with success

15.else stop with failure

Figure 38: Modified importing procedure

Figure 38 describes the procedure that is used by the presented application to import
MAKE (and XPDL) workflows. It is almost identical to the original algorithm in
Figure 37, but there are some modifications.

The algorithm starts in the same way – we initialize the queue of nodes that have a
single successor and a single predecessor and sort it according to the same index.
Then we repeatedly try to detect a nest and perform a contraction (an opposite of
decomposition – see [1]).

First modification is in the way we detect nests. The original algorithm does not
distinguish serial nests, it treats them as a series of parallel nests of size 1. While this
is semantically correct, it is better to try to detect the serial nests separately if we
want to visualize the workflow.

We first try to detect a parallel / alternative nest like in the original algorithm
(requiring that the nest’s size is at least two, since if it is one it indicates a serial
nest). If we cannot find one, we look for a serial nest instead – we search the queue
and select a sequence of nodes that form a serial nest. If such a sequence does not
exist either, it means there are no more nests and the workflow is not Nested TNA,
so we end with failure.

Another modification is on line 6 – we no longer require that the labels are equal. We
relaxed this requirement a bit and we only need the labels to ‘match’. This change is
introduced for the sake of importing XPDL workflows and will be thoroughly
described later in this document. When importing MAKE workflows, matching is
effectively the same as equality. Notice that we only check the labels if we found a
parallel or alternative nest, serial nests do not have to have matching labels (same as
in the original algorithm).

Next change is on line 9 – instead of contracting the nest into an arc like in the
original algorithm, we create a new node that represents the nest (the decomposed
task). That is a consequence of the fact that we decompose nodes rather than links.

64

We also create a new FlowOpt task from the sequence we found. The new task is
either serial, if we detected a serial nest, or parallel / alternative based on the labels if
we detected a parallel / alternative nest. It is created by grouping the tasks associated
with the nodes within the detected nest, discarding any semaphores. We associate
this new task with the new node somehow so that we build the imported workflow as
the procedure progresses. Initially, every node is associated with a task carrying the
activity represented by the node.

Finally, the change in line 13 is also a consequence of decomposing nodes rather
than arcs – we end when there is a single node left in the graph, rather than a single
arc. The imported FlowOpt workflow’s root task is the task associated with this
single remaining node.

The correctness of this procedure comes from correctness of the original algorithm,
the proposed modifications are mostly technical, they do not change the basic
principles of the algorithm.

The only information omitted by the import procedure are the exact temporal
constraints on the links – MAKE allows specifying both minimal and maximal
distance on any temporal link, whereas FlowOpt only has general precedences and
synchronizations. For the sake of simplicity, we opted to omit the intervals and use
precedences everywhere.

65

Figure 39: A workflow imported from MAKE

Figure 39 shows a MAKE workflow and its equivalent imported into FlowOpt.

8.2 XPDL Import / Export

XPDL is a widely used standard for storing BPMN diagrams that is based on XML1.
Its full specification can be found in [9]. FlowOpt currently supports import and
export to / from XPDL 2.1, which represents BPMN 1.1 workflows.

It should be noted that BPMN specification in version 2.0 defines its own XML
schema for data exchange. However when we were trying to make a decision on
which format to support, this standard was very young and therefore not as widely
supported as XPDL. XPDL was already a proven industry standard at the time, so we
elected to support it over other formats.

Export into XPDL

The key question in exporting workflows into XPDL was again the mapping of
FlowOpt objects to XPDL objects. First of all, FlowOpt activities are mapped to
XPDL activities (specifically to activities with no implementation). XPDL activities
support the notion of resources (called performers / participants in XPDL
terminology), so we can export those as well.

1 eXtensible Markup Language, a standard format for data exchange

66

MAKE / FlowOpt defines three types of resources – a single resource, a resource
group and a resource mode. Fortunately, all of them have their equivalents in XPDL,
so we can export them with little trouble.

A single resource in MAKE is mapped to a single resource in XPDL. A resource
group in MAKE is essentially a set of resources that have some common capability
(operators, workers …). If an activity has a dependency on a resource group, it
means we can allocate an activity on any of the resources within the resource group.
This corresponds to the concept of a role in XPDL.

