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Abstrakt: Stla£itelné Eulerovy rovnice popisují pohyb stla£itelných nevazkých tekutin.
Pouºívají se v mnoha oblastech leteckého, automobilového a jaderného inºenýrství,
chemie, ekologie, klimatologie, i jinde. Matematicky, stla£itelné Eulerovy rovnice
p°edstavují hyperbolický systém skládající se z n¥kolika nelineárních parciálních
diferenciálních rovnic (zákony zachování). Tyto rovnice jsou °e²eny nej£asteji po-
mocí metody kone£ných objem· (MKO), a metody kone£ných prvk· (MKP) nízkého
°ádu. Nicmén¥, oba tyto p°ístupy nedosahují vy²²ího °ádu p°esnosti, a navíc je
dob°e známo, ºe konformní metoda kone£ných prvk· není optimální nástroj pro
diskretizaci rovnic prvního °ádu. Nejnad¥jn¥j²í p°ístup k p°ibliºnému °e²ení st-
la£itelných Eulerových rovnic je nespojitá Galerkinova metoda, která kombin-
uje stabilitu MKO s vynikajícími aproxima£ními vlastnostmi MKP vy²²ího °ádu.
Cílem této diplomové práce byl vývoj, implementace a testování nových algoritm·
pro adaptivní °e²ení nestacionárních stla£itelných Eulerovových rovnic na základ¥
vy²²ího °ádu nespojité Galerkinovy metody (hp-DG). Základem pro nové metody
byly nespojitá Galerkinova metoda a £asoprostorové hp-MKP algoritmy na dy-
namických sítích pro nestacionární problémy druhého °ádu. Nové algoritmy byly
implementovány a testovány v rámci open source knihovny Hermes.

Klí£ová slova: numerické simulace, metoda kone£ných prvk·, Eulerovy rovnice,
hp-adaptivita, nespojitá Galerkinova metoda
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Abstract: The compressible Euler equations describe the motion of compressible
inviscid �uids. They are used in many areas ranging from aerospace, automotive,
and nuclear engineering to chemistry, ecology, climatology, and others. Mathemat-
ically, the compressible Euler equations represent a hyperbolic system consisting of
several nonlinear partial di�erential equations (conservation laws). These equations
are solved most frequently by means of Finite Volume Methods (FVM) and low-
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order Finite Element Methods (FEM). However, both these approaches are lacking
higher order accuracy and moreover, it is well known that conforming FEM is not
the optimal tool for the discretization of �rst-order equations. The most promissing
approach to the approximate solution of the compressible Euler equations is the
discontinuous Galerkin method that combines the stability of FVM, with excel-
lent approximation properties of higher-order FEM. The objective of this Master
Thesis was to develop, implement and test new adaptive algorithms for the nonsta-
tionary compressible Euler equations based on higher-order discontinuous Galerkin
(hp-DG) methods. The basis for the new methods were the discontinuous Galerkin
methods and space-time adaptive hp-FEM algorithms on dynamical meshes for
nonstationary second-order problems. The new algorithms were implemented and
tested in the framework of the open source library Hermes.

Keywords: numerical simulation, �nite element method, Euler equations, hp-adaptivity,
discontinuous Galerkin method
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Introduction

Discontinuous Galerkin Finite Element methods (DG methods) form a class of
numerical methods for solving partial di�erential equations. They combine features
of the �nite element and the �nite volume framework and have been successfully
applied to hyperbolic, elliptic and parabolic problems arising from a wide range
of applications. DG methods have in particular received considerable interest for
problems with a dominant �rst-order part, e.g. in electrodynamics, �uid mechanics
and plasma physics.

Discontinuous Galerkin methods were �rst proposed and analyzed in the early
1970s as a technique to numerically solve partial di�erential equations. In 1973
Reed and Hill introduced a DG method to solve the hyperbolic neutron transport
equation.

The origin of the DG method for elliptic problems cannot be traced back to
a single publication as features such as jump penalization in the modern sense
were developed gradually. However, among the early in�uential contributors were
J. Babu²ka [2], J.A. Nitsche [17] and M. Zlamal [25]. Interestingly DG methods
for elliptic problems were already developed in a paper by Baker in the setting of
4th order equations in 1977. A number of research directions and challenges on
DG methods are collected in the proceedings volume edited by Cockburn, Karni-
adakis [15] and Shu.

The DG method is very demanding in terms of number of degrees of freedom
(DOFs), and thus in terms of the sizes of the linear systems we have to solve.
Therefore, techniques to reduce these sizes while keeping su�ciently high quality
of the solution of the problems we solve using the DG method are very interesting.
The algorithms with the goal to optimize the resolution / cost ratio are known
as adaptive algorithms. There exist several approaches to adaptively improve the
solution, the core usually formed by some form of mesh or h(r)-adaptivity.

For some problems, we can also employ adaptivity in terms of the degree of
polynomials we use for approximation of functions that appear in our problems,
so called p-adaptivity. The most advanced technique that is the focus of this thesis
combines these two approaches, and is simply called hp-adaptivity.
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Chapter 1

Compressible �ow and the Euler

equations

1.1 Equations describing the �ow

We consider a time interval (0, T ) and space domain Ωt ⊂ R3 occupied by a �uid
at time t. ByM we denote the space-time domain in consideration:

M = {(x , t) ; x ∈ Ωt, t ∈ (0, T )} . (1.1)

Moreover we assume thatM is an open set.

1.1.1 Description of the �ow

In Computational Fluid Dynamics there exist two classical approaches to the
description of the �ow, the Lagrangian description and the Eulerian description.

The idea of the Lagrangian description is to monitor each �uid particle along
its pathline (i.e. the curve which the particle traverses in time). If we wanted to
set a computational mesh using this description, it would mean to �rmly connect
nodes of the mesh with certain particles (i.e. the node and the particle would have
to share their space coordinates) and move the mesh accordingly to the motion of
the �uid as to preserve the node - corresponding particle connection at each time
instant. The obvious drawback is the necessity to perform re-meshing operations
very frequently, especially when dealing with large distortion of the �uid.

The Eulerian description focuses on �uid particles that move through �xed points
within a computational domain. In other words, whereas in the Lagrangian descrip-
tion the particle was �xed and the point in space it was currently occupying was
changing, now it is the point in space that holds still and the particle in considera-
tion is changing and is always corresponding to the one that is currently occupying

6



the considered point in space. From this idea it follows that a computational mesh
for this description would be �xed with respect to time.

It is not di�cult to imagine that formulation of some basic mechanical princi-
ples could be easier for the moving particle, that is using the Lagrangian approach.
However, the Eulerian description is used for the formulation of conservation laws
as will be seen in the following subsections. Last, using this approach, large dis-
tortions of �uid domain can be handled with relative ease.

We shall proceed now with basics of the Lagrangian and the Eulerian descriptions
and their relation. We shall present the equations describing the �ow derived from
conservation laws in their integral forms using the Eulerian approach.

Lagrangian description
We specify the particle in consideration using the mapping

ϕ (X, t0; t) (1.2)

which determines the current (at time t) position x ∈ Ωt of the particle that
occupies the point X at time t0, i.e.

x = ϕ (X, t0; t) , X ∈ Ωt0 , (1.3)

where we can omit the reference time t0 and write

x = ϕ (X, t) . (1.4)

Customarily the components X1, X2, X3 of the reference point X are called the
Lagrangian coordinates and the components x1, x2, x3 of the point x in the current
con�guration Ωt are called the Eulerian coordinates. The velocity and acceleration
of the particle given by the reference point X are de�ned as

v̂ (X, t) =
∂ϕ

∂t
(X, t0; t) , (1.5)

â (X, t) =
∂2ϕ

∂t2
(X, t0; t) , (1.6)

provided the above derivatives exist.

