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Abstrakt 

V této diplomové práci aplikujeme parametrickou input distance funkci zahrnující jak žádoucí, 

tak nežádoucí výstupy, čímž dosáhneme ucelenější reprezentace produkční technologie. Na 

základě Shephardovi (1970) teorie duality odvodíme z odhadnuté input distance funkce stínové 

ceny nežádoucích výstupů v českém energetickém sektoru pro období 2002 – 2007. Mediány 

našich odhadnutých stínových cen jsou 8374, 1198,  2805, 6051 a 8549 € za tunu PM, SO2, NOx, 

CO a VOC. Učiníme rozklad odhadnutých stínových cen a testujeme hypotézy, že mezní náklady 

na zamezení klesají v čase; že mezní náklady na zamezení rostou s klesající úrovní vypouštěných 

emisí; a že mezní náklady na zamezení rostou s klesající emisní mírou. 

Klíčová slova: stínové ceny, vzdálenostní funkce, nežádoucí výstupy, mezní náklady na 

zamezení 

JEL klasifikace: C61, D24, Q53 

 

Abstract 

This thesis employs a parametric input distance function that incorporates both desirable and 

undesirable outputs to provide a more complete representation of the production technology. 

Based on the Shephard (1970) theory of duality, we derive the shadow prices of undesirable 

outputs in the Czech energy sector on the data over the period 2002 – 2007. The medians of our 

shadow prices estimates are 8374, 1198, 2805, 6051 and 8549 € per ton of PM, SO2, NOx, CO 

and VOC, respectively. We decompose shadow prices estimates and test the hypotheses that the 

marginal abatement cost decline over time; that marginal abatement cost rice with the declining 

emission level; and that marginal abatement cost rice with declining emission rate. 

Key Words: shadow prices, distance function, undesirable outputs, marginal abatement cost 

JEL classification: C61, D24, Q53 
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1. Introduction

Firms produce desirable outputs by using set of inputs and as by-products the firms can also 

produce undesirable outputs such as emissions of pollutants. The main aim of this thesis is 

to estimate the shadow prices of classical air pollutant in the Czech energy sector. Actually, 

we want to estimate the marginal abatement cost of emission of classical pollutants. 

However as Bauman, Lee, & Seely (2008, p. 519) write: “The shadow price can be interpreted 

as the opportunity cost of reducing an additional unit of undesirable output (emissions of 

pollutants) in terms of forgone desirable output, which is equivalent to the marginal cost of 

pollution abatement to the producer.” Therefore we focus on estimation of shadow prices 

under which we also understand the marginal abatement cost. For the estimation, we 

employ the input distance function in quadratic form. We will also try to decompose the 

marginal abatement costs (MAC) of emissions and analyze the factors that might affect 

them, such as emission level or emission concentrations. We will test the hypotheses that

the marginal abatement cost decline over time in our relative short period of six years; that

marginal abatement cost rice with the declining emission level; and that marginal abatement 

cost rice with declining emission rate.

There are more approaches, how to estimate the shadow prices of emissions. Lee (2005) 

mentions two approaches to estimating marginal abatement cost of pollutants – the cost 

function approach and the distance function approach based on theory of duality (Shephard 

1970). Until the eighties of 20th century, the shadow prices of emissions were estimated via 

the neoclassical cost function from the abatement cost invested to the emission reduction. 

This approach tends to be bias.  Lee (2005, pp. 104-105) notes that “use of a neoclassical 



4

cost functions might lead to under-estimation of marginal abatement costs.”  Pitman (1983, 

p. 887) says to this problematic: “…the most difficult and challenging task is likely to be the 

assigning of shadow prices to undesirable outputs. Even when there are explicit engineering 

or econometric estimates available for a particular industry or area, these are likely to be 

subject to a wide range of error. Where exactly appropriate estimates are not available - as is 

especially likely for a sample of individual plants - then, of course, an additional error is 

imposed.” There is also another critique of the estimation of emission shadow prices from 

abatement expenditures. As write Hailu & Veeman (2000), the estimation of emission 

shadow prices from abatement expenditures is very complicated “because it is increasingly 

difficult to distinguish between ‘productive’ and pollution abatement expenditures on capital 

or other inputs”. (Hailu & Veeman, 2000, p. 252) Based on this, we focus on the second 

approach based on firm efficiency estimation.

The original studies discussing the effects of undesirable outputs production have focused 

on the proper measurement of performance of firms producing the undesirable outputs. 

Pittman (1983) shows how to adjust the productivity indexes. He derives the shadow prices 

from survey data on abatement expenditures by producers and u ses the data to the 

construction of an enhanced index of productivity factors. Färe R. , Grosskopf, Lovell, & 

Pasurka (1989) apply the linear programming approach, which allows that the technology 

can reflect the scarcity of freely disposable, undesirable outcomes which is regulated. By 

this, they don’t have to estimate the prices of the undesirable outputs explicitly. 

The studies following Pitman (1983) and Färe et al. (1989) findings focus already on other 

approach and aim. Since the nineties, the studies estimate the emission shadow prices 

rather based on the duality theories. Such shadow prices estimates consider not only the 
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partial information about cost, but also the whole firm’s behavior and the technology 

characterization. The shadow prices are estimated together with the estimation of 

producing technology and efficiency rate, which are specific for each firm taken into 

account. The main idea of this method is the estimation of distance function and thereafter 

the incorporation of Shephard (1970) duality theories.  The output distance function defines 

any technology and it is dual to the more familiar revenue function.1 From incorporating of 

duality theories into the output distance function, we obtain the revenue deflated shadow 

prices of all outputs. As Färe , Grosskopf, Lowell, & Yaisawarng (1993, p. 374) write: 

„Throught the assumption that the observed price of one desirable output equals its shadow 

price, we may calculte shadow revenue and hence also absolute (undeflated) shadow prices 

of all other outputs. The absolute shadow prices of the undesirable outputs reflect the 

opportunity cost, in the terms of forgone revenue, of an incremental decrease in the ability to 

freely dispose of them.“ This coresponds to the statement in Bauman et al. (2008, p. 519).  

Generally, the shadow price ratio of any two outputs  reflects the relative opporunity cost of 

those outputs. According to Färe et al. (1993), this means that this ration is equivalent to a 

marginal rate of transformation. This approach is aplicable to any technology. Färe et al. 

(1993) inlustrate that this method can be used also in cases if firms face regulation of 

undesirable outputs and some outputs are non-marketable.

The rest of this thesis is organized as follows. Section 2 provides the theoretical background 

of different approaches to MAC estimation and broadly discusses different types of the 

distance function. Section 3 provides overview of empirical results of emission shadow prices 

estimations via distance function and other approaches. Section 4 describes specification of 

                                                       
1 Färe, Grosskopf & Nelson (1990) ilustrate that the shadow price of inputs can be derived by moddeling 

technology if an input distance function which is dual to the cost function.
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the used model and also our data. There are also presented our empirical results of shadow 

price estimation. Section 5 goes over the MAC decomposition. Section 6 provides the results 

summary and concludes.                                                                                                              

2. Theory

2.1.  Methods

As mentioned above, there are several methods to estimate the shadow price of emissions 

(or MAC). From the methodological point of view, we can divide these methods into two 

basic groups: bottom-up and top-down approaches. To the bottom-up approaches, we rank 

engineering studies and economic approaches such as cost functions, distance functions and 

partial equilibrium models. Between top-down approaches, we count CGE models and 

econometric models. The description of top-down approaches is beyond the scope of this 

thesis. In general, CGE and econometric models are top-down models which usually focused 

on the economy as a whole including interactions between economic sectors but with lack of 

technological detail. A good description of CGE and econometric models applied for the 

Czech Republic, you can find in Ščasný et al. (2009). We will now briefly describe the main 

characteristics and differences of bottom up approaches.

Engineering studies are further divided into retrospective and prospective. The retrospective 

engineering studies are based on collection of data on observed or reported expenditures on 

environmental protection. A good example of such survey is Pollution Abatement Costs and 

Expenditure (PACE) collected and published by Bureau of the Census. These estimates 

represent the out-of-pocket expenses on environmental protection. Schmalensee (1994) 
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criticizes these surveys based estimates, because they ignore many indirect costs and tend 

to double-count expenditures that are not part of the final demand.

The main characteristic of the prospective engineering studies is to consider the channels 

through which pollution can be reduced. Here, we types of possible methods. First; 

interview among experts focused mainly on costs of possible abatement technologies. 

According to Gollop & Roberts (1985) they don’t take into account all possiblilities to 

emission reduction such as fuel substitutions. As Gollop & Roberts (1985) write, this often 

leads to a situation where ”the resulting estimates of the cost of regulation neither 

adequately reflect the range of control options available to polluters nor take into account 

how polluters actually have responded to enviromment controls”. (Gollop & Roberts, 1985, p. 

81) Therefore the engineering studies tend to overestimate the MAC. The modern 

engineering studies already include also some fuel substitutions but they are very data 

demanding. The engineering studies are more appropriate for case studies of  a single or 

very limited number of units, where it is possible to cover all required details. Second; 

engineering optimization models. These models include usually detailed technological 

description of the modeled units and a set of available technologies to pollution reduction. 

They cover the fuel switching very well. The final demand is an exogenous parameter and 

the pollution is reduced either acording some given constrain or based on some market 

measure such as environmental tax or price of emission permits. The weakness of these 

optimization models is that they are very data demanding , especially on fuel prices.

Cost function and distance function are also bottom up approaches but they use observed 

(ex post) data. The neoclassical cost function approach is based on cost minimization. 

Therefore we need not only input quantities but also input prices. This is the biggest 
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weakness of this approach. The inconsistency and lack of relevant data are source of 

difficulties. Lee (2005) argues that firms often fail to minimize their production costs under 

various regulations. This is a reason why a neoclassical cost function could underestimate 

the MAC.

The main advantage of the distance function approach over the cost function is the fact that 

we don’t need the information on input prices and regulatory constrains. The shadow prices 

can be derived through the estimated output distance function by using only the actual data 

of inputs, desirable goods produced, pollutants emitted and price of at least one output. 

According to Lee (2005), there are also no assumptions about cost minimizations. The 

distance function approach is described in detail in the following subsection.

Partial equilibrium (PE) models stand for a complex and perhaps the most challenging 

method for emission shadow price estimation between the bottom-up approaches. The 

models usually use two ways how to find the equilibrium point. We either set the emission 

reduction target and the model finds the optimal combination of measures to reach the 

given target, or we can set charges on the emission and the model finds the optimal level of 

emission. PE models are usually focused on detailed analysis of one sector including 

technological details. More detailed description is beyond the scope of this thesis. A detail 

description of PE models, you can find in in Rečka (2009).

2.2.Distance Function

The distance function represents the relative distance from some observed input-output 

combination to the production possibility frontier of technology. We can distinguish three 

types of distance function which are used in the literature in order to estimate the shadow 
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prices of undesirable outputs: The Shephard output distance function, the input distance 

function and a generalization of the Shephard output distance function – the directional 

output distance function2. The first two are most widely used in the literature, but recently 

also the directional output distance function has begun to be used as a tool for efficiency 

estimation in studies focused on shadow price estimation of undesirable outputs. 

2.2.1. Production technology

First, we define the production technology which is common for all types of distance 

function. We will follow Vardanyan & Noh (2006) and Färe, Grosskopf, & Margaristis (2008)  

and define these functions and their properties.3

We denote the input quantities by

� = (��, … , ��) ∈ ℜ�
�,

good output quantities by 

� = (��, … , ��) ∈ ℜ�
�,

and bad output quantities by

� = (��, … , ��) ∈ ℜ�
� .

                                                       
2

Färe, Grosskopf, & Margaristis (2008) show that Shepard input and output functions are special cases of 

directional distance function. The directional distance function allows set direction vectors both for inputs and 

outputs. In our theses, we focus on the directional output distance function because this form is used in the 

literature for emission shadow prices estimation. The directional distance function allows set direction vectors 

for outputs, but inputs are held constant.

3 For our purposes, we modify the notation slightly and we will distinguish the good output (y) and bad output

(b).

(1)

(2)

(3)
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According to Färe, Grosskopf, & Margaristis (2008), we assume that the quantites of inputs 

and outputs are fully divisible real numbers.

The basic characterization of the polluting production technology is the technology set � of 

all feasible input-output combination:

� = [(�, �, �) ∶ � can produce (�, �) ].

We can rewrite this equivalenty via the output possibilities set, given by

�(�) = [(�, �) ∶ (�, �, �) ∈ �].

We assume that the output set is compact for each input vector �, because as Färe R. , 

Grosskopf, Noh, & Weber (2005, p. 474) write: “An unbounded output set is not physically 

possible if traditional inputs are given.” Following properties of production technology are 

common for all types of distance function.

The production technology satisfies the following assumption:

1. Null-Jointness: if (�, �) ∈ �(�) and � = 0, then � = 0.

2. Free disposibility of inputs: if �́ ≥ � then �(�́) ⊇ �(�).

3. Weak disposibility of an output vector: (�, �) ∈ �(�) and 0 ≤ � ≤ 1 imply 

(��, ��) ∈ �(�).

4. Free disposability of good outputs: (�, �) ∈ �(�) and (��, �) ≤ (�, �) imply 

(��, �) ∈ �(�).

The null-jointness says that if no bad outputs are produced, it is not possible to produce any 

good outputs, or in other words, it is not posible to produce any good products without 

producing bad products at the same time.

(4)

(5)
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Free (strong) disposibility of inputs gives us that if inputs are increased (or not decreased), 

the output set will not diminish. Färe R. , Grosskopf, Noh, & Weber (2005, p. 472) interpret it

so that “this property implies that inputs are not congesting output”. Furthermore, the weak 

disposibility of outputs says that any proportional reduction of good and bad output 

together (at the same rate) is feasible. In other words, for a given inputs �, decrease of  bad 

outputs is always possible, if good outputs are shrunk in the same proportion. This is 

consistent with regulations which require abatement or clean up of pollutants. Finaly, the 

free disposibility of good outputs means that if some vector of good and  bad outputs is 

feasible, then any vector containing less of good outputs is also feasible. We can interpret it 

also as that “we can always ’freely’ dispose of some of the good output without any cost”. 

(Färe R. , Grosskopf, Noh, & Weber, 2005, p. 473)

2.2.2. Shephard output and directional output distance function

In this section, we will focus on the Shephard output distance function and the directional 

output distance function. We use the traditional definition of the Shephard output distance 

function:

�(�, �, �) = ���[� ∶ (�, �)/� ∈ �(�)]

and the directional output distance function:

���⃗ ��, �, �; ��, ��� = ��� �� ∶ (� + ���, � + ���) ∈ �(�)�,

where (�
�

∈ ℜ�
� , �

�
∈ ℜ�

�) are the direction vectors, called the mapping rule. As we can see 

later in section 3.1, the mapping rule is very crucial for the marginal abatement cost 

estimation. The solution �∗, gives the maximum expansion and contraction of desirable and  

(6)

(7)



12

undesirable outputs. The mapping rule � = (��, ��), specifies in which direction an output 

vector (�, �) ∈ �(�), is scaled so as to reach the boundary of the output set at (� +

�∗��, � + �∗��) ∈ �(�), where �∗ = ���⃗ ��, �, �; �� , ���. Most authors use mapping rule at 

the value � = (1, −1), one reason is simplification, but Färe et al. (2005) have further two 

agrument for this choice. 1) This choice is consistent with the environmental regulation, 

since the pollutants are reduced, and 2) aggregation – „Since we have many generating units 

in our data set, the aggregate industry efficiency is just sum over the individual unit’s 

efficiencies“ (Färe et al., 2005, p.476). Lee, Park, & Kim (2002) calculate the mappig rule 

� = (��, ��) by utilizing the annual abatement shedules of pollutants and the production 

plans of good output as proxy variables for �� and ��, respectively.

According to Vardanyan & Noh (2006), we can define the Shephard output distance function

as a measure based on maximal possible  proportional expansion of all outputs onto the 

frontier of production possibilities �(�). In other words, the Shephard output distance 

function maximizes the outputs, while the vector of inputs is held constant.  The Shephard 

distance function maximizes the proximity to the production possibility frontier at the value 

1.

