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Introduction

Workflows are a very important tool in business modeling, since they provide 
intuitive visual representation of business processes. Such a representation can be 
used for many purposes. Simple workflows may serve just for illustration of a 
particular process, while more complex ones can actually be used to simulate and 
even schedule the execution of a process. 

Since utilizing such a tool in a business can increase its overall performance 
considerably, various workflow solutions have been developed, both standardized 
and proprietary, good examples being BPMN1, YAWL2 or MAKE3. 

The purpose of this thesis was to implement a similar system for workflow modeling, 
but with particular software requirements in mind. The presented system was to be 
simple, effective and expressive enough to represent manufacturing processes 
(workflows used in factories to manufacture various products). In particular, it 
should utilize the Nested TNA4 workflow model presented in [1] and show its 
usability in practical scenarios. 

In the first part of the thesis, we describe general workflows and their various uses in 
more detail to provide the necessary context for this thesis. 

We briefly describe the background of this thesis and its connection to the FlowOpt 
software project and the MAKE system, into which the presented application is fully 
integrated, since these two systems determined most of the software requirements on 
the presented application.

Then we mention some of the widely used workflow modeling tools that served as an 
inspiration for this thesis while pointing out which of their features were of particular 
importance for the presented application. 

The rest of the thesis will describe all of the presented application’s most important 
features, particularly the implemented workflow model, workflow visualization, 
workflow verification and support for the standardized XPDL5 format.

Full documentation of the presented application is available as one of the 
attachments of the thesis, together with the application itself.

                                               
1 Business Process Modeling Notation

2 Yet Another Workflow Language

3 ManOpt MAKE – a commercial system for modeling of manufacturing processes

4 Temporal Networks with Alternatives

5 XML Process Definition Language
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1. Workflows in General

A workflow is essentially a special kind of graph describing some work process. The 
nodes in such graphs usually represent units of work (commonly called activities) 
and links represent the order of execution of these activities.

Depending on the complexity of the particular workflow model, other types of 
objects may be defined, like events that happen while performing the process or 
resources used by the activities.

As a visual representation, workflows are much more illustrative and concise than 
full textual description of the process. Depending on how much information the 
workflow contains, they can be used for anything from simple visual demonstration 
to guiding and optimizing the actual execution of the process.

To illustrate the concept, we provide an example of  a simple workflow describing 
the general process of handling an order in a shop.

Figure 1: Example of a workflow

Figure 1 shows a simple workflow that was created using the BPMN notation, which 
is widely used and understood by many users and organizations. 

The workflow starts when the shop receives an order. This event is explicitly 
represented by the green circle. After that, the order is processed to determine 
whether the requested goods are available. 

The order processing is an example of an activity – some unit of work that needs to 
be done. Activities are the basic building blocks of all workflows and in this 
particular notation, they are represented as green rounded rectangles.

Note that the order of execution is given by the black arrows – these are called flow 
links in BPMN. Since the order of execution isn’t always linear, it is necessary to 
have some constructs that can represent branching. In BPMN, these are called 
gateways and they are represented as diamonds.

We can see that when the order is processed, the execution comes to one such 
gateway – the ones marked with an ‘X’ symbol are exclusive gateways, meaning that 
the flow can go in exactly one of several possible ways.

In this case the worker may determine that it is possible to fulfill the order or that the 
order has to be rejected, for instance because the requested goods aren’t available at 
the moment.



3

Notice that after the flow diverges in the exclusive gateway, it later converges again 
in a gateway of the same type. Such patterns will be referred to as nests in this 
document. Nests are a very important concept for the presented application, as we 
will show in later chapters.

If the order can be fulfilled, the execution comes to another type of gateway – a 
parallel gateway. This means that all the subsequent activities are to be performed in 
parallel, since they are independent on each other. 

Here we would prepare the order (a worker has to bring all the requested items from 
the warehouse) and prepare shipping for the package. Since these activities are 
independent, it is more effective to have them done in parallel.

After that, the execution flow comes to another parallel gate, which represents the 
synchronization point for the two activities we performed in parallel. Both of the 
activities must be finished before the process continues past the synchronization 
point. The two parallel gateways and the activities between them are another 
example of a nest. 

When the order is handled (either fulfilled or rejected), we send a response to the 
customer and mark the order as closed. The red event indicates the end of the 
process.

Although this example is greatly simplified, it should be enough to illustrate the 
general purpose and strengths of workflows (note that the textual description of the 
process far exceeds the workflow in size, even for this simple example). 

Depending on our requirements, we could utilize this workflow merely to explain the 
process to new employees, or we could have complex software that automatically 
receives orders, schedules the activities in time in the order described by the 
workflow and assigns them to specific employees. The larger the shop gets, the more 
important it is to do these things effectively.

Even though we used a specific workflow notation (BPMN), the objects introduced 
in this workflow (activities, gateways, flow links and events) are defined by most of 
the existing workflow models. They represent the basic building blocks that are 
commonly used to create workflows.
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2. FlowOpt and MAKE

This chapter briefly describes the background of this thesis to give the reader a 
general idea of the context in which the presented application was developed.

The presented workflow editor is a part of the FlowOpt software project. The general 
purpose of FlowOpt was to provide a feature-rich, easy to use framework for 
designing and scheduling of manufacturing processes.

Manufacturing processes are a subset of general business processes. They describe
the manufacturing of various products in factories. The workflow models 
representing them are usually not as expressive as those representing general 
business processes, since manufacturing processes are not as complex.

Instead, the focus is on the ability to efficiently schedule the work described by the 
workflow in time - there are specialized tools that can automatically generate a 
complete plan of works based on a workflow. The workflow editor must support this 
process with a suitable workflow model.

The FlowOpt project includes five cooperating modules – a workflow editor (the 
presented application), a work order manager for entering orders placed by the 
customers, an optimizer module that schedules the workflows, a schedule visualizer 
that displays the schedules as Gantt diagrams and an analyzer module that can be 
used to optimize the process.

The intended way that FlowOpt should be used is as follows:

1) The user creates a workflow in the workflow editor. This workflow describes 
how a particular product is manufactured. It contains all the information 
necessary to create a schedule, like resource requirements and durations of 
various activities.

2) A work order is created in the work order manager module. A work order is 
simply a list of requested products with quantities and some kind of deadline.

3) The optimizer creates a schedule for this work order. A schedule assigns an 
exact time and performer for each activity that has to be done in order to 
fulfill the work order. In other words, it automatically assigns work to 
employees. Furthermore, the optimizer tries to assign the work so that the 
overall cost of fulfilling the order is as low as possible, so its performance has 
great impact on the productivity of the factory.

4) The schedules created by the optimizer can be visualized and modified in the 
schedule viewer.

5) The schedules can also be analyzed by the analyzer module. This analysis 
yields suggestions as to what actions should the factory perform to make the 
process more effective, like buying a new resource for example.

There is a close connection between the FlowOpt project and the ManOpt MAKE 
system – since the general goals of the two systems are quite similar, we cooperated 
with the ManOpt Company during the development of FlowOpt. 

ManOpt developers provided us with valuable technical insights, shared their 
experiences in workflow modeling and provided us with some powerful commercial 
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tools that we could use to develop our application. In exchange, we integrated our 
modules (including the presented application) into the MAKE system. This meant 
unifying the workflow model (and the data model in general) across all the FlowOpt 
modules. It also brought additional requirements on functionality and usability, since 
the MAKE application is a commercial product.

The FlowOpt software project was successfully defended in June 2011. Once all of 
its modules are fully integrated into the MAKE system, it will be possible to evaluate 
its performance on real manufacturing scenarios.

Further description of the FlowOpt project is beyond the scope of this document, 
however its full documentation (user, development and programmer) and installation 
are available as an attachment to this thesis.
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3. Existing Solutions

Since workflows are such a powerful concept, naturally there are many systems that 
support and utilize them. An important part of this thesis was analyzing some of the 
more successful workflow systems and combining their principles with some of our 
own ideas to create an application that best suits our particular requirements.

We discuss the properties of four existing workflow models (and systems that 
implement them) – MAKE, Nested TNA, BPMN and YAWL. These were the most 
significant inspirations for the presented application.

3.1 MAKE

MAKE is a complex commercial system developed by an Irish company called 
ManOpt1. It includes a workflow editor and a proprietary workflow model that 
focuses on manufacturing processes.

Besides a workflow editor, MAKE provides other modules that let the user manage 
work orders or even assign work to employees based on the defined workflows. It is 
an example of a proven, powerful application that uses workflows to increase
business performance considerably. 

This system was of particular importance, because we cooperated with ManOpt from 
the very start of the development process and the presented application was intended 
to provide an alternative to MAKE’s built-in workflow editor to determine the 
viability of some proposed ideas (mainly the Nested TNA model).

The workflow model of MAKE is quite simple, as mentioned above it doesn’t model 
general business processes, but it focuses on manufacturing only. This means that it 
isn’t as expressive as other, more general models, but it is sufficient for its specific 
purpose. 

Furthermore, the simplicity of the model makes it possible to schedule and assign 
work based on the defined workflows as mentioned above – this would be extremely 
complicated for more general models like BPMN.

To illustrate what MAKE workflows look like, we present the same workflow as in 
the introductory chapter, modeled in MAKE.

Figure 2: MAKE workflow example

                                               
1 Recently renamed to Entellexi (http://www.entellexi.com)
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We can see that the workflow in Figure 2 looks very similar to the introductory 
example. That is because all the general concepts are the same – there are activities 
representing the actual work, links representing the order of execution and gateways 
(here they are called semaphores) that affect the execution flow.

An important property of the activities is the list of their resource requirements (not 
visible in the figure) - it is possible to specify which resources the activity needs in 
order to be performed (employees, machines). These requirements are used later to 
create a detailed schedule of works.

The only objects that weren’t in the previous example are the decorators – MAKE 
workflow model allows for the gateways (semaphores) to actually be placed directly 
on activities – they “decorate” them, hence the term decorators. This makes sense, 
since gateways generally do not represent any actual work, so it is convenient to just 
place them on other objects. 

In MAKE, decorators look like rectangles attached to an activity’s border with a 
triangle sign representing the decorator’s type (green / blue represent parallel nests, 
pink / yellow represent exclusive nests).

These are actually all the objects defined by the MAKE workflow model, which 
makes it very simple and easy to work with, yet expressive enough to describe even 
complex manufacturing processes. 

3.2 Nested TNA

Nested TNA (Temporal Networks with Alternatives) is an academic workflow model 
presented in [1]. It represents mostly manufacturing processes in a way resembling 
the MAKE model. Its key distinguishing feature is a tree-like hierarchy of the 
workflows - unlike the other presented models, Nested TNA actually requires that 
the workflow is organized hierarchically.

Simply put, a Nested TNA workflow is a tree structure whose inner nodes represent 
work that has to be broken down into smaller units, which are represented by the 
children of the node. In the leaves of this tree are the activities – elementary units of 
work that we do not decompose further. It is a concept similar to the well-known 
WBS1.

The fact that the workflow has to be organized like this limits the expressivity of 
Nested TNA to a certain degree, but it has considerable advantages, like more 
effective scheduling or easier workflow verification.

Nested TNA is especially important for this thesis, since it is (with some extensions) 
implemented by the presented application to demonstrate its usability and various 
consequences of the nested structure.

A notable feature of the Nested TNA model is the simple and intuitive way in which
workflows are defined. Other models usually define all the objects that can exist in a 
workflow separately, together with the semantics on their use. Nested TNA uses a 
different approach.

                                               
1 Work Breakdown Structure
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It first describes a trivial workflow that is a valid Nested TNA by definition. In the 
original article, this workflow consists of two nodes connected by a link. In the 
presented application, it is a single node. This minor difference will be explained 
further in this document.

The other part of the definition of Nested TNA is a precise set of actions that can be 
performed on a valid Nested TNA to extend it that preserve validity. These actions 
are called decompositions. Decomposition can convert a single node into a nest of 
new nodes, building the workflow and the tree hierarchy (top to bottom).

This incremental definition is convenient to implement, since it explicitly defines 
how the user should build the workflow.

An example of the ordering process in the Nested TNA model is given below.

Figure 3: Nested TNA workflow example

Figure 3 shows a Nested TNA workflow that was created in the presented 
application. It looks very similar to the MAKE workflow, because it defines the same 
basic objects: activities represent work (blue rectangles) and links represent the order 
of execution.

The only major difference between the above workflow and the workflow in Figure 2
is the workflow hierarchy – nests that were created via decomposition are 
represented explicitly in this model (visually emphasized by gray boxes).

The flow control is not represented by semaphores or decorators. It is given by the 
type of decomposition – serial, parallel and alternative decomposition represents
sequences, parallel and exclusive branching respectively.

Like in the MAKE workflow model, the focus of the Nested TNA model is on 
simplicity. While Nested TNA is not powerful enough to represent general business 
processes, it suffices for manufacturing processes, which is what the model was 
meant for. 

Nested TNA together with our extensions and modifications will be described in 
more detail in the chapter dedicated to the FlowOpt Workflows.

3.3 BPMN / XPDL

BPMN (Business Process Modeling Notation) is an example of a standardized 
workflow model. Currently it is the most widely used notation representing business 
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processes. It is maintained by the OMG1 group, which also develops the widely used 
UML2 notation. It is interesting to note that UML also defines a special kind of 
diagram to represent workflows, which is in many ways similar to BPMN.

BPMN is a very general and powerful model, which can be used to represent a much 
wider range of processes than the MAKE model or Nested TNA. It defines all of the 
basic concepts (activities, gateways, events…) and it adds some more advanced 
objects like message flow to represent communication, pools and lanes to represent 
the performers of a particular part of the workflow or subprocesses to bring hierarchy 
to the workflow (this hierarchy is not required though).

Technically, BPMN is not a single system like MAKE or YAWL. It is a standard on 
visual representation of workflows, which is implemented by many software 
solutions (for example Together Workflow Editor3 or BizAgi Process Modeller4).

Since version 2.0, the BPMN standard also includes the definition of several formats 
for data exchange. However in previous versions the standard only defined what the 
workflows should look like, but not how they should be stored. That is why the 
XPDL format was developed. XPDL is a standardized XML format for saving 
workflows adhering to the BPMN workflow model. 

We’ve already mentioned that the first example used was actually created using 
BPMN. We present one more example to show some of the more advanced features 
of this notation.

Figure 4: A more complex BPMN example

The example in Figure 4 describes the process of asking a hypothetical bank for a 
loan. Source: http://www.bizagi.com/eng/downloads/BPMNbyExample.pdf.

First step is to record the information on the new loan application. Then the 
information provided by the applicant is verified to determine whether a loan can 
even be considered (the applicant must be a client of the bank for instance).

                                               
1 Object Management Group

2 Unified Modeling Language

3 http://www.together.at/prod/workflow/twe

4 http://www.bizagi.com/index.php?option=com_content&view=article&id=95&Itemid=107



10

This is done in a separate subprocess. A subprocess is a self-contained workflow 
embedded into the parent workflow that is to be performed in place of the 
placeholder activity (these look like ordinary activities, but they are marked with a 
‘+’ sign in the middle center part). 

Subprocesses allow modelers to create hierarchical workflows, which is very useful 
for more complex processes. BPMN standard accounts for both a collapsed view of 
subprocesses (like in the example above) and for an expanded view, in which the 
nested workflow is actually visible within the placeholder activity. This concept is 
very important for the presented application, since we implemented the hierarchy in 
our workflows in a similar way.

Getting back to the example, the loan application verification can have one of two 
results (indicating an exclusive gateway) – if the loan is not possible, the process 
ends. Otherwise the process continues.

At this point, we need a more detailed document with information about the 
applicant to determine the exact amount we can loan, the interest etc. The problem is 
that providing the document is up to the applicant, we have no control over it. This is 
a typical situation in which events have to be used.

In this case, two possible events can happen – either the user provides the necessary 
documents, or some specified period of time passes (a timeout occurs). If the 
documents are provided, we can analyze them and, based on the information, we can 
either reject the loan or agree on specific terms of the loan (this is again done in a 
separate subprocess).

If the user does not provide the necessary documents in time, a follow up is made 
with the client to determine whether the request for loan stands. If not, the process 
ends. If it does, the flow returns to the state of waiting for the necessary documents. 
This is an example of a cycle in a workflow – a pattern that allows for (conditional or 
unconditional) looping of various parts of the workflow.