The third resource type in MAKE are modes, which is again a set of resources, but to
satisfy a dependency on a mode, all of the resources in it have to be allocated. This
corresponds to a resource set in XPDL terminology.

Moving on, FlowOpt precedence links are mapped on flow links in XPDL. It should
be pointed out that the semantics aren’t exactly the same. FlowOpt precedence links
represent just a simple precedence relation, whereas XPDL flow links are defined in
a way based on links in Petri nets (see the Comparison chapter). In simple nested
workflows like those created by the FlowOpt workflow editor, the difference is not
too significant though. Besides, XPDL only defines flow links, so there is little
choice in the matter.

FlowOpt tasks are mapped on XPDL block activities / activity sets, which is a very
similar concept. A block activity in XPDL is an activity that contains some
independent workflow, which is called an activity set. In order to execute the block
activity, the activity set has to be executed. In BPMN, this corresponds to a sub-
process. FlowOpt tasks are almost identical to BPMN processes in terms of both
semantics and the way they are displayed, so mapping them on each other is very
intuitive for the user.

Finally, the custom links again aren’t exported. There are two problems in exporting
the custom links. First, XPDL doesn’t define any direct equivalents of FlowOpt
custom links. As stated above, flow links are the only link type supported, so any
mapping would have to be done through some complex conditions on the links or
through extra events simulating the original custom links, which would be rather
unintuitive for the user.

The other problem is that XPDL doesn’t allow any links to cross the boundaries of an
activity set (a sub-process). Since custom links in FlowOpt can (and usually do)
cross the boundaries of tasks, exporting custom links would mean not mapping tasks
onto activity sets. Seeing as task hierarchy is the core defining feature of FlowOpt
workflows, we definitely wanted it preserved in the exported document wherever
possible.

In terms of conformance, the structure of FlowOpt workflows corresponds to the
FULL_BLOCKED graph conformance class of XPDL. The BPMN model portability
conformance is set to standard. FlowOpt currently produces XPDL files that are valid
with respect to XPDL schema of version 2.1. Exported workflows were tested in two
third party applications (Together Workflow Editor and BizAgi Process Modeller)
and both displayed them correctly.

67

68

Figure 40: A workflow exported into XPDL (parts)

Figure 40 shows a FlowOpt workflow exported into XPDL. The result is displayed in
the Together Workflow Editor and due to the size of the resulting diagram we only
show parts of it (TWE displays subprocesses on separate screens).

69

Import from XPDL

Importing workflows from XPDL (BPMN) is significantly more complicated than
importing them from MAKE, since the XPDL workflow model is much richer.
Seeing as XPDL defines many objects that have no equivalents in the FlowOpt
workflow model and the semantics of even the most basic workflow objects is
somewhat different, we have to accept the fact that some information will be lost
during the import procedure and some workflows simply cannot be imported.

That is why our goal wasn’t to fully map the XPDL model to the FlowOpt model, but
rather to create a procedure that preserves as much information as possible while still
producing workflows that are visually similar to the original. That way the user will
be able to import a workflow reasonably close to the original in most cases.

It should be pointed out that the exact results of the import procedure depend on how
close the input XPDL file is to the XPDL 2.1 specification. Unfortunately, full
conformance doesn’t seem to be a standard, but the files are usually close enough.

FlowOpt workflow editor can validate input files against the XPDL 2.1 schema and
if the validation fails, the user may decide whether the import procedure should be
attempted anyway. The reason for this is that some tools produce files that do not
fully conform to the schema, but they are close enough for the import procedure to
work.

The XPDL files listed in this section were created in the Yaoqiang XPDL editor [10],
which seems to produce reasonably accurate files.

Import procedure

We used the same basic algorithm for importing nested workflows as in the MAKE
import procedure, but we made a small extension in order to support some XPDL
patterns that aren’t present in the Simple TNA model.