In contrast to the Shephard output distance function, the directional output distance function

allows for a simultaneous expansion of good outputs and contraction of bad outputs. The 

directional output distance function takes the value of zero for technically efficient output 

vectors on the boundary of �(�) and positive values indicate the technical inefficient output 

vectors below the frontier.
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Table 1 shows the basic properties of these two types of distance function.4

Table 1 Selected properties of the Shephard and the directional output distance functions

Shephard distance function Directional distance function

Representation 0 < �(�, �, �) ≤ 1 ���⃗ (�, �, �; ��, ��) ≥ 0

Monotonicity ��(�, �, �)/�� ≤ 0, ����⃗ (�, �, �; �� , ��)/�� ≥ 0, 

��(�, �, �)/�� ≥ 0, ����⃗ (�, �, �; �� , ��)/�� ≤ 0,

��(�, �, �)/�� ≤ 0 ����⃗ (�, �, �; �� , ��)/�� ≥ 0

Output homogeneity of degree +1 �(�, ��, ��) = ��(�, �, �), � > 0 -

Translation - ���⃗ ��, � + ��� , � + ���; �� , ��� =

���⃗ ��, �, �; �� , ��� − �, � ∈ ℜ

Source: Vardanyan & Noh (2006, p. 179)

Figure 1 illustrates the directionnal output distance function and compares it with the 

Shephard’s output distance function.  Following Chung, Färe, & Grosskopf (1997, p.232), the 

production technology satisfies the assumption defined on the previsous page. The output 

set is denoted by �(�), good output by � and bad by �. The outputs (�, �) are weakly 

disposible and � by itself is strongly disposable; the good ouput � is null-joint with �, since if 

� = 0, then the � with (�, �) ∈ �(�) must be equal to zero. Shephard’s output distance 

function applied to the ouput vector (�, �) places it on the boundary of �(�) at point �, and 

yields a value of ��/�� (i.e. If goods and bads were both increased by a factor ��/��, the 

                                                       
4

Vardanyan & Noh (2006) shortly discuss also hyperbolic distance function – a variation of Shephard distance 

function which is defined as ��(�, �, �) = ���[� ∶ (�/�, ��) ∈ �(�)]. For a detailed characteristics of this 

variation of Shephard distance function, see Vardanyan & Noh (2006) or Färe R. , Grosskopf, Lovell, & Pasurka 

(1989).
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firm would produce efficiently on its production possibilty frontier.). In contrast, the 

directional distance function starts at point � and scales in the direction of increased goods 

and decreased bads and projects � on the boundary at point �. In Figure 1 this equals to the 

ratio ��/��. Thus if the firm moved from � to �, it would produce efficiently on its 

production possibilty frontier.

Figure 1 Distance Function

Source: Chung, Färe, & Grosskopf (1997, p. 231)

For better understanding, we follow Chung, Färe, & Grosskopf (1997, p.232) and relate these 

two distance function to each other. Assume the mapping rule � = (��, ��), we get

���⃗ ��, �, �; ��, ��� = sup �� ∶ � ��, (�, �) + ����, ���� ≤ 1�

                 = sup[� ∶ (1 + �)�(�, �, �) ≤ 1]

     = sup ��: � ≤
�

�(�,�,�)
− 1�  

(8)
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= 1/�(�, �, �) − 1  

We can rewrite this relation also as

�(�, �, �) = 1/(1 + ���⃗ ��, �, �; �� , ���).

2.2.3. Input distance function

The input distance function measures the maximum amount by which the input vector can 

be deflated, given the output vector. We define it according to Hailu & Veeman (2000) as 

follows:

��(�, �, �) = ���[� ∶ (�/�, �, �) ∈ �(�), � ∈ ℜ�] ,

In Table 2 you find the basic properties of the input distance function.

Table 2 Input distance function's properties

Representation ��(�, �, �) ≥ 1

Monotonicity ���(�, �, �)/�� ≥ 0,

���(�, �, �)/�� ≤ 0,

���(�, �, �)/�� ≥ 0

Input homogeneity of degree +1 ��(��, �, �) = ���(�, �, �), � > 0

The technically efficient production is achieved if the input distance function has a value of 

one. In other words, if the value of the function is bigger than one, the firm uses more inputs 

than it is optional to the given outputs. From the definition of the input distance function, 

the degree of technical efficiency is defined as

(9)

(10)

(11)
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�� =
1

��(�, �, �)
.

Thus, (1 − ��) measures the proportion by which costs could be reduced by improving 

technical efficiency to optimum, without reducing output.

2.2.4. Input, Output and Directional Output Distance Function - pro and con

The input distance function is based on maximal possible  proportional reduction of all 

inputs, while the vector of outputs is held constant and the output distance function 

maximizes the outputs in proportinal way, while the vertor of inputs is held constant. This is 

the main conceptual difference between these two types of distance functions. As Hailu & 

Veeman (2000) write, the input and output distance functions can be related throught the 

returns to scale parameter. They are equal if the technology has constant returns to scale. 

Generally, we can find diferent interpretation of these two approaches: The output- based 

distance function focuses on output expansion, while the input-based distance function 

concentrates on costs savings.

Kumbhakar, Orea, Rodríguez-Álvarez, & Tsionas (2007) deal in general with the question if 

we should estimate an input or an output distance function. According to their study, the 

input distance function is appropriate in the case of cost minimization where output is 

exogenous and inputs are endogenous. The output distance function is more appropriate in 

the opposite case.  

In case of undesirable outputs, Hailu & Veeman (2000) argue in favour of the  input distance 

function. They claim that the output distance function is no more reasonable measure if we 
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take into account the undesirable outputs, “because whether a proportional expansion in 

outputs (now including undesirable outputs) is socially beneficial depends upon whether the 

benefits from the expansion in desirable outputs (goods) will more than offset the damage 

caused by the simultaneous or accompanying expansion in undesirable outputs (bads). The 

input-based measure of productivity change, on the other hand, continues to serve as a 

meaningful measure of productivity growth because a proportional savings in inputs or costs, 

with desirable and undesirable outputs held constant, is an unambiguous indicator of change 

in social benefits.” (Hailu & Veeman, 2000, p. 254)

The directional output distance function solves the weakness of output distance function, 

because it does not require the proporcinal increase of all outputs. The directional output 

distance function allows different vectors setting for good and bad outputs - i.e. positive 

vector of good outputs and negative vector of bad outputs. This means that the good 

outputs can raise while bad outputs decrease. Thus the directional output distance function

reflects the environmental regulation and the Hailu & Veeman (2000)’s critque is no more 

actuall for this type of distance function. From this point of view, both input distance 

function and directional output distance function can be used to the estimation of emission

shadow prices. But if we take into account also the Kumbhakar, Orea, Rodríguez-Álvarez, & 

Tsionas (2007) study, the input distance function is appropriate to estimate emission  

shadow prices in the energy sector.  The reason is that the energy demand is rather 

exogenous than endogenous, it is very inelastic at least in short-term. Furthermore, the 

energy demand is partly depended on the weather – exogenous factor. At the same time, 

the energy sector has to satisfy the demand. Therefore, we can consider the output in 

energy sector as exogenous.
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2.2.5. The shadow-pricing model

Due to the duality relationship between cost and revenue function, we can derive the output 

shadow prices from both output distance and input distance function. When we derive the 

output shadow prices from output distance function5, we employ the duality between the 

output distance function and the revenue function and we derive them under the 

assumption of revenue maximization. We folow   Marklund (2003, pp. 11,12) and denote 

input prices by

� = (��, … , ��) ∈ ℜ�
�,

good output prices by

� = (��, … , ��) ∈ ℜ�
�

and bad output prices by

� = (��, … , ��) ∈ ℜ�
�.

The revenue function is defined as

�(�, �, �) = ���[�� − �� ∶ (�, �) ∈ �(�)].

This can be rewritten as

�(�, �, �) = ������ − �� ∶ ���⃗ ��, �, �; ��, ��� ≥ 0�.

                                                       
5

We have shown, that the directional output distance function is generalization of Shephard output distance 

function, therefore now we use the general formulas connected to the directional output distance function. 

The derivation of shadow prices from Shephard output distance function is on the same principle.

(13)

(12)

(14)

(15)

(16)
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The directional output distance function can be explress as

���⃗ ��, �, �; ��, ��� = min [(�(�, �, �) − (�� − ��))/(��� + ���)]

To get the explicit shadow-pricing model, we apply the envelope theorem to (17) and get

∇����⃗ ��, �, �; �� , ��� = −
�

(�������)
≤ 0,        (��� + ���) > 0

∇����⃗ ��, �, �; ��, ��� = −
�

(�������)
≤ 0,        (��� + ���) > 0.

The absolute shadow prices of the desirable and undesirable outputs we can derive from 

(18) and (19). Unfortunately, we don’t know the value of (��� + ���) because the shadow 

prices have not been calculated yet. Now we exploit the assumption that at least one of the 

good outputs (��) is sold on perfectly competitive market. This allows us to take the 

observed price (��) of such good output to be its absolute shadow price. In this case, the 

absolute shadow prices of all bad outputs can be calculated as

�� =

⎝

⎜
⎛

����⃗ ��,�,�;��,���

���

����⃗ ��,�,�;��,���

���

�

⎠

⎟
⎞

∗ �� ,     � = 1, … , �

where the negative of the expression within brackets is the marginal rate of transformation 

between the bth bad output and the mth good output, MRTbm. The shadow price �� is equal 

to the revenue loss, from decreased sales of ��, which has to be undertaken if the bad 

output �� is decreased marginally.

Hailu & Veeman (2000) derive the output shadow prices from the input distance function

under the assumption of cost minimizing but they end with similar formula as in (20). The 

model is defined as follows:

(17)

(18)

(19)

(20)
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The cost function is the solution to the minimization problem

�(�, �, �) = ���� [� ∗ �: ��(�, �, �) ≥ 1, � ∈ ℜ�
�],

where � ∈ ℜ�
� is the input price vector. Equation (21) is the duality between the cost and 

the input distace function due to Shephard (1970). We again apply the envelope theorem on

the first order condition and the optimization problem in (21) yields output shadow price 

formulas:

∇��(�, �, �) = −�(�, �, �) ∗ ∇�ID(�, �, �)

∇��(�, �, �) = −�(�, �, �) ∗ ∇� ID(�, �, �)

The equations (22) and (23) are obtained from the first order condition for the solutions to 

(21) and from the fact that the Lagrangian multiplier (Λ(�, �, �)) is eaqual to the value of the 

optimized cost function in this case.

“If we do not have input prices and cannot accurately estimate the  cost of production, we 

can use the foolowing formula derived from (22) and (23) to calculate the ratio of the 

shadow price of output � to that of  output �” (Hailu & Veeman, 2000, p. 260) :

��

��
=

�ID(�, �, �)
���

�ID(�, �, �)
���

�

(21)

(22)

(23)

(24)
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We again assume that at least one of the good outputs (��) is sold on perfectly competitive 

market. This allows us to take the observed price (��) of such good output to be its absolute 

shadow price. So we get:

�� =

⎝

⎜
⎛

���(�,�,�)

���
���(�,�,�)

���

�

⎠

⎟
⎞

∗ �� ,     � = 1, … , �

The shadow prices for undesirable ouputs are non-positive, as the input distance function is 

non-deacresing undesirable ouputs.

3. Lit. review

In this section we provide literature review of empirical studies estimated emission shadow 

prices. We chronologically illustrate the development of undesirable outputs shadow prices 

estimation based on distance function and also the difference in results based on different 

specification of the distance function in the following subsection.

For a comparison with other methods, we choose a few examples of MAC estimates by other 

approaches than the shadow price estimation using the distance function. Below in 

Table 3, you can see the MACs for the Czech Republic from GAINS6 and GEM-E37 models.  In 

Table 4, Bluffstone (1999) analyses abatent costs of air pollutants in Lithuania in years 1993-

                                                       
6

Model GAINS developed by IIASA is a technological based macro model. The model gives the MACs for 

individual abatement technologies and fuel types. For more details about GAINS model and its application for 

the Czech Republic, see Bízek (2009).

7 Pye et al. (2008) provide Cost-Benefit Analysis of a revised National Emission Ceilings Directive (NECD). They 

use CGE model GEM-E3 to assess the macroeconomic impacts of the policy proposals. The authors report 

(25)
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94. The abatement costs are estimated from 366 observation based on profit maximization. 

Bluffstone finds that marginal abatemetn costs rice with decreasing level of emission. 

Bluffstone uses OLS and 2SLS method to the estimation and each method leads to different 

values. 2SLS estimates are signicantly greater than OLS estimates in most cases. 

Table 3 MACs from GAINS and GEM-E3 models

  €2005 SO2 NOx VOC PM2.5 PM

GAINS 430 - 4000
100 -
10000 -

100 -
100008 -

GEM-E3/CE 545 1081 0 - 3253
GEM-E3/S-CE 785 1520 0 - 7764

      Source: Ščasný et. al (2008) & Pye et al. (2008)

Table 4 shows the increasing trend of MAC with decreasing emission level and also the 

differences between the OLS and 2SLS estimates.

                                                                                                                                                                            
emission MACs in year 2020 for scenarios CE and S-CE. (“Baseline scenario assumes all current legislation, 

including meeting the 2010-national ceilings of the current NECD (at least by 2020), Euro 5/6, and the proposal 

for a revised directive on industrial emissions and the EURO VI-proposal. It also assumes the full impact of the 

Climate and Energy Package assuming that the non-ETS targets are met in each Member State and that there is 

full trade of renewables and JI/CDM is enabled as so that carbon prices do not exceed €30/t CO2.

Cost-effective measures (CE) sets national ceilings for 2020 for all five pollutants (incl. PM2.5) in a least-cost 

way so that all objectives of the TSAP are met in 2020. S-CE excludes the Climate and Energy Package from the 

CE scenario.”) Pye et al. (2008, p.2)

8
The most of MACs of PM2.5 are in the range from 100€ to 2000€ per ton of PM2.5, but for coal some MACs 

vary also around 10,000€ per ton of PM2.5. This could be caused by the fact that most of Czech coal power 

plants have already efficient scrubbers and further reduction of particular matters is complicated and very 

costly.
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Table 4 Marginal abatement costs - Bluffstone (1999)

  €2005
0% 
emission 
reduction

10% emission 
reduction

25% emission 
reduction

40% emission 
reduction

OLS 2SLS OLS 2SLS OLS 2SLS

SO2 13.82 27.42 45.64 40.10 86.42 57.73 127.56

NOx 25.55 63.61 63.96 115.13 126.52 165.25 179.07

CO 0.87 1.12 1.08 1.45 1.36 1.74 1.66

PM 14.88 51.16 19.40 - 26.94 - 35.29

Source: Bluffstone ,1999, p. 18 (converted from $1995 to €2005)

3.1. Distance function

First study estimating shadow prices based on distance function using nonparametric linear 

programming was Färe, Grosskopf, & Nelson (1990). Färe, Grosskopf, Lowell, & Yaisawarng 

(1993) applied the concept of output distance function for shadow price estimation of 

undesirable output for the first time. They estimated the shadow prices of biochemical 

oxygen demand (BOD), total suspended solids (TSS), particulates (PM) and sulphur oxides 

(SOx) for 30 paper and pulp mills in the states Michigan and Wisconsin, USA in 1976. They 

expressed the shadow prices in negative terms as foregone revenue by reduction of 

desirable output production. Their average estimates were -1043, 0, -25270 and - 3696 US 

dollars per one ton of BOD, TSS, PM and SOx, respectively.

Coggins & Swinton (1996) estimate SO2 shadow price on the sample of 14 coal-burning 

electric power plants in the state of Wisconsin, USA between years 1990 and 1992. They use 

a parametric output distance function in translog form. The sample weighted average SO2

shadow price is estimated on $292.7. But the average shadow price varies across the power 

plants from $6.2 to $897.9 They also provide a comparison of shadow prices by boiler type. 

                                                       
9

1992 dollars
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The power plants with dry bottom boiler have mean shadow prices of one ton of SO2 equal 

to $326.73 and the plants with cyclone to €175.48 per ton of SO2.

Boyd, Molburg & Prince (1996) analyze the MAC of SO2 in the US energy industry, namely on 

62 power plants. They apply sub-vector output distance function defined by (Turner 1994) as 

���(�, �, �) = ���[� ∶ (�/�, �) ∈ �(�)] and also the directional output distance function.  

From the sub-vector output distance function Boyd, Molburg, & Prince (1996) get the mean 

shadow price of $112010 per ton with the range from $74 to over $12000 per ton and 

median $876  per ton of SO2 . Based on the directional output distance function with 

mapping rule g = (1, −1) they come to estimates of shadow price at the value of $355 for 

average weighted by total plant emissions, $1703 and $787 for mean and median, 

respectively. Boyd, Molburg & Prince (1996) illustrate the distribution of the MAC over the 

magnitudes of the plants emissions. Figure 2 plots the MAC estimated by the directional 

output distance function and the MAC coming from engineering cost analysis by Molburg 

(1996) against the incremental emission reduction for each reduction option at each plant. 

Figure 2 is normalized to 100 %. Boyd, Molburg & Prince (1996) explaind the differencies in 

the emission reduction in the area below $1000 due to smaller data set of their study in 

comparizon to the engenering analysis and due to  that “low marginal costs in the distance 

function analysis are attributed to the entire plant emissions” (Boyd, Molburg, & Prince, 

1996, p. 7). The authors get reasonable results only for half of the observations, the other 

half has negative MAC in terms that there are benefits from increase of produced emissions. 