It should be apparent from this example that BPMN describes more general 
processes than MAKE or Nested TNA. While we were able to describe the entire 
workflow model of MAKE on a simple example, the full extent of BPMN is beyond 
the scope of this thesis. For further reference, please see [2].

3.4 YAWL

YAWL (Yet Another Workflow Language [12]) is a workflow model with academic 
origins. It was created in part by Wil van der Aalst, one of the leading authorities on 
workflow design. 

The research of Wil van der Aalst is particularly important since it identifies a 
number of standard workflow patterns that are commonly used to describe workflow 
processes. For more information on these, please refer to [3]. 

The support of these patterns can be a viable measure of a workflow model’s 
expressivity (we will show which of these patterns can be represented by our model 
later in this document). YAWL was designed with the specific goal of supporting 
these patterns while presenting a relatively simple workflow model.
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Besides the workflow model, YAWL also implements a complex system similar to 
MAKE including a workflow editor and other modules that utilize the created 
workflows for business management.

An example of the ordering process modeled in YAWL is presented below.

Figure 5: YAWL workflow example

As we can see from Figure 5, the model is visually very similar to the model of 
MAKE. All of the basic concepts are here (activities, gateways / semaphores, 
decorators). YAWL is more expressive though and can represent processes beyond 
the scope of manufacturing. It supports additional objects similar to BPMN’s events 
and subprocesses, making it a very flexible solution.

3.5 Comparison

This chapter showed several different workflow models that served as an inspiration 
for the presented application. MAKE and Nested TNA are rather simple workflow 
models that are meant to represent a specific subset of general business processes 
(manufacturing processes). BPMN and YAWL are examples of more powerful and 
complex workflow models that can represent wider array of processes.

There is a subtle but important difference between MAKE / Nested TNA and BPMN 
/ YAWL. Both MAKE and Nested TNA utilize constraint programming for flow 
control. This means that the links in both the workflow models represent a temporal 
relation – a link from an activity A1 to an activity A2 means that A1 should be 
executed before A2 (in the general case the link may carry the minimal and maximal 
temporal distance between the two activities).

BPMN and YAWL do not work like that. They are based on Petri nets [4], which use 
different execution semantics. In Petri nets, flow links do not represent precedence 
relation. Instead, they actually define the exact way that the workflow has to be 
executed. 

Intuitively, Petri nets define an execution token that travels within the workflow, 
moving over the flow links and causing whatever activities it encounters to execute. 
Although this may not seem particularly important, this semantics can be more 
powerful. 
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For example it is impossible to model looping when the execution flow is 
represented (just) by precedence constraints – a cycle of precedences is always 
invalid. However if we use the execution semantics of Petri nets, looping is well 
defined, the execution token simply moves in a cycle, causing the activities to 
execute in a loop.

Since the purpose of the presented application was to model manufacturing processes 
in particular, Nested TNA was our chosen workflow model. This model is very 
simple while being able to represent the vast majority of manufacturing processes. In 
order to increase its expressivity, we extended this model by some additional 
concepts, which will be described later in this document.

MAKE workflow model is also important for this thesis, since it represents the same 
class of processes. The main difference is that MAKE workflows do not utilize the 
nested hierarchy as much as Nested TNA does. In particular, the authors of MAKE 
were interested in utilizing the nested model in scheduling and schedule 
visualization. 

That is why the presented application is fully integrated into the MAKE system and 
it is possible to import and export workflows from and to the MAKE model, 
allowing the potential user to utilize both models.

BPMN and YAWL served as an inspiration for additional features both of the 
workflow model and of the workflow editor. Fully implementing one of them 
seemed to be much too complicated and unnecessary, considering the specific 
requirements of manufacturing processes.

Knowing how these models represent some of the more advanced workflow concepts
can be very useful however, since the same approaches can be utilized in certain 
parts of our model. For instance the visual representation of workflow hierarchy in 
our application follows the example of BPMN and YAWL subprocesses.

Also, examining multiple systems allowed us to get a general overview of the most 
useful features of a typical workflow editor. We tried to implement all the features 
we encountered that were common or seemed especially useful, so that the potential 
user of the presented application find its environment familiar.

In the future, we would like to implement some of the more advanced workflow 
patterns that are supported by BPMN/YAWL. In particular the patterns involving 
multiple instances and reusable subprocesses (see the Future works chapter for 
details).
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4. FlowOpt Workflows

This chapter informally describes the workflow model of the presented application. 
As mentioned previously, the model is based on the Nested TNA model, but it is 
extended with some additional features to be more expressive.

The presented model is extremely simple. There are only three types of objects in our 
workflows – activities, tasks and custom links. It is designed to be roughly as 
expressive as the MAKE model, meaning it should be sufficient to represent typical 
manufacturing processes.

All of the objects that are used to build FlowOpt workflows are informally described 
below. A formal description of the model is provided in a separate chapter.

4.1 Activities

Activities serve the same purpose as in all the other workflow systems presented in 
this document – they represent elementary units of work that need to be done in order 
to complete the workflow.

For scheduling purposes, activities contain a list of resources on which they can be 
performed. These resources can be employees, machines or their combination. Every 
activity also has a duration. 

When we described the MAKE workflow model, we listed the same properties for 
activities. This is not a coincidence – the two systems actually share the activities, 
since they represent the same concept in both MAKE and FlowOpt. This has some 
nice benefits, like simplifying the process of converting a workflow from one model 
to the other or consistent use of activities from the user’s perspective.

4.2 Tasks

Tasks are the biggest difference between the presented workflow editor and the one 
in MAKE (and most other workflow solutions). We have emphasized the tree 
structure of the Nested TNA workflows as the key feature of our workflow editor 
multiple times in this document. Tasks are the objects that we use to represent this 
structure.

A task represents some portion of the workflow – when the user creates a new 
workflow, it contains a single task that represents the whole process. Every task is 
created empty, which means that it has no defined “implementation” of the work it 
represents. This implementation can be either via an elementary activity, or through 
decomposition into child tasks that will represent smaller portions of the work. In 
order for a FlowOpt workflow to be complete, all the empty tasks have to be either 
decomposed, or populated with activities.

There are three types of decomposed tasks – serial, parallel and alternative. These 
hold the execution flow, in place of semaphores or decorators, which do not exist in 
FlowOpt workflows. Based on the type of the task, the execution semantics are as 
follows:
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 A serial task executes all of its children in a sequence. The order of this 
sequence is a part of the serial task’s definition.

 A parallel task executes all of its children in parallel.

 An alternative task executes exactly one of its children (it forms an exclusive 
nest in terms of BPMN).

Figure 6: Task types

Figure 6 shows all three types of decomposed tasks. As we can see, decomposed 
tasks are represented as gray boxes containing the nest of their child tasks. Serial 
tasks form a sequence to indicate the order of execution of their children, parallel and 
alternative tasks form a fan in / fan out subgraph (in Nested TNA terminology). 

As a further indication of the decomposition type, the input and output ports of the 
nest have specific shape – a triangle for serial task, a little AND gate for parallel 
tasks and a little OR gate for alternative tasks. For convenience, every task can have 
a name that appears in the top part of the task.

The combination of using decomposition and elementary activities to model the 
process naturally leads to a top-down kind of approach to workflow design, in which 
the user starts with a complex task and keeps decomposing it into smaller and 
smaller tasks, until the units of work are so finely grained that they can be 
represented by an activity. The concept is similar to the well-known Work 
Breakdown Structure [5].

A FlowOpt workflow can be thought of as a tree. The inner nodes of this tree are 
(decomposed) tasks, while activities are in the leaves. Technically, the leaves are also 
tasks that are populated with a single activity. The root of this tree is referred to as 
the root task in this document. It shouldn’t be hard to see that tasks are an explicit 
representation of the nests introduced in the Nested TNA model. 

There are two minor differences between our model and the original Nested TNA
that should be pointed out:

1) The original model decomposes links, whereas we chose to decompose nodes 
instead. We think that decomposing nodes is more intuitive for the user, as in 
most workflow models, the work is stored in the nodes, not in the links.

2) The original Nested TNA model uses general temporal links (meaning that 
the links specify the minimum and maximum temporal distance between the 
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tasks they connect) while our model only uses general precedences (meaning 
that one task should be performed before the other). This change was made 
simply because the users didn’t seem to utilize the general temporal 
constraints too much.

In terms of the presented workflow models, tasks could be compared to BPMN or 
YAWL subprocesses, except for the fact that they play a much more crucial role in 
FlowOpt, since their use is not optional - every FlowOpt workflow has to have the 
tree hierarchy of nested tasks.

While we are aware of the fact that imposing such a hierarchy on the workflow 
model may potentially be limiting for the user, there are many advantages to this 
approach. The workflow editor itself utilizes it to simplify workflow creation, 
navigation and layout. Other FlowOpt modules take advantage of the tasks as well. 
For instance the optimizer uses them to create schedules more effectively and the 
schedule viewer uses them for better visualization.

We believe it could be a viable alternative to other commonly used systems. 
Providing a working implementation as a proof of concept for this model is the main 
goal of this thesis.

4.3 Custom links

The third and final type of objects that can appear in FlowOpt workflows are custom 
links. These aren’t a part of the original Nested TNA model. They are our own 
attempt to extend the model and make it more expressive. We made no other 
extensions to the Nested TNA model – if the user does not use custom links, the 
workflow conforms to Nested TNA.

Custom links are a special kind of links that the user can place between almost1 any 
pair of tasks in the workflow to impose a specific (binary) constraint on these two 
tasks. There are several types of constraints that can be created using custom links:

 Precedence – general precedence relation, indicating that one task should be 
performed before the other.

 Logical constraints:

o Implication – if a certain task is performed, some other task also has 
to be performed.

o Equivalence – a certain task has to be performed if and only if some 
other task is also performed.

o Mutual exclusion – at most one of a given pair of tasks can be 
performed (not both).

 Synchronization constraints – these indicate that two tasks should be 
synchronized in time. It is possible to synchronize tasks in the following 
ways:

o Start-Start – both tasks start at the same time.

                                               
1 The verification procedure will not allow the user to create some custom links that would 

create an invalid workflow. See the chapter on verification for details.
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o End-End – both tasks end at the same time.

o End-Start – the second task starts precisely when the first ends.

o Start-End – the first task starts precisely when the second ends.

Custom links are meant to make the model more flexible and usable in more 
complex manufacturing processes. Figure 7 shows an example of a custom 
synchronization link of type End to End (between activities ‘Sawing’ and 
‘Welding’).

Figure 7: Custom synchronization link of type End to End

Figure 7 shows a simple task that executes three activities in parallel. Two of them 
(sawing and welding) will be planned so that they end at the same time. The custom 
links can be easily identified, since they are connected to a special port in the top 
right of every task (the blue square port). The type of a custom link can be 
determined from its color and label.

Custom links are called custom to emphasize the fact that they can be created and 
deleted by the user and connected to any task in the workflow. All the other links in 
the workflow are integral parts of the tasks, the user cannot create or modify them.

4.4 Example

As we can see, the workflow model of FlowOpt is extremely simple, containing only 
three types of objects. It was designed to be as lightweight and intuitive as possible, 
while preserving (and extending) the expressivity of Nested TNA. Now that we 
described the entire model, we provide an example of a complete FlowOpt workflow 
that utilizes all of the described objects.
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Figure 8: A complete FlowOpt workflow

The workflow in Figure 8 describes the process of manufacturing a piston. The 
structure of the workflow (the way it is built) follows the top to bottom approach to 
problem solving – we decompose larger processes into smaller ones and repeat until 
the units of work are small enough to be represented by activities.

First we have to collect the necessary materials, then manufacture the components of 
the piston, assemble them together and finally ship the piston to the customer. These 
tasks have to be done in a sequence, therefore the root task is serial.

Collecting materials, assembly and shipping are specific enough to be represented by 
elementary activities, but creating components is more complex. There are two 
components of a piston – a tube and a rod. These can be manufactured 
independently, so we used a parallel task.

To manufacture the tube, we first need to get the tube part and then weld it on the kit 
that attaches to the piston. The welding is an activity, but getting the part is not as 
easy. Let’s say that there are two ways to obtain the part – we can make it ourselves 
(cut it from a piece of metal) or we can order it from a third party. This leads to 
alternative decomposition (the ‘Get tube’ task).

To make the rod, we have to once again get the parts somehow and then screw them 
together, which we model as an activity. The parts can be created in parallel, so we 
create a parallel task. We will need a rod part and a kit. 

To create the rod part, we cut it from metal and make sure that its dimensions are just 
right to fit in the tube (inspection). To create the kit, we also have to cut some metal, 
plus we have to polish it so it can be attached to the rod.

Finally, we can also see that some custom links were used – in this case we know 
that cutting is expensive, so we make sure that we start all the cutting at the same 
time, so that the tool used to do the cutting doesn’t have to run multiple times.

Once we have a workflow, we can utilize other FlowOpt modules to plan and 
visualize the manufacturing process. First, we can use the FlowOpt optimizer module 
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to create a schedule of works that will assign the workflow’s activities to specific 
employees at specific times, effectively managing all the work that needs to be done 
in order to manufacture a piston.

Once we have the schedule, we can use the FlowOpt schedule visualizer module to 
display it as a Gantt charter1. One possible schedule for the piston workflow is shown 
in Figure 9.

Figure 9: A schedule for a FlowOpt workflow

Figure 9 shows a schedule generated by the FlowOpt optimizer module for the 
workflow in Figure 8. In the left part, we can see all the tasks that were defined in the 
workflow. In the right part, we can see the exact times when the tasks should run, 
together with their expected durations (represented as a simple bar graph). 

Notice that the workflow structure created in the workflow editor is still present here 
in the schedule – the user can still see the task hierarchy and any custom links 
between the tasks. In this example, we can see that the three ‘Cutting’ activities were 
synchronized to start at the same time (the blue link labeled ‘SS’). 

Two activities are grayed out in the above schedule (both are named ‘Cutting’). That 
is because they are children of an alternative task and they weren’t chosen to be 
performed.

                                               
1 A well-known and widely used schedule notation.
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5. Formal Definition of the Workflow Model

Let us now describe our model more formally. This is done in three parts – first we 
define the three types of objects that can exist in a FlowOpt workflow (activities, 
tasks and custom links). Then we define all the constraints on these objects that have 
to hold in a FlowOpt workflow. Finally, we describe the process of building FlowOpt 
workflows (which similar to that in Nested TNA).

5.1 Workflow objects

We have already introduced the three types of objects that can exist in a FlowOpt 
workflow (tasks, activities and custom links) in the FlowOpt Workflows chapter. We 
will now define these objects and their properties formally.

A FlowOpt workflow is a tuple (Activities, Tasks, Constraints):

 Activities is the set of all the activities in the workflow.

 Tasks is the set of all the tasks in the workflow.

 Constraints is the set of all the custom constraints (constraints defined by 
custom links) in the workflow.

The semantics of our workflow model is given by a number of constraints on these 
objects and their properties.

First, every task can be in one of five  states, depending on the way in which it 
should be implemented. It can be empty, meaning it has no defined implementation 
yet, it can be implemented via an activity, or it can be decomposed in one of three 
ways (serial, parallel, alternative):

 Empty = {T ∈ Tasks|T is empty}

 ���ℎ�������� = {� ∈ �����|� �� ����������� �ℎ����ℎ �� ��������}

 ������ = {� ∈ �����|� �� ���������� ����� ������ �������������}

 �������� =
{� ∈ �����|� �� ���������� ����� �������� �������������}

 ����������� =
{� ∈ �����|� �� ���������� ����� ����������� �������������}

 ���������� = ������ ∪ �������� ∪ �����������

 ����� = ����� ∪ ���ℎ�������� ∪ ����������

 Serial, Parallel, Alternative, Empty and WithActivity are mutually disjunctive

Similarly, custom links are divided into several sets based on their type. There are 
precedence custom links, logical custom links (these can represent an implication, an 
equivalence or mutual exclusion) and synchronization custom links (of types start-
start, end-end, start-end and end-start):

 ����������� = {� ∈ �����������|� ���������� � ����������}

 ������������ = {� ∈ �����������|� ���������� �� �����������}
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 ������������ = {� ∈ �����������|� ���������� �� �����������}

 ������� = {� ∈ �����������|� ���������� � �����}

 ������� = ������������ ∪ ������������ ∪ �������

 �� = {� ∈ �����������|� ���������� �� �� ����ℎ����������}

 �� = {� ∈ �����������|� ���������� �� �� ����ℎ����������}

 �� = {� ∈ �����������|� ���������� �� �� ����ℎ����������}

 �� = {� ∈ �����������|� ���������� �� �� ����ℎ����������}

 ����ℎ����������� = �� ∪ �� ∪ �� ∪ ��

 ����������� = ����������� ∪ ������� ∪ ����ℎ�����������

 Precedences, Implications, Equivalences, MUTEXes, SS, EE, SE and ES are 
mutually disjunctive

Now that we have introduced all the objects that can exist in a FlowOpt workflow, 
we define their properties. We will later introduce a number of constraints on these 
properties that will define a valid FlowOpt workflow (see Constraints on workflow 
objects and Workflow Verification chapters).

