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Introduction

This thesis explores and analyses methods of genetic programming based on
formal grammars. Genetic programming (GP) is a metaheuristic for deriving
problem solutions in the form of programs based on evolutionary principles,
and thus belonging to the family of evolutionary algorithms. Traditionally, ge-
netic programming was tied to the Lisp programming language, taking advant-
age of its simplicity and straightforward correspondence between a program
and its parse tree. Several other strains of genetic programming were devised
over time: linear GP systems departed from the original premise of the tree-
based GP that programs are trees, and variants of tree-based GP usually either
extended the original genetic programming with new features (such as auto-
matically defined functions, which effectively add co-evolution of subroutines)
or placed restrictions on permitted tree forms (such as strongly-typed genetic
programming).

Various grammar-based GP methods, which have also emerged, either can
be put in the same category with tree-based GP or linear GP, or often more
appropriately, can be thought of as being in between them. For a computer
scientist, a formal grammar is the natural link between program as a tree and
program as a linear string. This is always the primary role of grammars in
genetic programming: they specify the language of candidate solutions. The
grammar-based GP methods, however, can be employed in several ways:

(1) Constraining tree-based GP: The grammar is used to restrict the search
space, and consequently also to redefine search operators under which the
restricted search space is algebraically closed.

(2) Introduction of bias into tree-based GP: The grammar is used as a vehicle
for bias toward certain solutions. The bias may also be adjusted over the course
of the algorithm’s execution.

(3) Replacement of the traditional tree-based GP mechanisms: The gram-
mar may serve both of the above purposes, but more importantly it is an integral
part of the algorithm that provides mapping between two representations of
candidate solutions.

From the short descriptions we can already glimpse that different grammar-
based GP methods have different aims. In case (1) the grammar is used to
remedy a shortcoming of GP: the so-called closure problem, but most grammar-
based methods also raise problems and questions of their own concerning the
encoding of individuals, and the design of operators. In spite of the different
motivations behind the methods, there are also significant areas of overlap
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between them. The goal of this thesis will therefore be to

• describe the problems arising from integration of grammars and genetic
programming,

• compare the approaches of several existing methods,

• compare appropriateness and performance of the methods on benchmark
problems.

The text is organised in the following chapters:

• Chapter 1 introduces the techniques of traditional tree-based GP, the
necessary concepts from formal language theory, and several grammar-
based GP methods. Common features and issues are pointed out.

• Chapter 2 presents applications that we will use for comparison and
benchmarking.

• Chapter 3 describes several experiments with grammar-based methods
in the presented applications, and analyses the results.

• Chapter 4 provides information about the implementation used for the
experiments, which is available on the accompanying medium and on-
line1.

• The closing chapter concludes the thesis and suggests possibilities for
further research.

1http://nohejl.name/age/
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Chapter 1

Grammar-Based Genetic
Programming Methods

In this chapter we will introduce several methods for genetic programming
based on formal grammars, assuming basic knowledge about evolutionary
algorithms, particularly genetic programming and genetic algorithms (GA), and
formal grammars. If you are not familiar with evolutionary algorithms, the
textbooks by Goldberg (1989) (on genetic algorithms) or Poli et al. (2008) (on
genetic programming in a broad sense) provide a good overview. Alternatively,
you can find a short summary of the commonest techniques in my bachelor
thesis (Nohejl, 2009).

We will begin with an informal review of the basic concepts and methods
that preceded grammar-based genetic programming:

• in Section 1.1, we will describe the grammars and notations for them
commonly used in grammar-based methods,

• in Section 1.2, we will review the plain tree-based genetic programming
and one of its developments highlighting the points that will later interest
us,

• in Section 1.3, we will outline how grammars were used to encode bias
in inductive logic programming.

Then, we will describe the following grammar-based GP methods:

• in Section 1.4, context-free grammar genetic programming,

• in Section 1.5, LOGENPRO, a genetic programming system based on logic
grammars,

• in Section 1.6, grammatical evolution.

To complete our tour we will discuss the common features and shortcomings of
the methods in Section 1.7 and examine the implications for their performance
in applications in Section 1.8.
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1.1 Formal grammars and programming

Context-free grammars (CFGs) are used to express syntax of most currently used
programming languages because they provide a reasonable trade-off between
expressiveness (relative size of the class of expressible languages) and efficiency,
which is especially important for syntactic analysis (parsing) of programs.

This also makes them a natural choice for augmenting genetic programming
with grammars. Most of the methods that we are going to discuss are based on
CFGs, while the remaining use grammars that extend CFG in some way. We will
therefore begin with a precise definition and the corresponding terminology
and notation:

Definition. A context-free grammar, or CFG, is formed by four components
(adapted from Hopcroft et al., 2000, ch. 5):

1. There is a finite set of symbols that form the strings of the language being
defined. We call this alphabet the terminals, or terminal symbols.

2. There is a finite set of nonterminals, or nonterminal symbols.1 Each nonter-
minal represents a language; i.e., a set of strings.

3. One of the nonterminals represents the language being defined; it is called
the start symbol. Other nonterminals represent auxiliary classes of strings
that are used to help define the language of the start symbol.

4. There is a finite set of productions or rules that represents the recursive
definition of a language. Each production consists of:

(a) A nonterminal that is being (partially) defined by the production.
This nonterminal is often called the head of the production.

(b) The production symbol→.

(c) A string of zero or more terminals and nonterminals. This string,
called the body of the production, represents one way to form strings
in the language of the nonterminal of the head. In so doing, we leave
terminals unchanged and substitute for each nonterminal of the body
any string that is known to be in the language of that nonterminal.

When applying the rule, we say that it is used to rewrite its head to its
body, or that using the rule a string containing the body derives from the string
containing the head. The terminology that we have introduced can be used
for other kinds of grammars as well. It is the restriction that production heads
consist of a single nonterminal that gives context-free grammars their name by
ruling out context dependence.

Formally, a CFG is usually represented as the ordered quadruple G =

(N,T,P,S), where N is the set of nonterminals, T the set of terminals, P the
set of productions, and S the start symbol.
1 Hopcroft et al. (2000) prefer the name variables, which is reserved for its more common

use in this text.
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Notation. We will use a number of conventions when working with CFGs and
grammars in general:

1. Letters, digits and symbols in upright or non-proportional type represent
terminals. Examples: x, 4, ×, %.

2. Identifiers consisting of lower-case letters in italic type represent nonter-
minals. Examples: s, var, expr.

3. Uppercase letters in italic type are used as meta-variables (symbols that
stand for an unspecified nonterminal, or less often terminal). Examples:
A, B, X.

4. Lower-case Greek letters stand for strings consisting of terminals and
nonterminals, λ denotes an empty string, and period is used to make
concatenation explicit. Examples: α, β, ξ = ξ.λ.

Note particularly the representation of nonterminals, which is contrary to the
usual convention of the formal language theory, but allows us to use more
expressive identifiers.

We will also use the Backus-Naur form (BNF) as a notation for context-free
grammars. Examples of a CFG describing simple arithmetic expressions and
a corresponding BNF notation are provided in Listing 1.1 and Listing 1.2. See
Naur (1963) for a formal definition.

Definition. Let G = (N,T,P,S) be a context-free grammar. The derivation trees,
or parse trees, for G are rooted, ordered trees that satisfy the following conditions
(adapted from Hopcroft et al., 2000, ch. 5):

1. Each internal node is labelled by a nonterminal in N.

2. Each leaf is labelled by either a nonterminal, a terminal, or λ. However,
if a leaf is labelled λ, then it must be the only child of its parent.

3. If an internal node is labelled A, and its children are labelled X1,X2, . . . ,Xk

respectively, from the left, then A→ X1X2 · · ·Xk is a production in P.

The yield of a derivation tree is the concatenation of its leaves in the order
they appear in the tree. The depth of a node in a tree is the length of the path
from root to that node counted as the number of edges. The height of a tree
is the largest depth of a node in the tree. Thus root node has depth 0, and
the minimum height of a tree whose yield consists of terminals and λ is 1.
These definitions are in line with the standard textbook terminology (Hopcroft
et al., 2000, ch. 5; Cormen et al., 2001, sec. B.5.2), and can be easily extended
to derivation trees for other types of grammars, and in case of depth and
height to any rooted trees. (See Figure 1.1 for an example.) There is no formal
difference between a derivation tree and a parse tree: the former emphasises
the generative aspect, the latter emphasises the aspect of syntactic analysis.
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expr → ( expr op expr ) expr → prim
op →+ op →×

prim→ x prim→ 1.0

Listing 1.1: Production rules for a CFG whose set of nonterminals is {expr, op, prim}, its
set of terminals is {(, ),+,×, x, 1.0}, and its start nonterminal is expr.

<expr> ::= ( <expr> <op> <expr> ) | <prim>
<op> ::= + | *
<prim> ::= x | 1.0

Listing 1.2: A BNF version of the previous example. Note that | denotes alternatives,
and that the sets of terminals and nonterminals are implied, as is the start
nonterminal following the convention of putting its productions first.

Let’s state informally several basic facts about context-free grammars:

Fact 1. The same language can be described by multiple context-free grammars. Con-
sider the rules s → p, s → q, s → 1, p → s + s, q → s × s, the rules s → s + s,
s→ s × s, s→ 1, and the rules s→ s + s, s→ s × s, s→ s + s × s, s→ 1.

Fact 2. A CFG may be ambiguous. Consider the rules s → s + s, s → s× s, and
s → 1, and a string 1 + 1 × 1. It is impossible to tell if it was derived by first
using the first rule or the second rule. Thus, for an ambiguous CFG, different
derivation trees can yield the same string.

Fact 3. A CFG cannot express all what is usually considered part of a programming
language syntax. Notably, the use of declared variables is context-dependent.
Consider a language with a “let var = expr in expr” construct: by syntactic
analysis (or generation) according to any given context-free grammar, it is
impossible to ensure that each var nonterminal occurring in the derivation of
the second expr nonterminal is rewritten to an identifier declared in an enclosing
let construct.

Fact 4. For a given CFG the set of strings yielded by parse trees such that (1) they are
rooted in the start symbol, and (2) they yield a terminal string, is the language defined
by the CFG. A corresponding derivation of a terminal string from the language
can be constructed from any given derivation tree and vice versa.

Definite clause grammars (DCGs) are a formalism tied to the Prolog pro-
gramming language and related to its early application to natural language
processing. Rather than being another type of a formal grammar, they are a spe-
cific notation for grammars with semantics derived from logic programming.
In the context of logic programming languages such as Prolog or Mercury, they
are often used to create complex parsers.

DCGs can easily capture long distance dependencies, and can be used as a
natural notation for context-free grammars, as well as for the more expressive
attribute grammars (as shown by Sterling and Shapiro, 1994, ch. 19), which are
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expr --> ['('],expr,op,expr,[')']. expr --> prim.
op --> ['+']. op --> ['*'].
prim --> ['x']. expr --> ['1.0'].

Listing 1.3: A DCG version of the previous example. Note that commas denote con-
catenation and square brackets enclose terminals, which can be strings, as
in the example, or any terms.

s --> rep(N,a), rep(N,b), rep(N,c).
rep(end,_) --> [].
rep(s(N),X) --> [X], rep(X,N).

Listing 1.4: A DCG grammar for anbncn, a language that cannot be described by a
context-free grammar. Note the Prolog variables X and N, the number of
repetitions expressed using the term structure s(s(· · · s(end)· · · )).

expr(V) --> ['let'],X,['='],expr(V),['in'],expr([X|V]),{var(X)}.
expr(V) --> X, {member(X,V)}.

Listing 1.5: A fragment of a DCG grammar for checking variable declaration in a “let
var = expr in expr” construct. Note the Prolog variables V, X and the
external predicates var/1, member/2 in curly braces.

commonly employed for syntactic analysis in compilers rather than plain CFGs.
The looser term logic grammars may refer to DCGs or a derived formalism of
equal or restricted expressive power (see Section 1.5, Section 1.3).

In the simplest case a DCG expresses a context-free grammar (Listing 1.3).
As in CFGs, a head of a production consists of a single item, and its body is
a string of items. The items, however, may be arbitrary terms with Prolog
variables (Listing 1.4), and further extending the computational power, a list
of arbitrary Prolog goals may be added to each rule (Listing 1.5). As shown in
Listing 1.4 and Listing 1.5, a DCG can describe context-dependency such as a
restriction to use only declared variables in a programming language syntax.

A precise definition and more complex examples can be found in The Art of
Prolog by Sterling and Shapiro (1994, ch. 19, 24), and Sperberg-McQueen (2004)
provides a good practical overview online. The semantics should intuitively
be clear to readers familiar with logic programming: the notation is translated
into a Prolog program for a top-down left-to-right parser resulting in a clause
for each production with any goals in square brackets being added to the body
of the clause. When the parser is executed, the terms and variables used in the
grammar are subject to unification. Finally, let’s state an obvious fact:

Fact 5. The DCG formalism has enough power to express unrestricted grammars.
Prolog is Turing-complete (Sterling and Shapiro, 1994, sec. 17.2), and any Prolog
goals can be added to the grammar rules.
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1.2 Genetic programming

In genetic programming, as pioneered by John Koza and described in his book
Genetic Programming (1992), candidate solutions are programs represented by
trees. In Koza’s programming language of choice, such representation does not
involve any extra costs: when evolving Lisp programs in a Lisp-based system,
the program, the corresponding tree, and the data that represents it coincide
(see Figure 1.1 for comparison between a GP tree and a derivation tree). In GP
terminology, inner nodes of a tree are drawn from a set of functions, while its
leaves are drawn from a set of terminals2. Except for quantitative parameters
and a fitness function, the two sets are the only input of a genetic programming
algorithm, and thus they determine its search space.

*

exptm

c 2

E

(* E E)

m

c

(expt E E)

2

GP functions: *, expt (binary)
GP terminals: 2, c, m

CFG productions:
E → (* E E) E → (expt E E)
E → 2 E → c E → m

GP tree: Derivation tree:

depth 0

depth 1

depth 2

depth 0

depth 1

depth 2

depth 3

height: 2

height: 3

Figure 1.1: An individual tree in GP and the corresponding derivation tree (parse tree)
for a CFG, both representing the Lisp expression (* m (expt c 2)). In
the context of tree-based GP, the formal distinction is often neglected and
individual trees are called parse trees (Koza, 1992). The CFG with a single
nonterminal expresses the closure property of GP functions and terminals.

For the search to be effective, the sets are required to possess the closure
property, quoting Koza (1992, sec. 6.1.1): “each of the functions in the function
set [must] be able to accept, as its arguments, any value and data type that may
possibly be returned by any function in the function set and any value and
data type that may possibly be assumed by any terminal in the terminal set.”
Without this property, invalid programs would often arise from initialisation
(by randomly generating trees), and then repeatedly from crossover (by swap-
ping arbitrary subtrees) and mutation (by replacing an arbitrary subtree with
a randomly generated tree).

2 Note the difference in terminology between the terminology of GP and that of formal
grammars. When necessary to prevent ambiguity, I will refer to GP terminals and GP functions.
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The other required property stated by Koza is sufficiency: if the functions and
terminals are not sufficient to represent a solution, no solution can be found.
This is a general problem of all machine learning algorithms: analogously,
inputs and outputs of a neural network need to be assigned before training the
network. A more subtle point, however, is worth noting: not all sufficient sets
of terminals and nonterminals result in equally efficient searches.

Satisfying the closure property was not intended only as a workaround
for the issue of syntactic invalidity but also for runtime errors (for instance
division by zero). It proved to be an effective solution in some cases, but it
is not feasible for problems that demand extensive use of several mutually
incompatible types of values (such as scalars, vectors and matrices of different
dimensions). The obvious way to solve this is to restrict the genetic operators
ad hoc, as shown by Koza (1992, ch. 19).

Koza (1992) stressed that genetic programming is, like GA (Goldberg, 1989),
a weak method: the search algorithm is problem-independent. He also emphas-
ised the positive consequences, universality and ability to “rapidly [search] an
unknown search space”, over the nontrivial issues of adapting such a method
to a specific problem, which we anticipated in the discussion of closure and
sufficiency. These issues motivated the development of the more advanced
genetic programming techniques that we are going to discuss.

One such early technique, a more general way of restricting the search
space than Koza’s ad hoc modification of operators, was devised by David
Montana (1994). In his strongly-typed genetic programming (STGP), all functions
and terminals have types, which are used to automatically constrain how trees
can be composed and modified. As noted by Montana, although this is a
cleaner method, it is in the end equivalent with Koza’s solution.

What Montana thought of as a “big new contribution” was the introduction
of generics, which allows you to specify for instance a general function for
matrix multiplication, which takes an m × n matrix and an n × p matrix and
returns an m × p matrix, where m, n, and p are arbitrary integers. The useful-
ness of generics beyond specific problems with multi-dimensional structures
hinges on the assumption that “the key to creating more complex programs is
the ability to create intermediate building blocks capable of reuse in multiple
contexts,” and that generics induce an appropriate level of generality. Whether
STGP with generics really results in more reusable building blocks within a
single complex problem remains to be confirmed3 but the idea of restricting
the search space of the GP algorithm declaratively by formal rules has since
become widespread.