This is inconsistent with the economic theory, but Boyd, Molburg & Prince (1996) priovide 

                                                       
10

This is not a weighted average which could be comparable with the results from other studies. Furthermore 

this average ignores the outliers on both ends of the estimates range. Therefore, the median is more 

comparable with the median based on the directional output distance function.
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some empirical reasons for such findings, i.e. „Inconsistency in the regulations between the 

plants  compared in the data set;  Inefficinecy or lack of optimization in fuel cost and fuel 

choice due to the economic regulation of power generation“ (Boyd, Molburg, & Prince, 1996, 

p. 8). They notes that in order to prevent such “shaky” results, the plants in the study sample 

should be under a common regulatory structure.

Figure 2 Comparison of Marginal Abatement Costs based on Directional distance Function and Engineering Analysis

Source: Boyd, Molburg, & Prince (1996, p. 8)

Swinton (1998) extends the work of Cogginns & Swinton (1993) by including coal-burning 

power plants from Illinois and Minnesota. In comparison with the sample in Coggins & 

Swinton (1996), the sample of power plants from Illinois and Minnesota includes power 

plants which have installed flue gas desulfurization units (“scrubbers”) in the followed years. 
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This allows including explicitly also the abatement capital which is by traditional assumption 

non-productive. Swinton (1998) claims that “it may by desirable to consider abatement 

efforts before comparing productivity measures” (Swinton, 1998, p. 69), because the non-

productive abatement capital might be socially beneficial. Therefore, Swinton (1998) 

separates the capital into productive and abatement capital as two inputs. Swinton (1998) 

finds the average shadow price of marginally reducing emissions for a plant with a scrubber 

at the value of $2572 - more than ten times the overall average for plant in the whole 

sample. However, the plant with a scrubber can emits less than one-tenth that the other 

plants emit.

Kwon & Yuh (1999) provide estimation of the marginal abatement costs of airborne 

pollutants in Korea’s power generation sector in the periond of 1990 – 1995 . They use the 

translog output distance function to estimate MACs of SOx, NOx , TSP and CO2. The 

authors estimate the mean MACs on 425.5, 201, 210.8 and 5.2 € per ton of SOx, NOx, TSP 

and CO2, respectively.

Hailu & Veeman (2000) use input distance function approach to shadow price estimation of 

BOD and TSS on Canadian paper and pulp industry aggregate time series data for the period 

from 1959 to 1994. They estimate BOD and TSS shadow prices and “the average BOD 

shadow price increases from $3411  for the 1970s to $147 per metric ton for the 1980s and 

to $436per metric ton for the period from 1990 to 1994” (Hailu & Veeman, 2000, p. 270). 

The average BOD shadow price for the whole 1959 – 1994 period is $ 123. They find also 

increasing TSS shadow price from $ 100 for 1960s up to $ 663 per metric ton for the first half 

of 1990s.

                                                       
11

1986 dollars
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Swinton (2002) estimates the shadow prices of SO2 for seven power plants operating in 

Florida during years 1990 – 1998 in order to analyze the potentiol for saving throught the 

Phase I of new stablished allowance market from 1995 to 1998. He uses the output distance 

function in transcendental logarithmic form for his estimation. His weighted averages of the 

shadow prices of SO2 vary in time and go from the $116.95 per ton of SO2 in 1994 up to 

$196.6912 per ton of SO2 in 1996. 

Lee, Park, & Kim (2002) use nonparametric direction distance function approach and they 

take into account also the inefficiency in the production process. For these purposes, Lee, 

Park, & Kim (2002) define also an efficiency rule  as �� = ��(�), �� = ��(�) , whre �� and ��

are called inefficiency factors and � is a parametr relating �� to ��. The efficiency rule maps 

a point (�, �) ∈ �(�) to corresponding (�∗, �∗) on the boundary �(�) in a way that              

��(�)� = �∗, ��(�)� = �∗. Furthermore they define also an efficiency path (EP) and iso-

efficiency path (IEP) as ��(�∗, �∗) = [(�, �) ∈ �(�): ��(�)� = �∗, ��(�)� = �∗

and���(��, ��) = [(�, �) ∈ �(�): ���, ��
��, ��

��� = 1], respectively. Lee, Park, & Kim (2002) 

follow Kumbhakar (1996) and estimate the direction distance function with the elements 

���, ���.  They provide also instructions how to caluculate the direction vector in mapping 

rule. In general, they calculate the directional vector � = (�, �) ”by utilizing the annual 

abatement schedules of pollutants and the production plans of good output as proxy 

variables for � and �, respectively.” (Lee, Park, & Kim, 2002, p. 371) They estimate the 

shadow price of SOx, nitrogen oxides (NOx) and TSP in the Korea’s electric power industry 

during 1990-1995, on a sample including 43 power plants. They find that the average 

shadow prices “are approximately 10% lower than those calculated under the assumption of 

                                                       
12

1996 dollars
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full efficiency”. (Lee, Park, & Kim, 2002, p. 365) They calculate the shadow prices for coal-

burned and oil burned power plants separately but present only the average shadow prices 

for the whole sample. Lee, Park, & Kim (2002) estimate the shadow prices of SOx, NOx and 

TSP on $3,170, $17,393 and $51,09 per ton of pollutant, respectively.

Marklund (2003) uses directional output function to compute shadow prices of oxygen-

demanding substances and suspended solids in 12 geographically scattered Swedish pulp 

and paper plants over the period 1983-1990. He estimates the average shadow prices of 

oxygen-demanding substances on 5068 SEK per ton with standard deviation 2909.6 and the 

average shadow price of suspended solids on 793.8 SEK per ton with standard deviation 

749.613. Furthermore, Maklund (2003) tests the hypothesis whether there is a positive 

correlation between population density and pulp plant’s MACs. He claims that “population 

density had a different influence on the two types of emissions. In the case of oxygen-

demanding substances, the density contributed negatively to the plants’ MACs, indicating 

that plants located in counties with higher density were targets of laxer environmental 

regulation. On the other hand, in the case of suspended solids, the density contributed 

positively to the plants, MACs. That is, plants located in counties with higher population 

density were more stringently regulated.” (Marklund, 2003, pp. 24-25) Furthermore, 

Marklund (2003) finds that the relative size of the pulp and paper industry in the region is 

negatively correlated with the MAC of suspended solids for plants located in that region. 

According to Marklund (2003), this shows that these plants might be targets of less stern 

environmental regulation.

                                                       
13 After conversion from 1990 SEK to EUR 2005 constant prices, we get €760.2 with s.d. €436.44 and €119.07 

with s.d. €112.44, respectively.
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Färe et al. (2005) use quadratic directional output distance function to measure the technical 

efficiency of 209 US electric utilities. They estimate the shadow price of SO2 in years 1993 

and 1997 and also the output elasticity of substitution between electricity and SO2 in these 

years. They choose these two years to estimate the effects of Phase I of the acid rain 

program implemented in 1995. They use two approaches to etimate the directional distance 

function. They use the loss minimization deterministic procedure developed by Aigner & Chu 

(1968) and they also estimate the directional distance function as a stochastic frontier. Using 

a stochastic frontier approach they find shadow price of $76 per ton of SO2 in 1993 and $142 

per ton of SO2 in 1997. According the authors, these values are close to average prices of 

market trades. The estimates of shadow prices comming from deterministic procedure are 

around $1100 in 1993 and $1973 in 1997. The authors interpret these results in relation to 

the previous ones as follows: „These estimates indicate that utilities could reap larger gains 

in economic efficiency through permit purchase.“ (Färe R. , Grosskopf, Noh, & Weber, 2005, 

p. 471)

Atkinson & Dorfman (2005) focus on input distancce function estimation using the Limited 

Information  Bayesian System Estimator14. They use data about 43 US power plants for the 

yeatrs 1980, 1985, 1990 and 1995. They observe more than 20% reduction of SO2 over the  

1980-1995 period. Based on the Bayesian approach, they find the posterior median15 of MAC 

at the value of $464.68 per ton of SO2 for the year 199516. Atkinson & Horfman (2005) apply 

also Generalized Method of Moments (non-Bayesian) in order to estimate the input 

distancce function and to derive the MAC of SO2, but their findings are much less accurate in 

comparizion to the results from the Bayesian approach and in 1995 they get even negative 

MAC of SO2.

                                                       
14 Description of the Limited Information  Bayesian System Estimator is behind the scope of this thesis, for 

more detail see Atkinson & Horfman (2005)

15
Posterior median is defined as the median value of a particular parameter or function of parameters from all 

the draws, for more detail see Atkinson & Horfman (2005)

16 We mention only the results from 1995, because they are the most relevant form the comparison with other 

studies.
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Lee (2005) estimates the Shephard input distance function on data from 38 coal-fired US 

power plants operating between 1977 and 1986. In contrast to many other studies, Lee 

estimates the shadow prices of sulphur and ash not in form of forgone output but in form of 

forgone capital. He gets the overall weighted average estimates 0.076 and 0.058 dollars per 

pound17 for sulphur and ash, respectively. Lee (2005) finds substantially variation of the 

estimates between four geographic regions (Great Lakes, Midwest, South, and Northeast) 

but also within state and even some differences between units within plants. Lee (2005) 

estimates also the indirect Morishima elasticities of substitution of capital for sulfur and 

comes to the conclusion that this substitution is relatively high.

Vardanyan & Noh (2006) examine the results of diferent output distance function and 

mapping rules. The use a panel of observation from the US electricity power industry for 

1997-1999. They argue against the assumption that all the parametric methodologies for 

shadow price estimation of good and bad outputs provide a similar and an adequate 

approximation to the true production technology. Their study shows that the estimates are 

extremely sensitive to the changes in the parameterization methodology, especially to the 

variation in the mapping regime (Vardanyan & Noh, 2006, p. 189). Table 5 shows the market 

price of SO2 allowances and shadow price estimates in dependence on various 

parametrization methodologies. 

                                                       
17 constant 1976 US dollars used;  after conversion to $ per ton, we get 167.55 and 127.75 (1 pound is equal to 

0.454 kilogram.)
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Table 5  SO2 Shadow price estimates and the market price of allowances; various parameterization methodologies

1997 1998 1999

Shephard distance function 0 0 0 0 193.89 (-55.45)

Hyperbolic distance function 567.09* (-91.1) 232.04* (-15.34) 1237.78* (-138.35)

Directional distance function gb=-1, gy=2 1048.86* (-69.09) 539.19* (-26.12) 877.22* (-49.33)

gb=-1, gy=3.96 398.47* (-25.02) 154.05* (-5.42) 383.75* (-17.84)

gb=-1, gy=3.97 398.38* (-22.95) 126.11* (-3.65) 383.36* (-16.41)

gb=-1, gy=5 216.69* (-11.03) 73.27* (-4.55) 319.78* (-13.24)

gb=-1, gy=9 90.4611 (-3.89) 12.82* (-0.94) 305.04* (-12.6)

gb=-1, gy=15 30.74* (-1.77) 0 0 288.13* (-12.29)

gb=-1, gy=29.4 29.68* (-1.72) 0 0 175.87* (-6.72)

Allowance market price 93.1302 140.85 181.19
Market price of allowances is the average of the indices published by Cantor Fitzgerald Environmental Brokerage (1997 and 1998) ,The 
emissions Exchange Corp. (1997–1999), and Fieldston Publications (1997–1999). Bootstrapped standard errors are in parentheses. 
*Significant at 1% in a two-tailed test of difference from the average market price of allowances.

Source: Vardanyan & Noh, 2006, p. 188 (converted from 1999$ to 2005€)

Murty, Surender, & Kishore (2007) apply the directional output distance function  estimation 

for five coal fired power plants in Adhra Pradesh State of India during the years 1996-97 to 

2003-200418, namely its parametrical specification as a quadratic functional form. Using this 

approach, they estimate the combined environmental and technical efficiceny, shadow price 

of Suspended Particulate Matter (SPM), SO2 and NOX. Furthermore they estimate also the 

elasticity of substitution between electricity and pollutants. They estimate the distance 

function as a stochastic frontier and use the directional vector (��, ��) = (1, −1). The mean 

shadow prices of SPM, SO2 and NOX are estimated on 106.16, 41.84 and 149.43 US$, 

respectively. The authors stress a significant variation of the estimated marginal abatement 

cost of pollutants by year and plant unit. Murty, Surender, & Dhavala (2007) conlude that 

the “variation in the shadow price of bad output among firms could be attributed to different 

levels of compliance to environmental regulation.” (Murty, Surender, & Kishore, 2007, p. 46)

Based on correlation analysis between the marginal abatement cost and pollution intensity 

and electricity generated for each polutant Murty, Surender, & Kishore (2007) find that MAC 

“increases with a decrease in pollution concentration and decreases with an increase in firm 

                                                       
18

Murty, Surender, & Dhavala (2006) use 480 monthly panel observations.  
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capacity.” (Murty, Surender, & Kishore, 2007, p. 46) This indicates increasing marginal 

abatement cost in coal-fired power plants.

Bauman et al. (2008) estimate SO2 shadow price in the Korean electric power industry 

between 1970 and 1998. The average shadow price is $ 184 per ton of SO2. This is 

approximately about 40 % lower than the three-year average SO2 shadow price estimation 

by Coggins & Swinton (1996). Here we note that the same the three-year average SO2

shadow price is $ 171.3 – even lower. Bauman et al. analyzes also the factors affecting the 

annual marginal cost of production SO2 abatement – rate of technical change and emission 

rate. He finds out that “technological innovation increased marginal abatement cost of 

process SO2 during the 1970-1998 period.” (Bauman et al., 2008, p. 522)

Park & Lim (2009) estimates the MAC of CO2 using the output distance function in translog 

functional form. Their data set includes 20 Korean fossil-fuel power plants  in time horizon 

from 2001 to 2004. They find the weighted average MAC of CO2 at the value of €14.04 per 

ton of CO2. According to type of main fuel, the weighted averages of MAC are €13.04, €12.45 

and €11.40 per ton of CO2 for coal-fired, oil and natural gas-fired power plants, respectively.

Maradan & Vassiliev (2005) test whether the MAC of CO2 curve shifts upwards wiht the 

incresig income, what is one of assumptions connected to the Environmetal Kuznets Curve. 

They anylzze the evolution of the opportunity cost of CO2 abatement with income of 

economies. They estimate the Shadow prices of CO2 via the directional distance function. 

They apply the mapping rule � = (0, ��), where ��is equal to the mean value of bad output 

in the sample. Maradan & Vassiliev (2005) work with macro-economic cross-section data 
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from 76 developed and developing countries19 in 1985.“These include 30 low- and lower-

middle income countries and 46 upper-middle and high-income countries. Either gross 

domestic product (GDP) or consumption has been alternatively considered as proxies for the 

desirable output. The undesirable output is carbon dioxide (CO2). Each country is assumed to 

employ four inputs that are labour force, capital, arable land and energy.“20 (Maradan & 

Vassiliev, 2005, p. 10)  The authors find that „Shadow prices of CO2 diminish as income per 

capita grows. … Hence, the developed economies would have to undergo a smaller loss of 

consumption or GDP if the last unit of the CO2 pollution had to be eliminated.“ (Maradan & 

Vassiliev, 2005, p. 12) Table 6 showes the results of Maradan & Vassiliev (2005) grouped 

country income, the shadow prices are in milions US$ per Kilo-ton of CO2.

Table 6 CO2 Shadow prices estimates by income group (US$)

Source: Maradan & Vassiliev (2005, p. 13)

                                                       
19

The sample does not include the Czech Republic.

20
GDP and consumption are expressed in purchasing power parity US dollars and refer to the year 1985, data 

on CO2 come from World Development Indicators (WDI) database and according to this, CO2 emissions are 

counted from the pollution from burning of fossil fuel and cement manufactoring. For more detail about the 

data, see Maradan & Vassiliev (2005).
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Salnykov & Zelenyuk (2006) investigate the shadow prices of CO2, SO2 and NOx with focus on 

post-comunist countires. They use the directional output distance function in translog form 

for these purposes. The autors work with a data sample from 1995 included 96 countries, 

which they separate into threee groups: Countries in Transition (CITs), North and South. 

Inputs are labor, arable land energy consumption and capital stock in each coutry, desirable 

output is GDP and undesirable outputs are the emissions of pollutants. For example, the 

shadow prices estimated for the Czech Republic are $106.52, $5,079 and $53,523 per ton of 

pollutant for CO2, SO2 and NOx, respectively. In the internatnational comparison, Salnykov & 

Zelenyuk (2006) come to a conclusion that if “any agreement similar to Kyoto protocol 

should be in force, under assumption of unchanging technology CITs will be major pollution 

permit sellers.” Based on the fact that the authors work with the data from year 1995, we 

don’t find this assumption as much reasonable.

Summarizing, the estimates of shadow prices differ not only in dependence on 

country, year or utility but also based on used methodology. Vardanyan & Noh (2006) 

clearly show that the role of selectected type of distance function and its properties (i.e. the 

mapping rule) is crucial for the estimates. In the last 20 years, the autrhors have used all 

above described types of distance function - output, input and directional output (ODF, IDF, 

DDF). Especially in energy sector, the ODF is used very often. In the last years, the authors 

use the DDF more and more often. The DDF allows us to reflect the real development of 

good and bad outpus – it don’t require the proportional change of boht good and bad 

outputs in the same direction. The above cited works differ to some degree also in type and 

quality of the data. For exsample, Kwon & Yuh (1999) use the plant capacities in kW as 

substitution for capital input. 