Every activity has a duration that indicates how long does it take to perform it. This 
duration is measured in some abstract units (same for every activity).

∀� ∈ ����������: ��������(�) = �ℎ� �������� �� �������� �

For every task implemented via an activity, we introduce a predicate that will 
reference the activity.

∀� ∈ ���ℎ��������: ��������(�) = � ∈ ����������, � ���������� �

Every decomposed task is implemented by a nest of child tasks. The following 
predicate defines this (ordered) set of children.

 ∀� ∈ ����������: �ℎ������(�) = (��, ��, … ��), �� ∈ �����,
�� �� ���ℎ�� �ℎ� ���� �� �

Since the tasks form a tree hierarchy, we will also need to reference the parent task 
for a given child task.

 ∀� ∈ �����:

o Parent(t) = � ∈ �����|� ∈ �ℎ������(�)
�� ��� �� �� ���ℎ � ������

o ∃! �������� ∈ �����: ������(��������) = ���

For a custom link, we will need to reference the pair of tasks that it connects.

 ∀� ∈ �����������:

o ����(�) = � ∈ �����|� ���� ���� �

o ��(�) = � ∈ �����|� ���� �� �

o ��ℎ����, ����(�)� = ��(�), ��ℎ����, ��(�)� = ����(�)

o Parent(c) = the task containing c - the first common parent of From(c)
and To(c).
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o FromTop(c) = the direct child of Parent(c) from which c leads.

o ToTop(c) = the direct child of Parent(c) into which c leads.

Figure 10: Custom link notation example

Figure 10 illustrates the introduced notation for custom links. The logical implication 
link is referred to as c.

Since the workflow may contain alternative tasks, we have to be able to determine
whether a task should be performed or not. This information is stored in the logical 
domain of a task, i.e. a subset of {true, false} indicating whether the task is to be 
performed.

 ∀� ∈ �����: LogicalDomain(t) ∈ 2{����,�����}

o �������������(�) = {����, �����} ⇔ � ��� �� ��� ��� �� ���������

o �������������(�) = {����} ⇔ � ���� �� ��������� (t is active)

o �������������(�) = {�����} ⇔ � ���� ��� �� ��������� (� �� ��������)

o �������������(�) = ∅ ��������� � ���������� ��������(������� ��������)

Also, since the workflow has to eventually be scheduled, we have to maintain some 
temporal information about when a particular task should be executed. Specifically, 
we define two time points corresponding to the start and end time of each task (again 
in some abstract units, like the durations).

 ∀t ∈ Tasks:

o Start(t) = start time of t

o End(t) = end time of t

 TimePoints = {Start(t)|t ∈ Tasks} ∪ {End(t)|t ∈ Tasks}

We will not explicitly represent the (temporal) domains of these time points. Instead, 
we will place constraints on distances between them.

 ∀p�, p� ∈ TimePoints: Dist (p�, p�) = [min, max]

o min ≤ p� − p� ≤ max

5.2 Constraints on workflow objects

FlowOpt defines a number of constraints that describe a valid workflow. These 
constraints restrict both logical domains of tasks and temporal distances between the 
time points given by the tasks. They are all implied by the informal definitions of the 
workflow objects, but we need to express them formally to be able to verify or 
schedule the workflow properly. The constraint definitions are listed below.
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1) Any serial or parallel task T is active if and only if all of its children are also 
active: 

∀� ∈ ������ ∪ ��������:
�������������(�) = {1} ⟺ ∀c �� �ℎ������(�): �������������(�) = {1}

2) Every active alternative task must have exactly one active child (this child is 
called the active child):

∀� ∈ �����������:
�������������(�) = {1} ⟺ !∃c� ∈ �ℎ������(�):
�������������(��) = {1} & ∀��, � ≠ �: �������������(��) = {0}

3) If any task becomes active, all the tasks on the path from this task to the root 
task must also be active:

∀� ∈ �����: �������������(�) = {1} ⟹
∀p ∈ � ������(�), �������������(�)�, … , ���������:

�������������(�) = {1}

4) The children in any active serial task must be performed in the order given by 
the serial task:

∀� ∈ ������, �������������(�) = {1}, �ℎ������(�) = (��, ��, … , ��):

Dist����(��), �����(��)� = [0, ∞], 

Dist����(��), �����(��)� = [0, ∞],
...  

Dist����(����), �����(��)� = [0, ∞]

5) Every active task T containing (directly) an activity A must have its duration 
equal to the duration of the activity:

∀� ∈ ���ℎ��������, �������������(�) = {1}:

����(�����(�), ���(�)) = [�����������������(�)�, ��������(��������(�))]
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6) Any active decomposed task t must start exactly when the first of its children 
starts and end exactly when the last of its children ends. For different task 
types, this yields different constraints:

a. t is serial – synchronize the start of the parent with the start of the first 
child in the sequence and the end of the parent with the end of the last 
child in the sequence:

∀� ∈ ������, �������������(�) = {1}, �ℎ������(�) = (��, ��, … , ��):

����������(�), �����(�� )� = [0,0]

��������(�), ���(��)� = [0,0]

b. t is alternative – synchronize the start of the parent with the start of 
the active child and the end of the parent with the end of the active 
child:

∀� ∈ �����������, �������������(�) = {1}:

���� ������(�), �������������ℎ���(�)�� = [0,0]

���� ����(�), �����������ℎ���(�)�� = [0,0]

c. t is parallel – all the children must be performed after the parent starts 
and before the parent ends. Furthermore, synchronize the start of the 
parent with the start of the first child and the end of the parent with 
the end of the last child:

∀� ∈ ��������, �������������(�) = {1}:

∀c ∈ �ℎ������(�): ����������(�), �����(�)� = [0, ∞]

∀c ∈ �ℎ������(�): ��������(�), ���(�)� = [0, ∞]

���� ������(�), ����∈��������(�)������(�)�� = [0,0]

���������∈��������(�)����(�)�, ���(�)� = [0,0]

7) Any precedence link between active tasks t1 and t2 means that t1 must be 
performed before t2:

∀� ∈ �����������:

������������������(�)� = {1} & ����������������(�)� = {1} ⟹

Dist ���������(�)�, ��������(�)�� = [0, ∞]

8) Any logical implication link between tasks t1 and t2 means that if t1 becomes 
active, t2 must also become active:

∀� ∈ ������������:

������������������(�)� = {1} ⟹ ����������������(�)� = {1}

9) Any logical equivalence link between tasks t1 and t2 means that t1 is active if 
and only if t2 is active:

∀� ∈ ������������:

������������������(�)� = {1} ⟺ ����������������(�)� = {1}

10) Any logical mutex link between tasks t1 and t2 means that at most one of the 
tasks can be active at a time:

∀� ∈ �������:
������������������(�)� = {1} ⟹ ����������������(�)� = {0}

����������������(�)� = {1} ⟹ ������������������(�)� = {0}
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11) Any SS synchronization between active tasks t1 and t2 means that the tasks 
start at the same time:

∀� ∈ ��:

������������������(�)� = {1} & ����������������(�)� = {1} ⟹

���� �����������(�)�, ��������(�)�� = [0,0]

12) Any EE synchronization between active tasks T1 and T2 means that the tasks 
end at the same time:

∀� ∈ ��:
������������������(�)� = {1} & ����������������(�)� = {1} ⟹

���� ���������(�)�, ������(�)�� = [0,0]

13) Any SE synchronization between active tasks T1 and T2 means that T1 starts 
precisely when T2 ends:

∀� ∈ ��:
������������������(�)� = {1} & ����������������(�)� = {1} ⟹

���� �����������(�)�, ������(�)�� = [0,0]

14) Any ES synchronization between active tasks T1 and T2 means that T1 ends 
precisely when T2 starts:

∀� ∈ ��:
������������������(�)� = {1} & ����������������(�)� = {1} ⟹

���� ���������(�)�, ��������(�)�� = [0,0]

We will refer to the constraints above as workflow constraints. We can divide 
workflow constraints into two categories – general constraints, which are defined by 
the task hierarchy and task decomposition – that is constraints 1) through 6) and 
custom constraints, which are defined by custom links – that is constraints 7) through 
14).

5.3 Building FlowOpt workflows

We have defined the three basic objects that can exist in a FlowOpt workflow, as 
well as the constraints on their properties. We will now briefly describe the process 
of building the workflow.

This chapter’s purpose is to emphasize the connection between Nested TNA and 
FlowOpt workflow model - as we will see, the way workflows are built is almost 
identical in both these models. For a description of the process from the user’s point 
of view, please refer to the Building workflows chapter.

A newly created FlowOpt workflow contains a single empty task. At any time, the 
user may perform one of three basic actions:

 Decompose an empty task to convert it into a decomposed task with given 
type (serial, parallel or alternative) and a given number of children.

 Assign an activity into an empty task.

 Connect two tasks with a custom link of given type (precedence, implication, 
equivalence, MUTEX, SS, EE, SE or EE).
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The workflow editor actually provides a number of additional actions that can 
change the workflow structure, but they are all just for user convenience, they will 
not create any workflow that cannot be created using the above actions (this is 
apparent after a brief analysis of the other actions, we didn’t feel it was necessary to 
show this formally).

It shouldn’t be hard to see that this way of building a workflow leads to a tree 
hierarchy of tasks, where the inner nodes are decomposed, while the leaves have 
assigned activities (or are empty). 

If we assume no custom links in the workflow, we can see that the underlying 
network corresponds to a Nested TNA, since the way of building workflows in our
model is defined analogically to the way used to define Nested TNA. 
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6. Features of the Workflow Editor

This chapter describes the most important features of the workflow editor. It is only 
meant as an overview of the workflow editor’s capabilities, complete user 
documentation is beyond the scope of this document, but it is one of its attachments.

Two of the features are particularly interesting (workflow verification and import / 
export to and from other workflow models), because they were implemented outside 
the scope of the FlowOpt software project, specifically for this thesis. That is why
they will be described in separate chapters.

6.1 Visualization

Perhaps the most basic, yet crucial feature of any workflow editor is its ability to 
visualize workflows in a user-friendly way. The bigger the workflow gets, the more 
important it is to layout its parts so that the workflow can still be interpreted easily.

The FlowOpt workflow editor utilizes the task hierarchy in visualization. Since the 
structure of workflows is so clearly defined, it is possible to implement an automatic 
layout procedure that takes care of positioning the tasks on the screen. The layout in 
the previous piston example was done by the application, not by the user.

This is one of the more significant differences between the FlowOpt workflow editor 
and other similar systems – the workflow editor fully controls the visualization, the 
user can only influence it marginally. For instance, it is possible to move the top-
level tasks on the canvas, change the order of the child tasks within their parent or 
collapse and expand tasks, but the exact positions and sizes of the workflow objects 
are calculated automatically by the application.

On one hand, this may be a bit limiting in some scenarios, but it increases the 
productivity considerably, since the user doesn’t have to worry about the layout at 
all, it is updated automatically as the workflow changes. 

Many other workflow systems also implement some kind of automatic layout 
procedure, but it is usually more general and static (it doesn’t update automatically to 
reflect the structure of the workflow). This means that the results typically aren’t as 
good and the user has to make manual adjustments to the layout. Since our procedure 
is so closely connected to the workflow’s nested structure, the layout is much more 
precise.

To make the visualization as convenient as possible, the workflow editor allows the 
user to choose orientation (horizontal or vertical) and the way child tasks are aligned 
with respect to their parent. 
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Horizontal orientation, child 
tasks to the left

Horizontal orientation, child 
tasks centered

Horizontal orientation, child 
tasks to the right

Vertical orientation, child 
tasks up Vertical orientation, child 

tasks centered

Vertical orientation, child 
tasks down

Figure 11: Orientation and child task align

Figure 11 shows different layouts of the same task based on changing orientation and 
child task alignment.

The editor also supports standard features like zooming (zoom in, zoom out, zoom to 
fit…), box selection, panning (moving the view by dragging the mouse) and 
collapsing / expanding tasks arbitrarily.

6.2 Navigation

Since workflows can get very large, it is important to provide features which make it 
easier to navigate them. The nested hierarchy makes this task somewhat easier, since 
navigating a tree is simpler than navigating a general graph.

Probably the most basic feature in terms of navigation is task collapsing. If the 
workflow gets large, it is useful to be able to collapse some portions of it to hide the 
details and only focus on tasks on a higher level.

Another feature that should make navigating larger workflows easier is the mini 
overview. It is a smaller view of the workflow at reduced scale, so that the user can 
see a larger area. It also lets the user quickly move the view by dragging the selection 
within the overview.
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Figure 12: Task collapsing and overview

Figure 12 shows the piston workflow with two tasks collapsed and the overview 
visible.

We mentioned that the task hierarchy is also utilized to make navigating large 
workflows easier - the user can display a simple outline that displays the workflow’s 
structure in a practical tree view. 

Selecting a node in this outline also selects it in the workflow and the view moves 
over the selected task. Right clicking on a node in this view shows the same context
menu as right clicking on the corresponding task in the workflow. This makes the 
outline a useful tool when the workflow gets more complex.

Figure 13: Workflow outline

Figure 13 shows what the outline looks like for the piston workflow example.



29

One more tool that should make navigating through larger workflows easier is the 
ability to focus on a particular task. When the user focuses on a task, all the tasks 
outside the selected task’s subtree will be hidden. This makes it easier to concentrate 
on one particular task without accidentally changing other tasks.

Once the modifications to that task are done, the focus may be cleared and the whole 
workflow becomes visible again. It is even possible to focus multiple times, diving 
deeper and deeper into a particular subtree.

Figure 14: Task collapsing

In Figure 14, we focused on the ‘Tube’ task in the previous piston example. This 
caused the rest of the workflow to become hidden. Notice how the port on the 
‘Cutting’ activity is highlighted to indicate that there are custom links connected to 
the activity and deleting the activity will also delete these links.

6.3 Building workflows

This chapter describes the actual process of building workflows in the FlowOpt 
workflow editor. Like visualization, this process is quite different to the approaches 
used in most other workflow solutions and it is also based on the nested structure of 
our workflow model.

There is one thing that almost all the workflow models presented earlier in this 
document have in common - the way of building workflows (technically, BPMN 
defines no such thing, but all the solutions that use BPMN that we examined
followed this approach). 

The usual approach lets the user of the workflow editor arbitrarily create and link 
workflow objects. The user first places activities, semaphores, events or other
workflow objects on the canvas and then connects these objects with links to mark 
the order of execution. A simple example of this process is presented below.

The user starts with some trivial workflow, usually just the start and end activities, 
with nothing in between.

The user adds some activities to the canvas.
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The activities are either decorated, or semaphores are added to create branching.

More activities are added as the workflow is being built.

The user connects the activities with links to mark the execution flow.

Figure 15: Traditional way to build workflows

The examples in Figure 15 are from the MAKE application, but the process is very 
similar in most of the other systems we tried out (the exception being Nested TNA).

While this approach is very intuitive and unrestrictive for the user, it doesn’t seem 
very productive, considering the fact that the user has to create all the objects within 
a workflow manually. 

In a general graph, the number of links is �(��), where n is the number of nodes. 
Workflows are generally not dense in terms of the number of links, but the total 
number of objects is still rather large. Let us consider three of the most basic and 
common patterns present in virtually every workflow model: the sequence, the 
parallel nest and the alternative (exclusive) nest.
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 In a sequence of n activities, there are n tasks plus n − 1 links, that is 2� − 1
objects in total.

 In a parallel or an alternative nest, we have n tasks, 2n links (two links for 
every child task), and two decorators / semaphores to mark the routing type. 
That is 3� + 2 objects.

That is a lot of objects to create manually. FlowOpt workflow editor attempts to 
utilize the nested hierarchy inherent to FlowOpt workflows to alleviate this problem. 
The user doesn’t build workflows in the traditional way described above. Instead, the 
workflow editor defines a set of actions that can be used to build workflows, 
following the definition of the Nested TNA model.