The problem is that the original algorithm (see Figure 37) only recognizes two types
of routing – parallel and alternative. However in XPDL / BPMN, there is another
type – inclusive. Inclusive routing allows any (non-empty) subset of all the relevant
activities to execute.

This pattern falls somewhere “between” the parallel and alternative nest patterns
recognized by FlowOpt - the former forces all the child nodes to be performed and
the latter forces exactly one child node to be performed. An inclusive nest allows any
possible non-empty subset of the child nodes to execute.

If we want to import inclusive nests into FlowOpt, we have three choices:

1) Extend FlowOpt workflow model. This choice was generally out of the
question, since for the moment, the FlowOpt data model is final (other
FlowOpt modules’ functionality relies on this fact).

2) Map inclusive nests into either parallel or alternative nests. This would mean
creating a workflow that is not equivalent to the original, but it would be
similar.

3) “Simulate” the inclusive nests by creating an alternative nest with one
alternative for every possible subset of the child tasks of the original nest.
This would create a workflow that is semantically closer to the original at the
cost of creating an exponential number of tasks.

70

We chose the second option, because an exponential increase of size between the
original and the imported workflow is unacceptable for the potential user. It is also
very ineffective, since the workflow eventually has to be scheduled and/or saved to
be of any use.

Note that even if we did convert the inclusive nests by explicitly creating an
alternative for every way they can be performed, the result still wouldn’t be
equivalent to the original, because we have no way of importing the conditions on
the links that XPDL uses to determine which subset eventually gets executed.

Now that we established that we need to convert XPDL inclusive nests into either
parallel or alternative FlowOpt nests, we have to decide which one is the better
option.

In BPMN/XPDL, all splits are inclusive by default and all joins are exclusive by
default (this default behavior is commonly referred to as uncontrolled flow). This
means that if we statically map inclusive nests to either parallel or alternative, some
standard pattern won’t be imported:

 If we map to parallel nests, we won’t be able to import the following pattern
(called multiple merge):

Figure 41: XPDL inclusive routing 1

In Figure 41, we map the (inclusive) split on activity ‘A’ to parallel, while the
join on activity ‘D’ is by default exclusive (alternative in FlowOpt
terminology). The original algorithm would report an error when trying to
import this workflow, since the two routing types are different.

 On the other hand, if we map inclusive to alternative nests, the situation is
even worse - we wouldn’t be able to import the standard parallel split pattern:

Figure 42: XPDL inclusive routing 2

In Figure 42 we map the (inclusive) split on activity ‘A’ to alternative and the
join on the synchronization gateway is parallel by definition. This would
again produce an error in the original algorithm.

71

To summarize, if we want to be able to import both the above patterns, we cannot
map the inclusive nests statically. The import procedure we used tackles this problem
by extending the original import algorithm with an extra label type called ‘Any’. If a
node has (input or output) label equal to ‘Any’, it means that it can create either a
parallel or an alternative nest, depending on the label of the other principal node (we
are using terminology introduced in [1]).

To implement this behavior, we relax the original algorithm a bit – we no longer
require the labels of both the principal nodes to be equal when trying to create a nest.
In case either of them is set to ‘Any’, we create a nest determined by the type of the
other principal node.

If both labels happen to be set to ‘Any’, we can choose whether to create a parallel or
an alternative nest. We chose to create a parallel nest in such a case, since the
uncontrolled flow is so often used to model a parallel split and the user would
probably expect such behavior.

If neither label is set to ‘Any’, we require them to be equal, like in the original
algorithm.

The above functionality is referred to as ‘matching’ of labels in the algorithm
presented in Figure 38 and its description. It didn’t matter when importing MAKE
workflows, since the MAKE model is simpler and does not define inclusive routing.
In other words, no node has the ‘Any’ label when importing MAKE workflows, so
‘matching’ becomes the same as equality in that particular case.

XPDL to FlowOpt mapping

We already described the mapping of inclusive nests. This section describes the
mapping of the other XPDL objects into FlowOpt workflow model.

XPDL packages and processes

An XPDL package is a top level container for workflow processes, which correspond
to individual workflows. Obviously workflow processes are mapped to FlowOpt
workflows.