Another important technique that extends in tree-based GP are automat-

3 Arguably, one of the more complex problems to which genetic programming has been
applied was evolving a strategy for a virtual soccer team in the RoboCup competition. The
algorithm ran for months on a 40-node DEC Alpha cluster to evolve a “team” that won its
first two games against hand-coded opponents and received the RoboCup Scientific Challenge
Award (Luke et al., 1997; Luke, 1998). While the authors did use STGP, they employed its basic
form without generics.
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root

ADF1 ADFn main
program

…

value-returning branchfunction-defining branches

ARG1, …, ARGmi for ADFi

 problem-dependent, and 
ADF1, …, ADFn

GP functions:  problem-dependent

GP terminals:  problem-dependent

Figure 1.2: ADFs in tree-based GP: the partially constrained structure of individuals’
trees for n ADFs, where the ith ADF has mi parameters.

ically defined functions (ADFs). ADFs, as originally adopted by Koza (1992,
ch. 20), provide a simple mechanism for co-evolution of subroutines. Since
then a number of more sophisticated variants have been proposed, but we will
describe the original version. The idea is inspired by the practise of human
programmers: in the same way as man-made programs are usually composed
of the main function and additional reusable functions, the individual trees in
GP may be composed of a value-returning branch and several function-defining
branches. The number and order of these branches is fixed, as is the number of
formal parameters of the ADF defined by each function-defining branch. Based
on these numerical parameters, new GP functions ADF1, . . . , ADFn, which refer
to the ordered function-defining branches, and GP terminals ARG1, . . . , ARGm,
which refer to their formal parameters, are added to the problem-dependent
sets of GP functions and GP terminals. The new terminals may be used only
in function-defining branches, and the new functions may be used only in the
value-returning branch.

While the inspiration by procedural programming is obvious, ADFs are
not meant to make the resulting programs more human-readable. Instead
they are a way to adapt genetic programming to problems in which symmetry
or repetition are expected, thus a way to embed a special kind of problem-
dependent knowledge in the general GP algorithm. In order to use ADFs, the
standard initialisation procedure and genetic operators need to be modified to
preserve these constraints common to all individuals (Figure 1.2).

Thus ADFs place further constraints on the search space, while the tradi-
tional genetic programming does not provide a general mechanism for satisfy-
ing such additional constraints.

10



1.3 Grammatically biased ILP

In parallel with the beginnings Koza’s genetic programming and its first vari-
ants such as STGP, grammars already started to be used in inductive logic
programming (ILP), another branch of machine learning research4 that emerged
at the time. As we will later see, this is where the grammar-based GP methods
drew inspiration.

ILP constructs a hypothesis in the form of a logic program, more precisely
a Prolog program, from a set of positive examples, from a set of negative ex-
amples, and from background knowledge, also a Prolog program. The article
by Muggleton (1994) provides a concise description of the basic techniques of
ILP and the theory behind it. It also acknowledges the importance of problem-
dependent knowledge to restrict the search space: “in order to ensure efficiency,
it is usually found necessary to employ extra-logical constraints within ILP
systems”. Two categories of such constraints are discussed: “statistical con-
firmation” via a confirmation function, which “fits a graded preference surface
to the hypothesis space”, and language bias, which “reduce[s] the size of the
hypothesis space”.

From the point of view of evolutionary algorithms, the confirmation func-
tion is simply a type of fitness function. We will focus our attention the other
kind of constraint, language bias: particularly interesting is a “generalised”
approach that “provides a general purpose ‘declarative bias’” (as described by
Muggleton, 1994). (In this context, “bias” is used to encompass both restric-
tion and preference.) This approach devised by Cohen (1992, 1994) consists of
translating the background knowledge into a grammar in a way that guides
the formation of a hypothesis. Cohen noted that various existing ILP methods,
each using a different algorithm, were well-suited for different problems, and
felt that the search bias embedded in the algorithms should instead be “com-
piled into” the background knowledge. To achieve this he used “antecedent
description grammars”, which are a special case of definite clause grammars
that retains the use of arbitrary terms and unification among these terms (as
shown in the Listing 1.4) but does not allow adding external goals to the pro-
ductions.5 Such grammars describe antecedents (bodies) of Prolog clauses of a
hypothesis.

To search with a weak bias, the grammar could allow various combinations
of problem-specific predicates to occur in a clause body, while a strong bias
could prescribe a mostly fixed body and restrict the variation only to its part.
Unification is used both to ensure that variables from the head of a clause
4 Koza (1992) originally considered GP a machine learning parading, similarly, Muggleton

(1994), who conceived the original ILP, considered it a machine learning framework. Genetic
programming can, however, be applied to search and optimisation problems likely to be
considered out of the traditional scope of machine learning.
5 A notation A → α where P, where P is a Prolog goal, superficially similar to the curly-

bracketed goals in DCGs, is introduced in the 1994 article. It is, however, clarified that the goal
P is evaluated with regards to A and α “by a macro-expansion process when the grammar is
read in”.
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are used in its body and to impose further constraints: for instance that two
predicates should share a variable, or that variables in some predicate should
be of the same type. In addition to the “hard constraint” defined by a grammar,
Cohen (1992) uses what he calls “preference bias”: some production rules are
marked “preferred” and some “deferred”. Only if the system does not succeed
using the preferred productions, it resorts to the deferred ones.

In his articles, Cohen (1992, 1994) shows how to emulate different strategies,
including that of a well-known ILP system FOIL, and how to improve on FOIL’s
performance by adding various kinds of background knowledge using only
antecedent description grammars: “The contribution of this paper is to describe
a single technique which can make use of all of these types of background
knowledge—as well as other types of information about the target concept—in
a uniform way.” As we will show in the next section, the concept of declarative
bias and some of these mechanisms can be transposed to genetic programming.
In Section 1.5 we will describe a more recent system integrating ILP and GP,
which shares even more details with Cohen’s methods.

1.4 CFG-GP, language bias, and search bias

The first notable use of formal grammars to control the search algorithm of
genetic programming probably came from Peter Whigham as both another, in
a way more general, solution to the typing problem recognised by Montana,
and a means of introducing more bias into genetic programming (Whigham,
1995, 1996). In the 1995 article Whigham noted that a context-free grammar can
be used in similar ways as types to restrict the structure of candidate solutions,
in his terminology, to introduce language bias. The proposed method, called
context-free grammar genetic programming (CFG-GP), is based on a straightfor-
ward redefinition of the elements of tree-based GP to respect a given context-
free grammar. The individuals still have the form of trees, but instead of
representing Lisp expressions, the trees are derived according to an arbitrary
CFG, and genetic operators are altered to preserve this representation.

We have already mentioned a coarser form of language bias, which is created
by the sets of terminals and functions in original GP, but a CFG allows to embed
more problem-dependent knowledge and also to easily use the programming
language most appropriate for a given problem.

Whigham (1995) also proposes the following mechanism for learning bias:

• Let each production rule in the grammar have an integer weight (called
“fitness” by Whigham, although it’s a different concept from individual
fitness) and let the weights initially be equal to 1.

• In each generation: Find the fittest individual (choosing one of the least
high among equally fit); choose one of the deepest nonterminals B in its
derivation tree; let α be the string of terminals into which it is rewritten;
if B is a singleton, then let A be the parent of the highest node in the chain
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of singletons that ends in B, else let A = B. Create a new production rule
A → α; if A → α is already in the grammar, increase its weight by 1,
otherwise add A→ α with weight 1 to the grammar.

• When applying mutation or “replacement” (creating new individuals):
select production rules for a given nonterminal with probability propor-
tional to their weights.

The additional operator called replacement simply replaces a fixed part of the
population with individuals created in the same way as when creating the
initial population. The learnt bias thus affects the mutation and “replacement”
operators in each generation, and can also be used in a subsequent run of the
algorithm.

Later, Whigham (1996) emphasised the distinction between three kinds of
bias: selection bias, language bias, and search bias. In his terminology selection
bias is the compound effect of a selection scheme and the fitness function,
language bias consists of the restriction imposed by language (grammar), and
search bias consists of the factors that control search (crossover and mutation).
Seen from this perspective, the bias learning in Whigham’s original article
compiled search bias into language bias. In contrast to this, the 1996 article
presents a mechanism to control search bias separately:

• “Selective” versions of the mutation and crossover operators are intro-
duced. A selective operator may be applied only to a subtree rooted in
a nonterminal from a particular set. Several instances of such a selective
operator may be used, each with a different probability. These probab-
ilities are considered the principal means of search bias. Note that the
probabilities do not govern frequencies of particular nonterminals in the
population, but frequencies of operator application to them.

• Production rules in the grammar may still be assigned weights (in this
article called “merit weighting”), but the weights are only constant, and
no new production rules are added to the grammar. The weights apply
to initialisation and mutation as already described, and are presumably
part of search bias.

Whigham’s approach has shown that grammars, in this case CFGs, can be
used in GP in a straightforward manner to constrain the search space. As noted
by Whigham (1995) without going into detailed comparison, it is a “different
approach to the closure problem [than STGP].” A context-free grammar can be
used both to express constructs of a wide range of languages and to emulate a
type system with a small finite set of types by having one nonterminal for each.
STGP with its generics (Montana, 1994) is more powerful in this regard, but
such power comes with a performance trade-off (Poli et al., 2008, sec. 6.2.4).

Additionally, Whigham has used grammars a vehicle for a finer control of
bias. In the two articles, Whigham (1995, 1996) proposed two different ways of
working with bias: in the former using means analogous to those that Cohen

13



used in ILP (see Section 1.3: knowledge is being compiled into grammar, some
rules may be preferred to others), but added a simple learning mechanism;
in the latter he abandoned learning and tried to keep search bias separated
from language bias, while still taking advantage of using a grammar. Neither
of these approaches would be possible if the language bias wasn’t specified
declaratively.

1.5 Logic grammar based genetic programming:
LOGENPRO

Wong and Leung (1995) presented a genetic programming system based on
logic grammars, called LOGENPRO (LOgic grammar based GENetic PRO-
gramming system), and later (2000) the same authors published a book on this
system. LOGENPRO is presented as “a framework [. . . ] that can combine GP
and ILP to induce knowledge from databases” (Wong and Leung, 2000). The
system is based on the same core algorithm as tree-based GP or CFG-GP: iter-
ated application of fitness-based selection and genetic operators, but instead of
context-free grammars, LOGENPRO employs logic grammars “described in a
notation similar to that of definite clause grammars”.

The only difference other than in notation between DCGs and these logic
grammars seems to be that the “logical goals” that can be added to rules in
LOGENPRO are not strictly limited to logic goals as used in Prolog: they are
in fact procedures defined in Lisp, the language in which the framework itself
is implemented. (See Listing 3.3 on page 47 for an example of a LOGENPRO
grammar.) The framework emulates the mechanisms of logic programming to
interpret the grammar, but it does not feature a complete or cleanly separated
logic programming environment.6

LOGENPRO does not use any mechanisms or algorithms specific to ILP
but Wong and Leung (2000) demonstrate that with a suitable grammar, it
can be used to learn logic programs and it achieves results competitive with
earlier ILP systems not based on GP and grammars. What differentiates it
from CFG-GP is the more powerful formalism for grammars, which is closer
to the one used by Cohen in ILP. As we have noted in Section 1.1, definite
clause grammars can be used to describe the context-dependent constructs
often found in programming languages. The representation of individuals in
LOGENPRO is still conceptually the same as in CFG-GP (a derivation tree,
although with structured nodes, as they can contain terms and goals), but
operators need to be much more complex to respect the grammar.

While DCGs are essentially Turing-complete (see Fact 5, page 7), LO-
GENPRO does not evaluate logical goals except when generating new trees:

6 I obtained LOGENPRO source code from the authors via personal communication. Al-
though Wong and Leung (1995, 2000) present the “logic grammars” used in LOGENPRO as
different from DCGs, no difference is evident from their description, and no details about the
implementation are given.
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the subtrees that contain logic goals cannot be changed by the operators (Wong
and Leung, 2000, sec. 5.3), so they behave as atomic and immutable compon-
ents throughout the evolution (compare with the approach used by Cohen,
1994, see footnote 5, page 11).

On one hand, even the remaining power of DCGs, which lies in the use
of variables and unification, still make operators, particularly crossover, quite
complex: according to Wong and Leung (2000, sec. 5.3), the worst-case time
complexity of crossover is O(m · n · log m), where m and n are the sizes of the
two parental trees, slightly higher than O(mn) in Koza’s GP with ADFs and
Montana’s STGP. On the other hand, the same power allows it to emulate
the effect of both of these methods (Wong and Leung, 2000). The scheme of
individuals that use ADFs (as shown in Figure 1.2) can be easily embedded
in a grammar (see Section 3.7, also demonstrated by Wong and Leung, 2000).
While the authors do not explain how exactly LOGENPRO can emulate STGP
including generics, a finite set of types can be emulated even using a CFG (as
we have remarked in Section 1.4).

LOGENPRO focuses on sophisticated constraints on the search space that
can be described declaratively using a DCG, and performs a search using
elaborate operators that preserve these constraints. It does not provide any
special mechanisms for learning bias, or any additional parameters for the
search.

1.6 Grammatical evolution

Grammatical evolution (GE) (Ryan et al., 1998; O’Neill and Ryan, 2003) is a recent
method for grammar-based GP that, unlike LOGENPRO or CFG-GP, signi-
ficantly changes the paradigm of traditional tree-based GP by introduces the
notion of genotype-phenotype mapping. In a parallel to the biological process of
gene expression, each individual has a variable-length linear genotype consist-
ing of integer codons, to which the genetic operators such as mutation and
crossover are applied. In order to evaluate the individual’s fitness, the geno-
type is mapped to phenotype, a program in the language specified by the given
context-free grammar. Trees are not used for individual representation but
implicitly as a temporary structure used in the course of mapping.

The mapping used in GE is so simple that we can describe it in full details
(adapted from Nohejl, 2009):

In analogy to the DNA helix and nucleobase triplets, the string
is often called chromosome, and the values it consists of are called
codons. Codons consist of a fixed number of bits. The mapping to
phenotype, proceeds by deriving a string as outlined below in the
pseudocode for Derivation-Using-Codons. The procedure accepts
the following parameters:
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– G, a context-free grammar in BNF. Note that BNF ensures
that there is a non-empty ordered list of rewriting rules for each
nonterminal.

– S, a nonterminal to start deriving from. The start nonterminal
of G should be passed in the initial call.

– C, a string of codons to be mapped. Note that it is passed
by reference and the recursive calls will sequentially consume its
codons using the procedure Pop.

Derivation-Using-Codons(G,S,C)

1 P← array of rules for the nonterminal S in G indexed from 0
2 n← length[P]
3 if n = 1 � only one rule (no choice necessary)

4 then r← 0
5 elseif length[C] > 0 � choice necessary, enough codons

6 then r← Pop(C) mod n
7 else error “Out of codons” � or wrap C, more on that later

8 σ← body of the rule P[r]
9 τ← λ
10 foreach A← symbols of σ sequentially
11 do if A is terminal
12 then τ← τ .A
13 else τ← τ .Derivation-Using-Codons(G,A,C)
14 return τ

Out of the context of fitness evaluation, the individuals are simple binary
strings to which standard GA (Goldberg, 1989) operators for one-point cros-
sover and mutation are applied (the only differences are that the chromosomes
are variable-length and the crossover is applied on codon boundary, not at ar-
bitrary position), the population can also be initialised by generating random
binary strings. Thus the operators for GE can be implemented very efficiently,
and the performance penalty of performing the mapping is also low.

It would appear that this efficiency comes at the cost of a high proportion
of invalid individuals (see line 7 of the pseudocode). This issue is addressed
by wrapping the chromosome (interpreting it in a circular fashion) if needed,
which can greatly reduce the number of invalid individuals (O’Neill and Ryan,
2003, sec. 6.2). Still, the operators clearly may have a different effect than
the traditional GP operators, which tend to preserve most of the individuals’
structure and are designed to have a predictable effect. In GE, on the one hand,
minor changes in genotype can translate into massive changes in phenotype;
on the other hand, some parts of genotype (and thus any changes to them)
may not have any effect on the phenotype. O’Neill and Ryan (2003) justify
these issues as parallels to genetic phenomena (such as genetic code degeneracy
in the case of unused genetic information), and show that in some cases they
can improve performance.
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While a formal analysis of the general effect of these simple operators on
phenotype, and thus the overall search performance, is lacking, the effect can
be measured and compared statistically in specific applications. This method
is used by O’Neill and Ryan (2003) to compare different variants of operators,
and we will use it to compare performance with CFG-GP in Chapter 3.

Compared with CFG-GP, and especially with LOGENPRO, grammatical
evolution has an extremely simple implementation that consists of highly effi-
cient elements. We could call these elements (operators, simple random initial-
isation) grammar-agnostic: they do not depend on the grammar at all, and the
search bias that they create cannot be adjusted with regards to the grammar.
The constraints of the grammar are ensured by the genotype-phenotype map-
ping at the expense of preservation of phenotypic structure that the traditional
GP, as well as CFG-GP or LOGENPRO, strive for.

1.7 Common features and shortcomings

Figure 1.3 provides an overview of the grammar-based GP methods that we
have presented along with traditional GP and grammatically biased ILP. The
most important trait of all grammar-based methods is that they provide a gen-
eral framework for declaratively describing the search space that the traditional
GP or ILP lacks. One aspect that differentiates them is the power of this de-
clarative description. The relatively weak context-free grammars can describe
the basic structure of common programming languages or their subsets (except
context-dependent constructs), and emulate simple type systems, and ADFs.
The logic grammars (antecedent description grammars used in Cohen’s ILP or
DCG-like logic grammars in LOGENPRO) can capture context-dependency us-
ing logic variables and unification, but their ability to use arbitrary logic goals
is of limited use in genetic programming (as exemplified by genetic operators
in LOGENPRO, Section 1.5).