There are a number of those actions, but only a few of them are needed to build 
workflows, the others are only for users’ convenience. There are three basic actions: 
task decomposition, activity assigning and custom link creation. Using just these 
three actions, the user can create any workflow in the FlowOpt model. It should be 
apparent from the names of these actions that they create the three basic objects of 
the FlowOpt workflow model – tasks, activities and custom links.

Task decomposition

We already introduced decomposition when we described the Nested TNA model. 
This action implements the Nested TNA decomposition, except for the fact that it 
decomposes nodes (tasks) instead of links.

Decomposition can be performed on any empty task. The user chooses the type of 
decomposition (serial, parallel or alternative to determine the routing within the task) 
and the number of children that should be in the resulting nest. The workflow editor 
automatically creates the resulting nest.

There are two ways to do this. The user can invoke a special dialog in which the 
number of children and the decomposition type can be chosen, but there is also a 
more streamlined way: the workflow editor overrides the resize function on empty 
tasks, so that the user can simply drag the border of an empty task to decompose it. 
Dragging horizontally creates a serial task, dragging vertically creates a parallel task 
(which can be quickly changed to alternative by double clicking on one of its ports).

Figure 16: Decomposing tasks

Figure 16 illustrates the decomposition process.
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This way the user can create the entire nest with a single drag of the mouse. It is still 
necessary to assign activities in the child tasks (or decompose them), but the process 
is generally much faster than creating the workflow manually (not to mention the 
automatic layout). Using this approach, the user only has to perform �(�) actions to 
create a workflow containing n objects.

This way of building workflows is a bit more restrictive for the user than the 
traditional approach, but its advantages should be worth the compromise. You may 
notice that this is a similar idea as the one we used in Visualization – we try to make 
the work faster and more productive at the cost of restricting the user a bit more than 
the other editors do. 

Note that once again, this way of doing things takes advantage of the strict hierarchy 
of the nested workflows. Features like these are what distinguishes our workflow 
editor from other workflow solutions.

Activity assigning

Once the tasks are created, we have to say how they should be “implemented”. We 
can either decompose them (see above) or assign an elementary activity into them. 
The latter means that the task can be performed by performing the activity –
assigning an activity into an empty task essentially creates a leaf in the tree 
hierarchy.

Figure 17: Assigning an activity

The way to do this is simple - the user just drags the activity from the list of defined 
activities into an empty task, as shown in Figure 17.

Figure 18: Streamlined decomposition

To streamline the process further, the user can also drop activities directly into 
decomposed tasks. This is illustrated in Figure 18.

Custom link creation

Custom links are created in the traditional way – connecting nodes manually. Since 
the user can link any two tasks with a custom link, there is probably no simpler way. 

To create a custom link, the user simply drags the mouse between two task ports 
(blue squares in the top right of all tasks) and chooses the type of the link from the 
context menu that appears.
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Figure 19: Custom links creation

Figure 19 shows the process of creating a custom end-end synchronization link in a 
workflow.

Other actions

Though the three actions described above are sufficient to build any FlowOpt 
workflow, the editor defines many more actions for user convenience. This chapter 
briefly goes through the more interesting ones.

To provide an alternative to the top to bottom approach implied by decomposition, 
we provide a way to create workflows the other way – bottom to top. The user can 
first create the child tasks and then group them into the parent task. This is more 
intuitive for some users, since it may be easier to start by adding activities to the 
workflow and build the task hierarchy from them. 

Figure 20: Task grouping

Figure 20 shows how several tasks can be grouped into a new decomposed (serial) 
task. The workflow editor preserves the order of the children based on their 
positioning before they were grouped.
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Other actions implemented in the workflow editor include:

 Deleting tasks

 Changing order of the child tasks by dragging them within their nest.

 Inserting new tasks into the nest at any position. 

 Changing the decomposition type or removing the decomposition entirely and 
making the task empty again. 

 Copy, cut and paste operations on all the task types in order to make it easier 
to duplicate or move an entire subtree of the workflow hierarchy. 

 Saving tasks as separate workflows so they can be reused later.

 Embedding (copying) other workflows into empty tasks.

 Enclosing existing tasks within the workflow in a new parent that is inserted
in place of the original task.

It is likely that this list will be extended in the future based on the users’ priorities.
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6.4 Miscellaneous features

The workflow editor implements many other features that weren’t listed above. 
While these features are mostly technical and not particularly interesting from the 
workflow design point of view, we would still like to briefly point them out, since 
they may be interesting from the implementation point of view.

Some of the more notable features are: 

 Saving and loading of workflows to and from a database.

 Full undo and redo support for all the actions that the user can perform.

 Organizing workflows and activities into folders for user convenience.

 Maintaining preferred route - the user can mark one of the children of any 
alternative task as preferred, which may be somehow interpreted by the 
optimizer.

 Creating a picture from the workflow. Supported formats are PNG1, SVG2  
and JPEG3. The last may seem a strange choice for representing diagrams, 
but for very large workflows it can produce considerably smaller files due to 
its flexible compression.

 Printing the workflow (can be used to create a PDF4 file from the workflow
with the help of some virtual printer like PDFCreator5).

                                               
1 Portable Network Graphics, a raster format with lossless compression

2 Scalable Vector Graphics, a vector format

3 Joint Photographic Experts Group, a lossy raster format

4 Portable Document Format, a vector format for document exchange

5 http://sourceforge.net/projects/pdfcreator/
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7. Workflow Verification

Workflow verification is the process of determining whether there are any errors in 
the design of a given workflow. Although the workflow model of FlowOpt is 
relatively simple and transparent, it is possible to create such errors – specifically by 
adding conflicting custom constraints.

As a consequence of imperfect design, some of the workflow’s tasks may never be
performed or, in the worst case, the entire workflow may be impossible to schedule.

That is why it is necessary to provide the user with a way to determine whether a 
particular workflow is valid or whether there are any problems that should be fixed
prior to running the optimizer. 

This chapter works with terms defined in the Formal Definition of the FlowOpt 
model. Please refer to that chapter for more information on the model or the notation 
used.

7.1 Problem definition

Problem: Decide whether a FlowOpt workflow is valid.

Definition: A process is a workflow in which the root task is active and all the 
workflow constraints hold. Specifically, every alternative task has exactly one active 
child in any process. 

Intuitively, a process corresponds to a specific way how the workflow may be 
executed (specific assignment of values to LogicalDomains and Dist so that all the 
workflow constraints hold). 

Definition: A FlowOpt workflow is valid if and only if the following conditions 
hold:

a) The workflow contains no empty tasks

b) ∀� ∈ ����� ∃ ������� �: �������������(�) = 1 �� �

The first part of this definition states that a valid FlowOpt workflow cannot contain 
empty tasks. This should be obvious - we cannot schedule an incomplete workflow. 

The second part states that in a valid workflow, all the tasks can actually be 
performed in some process – there is no constraint conflict that would mean that 
some task can never become active. Specifically, this condition requires that every 
child of an alternative task can become active in some process. In the rest of this 
document, we will call the children of an alternative task alternatives.

If an alternative is valid in the sense of b), we will call it an accessible alternative, 
otherwise we will call it inaccessible. 

The presence of empty tasks (part a) can be determined trivially in linear time by 
going through all the tasks in the workflow. For the rest of this chapter, let us assume 
that there are no empty tasks in the workflow.

The second part is the more difficult one and determining whether all the alternatives 
can be a part of some process is the core of the verification. 
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7.2 Verifying workflows without custom links

Let us first focus on the case when the user does not create any custom links. As it 
turns out, verifying workflows with no custom links is trivial, because they are 
always guaranteed to be valid (provided that they do not contain empty tasks).

Proposition: A workflow containing no empty tasks and no custom links is always 
valid.

Proof: We can prove the above proposition through simple induction over 
complexity of the workflow. We will follow the way that FlowOpt workflows are 
built (see Building FlowOpt workflows) and show that at every point, we have a 
valid workflow.

We assume that the workflow contains no empty tasks, otherwise the workflow is by 
definition invalid. In other words, all empty tasks have either been decomposed or 
assigned an activity. It should be apparent that the induction is still correct, since the 
structure of the workflow is built through decomposition only, assigning an activity 
cannot change it.

A trivial workflow consists of a single task with an assigned activity. We can create a 
process for this workflow by performing just this one task. All the workflow
constraints will trivially hold.

Let us assume we decomposed an empty task T in a valid workflow (and assigned 
activities in the new tasks). From induction we know that for every task in the old 
workflow there is a process that performs it. We now extend each of these processes 
to include the tasks newly created by decomposition.

If T is performed in the original process then:

a) If T is serial, perform all the tasks in the newly created nest in the order 
given by T.

b) If T is parallel, perform all the tasks in the newly created nest in parallel.

c) If T is alternative, perform any single task in the newly created nest 
(create a new separate process for each of the alternatives).

We need to show that this way of performing the new tasks will not create a 
constraint conflict (in other words, we will still have a process after the above 
extension). If that holds, we know that we have a process for every task in the new 
workflow and it is therefore valid.

To show that no constraint conflicts can occur, we can first note that if we assume no 
custom links, only the general constraints are in effect. We can also notice that due to 
the tree structure of the workflow, the only task that has any effect on the new tasks
what so ever (in terms of logical domains or temporal distances) is their parent. The 
other tasks cannot restrict the new tasks in any way due to the definition of the 
general constraints. The reasoning for all six types of general constraints is given 
below:

 Constraints of types 1 and 2 cannot create a conflict, because the only task 
that has any impact on the new task’s logical domains is their parent. Since 
the new process is created exactly so that the parent’s constraint holds, there 
cannot be a conflict.
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 Constraints of type 3 will cause no conflict due to the fact that we only 
perform the new children if their parent is performed in the old process.

 Constraints of types 4, 5 and 6 will also not create a conflict, since there is no 
upper bound on the tasks’ durations and the workflow forms a DAG1, so no 
cycles can appear either. Both of these facts can be easily observed from 
induction (they hold for a single activity, decomposing an empty task will not 
change them). This means we can set the durations and order of the new tasks 
however we want. 

Since there are no constraint conflicts, the new process is valid and therefore (from 
induction) the new workflow is also valid. 

This result is not too surprising, due to the fact that our model is based on Nested 
TNA. However, notice that unlike our model, Nested TNA does not guarantee 
temporal consistency, which is due to the fact that it uses general temporal 
constraints on its links (they specify minimal and maximal distance between the 
nodes they connect). Our model is less expressive in this regard, since we only use 
general precedences. Consequently, there is no upper limit on the durations of the 
tasks, which results in guaranteed temporal consistency.

To summarize, unless the user creates a custom link in the workflow, checking 
validity is trivial – we simply go through all the tasks in the workflow and look for 
empty tasks and custom links. If there are none, the workflow is valid.

Unfortunately, we have reason to believe that if the user does use a custom link, the 
problem becomes NP-complete (proof will be presented in [13]). It seems that any 
kind of custom link (precedence, logical or synchronization) is enough to move the 
problem into the NP-complete class.

In the following sections we describe the general algorithm used in FlowOpt to 
verify workflows that do contain custom links, then we show how the workflows can 
be simplified without the loss of generality prior to running the algorithm to speed it 
up considerably.

7.3 General workflow verification algorithm

The full verification process consists of several parts:

1) Preprocessing

2) Generating a common FlowOpt representation of the workflow (CDM2).

3) Core verification algorithm

Preprocessing is essentially a number of simple checks that make sure that there is no 
custom constraint that is obviously invalid or redundant. These ad-hoc checks are 
useful in the sense that the user can immediately see the problem and the core 
verification algorithm need not even start. They are simple and fast and can even be 

                                               
1 Directed Acyclic Graph

2 Common Data Model of FlowOpt, for details please see FlowOpt development / 

programmer documentation.
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performed while the user works with the workflow. Currently, the following 
problems are detected by the preprocessing phase:

 Any duplicate link (a link of the same type is already in place).

 Any link L where Parent(L) is an alternative task. Such a constraint is always 
redundant, because at most one of the tasks it affects will ever be active.

 Any logical link L where both From(L) and To(L) are always active, meaning 
there is no alternative task on the path from From(L) to the root task or from 
To(L) to the root task. Since both the tasks are active, the constraint is either 
redundant (implication, equivalence) or invalid (mutual exclusion).

 Any precedence link L where Parent(L) is a serial task. Such a constraint is 
always either redundant (if the link follows the sequence direction) or invalid 
(if it goes in the wrong direction)1.

 Any synchronization link L where Parent(L) is a serial task and type of L is 
not ES or SE. Also the link has to go in the right direction (ES links must 
follow the sequence, SE link must go in the opposite direction). The 
reasoning here is similar as in the point above.

 Any precedence link where From(L) is a (direct or indirect) parent of To(L)
or vice versa. Such a constraint is always invalid, since the children must 
always occur within the temporal bounds of their parent.

If the preprocessing step finds no errors, the second part of the algorithm starts. In 
this phase, the workflow is translated into the data model used across FlowOpt 
modules (CDM – please see FlowOpt project documentation for details). 

While there is no semantic difference between the data model used by the workflow 
editor and CDM, this step is still worth mentioning from the technical point of view, 
since it has some notable advantages:

 CDM represents the actual data model of FlowOpt as a whole, so if we verify 
a workflow in CDM, we know it will be valid in all the other FlowOpt 
modules besides the workflow editor.

 The workflow editor’s data model carries a lot of additional information that 
isn’t semantically important for the verification purposes (for example visual 
representation of the workflow). On the other hand the CDM is designed to 
be as simple and lightweight as possible, which in turn makes the verification 
process simpler and more transparent. 

 It is likely that the workflow editor’s model will be extended in the future 
with some additional workflow patterns. As long as CDM remains the same, 
no changes in the verification algorithm will be needed, only the procedure 
that generates CDM from the workflow editor model will have to be 
extended.

                                               
1 One could argue that if all the tasks within the sequence have zero duration, then the 

precedence might not be outright invalid, as all the tasks could be scheduled into a single point in 

time. However we still consider this a conceptual error, because an uninterruptible cycle in the 

workflow usually implies an error in design.
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The third and final part of the verification process is the core verification algorithm, 
which is described in the next chapter.

7.4 Core verification algorithm

The algorithm used to verify FlowOpt workflows is based on the techniques 
commonly used to solve the disjunctive temporal problem (DTP) – constraint 
propagation with forward checking [6].

The algorithm basically goes through all the possible valuations of the tasks‘ logical 
domains while trying to create a process by propagating all of the workflow 
constraints. As a consequence of the definition of the general constraints (particularly 
constraint types 1 and 2), this boils down to trying every possible choice of active 
child for every alternative task in the workflow while making sure that all the 
workflow constraints hold.

If a constraint conflict is detected at some point, the algorithm goes to the next 
possible combination of active children. If all the constraints are propagated 
successfully, the algorithm marks a new process and remembers the alternatives that
were performed in that process – we know that these are accessible.

This explicit evaluation of (potentially) all alternative combinations means that the 
algorithm is exponential, which is to be expected, since the problem it solves is NP-
complete.

Eventually we either find a process for every task in the workflow or we examine all 
of the possible alternative combinations. The rest of this chapter describes this 
algorithm formally.

Propagating constraints

When we propagate the workflow constraints, we have to make sure that they do not 
conflict with each other in any way - detecting a constraint conflict is a crucial part 
of the verification algorithm. In general, we will be propagating two kinds of 
constraints – logical constraints, which restrict logical domains of tasks, and 
temporal constraints, which restrict distances between the time points.

It is relatively easy to detect a conflict when changing the logical domains of tasks –
all we have to do is make sure that we aren’t trying to activate a task that was 
previously deactivated or deactivate a task that was previously activated. In other 
words, we cannot assign logical domain of {1} to a task that has logical domain of 
{0} or vice versa. This check can of course be done in constant time.

Detecting a temporal conflict is a bit more difficult. It essentially means solving the 
Simple Temporal Problem [7]. Let us define this problem formally.

An instance of the simple temporal problem (STP) consists of a set of time points 
� = {��, ��, … , ��} and a set � = {��,�|�� , �� ∈ �} of binary temporal constraints on 

time differences between these time points. 

Each constraint ci,j has a defined ����ℎ� ∈ ℤ, which is an upper bound on the time 
difference between the time points pi and pj:

����ℎ�(��,�) = � ⟺ �� − �� ≤ �
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A solution to an STP instance is an assignment of exact values to all the time points 
so that all the constraints hold. An instance of STP is called consistent if it has at 
least one solution. 