Packages are mapped to FlowOpt workflow editor folders, but note that these are
only defined by the workflow editor and they aren’t a part of FlowOpt data model, so
this is only for the user’s convenience.

XPDL activities

In XPDL, activities are a much broader concept than in FlowOpt. They are the only
type of nodes present in XPDL diagrams, but based on their properties, their
semantics can vary drastically. There are several different kinds of activities in
XPDL:

 Simple activities

 Block activities / Subflows (Embedded / Reusable subprocesses)

 Gateways

 Events

72

Simple activities in XPDL correspond to activities in FlowOpt, representing some
elementary unit of work to be done. As such, they are mapped onto FlowOpt
activities.

Note that the terminology can be a bit misleading here, since both FlowOpt and
XPDL define the concepts of a task and an activity, but they aren’t the same.

In XPDL, a task is a specific way of implementing an elementary activity (manually,
via a service, via a script…). In other words it is just an attribute of an activity. Tasks
aren’t imported from XPDL, since FlowOpt activities do not have any alternative
means of implementation (it is always manual).

Block activities and subflows are a concept similar to FlowOpt tasks – they represent
an independent nested workflow that is to be executed in place of the activity. The
difference is that block activities represent other parts of the same workflow (called
activity sets in XPDL terminology), while a subflow refers to an entirely different
workflow process.

In BPMN, the corresponding terms are embedded and reusable subprocesses. The
former roughly corresponds to block activities, the latter to subflows.

Currently, both embedded and reusable subprocesses are mapped onto tasks, since
the concepts are very similar. However, one of the planned extensions of the
FlowOpt workflow model is the ability to link a task to entire independent workflow,
which would be a more appropriate mapping for the subflows / reusable
subprocesses.

Gateways are a concept similar to MAKE’s semaphores – activities representing no
work, but affecting the execution flow somehow. In FlowOpt, these flow constraints
are stored in tasks, so semaphores do not directly translate into anything. They just
define the types of tasks that are created.

Finally, events in XPDL represent something that happens during the workflow
execution. There is no such concept in FlowOpt, so any mapping of these is
problematic. There are three kinds of events – start events, end events and
intermediate events.

The first two serve to mark the beginning and end of a workflow and as such, they
aren’t mapped to anything, FlowOpt workflows implicitly start when their root task
starts and end when their root task ends.

Intermediate events represent things that can occur while the workflow is being
executed. As stated above, there is no such thing in FlowOpt, since FlowOpt
workflows do not have any connection to runtime. We chose to map intermediate
events to empty tasks, so that at least some information is preserved, but the resulting
workflow can be significantly different from the original. Since the workflow editor
allows the user to delete all empty tasks in a workflow at once, this shouldn’t be too
limiting in terms of usability.

73

XPDL links

XPDL defines the following types of links:

 Sequence flow

 Message flow

 Associations

Sequence flow links are the most important, as they define the order of execution. As
such, they are mapped on FlowOpt precedence links. As we already mentioned in the
description of the XPDL export procedure, these are not semantically equivalent.

FlowOpt precedence links simply represent a (temporal) precedence relation,
whereas XPDL sequence flow links explicitly define the order of execution in a way
similar to that of Petri nets – an execution token travels over the sequence flow links,
causing whatever activities it encounters on the way to execute (please see
XPDL/BPMN specification for a more formal definition).

This difference doesn’t really matter when workflows follow a simple workflow
model like that of FlowOpt, so it wasn’t much of an issue when we exported into
XPDL. However when we want to import from XPDL, we have to realize that some
of the more complex workflow patterns that can be modeled in XPDL will not
translate into FlowOpt due to this difference. We will provide a list of standard
workflow patterns and how they can translate from XPDL later in this chapter.

Message flow links represent message passing between two participants and they can
only connect activities in different pools. FlowOpt defines no way to visualize pools
or message passing, so we chose to omit the message flow links.

Associations serve to connect an activity with an artifact, which is some kind of
additional information that is not semantically a part of the workflow, such as a
comment. Once again, FlowOpt defines no such concepts, so we do not import those.