Eulerian description
Using once again the mapping ϕ de�ned in (1.2), relation (1.4) and the Lagrangian
de�nition of velocity (1.5), we can express the velocity of the �uid particle passing
through the point x at time t:

v (x, t) = v̂ (X, t) =
∂ϕ

∂t
(X, t) , (1.7)
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where x = ϕ (X, t) .
We shall demand the following regularity from the velocity function:

v ∈
[
C1 (M)

]3
. (1.8)

We can pass to the Eulerian coordinates from the Lagrangian ones by solving the
following initial value problem:

∂x

∂t
= v (x, t) , x (t0) = X. (1.9)

Under assumption (1.8), the problem (1.9) has exactly one maximal solutionϕ (X, t0, t)
for each (X, t0) ∈M de�ned for t from a certain subinterval of (0, T ). Moreover, in
its domain of de�nition, the mapping ϕ has continuous �rst order derivatives with
respect to X1, X2, X3, t0, t and continuous second order derivatives ∂2ϕ/∂t∂Xi,
∂2ϕ/∂t0∂Xi, i = 1, 2, 3. These statements result from theory of classical solutions
of ordinary di�erential equations.

Under assumption (1.8), the acceleration of the particle passing through the
point x at time t can be expressed as

a (x, t) =
∂v

∂t
(x, t) +

3∑
i=1

vi (x, t)
∂v

∂xi
(x, t) . (1.10)

This, written in a short form reads

a =
∂v

∂t
+ (v · grad) v =

∂v

∂t
+ (v · ∇) v, (1.11)

where the di�erentiation represented by the symbol ∇ is with respect to the spatial
variables x1, x2, x3.

1.1.2 Transport theorem

We wish to study some physical quantity which is transported by �uid particles
in our space-time domain M. Let a function F = F (x, t) : M −→ R represent
some physical quantity in the Eulerian coordinates, and let us consider a system
of �uid particles �lling a bounded domain V (t) ⊂ Ωt at time t. By F we denote
the total amount of the quantity represented by the function F contained in V (t):

F (t) =

∫
V(t)

F (x, t) dx. (1.12)

For the formulation of fundamental equations describing the �ow we need to cal-
culate the rate of change of the quantity F bound on the system of particles
considered. In other words we shall be interested in the derivative

dF (t)

dt
=

d

dt

∫
V(t)

F (x, t) dx. (1.13)

In the following we shall suppose that (1.8) holds.
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Lemma 1.1
Let t0 ∈ (0, T ) ,V (t0) be a bounded domain and let V (t0) ⊂ Ωt0. Then there exist
an interval (t1, t2) ⊂ (0, T ), t0 ∈ (t1, t2) such that the following conditions are
satis�ed:

a) The mapping 't ∈ (t1, t2) ,X ∈ V (t0) −→ x = ϕ (X, t0; t) ∈ V (t)' has
continuous �rst order derivatives with respect to t,X1, X2, X3 and continuous
second order derivatives ∂2ϕ/∂t∂Xi, i = 1, 2, 3.

b) The mapping 'X ∈ V (t0) −→ x = ϕ (X, t0; t) ∈ V (t)' is for all t ∈ (t1, t2)
a continuously di�erentiable one-to-one mapping of V (t0) onto V (t) with
continuous and bounded Jacobian J (X, t) which satis�es the condition

J (X, t) > 0 ∀X ∈ V (t0) , ∀t ∈ (t1, t2) .

c) The inclusion {
(x, t) ; t ∈ [t1, t2] , x ∈ V (t)

}
⊂M

holds and therefore the mapping v has continuous and bounded �rst order
derivatives on {(x, t) ; t ∈ (t1, t2) , x ∈ V (t)} with respect to all variables.

d) v (ϕ (X, t0; t) , t) = ∂ϕ
∂t

(X, t0; t) ∀X ∈ V (t0) , ∀ t ∈ (t1, t2) .

For proof, see [9].

Theorem 1.2 - The transport theorem
Let conditions from Lemma 1.1, a)-d) be satis�ed and let the function F = F (x, t)
have continuous and bounded �rst order derivatives on the set
{(x, t) ; t ∈ (t1, t2) , x ∈ V (t)}. Let F (t) =

∫
V(t)

F (x, t) dx.
Then for each t ∈ (t1, t2) there exists a �nite derivative

dF
dt

(t) =
d

dt

∫
V(t)

F (x, t) dx

=

∫
V(t)

[
∂F

∂t
(x, t) + div (Fv) (x, t)

]
dx. (1.14)

For proof, see [10].

1.1.3 Continuity equation

The density of �uid is a function

ρ :M−→ (0,+∞)
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which allows us to determine the mass m (V ; t) of the �uid contained in any sub-
domain V ⊂ Ωt :

m (V ; t) =

∫
V
ρ (x, t) dx. (1.15)

Assumptions 1.3
In what follows, let ρ ∈ C1 (M) and as before let v ∈ [C1 (M)]

3. We shall consider
an arbitrary time instant t0 ∈ (0, T ) and a moving piece of �uid formed by the
same particles at each time instant and �lling at time t0 a bounded domain V ⊂
V ⊂ Ωt0 with a Lipschitz-continuous boundary ∂V called the control volume in
the domain Ωt0 . By V (t) we denote the domain occupied by this piece of �uid at
time t ∈ (t1, t2), where (t1, t2) is a su�ciently small interval containing t0 with
properties from Lemma 1.1.

Since the domain V (t) is formed by the same particles at each time instant, the
conservation of mass can be formulated in the following way: The mass of the piece
of �uid represented by the domain V (t) does not depend on time t. This means
that

dm (V (t) ; t)

dt
= 0, t ∈ (t1, t2) , (1.16)

where with respect to (1.15) we have

m (V (t) ; t) =

∫
V(t)

ρ (x, t) dx. (1.17)

From Theorem 1.2 for a function F := ρ we get the identity∫
V(t)

[
∂ρ

∂t
(x, t) + div (ρv) (x, t)

]
dx = 0, t ∈ (t1, t2) . (1.18)

If we substitute t := t0 and take into account that V (t0) = V , we conclude that∫
V

[
∂ρ

∂t
(x, t0) + div (ρv) (x, t0)

]
dx = 0 (1.19)

for an arbitrary t0 ∈ (0, T ) and an arbitrary control volume V ⊂ Ωt0 . We use the
following Lemma in order to derive the di�erential form of the law of conservation
of mass:

Lemma 1.4
Let Ω ⊂ RN be an open set and let f ∈ C (Ω). Then the following holds:

f ≡ 0 in Ω if and only if
∫
V f (x) dx = 0 for any bounded open set V ⊂ V ⊂ Ω.
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Now we use Lemma 1.4 and obtain the di�erential form of the law of conservation
of mass called the continuity equation:

∂ρ

∂t
(x, t) + div (ρ (x, t) v (x, t)) = 0, x ∈ Ωt, t ∈ (0, T ) . (1.20)

1.1.4 Equations of motion

We proceed by deriving basic dynamical equations describing �ow motion from the
law of conservation of momentum which can be formulated in this way:

The rate of change of the total momentum of a piece of �uid formed by the same
particles at each time and occupying the domain V (t) at time instant t is equal to
the force acting on V (t) .

Let assumptions 1.3 be satis�ed. The total momentum of particles contained in
V (t) is given by

H (V (t)) =

∫
V(t)

ρ (x, t) v (x, t) dx. (1.21)

Moreover, denoting by F (V (t)) the force acting on the volume V , the law of
conservation of momentum reads

dH (V (t))

dt
= F (V (t)) , t ∈ (t1, t2) . (1.22)

Using Theorem 1.2 for functions F := ρvi, i = 1, 2, 3, we get∫
V(t)

[
∂

∂t
(ρ (x, t) vi (x, t)) + div (ρ (x, t) vi (x, t) v (x, t))

]
dx = Fi (V (t)) , (1.23)

i = 1, 2, 3, t ∈ (t1, t2) .