The expressive power of grammars entails a performance trade-off for
structure-preserving operators. Grammatical evolution seems to avoid this
issue by using grammar-agnostic, possibly destructive operators similar to
those traditionally used in GA.

Apart from the hard constraints of the search space, the grammar may
serve as a vehicle for further bias (preference). This direction was explored by
Whigham (1995, 1996) through selective operators and learning of production
weights. It may be less obvious that the grammar itself creates a bias by
interaction of its form (equal grammars may differ in form, see Fact 1, page 6)
and the operators, or the genotype-phenotype mapping in case of GE. The
grammar-based methods seem to be designed as if using a particular form of
the grammar was an obvious way to embed problem-dependent knowledge,
but with their growing complexity (logic grammars in LOGENPRO, interaction
of operators and the mapping in GE) this is not the case. (The grammar for the
artificial ant problem in Section 3.5, and the grammars for timetabling heuristics
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in Section 3.9 will later be discussed in this context.) The otherwise relatively
simple CFG-GP provides a mechanism (Whigham, 1995) to adjust the form of
the grammar over the course of running the algorithm, but the more recent
methods (GE and LOGENPRO) do not address this issue.

1.8 Implications for performance

LOGENPRO seems to be very different from the two other methods by using a
more powerful formalism for grammars. This could be a double-edged sword
if it was actually used in some application. We will attempt to replicate two
experiments done by Wong and Leung (2000) with LOGENPRO (in Section 3.6
and Section 3.7). We will show that the experiments do not actually require a
logic grammar, and that the results are comparable with those of CFG-GP.

Grammatical evolution ensures constraints given by the grammar by its
genotype-phenotype mapping but its operators can be applied to any part of
its genotype regardless of the grammar and the phenotype. This makes any
grammatical constraints work in an essentially different way in GE than in
CFG-GP or LOGENPRO. We can expect this to cause GE to produce different
shapes of trees than the other two methods, which work with derivation trees
(considered to represent the phenotype for GE). This in turn will result in a
different search space. We will attempt to analyse this effect and link it to dif-
ferences in performance using experiments with several different applications
in Chapter 3.

Techniques for reuse of building blocks are crucial for performance in ap-
plications that use such blocks. As we will show, it is easy to carry over the
techniques used by Koza (1992) for ADFs to any of the grammar-based meth-
ods. In fact, it is far easier to specify the ADFs using a grammar than to add
the necessary ad hoc constraints to tree-based GP operators. The same gram-
mar will, however, have a different effect in GE than in the other two methods
because operators are applied regardless of the grammar. We will see how this
impacts performance in experiments in Section 3.7 and Section 3.8.
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Chapter 2

Existing Applications

Genetic programming is a very general method that has been applied to a vari-
ety of problem domains from circuit design to the arts (Poli et al., 2008, ch. 12).
While methods that are more efficient and have gained more widespread indus-
trial use exist in most of these fields, the strength of GP lies in its applicability to
problems in which the precise form of the solution is unknown and analytical
methods cannot be employed or would be too resource-intensive.

As we have explained in the previous chapter, the addition of grammars
to genetic programming serves primarily as a means of adapting the general
method to a particular problem or an implementation language: a grammar can
be used both to embed problem-dependent knowledge such as variable types
and structural restrictions, and to specify a subset of a programming language
(or some other formal language) that we want to use for implementation.

Our goal is to compare the results both among different methods and with
previously published results. Thus we will focus on relatively simple applica-
tions suitable for comparing the three main methods that we have presented:
CFG-GP, GE, and in two instances also LOGENPRO. All applications presen-
ted in this chapter have been described in existing literature in conjunction
with one of the methods or with traditional GP, usually in order to highlight
advantages of these methods. One application, the use of grammar-based GP
methods for hyper-heuristic (Section 2.5), stands out a little: as we will see,
this area is relatively open-ended and demanding on implementation but also
capable of producing heuristics competitive with those designed by humans.

Before we proceed to evaluating the methods in the next chapter, we will
describe the chosen applications.

2.1 Simple symbolic regression

Regression is concerned with finding a function that best fits known data. The
problem has most commonly been reduced parametric regression: finding para-
meters for a function whose form is specified in advance (e.g., an nth-degree
polynomial). Assuming that the chosen form is adequate, such methods may
be very efficient. In situations in which the adequate form is not known, ge-
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netic programming can be used to solve the more general problem as symbolic
regression: search for a function represented in symbolic form, as an expression
using some predefined operations.

A simple problem of real-valued symbolic regression was used as one of
the introductory examples by Koza (1992) and continues to be used both as
a basic benchmark for newer GP techniques and in more advanced research
applications (Poli et al., 2008, sec. 12.2). When used as a benchmark, as opposed
to a real-world application, the target values are precomputed using the known
target function, which may be a polynomial. The point is that GP is able to find
the expression representing the polynomial in the space of expressions that
also involve operations unnecessary for the target function such as division or
logarithm.

Fitness of candidate solutions is usually measured as a sum of absolute or
squared errors at the given points to which various scaling methods can be
applied.

Except for specifying a custom language instead of Lisp, there is little ad-
vantage in using grammar-based methods over using tree-based GP for simple
instances of the problem. But these simple instances can serve as a test bed
for unusual operators, such as those employed in GE, which do not behave
analogously to those used in tree-based GP.

More intricate cases of symbolic regression will be presented in Section 2.3
and Section 2.4.

2.2 Artificial ant trail

The artificial ant trail is another classic introductory GP problem. The goal is to
navigate an artificial ant so that it finds all food lying on a toroidal floor within
a time limit. The pieces of food are placed on a rectangular grid to form a trail
with increasingly demanding gaps and turns. The ant can use the actions
– Left: turn left by 90 ° without moving,
– Right: turn right by 90 ° without moving,
– Move: advance one square in the direction the ant is facing, eating any food

on that square,
combined using conditional branching on Food-Ahead: test the square the ant
is facing for food. All actions take one unit of time, the test is instant.

The problem was originally designed to test evolution of finite-state ma-
chines using GA and various trails have appeared in subsequent versions of
the experiment. The most common one, also used by Koza (1992) to demon-
strate the competence of GP in solving this problem, is the so-called Santa Fe
ant trail. When using GP, the solution has a form of a short program, which
is executed in a loop until time runs out. The syntactic restrictions placed on
the program play an important role that we will discuss when evaluating the
experiments. Fitness of candidate solution is measured as the number of food
pieces eaten within the time limit.
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Empty squares Food Ant

Figure 2.1: The Santa Fe ant trail. 89 pieces of ant food on a 32 by 32 toroidal grid. Ant
starts in the north-east corner facing east

2.3 Symbolic regression with multiple types

Symbolic regression can feature values of multiple types: for instance when the
independent variables are vectors and the dependent variable is a scalar. It is
then desirable to restrict the search space to expressions with vector variables
that yield a scalar by applying correct operations to both scalar and vector
values. Such search space does not, of course, possess the closure property
required by traditional GP. The need to overcome this problem motivated
strongly-typed genetic programming (discussed in Section 1.2), but it can be
shown that grammars can describe such simple type systems very efficiently.

Wong and Leung (2000) use two such problems to demonstrate that their
framework for logic-grammar based genetic programming LOGENPRO can
outperform GP when type constraints are involved and that it can also be used
to emulate ADFs (briefly introduced in Section 1.2):

1. finding a real-valued function of two three-component vector variables
~x, ~y that computes the dot product ~x · ~y (the standard Euclidean inner
product, also called scalar product),

2. finding a real-valued function of three three-component vector variables
~x, ~y, ~z that yields the scalar ~x · ~y + ~y · ~z, where · is the dot product, using
ADFs.
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While Wong and Leung (2000) compare the performance of LOGENPRO
with a GP setup that does not use any syntactic constraints, I would suggest
that the point should not be that GP cannot use ad hoc syntactic constraints to
the same effect but that doing so using a grammar is more general but also far
easier and less error-prone: note that even in this seemingly simple example
there are three “natural” types of unary and binary operations (scalar-to-scalar,
vector-to-vector, vector-to-scalar) and perhaps scalar multiplication.

We will discuss the approach used by Wong and Leung (2000) and demon-
strate that other grammar-based methods can be used with similar results. We
will also analyse the role of ADFs in the second variant of the problem, which
Wong and Leung (2000) did not do properly.

2.4 Boolean symbolic regression

The spaces of k-ary Boolean functions are relatively small (22k), as are the suffi-
cient sets of basic functions from which they can be composed (e.g. the set of
common logical connectives {and, or,not}), yet the search space of their symbolic
representations is vast. Although symbolic regression of Boolean functions is
of no practical interest, these properties make it suitable for evaluating genetic
programming systematically. Koza (1992) has demonstrated that the difficulty
of finding different ternary Boolean functions by blind random search among
expressions of certain maximum size varies considerably and that GP is stat-
istically more successful than blind random search in finding those that are
particularly hard to find. (More details in Koza, 1992, ch. 9.)

His experiments have also shown that the hardest to find among ternary
functions are the parity functions (the even and odd parity function are true if
and only if the number of true arguments is even and odd, respectively). Con-
sequently, the parity functions are relatively hard to find even in the classes of
higher-arity Boolean functions. At the same time they can be easily composed
from simple building blocks: the exclusive-or functions, and a negation in case
of even parity. This in turn makes Boolean symbolic regression of the parity
functions suitable for testing the impact of ADFs on performance.

We will use the even-parity Boolean regression problem to test the perform-
ance of techniques for the grammar-based methods that emulate ADFs. Results
will be compared to those presented by Koza (1992) for tree-based GP with and
without ADFs.

2.5 Hyper-heuristics

In contrast to the previously presented applications, hyper-heuristics is actually
a whole field covering very diverse problems. A hyper-heuristic search engine
does not search for problem solutions but rather for heuristics for solving a
problem. Thus if the class of problems of interest was Boolean satisfiability,
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heuristics for a SAT solver would be sought rather than truth-value assign-
ments.

Different approaches can be used to find heuristics, but if some heuristics
have already been developed and can be combined in more complex ways then
just choosing a sequence, grammar-based GP can be used to great advantage.
The grammar allows us both to use the language of our problem-solving frame-
work directly and to embed our knowledge about the existing heuristics that
are to be used as building blocks.

Bader-El-Den et al. (2009) have recently successfully applied a grammar-
based GP hyper-heuristic framework to timetabling. The method they used
was essentially CFG-GP. We will try to replicate their results with our im-
plementation of CFG-GP, and compare them to the results obtained using
grammatical evolution in Section 3.9.

2.6 Other applications

While we will not experiment with other problems, several other areas of
application are worth at least mentioning:

The authors of LOGENPRO have developed their system specifically to
target data mining problems. They see their logic grammar based framework
(covered in Section 1.5) as a combination of two important approaches to data
mining: ILP and GP (Section 1.2 and Section 1.3). In addition to artificial
problems such as the dot product problem (see Section 2.3 above), they apply
LOGENPRO to two benchmark data mining problems (credit card screening
using decision trees and the chess endgame problem using logic programming),
and to data mining from “real-life medical databases”. LOGENPRO provides
results competent with other learning systems in the first benchmark and out-
performs ILP systems FOIL, BEAM-FOIL, and mFOIL significantly at most
noise levels in the latter benchmark. It is interesting to note that in none of the
applications presented by Wong and Leung (2000) the specific feature of their
system, the power of logic grammars, is used. In particular, their applications
use only simple logic goals that could be replaced by short enumerations, and
none of the grammars feature context-dependence via unification. Conceiv-
ably, any of their results could be replicated using grammar-based methods
other than LOGENPRO, in the same way as we will show on the example of
the dot product problem in Section 3.6. Thus, grammar-based methods can
also be used as a viable data mining framework.

Grammatical evolution has recently been used in dynamic applications,
where the grammar itself is described by a (meta-)grammar and co-evolves
along with the individual, allowing for further adaptability (Dempsey et al.,
2009).

Natural Computing Research & Applications Group at University College
Dublin (UCD NCRA), where most of the current work on grammatical evolu-
tion is being done, has also used GE to evolve a logo for the group interactively
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(O’Neill and Brabazon, 2008). Their web site1 showcases other unconventional
and creative applications including evolution of elevator music. Results in such
applications cannot of course be quantitatively measured but they demonstrate
the variety of objects and processes that can be described using a grammar and
consequently evolved using grammar-based GP methods.

1http://ncra.ucd.ie/
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Chapter 3

Experiments with Grammar-Based
Methods

In this chapter we will perform several experiments with instances of the
problems chosen in Chapter 2.

When evaluating CFG-GP and GE, we will use the AGE (Algorithms for
Grammar-based Evolution, originally Algorithms for Grammatical Evolution)
framework, which is a competent and well-documented implementation of GE
and common evolutionary algorithm elements, as I have shown in my bachelor
thesis (Nohejl, 2009). For the purpose of these experiments AGE has been ex-
tended with CFG-GP algorithm elements implemented according to Whigham
(1995). This will allow us to test CFG-GP and GE in almost identical setups. See
Chapter 4 for more information about AGE and its implementation of CFG-GP.
The software is available on the accompanying medium and online1.

The performance of LOGENPRO will be evaluated using the implementa-
tion that Dr Man Leung Wong, a co-author of the method (Wong and Leung,
1995, 2000), has kindly provided to me.

3.1 Observed characteristics

As a measure of success I adopt the cumulative success rate over a number of
runs, as usual when evaluating evolutionary algorithms. The success in each
experiment is defined by the Success predicate entry in its table (see Section 3.2
below). For the purpose of these experiments, the algorithms are left running
until the maximum number of generations is reached even when the success
predicate has been satisfied.

To further facilitate comparison, we will use several characteristics of de-
rivation trees applicable to both methods: tree height (defined in Section 1.1),
number of choice nodes, and bushiness (both defined below). In the following
definitions, let G = (N,T,P,S) be a context-free grammar and ρ a derivation
tree for the grammar G.

1http://nohejl.name/age/

27

http://nohejl.name/age/
http://nohejl.name/age/


Definition. We will say that a particular node of ρ is a choice node if it is labelled
with a nonterminal for which P contains more than one production. (Thus
a choice of production had to be made at this node.) Internal choice node is a
choice node that has at least one choice node among its descendants.

When using GE, the number of choice nodes coincides with the number of
codons used during the mapping process. Additionally, the number of choice
nodes reflects the amount of information contained in a given derivation tree
more accurately than the total number of nodes.

Definition. Let n be the number of all choice nodes in ρ, and k the number of
internal choice nodes in ρ. The ratio n

k+1 expresses the bushiness of ρ.

Bushiness is simply the ratio of the total number of choice nodes and the
number of their “parents”. Note that in any derivation tree that contains at
least one choice node, there is a non-empty group of topmost choice nodes (the
group has no choice node ancestor): the additive constant 1 in the formula acts
as a virtual parent of these choice nodes. The bushiness is thus analogous to the
average branching factor, except that it is defined only based on choice nodes.

AGE can report tree characteristics for both GE and CFG-GP. LOGENPRO
offers only basic data about fitness and success.

3.2 Setup

Both AGE, and LOGENPRO allow to configure parameters such as selection
method, operator probabilities, or maximum tree heights. We will present these
parameters for each experiment in a table derived from the “tableau” format
used by Koza (1992), and in a modified form by O’Neill and Ryan (2003). In
addition to the entries used by either of them, I also specify the details of
the algorithm in the entries Algorithm, Selection, Initialisation, Operators, and
Parameters (for other method-specific parameters).

In order to make comparisons statistically relevant, we will use data from at
least 100 runs. In the case of AGE, these are always runs from one sequence with
random number generator (RNG) seed value 42; in the case of LOGENPRO
these are runs with RNG seeds from the sequence 1, 2, 3, . . . ,n. (LOGENPRO
normally seeds the generator with the current time. I have modified its source
code to use a fixed number to seed the generator.)

3.3 Statistics

We will use several statistics: average using arithmetic mean, variance, and
coefficient of variance (CV), which is a relative measure of dispersion defined
as the ratio of the standard deviation to the absolute value of the mean. The
statistics will be computed from a population of individuals from a particular
generation. When evaluating results from multiple runs of the same setup
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we will average these statistics (using arithmetic mean) over the performed
runs. If a population contains invalid individuals, they are excluded from the
statistics.

When I describe a difference between two sets of numerical results (or rates
of success in two sets) as significant, it means that the statistical hypothesis that
the two sets are samples of a statistical population with the same mean (or that
the probabilities of success in the two sets are the same), has to be rejected on
the level of statistical significance of 5 %. Accordingly, whenever a difference
is said to be insignificant, the same hypothesis cannot be rejected on the level
of 5 %. Unless stated otherwise, any differences I point out are significant. I
use Student’s t-test for testing equivalence of means, and a simple test of equal
proportions for testing the probabilities of success.2

3.4 Simple symbolic regression

We will compare the performance of CFG-GP and GE in a simple instance of
the symbolic regression problem (Section 2.1).

3.4.1 Experimental setups 1

The first setup of GE is deliberately based on the parameters used in the sym-
bolic regression example supplied with GEVA3. I have used the same setup
(except for maximum tree height, see explanation below) in my bachelor thesis
(Nohejl, 2009) to show that the codon size higher than 8 bits does not provide
substantial advantage, and that AGE achieves a success rate of 706 and 701
out of 1000 runs (with 31 and 8 bits per codon, respectively), which was sig-
nificantly better than the rate achieved by GEVA. Thus we will also use 8-bit
codons in the current experiment.