Routing information

XPDL defines three types of routing in case an activity has multiple incoming or
outgoing (flow) links:

 Parallel

 Exclusive

 Inclusive

Parallel and exclusive correspond to the semantics of FlowOpt parallel and
alternative tasks respectively, so naturally we map them to the corresponding task
type.

Inclusive routing means that (potentially) any non-empty subset of all the connected
activities is to be executed. We already described the mapping of those in the general
description of the import procedure.

74

Participants

XPDL participants are a concept similar to FlowOpt resources – some people or
machines capable of performing an activity. As such, they should be mapped onto
FlowOpt resources, but this feature is currently not implemented due to some
technical complications. It is a work in progress though.

Pools, lanes, applications…

In XPDL, pools and lanes visualize which participants perform which parts of the
workflow. In FlowOpt, we have no way of doing that, therefore pools and lanes
aren’t imported.

XPDL applications aren’t imported for the same reason - there is no equivalent, since
FlowOpt resources can only be people or machines, which reflects the fact that
FlowOpt workflows primarily describe manufacturing processes.

Any other XPDL objects not explicitly listed above are also not imported, either
because they have no equivalent or because they aren’t very significant.

Standard workflow patterns

To illustrate how the import procedure works, this section briefly describes how the
standard workflow patterns [11] are imported when the procedure from Figure 38 is
used.

Starting from the simplest patterns, sequence maps into a serial task, parallel split
and synchronization create a parallel task and an exclusive choice together with a
simple merge creates an alternative task.

This should be fairly obvious, as these are nearly equivalent concepts. As long as the
workflow only contains these patterns, the resulting FlowOpt workflow should be
almost equivalent to the original.

75

Original Pattern Imported Workflow

Figure 43: Mapping of basic patterns

Figure 43 shows how the import procedure maps the most basic patterns (sequence,
parallel and alternative nests).

76

Multiple choice and multiple merge are an example of inclusive routing, which
means that the type of the resulting task depends on the type of the other principal
node’s label. If it is parallel or alternative, the resulting task is also parallel or
alternative (respectively). If it is also inclusive, the resulting task is parallel (see the
description of the import algorithm for details).

Original Pattern Imported Workflow

Figure 44: Mapping of multiple choice and multiple merge

Figure 44 shows how the multiple choice and multiple merge patterns are imported.

77

Discriminator is mapped to an alternative task, which seems to be a reasonable
interpretation in terms of the FlowOpt workflow model. One could argue that since
discriminator allows more than one incoming activity to execute, it should be
mapped to a parallel task, but since the pattern uses an exclusive join, it seems more
intuitive to use an alternative task.

Original Pattern Imported Workflow

Figure 45: Mapping of discriminator

Figure 45 shows how the discriminator pattern is imported.

Due to the way we chose to map inclusive splits/joins, both the N out of M join
pattern and the synchronizing merge pattern translate to parallel tasks (complex
gateways are treated in the same way as if they were inclusive).

Original Pattern Imported Workflow

Figure 46: Mapping of N out of M join and synchronizing merge

Figure 46 shows how the N out of M join and synchronizing merge patterns are
imported.

The arbitrary cycles pattern isn’t imported – FlowOpt doesn’t support cycles in
workflows at all, so the import algorithm will end with an error if one is found.

One way to get around this would be to delete some of the links based on some kind
of heuristics, but since this entire pattern revolves around those extra links, this
approach seems to beat the whole purpose of trying to import it.

78

The implicit termination pattern also doesn’t have an equivalent in FlowOpt.
However the import procedure does support multiple start events and multiple end
events (or no start / no end events for that matter).

It does so by automatically merging all the start / end events into a single start / end
event with the ‘Any’ label, so in the end only one task can be created that represents
the entire workflow. After that, the single start event is connected to all the nodes
with no incoming links and the single end event is connected to all the nodes with no
outgoing links.

Original Pattern Imported Workflow

Figure 47: Mapping of implicit termination

Figure 47 shows how the implicit termination pattern is imported.