Taking into account that t0 ∈ (0, T ) is an arbitrary time instant and Vt0 = V ⊂
V ⊂ Ωt0 , where V is an arbitrary control volume, we get the law of conservation of
momentum in the form where we write t instead of t0:∫

V

[
∂

∂t
(ρ (x, t) vi (x, t)) + div (ρ (x, t) vi (x, t) v (x, t))

]
dx = Fi (V ; t) , (1.24)

i = 1, 2, 3, for an arbitrary t ∈ (0, T ) and an arbitrary control volume V ⊂ V ⊂ Ωt.
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According to [9], the components Fi (V ; t) , i = 1, 2, 3, of the vector F (V ; t) can
be expressed as

Fi (V ; t) =

∫
V
ρ (x, t) fi (x, t) dx+

∫
∂V

3∑
j=1

τji (x, t)nj (x) dS, i = 1, 2, 3, (1.25)

assuming that τij ∈ C1 (M) and fi ∈ C (M) , (i, j = 1, 2, 3). Here τji are compo-
nents of the stress tensor T and fi are components of the density of the volume
force f. Substituting this into (1.24), we get∫

V

[
∂

∂t
(ρ (x, t) vi (x, t)) + div (ρ (x, t) vi (x, t) v (x, t))

]
dx = (1.26)∫

V
ρ (x, t) fi (x, t) dx+

∫
∂V

3∑
j=1

τji (x, t)nj (x) dS, i = 1, 2, 3, (1.27)

for each t ∈ (0, T ) and an arbitrary control volume V in Ωt. Moreover, applying
Green's theorem and Lemma 1.4, we obtain the desired equation of motion of a
general �uid in the di�erential conservative form

∂

∂t
(ρvi) + div (ρviv) = ρfi +

3∑
j=1

∂τji
∂xj

, i = 1, 2, 3. (1.28)

This can be written as

∂

∂t
(ρv) + div (ρv⊗ v) = ρf + div T , (1.29)

where ⊗ denotes the tensor product :

a⊗ b =

 a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

 ,

and div (a⊗ b) is a vector quantity:

div (a⊗ b) =

(
3∑
i=1

∂

∂xi
aib1,

3∑
i=1

∂

∂xi
aib2,

3∑
i=1

∂

∂xi
aib3

)T

.

1.1.5 Navier-Stokes equations

The relation between the stress tensor and other quantities describing �uid �ow,
the velocity and its derivatives in particular, represent the so-called rheological
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equations of the �uid. For the derivation of the Navier-Stokes equations we shall
use

T = (−p+ λdivv) I + 2µD (v) , (1.30)

where D is the deformation velocity tensor:

D = D (v) = (dij)
3
i,j=1 , dij =

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, (1.31)

λ, µ are constants or scalar functions of thermodynamical quantities, λ and µ are
called the �rst and the second viscosity coe�cient respectively. For the assump-
tions under which we can write (1.30) see [9]. Altough viscosity coe�cients can be
functions of thermodynamical quantities (most important of which is θ, the abso-
lute temperature) we shall treat them as if they were constants. Let assumptions
1.3 be satis�ed and let us assume that

∂v

∂t
∈ [C (M)]3 ,

∂2v

∂xi∂xj
∈ [C (M)]3 (i, j = 1, 2, 3) . (1.32)

Now let us substitute relation (1.30) into the general equations of motion (1.29)
with the assumption of constant viscosity coe�cients and assumptions (1.32). We
come to the Navier-Stokes equations in the form

∂(ρv)

∂t
+ div (ρv⊗ v) = ρf−∇ p+ µ4v + (µ+ λ) ∇div v. (1.33)

For details see [10].

1.1.6 Energy equation

Now let us derive a di�erential equation equivalent to the law of conservation of
energy. As in the preceding subsections, we consider a piece of �uid represented
by a control volume V (t) satisfying assumptions 1.3. The law of conservation of
energy can be formulated as follows:
The rate of change of the total energy of the �uid particles, occupying the domain
V (t) at time t, is equal to the sum of powers of the volume force acting on the
volume V (t) and the surface force acting on the surface ∂V (t), and of the amount
of heat transmitted to V (t).
By E (V (t)) let us denote the total energy of the �uid particles contained in the
domain V (t) and by Q (V (t)) the amount of heat transmitted to V (t) at time t.
Taking into account the character of volume and surface forces involved, we get
the identity representing the law of conservation of energy:

d

dt
E (V (t)) =

∫
V(t)

ρ (x, t) f (x, t) · v (x, t) dx (1.34)

+

∫
∂V(t)

3∑
i,j=1

τji (x, t) nj (x) vi (x, t) dS +Q (V (t)) .

13



Following relations hold:

a) E (V (t)) =

∫
V(t)

E (x, t) dx, (1.35)

b) E = ρ

(
e+
|v|2

2

)
,

c) Q (V (t)) =

∫
V(t)

ρ (x, t) q (x, t) dx−
∫
∂V(t)

φq (x, t) · n (x) dS.

Here E is the total energy, e is the density of the speci�c internal energy
(related to the unit mass) associated with molecular and atomic behavior, |v|2 /2
is the density of the kinetic energy, q represents the density of heat sources (again
related to the unit mass) and φq is the heat �ux.

Let assumptions 1.3 hold and further let τij,
(
φq
)
i
∈ C1 (M) and fi, q ∈ C (M)

(i, j = 1, 2, 3) . Using this, relations (1.35) a)-c), Theorem 1.2, Green's theorem
and Lemma 1.4, we derive from (1.34) the di�erential energy equation, where we
take advantage of (1.30):

∂E

∂t
+ div (Ev) = ρf · v − div (pv) + div (λv divv) + div (2µD (v) v) + ρq − divφq.

(1.36)
For details see [10].

1.1.7 Thermodynamical relations

In order to complete the equations describing the �ow, some other relations shall
be added. The system now contains seven unknown quantities: v1, v2, v3, ρ, e, θ, p,
but only 5 equations (scalar continuity equation, vector Navier-Stokes equations
and scalar energy equation), i.e. (1 + 3 + 1) = 5. From this we see, that additional
two equations should be included.

Basic Thermodynamical Quantities
The absolute temperature θ, the density ρ and the pressure p are called the state
variables. All these quantities are positive scalar functions. We consider only the
so-called perfect gas or ideal gas whose state variables satisfy the following equation
of state

p = Rθρ, (1.37)

where R is the gas constant, which is de�ned as

R = cp − cv. (1.38)
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Here cp denotes the speci�c heat at constant pressure, i.e. the ratio of the increment
of the amount of heat related to the unit mass, to the increment of temperature
at constant pressure. Analogously cv denotes the speci�c heat at constant volume.
Experiments show that cp > cv, so that R > 0, and that cp and cv can be treated
like constants for a relatively large range of temperature. We set γ = cp/cv which
is the so-called Poisson adiabatic constant. The internal energy related to the unit
mass is de�ned by

e = cvθ, (1.39)

which explains the meaning of the internal energy: it is the amount of heat it
would have to be transmitted out of the �uid so that its temperature would reach
(absolute) zero, volume being kept constant during the whole process.

With respect to the above relations, we can express the internal energy as

e = cpθ −Rθ. (1.40)

The complete system of equations describing the �ow
The complete system now reads

∂ρ

∂t
+ div (ρv) = 0, (1.41)

∂(ρv)

∂t
+ div (ρv⊗ v) = ρf−∇ p+ µ4v + (µ+ λ) ∇div v, (1.42)

∂E

∂t
+ div (Ev) = ρf · v − div (pv) + div (λv divv) + (1.43)

+ div (2µD (v) v) + ρq − divφq,

p = (γ − 1)
(
E − ρ |v|2 /2

)
, (1.44)

θ =
(
E/ρ− |v|2 /2

)
/cv. (1.45)

This system is simply called the compressible Navier-Stokes equations for a heat-
conductive perfect gas. Equations (1.44) and (1.45) follow from (1.37) - (1.40)
and (1.35).

1.1.8 Entropy and the second law of thermodynamics

Entropy One of the important thermodynamical quantities is the entropy S,
de�ned by the relation

θdS = de+ pdV, (1.46)

where V = 1/ρ is the so-called speci�c volume. This identity is derived in thermo-
dynamics under the assumption that the internal energy is a function of S and V ,
e = e(S, V ), which explains the meaning of the di�erentials in (1.46).
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Theorem 1.3
For a perfect gas we have

S = cv ln
p/p0

(ρ/ρ0)γ
+ const (1.47)

= cv ln
θ/θ0

(ρ/ρ0)γ−1 + const, (1.48)

where p0 and ρ0 are �xed (reference) values of pressure and density and θ0 =
p0/ (Rρ0).

Proof
Using (1.39) and the relation V = 1/ρ, we can write (1.46) in the form

θdS = cvdθ −
pdρ

ρ2
. (1.49)

From this and (1.37) - (1.39) we get

dS = cv
dθ

θ
− p

ρθ

dρ

ρ
= cv

d (p/ρ)

(p/ρ)
−Rdρ

ρ
= cvd ln

p/p0

(ρ/ρ0)γ
= cvd ln

θ/θ0

(ρ/ρ0)γ−1 , (1.50)

which immediately yields (1.47).