When possible, we will use the same settings for CFG-GP: elite size, fitness
measure, selection scheme, etc., and also the crossover rate will be the same:
even though each method has a different crossover operator, the crossover
rate of 0.9 is a standard value of crossover probability in GP, which is used
systematically by both Whigham (1995, 1996) and O’Neill and Ryan (2003).

The mutation rate for CFG-GP will be, somewhat arbitrarily, set to 0.1.
The higher nominal value is meant to reflect that the mutation rate in CFG-
GP is equivalent to its effective per-individual mutation rate, whereas the
effective per-individual rate in GE is much higher then the 0.02 per-codon
rate, and is dependent on the number of used codons and the distribution of
nonterminals in each individual. Therefore, no fixed per-individual mutation
2Both are computed using the R stats package (functions t.test and prop.test), which is part

of the open-source R Project for Statistical Computing available at http://www.r-project.org/.
3 GEVA is “an open source implementation of Grammatical Evolution [. . . ], which provides

a search engine framework in addition to a simple GUI and the genotype-phenotype mapper of
GE.” (O’Neill et al., 2008). It is being developed at Natural Computing Research & Applications
Group (NCRA) at University College Dublin: http://ncra.ucd.ie/Site/GEVA.html.
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rate corresponds to a given per-codon rate used in GE. Whigham (1995, 1996)
has used mutation rates of 0.15 and 0, respectively, so 0.1 is a conservative
choice.

Because CFG-GP uses a maximum tree height for its operators, while GE
usually ensures reasonable tree size only implicitly, we will use 20 as maximum
tree height for both methods, a limit high enough to have only marginal impact
on the results of the GE setup.

The only parameter left is the maximum height of derivation trees created
by the CFG-GP initialisation method. We would like to operate on individuals
of roughly the same size as in the GE setup, so that both methods are evalu-
ated on search spaces of comparable size. I have experimentally determined
that maximum height 5 results in derivation trees of height closest to those
generated by the GE setup (as shown in Figure 3.1).

The setup for both methods is detailed in Table 3.1.

Objective: Find a function of one variable x represented by an
expression to fit a given set of the target function values at
specified points. The target function is x4 + x3 + x2 + x.

Terminal operands: x, 1.0.
Terminal operators: +, −, · (all binary).
Grammar: See Listing 3.1.
Fitness cases: 20 fixed points −1.0, −0.9, . . . , 1.9.
Raw fitness: The sum of squared errors taken over the 20 fitness cases.
Scaled fitness: Same as raw fitness.
Algorithm: Simple with elite size: 10, generations: 101, population:

100.
Selection: Tournament, size: 3.
GE initialisation: Random codon string initialisation, length: 200.
CFG-GP initialisation: “Grow” method (Whigham, 1995), maximum height: 5.
GE operators: Fixed-length one-point crossover, probability: 0.9.

Codon-level mutation, probability: 0.02.
CFG-GP operators: Crossover (Whigham, 1995), probability: 0.9.

Mutation (Whigham, 1995), probability: 0.1.
Common parameters: Maximum tree height: 20.
GE parameters: Maximum wraps: 3. Codon size: 8.
Success predicate: Raw fitness lower than 0.00001 (to allow for floating-point

round-off error.)

Table 3.1: Simple symbolic regression, parameters for setups 1, CFG-GP (1) and GE
(1).

<expr> ::= ( <expr> <op> <expr> ) | <var>
<op> ::= + | - | *
<var> ::= x | 1.0

Listing 3.1: Simple grammar for symbolic regression in Lua.
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3.4.2 Results from setups 1

The final success rate of 999 out of 1000 runs achieved by CFG-GP has been
substantially higher than the 733 out of 1000 runs achieved by GE, moreover
CFG-GP was more successful in all generations and converged very fast (see
Figure 3.1). While derivation tree heights suggest that both methods were
searching a similar space, a closer look at the tree characteristics (Figure 3.3)
reveals differences:

(1) During the first five generations, GE has a very high CV of both tree
height and bushiness compared to CFG-GP, and consequently also a high vari-
ance of the number of choice nodes. This can be explained by the initialisation
method, and does not seem to have an important lasting effect.

(2) After (1), CFG-GP has a significantly larger CV of tree height, and neither
method continuously dominates in average height.

(3) CFG-GP produces significantly bushier trees throughout the run. After
(1), neither method continuously dominates in CV of bushiness.

(4) The compound effect of (2) and (3) is a higher variance of the number
of choice nodes in trees produced by CFG-GP. We can interpret this variance
(which is an absolute measure as opposed to CV) in conjunction with the
average as the extent of the search space. Note that this is observable even
if we do not take into account the portion of CFG-GP results after CFG-GP
reaches almost full success rate.

To examine the possibility that grammatical evolution produces less diverse
candidate solutions because of inappropriate operator parameters, let’s have
a look at fitness statistics in Figure 3.2: GE soon reaches higher coefficient of
variance than CFG-GP, and the CV keeps growing while average fitness stays
nearly constant in GE. Note that the difference is not due to invalid individuals,
which are excluded from the statistics.

This shows that the parameters of the operators result in enough phenotypic
diversity but fail to produce a favourable distribution of tree characteristics.
Additionally, even if a higher mutation rate had the effect of producing better
tree characteristics, it would effectively turn GE into a blind search: both its
standard operators can be very disruptive (their effect is not localised to a
subtree: see the “ripple” crossover discussed in O’Neill and Ryan, 2003, and
the codon and bit-level mutation in my bachelor thesis, Nohejl, 2009). The
success rate reached in this experiment depends on the high elitism, which
compensates for the disruptive effect of operators.

We can conclude that CFG-GP has searched a larger search space (bushier
trees of more varied height) and has achieved substantially better results than
GE. (Note that the larger search space is not necessarily a superset of the
smaller one as GE may explore less bushy trees better). This may not be a
single direct cause of the higher success rate but being able to find a solution
more reliably while searching through more diverse candidate solutions is
certainly beneficial.
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Figure 3.1: Cumulative frequency of success of GE and CFG in symbolic regression of
the polynomial x4 + x3 + x2 + x, setups 1.
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Figure 3.2: Fitness in GE and CFG-GP in symbolic regression of the polynomial x4 +

x3 + x2 + x, setups 1. The plots show averages, taken over 1000 runs, of
the following population statistics: averages, minima (best values), and
coefficients of variance of fitness.
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Figure 3.3: Tree characteristics of GE and CFG-GP in symbolic regression of the poly-
nomial x4 + x3 + x2 + x, setups 1. The plots show averages, taken over
1000 runs, of the following population statistics: averages and coefficients
of variance of tree height and tree bushiness, average and variance of the
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3.4.3 Experimental setups 2

We have used grammatical evolution with fixed chromosome length in the pre-
vious setup. GE was, however, originally conceived to be used with variable-
length chromosomes (O’Neill and Ryan, 2003). We have also remarked that
the initial population created by the random codon string initialisation has an
extremely varied tree characteristics, which persist over several generations.
This time, we will use variable chromosome length in conjunction with two
different initialisation methods to find out how they affect the success rate and
tree shape diversity. The first method is random codon string initialisation as
in setups 1 but now with variable string length, and the second method is the
“grow” method analogous to the one normally used in CFG-GP only with ran-
dom genetic degeneracy added to each codon as usual in GE. Thus, using the
“grow” method with maximum height 5, GE will now start with statistically
equivalent phenotypes (trees and strings) to those CFG-GP started with in the
first setup.

As before, we will use the same values of the remaining parameters for
both methods when possible. As we have already evaluated CFG-GP with
maximum initialisation height 5, we will now use two different maximum
heights, 2 and 7, to assess the sensitivity of CFG-GP to characteristics of the
initial population. (Derivation trees of height 2 are the shortest possible and
can represent only the two strings 1.0 and x.) Settings used for both methods
are listed in Table 3.2.

GE initialisation: GE (2a): Random codon string initialisation, length:
100–150.
GE (2b): “Grow” method (unique trees, random
codon-level degeneracy), maximum height: 5.

GE operators: Variable-length one-point crossover, probability: 0.9.
Mutation as before.

CFG-GP initialisation: CFG-GP (2a) and (2b): “Grow” method (Whigham, 1995),
maximum height: 2 and 7, respectively.

CFG-GP operators: Crossover and mutation as before.

Table 3.2: Simple symbolic regression, parameters for setups 2, CFG-GP (2a, 2b), and
GE (2a, 2b), where different from setups 1 (Table 3.1).

3.4.4 Results from setups 2

Both GE settings were an improvement over setups 1. The use of variable-
length chromosomes alone in GE (2a) resulted in a modest increase to 807
successful runs, while the use of the CFG-GP-like initialisation in GE (2b) in
a marked increase to 923 successful runs. Along with this improvement the
tree-aware initialisation eliminated the extreme variation of tree characteristics
at the start of the run. Another remarkable difference between the results of the
two initialisation methods can be seen in the fitness statistics (Figure 3.5). The
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use of the random string initialisation in conjunction with variable-length chro-
mosomes resulted in frequent occurrence of highly unfit individuals through-
out the run (the plot had to be cropped). While such individuals could have
in principle occurred using any settings of both methods (they just represent
relatively complex arithmetic expressions with output very far from the tar-
get function), the occurred only in GE with variable-length chromosomes and
random-string initialisation (a combination used by O’Neill and Ryan, 2003,
although they acknowledge the positive effect of tree-based initialisation).

CFG-GP with both initialisation parameters was still better than GE. With
maximum initialisation height 2 it reached full success rate already in genera-
tion 58, and with maximum initialisation height 7 it succeeded in 992 runs out
of 1000. The success rates for heights 2, 5, and 7 are significantly different, yet
all three have led to successful solution quite consistently compared to GE.

We can make almost identical observations as in setups 1 about tree char-
acteristics of the two methods: regardless of the initialisation method, GE
results in bushier trees of more varied height and is able to expand the size
of its search space over that of GE, at the same time CV of bushiness is sim-
ilar for the two methods, and achieved tree heights can be too. This shows a
consistent difference between GE and CFG-GP not caused by initialisation or
use of variable-length vs. fixed-length chromosomes in GE, that is a difference
resulting from the nature of operators of the two methods. The CFG-GP oper-
ators have searched the solution space of this simple problem more effectively
than those of GE; additionally, CFG-GP has been relatively insensitive to the
characteristics of the initial population.
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Figure 3.4: Cumulative frequency of success of GE and CFG-GP in symbolic regression
of the polynomial x4 + x3 + x2 + x, setups 2.
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Figure 3.5: Fitness in GE and CFG-GP in symbolic regression of the polynomial x4 +

x3 + x2 + x, setups 2. The plots show averages, taken over 1000 runs, of
the following population statistics: averages, and coefficients of variance
of fitness. The fitness plot was cropped (inclusion of outliers would make
it difficult to discern the important differences)

3.4.5 Conclusion

The presented problem of simple symbolic regression should indeed be simple
to solve even with the relatively small population and number of generations:
the grammar is relatively constrained and thus embeds significant amount of
knowledge about the solution. The experiments have shown that CFG-GP
can search the small space very effectively, achieving nearly full success rate
regardless of selection method and initial population characteristics, whereas
the success rate of grammatical evolution has been conspicuously low in com-
parison with CFG-GP despite improvements brought by a more appropriate
selection method and the use of variable-length chromosomes.

Further analysis of characteristics of derivation trees during the run have
shown that GE explores the same search space less effectively: its populations
are less diverse than those evolved by CFG-GP. This is the result of different
representation and operators employed by the two methods, and it is likely
the cause of the disappointing performance of GE in this simple benchmark
problem.
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3.5 Santa Fe ant trail

In this experiment with the Santa Fe ant trail (described in Section 2.2) we
will again start with a setup based upon an example GE application as imple-
mented and configured in GEVA. Although the success of GE will initially be
poor, it should be noted that this is not due to the implementation (as I have
demonstrated in my bachelor thesis, Nohejl, 2009, GEVA achieves similarly
poor results: in fact, AGE achieved exactly the same level of success when
using the same initialisation method). All setups will use a relatively small
population (100) and number of generations (101), so it is very likely that no
parameters for GE and CFG-GP would result in full success. This way we will
be able to compare population characteristics more clearly. In the symbolic
regression experiment, CFG-GP converged so fast, that only a relatively small
portion of the statistics concerned what happens until the solution is found.

3.5.1 Experimental setups 1

We will use the standard Santa Fe ant trail map in conjunction with a 600-tick
time limit for each individual and the grammar in Listing 3.2 to replicate the
configuration used in GEVA. Our goal is to compare different methods, not
different grammars, but it is worth noting that the specification of grammar
in this application offers room for subtle but important choices. The terminals
simply represent the ant’s actions and senses but we can decide how to combine
them: for instance the grammar that we use does not allow nested conditional
branching. We can see this as a bit of knowledge about the problem that has
been embedded in the grammar: we (correctly) assume that nested conditional
branching is not necessary for the solution. Additionally, the way the <line>
and <op> nonterminals are chained in <code> and <opcode> productions will
result in relatively high and sparse trees (compare to Listing 3.1 for symbolic re-
gression, which can produce binary branching recursively). Both these features
of the grammar result in a smaller search space and a faster search.

<prog> ::= <code>
<code> ::= <line> | <code> <line>
<line> ::= <condition> | <op>
<condition> ::= if foodAhead(h)==1 then <opcode> else <opcode> end
<op> ::= left(h) | right(h) | move(h)
<opcode> ::= <op> | <opcode> <op>

Listing 3.2: A Lua equivalent to the Groovy grammar used for Santa Fe ant trail
application included with GEVA.

In Section 3.4we have suggested that different operators in CFG-GP and GE
result in different spaces of tree shapes to be searched, but different initialisation
techniques may have also played a role. This time, we will use the same two
initialisation techniques with both methods. For GE (1a) and CFG-GP (1a), we
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will use the “sensible” initialisation as proposed by O’Neill and Ryan (2003)
for GE. The “sensible” initialisation, being a variation on the ramped half-
and-half initialisation (Koza, 1992), is a tree-based method that can be easily
transposed from GE to CFG-GP. It is also used in the Santa Fe application in
GEVA, although not implemented correctly (Nohejl, 2009, sec. 8.3.2). For GE
(1b) and CFG-GP (1b) we will again use the same initialisation for both methods:
“grow” initialisation as used by Whigham (1995) for CFG-GP. We will use the
same maximum height value as for “sensible” initialisation, but the resulting
average heights and distributions of tree shapes will be different.

Other parameters are listed in Table 3.3. Again, we use the same parameters
whenever possible. In the case of mutation rate, which is measured differently
for each method, we use a 0.01 per-codon rate for GE as in the setup used by
GEVA and a 0.1 per-individual rate for CFG-GP as before (see Section 3.4.1 for
details about the choice). We will try to assess the impact of mutation rates in
the discussion of results.

Objective: Find a program for navigating the ant so that it finds all 89
pieces of food on the Santa Fe trail within 600 time units.

Terminal operands: None.
Terminal operators: Left, Right, Move, Food-Ahead.
Grammar: See Listing 3.2.
Fitness cases: One fitness case.
Raw fitness: Number of pieces of food left on the grid after 600 time

units of running the ant’s program in a loop.
Scaled fitness: Same as raw fitness.
Algorithm: Simple with elite size: 10, generations: 101, population:

100.
Selection: Tournament, size: 3.
GE initialisation: GE (1a): Ramped (“sensible”), maximum height: 6.

GE (1b): “Grow” method (Whigham, 1995), maximum
height: 6.

CFG-GP initialisation: CFG-GP (1a): Ramped (“sensible”), maximum height: 6.
CFG-GP (1b): “Grow” method (Whigham, 1995),
maximum height: 6.

GE operators: Variable-length one-point crossover, probability: 0.9.
Codon-level mutation, probability: 0.01.

CFG-GP operators: Crossover (Whigham, 1995), probability: 0.9.
Mutation (Whigham, 1995), probability: 0.1.

Common parameters: Maximum tree height: 20.
GE parameters: Maximum wraps: 3. Codon size: 8.
Success predicate: Raw fitness equals 0 (all food eaten).

Table 3.3: Santa Fe ant trail, parameters for setups 1, GE (1a, 1b), CFG-GP (1a, 1b).
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3.5.2 Results from setups 1

Both methods were relatively unsuccessful. CFG-GP with either initialisation
technique achieved a substantially higher success rate (191 and 206 out of 1000
runs were successful) than GE (9 and 24 runs out of 1000), see Figure 3.7. The
differences caused by initialisation are small relatively to differences between
GE and CFG-GP. The same pattern can be observed in tree characteristics
except for bushiness where all differences are too small to draw a conclusion.
Regardless of the initialisation method, the GE setups and likewise the CFG-GP
setups converge to similar characteristics.

As in the previous setups for symbolic regression, in the long run CFG-
GP with either initialisation method results in trees that are higher and more
varied in height and number of choice nodes. The difference in success of the
two methods is, however, much larger than before. Could this be attributed
to a disparity in mutation rates? The coefficient of variance of fitness in the
symbolic regression setups was either similar for both methods or higher for
GE, now it is lower for GE (see Figure 3.8), which would suggest a lower
effective mutation rate given no disparity in other parameters.
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Figure 3.7: Cumulative frequency of success of GE and CFG-GP in Santa Fe ant trail,
setups 1. (Scale from 0 to 250 out of 1000.)