There are several patterns involving multiple instances, but FlowOpt currently
doesn’t support this concept either. Workflows containing these patters can be
imported in general, but the information on how many times a particular activity is to
be instantiated is lost in the process.

Supporting multiple instances is a planned feature of the FlowOpt workflow editor,
so it is likely that these patterns may be imported fully at some point.

Deferred choice also has no equivalent in FlowOpt, since it relies on events, which
generally do not translate. Since events map to empty tasks, we can still import the
workflow, but the pattern will be lost in the process.

Original Pattern Imported Workflow

Figure 48: Mapping of deferred choice

Figure 48 shows how the deferred choice pattern is imported.

The remaining patterns do not translate well into FlowOpt, since they rely on some
concept that doesn’t exist in FlowOpt (usually an event of some kind).

Interleaved parallel routing doesn’t translate, since in FlowOpt the order of any
sequence has to be given. It is imported as any other subprocess, that is as a parallel
task by default.

79

Milestone cannot be imported at all, since it relies on link events, which (like all
events) are do not translate into FlowOpt. Cancellation patterns do not translate for
the same reason.

Figure 49: Imported XPDL workflow

Figure 49 shows an example of a XPDL workflow (visualized again in Together
Workflow Editor) imported into FlowOpt that should illustrate how the nested
structure is created by the import procedure. Notice that the order of the child tasks is
preserved.

80

One of the attachments to this thesis is a file called ‘Piston.xpdl’. This file contains
the piston workflow shown in several examples in this thesis exported into XPDL
format by the presented application. Importing it yields an identical workflow to the
original, except for custom links.

81

9. Conclusions

We believe we managed to deliver a working application that meets all the software
requirements formulated in the beginning of the development process, both
functional and non-functional.

It represents manufacturing processes in a simple, lightweight and efficient way
while providing a different and hopefully innovative and usable approach to many
aspects of workflow modelling.

This thesis adds several important features that weren’t implemented during the
works on the FlowOpt software project – namely workflow verification and import
and export to and from other workflow formats.

From the reactions of some potential users, it appears that the application could
provide a viable alternative to other workflow editors. It was presented on the
ICAPS1 conference in Freiburg [14] and the reactions were quite positive.

Some users also provided negative feedback, but it was mostly due to the fact that
they were used to the traditional way of building workflows and preferred it to our
proposed model. This is to be expected, our application was always meant as an
alternative, not a replacement for existing solutions.

It is worth mentioning that there was no negative feedback regarding functionality,
the workflow editor was tested thoroughly and the result should be of reasonable
quality. The application is well documented, both for the potential user and a
potential developer maintaining it.

Currently the works on integration of the FlowOpt project are being finished and
once they are, all of its modules will hopefully be evaluated by a larger number of
users, which will provide valuable feedback on how much potential our approach has
and how it could be extended or improved.

1 International Conference on Automated Planning and Scheduling

82

10. Future works

There are several planned features that should be implemented in the near future.
Some of them are just for user convenience, others extend the workflow model
considerably. These features include:

 Defining activities directly in the workflow editor, rather than in the MAKE
application.

 Using the automatic layout and the nested structure to represent the BOM
(Bill Of Materials) of MAKE. BOM is an object that describes the structure
of a particular product. It is essentially a tree of various parts that the product
consists of. It would be useful to provide an intuitive visualization of this
concept and the nested model could definitely be utilized to do this, since it
also represents a tree structure.

 Implementing tasks as workflows – the user should be able to link a separate
workflow into an empty task to have it performed in place of that task.
Currently the editor lets the user insert a workflow into an empty task, but
this inserted workflow is an independent copy of the original. It would be
useful to just create a link between the two workflows, so that updates in the
linked workflow would manifest in the referencing workflow as well.

 Implementing the multiple instances patterns. This could be a very powerful
tool used to model loops in our editor. The user would be able to specify that
a task should be performed multiple times (either in parallel or in a
sequence).

 Import work orders from MAKE. It would be convenient to be able to import
whole work orders instead of just workflows. For example the user could use
the FlowOpt optimizer and analyzer to schedule and optimize the work order.