The second law of thermodynamics In the irreversible processes, equal-
ity (1.47) does not hold in general and is replaced by the inequality

dS ≥ δQ
θ

(1.51)

called the second law of thermodynamics. For a system of �uid particles occu-
pying a domainV (t) at time t we postulate the second law of thermodynamics
mathematically in the form

d

dt

∫
V(t)

ρ (x, t)S (x, t) dx ≥
∫
V(t)

ρ (x, t) q (x, t)

θ (x, t)
dx−

∫
δV(t)

φq (x, t) · n (x)

θ (x, t)
dS.

(1.52)
The left-hand side of (1.52) represents the rate of change of the entropy contained in
the volume V (t), and the �rst and second integral on the right-hand side are called
the entropy production and the entropy flux. Let ρ, θ, vi, φqi ∈ C

1 (M) ; q, fi ∈
C (M) , i = 1, 2, 3. By virtue of the transport Theorem 1.2 and the continuity
equation (1.20), from (1.52) we obtain the inequality

ρ
∂ (ρS)

∂t
+ div (ρSv) ≥ ρq

θ
− div

(
φq
θ

)
. (1.53)
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A more general model of �ow is obtained in thermodynamics under the assumption
that the pressure is a function of the density and entropy: p = p (ρ, S), where p is a
continuously di�erentiable function and ∂p/∂ρ > 0. Let us introduce the quantity

a =

√
∂p

∂ρ
(1.54)

which has the dimension ms−1 of velocity and is called the speed of sound. Another
important characteristic of the �ow is so-called Mach number, which is de�ned as

M =
|v|
a
, (1.55)

where v is the �ow velocity.

17



1.2 Euler equations and their properties

If we set µ = λ = k = 0, we obtain the model of inviscid compressible �ow,
described by the continuity equation, the Euler equations, the energy equation and
thermodynamical relations. Since gases are light, usually it is possible to neglect
the e�ect of the volume force. Neglecting heat sources too (assuming adiabatic
�ow), we get the system for the perfect inviscid gas in the following form:

∂ρ

∂t
+ div (ρv) = 0, (1.56)

∂(ρv)

∂t
+ div (ρv⊗ v) +∇p = 0, (1.57)

∂E

∂t
+ div ((E + p) v) = 0, (1.58)

p = (γ − 1)
(
E − ρ |v|2 /2

)
. (1.59)

This system is simply called the compressible Euler equations.

In the following we shall be concerned with the 2-dimensional case, which will
be used in numerical examples. All results apply for the 3-dimensional case as well.

1.2.1 Dimensionless Euler equations

We set 3 similarity constants lr, vr, and ρr, which are, in order: characteristic
length, characteristic velocity, and characteristic density. Now we multiply the
Euler equations by these constants in the following way:

[
∂ρ

∂t
+ div(ρv)

]
lr
ρrvr

= 0, (1.60)[
∂(ρv)

∂t
+ div(ρv⊗ v) +∇p

]
lr
ρrv2

r

= 0, (1.61)[
∂E

∂t
+ div((E + p)v)

]
lr
ρrv3

r

= 0. (1.62)

Then we get the dimensionless Euler equations in the form

∂ρ̃

∂t̃
+ ∇̃ · (ρ̃ṽ) = 0, (1.63)

∂(ρ̃ṽ)

∂t̃
+ ∇̃ · (ρ̃ṽ⊗ ṽ) + ∇̃p̃ = 0, (1.64)

∂Ẽ

∂t̃
+ ∇̃ · ((Ẽ + p̃)ṽ) = 0, (1.65)
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where

tr =
lr
vr
, (1.66)

t̃ =
t

tr
, (1.67)

ρ̃ =
ρ

ρr
, (1.68)

ṽ =
v

vr
, (1.69)

∇̃ = lr∇, (1.70)

Ẽ =
E

ρru2
r

, (1.71)

p̃ =
p

ρru2
r

. (1.72)

As we see, the dimensionless Euler equations have the same form as the original
equations, only the relations are rescaled using the above relations. Therefore, in
the sequel, we shall omit the symbol '˜' over the considered quantities.

1.2.2 Conservative form of the Euler equations

The system of governing equations can be written in the so-called conservative
form.

∂w

∂t
+
∂f1
∂x1

+
∂f2
∂x2

= 0, (1.73)

where

w =


%
ρv1

ρv2

E

 =


w1

w2

w3

w4

 , (1.74)

f1 =


ρv1

ρv2
1 + p
ρv1v2

v1(E + p)

 =


w2

w2
2

w1
+ p

w2w3

w1
w2

w1
(w4 + p)

 , (1.75)

f2 =


ρv2

ρv2v1

ρv2
2 + p

v2(E + p)

 =


w2
w3w2

w1
w2

3

w1
+ p

w3

w1
(w4 + p)

 , (1.76)

p = (γ − 1)

(
w4 −

w2
2 + w2

3

2w1

)
. (1.77)
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Usually, f1 and f2, are called inviscid Euler fluxes. The unknowns ρ, v1, v2, p
in the original system of equations are called primitive variables, whereas w1 =
ρ, w2 = ρv1, w3 = ρv2, w4 = E are called conservative variables.

The domain of de�nition of the vector-valued functions f1, f2 is the open set
D ⊂ R2 where the corresponding density and pressure are positive:

D =

{
w ∈ R4; w1 = ρ > 0, w4 −

w2
2 + w2

3

2w1

=
p

γ − 1
> 0

}
. (1.78)

One can see that the inviscid Euler �uxes are continuously di�erentiable in their
domain of de�nition. Di�erentiation in (1.73) and the chain rule lead to a �rst
order system of quasilinear partial di�erential equations

∂w

∂t
+ A1 (w)

∂w

∂x1

+ A2 (w)
∂w

∂x2

= 0, (1.79)

where As (w) , s = 1, 2 are m ×m matrices called flux Jacobians de�ned as the
Jacobi matrices of the mappings fs, s = 1, 2, at a point w ∈ D:

As (w) =
Dfs (w)

Dw
=

(
∂fsi (w)

∂wj

)2

i,j=1

. (1.80)

For w ∈ D and n = (n1, n2)T ∈ R2 we put

P (w,n) =
2∑
s=1

fs (w)ns, (1.81)

which is the �ux of the quantityw in the direction n. The Jacobi matrixDP (w,n) /Dw
can be expressed in the form

DP (w,n)

Dw
= P (w,n) =

2∑
s=1

As (w)ns. (1.82)

Lemma 1.5
The vector-valued functions fs, s = 1, 2, de�ned by (1.75) - (1.76), are �rst order
homogenous mappings:

fs (αw) = αfs (w) , α > 0. (1.83)

Moreover, we have
fs (w) = As (w)w. (1.84)

Similarly,

P (αw,n) = αP (w,n) , α > 0, (1.85)
P (w,n) = P (w,n)w. (1.86)
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Proof: Relation (1.83) immediately follows from (1.75) - (1.76). Since fs ∈ C1 (D)m,
the expression (Dfs (w) /Dw)w = As (w)w is the derivative of fs in the direction
w at the point w. By the de�nition of the derivative and (1.83),

As (w)w = lim
α→0

fs (w + αw)− fs (w)

α
(1.87)

= lim
α→0

(1 + α) fs (w)− fs (w)

α
= fs (w) . (1.88)

The rest of the Lemma follows from the de�nitions of P and P and the above
results. The �ux Jacobians have the following form:

A1(w) =
Df1
Dw

=


0 1 0 0

−w2
2

w2
1

+ R
cv

w2
2+w2

3

2w2
1

2w2
w1
− R

cv

w2
w1

− R
cv

w3
w1

R
cv

−w2w3

w2
1

w3
w1

w2
w1

0

−w2w4

w2
1
− w2

w2
1

R
cv

(
w4 −

w2
2+w2

3
2w1

)
+ w2

w1

R
cv

w2
2+w2

3

2w2
1

w4
w1

+ 1
w1

R
cv

(
w4 −

w2
2+w2

3
2w1

)
− R

cv

w2
2

w2
1
− R

cv

w2w3

w2
1

w2
w1

+ R
cv

w2
w1

 ,

A2(w) =
Df2
Dw

=


0 0 1 0

−w3w2

w2
1

w3
w1

w2
w1

0

−w2
3

w2
1

+ R
cv

w2
2+w2

3

2w2
1

− R
cv

w2
w1

2w3
w1
− R

cv

w3
w1

R
cv

−w3w4

w2
1
− w3

w2
1

R
cv

(
w4 −

w2
2+w2

3
2w1

)
+ w3

w1

R
cv

w2
2+w2

3

2w2
1

− R
cv

w3w2

w2
1

w4
w1

+ 1
w1

R
cv

(
w4 −

w2
2+w2

3
2w1

)
− R

cv

w2
3

w2
1

w3
w1

+ R
cv

w3
w1

 .