Detecting a conflict while propagating temporal constraints is equivalent to deciding 
whether a specific instance of STP is consistent. This instance is defined by the time 
points and temporal constraints imposed by the workflow:

� = ����������
� ∼ �������� �������� �����������

In other words, we will maintain an instance of STP describing the temporal 
properties of the workflow that we are verifying. Every time we need to propagate a 
temporal constraint, we do so by adding this constraint into the STP instance. The 
propagation succeeds if and only if the resulting STP instance is still consistent.

There are many ways how we can solve an STP, for instance the well-known 
Bellman-Ford algorithm. The problem is that most of these traditional algorithms 
work on a static temporal network, meaning we would have to re-run the whole 
temporal verification every time we add a new constraint to the network. This would 
be very inefficient, since the workflow verification procedure gradually builds the 
temporal network and the temporal verification is invoked very often.

For our purposes the incremental algorithms presented in [7] are much more 
interesting, since they take advantage of the fact that we are trying to add a constraint 
to an already consistent temporal network and generally perform better as a result. 

That is why the verification procedure currently implements one of these algorithms 
(namely IFPC1).

The Verify method

Let us now describe the core verification algorithm together with pseudocode of its 
key methods. First we have a method called Verify that is to be called on the 
workflow’s root task and that encapsulates the whole verification process. 

FUNCTION Verify(Task rootTask):

������������ = ⋃ �ℎ������(�)�∈�����������

���� = ∅
∀� ∈ �����: �������������(�) = {����, �����}
∀��, �� ∈ ����������: ����(��, ��) = [−∞, +∞]

IF (NOT ActivateTask(RootTask))
RETURN false

IF (IterateAlternative())
IF(|Inaccessible| > 0) RETURN ProcessExists
ELSE RETURN FullyVerified

ELSE RETURN NoProcessExists

Figure 21: The Verify method pseudocode

The method in Figure 21 accepts the root task of the workflow and returns either 
NoProcessExists if there is no process what so ever for the workflow due to 
some serious constraint conflict, ProcessExists if some process does exist, but 

                                               
1 Incremental Full Path Checking
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some alternatives are inaccessible or FullyVerified if all the alternatives are 
accessible.

First, we initialize some values that will be used throughout the verification 
procedure. To keep track of which alternatives are inaccessible, we will define a set 
of tasks called Inaccessible which will hold them. When the verification starts, 
let all the alternatives be inaccessible. As the algorithm progresses, we will remove 
those alternatives that we know are accessible (whenever we find a process, we 
remove all alternatives that are active in that process).

We will also need to maintain a set of alternative tasks that have yet to be examined. 
This set is called TODO. Whenever we encounter an alternative task, we will add it to 
this set so that we can later determine which of its children are accessible.

When the verification starts, all the logical domains are set to {true, false} and all the 
temporal weights are equal to infinity (meaning there is no restriction on any of the 
values).

We start by activating the root task and propagating all the workflow constraints that 
this implies. This is done by the ActivateTask method, which accepts a task that 
should be activated and returns true if the propagation succeeds or false if it fails 
(that is if some kind of conflict is found).

If the root task was activated successfully, we start examining all the possible 
alternative combinations in the workflow to determine which ones are accessible –
this is done in the IterateAlternative method. IterateAlternative
succeeds if at least one process exists for the workflow. 

If that is the case, we can check whether there are any inaccessible alternatives. If 
not, the workflow is valid. If there are inaccessible alternatives, the workflow is not 
valid in the sense of the definition we used, but we can still let the user know that at 
least one process exists.

Notice that the Verify method directly follows the definition of a process that we 
established: we first activate the root task and propagate all the constraints to make 
sure they hold. We then go through all the possible alternative combinations, 
activating all the alternatives one at a time to find out which ones can be in a process. 
If we manage to examine all of the alternatives and propagate all the constraints 
correctly, the Verify method must also be correct.

The IterateAlternative method

The IterateAlternative method goes through all the unresolved alternative 
tasks in the workflow and determines which of their children are accessible. The 
method returns true if there is at least one accessible alternative, i.e. if any process 
exists for the workflow.



43

FUNCTION IterateAlternative():

IF(|Inaccessible| = 0 OR |TODO| = 0)                  
������������ = ������������ ∖ ⋂ {�������ℎ���(�)}�∈�����������
RETURN true

Task next = Pop(TODO)
bool validAlternativeFound = false

IF(next already has an active child)
RETURN IterateAlternative()

State = current values of LogicalDomains and Dist
FOREACH(Task A ∈ Children(next))

Set LogicalDomains and Dist to values stored in State

IF(NOT ActivateTask(A))
Skip to the next alternative

IF(IterateAlternative())
validAlternativeFound = true

IF(all alternatives are accessible)
RETURN true

RETURN validAlternativeFound

Figure 22: The IterateAlternative method pseudocode

The method in Figure 22 first makes sure there are still some (potentially) 
inaccessible alternatives. If there are none or if there are no more alternative tasks to 
go through (TODO is empty), we have a complete process. That makes all the 
currently active alternatives accessible. We note which alternatives they are and end.

If there are more alternative tasks to be examined, we will take any of them and 
determine which of its children can be activated. Note that the decision on which 
alternative task to choose can affect the algorithm performance considerably. Our 
current implementation simply chooses the first one. 

Once we have chosen an alternative task to examine, we will first check whether one 
of its children is already activated (this could happen during previous propagation of 
some custom constraint). If that is the case, we have no choice but to try a different 
alternative task. If no children are activated yet, we try to activate all of them, one at 
a time, in order to determine which ones can be in a process. 

In order to do this correctly, we have to  remember the values of all the logical 
domains and temporal distances before we start activating the children, because 
activating a child will cause changes to these values that we need to revert when we 
want to activate a different child (only one child of an alternative task can be active 
at a time).

If activating a child fails, we cannot mark it as an accessible alternative, so we just 
go to the next child. If the activation succeeds, we have to iterate through the rest of 
the alternative combinations in the workflow, trying to complete the process. 

In the end, we return true if we managed to find any process, using any of the 
children.

The ActivateTask method

Next is the ActivateTask method, which activates a single task and propagates 
all the workflow constraints. We will emphasize the parts where some constraint is 
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being propagated by marking the respective line with the number of the constraint 
type. 

FUNCTION ActivateTask(Task T):

IF(LogicalDomain(T) = {1}) RETURN TRUE

FOREACH(t ∈ {Parent(T), Parent(Parent(T)),… RootTask})
ActivateTask(t)

IF(LogicalDomain(T) = {1}) RETURN TRUE
ELSE LogicalDomain(T) = {1}

IF(Parent(T) ∈ Alternative)
FOREACH(Task t ∈ Children(Parent(T)), t != T)

DeactivateTask(t)

Dist(Start(Parent(T)), Start(T)) = [0,0]             
Dist(End(T), End(Parent(T)) = [0,0]      

IF(T ∈ WithActivity)
Dist(Start(T), End(T)) =

           [Duration(Activity(T)), Duration(Activity(T))]

IF(T ∈ Serial, Children(T) = (c1,c2,… cn))
Dist(Start(T), Start(c1)) = [0,0]      
Dist(End(cn), End(T))) = [0,0]      

FOR(i = 1 … n - 1) Dist(ci, ci+1) = [0,∞]

IF(T ∈ Parallel)                                                     
FOREACH(Task C ∈ Children(T))

Dist(Start(T), Start(C)) = [0,∞]
Dist(End(C), End(T)) = [0,∞]

IF(T ∈ Alternative) TODO = TODO ∪ {T}

IF(T ∈ Serial ∪ Parallel)
FOREACH(Task C ∈ Children(T))

ActivateTask(C)

FOREACH(newly active custom constraint C)
PropagateConstraint(C)         

RETURN true if there are no constraint conflicts, false otherwise

(3)

(2)

(6.b)
(6.b)

(5)

(6.a)

(4)

(6.c)

(1)

(7-14)

Figure 23: The ActivateTask method pseudocode

The method in Figure 23 activates a given task and propagates all the workflow 
constraints (with one exception - constraints of type 6.c are not fully propagated here 
for reasons described later). If there is any conflict during the constraint propagation, 
the method returns false, otherwise it returns true indicating a successful activation.

In other words, whenever any of the methods that are called in the process of 
activating a task fails, so will the whole activation – we require that all of the 
constraints hold. For the sake of simplicity, we didn’t explicitly test the return values 
of those methods in the pseudocode above, simply having the method end whenever 
a conflict occurs should be understandable.
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The method first checks whether the task is already activated – if that is the case, we 
do not have to do anything. Otherwise we activate both the task and all of its 
predecessors on the way to the root task to make sure that workflow constraint type 
3) holds. A task could potentially have inactive parent if it was activated by a custom 
link. 

If we want to activate a child of an alternative task, we have to deactivate all of its 
siblings (all the other children of the alternative task) to make sure that constraint 2) 
holds. Also, we must synchronize the start and end of the child with the start and end 
of its parent to make sure that all the constraints of type 6.b hold.

If the task contains an activity, we just set an exact distance between the task’s start 
and end points to the activity’s duration (constraint type 5).  

If the task is serial, we can synchronize the task’s start point with the start point of its 
first child and the end point of its last child with the end point of the task. We also 
have to propagate all the precedences given by the serial task’s ordering (constraints 
4 and 6.a).

If the task is parallel, then all we know at this point is that all of its children must 
start after the parent starts and end before the parent ends (part of constraint type 
6.c), so we can only add general precedences. Note that this isn’t precise enough –
we need the task to start at the exact moment its first child starts and end at the exact 
moment its last child ends in order to enforce constraint type 6.c, but we do not have 
that information about the task’s children yet. 

We need to propagate constraints of type 6.c in later stages of the algorithm, when 
we know for certain which child starts first and which child ends last. Specifically, 
we can do it in the IterateAlternative method – before we mark a valid 
process, we try to propagate all the constraints of type 6.c. One way to do the actual 
propagation is described in Propagating constraint type 6.c.

After that, we propagate the activation to any children the task may have. For serial 
and parallel tasks we have to activate all the children. If the task is alternative we just 
add the alternative task to the context’s TODO list of alternative tasks, so that we can 
later examine all of its children separately.

Finally, we must also propagate the custom constraints that became active as a result 
of activating some tasks. By definition,  logical constraints are active if and only if

LogicalDomain�From(C)� = {1} ⋁ LogicalDomain(To(C)) = {1}
Precedence and synchronization constraints are active if and only if

LogicalDomain�From(C)� = {1} & �������������(��(�)) = {1}

This should be intuitive, since as soon as one end of a logical constraint is active, it 
may affect the logical domains of other tasks. On the other hand, precedence and 
synchronization constraints need both their end tasks to be active, since if a task is 
not performed, no temporal constraints should be enforced on it.

The custom link propagation is done in the PropagateConstraint method, 
which simply changes the verification context based on the constraint type. Suppose 
we want to propagate a custom constraint C, as a result of activating a task T 
(meaning that T is active and either From(C) = T or To(C) = T). 

Based on the type of the constraint, the PropagateConstraint method would 
do one of the following actions: 
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Constraint Action

Precedence (7) Dist(End(From(C)), Start(To(C))) = [0,∞]

Logical Implication (8) IF(From(C) = T)  ActivateTask(To(C))

Logical 
Equivalence

(9) ActivateTask(Other(C,T))

Logical Mutex (10) DeactivateTask(Other(C,T))

Synchronization SS (11) Dist(Start(From(C)), Start(To(C))) = [0,0]

Synchronization EE (12) Dist(End(From(C)), End(To(C))) = [0,0]

Synchronization SE (13) Dist(Start(From(C)), End(To(C))) = [0,0]

Synchronization ES (14) Dist(End(From(C)), Start(To(C))) = [0,0]

Figure 24: The PropagateConstraint method behavior

Figure 24 describes the behavior of the PropagateConstraint method for all the 
possible constraint types. We felt it wasn’t necessary to provide pseudocode for this 
method, since it would only be a switch operation on the constraint type.

Since activating tasks is a very significant part of the algorithm, let us briefly show 
why this method works correctly and determine an upper bound on its worst-case 
complexity.

Correctness

All the workflow constraints (except 6.c) are propagated correctly, since the 
propagation follows the definitions of the workflow constraints. Also, tasks can only 
be activated via this method, so we know that whenever a task is activated at any 
point, all the constraints will be propagated.

Complexity

It is apparent that we can only activate each task once (we check whether the task is 
already activated in the very start of the method). Activating one task involves 
changing both logical domains and temporal distances. The former can be done in 
constant time, while the latter (IFPC algorithm) has worst case complexity of �(��), 
where n is the number of tasks in the workflow. 

There can be up to �(�) children within a decomposed task, making the time 
complexity of a single call to ActivateTask �(��) due to having to propagate some 
kind of temporal constraint to every child. However, in the worst case we have to 
account for the fact that the method can also call itself recursively.

To determine the complexity of all the calls, we can observe that we can call both 
ActivateTask and DeactivateTask at most once per task. Calling the same method 
twice does nothing, since both check whether the task is already active / inactive 
when they start. Calling both the methods (in any order) on the same task results in a 
conflict (a task cannot be both active and inactive). 

All in all, we have �(�) calls in the worst case, each one having time complexity 
�(��), which makes the worst-case complexity of the method �(��). 

The DeactivateTask method

Deactivating a task is much simpler than activating one. All we have to do is set a 
task’s LogicalDomain to {false} and make sure that this didn’t create a logical 
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conflict.. We can also do some forward checking to improve performance, but this is 
not necessary, since ActivateTask will eventually detect any conflicts due to the way 
it traverses the workflow.

Figure 25 shows the pseudocode for the DeactivateTask method, described above.

Propagating constraint type 6.c

The last code fragment we present here briefly describes one way of propagating 
constraint type 6.c. This should be done when all the other constraints have been 
propagated, for example right before we mark a new process.

FUNCTION FixParallel(Task T)

IF(LogicalDomain(T)={0})
RETURN true

IF(T ∈ WithActivity)
RETURN true

//task is decomposed
FOREACH(Task C ∈ Children(T))

IF(NOT FixParallel(C)) RETURN false

IF(task ∈ Parallel)
Task earliest = the child C of T with the minimal Start(C)
Task latest = the child C of T with maximal End(C)
Dist(Start(T), Start(earliest)) = [0,0]
Dist(End(latest), End(T)) = [0,0]

RETURN true if no constraint conflict was detected, false otherwise

Figure 26: The FixParallel method pseudocode

The only responsibility of the method in Figure 26 is to propagate constraint type 6.c.  
It adds synchronization constraints to a parallel task so that it starts exactly when the 
first of its children starts and ends exactly when the last of its children ends. 

We couldn’t propagate this constraint in the ActivateTask method like all the 
other constraints, because we didn’t know which child will start first or end last. This 
method should be called when all the other constraints have been propagated, so 
nothing else can change in this sense.

The process is simple, if the task is not active or contains an activity, we do not have 
to do anything. If the task is decomposed, we first fix all the children.

Once the children are fixed, all that is left to do is to fix the parent in case it is a 
parallel task. If so, we synchronize the start of the parent with the start of its first 
child and the end of the parent with the end of its last child.

To see that this approach is correct, note that whenever we try to add the 
synchronization constraints of type 6.c, all the other constraints affecting the children 
of the task have already been propagated. In fact, all the constraints except those of 
type 6.c have been propagated before this method even started. 

FUNCTION DeactivateTask(Task T)

IF(LogicalDomain(T)={1}) RETURN FALSE
LogicalDomain(T)={0}

RETURN TRUE 

Figure 25: The DeactivateTask method pseudocode
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Constraints of type 6.c are propagated by this method and we call it on the children 
before we call it on the parent task. Therefore by the time we try to propagate the 
synchronizations in the parent, we already have all the temporal information about 
the children – we know which one starts first and which one ends last.

We can also see that we propagate the 6.c constraints for every parallel task in the 
workflow, due to the way we traverse all the tasks – we call the method on the root 
task an move through the workflow in a DFS manner.

Core algorithm complexity

Since the problem is NP-complete, it is not surprising that the algorithm is 
exponential with respect to the number of tasks in the workflow in the worst case. 
This is due to the fact that the algorithm explicitly examines all the possible 
alternative combinations – the number of those grows exponentially with the number 
of alternative tasks. 