We have observed the same kind of differences in success rates and tree
characteristics between GE and CFG-GP as before but now independently of
initialisation. Comparison of fitness statistics suggests, however, that part of
the difference in success may be attributed to different effective mutation rates.
Additionally, the less sophisticated “grow” method was more successful with
both GE and CFG-GP. We will investigate the effect of initialisation using the
second set of experimental setups.
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Figure 3.8: Fitness in GE and CFG-GP in Santa Fe ant trail, setups 1. The plots show
averages, taken over 1000 runs, of the following population statistics: av-
erages, and coefficients of variance of fitness.
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3.5.3 Experimental setups 2

In the second round we will use GE with bit-level, instead of codon-level,
mutation rate 0.01 with the aim to increase the effective mutation rate. We
expect this to cause GE to have comparable (or higher) CV of fitness than
CFG-GP. We will also use a different initialisation method then in setups 1:
the ramped half-and-half method modelled exactly after that introduced by
Koza, 1992, which differs from the “sensible” initialisation (O’Neill and Ryan,
2003) most importantly by ensuring generation of unique trees at the expense
of raising their height above the designated maximum (in the same way as the
“grow” method used by Whigham, 1995). We suppose that this caused the
relative success of the simpler “grow” method in setups 1. If this is correct, the
ramped half-and-half initialisation should fare at least as well as the “grow”
initialisation.

The differences from the previous setups are listed in Table 3.4.

GE initialisation: Ramped half-and half (unique trees), maximum height: 6.
GE operators: Crossover as before. Bit-level mutation, probability: 0.01.
CFG-GP initialisation: Ramped half-and half (unique trees), maximum height: 6.
CFG-GP operators: Crossover and mutation as before.

Table 3.4: Santa Fe ant trail, parameters for setups 2, CFG-GP (2), and GE (2), where
different from setups 1 (Table 3.3).

3.5.4 Results from setups 2

The final success rates of CFG-GP and GE are 710 and 251 (see Figure 3.10), both
several times higher than in the previous setups. The ramped half-and half
initialisation has created trees of height only slightly lower than the “grow”
initialisation but higher than the “sensible” initialisation. This shows that gen-
eration of unique trees, and the automatic increase of height it causes if needed,
are vital parts of the ramped half-and-half initialisation. Without uniqueness it
has perform worse than a simple “grow” method with uniqueness, while with
uniqueness it performs substantially better.

The gap in success between CFG-GP and GE is also smaller than in the pre-
vious setups, and as we can see in Figure 3.11, the higher effective mutation rate
has raised the CV of fitness for GE slightly above that of CFG-GP throughout
the run.

Thus, we have evaluated GE and CFG-GP with similar effective mutation
rates and the same initialisation with best results so far for both methods in the
Santa Fe ant trail. The statistics of tree shapes of both methods are still related
to each other in the same way as before and GE is still less successful.
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Figure 3.10: Cumulative frequency of success of GE and CFG-GP in Santa Fe ant trail,
setups 2.

3.5.5 Conclusion

The Santa Fe ant trail problem differed from the simple symbolic regression.
Foremost, it was more difficult to solve given the relatively small population
size and number of generations. Also, the grammar we used was more re-
strictive in the sense that it excluded some constructs that traditional genetic
programming would allow in this problem (nested if-then-else conditions) and
that it did not allow recursive binary branching. Without recursive binary
branching, trees are less bushy, and consequently there are not as many unique
trees of a given height.

We have used the same parameters based on the setup used in GEVA
for both GE and CFG-GP, including the same initialisation method (“sensible
initialisation” proposed for GE by O’Neill and Ryan, 2003). We have also
evaluated both methods with the “grow” initialisation (designed for use with
CFG-GP by Whigham, 1995), and the ramped half-and-half initialisation (ori-
ginally designed for tree-based GP by Koza, 1992). We have adjusted mutation
rate for GE to reach similar effect in both methods (the mutation operators are
qualitatively different, so we could do this only based on the CV of fitness).
In all cases the methods displayed the same differences in tree characteristics
we have already observed in simple symbolic regression (Section 3.4), which
prevailed in the long run over the effect of initialisation. At the same time,
we could see that both methods benefit from the same changes in initialisa-
tion. Koza’s ramped half-and-half initialisation had the best results of the three
tree-based techniques, partially thanks to the generation of unique individuals
which automatically raises tree height as necessary.
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Figure 3.11: Fitness in GE and CFG-GP in Santa Fe ant trail, setups 2. The plots show
averages, taken over 1000 runs, of the following population statistics:
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Figure 3.12: Tree characteristics of GE and CFG-GP in Santa Fe ant trail, setups 2. The
plots show averages, taken over 1000 runs, of the following population
statistics: averages and coefficients of variance of tree height and tree
bushiness, average and variance of the number of choice nodes.



3.6 Dot product symbolic regression

In the previous experiments we have compared GE and CFG-GP as imple-
mented in AGE, and we started with setups based on those used for GE in
GEVA. In this section we will compare three methods: GE, CFG-GP, and LO-
GENPRO. The dot product problem and the initial setup we will use has been
described by Wong and Leung (2000, sec. 6.1.2), who use it to demonstrate that
LOGENPRO can express type constraints, thus outperforming basic tree-based
GP, and generate ephemeral constants using logic goals (see Section 2.3).

start -> s-expr(number).
s-expr([list,number,?n]) -> [ (mapcar(function ], op2, [ ) ],

s-expr([list,number,?n]),
s-expr([list,number,?n]), [ ) ].

s-expr([list,number,?n]) -> [ (mapcar(function ], op1, [ ) ],
s-expr([list,number,?n]), [ ) ].

s-expr([list,number,?n]) -> term([list,number,?n]).
s-expr(number) -> term(number).
s-expr(number) -> [ (apply(function ], op2, [ ) ],

s-expr([list,number,?n]),[ ) ].
s-expr(number) -> [ ( ], op2, s-expr(number),

s-expr(number), [ ) ].
s-expr(number) -> [ ( ], opl, s-expr(number), [ ) ].
op2 -> [ + ].
op2 -> [ - ].
op2 -> [ * ].
op2 -> [ % ].
op1 -> [ protected-log ].
term([list,number,n]) -> [ X ].
term([list,number,n]) -> [ Y ].
term(number) -> { random(-10, 10, ?a) }, [ ?a ].

Listing 3.3: Logic grammar (LOGENPRO) for dot product symbolic regression in Lisp
(from Wong and Leung, 2000). Unlike in a DCG, -> is the production sym-
bol, logic variables are denoted by leading question marks, and terminals
(in square brackets) do not need additional quotes.

To this end, Wong and Leung (2000) use an elaborate logic grammar (List-
ing 3.3) in a formalism based on DCGs. The terminals that contain calls to
(1) mapcar and (2) apply are segments of Lisp code that apply the scalar op-
erators to vectors (1) by components and (2) to components of a single vector,
respectively. This is not something inherent to logic grammars, it is a conveni-
ent way to express different types of unary and binary operators in Lisp, which
LOGENPRO uses to evaluate individuals.

What is interesting about the grammar is how it expresses type constraints.
Two types are used: scalars and vectors of a given number of components. The

47



grammar expresses the types with arguments to functors term, and s-expr:
number for scalars and [list,number,?n] or [list,number,n] for vectors.
Seemingly, this takes advantage of the formalism of logic grammars and n could
express the number of vector components, but upon further inspection, we see
that all occurrences of the variable n (denoted ?n) are unified with each other
in every derivation, and in the end, via the two penultimate productions, also
with the atom n. The compound term [list,number,n] does not have any in-
herent meaning, so all occurrences of [list,number,?n] and [list,number,n]
could be replaced with an arbitrary atom (say vector) without any change to
the semantics of the grammar. Therefore all rules without logic goals in the
grammar could also be represented in a context-free grammar.

The last rule of the grammar contains a logic goal random(-10, 10, ?a),
which unifies the variable a with a random floating-point number between
-10 and -10. LOGENPRO evaluates logic goals only once: when generating
the trees in initialisation or mutation, so this results in the same behaviour as
the ephemeral random constants as used Koza (1992). This is the only case
of actual use of the computational power of logic grammars demonstrated by
Wong and Leung (2000). As the efficient evolution of ephemeral constants in
GP is a nontrivial problem on its own (see Dempsey et al., 2009, ch. 5–6) and
the solution to the dot product problem does not actually require constants,
we will use the simple and obvious technique for CFG-GP and GE: there will
be fixed nonterminals representing several arbitrarily chosen numbers from
the target range. We will also evaluate LOGENPRO’s performance with this
simpler approach using a modified version of the original grammar (outlined
inListing 3.4).

The grammar is obtained from Listing 3.3 by replacing the production

term(number) -> { random(-10, 10, ?a) }, [ ?a ].

with the following 21 productions:

term(number) -> [ -10 ].
term(number) -> [ -9 ].

...
term(number) -> [ 9 ].
term(number) -> [ 10 ].

Listing 3.4: Alternative logic grammar (LOGENPRO) for dot product symbolic regres-
sion in Lisp. Instead of generating random numbers via logic goals, it
includes several arbitrary values as terminals.

This application is interesting chiefly as a demonstration of how grammars
can efficiently describe type constraints. Once the constraints are enforced, it
is a relatively easy problem: the tree height of the shortest solution is 5 and
generating populations of 100 individuals using the “grow” method without
uniqueness with maximum height 5 finds a solution in 241 cases out of 1000
(experiment performed in the same way as all experiments in the chapter).
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3.6.1 Experimental setups

In the setup for LOGENPRO we will use the two presented grammars: the one
used by Wong and Leung (2000), and the modified version for the sake of better
comparison with CFG-GP and GE. Other parameters were chosen according
to the description of the basic LOGENPRO algorithm and the original dot
product experiment by Wong and Leung (2000, sec. 5.5, 6.1.2). The book,
however, omits selection method (LOGENPRO uses either roulette-wheel or
tournament selection), operator probabilities, and maximum tree height (for
initialisation and during the run). I have chosen these parameters except the
mutation rate according to the configuration files for the dot product problem
provided to me along with the LOGENPRO source code by Dr Man Leung
Wong. The mutation rate was set to 0.05 instead of 0 because:

– Wong and Leung (2000) present LOGENPRO as a method that uses two
operators, crossover and mutation, evaluating a special case of the method
would not be as valuable,

– LOGENPRO with mutation performed slightly better in this problem.
Additionally, I have redefined the protected-log function so that it returns

1 when undefined as specified by Wong and Leung (2000). (The source code
supplied by Dr Wong defined the values for arguments less than 1 as 0.)

GE and CFG-GP were set up in the same way when possible. Both meth-
ods used the “grow” method without uniqueness, like LOGENPRO did, and
the same grammar (Listing 3.5), which emulates the alternative grammar for
LOGENPRO. For GE we have lowered the nominal mutation rate (similarly to
the previous experiments). Table 3.5 contains the full parameters of the setups.

<start> ::= return <num>
<num> ::= <op2>v(<vec>)

| <op2>(<num>,<num>)
| <op1>(<num>)
| <num-term>

<vec> ::= v<op2>(<vec>,<vec>)
| v<op1>(<vec>)
| <vec-term>

<op2> ::= add | sub | mul | div
<op1> ::= log
<vec-term> ::= x | y
<num-term> ::= -10|-9|-8|-7|-6|-5|-4|-3|-2|-1

| 0|1|2|3|4|5|6|7|8|9|10

Listing 3.5: Context-free grammar in BNF for dot product symbolic regression in Lua.
Vector-to-scalar operator names are suffixed by v. Vector operator names
and prefixed by v. Scalar operators are named without suffix or prefix:
add, sub, mul, div, log.

49



Objective: Find a real-valued function of two three-component
vector variables ~x, ~y that computes the dot product ~x · ~y.

Terminal operands: ~x, ~y, ephemeral scalar constants between −10 and 10.
Terminal operators: Addition, subtraction, multiplication, and division in

three variants: scalar, vector (by components),
vector-to-scalar (applied to components of a single
vector); binary logarithm: scalar and vector (by
components). Logarithm and division are protected
(returning 1 when undefined).

Grammar: See Listing 3.3 (original LOGENPRO grammar, results
marked with *), Listing 3.4 (modified LOGENPRO
grammar), Listing 3.5 (grammar for GE and CFG-GP).

Fitness cases: 10 vectors with components from {0, 1, 2, 3} randomly
generated for each run.

Raw fitness: The sum of absolute errors taken over the 10 fitness cases.
Scaled fitness: Same as raw fitness.
Algorithm: Simple, generations: 100, population: 100.
Selection: Tournament, size: 7.
LOGENPRO init.: “Grow” method without uniqueness (Wong and Leung,

2000), maximum height: 6.
CFG-GP initialisation: “Grow” method without uniqueness, maximum height:

6.
GE initialisation: “Grow” method without uniqueness, maximum height:

6.
LOGENPRO operators: Crossover (Wong and Leung, 2000), probability: 0.9.

Mutation (Wong and Leung, 2000), probability: 0.05.
Crossover and mutation are mutually exclusive.

CFG-GP operators: Crossover (Whigham, 1995), probability: 0.9.
Mutation (Whigham, 1995), probability: 0.05.

GE operators: Fixed-length one-point crossover, probability: 0.9.
Bit-level mutation, probability: 0.001.

Common parameters: Maximum tree height: 9.
GE parameters: Maximum wraps: 3. Codon size: 8.
Success predicate: Raw fitness lower than 0.00001 (to allow for

floating-point round-off error.)

Table 3.5: Dot product symbolic regression, parameters for LOGENPRO, CFG-GP, and
GE. Note: Although the LOGENPRO implementation measures tree height
by nodes instead of edges, the table follows the established convention (see
page 5).



3.6.2 Results

The success rates of the four setups (Figure 3.13) are similar, often without
a significant difference, only during the first thirteen generations. Thereafter,
LOGENPRO with the original grammar is significantly less successful then
any of the other three setups, LOGENPRO with the modified grammar is not
significantly different from CFG-GP in generations 28 through 59, and CFG-GP
is not significantly different from GE in generations 60 through 70, 75, 76, and
then from 82 on. LOGENPRO with the original grammar, LOGENPRO with
the modified grammar, CFG-GP, and GE have respectively succeeded in 53, 62,
68, and 68 of the 100 runs.
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Figure 3.13: Cumulative frequency of success of LOGENPRO, CFG-GP and GE in
symbolic regression of the dot product ~x · ~y.

The most pronounced was the difference caused by the change of grammar
in LOGENPRO, which can be attributed to the difference in search space size,
given that ephemeral constants are of no use in this problem. As we could
expect based on our discussion of the grammar used by LOGENPRO, there is
no practical difference between the performance of LOGENPRO with a logic
grammar and that of CFG-GP with a context-free grammar.

The 0.53 success rate (53 out of 100) obtained from LOGENPRO with the
original grammar is lower than the 0.8 rate reported by Wong and Leung (2000,
sec. 6.1.2, approximate reading of a plot). Regardless of the number of trials
performed (not mentioned by Wong and Leung, 2000), such a difference would
be statistically significant. I have not been able to replicate this success rate by
varying operator probabilities, maximum tree heights or selection parameters,
with either grammar. That said, even with the more modest success rate their
comparison with tree-based GP would still hold (success rate of GP with the

51



same population size was reported below 0.1).
As LOGENPRO does not provide any statistics about the generated trees,

we can compare these only for CFG-GP and GE, see Figure 3.14. In contrast
with the previous experiments, in which CFG-GP performed better, GE has
now reached exactly the same level of success, and in a large part of the
run, there was no significant difference in success between the two. Despite
these similar rates of success, we can still observe the differences in the tree
characteristics: CFG-GP has soon reached both higher average values and CV
of height and bushiness and maintained them throughout the run. As we have
noted in the beginning of Section 3.6, correct solutions occur relatively densely
among random trees of height 5, so the lower tree height close to 5 maintained
by the operators of grammatical evolution (see Figure 3.14) are a very likely
explanation for the improved success of GE.

3.6.3 Conclusion

We have shown that the use of logic grammars to describe types demonstrated
by Wong and Leung (2000) does not require any of their distinctive features
(unification and incorporation of logic goals): the same can be done using a
context-free grammar in either CFG-GP or GE. Both methods have performed
on a par with LOGENPRO (with a slightly higher success rate) using an equi-
valent context-free grammar and other parameters.

One could conceive of a type system that could be properly enforced using a
logic grammar but not a context-free grammar. It is not obvious, however, that
LOGENPRO would perform well if such a type system was necessary. It would
depend on how efficiently the genetic operators would be able to fulfil their
roles in the evolutionary algorithm under the more complex type constraints.
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3.7 Symbolic regression with ADFs

In this section, we will try to replicate another experiment presented by Wong
and Leung (2000) using LOGENPRO, and compare the results with the other
two grammar-based methods. It is again an instance of symbolic regression
with multiple types but the target function is more complex. It has three
vector variables ~x, ~y, ~z, and can be expressed as ~x · ~y + ~y · ~z, where · is the
dot product. To find an equivalent expression in a random search using the
“grow” initialisation method with the grammar that we are going to use is an
order of magnitude more difficult than it was to find the dot product. Wong
and Leung (2000) designed the experiment to show that LOGENPRO can use
ADFs similarly as traditional genetic programming (see Section 2.3).