1.2.3 Rotational invariance

The rotational invariance of the Euler equations is represented by the relations

P (w,n) =
2∑
s=1

fs (w)ns = Q−1 (n) f1 (Q (n)w) , (1.89)

P (w,n) =
2∑
s=1

As (w)ns = Q−1 (n)A1 (Q (n)w)Q (n) , (1.90)

n = (n1, n2) ∈ R2, |n| = 1,w ∈ D, (1.91)

where

Q (n) =


1 0 0 0
0 n1 n2 0
0 −n2 n1 0
0 0 0 1

 . (1.92)
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1.2.4 Diagonalization of the Jacobi matrix

We have

f1 (w) =
(
w1, w

2
2/w1 + (γ − 1)

[
w4 −

(
w2

2 + w2
3

)
/ (2w1)

]
, (1.93)

w2w3/w1, w2

[
γw4 − (γ − 1)

(
w2

2 + w2
3

)
/ (2w1)

]
/w2

)T
,

and, with the notation v = (u, v),

A1 (w) =


0 1 0 0

γ−1
2
|v|2 − u2 (3− γ)u (1− γ) v 1− γ
−uv v u 0

u
(

(γ − 1) |v|2 − γE
ρ

)
γE
ρ
− (γ − 1)u2 − γ−1

2
|v|2 (1− γ)uv γu

 .

(1.94)
The matrix A1 (w) has eigenvalues

λ̃1 (w) = u− a, λ̃2 (w) = λ̃3 (w) = u, λ̃4 (w) = u+ a (1.95)

and the corresponding eigenvectors are

r1 (w) =
(
1, u− a, v, |v|2 /2 + a2 (γ − 1)− ua

)T
, (1.96)

r2 (w) =
(
1, u, v |v|2 /2

)T
, (1.97)

r3 (w) =
(
1, u, v − a, |v|2 /2− va

)T
, (1.98)

r4 (w) =
(
1, u+ a, v, |v|2 /2 + a2 (γ − 1) + ua

)T
. (1.99)

These formulas are possible to be veri�ed. As the eigenvectors rs (w) , s = 1, ..., 4,
are linearly independent for each w ∈ D, we can write

T̃−1 (w)A1 (w) T̃ (w) = Λ̃ (w) , (1.100)

where the matrix T̃ (w) has the vectors rs (w) , s = 1, ..., 4, as its columns and

Λ̃ (w) = diag
(
λ̃1 (w) , ..., λ̃4 (w)

)
. (1.101)

This means that the matrix A1 (w) is diagonalizable.

Now we can show that the matrix P (w,n) is diagonalizable too. By (1.90)
and (1.100)

P (w,n) = |n|Q−1 (n) T̃ (Q (n)w) Λ̃ (Q (n)w) T̃ (Q (n)w)−1 Q (n) . (1.102)

Under the notation

Λ (w,n) = |n| Λ̃ (Q (n)w) = diag |n|
(

Λ̃1 (Q (n)w) , ..., Λ̃4 (Q (n)w)
)
,

T (w,n) = Q−1 (n) T̃ (Q (n)w) , (1.103)

we see that the matrix P (w,n) satis�es the relation T−1PT = Λ (w,n) = diag (λ1, ..., λ4)
and thus T diagonalizes the matrix P.
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Chapter 2

Computational methods in �uid

dynamics

In this section we shall consider an initial-boundary value problem for the system
of equations in the space-time cylinder QT = Ω × (0, T ), where Ω ∈ R2. We give
here a short overview of methods for discretization in space.

2.1 Triangulation

First step in the process of the discretization is to divide the closure Ω of the
computational domain Ω into a �nite number of subsets with properties described
below. These subsets form the set, further denoted by Th, called the triangulation
of the domain Ω. The parameter h > 0 of the triangulation usually represents
maximum of diameters of all elements K ∈ Th.

Properties of Th:

a) Each K ∈ Th is closed and connected with its interior K◦ 6= ∅.

b) Each K ∈ Th has a Lipschitz boundary.

c) ∪K∈ThK = Ω

d) If K1, K2 ∈ Th, K1 6= K2, then K◦1 ∩ T ◦2 = ∅.

In our case of the two-dimensional problem, we assume that the domain Ω is
obtained as an approximation of the original computational domain (also denoted
by Ω), and the triangulation is chosen accordingly to the following attributes:

A) Each K ∈ Th is a closed triangle or quadrilateral, possibly with curved edges.
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B) For K1, K2 ∈ Th, K1 6= K2 we have either K1 ∩K2 = ∅ or K1, K2 share one
vertex or K1, K2 share one edge. If every edge of the mesh that does not lie
on the boundary ∂Ω is a common edge of two elements Ki and Kj, then we
call the mesh regular, otherwise we call the mesh irregular.

C) ∪K∈ThK = Ω.

Furthermore
Th = {Ki, i ∈ I} ,

where I ⊂ Z+ = {0, 1, 2, ...} is a suitable index set.
By Γij we denote a common edge between two neighboring elements Ki and Kj.
We set

s (i) = {j ∈ I;Kj is a neighbor of Ki} .
The boundary ∂Ω is formed by a �nite number of edges of elements Ki adjacent to
∂Ω. We denote all these boundary edges by Sj, where j ∈ Ib ⊂ Z− = {−1,−2, ...}.
Now we set

γ (i) = {j ∈ Ib;Sj is an edge of Ki ∈ Th}
and

Γij = Sj for Ki ∈ Th such that Sj ⊂ ∂Ki, j ∈ Ib.
For Ki not containing any boundary edge Sj we set γ (i) = ∅.
Obviously, s (i) ∩ γ (i) = ∅ for all i ∈ I. If we write S (i) = s (i) ∪ γ (i), we have

∂Ki = ∪j∈S(i)Γij, ∂Ki ∩ ∂Ω = ∪j∈γ(i)Γij.

In what follows, by nij (x1, x2) we shall denote the unit outer normal to Ki on Γij
at the point (x1, x2).

Model example Our model example in this chapter will be the scalar linear
advection equation:

∇ · f (u (x1, x2)) = 0. (2.1)

In particular, we will be concerned with the case

f (u) = βu,

where β (x1, x2) = (−x2, x1)/ |x| represents a circular counterclockwise �ow �eld
and Ω = [0, 1]× [0, 1]. We prescribe the following boundary condition:

u = g on Γ−, where (2.2)
g = 1 on Γ1

−, and (2.3)
g = 0 on Γ2

−, (2.4)

where Γ− = {x = (x1, x2) ∈ ∂Ω : β (x1, x2) · n(x) < 0} , Γ1 = [0, 0.5] × 0, and
Γ2
− = Γ− \ Γ1

−. We do not prescribe any boundary condition on the rest of the
boundary, i.e. on Γ = ∂Ω \ Γ−.
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2.2 Finite Volume method

The elements K ∈ Th are in the context of the �nite volume method called
finite volumes.

2.2.1 Scheme derivation

Let us assume that u : Ω → R is a classical C1 solution of the equation (2.1),
Th = {Ki}i∈I is a mesh with the above properties. Integrating the equation (2.1)
over any Ki and using Green's theorem on Ki, we get the identity∫

∂Ki

f (u) · ndS = 0. (2.5)

Now we shall approximate the integral averages
∫
Ki
u (x) dx/ |Ki| of the quantity

u over the �nite volume Ki by ui:

ui ≈
1

|Ki|

∫
Ki

u (x) dx, (2.6)

called the value of the approximate solution on Ki. Futher, we approximate the
�ux f (u) · (nij) of the quantity u through the edge Γij in the direction nij with the
aid of a numerical �ux H (ui, uj,nij), depending on the value of the approximate
solution ui on the �nite volume Ki, the value uj on Kj, and on the normal nij.
If Γij ⊂ ∂Ω (i.e. the �nite volume Ki is adjacent to ∂Ω, j ∈ γ (i)), then there is
no neighbor Kj of Ki adjacent to the edge Γij from the exterior of Γ, and it is
necessary to specify uj on the basis of boundary conditions. This will be explained
further in the section about the discretization of the Euler equations.