35

Table 7 provide a overview of shadow prices estimates and methods described 

above, in Table 18 in the Appendix A you can find a extended version of this table.

Table 7 Emission shadow price estimates overview

SCHADOW PRICES (€2005/t)

Study Method CO2 SOx NOx PM
BOD

(COD) TSS
21

vector 
g=(y,b)

Färe et al. (1993) ODF - 9956.7 - 68074.9 2809.7 0 y>0, b>0
Coggins & Swinton 
(1996)

ODF - 357.1 - - - - y>0, b>0

Boyd et al. (1996) ODF - 475.7 - - - - y>0, b>0

Swinton (1998) ODF - 254.1 - - - - y>0, b>0
Kwon & Yuh (1999) 

ODF 5.2 425.5 201 21210.8 - - y>0, b>0

Hailu-Veeman 
(2000)

IDF - - - - 199.3 463 y=0, b=0

Swinton (2002) ODF - 176.7 - - - - y>0, b>0
Lee, Park & Kim 
(2002)

DDF - 3790.5 21219.5 62333.5 - - y<0, b<0

Marklund (2003) DDF - - - - (760.2) 119 y=1, b=-1

Färe et al. (2005) DDF - 106.82 - - - - y=1, b=-1
Atkinson & 
Dorfman (2005)

IDF -
501.8544 

(only 1995)
- - - - y=0, b=0

Lee (2005) IDF - 451.4 -
344.1 
(ash)

- - y=0, b=0

Vardanyan & Noh 
(2006)

see Table 5

Murty et al. (2007) DDF - 51.0 182.3
129.52 
(SPM)

- - y=1, b=-1

Bauman et 
al.(2008)

ODF - 224.5 - - - - y>0, b>0

Park & Lim (2009) ODF 14.04 - - - - - -
Maradan & 
Vassiliev (2005)

DDF 2.13-9.6 - - - - - y=0, b>0

Salnykov & 
Zelenyuk (2006)

DDF 115.0 5485.3 57805 (results for CZE) -

                                                       
21

BOD, COD and TSS are water pollutants. BOD is a subset of COD.
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4. Distance function optimization

4.1.The empirical model

According to Färe et al. (2005), the distance function can be estimated in a several ways. One 

of these methods is to use a data envelopment analysis (DEA) model, “where the output 

possibility set is constructed as a piecewise linear combination of all observed outputs and 

inputs” (Färe et al., 2005, p. 476). Using the DEA, we are able to estimate the distance 

function the performance but not the shadow prices. Since our main aim is to estimate the 

shadow price, we require a parametric and differentiable specification distance function. 

Following Färe et al. (2005) and Vardanyan & Noh (2006), we look for a function satisfying 

the translation property and that could provide a second-order approximation to a true, but 

unknown function. The quadratic input distance function satisfies such condition:
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We estimate the parameters of this function by minimizing the total distance between 

individual observations in the sample and the estimate of the optimal input set frontier 

solving the following linear programming problem:

(26)
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��� � �[����(���, ��� , ���) − 1]

�

���

�

���

�. �.

(i) ����(���, ��� , ���) ≥ 1; � = 1, … , � � = 1, … , �,

(ii) ����(���, ��� , 0) < 1; � = 1, … , � � = 1, … , �,

(iii)
����(���,���)

���
≤ 0; � = 1, … , � � = 1, … , � � = 1, … , �,

(iv)
����(���,���,���)

���
≥ 0; � = 1, … , � � = 1, … , � � = 1, … , �,

(v)
����(���,���,���)

���
≥ 0; � = 1, … , � � = 1, … , � � = 1, … , �,

(vi) ∑ ��
�
��� = 1,

∑ ����
�
��� = 0; �� = 1, … , �,

∑ ���
�
�� = 0; � = 1, … , �,

∑ ���
�
�� = 0; � = 1, … , �,

(vii) ���� = ����; � ≠ ��, ���� = ����; � ≠ ��, ���� = ����; � ≠ ��.
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Where � and � are indexes of producer and year, respectively; � = 1 … �, � = 1, … , �, � is 

number of producers and � is number of years. �, � and � are numbers of  inputs, good 

and bad outputs, respectively. The restrictions in (27) are implemented in a way that 

satisfies all of the input distance function properties in Table 12. The representation 

property is imposed by the inequality in (i). The null-jointness property is ensured by the 

restriction in (ii) and implies that the desirable output cannot be produced without 

producing the undesirable outputs. The monotonicity conditions are imposed by the 

restrictions (iii) - (v), respectively. Free disposability of good outputs is satisfied by (iii). Free 

disposability of inputs is imposed by the restriction in (v). The translation property is 

imposed by the restrictions in (vi). Finally, the symmetry of parameters of the quadratic 

functional form is ensured by the restriction in (vii). 

4.2. The data

The directional distance function is estimated using data on the Czech energy industry over 

the period 2002-2007. Our model has two good outputs (electricity and heat), five bad 

outputs (SO2, PM, NOx, CO and VOC) and three types of production inputs, including total 

assets as capital input, number of employees and fuels consumption, i.e. � = 2, � = 5 and 

� = 3. We have aggregated the fuels consumption from the single types of fuel into one 

aggregated fuel consumption. However, we still keep the information about the fuel types 

combusted in each firm. From the original dataset (already cleaned), which has included 88 

observations from fifteen firms, we have had to remove the gas heating plants. The reason is 

that the gas heating plants optimize the profit primary according heat demand and the 
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electricity is only their second product.22 Since that, it has shown that the estimation of 

distance function by gas heating plant is problematic and the estimation of emission shadow 

prices relative to the electricity price is not appropriate. Thus, our model contains nine firms

producing electricity and heat with a total of 53 observations (due to one missing 

observation).

We collected the annual electricity (MWh) and heat (GJ) production of each generating firms 

in the sample from the Energy Regulatory Office year statistics.23 The data about total assets 

and the number of employees are gathered by Creditinfo Czech Republic, s.r.o. - the number 

of employees was additionally checked in sample firm’s annual reports. Fuels consumptions 

(GJ) and emission data (tons) are gathered by the Czech Hydrometeorological Institute in the 

REZZO database. The data in our sample come from the REZZO 1 database.24 Fuel 

consumptions and emission data are available even on generating unit level but the 

numbers of employees and information about total assets are available only on firm level 

data. Therefore we aggregate the fuel consumptions and emission data also on firm level. 

The aggregation on firm level data has also positive effects because it allows us to include 

also electricity production from renewable energy sources. This brings another source of 

                                                       
22

This is common for all heating plants in general, but the gas heating plants are more flexible than coal 

heating plants and therefore are able to produce electricity only in peak time in much more degree than other 

heating plants. The price of peak electricity is significantly higher than the average electricity price and 

therefore the estimate of marginal abatement cost might be bias in this case. 

23
Energy Regulatory Office (ERO) provides statistics about yearly electricity and heat production on its web 

pages http://www.eru.cz/dias-browse_articles.php?parentId=131&deep=off&type and 

http://www.eru.cz/dias-browse_articles.php?parentId=136&deep=off&type, respectively.

24
REZZO - Register of Emissions and Air Polluters - is reporting system operated by the Czech 

Hydrometeorological Institute in accordance with Act No. 86/2002 Coll., Clean Air Act. It has four categories 

according to the type of the polluter.  Category REZZO 1 is register of emissions from extra large and large 

pollution sources, it contains stationary sources with installed thermal capacity higher than 5 MW.
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substitution between fuels, labor and capital within one firm (e.g. ČEZ). The power electricity 

price is obtained as a weighted average of daily market averages from the OTE’s annual 

reports. In 2002 the electricity started to be traded on marked in the Czech Republic and 

since this year OTE has been reporting the electricity price.25 Since the electricity price is 

created on the market, we assume that it is common for all firms. The capital input (in 

thousand CZK) and electricity price (CZK/MWh) are both deflated by the OECD consumer 

price index (2005=100).26

The input distance function is sensitive to fuel mix and it is appropriate to estimate the input 

distance function for a group of firm with approximately the same fuel mix. Therefore we 

split our dataset into two samples of data according the coal consumption. Sample A

includes firms combusting hard coal and other fuels – there are 18 observations from 3 

firms. Sample B includes firms, where brown coal is the main fuel and no hard coal is 

combusted – there are 35 observations from 6 firms. The summary statistics of the samples

are compiled in Table 8 and Table 9, respectively. In the Appendix A, you can find more 

detail descriptive statistics by years.

                                                       
25

In accordance with Act No. 458/2000 Coll., the electricity market in the Czech Republic was opened as of 

January 1, 2002. Before this date, the electricity prices were fully regulated and the price of power electricity 

was not available because the Czech Statistical Office reports only the final electricity price including the 

transmission costs. This is the main reason why our time series begins in year 2002 and not earlier.

26
For the conversion between CZK 2005 and € 2005, the exchange rate 29.78  CZK/€ is used.
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Table 8 Dataset descriptive statistics - Sample A

Mean Std. Dev. Min Max

Capital (mil.CZK 2005) 92200 121000 8267 296000

Labor 3095 2690 752 7677

Fuels (TJ) 142000 168000 8199 407000

Electricity (TWh) 21000 28900 149 65400

Heat (TJ) 11600 5556 348 21600

PM (t) 1078 1323 17 3010

so2 (t) 25233 26061 897 65621

nox (t) 23835 27976 800 66075

co (t) 1615 1748 56 4577

voc (t) 1498 1942 29 4585

Table 9 Dataset descriptive statistics - Sample B

Mean Std. Dev. Min Max

Capital (mil.CZK 2005) 2369 2550 247 8677

Labor 259 126 84 444

Fuels (TJ) 7823 9523 703 28000

Electricity (TWh) 483 719 12 2074

Heat (TJ) 2536 2123 307 6090

PM (t) 59.5 69.7 1.4 279.1

so2 (t) 2521.2 2515.8 340.7 10110.6

nox (t) 1058.8 1262.3 64.5 4616.4

co (t) 163.1 214.4 9.0 828.0

voc (t) 83.1 98.0 0.5 319.7

The firms included in our dataset produce from 84 % to 87 % of net electricity production in 

the Czech Republic in year 2002 and 2007, respectively.

Table 10 provides a summary of annual desirable and undesirable outputs from the whole

dataset and also shows the annual price of electricity.
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Table 10 Summary statistics of outputs

Year

Electricity Heat PM SO2 NOx
(tons)

CO VOC Electricity price 
(CZK2005/MWh)(TWh) (PJ) (tons) (tons) (tons) (tons)

2002 59.1 54.7 3785 91131 78849 6623 4951 783

2003 65.7 53.8 3395 88931 76932 5610 5020 737

2004 66.4 52.9 3669 84056 77027 5667 5026 707

2005 64.9 55.8 3585 90466 75332 5554 4952 916

2006 67.4 51.8 3476 93032 77088 5577 4566 1079

2007 70.9 46.3 3580 94821 80867 5752 5349 990

Total 394.4 315.3 21489 542436 466095 34783 29864

4.3. Empirical results

The input distance function is estimated for each sample of data separately. 80 parameters 

are needed to be estimated in each sample. The parameter estimation for the input distance 

function is carried out by minimizing the sum of deviation from unity – as described in (27) –

subject to 223 and 410 constrains for sample A and B, respectively. There are 11 linear 

homogeneity conditions and 14 symmetry restrictions for both samples. There are 18 (35) 

representation conditions, 180 (350) monotonicity conditions relating to inputs, desirable 

outputs and undesirable outputs in sample A and (B), respectively27. Matlab codes were 

written and solved to compute the parameter estimates. The estimates of the parameters 

for sample A are shown in Table 11. The estimates for sample B, you can find together with 

other detailed results in the Appendix B. 

                                                       
27 Number of representation and monotonicity conditions depends on the number of observation in the 

sample.
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Table 11 Parameter estimates for input distance function - sample A

Parameter Estimate Parameter Estimate Parameter Estimate Parameter Estimate

α0 -0.05403 δLE 1.21E-09 ηFVOC 9.70E-06 γPMSO2 0.009372

αL 1.004185 δLH -7.06E-10 βEE 2.52E-08 γSO2SO2 0.005072

αK 0.005053 δKE -1.05E-10 βEH -2.71E-09 γSO2NOx -0.01011

αF -0.00924 δKH -4.54E-10 βEH -2.71E-09 γSO2CO -0.00581

βE 0.027604 δFE -1.11E-09 βHH -1.56E-09 γSO2VOC -0.06892

βH 0.006934 δFH 1.16E-09 μEPM -4.34E-06 γPMNOx 0.019267

γPM -2.75409 ηLPM -1.85E-06 μESO2 3.37E-08 γSO2NOx -1.01E-02

γSO2 -1.19304 ηLSO2 -9.70E-07 μENOx -1.83E-05 γNOxNOx 0.021023

γNOx -2.85841 ηLNOx -2.05E-06 μECO -2.92E-05 γNOxCO 0.020313

γCO 0.3061 ηLCO -5.14E-06 μEVOC -1.45E-05 γNOxVOC 0.055508

γVOC -1.26581 ηLVOC -5.76E-06 μHPM -1.86E-07 γPMCO -0.42882

αLL -5.39E-10 ηKPM -1.63E-06 μHSO2 -5.91E-07 γSO2CO -0.00581

αLK 4.12E-10 ηKSO2 1.51E-07 μHNOx -2.36E-06 γNOxCO 0.020313

αLF 1.27E-10 ηKNOx 8.28E-07 μHCO -3.10E-06 γCOCO -0.29343

αLK 4.12E-10 ηKCO 3.97E-07 μHVOC -1.10E-06 γCOVOC 0.368614

αKK -1.15E-09 ηKVOC -3.94E-06 γPMPM -0.01636 γPMVOC -0.29207

αKF 7.38E-10 ηFPM 3.48E-06 γPMSO2 0.009372 γSO2VOC -0.06892

αLF 1.27E-10 ηFSO2 8.19E-07 γPMNOx 0.019267 γNOxVOC 0.055508

αKF 7.38E-10 ηFNOx 1.22E-06 γPMCO -0.42882 γCOVOC 0.368614

αFF -8.65E-10 ηFCO 4.74E-06 γPMVOC -0.29207 γVOCVOC -0.74942

The estimated value of the input distance function (IDF) is very close to one in most cases, 

which implies very high technical efficiency. This could be partly caused by the relative small 

size of the data samples, but on the other hand we can find very similar results also in the 

literature (e.g. Hailu & Veeman (2000)). The firm averages of the IDF value together with 

emission rates (ER) for each pollutant are displayed in Table 12.
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Table 12 Firm averages of IDF values and Emission Rates

Firm
Value of 
IDF

ER PM 
(t/PJ)

ER SO2

(t/PJ)
ER NOx

(t/PJ)
ER CO 
(t/PJ)

ER VOC 
(t/PJ)

1 1.058503 7.8 161.4 166.6 10.7 11.2

2 1.000039 7.1 264.0 131.6 21.3 10.1

3 1.000041 11.6 373.3 154.0 20.4 10.1

4 1.007060 6.7 322.1 194.6 17.8 6.9

5 1.004077 5.0 130.8 97.3 8.7 3.3

6 1.000040 7.2 386.9 132.5 12.4 12.1

7 1.000043 7.4 498.9 163.0 15.3 15.6

8 1.000043 5.1 656.3 124.5 49.9 13.4

9 1.000043 5.1 656.3 124.5 49.9 13.4

The emission shadow prices are derived from the input distance function as described in 

(25). The shadow prices are in term of forgone output (electricity) and therefore are in 

negative terms. For better convenience, we present the result already as marginal 

abatement cost in positive terms. The overall emission-weighted average (WA) of marginal 

abatement costs is 5223, 1726, 2450, 4946 and 5921 € per ton of PM, SO2, NOx, CO and VOC 

with standard deviation 54150, 3274, 6704, 24502 and 25595, respectively. For comparison 

with other MAC estimations for the Czech Republic we use the median of the MACs, because 

neither Salnykov & Zelenyuk (2006) nor the estimates from GEM-E3 and GAINS model 

provide emission-weighted averages of MACs. The medians of our MACs are 8374, 1198, 

2805, 6051 and 8549 € per ton of PM, SO2, NOx, CO and VOC, respectively. The weighted 

averages of MACs of are drifted mainly by the two biggest frims in the data set - 1 = ČEZ, a.s.

and 4 = Dalkia Česká republika, a.s.. The estimated MACs vary across firms and also over 

time as it is shown in the following 3 tables. For sample A, the medians of MACs are 6256,

1491, 2210, 3092 and 10548 per ton of PM, SO2, NOx, CO and VOC, respectively. For sample 

B, the medians of MACs are 8670, 847, 3293, 7005 and 7398 per ton of PM, SO2, NOx, CO 

and VOC, respectively.                                                                                                                                                
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Table 13 Summary statistics of MAC (€2005/t)

PM SO2 NOx CO VOC

WA 5223 1726 2450 4946 5921 

Mean 26857 2087 5312 16014 18715 

Median 8374 1198 2805 6051 8549 

S.d. 54150 3274 6704 24502 25595 

Min 36 80 4 10 42 

Max 240764 20886 36903 122657 116223 

Table 14 Annual weighed averages of marginal abatement costs (€2005/t)

PM SO2 NOx CO VOC

2002 4090 930 3451 3792 11594

2003 4598 680 533 2799 2969

2004 4877 952 2130 3226 6441

2005 6709 2028 2976 6849 4679

2006 7629 2770 2590 4477 4919

2007 3546 2844 2978 8681 4959

Table 15 Firm averages of marginal abatement costs (€2005/t)

Firm PM SO2 NOx CO VOC

1 236 1134 1802 2506 2860 

2 19110 8313 6442 10091 33075 

3 3621 1031 7947 17516 12274 

4 7489 1329 2889 3389 8678 

5 16809 2502 4560 30467 62372 

6 168074 2052 17432 62163 30052 

7 9659 700 2460 6430 6384 

8 8112 524 1466 5550 5046 

9 4958 1015 2309 4009 5490 
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5. Decomposition of Marginal Abatement Costs

In order to analyze the factors that might affect the marginal abatement costs of 

pollution, we will test the hypotheses that the marginal abatement cost decline over

time; that marginal abatement costs rice with declining emission level; and that

marginal abatement costs rice with declining emission rate. We run following six Fixed-

effects models with robust standard errors for all pollutants (28 – 33), where �� is 

Emission Rate and �� is Emission level28. We use the robust standard errors because of 

heterogeneity of the data. We have only 53 observations in our panel dataset – 9 firms 

over 6 years. Not all models fit the data properly and not all are significant. There is a 

problem of multicollinearity between ������ and ������ in Model 6 (The 

multicollinearity was confirmed also by additional tests by all pollutants.) and 

therefore this model is rather only illustrative. 