To emulate ADFs, the grammar employed by Wong and Leung (2000) (List-
ing 3.6) uses two sets of nonterminals: those for the main program (s-expr(· · · ),
term(· · · )) and those for the body of the ADF (s-expr2(· · · ), term2(· · · )). This
way the terminals X, Y, Z, ADF0, and arg0, arg1 can be restricted to occur only
in the main subtree and the ADF subtree, respectively, and only subtrees of the
same kind can be combined via crossover, which is equivalent to how ADFs
are handled in tree-based GP. The grammar does not depend on any specific
features of logic grammars (see explanation for a similar grammar in the previ-
ous experiment), so an equivalent CFG can be constructed (Listing 3.7) for use
with GE and CFG-GP.

3.7.1 Experimental setups

As in Section 3.6, the setup of LOGENPRO replicates the one used by Wong
and Leung (2000), and the missing parameters are chosen based on the config-
uration file obtained from Dr Wong. For the same reasons as before I also use
the 0.05 mutation rate. Table 3.6 contains the full details of parameters for LO-
GENPRO, CFG-GP, and GE. The parameters are unchanged from the previous
experiment without ADFs except for the number of generations lowered to 50
and a smaller number of terminals. Note that while the problem is obviously
more difficult than the previous one, the search space has been restricted by
removing several terminals from the grammar.

3.7.2 Results

All three methods have produced similar results in terms of success (see Fig-
ure 3.15): 51, 45, and 56 runs were successful out of 100 in the case of LO-
GENPRO, CFG-GP, and GE, respectively. There were significant differences in
success between all of them in all generations of the second half of the run. In
this experiment, grammatical evolution achieved the best performance of the
three methods.

As in the previous experiment without ADFs, the success rate I have been
able to achieve with LOGENPRO was significantly lower than that reported
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start -> [ (progn (defun ADF0(arg0 arg1) ],
s-expr2(number), [ ) ],
s-expr(number), [ ) ].

s-expr([list,number,?n]) -> [ (mapcar(function ], op2, [ ) ],
s-expr([list,number,?n]),
s-expr([list,number,?n]), [ ) ].

s-expr([list,number,?n]) -> term([list,number,?n]).
s-expr(number) -> [ (apply (function ], op2, [ ) ],

s-expr2([list,number,?n]), [ ) ].
s-expr(number) -> [ ( ], op2, s-expr(number),

s-expr(number), [ ) ].
s-expr(number) -> [ (ADF0 ],

s-expr([list,number,?n]),
s-expr([list,number,?n]), [ ) ].

term([list,number,n]) -> [ X ].
term([list,number,n]) -> [ Y ].
term([list,number,n]) -> [ Z ].
s-expr2([list,number,?n]) -> [ (mapcar(function ], op2, [ ) ],

s-expr2([list,number,?n]),
s-expr2([list,number,?n]), [ ) ].

s-expr2([list,number,?n]) -> term2([list,number,?n]).
s-expr2(number) -> [ (apply(function ], op2, [ ) ],

s-expr2([list,number,?n]), [ ) ].
s-expr2(number) -> [ ( ], op2, s-expr2(number),

s-expr2(number), [ ) ].
term2([list,number,n]) -> [ arg0 ].
term2([list,number,n]) -> [ arg1 ].
op2 -> [ + ].
op2 -> [ - ].
op2 -> [ * ].

Listing 3.6: Logic grammar (LOGENPRO) for symbolic regression of the expression
~x · ~y + ~y · ~z in Lisp (from Wong and Leung, 2000).

by Wong and Leung (2000, sec. 6.1.3). A rate higher than 0.65 can be read from
their plot but even the lower one we have reached would be high enough to
outperform GP without any constraints, for which they report a success rate
lower than 0.1.

We can observe the same relationship between tree characteristics of GE
and CFG-GP as in the previous experiment.

Wong and Leung (2000) do neither offer any details about the solutions
found with their setup, nor do they compare the results with a LOGENPRO
setup without ADFs. It is however rather conspicuous that the target expres-
sion ~x · ~y + ~y · ~z can be rewritten more succinctly as ~y · (~x + ~z), where the dot
product appears only once. One would not expect a strong selection pressure
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<start> ::= function adf0(arg0,arg1) return <num'> end
return <num>

<num> ::= <op2>v(<vec>)
| <op2>(<num>,<num>)
| adf0(<vec>,<vec>)

<vec> ::= v<op2>(<vec>,<vec>)
| <vec-term>

<num'> ::= <op2>v(<vec'>)
| <op2>(<num'>,<num'>)

<vec'> ::= v<op2>(<vec'>,<vec'>)
| <vec'-term>

<vec-term> ::= x | y | z
<vec'-term> ::= arg0 | arg1
<op2> ::= add | sub | mul

Listing 3.7: Context-free grammar in BNF for symbolic regression of the expression
~x · ~y + ~y ·~z in Lua. Vector-to-scalar operator names are suffixed by v. Vector
operator names and prefixed by v. Scalar operators are named without
suffix or prefix: add, sub, mul.

to evolve a building block that needs to be used a single time. Indeed, out of
the 51 solutions found by the successful runs of LOGENPRO I have performed,
24 use ADFs. 21 out of the 24 ADFs perform just addition on the components
of one of its arguments. Two ADFs out of the remaining three do compute the
dot product, which is then used in an expression equal to ~y · (~x + ~z), and the
last remaining ADF computes a more complex expression ~arg0 · ( ~arg1 − ~arg0),
which is then used in a similar way. The experiments with GE and CFG-GP
had the same outcome: ADFs are not used as intended in any of the 100 runs.

This suggest that the experiment devised by Wong and Leung (2000) is
not suitable for demonstrating the ability to use ADFs. I have performed it
again with CFG-GP and GE but with ADF-related structures removed from the
grammar (see Figure 3.17). The removal of ADFs has improved performance
significantly for CFG-GP (from 45 to 55 successful runs out of 100), and insigni-
ficantly for GE (from 56 to 57 successful runs). This reflects that GE operators
are grammar-agnostic as a result of the genotype-phenotype distinction, and
so crossover can occur between a function-defining subtree and a main subtree
regardless of the grammar. Without ADFs, CFG-GP and GE achieved similar
performance: there is a significant difference in generations 1 through 16 and
then only in the last 7 generations.

3.7.3 Conclusion

We have discovered that the problem specified by Wong and Leung (2000)
is not suitable for evaluating performance grammar-based GP methods with
automatically defined functions as it can be solved more simply and efficiently
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Figure 3.15: Cumulative frequency of success of LOGENPRO, CFG-GP, and GE in
symbolic regression of the expression ~x · ~y + ~y · ~z.

without them. Nevertheless we have made three valuable observations. First,
GE and CFG-GP have performed on a par with LOGENPRO. Secondly, as in
the previous experiments, CFG-GP has in the long run produced more varied
tree shapes, as characterised by bushiness and height. Thirdly, GE has suffered
less from the unnecessary addition of ADF-related structures to the grammar
because, in contrast with CFG-GP and LOGENPRO, the syntactical constraints
do not constrain the operators, which act only on the genotype. In order to
enforce similar behaviour in grammatical evolution, we would have to use
separately mapped chromosomes for each function-defining branch and for
each value-returning branch and allow crossover only between chromosomes
of the same type.
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Objective: Find a real-valued function of three three-component
vector variables ~x, ~y, ~z that yields ~x · ~y + ~y ·~z, where · is the
dot product.

Terminal operands: ~x, ~y, ~z. Within ADF: ~arg0, ~arg1.
Terminal operators: Addition, subtraction, and multiplication in three

variants: scalar, vector (by components), vector-to-scalar
(applied to components of a single vector). Out of ADF:
the vector-to-scalar function ADF0 of two arguments.

Grammar: See Listing 3.6 (LOGENPRO), Listing 3.7 (GE and
CFG-GP).

Fitness cases: 10 vectors with components from {0, 1, 2, 3} randomly
generated for each run.

Raw fitness: The sum of absolute errors taken over the 10 fitness cases.
Scaled fitness: Same as raw fitness.
Algorithm: Simple, generations: 50, population: 100.
Selection: Tournament, size: 7.
LOGENPRO init.: “Grow” method without uniqueness (Wong and Leung,

2000), maximum height: 6.
CFG-GP initialisation: “Grow” method without uniqueness, maximum height:

6.
GE initialisation: “Grow” method without uniqueness, maximum height:

6.
LOGENPRO operators: Crossover (Wong and Leung, 2000), probability: 0.9.

Mutation (Wong and Leung, 2000), probability: 0.05.
Crossover and mutation are mutually exclusive.

CFG-GP operators: Crossover (Whigham, 1995), probability: 0.9.
Mutation (Whigham, 1995), probability: 0.05.

GE operators: Fixed-length one-point crossover, probability: 0.9.
Bit-level mutation, probability: 0.001.

Common parameters: Maximum tree height: 9.
GE parameters: Maximum wraps: 3. Codon size: 8.
Success predicate: Raw fitness lower than 0.00001 (to allow for

floating-point round-off error.)

Table 3.6: Symbolic regression of the expression ~x ·~y+~y ·~z, parameters for LOGENPRO,
CFG-GP, and GE. Note: Although the LOGENPRO implementation soft-
ware tree height by nodes instead of edges, the table follows the established
convention (see page 5).
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Figure 3.16: Tree characteristics of CFG-GP and GE in symbolic regression of the ex-
pression ~x · ~y + ~y · ~z. The plots show averages, taken over 100 runs, of
the following population statistics: averages and coefficients of variance
of tree height and tree bushiness, average and variance of the number of
choice nodes.
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3.8 Boolean parity functions with ADFs

In the previous experiment we have shown that the symbolic regression prob-
lem used by Wong and Leung (2000) to demonstrate the use of ADFs in LO-
GENPRO is not fit for the purpose. Additionally, the problem involves multiple
types, so a grammar-based approach with a suitable grammar would always
have an advantage over tree-based GP without type constraints, regardless
of how it handled ADFs. Specifying ADFs using a context-free grammar in
CFG-GP (or LOGENPRO) will have the same effect on operators as the con-
straints Koza (1992) has used with ADFs in tree-based GP. The operators used
in grammatical evolution, however, operate on the genotype rather than on the
grammatically constrained phenotype. In the previous experiment, we have
observed that this is helpful, if the ADF-related structures are unnecessary, but
we have yet to find out how well GE can perform when ADFs are actually
needed.

To be able to compare performance of GE both with CFG-GP and tree-based
GP we will use the problem of symbolic regression of the Boolean parity func-
tions (see Section 2.4). We will essentially try to replicate the results achieved
by Koza (1992) with GP in a series of experiments with these functions.

3.8.1 Experimental setups

We will perform a series of the following experiments:
– symbolic regression of the even-3-parity function without ADFs,
– symbolic regression of the even-4-parity function with and without ADFs,
– symbolic regression of the even-5-parity function with and without ADFs,
– symbolic regression of the even-6-parity function with ADFs.

There will be n − 2 function-defining branches for an n-ary parity function
with ADFs. The two ADFs for the even-4-parity function will have 3 and
4 arguments. The three ADFs for the even-5-parity function will have 2, 3 and
4 arguments. The four ADFs for the even-6-parity function will have 2, 3, 4,
and 5 arguments.

We will use the same parameters for CFG-GP as Koza (1992, sec. 20.1) did for
GP. In order to make the setup as close as possible to the original setup for GP,
we will use grammars that mimic the behaviour of tree-based GP by having
one nonterminal for each GP node type, and a GP-like crossover operator,
which operates on inner tree nodes with 90% probability. Koza did not use
a mutation operator, but this variant of crossover effectively emulates a point
mutation with 10% probability. Listing 3.8 and Listing 3.9 provide examples of
the grammars we will use, the other grammars follow the same pattern. For
GE, we will use its usual operators with conservatively chosen rates, the other
parameters remain unchanged. The full setup for both methods is specified in
Table 3.7.
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Objective: Find an expression for the even parity function of 3, 4, 5,
and 6 arguments using ADFs as described in the text.

Terminal operands: A subset of d0, d1, . . . , d5 (variables), a0, a1, . . . , d4 (ADF
parameters) based on arity and whether ADFs are used.

Terminal operators: Boolean connectives and, or, nand, nor; a subset of adf0,
adf1, adf2 based on arity and whether ADFs are used.

Grammar: See Listing 3.8 and Listing 3.9 for examples.
Fitness cases: The set of all possible arguments.
Raw fitness: The number of fitness cases for which the value returned

by the expression is different from the correct value of the
even parity function.

Scaled fitness: Koza’s adjusted fitness, and greedy over-selection with
the parameters used by Koza (1992).

Algorithm: Simple, generations: 51, population: 4000.
Selection: Roulette-wheel.
CFG-GP initialisation: Ramped half-and half (unique trees), maximum height:

8/7 (with/without ADFs).
GE initialisation: Ramped half-and half (unique trees), maximum height:

8/7 (with/without ADFs).
CFG-GP operators: Only GP-like crossover (Koza, 1992), probability: 0.9.
GE operators: Fixed-length one-point crossover, probability: 0.9

Bit-level mutation, probability: 0.002.
Common parameters: Maximum tree height: 18/19 (with/without ADFs).
GE parameters: Maximum wraps: 3. Codon size: 8.
Success predicate: Raw fitness equal to 0.

Table 3.7: Symbolic regression of the Boolean parity function, CFG-GP, and GE. Note:
the maximum initialisation tree height and the overall maximum tree height
correspond to GP tree heights 6 and 17, respectively, used by Koza (1992).

3.8.2 Results

Figure 3.18 shows plots of cumulative frequency of success for all experiments.
In Table 3.8we compare the final success rates with those reported for tree-based
GP by Koza (1992). Koza performed tens of runs in all experiments except for
even-5-parity with ADFs (7 runs) and even-6-parity with ADFs (unreported).
Both CFG-GP and GE perform surprisingly well without ADFs compared to
the results reported by Koza (1992) for GP: for instance in the even-4-parity,
CFG-GP has more than twice the success rate of GP, and even the even-5-parity
without ADFs intimidates neither CFG-GP nor GE.

We are, however, more interested in the performance with ADFs. Context-
free grammar genetic programming performs only slightly worse than tree-
based genetic programming in the even-4-parity problem (96% vs. 99% suc-
cess). For even-5-parity, Koza (1992) reports results from mere 7 runs, so I will
avoid drawing any conclusion from the comparison: incidentally the first 7
runs I have performed with CFG-GP were also successful.) CFG-GP performs
relatively well even in the even-6-parity problem (Koza does not report any
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<start> ::= return <expr>
<expr> ::= (<expr> and <expr>) | (<expr> or <expr>)

| not (<expr> and <expr>) | not (<expr> or <expr>)
| d0 | d1 | d2

Listing 3.8: Context-free grammar in BNF for symbolic regression of a ternary Boolean
function in Lua. The connectives nand and nor are expressed using the
three basic connectives not, or, and.

<start> ::= function adf0(a0,a1) return <expr0> end
function adf1(a0,a1,a2) return <expr1> end
return <expr>

<expr> ::= (<expr> and <expr>) | (<expr> or <expr>)
| not (<expr> and <expr>) | not (<expr> or <expr>)
| adf0(<expr>,<expr>) | adf1(<expr>,<expr>,<expr>)
| d0 | d1 | d2 | d3

<expr0> ::= (<expr0> and <expr0>) | (<expr0> or <expr0>)
| not (<expr0> and <expr0>)
| not (<expr0> or <expr0>) | a0 | a1

<expr1> ::= (<expr1> and <expr1>) | (<expr1> or <expr1>)
| not (<expr1> and <expr1>)
| not (<expr1> or <expr1>) | a0 | a1 | a2

Listing 3.9: Context-free grammar in BNF for symbolic regression of a quaternary
Boolean function using ADFs in Lua.

precise results). Overall, the results of CFG-GP with ADFs are similar to those
of tree-based GP as far as we can judge from the results provided by Koza
(1992).

Grammatical evolution performs substantially worse with ADFs than CFG-
GP. While it reached a significantly lower success rate also without ADFs, the
difference between CFG-GP and GE was not that marked. Clearly, ADF still
improve the performance of GE in this problem, but not as effectively as in the
case of CFG-GP and tree-based GP. This is likely a result of the different effect
grammar-defined ADFs have on the operators of CFG-GP and GE, as we have
already noted.

Figure 3.19 shows plots of tree characteristics in the even-5-parity with
ADFs experiment. This time, GE produces trees of higher and more varied tree
bushiness and also more varied height. This is not very surprising because we
have set up CFG-GP to use the GP-like crossover operator and no mutation,
which is normally responsible for generation of new subtrees. Nevertheless,
CFG-GP creates much larger trees thanks to a steadily growing tree height,
while the operators of GE do not allow higher and larger trees to evolve. (This
also applies to tree characteristics produced by the two methods in the other
experiments. The plots are omitted for brevity.)
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Method GP CFG-GP GE
ADFs % ! % ! % !

even-3-parity 100 % – 100 % – 93 % –
even-4-parity 45 % 99 % 93 % 96 % 25 % 77 %
even-5-parity †0 % ‡7 of 7 7 % 72 % 8 % 37 %
even-6-parity – *> 0 – 44 % – 22 %

†: no success in 20 runs. ‡: 100% success but only in 7 runs.
*: a solution can be found within 20 runs.

Table 3.8: Comparison of success rates of tree-based GP, CFG-GP, and GE in the even
parity problems.