2.2.2 Properties of the numerical �ux

In what follows, we shall assume that the numerical �ux H has the following
properties:

A) H (u, v,n) is de�ned and continuous on D ×D ×S1, where D is the domain
of de�nition of the �ux f and S1 is the unit sphere in RN (here N = 2).

B) H is consistent:

H (u, u,n) = f (u) · n, u ∈ D, n ∈ S1.

C) H is conservative:

H (u, v,n) = −H (v, u,−n) , u, v ∈ D, n ∈ S1.
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We de�ne a �nite volume approximate solution of (2.1) as piecewise constant func-
tion uh, de�ned a.e. in Ω so that uh|Ki

o = ui for all i ∈ I, where Ki
o is the interior

of Ki, i.e. Ki
o = Ki\∂Ki, and ui are obtained from the formula

1

Ki

∑
j∈S(i)

H (ui, uj,nij) = 0, Ki ∈ Th. (2.7)

The number ui is the value of the approximate solution on the �nite volume Ki.

2.2.3 Example

Now we give an example of a numerical �ux, which is the upwinding numerical
�ux de�ned by

H (ui, uj, nij) =

{
ui, if β · nij > 0

uj, if β · nij ≤ 0
. (2.8)

Solutions of the model example using the �nite volume method with the numerical
�ux (2.8) are presented below. In this case the equations (2.7) are linear. The
system was solved using the direct solver from the UMFPACK package. The results
were obtained on three di�erent meshes.

Figure 2.1: Solution u on a mesh with 128 (left), and 206 (right) elements.
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Figure 2.2: Solution u (left) and the corresponding mesh (right) with 4751 elements.

We can see that the solution is smeared near the steep gradient, even if we
used a greatly re�ned mesh. We would like to avoid this behavior, and get better
resolution of the steep gradient.

2.3 Finite Element Method

Application of the standard FEM to the problem (2.1) is very straightforward.
We multiply the equation (2.1) with a test function v from the following �nite-
dimensional approximation of the H1 (Ω) space:

V =

{
ϕ ∈ H1 (Ω) ;ϕ =

∑
0≤i,j≤p

αij x
i
1 x

j
2, αij ∈ R}

}
, (2.9)

where p ∈ N. We then integrate over Ω and use the Green's theorem. We get the
following identity: ∫

Ω

f (u) · ∇vdx =

∫
Γ−

β (g) v · n ∀v ∈ V. (2.10)

For singularly perturbed equations, or strictly �rst order equations, such as our
model equation, the standard Galerkin FEM exhibits Gibbs phenomenon, man-
ifested by spurious oscillations in the numerical solution. This behavior is well
noticeable in the following �gures.
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2.3.1 Example

Figure 2.3: Solution u on a mesh with 128 elements and p = 1 (left), and 206
elements and p = 2 (right).

Figure 2.4: Solution u (left) and the corresponding mesh (right) with 449 elements,
p = 5, and 11206 degrees of freedom.

The oscillations can be diminished using a stabilization technique, e.g. streamwind-
upwind Petrov-Galerking stabilization (SUPG). Their disadvantage is the necessity
to tune various parameters in order that the resulting schemes function properly.
For a reference, see e.g. [13], [16].

2.4 Discontinuous Galerkin method

For complex problems of compressible �ow, the choice of optimal stabilization pa-
rameters becomes quite sophisticated and di�cult. Due to this reason, there was an
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e�ort to develop methods which would not need such stabilization techniques, and
would still o�er reasonable resolution of shockwaves, boundary and interior layers,
and steep gradients without exhibiting spurious oscillations in an approximate so-
lution. It is based on the idea to combine �nite volume and �nite element methods
leading to the so-called discontinuous Galerkin �nite element method (DGFEM).
Here we shall derive and analyze DGFEM for our model example. Let Th be a
triangulation of Ω. For each K ∈ Th we introduce the notation

∂K− = {x ∈ ∂K; β (x) · n (x) < 0} , (2.11)
∂K+ = {x ∈ ∂K; β (x) · n (x) ≥ 0} . (2.12)

By Hk (Ω, Th) we denote the so-called broken Sobolev space:

Hk (Ω, Th) =
{
v ∈ L2 (Ω) ; v|K ∈ Hk (K)∀K ∈ Th

}
. (2.13)

For u ∈ H1 (Ω, Th) we set

u+
K = trace of u|K on ∂K (2.14)

(i.e. the interior trace of u on ∂K). For each edge E ⊂ ∂K\Γ of K, there exists
K ′ 6= K, K ′ ∈ Th, adjacent to E from the opposite side than K. Then we put

u−K = trace of u|K′ on E. (2.15)

In this way we obtain the exterior trace u−K of u on ∂K\Γ and de�ne the jump of
u on ∂K\Γ:

[u]K = u+
K − u

−
K . (2.16)

2.4.1 Derivation of the DGFEM

Let u ∈ H1 (Ω) be a solution of the problem (2.1). Then u satis�es the identity∫
K

∇ · (βu)ϕdx = 0, ϕ ∈ H1 (Ω, Th) , K ∈ Th. (2.17)

The application of Green's theorem gives∫
K

∇ · (βu)ϕdx =

∫
∂K

(
βu+

K

)
· nϕ+

KdS −
∫
K

(βu) · ∇ϕdx (2.18)

=

∫
∂K−

(
βu+

K

)
· nϕ+

KdS +

∫
∂K+

(
βu+

K

)
· nϕ+

KdS

−
∫
K

(βu) · ∇ϕdx,
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where n is the unit outer normal to the element boundary ∂K. As u ∈ H1 (Ω), we
have u−K = u+

K . Moreover, u−K |∂K−∩Γ− := u|∂K−∩Γ− = g. Then we can write∫
K

∇ · (βu)ϕdx =

∫
∂K−

(
βu−K

)
· nϕ+

KdS +

∫
∂K+

(
βu+

K

)
· nϕ+

KdS (2.19)

−
∫
K

(βu) · ∇ϕdx.

Applying Green's theorem again, we get the identity∫
K

∇ · (βu)ϕdx =

∫
∂K−

(
β
(
u+
K − u

−
K

))
· nϕ+

KdS. (2.20)

Setting

aK (u, ϕ) =

∫
K

∇ · (βu)ϕdx−
∫
∂K−\Γ

(β[u]K) · nϕ+
KdS (2.21)

−
∫
∂K−∩Γ−

(
βu+

K

)
· nϕ+

KdS,

LK (ϕ) =

∫
∂K−∩Γ−

(βg) · nϕ+
KdS, (2.22)

we can rewrite the equation (2.20) as

aK (u, ϕ) = LK (ϕ) , ϕ ∈ H1 (K) , K ∈ Th. (2.23)

This identity makes sense also for u ∈ H1 (Ω, Th). In this case, we can note that
in (2.18), on ∂K− (= the inlet of K with respect to the velocity β) we replace the
value u+

K (the interior trace of u) by u−K . This means that upwinding is used here,
because the value of the trace of u on ∂K− is taken from the side of ∂K− against
the velocity direction.

Now, on the basis of (2.23) we come to the de�nition of the discrete problem.
The approximate solution is a function uh satisfying the conditions

A) uh ∈ Vh = V p,−1 (Ω, Th) := {ϕ ∈ L2 (Ω) ;ϕ|K ∈ P p (K)∀K ∈ Th}

B) aK (uh, ϕh) = LK (ϕh) , ∀ϕh ∈ Vh, ∀K ∈ Th.

Here, p is an integer. In general, on each element a di�erent polynomial degree can
be used for the approximation. The approximate solution and test functions are
piecewise polynomial functions without any continuity requirement on interfaces
between neighboring elements. The continuity requirement is replaced here by the
jump term

∫
∂K−\Γ (β[u]K) · nϕ+

KdS.
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In Figures 2.5, 2.6 we can see that we successfully avoided the smeared layer
close to the steep gradient, and also the Gibbs phenomenon in the whole domain.
What we have to deal here with on the other hand are overshoots and undershoots
close to the step gradient. There are several approaches how to solve this problem,
some of which are described in the last chapter with numerical experiments, for
the case of the Euler equations.