Even if there are no alternative tasks in the workflow, the algorithm needs at least 
linear time to traverse the workflow, detect whether there are any custom links and if 
so, propagate the activation of the root task. 

That is why the resulting complexity of the core verification algorithm is �(2� + �), 
where a is the number of alternative tasks in the workflow and n is the total number 
of tasks in the workflow.

Core algorithm correctness

The correctness of the algorithm comes from the correctness of the general approach 
to DTP solving that our algorithm is based on and from the fact that we managed to:

a) We examine every possible alternative combination and

b) We propagate all the constraints correctly.

Point a) holds due to the definition of ActivateTask and IterateAlternative
methods. We essentially traverse the workflow in a DFS-like manner (in the 
ActivateTask method) and explicitly examine all the children of any alternative 
tasks that we find (in the IterateAlternative method).

To show that part b) holds, we can note that all the workflow constraints except for 
type 6.c are propagated in the ActivateTask method and  constraints of type 6.c 
are propagated separately once we know we have enough information to do so. We 
have showed that all of these constraints are propagated correctly in the definition of 
those methods.

All together, we know we examine every possible alternative in the workflow and we 
propagate all the constraints correctly, therefore the algorithm must be correct.
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7.5 Simplifying the workflow

Now that we have the basic algorithm defined, we would like to improve on its 
performance. We already showed that if a task contains no custom links (or empty 
tasks), it must be valid. Following that idea, we would like to determine which parts 
of the workflow do not have to be examined thoroughly due to the absence of any 
custom links.

Notation: 

 Expanded ⊆ ����� – A set of tasks that need to be explicitly examined 
during the verification process. Alternatively, if a task is not in Expanded, we 
do not have to examine alternatives within its subtree.

In other words, we are going to determine which tasks in the workflow have to be 
examined thoroughly, that is in which tasks we actually have to examine all of the 
alternative combinations in order to get the correct results. We will call these 
expanded tasks. 

On the other hand, we will be able to determine that some tasks cannot contain any 
inaccessible alternatives and therefore they do not need to be examined thoroughly. 
These will be referred to as collapsed tasks. The whole idea of simplifying the 
workflow now comes down to determining which tasks have to be expanded and 
which tasks can be collapsed. 

Intuitively, we can collapse tasks that aren’t affected by any custom constraint. In 
terms of the verification algorithm, custom constraints can affect logical domains and 
temporal distances only. Let us define the following for a task T:

 Descendants(T) = All the direct or indirect children of T1.

 TimePoints(T) ⊆ ����������, ����������(�) =
{�����(�)| � ∈ �. �����������} ∪ {���(�)| � ∈ �. �����������} ∪
{�����(�), ���(�)} – The subset of all time points that is defined by the 
subtree of T.

We claim that a task can be collapsed if:

a) ∀� ∈ �����������(�): � is not incident with any custom logical link.

b) ∀��, �� ∈ ����������(�): ����(��, ��) is not restricted by any custom 
constraint.

The above conditions make sure that any custom links in the workflow will not affect 
either logical domains or temporal distances of time points within collapsed tasks, 
which leads to the fact that collapsed tasks cannot contain any inaccessible 
alternatives and therefore need not be explicitly evaluated by the verification 
procedure.

                                               
1 Formally: 

��(�) = �ℎ������(�)

��(�) = ⋃ �ℎ������(�)�∈����∩����������

�����������(�) = ⋃ �����..�
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Condition a) implies that any custom logical links may only affect the root of any 
collapsed subtree, not its descendants. This means that the only way that the rest of 
the workflow can affect the logical domains of Descendants(T) is through the logical 
domain of T (and propagation of constraint types 1 or 2). 

In other words, custom logical constraints can cause the whole collapsed subtree to 
activate or deactivate, but this cannot cause any of T’s descendants to become an 
inaccessible alternative, due to the way general constraints are defined.

Condition b) works analogically for temporal constraints. It requires that any custom 
temporal constraints (precedence, synchronization) cannot restrict the temporal 
distances of time points in TimePoints(T) in any way. This means that the custom 
temporal constraints do not affect the collapsed tasks at all. Specifically, they cannot 
cause an inaccessible alternative within a collapsed task.

To summarize, if the above necessary conditions hold, it is easy to see that there can 
be no inaccessible alternatives in any collapsed task. We know that if a task is 
collapsed, it contains no custom links or empty tasks, so on its own it must be a valid 
workflow with all alternatives accessible (following the reasoning from the Verifying 
workflows without custom links chapter).

Furthermore, since the logical domains and temporal distances of all the collapsed 
tasks are not restricted by the rest of the workflow, all its alternatives must still be 
accessible even in the context of the whole workflow, provided that there is no 
problem in the expanded parts (which we still verify explicitly).

Notice that condition b) is somewhat stronger and more difficult to ensure than a). 
That is because in our particular workflow model, logical constraints propagation is 
rather easy while temporal constraints propagation is more complicated and we have 
to be more careful while collapsing tasks to make sure we don’t lose any information 
that we need to produce correct results.

Modified algorithm

Once we have determined which tasks have to be expanded and which tasks can be 
collapsed, we propose several changes to the verification algorithm:

In the ActivateTask method we check whether the task we are trying to activate 
must be expanded. If not, we just set the distance between its start and end points to 
some constant value, which corresponds to treating the collapsed tasks as „black 
boxes“ with an arbitrary positive duration:
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FUNCTION ActivateTask(Task T):

IF(LogicalDomain(T) = {1}) RETURN TRUE

FOREACH(t ∈ {Parent(T), Parent(Parent(T)),… RootTask})
ActivateTask(t)

IF(LogicalDomain(T) = {1}) RETURN TRUE
ELSE LogicalDomain(T) = {1}

IF(Parent(T) ∈ Alternative)
FOREACH(Task t ∈ Children(Parent(T)), t != T)

DeactivateTask(t)

Dist(Start(Parent(T)), Start(T)) = [0,0]             
Dist(End(T), End(Parent(T)) = [0,0]      

IF(T ∈ ��������)

IF(T ∈ WithActivity)
Dist(Start(T), End(T)) =

           [Duration(Activity(T)), Duration(Activity(T))]

IF(T ∈ Serial, Children(T) = (c1,c2,… cn))
Dist(Start(T), Start(c1)) = [0,0]      

Dist(End(cn), End(T))) = [0,0]      

FOR(i = 1 … n - 1) Dist(ci, ci+1) = [0,∞]

IF(T ∈ Parallel)                                                     
FOREACH(Task C ∈ Children(T))

Dist(Start(T), Start(C)) = [0,∞]
Dist(End(C), End(T)) = [0,∞]

IF(T ∈ Alternative) TODO = TODO ∪ {T}

IF(T ∈ Serial ∪ Parallel)

FOREACH(Task C ∈ Children(T))
ActivateTask(C)

ELSE Dist(Start(T), End(T)) = [1,1]

FOREACH(newly active custom constraint C)
PropagateConstraint(C)         

RETURN true if there are no constraint conflicts, false otherwise

(3)

(2)

(6.b)
(6.b)

(5)

(6.a)

(4)

(6.c)

(1)

(7-14)

Figure 27: The modified ActivateTask method pseudocode

Figure 27 describes the modified ActivateTask method that doesn’t fully 
evaluate the collapsed tasks (modified parts are highlighted). Note that even if the 
task is collapsed, we still need to represent it in the workflow somehow – if we just 
deleted the collapsed tasks, the workflow could easily become invalid (for instance, 
we could delete all the accessible alternatives of an alternative task). 

As for the duration of the collapsed tasks, since we know that there are no temporal 
constraints restricting them, we can set it to any value we want, it will not create a 
constraint conflict.

Also, when filling the Inaccessible collection, we only consider the alternatives in 
the expanded tasks as we will no longer explicitly enumerate alternatives within 
collapsed tasks.
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This modification should increase performance considerably, as we will only 
explicitly evaluate the expanded tasks. This can easily be a mere fraction of the 
original workflow, depending on how many custom links were used. The worst-case 
complexity remains unchanged of course.

To show the correctness of this approach, we need show that both verification 
algorithms (the original and the modified) detect the exact same inaccessible 
alternatives. 

First, we can note that both the algorithms work identically on expanded tasks. 
Collapsing some tasks cannot change this, since we only collapse tasks that aren’t 
affected by any custom link, meaning both the algorithms propagate the exact same 
custom constraints in the same tasks.

Second, we know that the collapsed tasks cannot ever contain an inaccessible 
alternative. In other words, any inaccessible alternatives have to be in expanded 
tasks, where both the algorithms behave identically and thus yield identical results.

Simple way of collapsing tasks

As a simple way of improving the performance of the verification algorithm, we 
compute Expanded as follows:

�������� = ∅

FOREACH(� ∈ �����������)
�������� = �������� ∪
�������(�), �������������(�)�, … , ��������� ∪ �����������(������(�))

Figure 28: Simple way of collapsing tasks

Figure 28 shows a basic way of expanding tasks that simply makes sure that every 
task that contains a custom constraint (directly or indirectly) is expanded. We go 
through every custom constraint defined and expand both the path from the root task 
to the link’s parent and the parent itself together with all of its children (recursively). 

Below is an example of how a workflow with a single precedence link L would look 
like after applying this simple procedure.
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Figure 29: Example of task collapsing

Figure 29 shows an example of the simple collapsing procedure described in Figure 
28. The tasks that are not in Expanded after the procedure finishes are shown 
collapsed in Figure 29 for illustration.

To show the correctness of this procedure, we have to show that we only collapse 
tasks that cannot contain an inaccessible alternative, that is tasks that aren’t affected 
by any custom link. 

Suppose we have a precedence or synchronization custom constraint C. We know 
that this constraint only affects temporal distances between tasks. Since both the 
tasks it connects are contained within the constraint link’s parent, we know that the 
link cannot directly influence any other tasks beyond those within the subtree of 
Parent(C), due to the tree structure of the workflow and the definition of the 
workflow constraints.

The only way that the constraint affects the rest of the workflow beyond the subtree 
of Parent(C) is by changing Dist(Start(Parent(C)), End(Parent(C))). This doesn’t 
restrict temporal distances between any other time points that aren’t in the subtree of 
Parent(C) though. 

For a logical constraint, the situation is similar, except instead of temporal distances 
we have logical domains. Using the same reasoning as before, a custom logical 
constraint can only affect the rest of the workflow beyond Parent(C) by changing the
logical domain of Parent(C). The only way that this can affect other task’s logical 
domains is through propagation of constraint type 4. This doesn’t affect the tasks’ 
descendants though, so both the necessary conditions we defined for collapsing tasks 
hold and the new algorithm provides equal results as the old one.

Further optimizations

The above way of collapsing tasks is by no means optimal. We can certainly collapse 
more tasks based on some further observations. 
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For instance, it isn’t hard to see that we do not need to fully expand tasks containing 
custom logical links. Based on condition a) for collapsing tasks, we can expand much 
fewer tasks, as shown in the following method:

�������� = ∅

FOREACH(� ∈ ����������� ∖ �������)
�������� = �������� ∪
�������(�), �������������(�)�, … , ��������� ∪ �����������(������(�))

FOREACH(� ∈ �������)
�������� = �������� ∪

������������(�)�, ������ ������������(�)�� , … , ��������� ∪

����������(�)�, ������ ����������(�)�� , … , ���������

Figure 30: Expanding tasks with custom logical links

Figure 30 shows a procedure that determines which tasks have to be expanded based 
on all the custom logical links in the workflow. The other custom links (precedence 
and synchronization) still use the procedure in Figure 28.

This procedure will only expand tasks on the paths (From(C), RootTask] and (To(C), 
RootTask]. Notice that this is the bare minimum, if we expand anything less, we lose 
the information about which tasks the custom link connects.  

This still satisfies both the necessary conditions for collapsing a task that we 
established, since the procedure for temporal constraints remains unchanged and 
condition a) obviously holds.

The situation with custom temporal constraints (precedences and synchronizations) is 
more complicated, since propagating temporal constraints is not as simple as 
propagating logical constraints. We certainly cannot use the same procedure as 
above, as illustrated by the simple contra-example below.

Figure 31: Problem with synchronizations

Figure 31 shows a simple workflow where the user requires that two tasks start and 
end at the same time (in other words, that they have identical durations). In order to 
verify this workflow, we need to fully expand both tasks incident with one of the 
links, otherwise we do not know their durations.

In general, temporal constraint propagation is much less transparent and 
straightforward than logical links propagation. For this reason, the verification 
procedure currently uses no further optimization for temporal constraints.
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7.6 Verification from the user’s perspective

Despite the underlying complex processes, we tried to make verification as simple as 
possible for the user. The user only has to invoke the verification dialog and run the 
process. When the verification ends, the result is displayed next to the workflow. 

There are three possible results (see The Verify method for details). The workflow 
can either be valid (all alternatives accessible), or invalid with either some or all 
alternatives inaccessible (the former means that at least one process exists for the 
workflow, while the latter means that there is no process at all). The results are 
simply visualized as green, orange and red “tick” respectively.

If any problems were detected, the editor displays them in an interactive list, which 
can be used to navigate to the particular problem (the view automatically moves over 
the relevant object) and to get a simple description of the problem.

Specifically, all the inaccessible alternatives will be in this list. In some cases, this 
list will even contain the custom links that caused some inaccessible alternative, but 
that is not always possible (due to the way constraints are propagated).

The results of the verification process are saved together with the workflow, so they 
can be reviewed later.

Figure 32: Verification example

In Figure 32, the user created an implication custom link from a task that will always 
be selected to a child of an alternative task, making the other children inaccessible. 
The verification procedure detects this and lets the user know where the problem is.
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The workflow editor also allows the user to verify a specific way of choosing 
alternatives in the workflow. Specifically, it is possible to have the verification 
algorithm always choose the preferred alternative (the task on the preferred route) as 
the active child in any alternative task. 

Due to the fact that the verification procedure only evaluates a single combination of 
alternatives, the process becomes polynomial. Also, it can only yield one of two 
results – workflow is fully verified, or workflow is invalid (as soon as there is an 
inaccessible alternative, the workflow becomes invalid, since we cannot choose 
another alternative instead).

This partial verification may be useful if the user is only interested in a particular 
way that the process can be executed.

Figure 33: Partial verification

Figure 33 shows a workflow that was verified using only the preferred alternatives
(preferred route is painted red). Activities A1, A2 and A3 have durations equal to 4, 
0 and 1 respectively. 

The partial verification procedure marks the above workflow as invalid for this 
particular choice of alternatives. Although there is a way to satisfy all the constraints 
(namely by performing A3 in all the alternative tasks), partial verification only 
considers the alternatives on the preferred route, and those do not satisfy the 
constraints (A1 has duration of 4, the alternative tasks have total duration of 2 and
the synchronization constraints require those to be equal).
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8. Import / Export of the Workflows

FlowOpt workflow editor implements both import and export of workflows to 
(currently) two formats:

1) MAKE workflows

2) XPDL 2.1

The need to support MAKE workflows comes from the fact that one of the goals of 
the FlowOpt workflow editor is full integration into the MAKE application. Since 
MAKE uses a different workflow model than FlowOpt, it is very convenient to have 
a way of converting one into the other, otherwise FlowOpt workflows couldn’t take 
advantage of some of MAKE’s advanced features and vice versa.

XPDL is supported because it is a well-known, standardized format used and 
understood by many users and applications, so being able to import / export to and 
from XPDL greatly adds to FlowOpt workflow editor’s usability.

8.1 MAKE Import / Export

The workflow model used in MAKE is similar to that of FlowOpt, but it lacks the 
tree hierarchy that is characteristic for FlowOpt workflows. Essentially, MAKE 
workflow model is a general temporal network with alternatives, as defined in [8]. 

There are several kinds of objects in MAKE workflows:

 Activities – elementary units of work just like in FlowOpt. Correspond to 
nodes in a Simple TNA. 

 (Temporal) links – define the order of execution through the precedence 
relation (again, same as in FlowOpt). Correspond to temporal links in Simple 
TNA.

 Start and end event marking the start and end of the workflow respectively. 
There is exactly one start and exactly one end event in a MAKE workflow.

 Activity decorators – any activity can have a parallel or alternative split 
decorator and a parallel or alternative join decorator. These mark the parallel /
alternative subgraphs in Simple TNA terminology.

 Semaphore – a special activity that doesn’t correspond to any real work, but 
is only meant to carry some decorator. Route activities in XPDL or gateways 
in BPMN are a similar concept.