Model 1          ������� = � + ������� + ��������� + �� + ���

Model 2           ������� = � + ������� + �� + ���

Model 3           ������� = � + ������� + ��������� + �� + ���

Model 4           ������� = � + ������� + �� + ���

Model 5           ������� = � + �������� + �� + ���

Model 6           ������� = � + ������� + ������� + ��������� + �� + ���

                                                       
28 Emission Rate is defined as ton of pollutants per input (ton/PJ). Emission level means the absolute amount of 

emission produced by the firm.

(28)

(29)

(31)

(30)

(32)

(33)
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Table 16 provides results all the models for all pollutants. The asterisk in the right marks 

which of the pair of Model 1 and 2 or the pair of Model 3 and 4 is better based on the Log-

likelihood, Schwarz, Akaike and Hannan-Quinn criteria.

Generally, if we don’t take into account the biased Model 6 (where are a few exceptions), all 

coefficients by ������ are negative for all pollutants with exception of VOC, which is in 

accordance with the theory that MACs rice with declining emission rate. Unfortunately, the 

results are significant only for NOx and CO. By VOC, the � and � are negative in model with 

time term (Models 1and 3) and positive in models without the time term (Models 2 and 4), 

but in all cases the coefficient are very close to zero and insignificant. The coefficients by 

������ are negative for all other pollutants with exception of SO2. This also confirms the 

hypothesis that MACs rice with the declining emission level. But again, the results are 

significant only for NOx and CO. The hypothesis that MACs decline over time, has the least 

support in the data. In the Model 5, the coefficients by time are positive by all pollutants 

with exception of VOC, they are significant for SO2 and significant at 10% significance level. 

In other models, where time is included, the time coefficients are also positive with 

exception of Model 3 by PM and VOC models. The positive time coefficients (although only 

insignificant) could confirm the finding in Bauman et al. (2008). We have the data from time 

period 2002-2007. In this period, most of the innovations in energy sector were production 

process innovation, because the main end-of-pipe innovations were made already in the 

90ties of 20th century. Bauman et al. (2008) shows that some production process innovations 

increase marginal abatement costs – on our data, it would lead to positive time coefficients.

These econometric models are not ideal. There is a problem of non-normality of residuals in 

all models and tests for differing group intercepts confirm the heterogeneity of the data 
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which lead to different intercepts among the firms. We focus now only on models with the 

best fit and significant results by the detailed interpretation.  We can see relatively high 

positive time coefficient in SO2 Model 5 at 5% significance level, which indicates, that SO2

MACs rice rapidly with time in our short period. The time coefficients in both CO and models 

have the same interpretation. Based on the NOx Models 1 – 4, we cannot reject the 

hypotheses that MACs rice with declining emission rate and with declining emission level at 

1% significance level. We cannot reject the hypotheses that MACs rice with declining 

emission rate and with declining emission at 5% significance level also by CO Models 1 – 4.
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Table 16 Results with significant results

Model α β γ δ

PM

1 -84.8906 (2110.35) -0.92889 (0.601855) - 12.5185 (277.557)

2 10.299 (1.15257) -0.93409 (0.608989) - - *

3 63.2481 (2162.19) - -0.83351 (0.608987) -6.74556 (284.354)

4 11.945 (2.53854) - -0.82967 (0.616949) - *

5 -681.512 (2198.89) - - 90.7579 (289.208)

6 -552.967 (2183.2) -2.59013 (2.00375) 1.71802 (1.86321) 73.566 (286.938)

SO2

1 -2896.08 (1122.75) -0.73469 (0.711176) - 382.39 (147.356)

2 10.1031 (5.43116) -0.53024 (0.942093) - - *

3 -2825.71 (1285.43) - 0.27623 (0.532863) 372.287 (168.955) *

4 5.90042 (6.82548) - 0.14346 (0.854566) -

5 -2794.5 (1271.92) - - 368.473 (167.29)

6 -3801.08 (610.13) -4.19515 (1.75964) 3.77598 (1.34287) 500.077 (80.1973)

NOx

1 -1186.64 (1111.11) -3.27965 (1.17058) - 159.255 (145.861)

2 25.2681 (6.11488) -3.49655 (1.23328) - -

3 -240.35 (1267.34) - -3.53826 (1.05396) 35.9967 (165.895)

4 33.9638 (8.10376) - -3.62553 (1.12842) - *

5 -1914.5 (1206.37) -1.10489 (1.43257) - 252.847 (158.667)

6 -387.96 (1383.3) -2.70804 (1.62095) - 55.3475 (181.076)

CO

1 -3585.5 (965.251) -2.15888 (0.909945) - 473.54 (127.016) *

2 14.7397 (3.13291) -2.10811 (1.08498) - -

3 -3039.05 (1099.22) - -2.18128 (0.903957) 402.314 (144.494)

4 20.3564 (5.51889) - -2.29057 (1.0801) -

5 -3436.76 (1429.61) - 453.157 (188.029)

6 -3335.72 (1004.01) -1.21499 (0.906613) -1.01324 (1.18335) 441.011 (131.964)

VOC

1 3803.31 (2544.14) -0.05324 (0.105309) - -499.06 (334.595) *

2 8.654 (0.149037) 0.060848 (0.0720876) - -

3 3846.31 (2589.66) - -0.07836 (0.145008) -504.687 (340.542) *

4 8.5182 (0.439375) - 0.060985 (0.10243) -

5 3753.89 (2475.46) - - -492.575 (325.584)

6 4175.6 (2843.63) 1.48807 (2.79587) -1.52865 (2.79589) -547.582 (373.515)

(Standard errors in parentheses)
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6. Conclusions

We have provided an overview of methodologies to MACs estimation and described types of 

distance function and discussed their advantages and disadvantages. Based on the discussed 

arguments, the direction output distance function and the input distance function are 

appropriate for shadow price estimation of undesirable outputs and in particular, the input 

distance function is the best choice for shadow price estimation of undesirable outputs in 

the energy sector.  This is based on the Kumbhakar, Orea, Rodríguez-Álvarez, & Tsionas 

(2007) findings that the input distance function is appropriate in those cases of cost 

minimization where output is exogenous and inputs are endogenous. We have shown that 

this is the case of energy sector. Hailu & Veeman (2000) argue further in favour of the  input 

distance function, because by the reductnion of inputs the undesirable outputs don’t 

increase and the society has pure benefits from the costs minimization and from the 

emission reduction. Thus, we have chosen the input distance function for our emission 

shadow prices estimation. The input distance function measures the maximum amount by 

which the input vector can be deflated, while the output vector is held constant. Its optimal 

value is one and if the input distance function has value greater than one, the firm uses more 

inputs than in optimum to produce the same output. The shadow prices are derived from 

the estimated distance function using the Shephard (1970) duality between revenue and 

cost function. The big advantage of this approach is that we don’t need to know the input 

prices. For estimation of shadow prices of all outputs it is sufficient to know only the price of 

one freely traded output. 
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In the literature review, we have shown which types of distance function are used for 

pollutants shadow prices estimation in the literature. The authors use different type of 

distance function and also different functional forms. Also the data levels go from unit level 

to country level. The choice of the distance function type has been shown as crucial. Most of 

the shadow prices estimates are made for SOx. The estimates vary across the studies from €0

in some Vardanyan & Noh (2006) distance function specifications to €9957 per ton of SOx in 

Färe et al. (1993). Our median estimate of SO2 shadow prices is €1198 per ton of SO2.

We have applied the input distance function in quadratic form on firm level data over the 

period 2002-2007.  We have found that the distance function is sensitive also to structure of 

fuelmix.  Most studies apply the distance function either on homogeneous firm level data 

(e.g. coal power plants) or on aggregated data (sectoral or country level). We have relative 

heterogeneous firm level data and therefore we have split our dataset into two samples 

according to fuelmix structure. The overall medians of our MACs are 8374, 1198, 2805, 6051 

and 8549 € per ton of PM, SO2, NOx, CO and VOC, respectively. Our estimates are lower than 

the estimates for the Czech Republic at values of 5485 and 57805 € per ton of SOx and NOx in 

Salnykov & Zelenyuk (2006), respectively, but are higher than the estimates from the GEM-

E3 model – 7764, 785, 1520 and 0 € per ton of PM, SO2, NOx and VOC in scenario S-CE. 

Our estimates are also within the range from GAINS model.

In order to analyze the factors that might affect the marginal abatement costs of emission, 

we have tested the hypotheses that the marginal abatement cost decline over time; that

marginal abatement costs rice with declining emission level; and that marginal abatement 

costs rice with declining emission rate. The second two hypotheses we cannot reject at 

least by NOx and CO. By other pollutants the results also support the hypotheses but are no 
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significant. The emission level and emission rate are correlated, therefore we cannot say if 

the MACs really decline also due to increasing the level of emission produced by the firm or 

if the MACs decline only due to increasing emission rates. The first hypothesis that the MACs

decline over time, we cannot confirm, because it has no support in the data. On the 

contrary, most results (although only insignificant) indicate that the MACs rice over time. We 

have short time series to make some conclusions about time trend of MACs, but the 

increasing MACs in time would be in accordance with Bauman et al. (2008) findings that 

production process innovations can increase marginal abatement costs.

There are two ways for further research. Either to employ the input distance function on 

aggregated – sectoral level data. This should allow working with longer time series, because 

the GDP could be a proxy for the desirable output and the problem with availability of 

market electricity price only since 2002 will fall away. Or the second – and more challenging 

– way is to acquire the unit level data about employees and capital and employ the input 

distance function these data. This would bring another view on the marginal abatement 

costs according the plant size and combusted fuel.
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Appendix A

Table 17 Descriptive statistics by years

Time Capital (mil.CZK2005)
KCZK2005)

Labor Fuels (TJ) Electricity(MWh) Heat (TJ) PM (t) SO2 (t) NOx (t) CO (t) VOC (t)

2002

mean 26800 1267 52600 6566082 6077 420.5 10125.6 8761.0 735.9 550.1

s.d. 68200 2431 121000 17800000 5867 977.7 20085.7 20314.6 1471.7 1347.5

min 251 91 826 13423 370 5.8 449.2 130.7 16.1 0.8

max 209000 7677 373000 54100000 16900 3010.5 62746.5 62480.9 4576.9 4131.1

2003

mean 29100 1160 49500 7304557 5979 377.2 9881.2 8548.0 623.3 557.8

s.d. 74800 2139 114000 20100000 5778 912.6 18771.5 20147.6 1210.3 1367.6

min 252 90 855 13159 368 6.1 535.4 100.6 12.8 13.5

max 228000 6780 350000 60900000 17200 2801.0 58745.2 61881.4 3762.1 4195.4

2004

mean 29300 1198 51600 7381327 5881 407.6 9339.5 8558.6 629.7 600.1

s.d. 76100 2102 120000 20300000 5784 964.1 18192.2 19991.3 1241.1 1361.2

min 247 88 821 12700 354 4.3 387.6 133.8 9.0 13.0

max 232000 6629 370000 61600000 17600 2968.0 56916.6 61468.3 3869.4 4211.4

2005

mean 34500 1231 52500 7208199 6200 398.3 10051.8 8370.2 617.1 550.2

s.d. 90000 2118 119000 19600000 6832 919.9 18284.9 19303.8 1154.3 1330.0

min 249 87 803 12894 349 3.1 387.6 99.1 11.9 0.9

max 274000 6618 366000 59500000 21600 2835.4 56718.7 59265.4 3585.3 4078.7

2006

mean 36800 1199 52600 7489195 5751 386.2 10336.9 8565.3 619.6 507.4

s.d. 97100 2054 119000 20500000 6301 892.4 19312.7 19824.1 1241.7 1212.5

min 257 85 759 12448 336 1.4 340.7 64.5 10.4 0.6

max 296000 6404 368000 62000000 20300 2749.6 59723.4 60833.4 3842.2 3722.1

2007

mean 41600 1288 63100 8860476 5792 447.6 11852.6 10108.3 719.0 668.6

s.d. 103000 2077 140000 22900000 6193 1025.4 22393.1 22797.9 1419.2 1587.4

min 259 84 703 12056 307 3.1 378.7 72.8 14.8 0.5

max 296000 6146 407000 65400000 19400 2973.3 65620.6 66075.4 4159.9 4585.2

Total

mean 32900 1223 53500 7442039 5950 405.5 10234.6 8794.2 656.3 570.5

s.d. 81300 2053 116000 19200000 5836 901.6 18549.6 19378.0 1229.4 1300.8

min 247 84 703 12056 307 1.4 340.7 64.5 9.0 0.5

max 296000 7677 407000 6.54E+07 21600 3010.5 65620.6 66075.4 4576.9 4585.2
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Table 18 Emission shadow price estimates overview - extended

DATA SCHADOW PRICES (€2005/t)

Study Method Function
Coun
try

Data 
type 

# 
obs.

(firms 
x Y) Years Sector CO2 SOx NOx PM

BOD
(COD) TSS g=(y,b)

Färe et al. (1993) ODF translog US
29

firm 30 30x1 1976 pulp - 9956.7 - 68074.9 2809.7 0 y>0, b>0
Coggins & Swinton (1996) ODF translog US 

a
firm 42 14x3 1990-92 power - 357.1 - - - - y>0, b>0

Boyd et al. (1996) ODF US firm 29 29x1 1989 power - 475.7 - - - - y>0, b>0
Swinton (1998) ODF US

b
firm 123 41x3 1990-92 power - 254.1 - - - - y>0, b>0

Kwon & Yuh (1999) ODF translog Kor firm 57 10x6 1990-95 power 5.2 425.5 201.0 21210.8 - - y>0, b>0
Hailu-Veeman (2000) IDF translog Can sector 36 1x36 1959-94 pulp - - - - 199.3 463.3 y=0, b=0

Swinton (2002) ODF
transcendental 
logarithmic US

c
firm 63 7x9 1990-98 power - 176.7 - - - - y>0, b>0

Lee et al. (2002) DDF nonparametric Kor firm 258 43x6 1990-95 power - 3790.5 21219.5 62333.5 - - y<0, b<0
Marklund (2003) DDF quadratic Swe firm 86 12x8 1983-90 pulp - - - - (760.2) 119.1 y=1, b=-1

Färe et al. (2005) DDF
quadratic / 
stochastic US firm 418 209x2 1993&97 power -

1505.8/
106.8 - - - - y=1, b=-1

Atkinson & Dorfman (2005) IDF
Bayesian 
approach US firm 43x4

1980, 85, 
90, 95  power - 501.85

30
- - - - y=0, b=0

Lee (2005) IDF US firm 380 38x10 1977-86 power - 451.4 -

344.1 
(ash) - - y=0, b=0

Vardanyan & Noh (2006)
ODF, DDF, 
hyperbolic US firm 627 209x3 1997-99 power see Table 2

Murty et al. (2007) DDF quadratic Ind firm 480
31

5x8 1997-2004 power - 51.0 182.3

129.52 
(SPM) - - y=1, b=-1

Bauman et al. (2008) ODF translog Kor sector 29 1x29 1970-98 power - 224.5 - - - - y>0, b>0
Park & Lim (2009) ODF translog Kor firm 80 20x4 2001-04 power 14 - - - - - -

Maradan & Vassiliev (2005) DDF
Wo
rld cntry 76 76x1 1985 econ.