2.4.2 Example

Figure 2.5: Solution u on a mesh with 128 elements and p = 1 (left), and 206
elements and p = 2 (right).

Figure 2.6: Solution u (left) and the corresponding mesh (right) with 1271 elements,
p = 3, and 20336 degrees of freedom.
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Chapter 3

Adaptivity algorithms

In computational �uid dynamics we are interested in the computation of su�ciently
accurate solutions of various �ow problems. The goal of the design of any numerical
method is reliability and e�ciency. Reliability means that the computational error
is controlled at a given tolerance level. The e�ciency means that the cost of the
computation of a solution within a given tolerance is as small as possible. These
two requirements are usually achieved with the aid of mesh re�nement techniques.
The goal is to achieve reliability either in the sense that the numerical solution
approximates the exact solution in a given norm within a given tolerance, or in
the sense that some physically relevant quantities (e.g. �ux through a part of a
boundary, drag, lift) are computed within a given tolerance.

Standard h-adaptive FEM, where (adaptive) mesh re�nement is used, is a well
known, and well spread method. Sometimes, much faster convergence can be
achieved by increasing the polynomial degree of the elements instead (p-re�nement).
Such approach is far more e�cient for elements of the mesh where the solution is
smooth. In the following section, a brief description of this technique is presented,
following [22].
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3.1 p-adaptivity

In the process of FEM, or DGFEM usage, the domain Ω is �rst approximated
by a suitable (often polygonal) domain Ωh. This is one of the so-called variational
crimes � departures from the �mathematically clean� variational framework � since
Ωh 6⊂ Ω and the solution or other functions from the weak formulation are not
de�ned where they are to be approximated or evaluated. In practice these crimes
are often hard to avoid. In what follows, we will denote the approximation Ωh of
the domain Ω used in computations also by Ω.

3.1.1 Higher-order �nite element space

Let the domain Ω be covered with a mesh Th = {K1, K2, . . . , KM} where the
elements Km carry arbitrary polynomial degrees 1 ≤ pm, m = 1, 2, . . . ,M . The
broken Sobolev space H1 (Ω, Th) is now approximated by a space of piecewise-
polynomial functions

Vh = {v ∈ L2(Ω); v|Km ∈ P pm(Km) for all 1 ≤ m ≤M}

where P p is de�ned as

P p = span{
∑

0≤i,j≤p

αij x
i
1 x

j
2, αij ∈ R}

in case of quadrilaterals and

P p = span{
∑

0≤i,j≤p
i+j≤p

αij x
i
1 x

j
2, αij ∈ R}

in case of triangles.

Basis functions are de�ned with help of functions on reference elements that we
call shape functions. Reference elements and their mapping onto physical elements
is a standard approach described e.g. in [10]. We will denote the appropriate (i.e.
triangular or quadrilateral) reference elements by K̂. The reference elements are
shown in �gure 3.1
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Figure 3.1: Reference triangle and reference quadrilateral.

The next section shows one possible way of constructing shape functions for
the discontinuous Galerkin method.

3.1.2 Hierarchic shape functions

Hierarchic shape functions are constructed in such a way that the basis Bp+1 of
the polynomial space P p+1(K̂) is obtained from the basis Bp of the polynomial
space P p(K̂) by adding new shape functions only. This is essential for p- and hp-
adaptive �nite element codes since one does not have to change the shape functions
completely when increasing the degree of polynomial approximation. The bases
formed by this approach shall be called hierarchic bases. In this section we will
describe the popular Legendre-based hierarchic shape functions.

De�nition 3.1 (Legendre polynomials) We de�ne the Legendre polynomials
of degree k as

Lk(x) =
1

2kk!

dk

dxk
(x2 − 1)k, k = 0, 1, 2, . . .

The set of Legendre polynomials forms an orthonormal basis of the space
L2(−1, 1).

Quadrilaterals On quadrilaterals, the set of shape functions is the product of
Legendre polynomials. Displayed are shape functions from the bases Bp for p =
1, 2, 3.
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Figure 3.2: Basis B0 of the space P 0 (top), basis B1 of the space P 1 (bottom)

Figure 3.3: Basis B2 of the space P 2
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Figure 3.4: Basis B3 of the space P 3

Triangles Situation on triangles is more complicated, because the set of shape
functions cannot be the product of Legendre polynomials as the number of nec-
essary functions is smaller. In the construction of the set, the following de�nition
will be used.

De�nition 3.2 (A�ne coordinates) Barycentric coordinates on the triangular
reference domain K̂ are de�ned as

λ1(ξ1, ξ2) =
ξ2 + 1

2
, λ2(ξ1, ξ2) = −ξ1 + ξ2

2
, λ3(ξ1, ξ2) =

ξ1 + 1

2

Now the shape functions are de�ned in the following way:

Ltriij = Li(λ3(x1, x2)− λ2(x1, x2)) · Lj(λ2(x1, x2)− λ1(x1, x2)), (3.1)

the resulting set is then Ltrip =
{
Ltriij , i, j = 0, ..., p

}
, where p represents the highest

polynomial degree we use for approximation. Displayed are shape functions from
the bases Bp for p = 1, 2, 3.
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Figure 3.5: Basis B0 of the space P 0 (left), basis B1 of the space P 1 (rest)

Figure 3.6: Basis B2 of the space P 2

Figure 3.7: Basis B3 of the space P 3

Proposition 3.1 The shape functions described above, both on quadrilaterals, and
on triangles constitute a hierarchic basis of the space P pm(K̂). Hierarchic in the
sense that all functions from P pm−1(K̂) belong to P pm(K̂).

Proof The complete proof can be found in [22]. Brie�y, the following must be
veri�ed:
A) Are all the shape functions linearly independent?

B) Do they all belong to the space P pm(K̂)?

C) Does their number match the dimension of the space P pm(K̂)?

37



3.1.3 Higher-order numerical quadrature

Most commonly, the integrals that appear in our problems are evaluated numer-
ically by the Gaussian quadrature. The k-point Gaussian quadrature rule on the
domain K̂ has the form ∫

K̂

g(ξ)dξ ≈
k∑
i=1

wk,ig(ξk,i) (3.2)

where g is a bounded continuous function, ξk,i ∈ K̂, i = 1, 2, . . . , k are the integra-
tion points and wk,i ∈ R are the integration weights. The sum of the integration
weights must be equal to the area of K̂, so that the rule (3.2) is exact for constants.
If the points and weights are chosen carefully, the formula (3.2) can be exact for
polynomials up to a certain degree q > 0.

In 1D the integration points are roots of the Legendre polynomials. Also in 2D
it is possible to �nd the integration points and weights for low-degree polynomials
ocurring in traditional linear FEM. For higher-degree polynomials, however, the
task of �nding optimal Gaussian quadrature rules presents a complex non-linear
optimization problem with many open questions left. Optimal integration points
and weights are known on K̂ for polynomials up to degree 10. Suboptimal (with
more points than necessary) rules have been found for polynomials up to degree
20. Complete integration tables along with more information on this subject can
be found in [22].
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3.2 Hanging nodes

As the goal is automatic mesh adaptivity on both triangular and quadrilateral (or
combined) meshes, one of the important characteristics of triangulations is their
regularity. This section shows why the regularity assumption (from Section 2.1)
should be dropped and how irregular meshes are treated.

3.2.1 Hanging nodes and irregularity rules

At the beginning, let us recall the red-green re�nement strategy. This technique
�rst subdivides desired elements into geometrically convenient subelements with
hanging nodes and then it eliminates the hanging nodes by forcing re�nement
of additional elements. This is illustrated in Figure 3.8. This approach preserves
regularity of the mesh but in the case of triangles, it introduces elements with

Mesh after the "green" step: Mesh after the "red" step:Element marked for refinement:

Figure 3.8: Red-green re�nement.

sharp angles which are not desirable in the �nite element analysis. In the case of
quadrilaterals, it also negatively in�uence the element shapes. It becomes extremely
cumbersome when repeated re�nements occur in the same part of the domain (e.g.,
toward a boundary layer or point singularity).