3.8.3 Conclusion

In the series of experiments with symbolic regression of the Boolean even par-
ity functions using ADFs, CFG-GP has achieved success rates comparable with
those reported by Koza (1992) for tree-based GP. The success rates of GE were
substantially lower, but nevertheless ADFs improved its performance. We can
conclude that the grammar-based ADFs we have used are also suitable for
grammatical evolution, but if we know beforehand that ADFs will be needed
for some problem, tree-based GP or CFG-GP will likely provide a superior
performance. This reveals what might be a general problem with GE: if indi-
viduals consist of subtrees with terminals of mutually incompatible types, we
can expect the crossover operator to perform poorly in GE.
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Figure 3.18: Cumulative frequency of success of CFG-GP and GE with and without
ADFs in symbolic regression of the Boolean even parity functions.
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Figure 3.19: Tree characteristics of CFG-GP and GE with ADFs in symbolic regression
of the Boolean even-5-parity function. The plots show averages, taken
over 100 runs, of the following population statistics: averages and coeffi-
cients of variance of tree height and tree bushiness, average and variance
of the number of choice nodes.



3.9 Exam timetabling hyper-heuristics

Exam timetabling is a real-world problem of scheduling exams for university
courses under given constraints. The constraints may vary according to institu-
tion but the most usual hard constraint is that no student can attend two exams
at the same time, and the most usual soft constrain is that exams scheduled
very close to each other for some students should be avoided. Most literat-
ure uses problems that can be scheduled relatively easily to satisfy the hard
constraint, and the focus is on optimising the soft one. Various methods have
been applied to exam timetabling and a widely used set of problem data has
been established by Carter et al. (1996). The problems are based on real data
from thirteen universities and are often referred to as the University of Toronto
benchmark data.

Recently, Bader-El-Den et al. (2009) have applied a grammar-based GP
hyper-heuristic approach (see Section 2.5) to timetabling and have evaluated
the method on the above mentioned data sets. As follows from using a hyper-
heuristic approach, they compose several simple hand-crafted heuristics using
conditional branching, to create a new heuristic. The grammar-based GP part
of their method (called GPHH, Grammar-based Genetic Programming Hyper-
Heuristic) claims to be “a new, hybrid way of using grammars in GP” different
from both Koza’s GP and Whigham’s CFG-GP: the method operates according
to the grammar directly on GP trees instead of derivation trees in order to
increase performance. Other than this difference, which could be considered
an implementation detail, the method based on the “grow” initialisation and
the two familiar operators seems practically identical to CFG-GP.

Bader-El-Den et al. (2009) have evaluated their method on ten problems
from the Toronto data set and their results were comparable with several exist-
ing algorithms. In the previous sections, we have applied GE and CFG-GP to
several artificial problems that are either commonly used in the realm of genetic
programming or highlight the use of grammar for ensuring type constraints.
These artificial problems were also well-suited for comparing the characterist-
ics of GE and CFG-GP. Exam timetabling is an opportunity to evaluate the
performance of grammar-based GP methods on a real-world problem to which
many methods other than GP have been applied. Another interesting differ-
ence from the previous experiments is that there are no known target solutions,
instead there are many correct solutions that differ in how well they satisfy the
soft constraints.

We will try to replicate the published results with CFG-GP, compare them
with a similar setup of grammatical evolution, and we will also briefly discuss
the performance in terms of computational time.

Let’s start by stating the exam timetabling problem formally using the same
notation as Bader-El-Den et al. (2009): Let E be the set of exams, S the set of
students, P the set of time slots, R : S→ P(E) a registration function (Pdenotes a
power set). The quadruple consisting of E, S, P, and R is a timetabling problem.
A solution to the timetabling problem (E,S,P,R) is a function O : E → P. The
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solution is incorrect if ∃ s ∈ S, i, j ∈ E : i , j & {i, j} ⊆ R(s) & P(i) = P( j) (a student
is to attend two exams at the same time), and the solution is incomplete if O is
a partial function.

The soft constraint can be expressed quantitatively for correct solutions as
a penalty p:

p =
1
S

N−1∑
i=1

N∑
j=i+1

w(|pi − p j|) · ai j (1)

where S is the total number of students, N is the total number of exams, ai j is
the number of students attending both exams i and j, pi is the time slot to which
exam i is assigned, and w(d) is defined as 25−d if d ≤ 5 and as 0 otherwise. This
formula proposed by Carter et al. (1996) has since been used in the literature
to compare the quality of solutions.

We will use a fitness value f based on the penalty formula:

f =

( M−1∑
i=1

M∑
j=i+1

w(|pi − p j|) · ai j

)
+ α · (N −M) (2)

where M is the number of assigned exams. This is only a minor modification
of the fitness function used by Bader-El-Den et al. (2009): we leave out the 1

S
factor as it does not serve any purpose when computing fitness. The difference
from the penalty function is that it allows for incomplete solutions. Bader-
El-Den et al. (2009) do not mention any value for the α constant, but I have
found out that any value large enough to disqualify incomplete solutions in
tournaments with complete solutions works well. If we were to use a fitness-
proportionate selection, however, it might not be the case.

Algorithms for timetabling that use heuristics usually proceed by repeatedly
using the heuristic to select an exam and then its slot. It may happen that no
slot is available for a given exam (the partial assignment would be incorrect), in
which case the algorithm may stop, continue constructing an incomplete solu-
tion, or continue constructing an incorrect solution. This first phase may then
be followed by a repair or improvement phase. Bader-El-Den et al. (2009) make
a distinction between “constructive” algorithms without a repair or improve-
ment phase and “improvement” algorithms, and they compare their results
primarily with other constructive algorithms. They do not describe precisely
the algorithm they use, but it is conceivably the one that continues to construct
an incomplete solution even if some exams cannot be scheduled, as outlined
in this pseudocode:
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Time-Tabling(E,S,P,R)

� T will contain all data structures for the heuristics and the (incomplete) assignment.

T← TT-Set-Up(E,S,P,R)
while E , ∅

do e ← Exam-Heuristic(T,E)
s ← Slot-Heuristic(T, e)
if s , not-found

then TT-Assign(T, e, s)
E ← E r {e} � whether have found a slot for e or not

return TT-Get-Assigment(T)

We will therefore use this algorithm skeleton to evaluate our candidate
solutions. The procedures TT-Set-Up and TT-Assign implement operations
with data structures that serve for computations performed by the heuristics
and maintain the incomplete assignment, which can be retrieved using TT-
Get-Assigment. The evaluated hyper-heuristic is performed by calls to Exam-
Heuristic and Slot-Heuristic. We will compose the hyper-heuristics from the
same components as Bader-El-Den et al. (2009):

• branching based on current assignment size: V-Small, Small, Mid, Large;

• probabilistic random branching: Pr-20, Pr-40, Pr-50, Pr-70, Pr-90;

• the list of all unprocessed exams (E in the pseudocode): All-Exams;

• the list of all time slots: All-Slots,

• hand-crafted heuristics for selecting exams that act as list filters and can
thus be pipelined:

– Max-Conflict (largest degree), selects exams with most conflicts,
– Least-Slot (saturation degree), selects exams with the least number

of available slots,
– Max-Students (largest enrolment), selects exams with the largest

number of registered students;

• analogously working hand-crafted time slot heuristics:

– Least-Cost, selects slots that increases the penalty the least,
– Least-Busy, selects slots with the least number of assigned exams,
– Most-Busy, selects slots with the largest number of assigned exams,
– Least-Blocking, selects slots to which the least other conflicting

unscheduled exams could be assigned;

• procedures for selecting a single exam or a slot from a list (Random-Exam,
First-Exam,Random-Slot, First-Slot).

The exam selection heuristics are inspired by the graph-colouring problem
(hence their alternative names) and were already proposed by Carter et al.
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(1996). The time selection heuristics seem to have been introduced by Bader-
El-Den et al. (2009) who give commonsense explanations for them. The basic
idea is that even if some of the heuristics would not be useful alone, they may
become useful in conjunction with each other or at particular stages of the
timetable construction (using assignment size conditions).

The basic heuristics and other components can be combined according to
the grammar shown Listing 3.10. Note particularly that conditional branching
can occur anywhere, and so the pipelines of heuristics may form branches of
arbitrarily shaped trees.

<assign> ::= while <exam>~=0 do <slot> end
<exam> ::= randomExam(<eList>) | firstExam(<eList>)
<eList> ::= maxConflict(<eList>)

| leastSlot(<eList>)
| maxStudents(<eList>)
| allExams(t)
| (<cond> and <eList> or <eList>)

<slot> ::= randomSlot(<sList>) | firstSlot(<sList>)
<sList> ::= leastCost(<sList>)

| leastBusy(<sList>)
| mostBusy(<sList>)
| leastBlocking(<sList>)
| allSlots(t)
| (<cond> and <sList> or <sList>)

<cond> ::= <prob> | <size>
<size> ::= vSmall(t) | small(t) | mid(t) | large(t)
<prob> ::= pr20(t) | pr40(t) | pr50(t) | pr70(t) | pr90(t)

Listing 3.10: Context-free grammar in BNF for a timetabling hyper-heuristic in Lua.
The (· · · and · · · or · · · ) construct is a Lua idiom for a functional if-then-
else condition with short-circuit (lazy) evaluation. The exam heuristic
functions are implemented so that they return 0 when there are no exams
left, the slot heuristic functions perform an exam-slot assignment if a slot
is found. All data structures and the currently selected exam and slot
are kept in the t data structure. This is a Lua equivalent of the grammar
presented by Bader-El-Den et al. (2009).

3.9.1 Experimental setup

In addition to the grammar equivalent to the one used by Bader-El-Den et al.
(2009), we will also report results with an alternative grammar without random
selection of exams and slots and conditional branching for slots.

For CFG-GP, we will use the parameters specified by Bader-El-Den et al.
(2009). The values of maximum initialisation height and maximum height are
missing in their article as well as the already discussedαparameter of the fitness
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function. As we do not have any beforehand knowledge of suitable tree height
parameters, we will out of cautiousness use a low maximum initialisation tree
height, letting the initialisation procedure raise it as needed for generation of
unique individuals, and a high maximum tree height. There are only a few
minor differences from the setup used by Bader-El-Den et al. (2009):
– We do not use mutually exclusive operators.
– We will evaluate individuals that use random selection or probabilistic condi-

tions three times with different random number generator states and assign
them the mean fitness value of the three runs. We will also report only this
mean value in the results. Bader-El-Den et al. (2009) ran “the best performing
individuals [. . . ] for an extra 2 times”. It is not clear if this concerns only
the best individuals in a generation and whether the mean or the minimum
value is used.

– We will perform only runs with 50 generations and 50 individuals in the pop-
ulation. In addition to this, Bader-El-Den et al. (2009) performed runs with
“larger populations, with sizes ranging between 500 and 1000 individuals”,
but they do not give precise value for each experiment.

We will, as usual, use a lower nominal mutation rate for GE to reach an effective
mutation rate similar to that of CFG-GP. The full list of parameters is provided
in Table 3.9.)
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Objective: Find an exam and time slot selection heuristic for
Time-Tabling.

Terminal operands: All-Exams, All-Slots,
V-Small, Small, Mid, Large,
Pr-20, Pr-40, Pr-50, Pr-70, Pr-90.

Terminal operators: Random-Exam*, First-Exam, Max-Conflict, Least-Slot,
Max-Students, Exam-If-Then-Else,
Random-Slot*, First-Slot, Least-Cost, Least-Busy,
Most-Busy, Least-Blocking, Slot-If-Then-Else*.
Alternatively, without starred items.

Grammar: See Listing 3.10. Alternatively, without productions
containing starred terminals.

Fitness cases: One of the standard data sets car91, car92, ear83, hec92,
kfu93, lse91, sta83, tre92, uta92, yor83 (Carter et al.,
1996). Candidates that use random selection or
probabilistic conditions are evaluated three times with
different random number generator states, and the mean
fitness value is computed. The RNG state for the first
evaluation is fixed for each run.

Raw fitness: Formula (2) where α = 100000.
Scaled fitness: Same as raw fitness.
Algorithm: Simple, generations: 50, population: 50.
Selection: Tournament, size: 5.
CFG-GP initialisation: “Grow” method (Whigham, 1995), maximum height: 4.
GE initialisation: “Grow” method (Whigham, 1995), maximum height: 4.
GE operators: Fixed-length one-point crossover, probability: 0.8.

Bit-level mutation, probability: 0.01.
CFG-GP operators: Crossover (Whigham, 1995), probability: 0.8.

Mutation (Whigham, 1995), probability: 0.1.
Common parameters: Maximum tree height: 20.
GE parameters: Maximum wraps: 3. Codon size: 8.
Success predicate: None.

Table 3.9: Exam timetabling parameters, CFG-GP and GE.



3.9.2 Results

In Table 3.10we report the best results from ten runs for each method, grammar,
and data set, as Bader-El-Den et al. (2009) did, along with the results reported
by them. We use the same ten data sets.4

car91 car92 ear83 hec92 kfu93 lse91 sta83 tre92 uta92 yor83
GPHH ‡5.12 4.46 ‡37.10 ‡11.78 ‡14.72 ‡11.11 ‡158.70 †8.62 3.47 †40.56
CFG-GP †5.11 ‡4.44 38.78 12.67 15.21 11.93 159.44 8.78 3.49 40.73
GE 5.15 ‡4.44 39.95 12.20 14.86 12.04 159.37 ‡8.63 3.51 ‡40.60
CFG-GP* 5.13 †4.37 37.29 12.15 14.74 11.75 160.22 ‡8.63 ‡3.44 40.94
GE* 5.22 4.51 39.68 12.27 15.23 11.96 160.22 8.79 ‡3.44 41.47
Best other Fuzzy Fuzzy Car. Car. Car. Car. Tabu Fuzzy TM Fuzzy

5.20 4.52 †36.4 †10.8 †14.0 †10.5 †158.19 8.67 †3.04 40.66

*: alternative grammar. Best other: best other constructive heuristic, as reported by
Bader-El-Den et al. (2009). †, ‡: best and second best results. Car.: Carter et al. (1996).
Fuzzy: Asmuni et al. (2005). Tabu, TM (Tabu-Multi-stage): Burke et al. (2007).

Table 3.10: Penalties achieved by time tabling heuristics. Mean values are reported
for stochastic heuristics evolved with CFG-GP and GE.

CFG-GP with the original grammar has in two cases (car91, car92) outper-
formed GPHH, which is the more interesting as these are two of the four cases
in which Bader-El-Den et al. (2009) reported that GPHH already outperformed
the best other constructive method.

GE with the original grammar has performed similarly to CFG-GP (four
times better, five times worse). With the car92 data set it has performed
equally with CFG-GP, also beating both GPHH and the best other constructive
method. With car92 and tre92 it has still performed better than the best other
method, but worse than GPHH.

Because the grammar used by Bader-El-Den et al. (2009) is quite rich and the
authors do not discuss their choices in much detail, I have experimented with
removing various features. Most of the changes, such as permitting conditional
branching only at the top level, or reducing the number of conditions, resulted
in inferior performance. Removal of random selection of exams and slots
and conditional branching for slots did, however, improve CFG-GP and GE
results for seven and four data sets, respectively. CFG-GP with the alternative
grammar outperformed all other methods in car92. Both CFG-GP and GE with
the alternative grammar have outperformed GPHH. What is interesting about
these results is that we have managed to remove a large part of randomness
from the heuristics without impacting the quality of solutions.

4 Bader-El-Den et al. (2009) refer to one of the Toronto data sets as uta93. Although they
give parameters for ute92, it must be uta92, judging from the achieved penalty.
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3.9.3 Computational time

Bader-El-Den et al. (2009) report approximate run times “on an ordinary PC”,
and their article was published in 2009. I performed my experiments on a
consumer laptop manufactured in late 2008 (2.4 GHz Intel Core 2 Duo Apple
MacBook with 2 GB of RAM), so the times should be comparable. According
to Bader-El-Den et al. (2009), a run of GPHH took from 10 minutes to about 4
hours depending on the problem. With the same grammar and evaluating all
individuals with random elements three times, all runs took me from less than
a second to about 80 seconds. Even if they by mistake reported times for ten
runs instead of one run, the running times of CFG-GP and GE using AGE are
still an order of magnitude lower. Let’s suppose that they meant 10 runs and
compare the total running times for all experiments (10 runs for each data set)
in Table 3.11.

GPHH CFG-GP GE CFG-GP* GE*
CPU time ≥ 12 hours 27 min 27 s 28 min 44 s 11 min 31 s 14 min 4 s

*: alternative grammar. Total CPU time (for both processor cores) is reported.

Table 3.11: Penalties achieved by time tabling heuristics.

Of course, the run times are only a matter of implementation, but the large
performance gap is worth noting because the authors of GPHH regard their
system as an improvement over CFG-GP specifically because it is more efficient
by not being implemented using derivation trees. The alternative grammar
has brought further substantial improvements because fewer individuals used
random elements and thus fewer evaluations were necessary.

3.9.4 Conclusion

In this section we have compared CFG-GP and GE in terms of both quality
of results and computational time with GPHH, an existing grammar-based
GP systems with published results that are comparable to (and in some cases
better than) those of other constructive methods for timetabling. In the case
of CFG-GP, we could have expected to achieve similar results because GPHH
is essentially based on the same method. In the case of GE, however, the
results are one of the scarce examples of GE being compared with previously
published results of methods that have performed well in some application.
It is a pleasant discovery that GE has performed on a par with CFG-GP in
evolving timetabling heuristics. I have not been able to find such comparison
for any other problem field in the literature.