2.1 -
9.6 - - - - - y=0, b>0

Salnykov & Zelenyuk (2006) DDF translog PCC
d

cntry 96 96x1 1995 econ. 115 5485.3 57804.8 (results for CZE) -

                                                       
29

Michigan & Wisconsin;  
a 

Wisconsin; 
b

Wisconsin, Illinois and Minnesota; 
c

Florida; 
d

Post Communist countries.
30

Only for year 1995
31 Monthly data
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Appendix B

Table 19 Parameter estimates for input distance function - Sample B

Parameter Estimate Parameter Estimate Parameter Estimate Parameter Estimate

α0 -124.299 δLE -6.9E-10 ηFVOC 1.1E-06 γPMSO2 -0.00162

αL 0.999636 δLH -7.5E-12 βEE 1.06E-08 γSO2SO2 5.99E-05

αK 0.000325 δKE 1.12E-09 βEH 1.22E-09 γSO2NOx -0.00095

αF 3.94E-05 δKH 1.08E-10 βEH 1.22E-09 γSO2CO 8.88E-05

βE -0.00201 δFE -4.2E-10 βHH 1.07E-10 γSO2VOC 0.001112

βH -0.00023 δFH -1E-10 μEPM 3.71E-06 γPMNOx 0.002884

γPM 0.59676 ηLPM 1.91E-06 μESO2 -4.7E-07 γSO2NOx -0.00095

γSO2 0.021757 ηLSO2 -1.7E-07 μENOx -2.2E-06 γNOxNOx 0.002475

γNOx 0.134003 ηLNOx 3.79E-08 μECO -6.6E-06 γNOxCO -0.00041

γCO 0.201734 ηLCO -1.1E-06 μEVOC -3.9E-06 γNOxVOC -0.01225

γVOC 0.263357 ηLVOC -2.8E-07 μHPM 1.45E-06 γPMCO -0.01338

αLL -3.3E-10 ηKPM -2.2E-06 μHSO2 -1.4E-07 γSO2CO 8.88E-05

αLK 2.77E-10 ηKSO2 6.41E-09 μHNOx 1.35E-07 γNOxCO -0.00041

αLF 5.46E-11 ηKNOx -3.2E-07 μHCO -2.3E-07 γCOCO -0.00544

αLK 2.77E-10 ηKCO 5.32E-07 μHVOC -4.1E-07 γCOVOC -0.00688

αKK -3.1E-10 ηKVOC -8.2E-07 γPMPM -0.08316 γVOCPM 0.071053

αKF 3E-11 ηFPM 2.62E-07 γPMSO2 -0.00162 γSO2VOC 0.001112

αLF 5.46E-11 ηFSO2 1.64E-07 γPMNOx 0.002884 γNOxVOC -0.01225

αKF 3E-11 ηFNOx 2.79E-07 γPMCO -0.01338 γCOVOC -0.00688

αFF -8.5E-11 ηFCO 5.83E-07 γPMVOC 0.071053 γVOCVOC 0.025149
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Table 20 IDF estimates and marginal abatement costs - Sample A

Firm Year
Value of 
IDF

PM MAC 
(€2005/t)

SO2 MAC 
(€2005/t)

NOx MAC 
(€2005/t)

CO MAC 
(€2005/t)

VOC MAC 
(€2005/t)

Technical 
efficiency

1 2002 1.258476 86 757 3256 3115 10177 0.794612

1 2003 1.034359 165 226 162 404 126 0.966782

1 2004 1.001058 628 572 773 1108 5214 0.998943

1 2005 1.024928 410 1382 2343 4313 42 0.975679

1 2006 1.02994 68 2291 1642 123 1471 0.97093

1 2007 1.002257 60 1578 2634 5972 131 0.997749

4 2002 1.00892 4662 236 3284 71 20902 0.991159

4 2003 1.004156 9326 425 2077 3068 11692 0.995861

4 2004 1.009946 9889 1725 8765 11734 15243 0.990152

4 2005 1.00761 3888 1403 1262 326 2572 0.992448

4 2006 1.00569 8374 1981 1291 3017 251 0.994343

4 2007 1.006036 8792 2206 656 2120 1406 0.994

5 2002 1.004029 24639 2521 6015 35949 87923 0.995987

5 2003 1.003993 15437 1202 2361 37573 80869 0.996023

5 2004 1.004342 7851 1134 1999 10 32098 0.995676

5 2005 1.004077 695 2565 1801 11037 46202 0.995939

5 2006 1.004017 25357 5520 4603 19245 10919 0.995999

5 2007 1.004005 26876 2070 10582 78985 116223 0.996011
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Table 21 IDF estimates and marginal abatement costs - Sample B

Firm Year
Value of 
IDF

PM MAC 
(€2005/t)

SO2 MAC 
(€2005/t)

NOx MAC 
(€2005/t)

CO MAC 
(€2005/t)

VOC MAC 
(€2005/t)

Technical 
efficiency

2 2002 1.000037 706 2151 4035 124 3810 0.999963

2 2003 1.00004 927 3470 123 4538 2432 0.99996

2 2004 1.000041 13240 3310 4743 2156 7398 0.999959

2 2005 1.000049 35193 9356 5580 8934 49947 0.999951

2 2006 1.000039 37263 10706 11945 12103 59053 0.999961

2 2007 1.000036 27329 20886 12226 32690 75810 0.999964

3 2002 1.00004 6599 1758 7459 15694 14869 0.99996

3 2003 1.000041 8466 831 9065 15958 12729 0.999959

3 2004 1.000039 5074 687 7128 13465 11959 0.999961

3 2005 1.00004 404 1511 9459 21453 21105 0.99996

3 2006 1.000039 180 1323 8797 23883 12809 0.999961

3 2007 1.000041 1001 80 5774 14646 175 0.999959

6 2002 1.00004 216055 2345 7796 48543 38998 0.99996

6 2003 1.000041 148548 642 3732 26593 40043 0.999959

6 2004 1.00004 137588 85 16577 34233 18846 0.99996

6 2005 1.00004 182983 2266 36903 122657 62021 0.99996

6 2006 1.000039 240764 2142 30797 107515 2476 0.999961

6 2007 1.000039 82506 4835 8785 33435 17929 0.999961

7 2002 1.000041 8296 440 2326 5292 4024 0.999959

7 2003 1.00004 7626 633 1519 5450 6151 0.99996

7 2004 1.000039 8932 572 2391 5516 4843 0.999961

7 2005 1.000109 10843 755 2985 7005 6347 0.999891

7 2006 1.000041 11859 1060 3293 8385 11145 0.999959

7 2007 1.000043 10400 741 2246 6932 5793 0.999957

8 2002 1.000042 6147 246 2627 6051 3254 0.999958

8 2003 1.00004 12633 523 467 4844 8549 0.99996

8 2004 1.00004 17511 371 4 2780 4959 0.99996

8 2005 1.000044 457 518 939 4624 2879 0.999956

8 2006 1.000081 7527 847 2664 8451 5660 0.999919

8 2007 1.000038 4398 641 2096 6550 4972 0.999962

9 2002 1.00004 36 1081 2805 2986 10346 0.99996

9 2003 1.00004 4880 1198 1553 4249 9463 0.99996

9 2004 1.000041 8670 797 2531 4008 1996 0.999959

9 2005 1.00004 343 702 2813 3233 5583 0.99996

9 2006 1.00004 10861 1295 1843 5570 63 0.99996
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Appendix C

The Matlab code consists of 3 m.files.32 One with the input output function, one with all 

constrains and restrictions, and the last one that runs the optimization and computes the 

shadow prices. We present here the code for the sample A. The code for sample B is on the 

same principle only longer due to higher number of observations.

function f = HC_IDF_oneF(par,x,y,b)

A0=par(1);
A=par(2:4);
B=par(5:6);
C=par(7:11);
AA=par(12:20);
AB=par(21:26);
AC=par(27:41);
BB=par(42:45);
BC=par(46:55);
CC=par(56:80);

f=A0+x(1,:)*A+y(1,:)*B+b(1,:)*C+1/2*kron(x(1,:),x(1,:))*AA+1/2*kron(y(1,:),y(1,:))*
BB+1/2*kron(b(1,:),b(1,:))*CC+kron(x(1,:),y(1,:))*AB+kron(x(1,:),b(1,:))*AC+kron(y(
1,:),b(1,:))*BC;

    
n=18;

for i=2:n
    f = f + A0+ 
x(i,:)*A+y(i,:)*B+b(i,:)*C+1/2*kron(x(i,:),x(i,:))*AA+1/2*kron(y(i,:),y(i,:))*BB+1/
2*kron(b(i,:),b(i,:))*CC+kron(x(i,:),y(i,:))*AB+kron(x(i,:),b(i,:))*AC+kron(y(i,:),
b(i,:))*BC;

end;

function [c,ceq]=HC_IDF_oneF_Const18(par,x,y,b)

A0=par(1);
A=par(2:4);
B=par(5:6);
C=par(7:11);
AA=par(12:20);
AB=par(21:26);
AC=par(27:41);
BB=par(42:45);
BC=par(46:55);
CC=par(56:80);

r1=sum(A)-1;

r21=sum(AA(1:3));
r22=sum(AA(4:6));

                                                       
32

The code is too complicated in some parts and can be simplified.
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r23=sum(AA(7:9));

r31=sum(AB(1:2:6));
r32=sum(AB(2:2:6));

r41=sum(AC(1:5:15));
r42=sum(AC(2:5:15));
r43=sum(AC(3:5:15));
r44=sum(AC(4:5:15));
r45=sum(AC(5:5:15));

r5=sum(TA);

p1=AA(2)-AA(4);
p2=AA(3)-AA(7);

p10=AA(6)-AA(8);

m1=BB(2)-BB(3);

g1=CC(2)-CC(6);
g2=CC(3)-CC(11);
g3=CC(4)-CC(16);
g4=CC(5)-CC(21);
g5=CC(8)-CC(12);
g6=CC(9)-CC(17);
g7=CC(10)-CC(22);
g8=CC(14)-CC(18);
g9=CC(15)-CC(23);
g10=CC(20)-CC(24);

c1=1-
(A0+x(1,:)*A+y(1,:)*B+b(1,:)*C+1/2*kron(x(1,:),x(1,:))*AA+1/2*kron(y(1,:),y(1,:))*B
B+1/2*kron(b(1,:),b(1,:))*CC+kron(x(1,:),y(1,:))*AB+kron(x(1,:),b(1,:))*AC+kron(y(1
,:),b(1,:))*BC);

c2=1-
(A0+x(2,:)*A+y(2,:)*B+b(2,:)*C+1/2*kron(x(2,:),x(2,:))*AA+1/2*kron(y(2,:),y(2,:))*B
B+1/2*kron(b(2,:),b(2,:))*CC+kron(x(2,:),y(2,:))*AB+kron(x(2,:),b(2,:))*AC+kron(y(2
,:),b(2,:))*BC);

c3=1-
(A0+x(3,:)*A+y(3,:)*B+b(3,:)*C+1/2*kron(x(3,:),x(3,:))*AA+1/2*kron(y(3,:),y(3,:))*B
B+1/2*kron(b(3,:),b(3,:))*CC+kron(x(3,:),y(3,:))*AB+kron(x(3,:),b(3,:))*AC+kron(y(3
,:),b(3,:))*BC);

c4=1-
(A0+x(4,:)*A+y(4,:)*B+b(4,:)*C+1/2*kron(x(4,:),x(4,:))*AA+1/2*kron(y(4,:),y(4,:))*B
B+1/2*kron(b(4,:),b(4,:))*CC+kron(x(4,:),y(4,:))*AB+kron(x(4,:),b(4,:))*AC+kron(y(4
,:),b(4,:))*BC);

c5=1-
(A0+x(5,:)*A+y(5,:)*B+b(5,:)*C+1/2*kron(x(5,:),x(5,:))*AA+1/2*kron(y(5,:),y(5,:))*B
B+1/2*kron(b(5,:),b(5,:))*CC+kron(x(5,:),y(5,:))*AB+kron(x(5,:),b(5,:))*AC+kron(y(5
,:),b(5,:))*BC);

c6=1-
(A0+x(6,:)*A+y(6,:)*B+b(6,:)*C+1/2*kron(x(6,:),x(6,:))*AA+1/2*kron(y(6,:),y(6,:))*B
B+1/2*kron(b(6,:),b(6,:))*CC+kron(x(6,:),y(6,:))*AB+kron(x(6,:),b(6,:))*AC+kron(y(6
,:),b(6,:))*BC);

c7=1-
(A0+x(7,:)*A+y(7,:)*B+b(7,:)*C+1/2*kron(x(7,:),x(7,:))*AA+1/2*kron(y(7,:),y(7,:))*B
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B+1/2*kron(b(7,:),b(7,:))*CC+kron(x(7,:),y(7,:))*AB+kron(x(7,:),b(7,:))*AC+kron(y(7
,:),b(7,:))*BC);

c8=1-
(A0+x(8,:)*A+y(8,:)*B+b(8,:)*C+1/2*kron(x(8,:),x(8,:))*AA+1/2*kron(y(8,:),y(8,:))*B
B+1/2*kron(b(8,:),b(8,:))*CC+kron(x(8,:),y(8,:))*AB+kron(x(8,:),b(8,:))*AC+kron(y(8
,:),b(8,:))*BC);

c9=1-
(A0+x(9,:)*A+y(9,:)*B+b(9,:)*C+1/2*kron(x(9,:),x(9,:))*AA+1/2*kron(y(9,:),y(9,:))*B
B+1/2*kron(b(9,:),b(9,:))*CC+kron(x(9,:),y(9,:))*AB+kron(x(9,:),b(9,:))*AC+kron(y(9
,:),b(9,:))*BC);

c10=1-
(A0+x(10,:)*A+y(10,:)*B+b(10,:)*C+1/2*kron(x(10,:),x(10,:))*AA+1/2*kron(y(10,:),y(1
0,:))*BB+1/2*kron(b(10,:),b(10,:))*CC+kron(x(10,:),y(10,:))*AB+kron(x(10,:),b(10,:)
)*AC+kron(y(10,:),b(10,:))*BC);

c11=1-
(A0+x(11,:)*A+y(11,:)*B+b(11,:)*C+1/2*kron(x(11,:),x(11,:))*AA+1/2*kron(y(11,:),y(1
1,:))*BB+1/2*kron(b(11,:),b(11,:))*CC+kron(x(11,:),y(11,:))*AB+kron(x(11,:),b(11,:)
)*AC+kron(y(11,:),b(11,:))*BC);

c12=1-
(A0+x(12,:)*A+y(12,:)*B+b(12,:)*C+1/2*kron(x(12,:),x(12,:))*AA+1/2*kron(y(12,:),y(1
2,:))*BB+1/2*kron(b(12,:),b(12,:))*CC+kron(x(12,:),y(12,:))*AB+kron(x(12,:),b(12,:)
)*AC+kron(y(12,:),b(12,:))*BC);

c13=1-
(A0+x(13,:)*A+y(13,:)*B+b(13,:)*C+1/2*kron(x(13,:),x(13,:))*AA+1/2*kron(y(13,:),y(1
3,:))*BB+1/2*kron(b(13,:),b(13,:))*CC+kron(x(13,:),y(13,:))*AB+kron(x(13,:),b(13,:)
)*AC+kron(y(13,:),b(13,:))*BC);

c14=1-
(A0+x(14,:)*A+y(14,:)*B+b(14,:)*C+1/2*kron(x(14,:),x(14,:))*AA+1/2*kron(y(14,:),y(1
4,:))*BB+1/2*kron(b(14,:),b(14,:))*CC+kron(x(14,:),y(14,:))*AB+kron(x(14,:),b(14,:)
)*AC+kron(y(14,:),b(14,:))*BC);

c15=1-
(A0+x(15,:)*A+y(15,:)*B+b(15,:)*C+1/2*kron(x(15,:),x(15,:))*AA+1/2*kron(y(15,:),y(1
5,:))*BB+1/2*kron(b(15,:),b(15,:))*CC+kron(x(15,:),y(15,:))*AB+kron(x(15,:),b(15,:)
)*AC+kron(y(15,:),b(15,:))*BC);

c16=1-
(A0+x(16,:)*A+y(16,:)*B+b(16,:)*C+1/2*kron(x(16,:),x(16,:))*AA+1/2*kron(y(16,:),y(1
6,:))*BB+1/2*kron(b(16,:),b(16,:))*CC+kron(x(16,:),y(16,:))*AB+kron(x(16,:),b(16,:)
)*AC+kron(y(16,:),b(16,:))*BC);

c17=1-
(A0+x(17,:)*A+y(17,:)*B+b(17,:)*C+1/2*kron(x(17,:),x(17,:))*AA+1/2*kron(y(17,:),y(1
7,:))*BB+1/2*kron(b(17,:),b(17,:))*CC+kron(x(17,:),y(17,:))*AB+kron(x(17,:),b(17,:)
)*AC+kron(y(17,:),b(17,:))*BC);