All things considered, MAKE workflows are relatively close to FlowOpt workflows, 
which is not surprising considering the fact that FlowOpt workflow editor was 
greatly influenced by its counterpart in MAKE. Some workflow objects are even 
shared between the two models (activities for instance), which also helps to simplify 
the implementation part of the import process.
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Figure 34: MAKE workflow example

Figure 34 shows a MAKE workflow together with names of the objects in it.

There are several restrictions on the degrees of nodes (activities) in a MAKE 
workflow that the import and export procedures take advantage of:

 An activity with no decorators must have input degree = output degree = 1. In 
other words, every activity with no decorators must have exactly one 
incoming and exactly one outgoing link.

 A start event must have exactly one outgoing link and no incoming links.

 An end event can have no outgoing links.

 An activity decorated with a split decorator must have at least two outgoing 
links.

 An activity decorated with a join decorator must have at least two incoming 
links.

Export into MAKE

Export into MAKE is rather straightforward – we can take advantage of the tree 
structure of FlowOpt workflows and define the procedure of exporting a task 
recursively. Exporting a workflow of course means exporting its root task. It also 
involves setting some properties that both workflow models have in common to 
match, but this isn’t semantically important.

We will describe the export procedure in detail below. We will use the following 
notation:

 ��� � ∈ �����: Exported(t) = the fragment of the exported MAKE workflow 
that corresponds to t (subgraph that was created by exporting t).

 ��� � ∈ �����: First(t), Last(t) = first and last node of the exported subgraph 
corresponding to t. The export procedure uses these to connect the exported 
links correctly.

Pseudocode for the procedure that exports a task into MAKE is given below.
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Figure 35 shows the pseudocode of the procedure that can export a task into the 
MAKE workflow model.

In other words, if we want to export a task T into MAKE, then depending on the type 
of the task we do the following:

 If the task contains an activity, we don’t have to do anything, just export the 
activity. Note that MAKE and FlowOpt actually use the exact same activity 
definitions, so this is trivial.

 If the task is serial, export all of its children and connect them with 
precedence links in order given by the serial task. 

 If the task is parallel or alternative, we need to do several things:

a. Export all of its children

b. Create a semaphore holding a parallel / alternative split depending on 
the type of decomposition.

c. Create a semaphore holding a parallel / alternative join depending on 
the type of the decomposition. 

d. Create a link from the split semaphore into every exported child and 
from every exported child into the join semaphore.

In the end, we also have to add the start and end events and connect it to the exported 
root task to create a valid MAKE workflow.

We do not define an export procedure for incomplete workflows, that is workflows 
that contain an empty task. We could easily modify the above procedure to change 
this, for instance by exporting empty tasks as some special activities, but that did not 
seem necessary.

Unfortunately the export procedure ignores custom links, since the MAKE workflow 
model does not explicitly support them.

First, MAKE only defines temporal links, not logical links. Second, the restrictions 
on node input and output degrees listed above complicate things further. For 

Procedure ExportTask(Task T)

IF(T ∈ WithActivity)
Export Activity(T)
First(T) = Last(T) = Exported(T)

IF (T ∈ Serial, Children(T) = (c1,c2,…,cn))
ExportTask(ci) for all i = 1..n
FOR (i = 1..n-1)

Add a link between Last(ci) and First(ci+1)
First(T) = First(c1)
Last(T) = Last(cn)

IF(T ∈ Parallel ∪ Alternative)
Create a semaphore S with a parallel / alternative split
Create a semaphore J with a parallel / alternative join
FOREACH(Task c ∈ Children(T))

ExportTask(c)
Create a link between S and First(c)
Create a link between Last(c) and J

First(T) = S
Last(T) = J

Figure 35: Procedure for exporting FlowOpt workflows into MAKE
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instance, every non-decorated activity must have exactly one incoming and exactly 
one outgoing link in MAKE. It should be apparent from the export procedure above 
that it will never create an activity with zero incoming or outgoing links. This means 
that even if we managed to export the custom link somehow, we couldn’t connect it
to the exported activity without decorating it. 

When we decorate an activity, we can connect it to multiple links, however 
decorating an activity carries some additional logical constraints – a parallel 
decorator implies that all of the nodes connected to it should be executed in parallel, 
whereas an alternative decorator implies that exactly one node of those connected to 
it should be executed. 

This makes it very difficult to find an intuitive way of exporting the custom links that 
wouldn’t violate MAKE workflow model and still be intuitive for the user. That is 
why we opted not to export the custom links at all. If they prove to be a useful 
construct, it should be rather easy to add them to MAKE workflow model, which 
would in turn make it easy to export them in a much cleaner way.

All the other information besides the custom links is exported – aspects like layout, 
preferred route or activity to resource mapping are preserved. The way this is 
implemented is mostly technical and not very interesting conceptually.
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Figure 36: A workflow exported into MAKE

Figure 36 shows a FlowOpt workflow and its equivalent exported into MAKE.

Import from MAKE

Import is the more interesting problem, because MAKE workflow model does not 
define hierarchy and we therefore have to build it somehow. Since MAKE 
workflows are essentially Simple TNAs, we can use the algorithm described in [1]
that manages to convert a Simple TNA into a Nested TNA (~FlowOpt workflow 
model) in polynomial time, provided that the Simple TNA has a nested structure. 
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Let us now briefly describe the procedure currently used in the presented application 
to import workflows from other formats (specifically MAKE and XPDL) into 
FlowOpt. 

It is based on the algorithm presented in [1], but we made some slight modifications 
to reflect the details in which our model differs from Nested TNA – mainly the fact 
that we decompose nodes instead of links. Also, the algorithm currently used in the 
presented application automatically filters out semaphores / gateways, transferring 
the information they carry to the type of the created task.

Below is the pseudo code of the original algorithm presented in [1]. We use the same 
notation as in [1], that is:

 The workflow being imported is represented as a graph G whose nodes are 
the activities and arcs are the temporal links.

 ∀���� �: ����(�) = {�: (�, �) �� � ����} - predecessors of x in the graph

 ∀���� �: ����(�) = {�: (�, �) �� � ����} - successors of x in the graph

Figure 37 shows pseudocode for the DetectNested procedure that can detect 
whether a given Simple TNA is a Nested TNA and if so, it can be used create the 
nested structure. The importing procedure for MAKE (and for XPDL as well) is 
based on this procedure.

The modified algorithm that is used in the presented application is shown below.

algorithm DetectNested(input: graph G, output: {success, failure})
1. select all nodes x in G such that |pred(x)| = |succ(x)| = 1
2. sort the selected nodes lexicographically according to index

(pred(x), succ(x)) to form a queue Q

3. while non-empty Q do
4. select and delete a sub-sequence L of size k in Q such that

all nodes in L have an identical index ({x}, {y}) and

either |succ(x)| = k or |pred(y)| = k
5. if no such L exists then stop with failure

6. if k > 1 & outLab(x) ≠ inLab(y) then stop with failure

7. remove nodes z∈L from the graph

8. remove nodes x, y from Q (if they are there)

9. add arc (x,y) to the graph (an update succ(x) and pred(y))
10. if |pred(x)| = |succ(x)| = 1 then insert x to Q
11. if |pred(y)| = |succ(y)| = 1 then insert y to Q
12.end while

13.if the graph consists of two nodes connected by an arc then
14. stop with success

15.else stop with failure

Figure 37: The original algorithm for recognizing Nested TNA as presented in [1]
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algorithm ImportTNA(input: graph G, output: {success, failure})

1. select all nodes x in G such that |pred(x)| = |succ(x)| = 1
2. sort the selected nodes lexicographically according to index

(pred(x), succ(x)) to form a queue Q
3. while non-empty Q do
4. select and delete a sub-sequence L of size k >= 2 in Q such that

all nodes in L have an identical index ({x}, {y}) and
either |succ(x)| = k or |pred(y)| = k

5. if no such sequence exists then 
select and delete a sub-sequence L = (x = c1, c2, …, y = ck) 

of size k >= 2 in Q such that ∀� = 1. . � − 1: (ci, ci+1) is an arc in G

if no such sequence exists either then stop with failure
6. else if outLab(x) does not match inLab(y) then stop with failure

7. remove nodes z∈L from the graph

8. remove nodes x, y from Q (if they are there)
9. add a new node d and arcs (x,d) and (d,y) to the graph 

Create a new task from L and associate it with d
10. if |pred(x)| = |succ(x)| = 1 then insert x to Q

11. if |pred(y)| = |succ(y)| = 1 then insert y to Q
if |pred(n)| = |succ(n)| = 1 then insert n to Q

12.end while

13.if the graph consists of a single node then
14. stop with success

15.else stop with failure

Figure 38: Modified importing procedure

Figure 38 describes the procedure that is used by the presented application to import 
MAKE (and XPDL) workflows. It is almost identical to the original algorithm in 
Figure 37, but there are some modifications.

The algorithm starts in the same way – we initialize the queue of nodes that have a 
single successor and a single predecessor and sort it according to the same index. 
Then we repeatedly try to detect a nest and perform a contraction (an opposite of 
decomposition – see [1]).

First modification is in the way we detect nests. The original algorithm does not 
distinguish serial nests, it treats them as a series of parallel nests of size 1. While this 
is semantically correct, it is better to try to detect the serial nests separately if we 
want to visualize the workflow. 

We first try to detect a parallel / alternative nest like in the original algorithm 
(requiring that the nest’s size is at least two, since if it is one it indicates a serial 
nest). If we cannot find one, we look for a serial nest instead – we search the queue 
and select a sequence of nodes that form a serial nest. If such a sequence does not 
exist either, it means there are no more nests and the workflow is not Nested TNA, 
so we end with failure.

Another modification is on line 6 – we no longer require that the labels are equal. We 
relaxed this requirement a bit and we only need the labels to ‘match’. This change is 
introduced for the sake of importing XPDL workflows and will be thoroughly 
described later in this document. When importing MAKE workflows, matching is 
effectively the same as equality. Notice that we only check the labels if we found a 
parallel or alternative nest, serial nests do not have to have matching labels (same as 
in the original algorithm).

Next change is on line 9 – instead of contracting the nest into an arc like in the 
original algorithm, we create a new node that represents the nest (the decomposed 
task). That is a consequence of the fact that we decompose nodes rather than links. 
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We also create a new FlowOpt task from the sequence we found. The new task is 
either serial, if we detected a serial nest, or parallel / alternative based on the labels if 
we detected a parallel / alternative nest. It is created by grouping the tasks associated 
with the nodes within the detected nest, discarding any semaphores. We associate 
this new task with the new node somehow so that we build the imported workflow as 
the procedure progresses. Initially, every node is associated with a task carrying the 
activity represented by the node.

Finally, the change in line 13 is also a consequence of decomposing nodes rather 
than arcs – we end when there is a single node left in the graph, rather than a single 
arc. The imported FlowOpt workflow’s root task is the task associated with this 
single remaining node.

The correctness of this procedure comes from correctness of the original algorithm, 
the proposed modifications are mostly technical, they do not change the basic 
principles of the algorithm. 

The only information omitted by the import procedure are the exact temporal 
constraints on the links – MAKE allows specifying both minimal and maximal 
distance on any temporal link, whereas FlowOpt only has general precedences and 
synchronizations. For the sake of simplicity, we opted to omit the intervals and use 
precedences everywhere.
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Figure 39: A workflow imported from MAKE

Figure 39 shows a MAKE workflow and its equivalent imported into FlowOpt.

8.2 XPDL Import / Export

XPDL is a widely used standard for storing BPMN diagrams that is based on XML1. 
Its full specification can be found in [9]. FlowOpt currently supports import and 
export to / from XPDL 2.1, which represents BPMN 1.1 workflows.

It should be noted that BPMN specification in version 2.0 defines its own XML 
schema for data exchange. However when we were trying to make a decision on 
which format to support, this standard was very young and therefore not as widely 
supported as XPDL. XPDL was already a proven industry standard at the time, so we 
elected to support it over other formats.

Export into XPDL

The key question in exporting workflows into XPDL was again the mapping of 
FlowOpt objects to XPDL objects. First of all, FlowOpt activities are mapped to 
XPDL activities (specifically to activities with no implementation). XPDL activities 
support the notion of resources (called performers / participants in XPDL 
terminology), so we can export those as well. 

                                               
1 eXtensible Markup Language, a standard format for data exchange
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MAKE / FlowOpt defines three types of resources – a single resource, a resource 
group and a resource mode. Fortunately, all of them have their equivalents in XPDL, 
so we can export them with little trouble.

A single resource in MAKE is mapped to a single resource in XPDL. A resource 
group in MAKE is essentially a set of resources that have some common capability 
(operators, workers …). If an activity has a dependency on a resource group, it 
means we can allocate an activity on any of the resources within the resource group. 
This corresponds to the concept of a role in XPDL.

The third resource type in MAKE are modes, which is again a set of resources, but to 
satisfy a dependency on a mode, all of the resources in it have to be allocated. This 
corresponds to a resource set in XPDL terminology.

Moving on, FlowOpt precedence links are mapped on flow links in XPDL. It should 
be pointed out that the semantics aren’t exactly the same. FlowOpt precedence links 
represent just a simple precedence relation, whereas XPDL flow links are defined in 
a way based on links in Petri nets (see the Comparison chapter). In simple nested 
workflows like those created by the FlowOpt workflow editor, the difference is not 
too significant though. Besides, XPDL only defines flow links, so there is little 
choice in the matter.

FlowOpt tasks are mapped on XPDL block activities / activity sets, which is a very 
similar concept. A block activity in XPDL is an activity that contains some 
independent workflow, which is called an activity set. In order to execute the block 
activity, the activity set has to be executed. In BPMN, this corresponds to a sub-
process. FlowOpt tasks are almost identical to BPMN processes in terms of both 
semantics and the way they are displayed, so mapping them on each other is very 
intuitive for the user.

Finally, the custom links again aren’t exported. There are two problems in exporting 
the custom links. First, XPDL doesn’t define any direct equivalents of FlowOpt 
custom links. As stated above, flow links are the only link type supported, so any 
mapping would have to be done through some complex conditions on the links or 
through extra events simulating the original custom links, which would be rather 
unintuitive for the user.

The other problem is that XPDL doesn’t allow any links to cross the boundaries of an 
activity set (a sub-process). Since custom links in FlowOpt can (and usually do) 
cross the boundaries of tasks, exporting custom links would mean not mapping tasks 
onto activity sets. Seeing as task hierarchy is the core defining feature of FlowOpt 
workflows, we definitely wanted it preserved in the exported document wherever 
possible.

In terms of conformance, the structure of FlowOpt workflows corresponds to the 
FULL_BLOCKED graph conformance class of XPDL. The BPMN model portability 
conformance is set to standard. FlowOpt currently produces XPDL files that are valid 
with respect to XPDL schema of version 2.1. Exported workflows were tested in two 
third party applications (Together Workflow Editor and BizAgi Process Modeller) 
and both displayed them correctly.
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Figure 40: A workflow exported into XPDL (parts)

Figure 40 shows a FlowOpt workflow exported into XPDL. The result is displayed in 
the Together Workflow Editor and due to the size of the resulting diagram we only 
show parts of it (TWE displays subprocesses on separate screens).
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Import from XPDL

Importing workflows from XPDL (BPMN) is significantly more complicated than 
importing them from MAKE, since the XPDL workflow model is much richer. 
Seeing as XPDL defines many objects that have no equivalents in the FlowOpt 
workflow model and the semantics of even the most basic workflow objects is 
somewhat different, we have to accept the fact that some information will be lost 
during the import procedure and some workflows simply cannot be imported.

That is why our goal wasn’t to fully map the XPDL model to the FlowOpt model, but 
rather to create a procedure that preserves as much information as possible while still 
producing workflows that are visually similar to the original. That way the user will 
be able to import a workflow reasonably close to the original in most cases.

It should be pointed out that the exact results of the import procedure depend on how 
close the input XPDL file is to the XPDL 2.1 specification. Unfortunately, full 
conformance doesn’t seem to be a standard, but the files are usually close enough. 

FlowOpt workflow editor can validate input files against the XPDL 2.1 schema and 
if the validation fails, the user may decide whether the import procedure should be 
attempted anyway. The reason for this is that some tools produce files that do not 
fully conform to the schema, but they are close enough for the import procedure to 
work. 

The XPDL files listed in this section were created in the Yaoqiang XPDL editor [10], 
which seems to produce reasonably accurate files.

Import procedure

We used the same basic algorithm for importing nested workflows as in the MAKE 
import procedure, but we made a small extension in order to support some XPDL 
patterns that aren’t present in the Simple TNA model.