83

Bibliography

[1] BARTÁK, Roman; ČEPEK, Ondřej. Nested Temporal Networks with
Alternatives. Hans W. Guesgen, Gerard Ligozat, Jochen Renz, Rita V. Rodriguez
(Eds.): Papers from the 2007 AAAI Workshop on Spatial and Temporal Reasoning,
Technical Report WS-07-12, AAAI Press, 2007, pp. 1-8 (ISBN: 978-1-57735-339-3).
Available from <http://ktiml.ms.mff.cuni.cz/~bartak/downloads/AAAI2007ws.pdf>.

[2] BPMN 1.1.: Object Management Group, January 2008
Available from <http://www.bpmn.org/Documents/BPMN_1-1_Specification.pdf>.

[3] VAN DER AALST, Wil. Workflow Patterns [online]. 2010 [cit. 2011-07-25].
Available from <www.workflowpatterns.com>.

[4] MURATA, Tadao . Petri Nets : Properties, Analysis and Applications.
Proceedings of the IEEE. April 1989, vol.77 no.4

[5] Wikipedia [online]. 2011 [cit. 2011-07-25]. Work Breakdown Structure.
Available from <http://en.wikipedia.org/wiki/Work_breakdown_structure>.

[6] TSAMARDINOS, Ioannis; POLLACK, Martha. Efficient solution techniques
for disjunctive temporal reasoning problems. Artificial Intelligence, Volume 151
Issue 1-2. February 2003.

[7] PLANKEN, L.R. New Algorithms for the Simple Temporal Problem. Delft,
the Netherlands, 2008. 75 p. Master’s thesis. Delft University of Technology.

[8] BARTÁK, Roman; ČEPEK, Ondřej. Temporal Networks with Alternatives:
Complexity and Model. Proceedings of the Twentieth International Florida AI
Research Society Conference (FLAIRS 2007). AAAI Press, 2007, pp. 641-646 (ISBN
978-1-57735-319-5) .
Available from <http://ktiml.ms.mff.cuni.cz/~bartak/downloads/FLAIRS2007.pdf>.

[9] XPDL 2.1. Hingham, MA 02043 USA : Workflow Management Coalition,
October 2008. 217 p. Available from
<http://www.wfmc.org/index.php?option=com_docman&task=doc_download&Itemi
d=72&gid=132>.

[10] Yaoqiang XPDL Editor [online].

Available from <http://sourceforge.net/projects/yxe/>.

[11] WHITE, Stephen. Process Modeling Notations and Workflow Patterns. .
Available from
<http://www.bpmn.org/Documents/Notations_and_Workflow_Patterns.pdf>.

[12] YAWL Foundation [online].
Available from <http://www.yawlfoundation.org/>.

[13] BARTÁK, Roman: On Complexity of Verifying Nested Workflows with
Extra Constraints. To appear in Proceedings of 14th Czech-Japan Seminar on Data
Analysis and Decision Making under Uncertainty

[14] BARTÁK, Roman, et al. FlowOpt: A Set of Tools for Modeling, Optimizing,
Analyzing, and Visualizing Production Workflows. Proceedings of ICAPS 2011
System Demonstrations. 2011, pp. 6-9.