c18=1-
(A0+x(18,:)*A+y(18,:)*B+b(18,:)*C+1/2*kron(x(18,:),x(18,:))*AA+1/2*kron(y(18,:),y(1
8,:))*BB+1/2*kron(b(18,:),b(18,:))*CC+kron(x(18,:),y(18,:))*AB+kron(x(18,:),b(18,:)
)*AC+kron(y(18,:),b(18,:))*BC);

dy1_1=B(1)+1/2*(y(1,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(1,:)*BC(1:5));
dy1_2=B(1)+1/2*(y(2,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(2,:)*BC(1:5));
dy1_3=B(1)+1/2*(y(3,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(3,:)*BC(1:5));
dy1_4=B(1)+1/2*(y(4,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(4,:)*BC(1:5));
dy1_5=B(1)+1/2*(y(5,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(5,:)*BC(1:5));
dy1_6=B(1)+1/2*(y(6,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(6,:)*BC(1:5));
dy1_7=B(1)+1/2*(y(7,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(7,:)*BC(1:5));
dy1_8=B(1)+1/2*(y(8,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(8,:)*BC(1:5));
dy1_9=B(1)+1/2*(y(9,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(9,:)*BC(1:5));
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dy1_10=B(1)+1/2*(y(10,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(10,:)*BC(1:5));
dy1_11=B(1)+1/2*(y(11,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(11,:)*BC(1:5));
dy1_12=B(1)+1/2*(y(12,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(12,:)*BC(1:5));
dy1_13=B(1)+1/2*(y(13,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(13,:)*BC(1:5));
dy1_14=B(1)+1/2*(y(14,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(14,:)*BC(1:5));
dy1_15=B(1)+1/2*(y(15,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(15,:)*BC(1:5));
dy1_16=B(1)+1/2*(y(16,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(16,:)*BC(1:5));
dy1_17=B(1)+1/2*(y(17,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(17,:)*BC(1:5));
dy1_18=B(1)+1/2*(y(18,:)*BB(1:2))+(x(1,:)*AB(1:2:6))+(b(18,:)*BC(1:5));

dy2_1=B(2)+1/2*(y(1,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(1,:)*BC(6:10));
dy2_2=B(2)+1/2*(y(2,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(2,:)*BC(6:10));
dy2_3=B(2)+1/2*(y(3,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(3,:)*BC(6:10));
dy2_4=B(2)+1/2*(y(4,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(4,:)*BC(6:10));
dy2_5=B(2)+1/2*(y(5,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(5,:)*BC(6:10));
dy2_6=B(2)+1/2*(y(6,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(6,:)*BC(6:10));
dy2_7=B(2)+1/2*(y(7,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(7,:)*BC(6:10));
dy2_8=B(2)+1/2*(y(8,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(8,:)*BC(6:10));
dy2_9=B(2)+1/2*(y(9,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(9,:)*BC(6:10));
dy2_10=B(2)+1/2*(y(10,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(10,:)*BC(6:10));
dy2_11=B(2)+1/2*(y(11,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(11,:)*BC(6:10));
dy2_12=B(2)+1/2*(y(12,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(12,:)*BC(6:10));
dy2_13=B(2)+1/2*(y(13,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(13,:)*BC(6:10));
dy2_14=B(2)+1/2*(y(14,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(14,:)*BC(6:10));
dy2_15=B(2)+1/2*(y(15,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(15,:)*BC(6:10));
dy2_16=B(2)+1/2*(y(16,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(16,:)*BC(6:10));
dy2_17=B(2)+1/2*(y(17,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(17,:)*BC(6:10));
dy2_18=B(2)+1/2*(y(18,:)*BB(3:4))+(x(2,:)*AB(1:2: 6))+(b(18,:)*BC(6:10));

db1_1=-(C(1)+1/2*(b(1,:)*CC(1:5))+(x(1,:)*AC(1:5:15))+(y(1,:)*BC(1:5:10)));
db1_2=-(C(1)+1/2*(b(2,:)*CC(1:5))+(x(2,:)*AC(1:5:15))+(y(2,:)*BC(1:5:10)));
db1_3=-(C(1)+1/2*(b(3,:)*CC(1:5))+(x(3,:)*AC(1:5:15))+(y(3,:)*BC(1:5:10)));
db1_4=-(C(1)+1/2*(b(4,:)*CC(1:5))+(x(4,:)*AC(1:5:15))+(y(4,:)*BC(1:5:10)));
db1_5=-(C(1)+1/2*(b(5,:)*CC(1:5))+(x(5,:)*AC(1:5:15))+(y(5,:)*BC(1:5:10)));
db1_6=-(C(1)+1/2*(b(6,:)*CC(1:5))+(x(6,:)*AC(1:5:15))+(y(6,:)*BC(1:5:10)));
db1_7=-(C(1)+1/2*(b(7,:)*CC(1:5))+(x(7,:)*AC(1:5:15))+(y(7,:)*BC(1:5:10)));
db1_8=-(C(1)+1/2*(b(8,:)*CC(1:5))+(x(8,:)*AC(1:5:15))+(y(8,:)*BC(1:5:10)));
db1_9=-(C(1)+1/2*(b(9,:)*CC(1:5))+(x(9,:)*AC(1:5:15))+(y(9,:)*BC(1:5:10)));
db1_10=-(C(1)+1/2*(b(10,:)*CC(1:5))+(x(10,:)*AC(1:5:15))+(y(10,:)*BC(1:5:10)));
db1_11=-(C(1)+1/2*(b(11,:)*CC(1:5))+(x(11,:)*AC(1:5:15))+(y(11,:)*BC(1:5:10)));
db1_12=-(C(1)+1/2*(b(12,:)*CC(1:5))+(x(12,:)*AC(1:5:15))+(y(12,:)*BC(1:5:10)));
db1_13=-(C(1)+1/2*(b(13,:)*CC(1:5))+(x(13,:)*AC(1:5:15))+(y(13,:)*BC(1:5:10)));
db1_14=-(C(1)+1/2*(b(14,:)*CC(1:5))+(x(14,:)*AC(1:5:15))+(y(14,:)*BC(1:5:10)));
db1_15=-(C(1)+1/2*(b(15,:)*CC(1:5))+(x(15,:)*AC(1:5:15))+(y(15,:)*BC(1:5:10)));
db1_16=-(C(1)+1/2*(b(16,:)*CC(1:5))+(x(16,:)*AC(1:5:15))+(y(16,:)*BC(1:5:10)));
db1_17=-(C(1)+1/2*(b(17,:)*CC(1:5))+(x(17,:)*AC(1:5:15))+(y(17,:)*BC(1:5:10)));
db1_18=-(C(1)+1/2*(b(18,:)*CC(1:5))+(x(18,:)*AC(1:5:15))+(y(18,:)*BC(1:5:10)));

db2_1=-(C(2)+1/2*(b(1,:)*CC(6:10))+(x(1,:)*AC(2:5:15))+(y(1,:)*BC(2:5:10)));
db2_2=-(C(2)+1/2*(b(2,:)*CC(6:10))+(x(2,:)*AC(2:5:15))+(y(2,:)*BC(2:5:10)));
db2_3=-(C(2)+1/2*(b(3,:)*CC(6:10))+(x(3,:)*AC(2:5:15))+(y(3,:)*BC(2:5:10)));
db2_4=-(C(2)+1/2*(b(4,:)*CC(6:10))+(x(4,:)*AC(2:5:15))+(y(4,:)*BC(2:5:10)));
db2_5=-(C(2)+1/2*(b(5,:)*CC(6:10))+(x(5,:)*AC(2:5:15))+(y(5,:)*BC(2:5:10)));
db2_6=-(C(2)+1/2*(b(6,:)*CC(6:10))+(x(6,:)*AC(2:5:15))+(y(6,:)*BC(2:5:10)));
db2_7=-(C(2)+1/2*(b(7,:)*CC(6:10))+(x(7,:)*AC(2:5:15))+(y(7,:)*BC(2:5:10)));
db2_8=-(C(2)+1/2*(b(8,:)*CC(6:10))+(x(8,:)*AC(2:5:15))+(y(8,:)*BC(2:5:10)));
db2_9=-(C(2)+1/2*(b(9,:)*CC(6:10))+(x(9,:)*AC(2:5:15))+(y(9,:)*BC(2:5:10)));
db2_10=-(C(2)+1/2*(b(10,:)*CC(6:10))+(x(10,:)*AC(2:5:15))+(y(10,:)*BC(2:5:10)));
db2_11=-(C(2)+1/2*(b(11,:)*CC(6:10))+(x(11,:)*AC(2:5:15))+(y(11,:)*BC(2:5:10)));
db2_12=-(C(2)+1/2*(b(12,:)*CC(6:10))+(x(12,:)*AC(2:5:15))+(y(12,:)*BC(2:5:10)));
db2_13=-(C(2)+1/2*(b(13,:)*CC(6:10))+(x(13,:)*AC(2:5:15))+(y(13,:)*BC(2:5:10)));
db2_14=-(C(2)+1/2*(b(14,:)*CC(6:10))+(x(14,:)*AC(2:5:15))+(y(14,:)*BC(2:5:10)));
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db2_15=-(C(2)+1/2*(b(15,:)*CC(6:10))+(x(15,:)*AC(2:5:15))+(y(15,:)*BC(2:5:10)));
db2_16=-(C(2)+1/2*(b(16,:)*CC(6:10))+(x(16,:)*AC(2:5:15))+(y(16,:)*BC(2:5:10)));
db2_17=-(C(2)+1/2*(b(17,:)*CC(6:10))+(x(17,:)*AC(2:5:15))+(y(17,:)*BC(2:5:10)));
db2_18=-(C(2)+1/2*(b(18,:)*CC(6:10))+(x(18,:)*AC(2:5:15))+(y(18,:)*BC(2:5:10)));

db3_1=-(C(3)+1/2*(b(1,:)*CC(11:15))+(x(1,:)*AC(3:5:15))+(y(1,:)*BC(3:5:10)));
db3_2=-(C(3)+1/2*(b(2,:)*CC(11:15))+(x(2,:)*AC(3:5:15))+(y(2,:)*BC(3:5:10)));
db3_3=-(C(3)+1/2*(b(3,:)*CC(11:15))+(x(3,:)*AC(3:5:15))+(y(3,:)*BC(3:5:10)));
db3_4=-(C(3)+1/2*(b(4,:)*CC(11:15))+(x(4,:)*AC(3:5:15))+(y(4,:)*BC(3:5:10)));
db3_5=-(C(3)+1/2*(b(5,:)*CC(11:15))+(x(5,:)*AC(3:5:15))+(y(5,:)*BC(3:5:10)));
db3_6=-(C(3)+1/2*(b(6,:)*CC(11:15))+(x(6,:)*AC(3:5:15))+(y(6,:)*BC(3:5:10)));
db3_7=-(C(3)+1/2*(b(7,:)*CC(11:15))+(x(7,:)*AC(3:5:15))+(y(7,:)*BC(3:5:10)));
db3_8=-(C(3)+1/2*(b(8,:)*CC(11:15))+(x(8,:)*AC(3:5:15))+(y(8,:)*BC(3:5:10)));
db3_9=-(C(3)+1/2*(b(9,:)*CC(11:15))+(x(9,:)*AC(3:5:15))+(y(9,:)*BC(3:5:10)));
db3_10=-(C(3)+1/2*(b(10,:)*CC(11:15))+(x(10,:)*AC(3:5:15))+(y(10,:)*BC(3:5:10)));
db3_11=-(C(3)+1/2*(b(11,:)*CC(11:15))+(x(11,:)*AC(3:5:15))+(y(11,:)*BC(3:5:10)));
db3_12=-(C(3)+1/2*(b(12,:)*CC(11:15))+(x(12,:)*AC(3:5:15))+(y(12,:)*BC(3:5:10)));
db3_13=-(C(3)+1/2*(b(13,:)*CC(11:15))+(x(13,:)*AC(3:5:15))+(y(13,:)*BC(3:5:10)));
db3_14=-(C(3)+1/2*(b(14,:)*CC(11:15))+(x(14,:)*AC(3:5:15))+(y(14,:)*BC(3:5:10)));
db3_15=-(C(3)+1/2*(b(15,:)*CC(11:15))+(x(15,:)*AC(3:5:15))+(y(15,:)*BC(3:5:10)));
db3_16=-(C(3)+1/2*(b(16,:)*CC(11:15))+(x(16,:)*AC(3:5:15))+(y(16,:)*BC(3:5:10)));
db3_17=-(C(3)+1/2*(b(17,:)*CC(11:15))+(x(17,:)*AC(3:5:15))+(y(17,:)*BC(3:5:10)));
db3_18=-(C(3)+1/2*(b(18,:)*CC(11:15))+(x(18,:)*AC(3:5:15))+(y(18,:)*BC(3:5:10)));

db4_1=-(C(4)+1/2*(b(1,:)*CC(16:20))+(x(1,:)*AC(4:5:15))+(y(1,:)*BC(4:5:10)));
db4_2=-(C(4)+1/2*(b(2,:)*CC(16:20))+(x(2,:)*AC(4:5:15))+(y(2,:)*BC(4:5:10)));
db4_3=-(C(4)+1/2*(b(3,:)*CC(16:20))+(x(3,:)*AC(4:5:15))+(y(3,:)*BC(4:5:10)));
db4_4=-(C(4)+1/2*(b(4,:)*CC(16:20))+(x(4,:)*AC(4:5:15))+(y(4,:)*BC(4:5:10)));
db4_5=-(C(4)+1/2*(b(5,:)*CC(16:20))+(x(5,:)*AC(4:5:15))+(y(5,:)*BC(4:5:10)));
db4_6=-(C(4)+1/2*(b(6,:)*CC(16:20))+(x(6,:)*AC(4:5:15))+(y(6,:)*BC(4:5:10)));
db4_7=-(C(4)+1/2*(b(7,:)*CC(16:20))+(x(7,:)*AC(4:5:15))+(y(7,:)*BC(4:5:10)));
db4_8=-(C(4)+1/2*(b(8,:)*CC(16:20))+(x(8,:)*AC(4:5:15))+(y(8,:)*BC(4:5:10)));
db4_9=-(C(4)+1/2*(b(9,:)*CC(16:20))+(x(9,:)*AC(4:5:15))+(y(9,:)*BC(4:5:10)));
db4_10=-(C(4)+1/2*(b(10,:)*CC(16:20))+(x(10,:)*AC(4:5:15))+(y(10,:)*BC(4:5:10)));
db4_11=-(C(4)+1/2*(b(11,:)*CC(16:20))+(x(11,:)*AC(4:5:15))+(y(11,:)*BC(4:5:10)));
db4_12=-(C(4)+1/2*(b(12,:)*CC(16:20))+(x(12,:)*AC(4:5:15))+(y(12,:)*BC(4:5:10)));
db4_13=-(C(4)+1/2*(b(13,:)*CC(16:20))+(x(13,:)*AC(4:5:15))+(y(13,:)*BC(4:5:10)));
db4_14=-(C(4)+1/2*(b(14,:)*CC(16:20))+(x(14,:)*AC(4:5:15))+(y(14,:)*BC(4:5:10)));
db4_15=-(C(4)+1/2*(b(15,:)*CC(16:20))+(x(15,:)*AC(4:5:15))+(y(15,:)*BC(4:5:10)));
db4_16=-(C(4)+1/2*(b(16,:)*CC(16:20))+(x(16,:)*AC(4:5:15))+(y(16,:)*BC(4:5:10)));
db4_17=-(C(4)+1/2*(b(17,:)*CC(16:20))+(x(17,:)*AC(4:5:15))+(y(17,:)*BC(4:5:10)));
db4_18=-(C(4)+1/2*(b(18,:)*CC(16:20))+(x(18,:)*AC(4:5:15))+(y(18,:)*BC(4:5:10)));