The problem is that the original algorithm (see Figure 37) only recognizes two types 
of routing – parallel and alternative. However in XPDL / BPMN, there is another 
type – inclusive. Inclusive routing allows any (non-empty) subset of all the relevant 
activities to execute.

This pattern falls somewhere “between” the parallel and alternative nest patterns 
recognized by FlowOpt - the former forces all the child nodes to be performed and 
the latter forces exactly one child node to be performed. An inclusive nest allows any 
possible non-empty subset of the child nodes to execute.

If we want to import inclusive nests into FlowOpt, we have three choices:

1) Extend FlowOpt workflow model. This choice was generally out of the 
question, since for the moment, the FlowOpt data model is final (other 
FlowOpt modules’ functionality relies on this fact).

2) Map inclusive nests into either parallel or alternative nests. This would mean 
creating a workflow that is not equivalent to the original, but it would be 
similar.

3) “Simulate” the inclusive nests by creating an alternative nest with one 
alternative for every possible subset of the child tasks of the original nest. 
This would create a workflow that is semantically closer to the original at the 
cost of creating an exponential number of tasks.
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We chose the second option, because an exponential increase of size between the 
original and the imported workflow is unacceptable for the potential user. It is also 
very ineffective, since the workflow eventually has to be scheduled and/or saved to 
be of any use.

Note that even if we did convert the inclusive nests by explicitly creating an 
alternative for every way they can be performed, the result still wouldn’t be 
equivalent to the original, because we have no way of importing the conditions on 
the links that XPDL uses to determine which subset eventually gets executed.

Now that we established that we need to convert XPDL inclusive nests into either 
parallel or alternative FlowOpt nests, we have to decide which one is the better 
option.

In BPMN/XPDL, all splits are inclusive by default and all joins are exclusive by 
default (this default behavior is commonly referred to as uncontrolled flow). This 
means that if we statically map inclusive nests to either parallel or alternative, some 
standard pattern won’t be imported:

 If we map to parallel nests, we won’t be able to import the following pattern 
(called multiple merge):

Figure 41: XPDL inclusive routing 1

In Figure 41, we map the (inclusive) split on activity ‘A’ to parallel, while the 
join on activity ‘D’ is by default exclusive (alternative in FlowOpt 
terminology). The original algorithm would report an error when trying to 
import this workflow, since the two routing types are different.

 On the other hand, if we map inclusive to alternative nests, the situation is 
even worse - we wouldn’t be able to import the standard parallel split pattern: 

Figure 42: XPDL inclusive routing 2

In Figure 42 we map the (inclusive) split on activity ‘A’ to alternative and the 
join on the synchronization gateway is parallel by definition. This would 
again produce an error in the original algorithm.
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To summarize, if we want to be able to import both the above patterns, we cannot 
map the inclusive nests statically. The import procedure we used tackles this problem 
by extending the original import algorithm with an extra label type called ‘Any’. If a 
node has (input or output) label equal to ‘Any’, it means that it can create either a 
parallel or an alternative nest, depending on the label of the other principal node (we 
are using terminology introduced in [1]).

To implement this behavior, we relax the original algorithm a bit – we no longer 
require the labels of both the principal nodes to be equal when trying to create a nest. 
In case either of them is set to ‘Any’, we create a nest determined by the type of the 
other principal node.

If both labels happen to be set to ‘Any’, we can choose whether to create a parallel or 
an alternative nest. We chose to create a parallel nest in such a case, since the 
uncontrolled flow is so often used to model a parallel split and the user would 
probably expect such behavior.

If neither label is set to ‘Any’, we require them to be equal, like in  the original 
algorithm.

The above functionality is referred to as ‘matching’ of labels in the algorithm 
presented in Figure 38 and its description. It didn’t matter when importing MAKE 
workflows, since the MAKE model is simpler and does not define inclusive routing. 
In other words, no node has the ‘Any’ label when importing MAKE workflows, so 
‘matching’ becomes the same as equality in that particular case.

XPDL to FlowOpt mapping

We already described the mapping of inclusive nests. This section describes the 
mapping of the other XPDL objects into FlowOpt workflow model.

XPDL packages and processes

An XPDL package is a top level container for workflow processes, which correspond 
to individual workflows. Obviously workflow processes are mapped to FlowOpt 
workflows. 

Packages are mapped to FlowOpt workflow editor folders, but note that these are 
only defined by the workflow editor and they aren’t a part of FlowOpt data model, so 
this is only for the user’s convenience. 

XPDL activities

In XPDL, activities are a much broader concept than in FlowOpt. They are the only 
type of nodes present in XPDL diagrams, but based on their properties, their 
semantics can vary drastically. There are several different kinds of activities in 
XPDL:

 Simple activities

 Block activities / Subflows (Embedded / Reusable subprocesses)

 Gateways

 Events
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Simple activities in XPDL correspond to activities in FlowOpt, representing some 
elementary unit of work to be done. As such, they are mapped onto FlowOpt 
activities. 

Note that the terminology can be a bit misleading here, since both FlowOpt and 
XPDL define the concepts of a task and an activity, but they aren’t the same. 

In XPDL, a task is a specific way of implementing an elementary activity (manually, 
via a service, via a script…). In other words it is just an attribute of an activity. Tasks 
aren’t imported from XPDL, since FlowOpt activities do not have any alternative 
means of implementation (it is always manual).

Block activities and subflows are a concept similar to FlowOpt tasks – they represent 
an independent nested workflow that is to be executed in place of the activity. The 
difference is that block activities represent other parts of the same workflow (called 
activity sets in XPDL terminology), while a subflow refers to an entirely different 
workflow process.

In BPMN, the corresponding terms are embedded and reusable subprocesses. The 
former roughly corresponds to block activities, the latter to subflows.

Currently, both embedded and reusable subprocesses are mapped onto tasks, since 
the concepts are very similar. However, one of the planned extensions of the 
FlowOpt workflow model is the ability to link a task to entire independent workflow, 
which would be a more appropriate mapping for the subflows / reusable 
subprocesses.

Gateways are a concept similar to MAKE’s semaphores – activities representing no 
work, but affecting the execution flow somehow. In FlowOpt, these flow constraints 
are stored in tasks, so semaphores do not directly translate into anything. They just 
define the types of tasks that are created.

Finally, events in XPDL represent something that happens during the workflow 
execution. There is no such concept in FlowOpt, so any mapping of these is 
problematic. There are three kinds of events – start events, end events and 
intermediate events. 

The first two serve to mark the beginning and end of a workflow and as such, they 
aren’t mapped to anything, FlowOpt workflows implicitly start when their root task 
starts and end when their root task ends.

Intermediate events represent things that can occur while the workflow is being 
executed. As stated above, there is no such thing in FlowOpt, since FlowOpt 
workflows do not have any connection to runtime. We chose to map intermediate 
events to empty tasks, so that at least some information is preserved, but the resulting 
workflow can be significantly different from the original. Since the workflow editor 
allows the user to delete all empty tasks in a workflow at once, this shouldn’t be too 
limiting in terms of usability.
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XPDL links

XPDL defines the following types of links:

 Sequence flow

 Message flow

 Associations

Sequence flow links are the most important, as they define the order of execution. As 
such, they are mapped on FlowOpt precedence links. As we already mentioned in the 
description of the XPDL export procedure, these are not semantically equivalent. 

FlowOpt precedence links simply represent a (temporal) precedence relation, 
whereas XPDL sequence flow links explicitly define the order of execution in a way 
similar to that of Petri nets – an execution token travels over the sequence flow links, 
causing whatever activities it encounters on the way to execute (please see 
XPDL/BPMN specification for a more formal definition).

This difference doesn’t really matter when workflows follow a simple workflow 
model like that of FlowOpt, so it wasn’t much of an issue when we exported into 
XPDL. However when we want to import from XPDL, we have to realize that some 
of the more complex workflow patterns that can be modeled in XPDL will not 
translate into FlowOpt due to this difference. We will provide a list of standard 
workflow patterns and how they can translate from XPDL later in this chapter.

Message flow links represent message passing between two participants and they can 
only connect activities in different pools. FlowOpt defines no way to visualize pools 
or message passing, so we chose to omit the message flow links. 

Associations serve to connect an activity with an artifact, which is some kind of 
additional information that is not semantically a part of the workflow, such as a 
comment. Once again, FlowOpt defines no such concepts, so we do not import those.

Routing information

XPDL defines three types of routing in case an activity has multiple incoming or 
outgoing (flow) links:

 Parallel

 Exclusive

 Inclusive

Parallel and exclusive correspond to the semantics of FlowOpt parallel and 
alternative tasks respectively, so naturally we map them to the corresponding task 
type.

Inclusive routing means that (potentially) any non-empty subset of all the connected 
activities is to be executed. We already described the mapping of those in the general 
description of the import procedure.
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Participants

XPDL participants are a concept similar to FlowOpt resources – some people or 
machines capable of performing an activity. As such, they should be mapped onto 
FlowOpt resources, but this feature is currently not implemented due to some 
technical complications. It is a work in progress though.

Pools, lanes, applications…

In XPDL, pools and lanes visualize which participants perform which parts of the 
workflow. In FlowOpt, we have no way of doing that, therefore pools and lanes 
aren’t imported.

XPDL applications aren’t imported for the same reason - there is no equivalent, since 
FlowOpt resources can only be people or machines, which reflects the fact that 
FlowOpt workflows primarily describe manufacturing processes.

Any other XPDL objects not explicitly listed above are also not imported, either 
because they have no equivalent or because they aren’t very significant.

Standard workflow patterns

To illustrate how the import procedure works, this section briefly describes how the 
standard workflow patterns [11] are imported when the procedure from Figure 38 is 
used.

Starting from the simplest patterns, sequence maps into a serial task, parallel split
and synchronization create a parallel task and an exclusive choice together with a 
simple merge creates an alternative task. 

This should be fairly obvious, as these are nearly equivalent concepts. As long as the 
workflow only contains these patterns, the resulting FlowOpt workflow should be 
almost equivalent to the original.
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Original Pattern Imported Workflow

Figure 43: Mapping of basic patterns

Figure 43 shows how the import procedure maps the most basic patterns (sequence, 
parallel and alternative nests).
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Multiple choice and multiple merge are an example of inclusive routing, which 
means that the type of the resulting task depends on the type of the other principal 
node’s label. If it is parallel or alternative, the resulting task is also parallel or 
alternative (respectively). If it is also inclusive, the resulting task is parallel (see the 
description of the import algorithm for details).

Original Pattern Imported Workflow

Figure 44: Mapping of multiple choice and multiple merge

Figure 44 shows how the multiple choice and multiple merge patterns are imported.
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Discriminator is mapped to an alternative task, which seems to be a reasonable 
interpretation in terms of the FlowOpt workflow model. One could argue that since 
discriminator allows more than one incoming activity to execute, it should be 
mapped to a parallel task, but since the pattern uses an exclusive join, it seems more 
intuitive to use an alternative task. 

Original Pattern Imported Workflow

Figure 45: Mapping of discriminator

Figure 45 shows how the discriminator pattern is imported.

Due to the way we chose to map inclusive splits/joins, both the N out of M join
pattern and the synchronizing merge pattern translate to parallel tasks (complex 
gateways are treated in the same way as if they were inclusive).

Original Pattern Imported Workflow

Figure 46: Mapping of N out of M join and synchronizing merge

Figure 46 shows how the N out of M join and synchronizing merge patterns are 
imported.

The arbitrary cycles pattern isn’t imported – FlowOpt doesn’t support cycles in 
workflows at all, so the import algorithm will end with an error if one is found. 

One way to get around this would be to delete some of the links based on some kind 
of heuristics, but since this entire pattern revolves around those extra links, this 
approach seems to beat the whole purpose of trying to import it.
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The implicit termination pattern also doesn’t have an equivalent in FlowOpt. 
However the import procedure does support multiple start events and multiple end 
events (or no start / no end events for that matter).

It does so by automatically merging all the start / end events into a single start / end 
event with the ‘Any’ label, so in the end only one task can be created that represents 
the entire workflow. After that, the single start event is connected to all the nodes 
with no incoming links and the single end event is connected to all the nodes with no 
outgoing links.

Original Pattern Imported Workflow

Figure 47: Mapping of implicit termination

Figure 47 shows how the implicit termination pattern is imported.

There are several patterns involving multiple instances, but FlowOpt currently 
doesn’t support this concept either. Workflows containing these patters can be 
imported in general, but the information on how many times a particular activity is to 
be instantiated is lost in the process.

Supporting multiple instances is a planned feature of the FlowOpt workflow editor, 
so it is likely that these patterns may be imported fully at some point.

Deferred choice also has no equivalent in FlowOpt, since it relies on events, which 
generally do not translate. Since events map to empty tasks, we can still import the 
workflow, but the pattern will be lost in the process.

Original Pattern Imported Workflow

Figure 48: Mapping of deferred choice

Figure 48 shows how the deferred choice pattern is imported.

The remaining patterns do not translate well into FlowOpt, since they rely on some 
concept that doesn’t exist in FlowOpt (usually an event of some kind). 

Interleaved parallel routing doesn’t translate, since in FlowOpt the order of any 
sequence has to be given. It is imported as any other subprocess, that is as a parallel 
task by default.
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Milestone cannot be imported at all, since it relies on link events, which (like all 
events) are do not translate into FlowOpt. Cancellation patterns do not translate for 
the same reason.

  

Figure 49: Imported XPDL workflow

Figure 49 shows an example of a XPDL workflow (visualized again in Together 
Workflow Editor) imported into FlowOpt that should illustrate how the nested 
structure is created by the import procedure. Notice that the order of the child tasks is 
preserved.
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One of the attachments to this thesis is a file called ‘Piston.xpdl’. This file contains 
the piston workflow shown in several examples in this thesis exported into XPDL 
format by the presented application. Importing it yields an identical workflow to the 
original, except for custom links.
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9. Conclusions

We believe we managed to deliver a working application that meets all the software 
requirements formulated in the beginning of the development process, both
functional and non-functional.

It represents manufacturing processes in a simple, lightweight and efficient way 
while providing a different and hopefully innovative and usable approach to many 
aspects of workflow modelling.

This thesis adds several important features that weren’t  implemented during the 
works on the FlowOpt software project – namely workflow verification and import 
and export to and from other workflow formats.

From the reactions of some potential users, it appears that the application could 
provide a viable alternative to other workflow editors. It was presented on the 
ICAPS1 conference in Freiburg [14] and the reactions were quite positive.

Some users also provided negative feedback, but it was mostly due to the fact that 
they were used to the traditional way of building workflows and preferred it to our 
proposed model. This is to be expected, our application was always meant as an 
alternative, not a replacement for existing solutions. 

It is worth mentioning that there was no negative feedback regarding functionality, 
the workflow editor was tested thoroughly and the result should be of reasonable 
quality. The application is well documented, both for the potential user and a 
potential developer maintaining it.

Currently the works on integration of the FlowOpt project are being finished and 
once they are, all of its modules will hopefully be evaluated by a larger number of 
users, which will provide valuable feedback on how much potential our approach has 
and how it could be extended or improved.

                                               
1 International Conference on Automated Planning and Scheduling
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10. Future works

There are several planned features that should be implemented in the near future. 
Some of them are just for user convenience, others extend the workflow model 
considerably. These features include:

 Defining activities directly in the workflow editor, rather than in the MAKE 
application.

 Using the automatic layout and the nested structure to represent the BOM
(Bill Of Materials) of MAKE. BOM is an object that describes the structure 
of a particular product. It is essentially a tree of various parts that the product 
consists of. It would be useful to provide an intuitive visualization of this 
concept and the nested model could definitely be utilized to do this, since it 
also represents a tree structure.

 Implementing tasks as workflows – the user should be able to link a separate 
workflow into an empty task to have it performed in place of that task. 
Currently the editor lets the user insert a workflow into an empty task, but 
this inserted workflow is an independent copy of the original. It would be 
useful to just create a link between the two workflows, so that updates in the 
linked workflow would manifest in the referencing workflow as well.

 Implementing the multiple instances patterns. This could be a very powerful 
tool used to model loops in our editor. The user would be able to specify that 
a task should be performed multiple times (either in parallel or in a 
sequence).

 Import work orders from MAKE. It would be convenient to be able to import 
whole work orders instead of just workflows. For example the user could use 
the FlowOpt optimizer and analyzer to schedule and optimize the work order.
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