84

List of Figures

Figure 1: Example of a workflow .. 2
Figure 2: MAKE workflow example ... 6
Figure 3: Nested TNA workflow example ... 8
Figure 4: A more complex BPMN example ... 9
Figure 5: YAWL workflow example ..11
Figure 6: Task types ...14
Figure 7: Custom synchronization link of type End to End ...16
Figure 8: A complete FlowOpt workflow ...17
Figure 9: A schedule for a FlowOpt workflow..18
Figure 10: Custom link notation example ...21
Figure 11: Orientation and child task align ...27
Figure 12: Task collapsing and overview..28
Figure 13: Workflow outline ..28
Figure 14: Task collapsing ...29
Figure 15: Traditional way to build workflows ...30
Figure 16: Decomposing tasks..31
Figure 17: Assigning an activity ...32
Figure 18: Streamlined decomposition..32
Figure 19: Custom links creation..33
Figure 20: Task grouping ...33
Figure 21: The Verify method pseudocode ...41
Figure 22: The IterateAlternative method pseudocode ..43
Figure 23: The ActivateTask method pseudocode...44
Figure 24: The PropagateConstraint method behavior...46
Figure 25: The DeactivateTask method pseudocode ...47
Figure 26: The FixParallel method pseudocode ..47
Figure 27: The modified ActivateTask method pseudocode ..51
Figure 28: Simple way of collapsing tasks ..52
Figure 29: Example of task collapsing..53
Figure 30: Expanding tasks with custom logical links ...54
Figure 31: Problem with synchronizations ..54
Figure 32: Verification example ...55
Figure 33: Partial verification...56
Figure 34: MAKE workflow example...58
Figure 35: Procedure for exporting FlowOpt workflows into MAKE59
Figure 36: A workflow exported into MAKE ...61
Figure 37: The original algorithm for recognizing Nested TNA as presented in [1]62
Figure 38: Modified importing procedure...63
Figure 39: A workflow imported from MAKE..65
Figure 40: A workflow exported into XPDL (parts)..68
Figure 41: XPDL inclusive routing 1..70
Figure 42: XPDL inclusive routing 2..70
Figure 43: Mapping of basic patterns..75
Figure 44: Mapping of multiple choice and multiple merge ..76
Figure 45: Mapping of discriminator ..77
Figure 46: Mapping of N out of M join and synchronizing merge77
Figure 47: Mapping of implicit termination ..78
Figure 48: Mapping of deferred choice...78
Figure 49: Imported XPDL workflow...79

85

List of Abbreviations
(Nested) TNA (Nested) Temporal Networks with Alternatives

BOM Bill Of Materials

BPMN Business Process Modeling Notation

Business Process Model and Notation

CDM Common Data Model

DAG Directed Acyclic Graph

DFS Depth First Search

DTP Disjunctive Temporal Problem

ICAPS International Conference on Automated Planning and Scheduling

IFPC Incremental Full Path Checking

JPEG Joint Photographic Experts Group

OMG Object Management Group

PDF Portable Document Format

PNG Portable Network Graphics

STN Simple Temporal Network

STP Simple Temporal Problem

SVG Scalable Vector Graphics

TWE Together Workflow Editor

UML Unified Modeling Language

WBS Work Breakdown Structure

XML eXtensible Markup Language

XPDL XML Process Definition Language

YAWL Yet Another Workflow Language

	Introduction
	Workflows in General
	FlowOpt and MAKE
	Existing Solutions
	MAKE
	Nested TNA
	BPMN / XPDL
	YAWL
	Comparison

	FlowOpt Workflows
	Activities
	Tasks
	Custom links
	Example

	Formal Definition of the Workflow Model
	Workflow objects
	Constraints on workflow objects
	Building FlowOpt workflows

	Features of the Workflow Editor
	Visualization
	Navigation
	Building workflows
	Task decomposition
	Activity assigning
	Custom link creation
	Other actions

	Miscellaneous features

	Workflow Verification
	Problem definition
	Verifying workflows without custom links
	General workflow verification algorithm
	Core verification algorithm
	Propagating constraints
	The Verify method
	The IterateAlternative method
	The ActivateTask method
	The DeactivateTask method
	Propagating constraint type 6.c
	Core algorithm complexity
	Core algorithm correctness

	Simplifying the workflow
	Modified algorithm
	Simple way of collapsing tasks
	Further optimizations

	Verification from the user’s perspective

	Import / Export of the Workflows
	MAKE Import / Export
	Export into MAKE
	Import from MAKE

	XPDL Import / Export
	Export into XPDL
	Import from XPDL
	Import procedure
	XPDL to FlowOpt mapping
	XPDL packages and processes
	XPDL activities
	XPDL links
	Routing information
	Participants
	Pools, lanes, applications…
	Standard workflow patterns

	Conclusions
	Future works
	Bibliography
	List of Figures