db5_1=-(C(5)+1/2*(b(1,:)*CC(21:25))+(x(1,:)*AC(5:5:15))+(y(1,:)*BC(5:5:10)));
db5_2=-(C(5)+1/2*(b(2,:)*CC(21:25))+(x(2,:)*AC(5:5:15))+(y(2,:)*BC(5:5:10)));
db5_3=-(C(5)+1/2*(b(3,:)*CC(21:25))+(x(3,:)*AC(5:5:15))+(y(3,:)*BC(5:5:10)));
db5_4=-(C(5)+1/2*(b(4,:)*CC(21:25))+(x(4,:)*AC(5:5:15))+(y(4,:)*BC(5:5:10)));
db5_5=-(C(5)+1/2*(b(5,:)*CC(21:25))+(x(5,:)*AC(5:5:15))+(y(5,:)*BC(5:5:10)));
db5_6=-(C(5)+1/2*(b(6,:)*CC(21:25))+(x(6,:)*AC(5:5:15))+(y(6,:)*BC(5:5:10)));
db5_7=-(C(5)+1/2*(b(7,:)*CC(21:25))+(x(7,:)*AC(5:5:15))+(y(7,:)*BC(5:5:10)));
db5_8=-(C(5)+1/2*(b(8,:)*CC(21:25))+(x(8,:)*AC(5:5:15))+(y(8,:)*BC(5:5:10)));
db5_9=-(C(5)+1/2*(b(9,:)*CC(21:25))+(x(9,:)*AC(5:5:15))+(y(9,:)*BC(5:5:10)));
db5_10=-(C(5)+1/2*(b(10,:)*CC(21:25))+(x(10,:)*AC(5:5:15))+(y(10,:)*BC(5:5:10)));
db5_11=-(C(5)+1/2*(b(11,:)*CC(21:25))+(x(11,:)*AC(5:5:15))+(y(11,:)*BC(5:5:10)));
db5_12=-(C(5)+1/2*(b(12,:)*CC(21:25))+(x(12,:)*AC(5:5:15))+(y(12,:)*BC(5:5:10)));
db5_13=-(C(5)+1/2*(b(13,:)*CC(21:25))+(x(13,:)*AC(5:5:15))+(y(13,:)*BC(5:5:10)));
db5_14=-(C(5)+1/2*(b(14,:)*CC(21:25))+(x(14,:)*AC(5:5:15))+(y(14,:)*BC(5:5:10)));
db5_15=-(C(5)+1/2*(b(15,:)*CC(21:25))+(x(15,:)*AC(5:5:15))+(y(15,:)*BC(5:5:10)));
db5_16=-(C(5)+1/2*(b(16,:)*CC(21:25))+(x(16,:)*AC(5:5:15))+(y(16,:)*BC(5:5:10)));
db5_17=-(C(5)+1/2*(b(17,:)*CC(21:25))+(x(17,:)*AC(5:5:15))+(y(17,:)*BC(5:5:10)));
db5_18=-(C(5)+1/2*(b(18,:)*CC(21:25))+(x(18,:)*AC(5:5:15))+(y(18,:)*BC(5:5:10)));
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dx1_1=-(A(1)+1/2*(x(1,:)*AA(1:3:9))+(y(1,:)*AB(1:2))+(b(1,:)*AC(1:5)));
dx1_2=-(A(1)+1/2*(x(2,:)*AA(1:3:9))+(y(2,:)*AB(1:2))+(b(2,:)*AC(1:5)));
dx1_3=-(A(1)+1/2*(x(3,:)*AA(1:3:9))+(y(3,:)*AB(1:2))+(b(3,:)*AC(1:5)));
dx1_4=-(A(1)+1/2*(x(4,:)*AA(1:3:9))+(y(4,:)*AB(1:2))+(b(4,:)*AC(1:5)));
dx1_5=-(A(1)+1/2*(x(5,:)*AA(1:3:9))+(y(5,:)*AB(1:2))+(b(5,:)*AC(1:5)));
dx1_6=-(A(1)+1/2*(x(6,:)*AA(1:3:9))+(y(6,:)*AB(1:2))+(b(6,:)*AC(1:5)));
dx1_7=-(A(1)+1/2*(x(7,:)*AA(1:3:9))+(y(7,:)*AB(1:2))+(b(7,:)*AC(1:5)));
dx1_8=-(A(1)+1/2*(x(8,:)*AA(1:3:9))+(y(8,:)*AB(1:2))+(b(8,:)*AC(1:5)));
dx1_9=-(A(1)+1/2*(x(9,:)*AA(1:3:9))+(y(9,:)*AB(1:2))+(b(9,:)*AC(1:5)));
dx1_10=-(A(1)+1/2*(x(10,:)*AA(1:3:9))+(y(10,:)*AB(1:2))+(b(10,:)*AC(1:5)));
dx1_11=-(A(1)+1/2*(x(11,:)*AA(1:3:9))+(y(11,:)*AB(1:2))+(b(11,:)*AC(1:5)));
dx1_12=-(A(1)+1/2*(x(12,:)*AA(1:3:9))+(y(12,:)*AB(1:2))+(b(12,:)*AC(1:5)));
dx1_13=-(A(1)+1/2*(x(13,:)*AA(1:3:9))+(y(13,:)*AB(1:2))+(b(13,:)*AC(1:5)));
dx1_14=-(A(1)+1/2*(x(14,:)*AA(1:3:9))+(y(14,:)*AB(1:2))+(b(14,:)*AC(1:5)));
dx1_15=-(A(1)+1/2*(x(15,:)*AA(1:3:9))+(y(15,:)*AB(1:2))+(b(15,:)*AC(1:5)));
dx1_16=-(A(1)+1/2*(x(16,:)*AA(1:3:9))+(y(16,:)*AB(1:2))+(b(16,:)*AC(1:5)));
dx1_17=-(A(1)+1/2*(x(17,:)*AA(1:3:9))+(y(17,:)*AB(1:2))+(b(17,:)*AC(1:5)));
dx1_18=-(A(1)+1/2*(x(18,:)*AA(1:3:9))+(y(18,:)*AB(1:2))+(b(18,:)*AC(1:5)));

dx2_1=-(A(2)+1/2*(x(1,:)*AA(2:3:9))+(y(1,:)*AB(3:4))+(b(1,:)*AC(6:10)));
dx2_2=-(A(2)+1/2*(x(2,:)*AA(2:3:9))+(y(2,:)*AB(3:4))+(b(2,:)*AC(6:10)));
dx2_3=-(A(2)+1/2*(x(3,:)*AA(2:3:9))+(y(3,:)*AB(3:4))+(b(3,:)*AC(6:10)));
dx2_4=-(A(2)+1/2*(x(4,:)*AA(2:3:9))+(y(4,:)*AB(3:4))+(b(4,:)*AC(6:10)));
dx2_5=-(A(2)+1/2*(x(5,:)*AA(2:3:9))+(y(5,:)*AB(3:4))+(b(5,:)*AC(6:10)));
dx2_6=-(A(2)+1/2*(x(6,:)*AA(2:3:9))+(y(6,:)*AB(3:4))+(b(6,:)*AC(6:10)));
dx2_7=-(A(2)+1/2*(x(7,:)*AA(2:3:9))+(y(7,:)*AB(3:4))+(b(7,:)*AC(6:10)));
dx2_8=-(A(2)+1/2*(x(8,:)*AA(2:3:9))+(y(8,:)*AB(3:4))+(b(8,:)*AC(6:10)));
dx2_9=-(A(2)+1/2*(x(9,:)*AA(2:3:9))+(y(9,:)*AB(3:4))+(b(9,:)*AC(6:10)));
dx2_10=-(A(2)+1/2*(x(10,:)*AA(2:3:9))+(y(10,:)*AB(3:4))+(b(10,:)*AC(6:10)));
dx2_11=-(A(2)+1/2*(x(11,:)*AA(2:3:9))+(y(11,:)*AB(3:4))+(b(11,:)*AC(6:10)));
dx2_12=-(A(2)+1/2*(x(12,:)*AA(2:3:9))+(y(12,:)*AB(3:4))+(b(12,:)*AC(6:10)));
dx2_13=-(A(2)+1/2*(x(13,:)*AA(2:3:9))+(y(13,:)*AB(3:4))+(b(13,:)*AC(6:10)));
dx2_14=-(A(2)+1/2*(x(14,:)*AA(2:3:9))+(y(14,:)*AB(3:4))+(b(14,:)*AC(6:10)));
dx2_15=-(A(2)+1/2*(x(15,:)*AA(2:3:9))+(y(15,:)*AB(3:4))+(b(15,:)*AC(6:10)));
dx2_16=-(A(2)+1/2*(x(16,:)*AA(2:3:9))+(y(16,:)*AB(3:4))+(b(16,:)*AC(6:10)));
dx2_17=-(A(2)+1/2*(x(17,:)*AA(2:3:9))+(y(17,:)*AB(3:4))+(b(17,:)*AC(6:10)));
dx2_18=-(A(2)+1/2*(x(18,:)*AA(2:3:9))+(y(18,:)*AB(3:4))+(b(18,:)*AC(6:10)));

dx3_1=-(A(3)+1/2*(x(1,:)*AA(3:3:9))+(y(1,:)*AB(5:6))+(b(1,:)*AC(11:15)));
dx3_2=-(A(3)+1/2*(x(2,:)*AA(3:3:9))+(y(2,:)*AB(5:6))+(b(2,:)*AC(11:15)));
dx3_3=-(A(3)+1/2*(x(3,:)*AA(3:3:9))+(y(3,:)*AB(5:6))+(b(3,:)*AC(11:15)));
dx3_4=-(A(3)+1/2*(x(4,:)*AA(3:3:9))+(y(4,:)*AB(5:6))+(b(4,:)*AC(11:15)));
dx3_5=-(A(3)+1/2*(x(5,:)*AA(3:3:9))+(y(5,:)*AB(5:6))+(b(5,:)*AC(11:15)));
dx3_6=-(A(3)+1/2*(x(6,:)*AA(3:3:9))+(y(6,:)*AB(5:6))+(b(6,:)*AC(11:15)));
dx3_7=-(A(3)+1/2*(x(7,:)*AA(3:3:9))+(y(7,:)*AB(5:6))+(b(7,:)*AC(11:15)));
dx3_8=-(A(3)+1/2*(x(8,:)*AA(3:3:9))+(y(8,:)*AB(5:6))+(b(8,:)*AC(11:15)));
dx3_9=-(A(3)+1/2*(x(9,:)*AA(3:3:9))+(y(9,:)*AB(5:6))+(b(9,:)*AC(11:15)));
dx3_10=-(A(3)+1/2*(x(10,:)*AA(3:3:9))+(y(10,:)*AB(5:6))+(b(10,:)*AC(11:15)));
dx3_11=-(A(3)+1/2*(x(11,:)*AA(3:3:9))+(y(11,:)*AB(5:6))+(b(11,:)*AC(11:15)));
dx3_12=-(A(3)+1/2*(x(12,:)*AA(3:3:9))+(y(12,:)*AB(5:6))+(b(12,:)*AC(11:15)));
dx3_13=-(A(3)+1/2*(x(13,:)*AA(3:3:9))+(y(13,:)*AB(5:6))+(b(13,:)*AC(11:15)));
dx3_14=-(A(3)+1/2*(x(14,:)*AA(3:3:9))+(y(14,:)*AB(5:6))+(b(14,:)*AC(11:15)));
dx3_15=-(A(3)+1/2*(x(15,:)*AA(3:3:9))+(y(15,:)*AB(5:6))+(b(15,:)*AC(11:15)));
dx3_16=-(A(3)+1/2*(x(16,:)*AA(3:3:9))+(y(16,:)*AB(5:6))+(b(16,:)*AC(11:15)));
dx3_17=-(A(3)+1/2*(x(17,:)*AA(3:3:9))+(y(17,:)*AB(5:6))+(b(17,:)*AC(11:15)));
dx3_18=-(A(3)+1/2*(x(18,:)*AA(3:3:9))+(y(18,:)*AB(5:6))+(b(18,:)*AC(11:15)));

c=[c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18;
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   dy1_1 dy1_2 dy1_3 dy1_4 dy1_5 dy1_6 dy1_7 dy1_8 dy1_9 dy1_10 dy1_11 dy1_12 
dy1_13 dy1_14 dy1_15 dy1_16 dy1_17 dy1_18;
   dy2_1 dy2_2 dy2_3 dy2_4 dy2_5 dy2_6 dy2_7 dy2_8 dy2_9 dy2_10 dy2_11 dy2_12 
dy2_13 dy2_14 dy2_15 dy2_16 dy2_17 dy2_18;
   db1_1 db1_2 db1_3 db1_4 db1_5 db1_6 db1_7 db1_8 db1_9 db1_10 db1_11 db1_12 
db1_13 db1_14 db1_15 db1_16 db1_17 db1_18;
   db2_1 db2_2 db2_3 db2_4 db2_5 db2_6 db2_7 db2_8 db2_9 db2_10 db2_11 db2_12 
db2_13 db2_14 db2_15 db2_16 db2_17 db2_18;
   db3_1 db3_2 db3_3 db3_4 db3_5 db3_6 db3_7 db3_8 db3_9 db3_10 db3_11 db3_12 
db3_13 db3_14 db3_15 db3_16 db3_17 db3_18;
   db4_1 db4_2 db4_3 db4_4 db4_5 db4_6 db4_7 db4_8 db4_9 db4_10 db4_11 db4_12 
db4_13 db4_14 db4_15 db4_16 db4_17 db4_18;
   db5_1 db5_2 db5_3 db5_4 db5_5 db5_6 db5_7 db5_8 db5_9 db5_10 db5_11 db5_12 
db5_13 db5_14 db5_15 db5_16 db5_17 db5_18;
   dx1_1 dx1_2 dx1_3 dx1_4 dx1_5 dx1_6 dx1_7 dx1_8 dx1_9 dx1_10 dx1_11 dx1_12 
dx1_13 dx1_14 dx1_15 dx1_16 dx1_17 dx1_18;
   dx2_1 dx2_2 dx2_3 dx2_4 dx2_5 dx2_6 dx2_7 dx2_8 dx2_9 dx2_10 dx2_11 dx2_12 
dx2_13 dx2_14 dx2_15 dx2_16 dx2_17 dx2_18;
   dx3_1 dx3_2 dx3_3 dx3_4 dx3_5 dx3_6 dx3_7 dx3_8 dx3_9 dx3_10 dx3_11 dx3_12 
dx3_13 dx3_14 dx3_15 dx3_16 dx3_17 dx3_18];

ceq=[r1 r21 r22 r23 r31 r32 r41 r42 r43 r44 r45 r5 p1 p2 p10 m1 g1 g2 g3 g4 g5 g6 
g7 g8 g9 g10];

Input= [Labor Capital Fuels];
Good=[Electricity Heat];
Bad=[PM so2 nox co voc];

x=Input;
y=Good;
b=Bad;

par=ones(80,1);
par0=zeros(80,1);

option=optimset('Algorithm','interior-point','TolX',1e-100,'MaxFunEvals',30000);

[par,fval]=fmincon(@(par)HC_IDF_oneF(par,x,y,b,t),par0,[],[],[],[],[],[],@(par)BC_b
ez11_oneF_Const24(par,x,y,b,t),option);

A0=par(1);
A=par(2:4);
B=par(5:6);
C=par(7:11);
AA=par(12:20);
AB=par(21:26);
AC=par(27:41);
BB=par(42:45);
BC=par(46:55);
CC=par(56:80);

    n=18;
    df=ones(n,1);
for i=1:n
    df(i) = A0+ 
x(i,:)*A+y(i,:)*B+b(i,:)*C+1/2*kron(x(i,:),x(i,:))*AA+1/2*kron(y(i,:),y(i,:))*BB+1/
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2*kron(b(i,:),b(i,:))*CC+kron(x(i,:),y(i,:))*AB+kron(x(i,:),b(i,:))*AC+kron(y(i,:),
b(i,:))*BC;
end

    dy1=ones(n,1);
for i=1:n
    dy1(i)= B(1)+1/2*sum(y(i,:)*BB(1:2))+sum(x(i,:)*AB(1:2:6))+sum(b(i,:)*BC(1:5));
end

    db1=ones(n,1);
for i=1:n
    
db1(i)=(C(1)+1/2*sum(b(i,:)*CC(1:5))+sum(x(i,:)*AC(1:5:15))+sum(y(i,:)*BC(1:5:10)))
;
end
    db2=ones(n,1);
for i=1:n
    
db2(i)=(C(2)+1/2*sum(b(i,:)*CC(6:10))+sum(x(i,:)*AC(2:5:15))+sum(y(i,:)*BC(2:5:10))
);
end
    db3=ones(n,1);
for i=1:n
    
db3(i)=(C(3)+1/2*sum(b(i,:)*CC(11:15))+sum(x(i,:)*AC(3:5:15))+sum(y(i,:)*BC(3:5:10)
));
end
    db4=ones(n,1);
for i=1:n
    
db4(i)=(C(4)+1/2*sum(b(i,:)*CC(16:20))+sum(x(i,:)*AC(4:5:15))+sum(y(i,:)*BC(4:5:10)
));
end
    db5=ones(n,1);
for i=1:n
    
db5(i)=(C(5)+1/2*sum(b(i,:)*CC(21:25))+sum(x(i,:)*AC(5:5:15))+sum(y(i,:)*BC(5:5:10)
));
end

P_PM=ones(n,1);
for i=1:n
    P_PM(i)=P_el(i)*db1(i)/dy1(i);
end
P_SO2=ones(n,1);
for i=1:n
    P_SO2(i)=P_el(i)*db2(i)/dy1(i);
end
    P_NOx=ones(n,1);
for i=1:n
        P_NOx(i)=P_el(i)*db3(i)/dy1(i);
end
    P_CO=ones(n,1);
for i=1:n
    P_CO(i)=P_el(i)*db4(i)/dy1(i);
end
    P_VOC=ones(n,1);
for i=1:n
    P_VOC(i)=P_el(i)*db5(i)/dy1(i);
end

MAC=[P_PM P_SO2 P_NOx P_CO P_VOC];

    
    
R= [df MAC];
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