On two data sets CFG-GP has even slightly outperformed GPHH achieving
the best results among the known constructive heuristics. GE has managed to
do so on one data set. We have also shown that comparable results could be
achieved in a substantially shorter run time using an efficient implementation
and by adjusting the grammar. The shorter run times would be of critical
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importance if the grammar-based GP methods were to be used in a more
complex setup to evolve improvement heuristics for timetabling and compete
with other improvement methods as Bader-El-Den et al. (2009) suggest for
further research.

3.10 Conclusion

We have compared performance of GE and CFG-GP in a variety of application
and discovered links between the differences in the produced tree shapes and
the relative success of the two methods. The two methods performed simil-
arly well a few times but in several applications the performance of GE was
substantially worse.

In Section 3.4 we have found out that the more successful CFG-GP pro-
duces higher trees of more varied shapes, thus searching a larger space. In
Section 3.5 we have made the same observation and verified it with different
initialisation techniques. In the long run, both methods tended to converge
to tree characteristics typical for them regardless of tree characteristics of the
initial populations. In the two experiments done in Section 3.6 and Section 3.7,
which compared performance with LOGENPRO, all three methods performed
similarly. Nonetheless, we could observe the same patterns in development
of tree characteristics for GE and CFG-GP. We have explained why the good
results of GE were likely caused by its tendency to preserve low tree height
throughout its run, the same property that would often have the opposite effect.
In Section 3.8, we have shown that both GE and CFG-GP can use ADFs suc-
cessfully but that the technique adapted from tree-based GP is not as effective
for GE. As we have not used the usual mutation operators, the patterns of tree
characteristics were different than in the earlier experiments but CFG-GP still
produced higher and larger trees than GE, and was more successful even in
the ADF-less versions of the experiments. GE has, however, found solutions of
similar quality to those of CFG-GP in the real-world application to timetabling
in Section 3.9.

We have thus shown a consistent difference between the tree shapes pro-
duced by GE and CFG-GP. GE tends to produce shorter trees, usually also less
bushy and of less varied height and bushiness. The search of this smaller search
space tends to be explorative thanks to the disruptive operators used in GE,
and GE can provide slightly but significantly better results in some cases. In
other cases, though, this seems to hamper performance. Additionally, the fact
that the operators used in GE are grammar-agnostic clearly worsens perform-
ance with ADFs, and it would likely have the same effect with any grammar
specifying subtrees with terminals of mutually incompatible types. We have
not found GE to provide a substantial advantage in any of the problems.

In Section 3.9 we have also compared computational times needed by GE,
CFG-GP, and another implementation of a CFG-GP-like algorithm to evolve
timetabling heuristics. The efficient implementation of CFG-GP and GE I have
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developed was at least an order of magnitude faster than the one used by
Bader-El-Den et al. (2009). CFG-GP has performed slightly better than GE in
terms of CPU time. This is a consequence of what individuals evolved during
the run, and it demonstrates that the simpler operators of GE do not imply
shorter overall run times.
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Chapter 4

Implementation Notes

All experiments with GE and CFG-GP in Chapter 3 were done using an open-
source framework called AGE (Algorithms for Grammar-based Evolution). I
have created the initial version of the framework as an implementation of GE
and general evolutionary algorithm elements as part of my bachelor thesis with
the following goals:
– a clean, comprehensive implementation of standard algorithms,
– modularity,
– adequate documentation,
– versatile output,
– reproducible results,
– acceptable performance.

Thanks to the modular approach it was easy to extend the framework with
implementation of CFG-GP and several new features. Although the framework
aimed only at an “acceptable performance” in terms of computational time,
it outperformed GEVA (an implementation of GE maintained at NCRA at
University College Dublin) by an order of magnitude in benchmarks done as
part of my bachelor thesis (Nohejl, 2009). The comparison of the CFG-GP
implementation, which is now part of AGE, with published results from the
CFG-GP-based GPHH framework (Bader-El-Den et al., 2009) was similarly
favourable (Section 3.9.3).

In this chapter, we will describe the implementation of CFG-GP used in
AGE (in Section 4.1), provide information about the accompanying files and
about how to use them to replicate the results presented in the previous chapter
(Section 4.2). User and developer documentation of the framework and tools,
written as part of my bachelor thesis, is available inside the software package.

4.1 Implementation of CFG-GP

The original version of AGE already featured an efficient implementation of
grammatical evolution. This implementation does not store derivation trees, in-
stead phenotype strings are created directly from the codon strings (genotype),
and when initialising individuals, genotype is generated directly. Thus deriva-
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tion trees are used only implicitly without having to unnecessarily manipulate
tree data structures. Both genotype and phenotype is stored in continuous
arrays, and the implementation tries to prevent unnecessary allocations and
deallocations of storage.

CFG-GP as described by (Whigham, 1995) represents individuals as trees, so
that they can be manipulated by the tree-based operators. Tree data structures
are traditionally stored as separately allocated nodes that contain pointers to
their children. Such an approach is natural in most programming languages
and offers the most flexibility when manipulating trees. When both the nodes
and their trees are relatively small and the most frequent operations are sequen-
tial reads and writes of whole trees or large subtrees, a different representation
is more efficient. Let’s call it a serialised tree.

Nodes of a serialised tree are stored in depth-first left-to-right order, which
is the same as the leftmost derivation order in the case of a derivation tree.
This way nodes of each subtree are stored in a continuous sequence. Each
node must contain (implicitly or explicitly) the number of its children in order
to express structure of the tree, pointers to children can then be omitted and
relations between nodes can be determined solely from their relative positions
in the sequence. Size of each subtree of a serialised tree is optionally stored
in the node where the subtree is rooted. These sizes are not strictly necessary
to manipulate a serialised trees but they make it possible to replace a subtree
without having to retrieve numbers of children from all its nodes. An example
of a serialised tree is shown in Figure 4.1.

A

B F

E

C D G

H
A B C D E F G H
8 4 1 1 1 122

Figure 4.1: A tree in the usual representation and its corresponding serialised tree with
subtree sizes in each node. Subtree boundaries are outlined.

One approach to representing CFG-GP derivation trees is therefore to rep-
resent them as serialised trees. Let’s consider what information would we
need to have about the nodes in order to implement the CFG-GP operators.
If we know which production is used in each nonterminal node, we can also
tell the number of its children and their labels (terminal and nonterminal sym-
bols). Mutation and crossover sites are always located on nonterminal nodes
(Whigham, 1995), thus terminal nodes do not need to be stored and we only
need to store information about which productions were used at nonterminal
nodes. Let’s number the productions for each nonterminal from zero, and call
these numbers choices. It may happen that some nonterminals have only one

78



production, offering a single choice (effectively no choice), in that case the node
does not need to be stored in the serialised representation.1

A minimal representation of a derivation tree is therefore a serialised tree
of its choice nodes. Our definition of choice nodes (see page 28) coincides with
nonterminal nodes with more than one choice, and as we have noted, these
are precisely the nodes encoded by the codons used in grammatical evolution.
The order in which the nodes are stored is also the same. Thus a serialised
choice-node tree is a special case of a GE chromosome that represents the same
derivation. This correspondence is illustrated by Figure 4.2.

CFG productions:
S → E (single choice)
E → (E * E) (0) E → (E ^ E) (1) E → T (2)
T → 2 (0) T → c (1) T → m (2) T → 42 (3)

E

(E * E)

T

T

(E ^ E)

T

Derivation tree
S

Choices in leftmost 
derivation order

(2) (1)

(2) (2)

0 2 2 1 2 1 2 0

GE genotype examples

(0)

c 2

m

(2)

(1) (0)

E E T E ET ET
0 2 2 1 2 1 2 0

wrapping:
0 2 2 1 2 1 2

codon-level degeneracy:
0 2 6 1 2 9 2 4
9 8 6 7 2 1 2 0

chromosome-level deg.:
0 2 2 1 2 1 2 0 4 2
0 2 2 1 2 1 2 0 3 1 4 1 5 9

Yield: (m * (c ^ 2))

Figure 4.2: Three representations of the derivation of the string (m * (c ^ 2)) accord-
ing to a set of CFG productions: (1) derivation tree: nonterminal nodes,
at which crossover or mutation can occur in CFG-GP, are underlined; (2)
choices in leftmost derivation order: basis for genotype in GE, and for the
implementation of CFG-GP in AGE; (3) GE genotype: codon values may
correspond to choices exactly, codons may be reused in a circular fashion
(wrapping), codons are interpreted modulo number of choices (codon-
level degeneracy), unused codons may be appended (chromosome-level
degeneracy).

The implementation of CFG-GP in AGE is based on serialised trees of choice
nodes. Individuals represented this way can share evaluation procedures, in-
1 If we were to follow (Whigham, 1995) literally, we would have to store all nonterminal

nodes as crossover or mutation can occur on any one of them. Crossover or mutation on a
node with single choice is, however, equivalent to crossover or mutation on its parent node
(except for a single-choice root node). Additionally, single-choice nodes can be considered a
degenerate cases, which bias operators towards their parents.
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cluding the genotype-phenotype mapping, with GE. The tree-based initialisa-
tion procedures used for GE need only one modification: removal of genetic
code degeneracy (see Figure 4.2 for comparison). Other general evolution-
ary algorithm elements such as selection methods can be shared regardless of
representation. Only the mutation and crossover operators need to be imple-
mented separately.

For the purposes of these operators, AGE generates other node information
such as the already mentioned subtree size. Because such data can be generated
quickly, it is relatively small, and its reuse is limited, it is actually more efficient
to re-generate it every time it is needed. Along with this data, statistics about
tree characteristics that we have used in Chapter 3 can be generated using
common procedures for both GE and CFG-GP.

The main advantages of this implementation is that CFG-GP trees are stored
in compact and easily manipulated data structures (arrays of choice numbers
and temporarily generated arrays of other node data). Note that in contrast to
traditional Lisp-based GP the derivation trees to which operators are applied
cannot share the representation with the parse trees used when evaluating indi-
viduals because arbitrary grammars are allowed. We cannot avoid generating
the full string representation of each individual (the phenotype in GE) which
is then parsed in order to be evaluated. Therefore the minimal representation
is advantageous.

4.2 Accompanying files

This thesis is accompanied by the following files on the enclosed medium:

• Adam-Nohejl-2011-Master-Thesis.pdf, a PDF version of this thesis,

• AGE-1.1.tar.gz, the AGE source package with documentation,

• Experiments.tar.gz, results from LOGENPRO and several scripts:

– AGE-run.sh, a shell script to run experiments for this thesis,

– AGE-stats.sh, a helper R script for stats.sh,

– exstats.sh, a helper shell script for stats.sh,

– plot.r, an R script to draw plots used in this thesis,

– runner.sh, a helper shell script for AGE-run.sh,

– stats.sh, a shell script to compute statistics for the plots.

The included version of the AGE framework has been extended mainly
by the CFG-GP algorithm elements as described above. The implementations
of all experimental problems used in this thesis are also part of the default
build. The software is portable: it can be built on a POSIX-compliant system
(tested on Mac OS X, NetBSD and Linux) with a decent standards-compliant
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C/C++ compiler (tested with GCC and Clang) and it does not have any external
dependencies (details in the included documentation). The whole package is in
the archive named AGE-1.1.tar.gz and has a customary UNIX source package
structure (you can start by reading the README and INSTALL text files).

To replicate the experiments done in Chapter 3, follow these steps:

1. Build and install AGE from the source package and make sure it is in your
search path (your PATH variable must include the directory where you
have installed the AGE executable). Suggested commands for installation
into your home directory:

% tar xzf path/AGE-1.1.tar.gz
% cd AGE-1.1; make INSTALL_PREFIX=~ install
% cd ..; export PATH=~/bin:"$PATH"

where path is path to the directory containing the file AGE-1.1.tar.gz
(mount point of the accompanying disc).

2. Expand the Experiments.tar.gz archive. The resulting Experiments
directory will contain the results obtained from LOGENPRO that we
have presented in Chapter 3. Suggested command:

% tar xzf path/Experiments.tar.gz

where path is path to the directory containing the file Experiments.tar.gz.

3. Change your working directory to the newly created Experiments direct-
ory. Suggested command:

% cd Experiments

4. Run the AGE-run.sh script. Running all the experiments will likely take
a few hours to finish. Alternatively, you can open the file in a text editor
and extract only commands for the experiments you want to run or adjust
options. Suggested command:

% ./AGE-run.sh

Output from the experiments is in a documented format and results from
each run can be displayed using a XSLT style sheet (consult the AGE
documentation for details).

5. Optionally, to compute the necessary statistics and render the plots used
in the thesis, run the stats.sh script and then the plot.r script. (The
R statistical package must be installed.) Suggested commands:

% ./stats.sh; ./plot.r
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The generated plots will be saved in PDF files with the following name
patterns:

• plot-ad*.pdf: Symbolic regression with ADFs (Section 3.7),

• plot-at*.pdf: Santa Fe ant trail (Section 3.5),

• plot-bp*.pdf: Boolean parity functions with ADFs (Section 3.8),

• plot-dp*.pdf: Dot product symbolic regression (Section 3.6),

• plot-sr*.pdf: Simple symbolic regression (Section 3.4).
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Conclusion

We have discussed the problems encountered by traditional genetic program-
ming that can be solved using grammars. We have reviewed three different
grammar-based GP methods, described their distinctive features, and tested
them in a number of benchmark application, including the real-world applic-
ation of finding heuristics for timetabling. We have implemented two of the
methods, grammatical evolution and context-free grammar genetic program-
ming, in a common framework, which allowed us to compare their perform-
ance in identical setups. In addition to comparing performance, we have fo-
cused on a statistical analysis of tree characteristics produced by each method,
which has provided insight into differences between GE and CFG-GP. As most
of the research in this field focuses either on novel applications or compares
results only with traditional genetic programming, we have been able to shed
more light on actual performance and comparative advantages of the grammar-
based methods.

In Chapter 1 we have introduced the basic concepts of genetic program-
ming and formal grammars, and we have pointed to the following problems
encountered by GP that grammars can solve: adaptability to different pro-
gramming languages and environments, the problem of closure and multiple
types, and the problem of declarative representation of knowledge. We have
presented three different approaches to applying grammars to GP: context-free
grammar genetic programming, LOGENPRO, and grammatical evolution. We
have described their distinctive features, and what they imply for performance
of these methods. Based on this survey, we have focused on the role of the
power of logic grammars in LOGENPRO, on the unclear effect of operators in
GE, and the problem of bias (whether wanted or not) encoded in a grammar.

In Chapter 2we have described several problem classes and areas of applic-
ation, most of them admittedly artificial and of little practical value but useful
for comparing the performance of grammar-based GP methods. We have also
briefly presented hyper-heuristics, a field that offers possibilities of real-world
application to grammar-based genetic programming.

In Chapter 3 we have tested GE and CFG-GP in six different applications.
In two of them we have also compared the results with LOGENPRO, and
found no particular advantage in using logic grammars in the applications that
Wong and Leung (2000) used to demonstrate the abilities of LOGENPRO. In
one application we have compared the performance of CFG-GP and GE with
tree-based GP (Koza, 1992, results reported by), demonstrated that ADFs can
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be carried over to the grammar-based methods, particularly to CFG-GP, and
explained the inferior performance of GE. In the last application we have com-
pared performance both in terms of quality and speed with recently published
results of a grammar-based hyper-heuristic framework (GPHH, Bader-El-Den
et al., 2009) for timetabling. The comparison was very favourable: using CFG-
GP we have outperformed the published results in two problem instances, in
which GPHH was already reported to be the best constructive heuristic to date.
Additionally, our implementation is at least an order of magnitude faster. I
believe that such a large improvement in speed could open new possibilities
for practical applications of grammar-based GP methods.

Perhaps even more important output from the six experiments is that GE
does not provide a substantial advantage in any of them. In several experiments
it performs substantially worse, and we have been able to link this perform-
ance to the tree characteristics resulting from its operators, and the fact that
grammatical constraints in GE are enforced only by the genotype-phenotype
mapping, not by the operators. Additionally, we have demonstrated that the
simpler operators of GE do not transform in shorter overall run times. I see
this as the largest contribution of my thesis, as the effect of operators used in
GE is hard to analyse, and I have not been able to find such comparisons with
other grammar-based GP methods in the literature.

The thesis has fulfilled its goal of thoroughly comparing the grammar-based
GP methods, has showed that CFG-GP, the simplest of the three compared
methods, provides comparable or even better results than the other two, and
has demonstrated that CFG-GP can be implemented very efficiently. We have
several times touched the problem of embedding knowledge (bias) in gram-
mars. The choice of grammar obviously has a great effect on performance of
any grammar-based GP algorithm, and if at least part of the problem could be
automated by co-evolving grammars or transforming them into more suitable
forms, it would provide great advantage, especially when CFG-GP is applied to
more complex problems. This seems to be the most promising area for further
research.
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CV coefficient of variance. 28, 31, 35, 43, 44, 52

DCG definite clause grammar. 6, 7, 11, 14, 15, 17, 47

GA genetic algorithms. 3, 9, 16, 17, 22

GE grammatical evolution. 15–18, 21, 22, 25, 27–31, 34–36, 38–40, 43, 44, 47–52,
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STGP strongly-typed genetic programming. 9, 11, 13, 15
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