The �red� re�nements can be avoided by introducing hanging nodes, i.e., by
allowing irregular meshes where element vertices lie in the interior of edges of other
elements. In order to keep the computer implementation simple, most �nite element
codes working with hanging nodes limit the maximum di�erence of re�nement
levels of adjacent elements to one (so-called 1-irregularity rule) � see, e.g., [18,
19, 21]. In the following, by k-irregularity rule (or hanging nodes of level k) we
mean this type of restriction where the maximum di�erence of re�nement levels
of adjacent elements is k. In this context, k = 0 corresponds to adaptivity with
regular meshes and k =∞ to adaptivity with arbitrary-level hanging nodes.

It is illustrated in Figure 3.9 that even the 1-irregularity rule does not avoid all
forced re�nements:
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Element marked for refinement:
Refinement step violating the

1−irregularity rule:
Additional refinements forced 

by the 1−irregularity rule:

Figure 3.9: Re�nement with 1-irregularity rule.

The amount of forced re�nements in the mesh depends strongly on the level
of hanging nodes. Next we introduce a model problem and show that the level of
hanging nodes also in�uences signi�cantly both the number of degrees of freedom
and condition number of sti�ness matrices.

Model problem Consider a Poisson equation −∆u = f in Ω with u = 0 on
the boundary of Ω, where Ω = (−1, 1)2. Assume a right-hand side f such that the
corresponding exact solution u is zero everywhere in Ω with the exception of a local
perturbation occuring inside of a small triangle Tn with the vertices [−2−n,−2−n],
[0, 0], [−2−n, 2−n]. The domain is covered with a coarse four-element mesh shown
in Figure 3.10. For simplicity, all elements are equipped with a uniform polynomial
degree p ≥ 1.

�
�
�
�T

K

K

2

1 K3

K4

Figure 3.10: Domain and initial mesh for the study of k-irregularity rules.

We perform the following simple experiment: Starting from the coarse mesh
shown in Figure 3.10, we run an adaptive algorithm which in each step applies the
�green� re�nement to every mesh triangle K such that K ∩ Tn 6= ∅ and K 6⊂ Tn.
Figure 3.11 shows �nal meshes obtained with various levels of hanging nodes for
n = 5:

Notice that, since Tn ⊂ K1, all re�nements within the elements K2, K3, K4

are forced by regularity requirements and they do not improve the resolution.
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Figure 3.11: Meshes obtained with k-irregularity rules, k = 1, 2, 3,∞.

The reader can see that the amount of forced re�nements decreases as k grows,
vanishing completely with k =∞.

Next let us choose, e.g., p = 3, and run the same adaptive procedure for n =
1, 2, . . . , 15. Figure 3.12 shows the number of degrees of freedom corresponding
to the �nal meshes. The horizontal axis represents the spatial scale 2−n. For the
same computations, Figure 3.13 shows the condition number of the corresponding
sti�ness matrices.

Figure 3.12: Size of the sti�ness matrix for �nal meshes. Level of hanging nodes:
k = 0, 1, 2, 3,∞.
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Figure 3.13: Condition number of the sti�ness matrix for �nal meshes. Level of
hanging nodes: k = 0, 1, 2, 3,∞.
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3.3 Data structures for hp-adaptivity

The need for mesh adaptivity brings further demands that must be taken into
account in the design of the data structures. A tree-like hierarchy of element re-
�nement levels must be introduced and also more complicated neighbor search
algorithms are required to correctly initialize the integration points on the edges.
The complexity of the data structures re�ects strongly on the complexity of the
rest of the �nite element code.

Simplifying assumptions, such as the k-irregularity rules, are often imposed on
the mesh with the aim of reducing code complexity. However, these assumptions
can deteriorate the numerical performance of the code.

In the following we present an original design of data structures for adaptive
meshes, free of any regularity assumptions yet retaining great simplicity.

Calculation of �uxes in DGFEM with arbitrary-level hanging will also be de-
scribed.

3.3.1 Node and element structures

It should be noted �rst that we have departed from traditional mesh data struc-
tures storing complete information about the �nite element problem. Our mesh
structures contain geometrical information only. The remaining data, including
basis function indices, boundary conditions, polynomial degrees, etc., are stored
in separate structures describing concrete �nite element spaces (H1, H(curl), ...)
and are accessible via the identi�cation numbers of nodes and elements. This was
done to allow multiple spaces and multiple element types to co-exist on the same
mesh, which is vital for solving multi-physics and coupled problems.

The entire mesh is de�ned by two arrays of the following structures. The �rst
one stores all nodes:

s t r u c tu r e Node
{

// Type o f the Node − e i t h e r vertex , or edge .
type ;

// Phys i ca l c oo rd ina t e s o f t h i s Node , in case i t i s a ver tex Node .
coo rd inate x ;
coo rd inate y ;

// Two ne ighbor ing e lements o f t h i s Node , in case i t i s an edge Node .
Element e lements [ 2 ] ;

} ;

This structure de�nes both vertices and edges. The standard vertex positions x,
y are placed in the vertex variant of the Node structure. The edge variant contains
pointers to the two elements sharing the edge node (useful e.g. when looking for a
neighbor of an element sharing a particular edge in order to calculate the numerical
�ux across the edge).
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The attribute type determines the variant of the structure. The remaining
attributes are omitted for simplicity.

Elements are de�ned by the second structure:
s t r u c tu r e Element
{

// Type o f the Element − e i t h e r t r i a ng l e , or q u ad r i l a t e r a l .
type ;

// True or f a l s e whether t h i s element has or has not been r e f i n e d f u r t h e r .
Boolean r e f i n e d ;

// Vertex nodes
Node vn [ 4 ] ;

// Edge nodes
Node en [ 4 ] ;

} ;

We also keep elements that have been re�ned further, for purpose of �nding
neighbors, adaptivity, and dere�nement of the meshes which is important for time-
dependent problems.

Elements that are not re�ned store pointers to appropriate vertices and edges.
Elements that have been re�ned only store information about elements into

which they were re�ned for the above reasons.
Triangular and quadrilateral elements share the same structure and are distin-

guished by the attribute type.

3.3.2 Eliminating neighbor search by hashing

To properly initialize edges (edge variant of the Node structure) after reading a
mesh �le, one has to construct neighbor lists for all elements and use them in such
a way that only one Node is created for each edge. Further problems arise when
certain elements are re�ned after automatic mesh adaptation. Unless hanging nodes
are removed by extra re�nements, no longer is each edge shared by at most two
elements (there can be more of them). Standard neighbor lists fail to fully capture
such situations and thus more complex data structures, e.g. trees [4], have to be
introduced.

We have avoided all of these problems by introducing a function which, given
two vertices, returns the vertex halfway between them. If no such vertex exists, it
is created �rst.

Details of the approach can be found in Appendix 1.

3.3.3 Finding all neighbors of an element

In element-wise assembling procedure with arbitrary-level hanging nodes, when
calculating �uxes across mesh edges, one needs values from both sides of the edge.
To achieve this, the integration points need to be matched correctly, and proper
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values in these points from the adjacent element need to be extracted for all in-
volved functions de�ned on the mesh (basis functions, test functions, previous time
level solutions). This is not easy to manage. A simpli�ed version of the algorithm
is in Appendix 1.
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3.4 Automatic hp-adaptivity

The major di�erence between adaptivity in standard FEM and adaptivity in hp-
FEM is the large number of element re�nement options in the latter case. In
standard h-adaptivity, elements can only be subdivided in space, e.g., using the
red-green re�nement technique (see [1] and the references therein). In hp-adaptivity,
one can either increase the polynomial degree of elements without subdividing them
in space or one can split elements in space and distribute the polynomial degree
on the subelements in multiple ways.

3.4.1 Reference solution

The presence of many hp-re�nement options per element implies that classical error
estimates (in the form of one number per element) do not provide enough informa-
tion to guide hp-adaptivity. Instead, one needs to use some information about the
shape of the error function eh,p = u− uh,p. In principle, this information could be
obtained by estimating higher derivatives, but such approach is not very practical.
Usually it is more convenient to use a reference solution, i.e., an approximation
uref which is at least one order more accurate than the coarse mesh solution uh,p.
The hp-adaptivity is then guided by an a-posteriori error estimate of the form

eh,p = uref − uh,p (3.3)

Such approach, as opposed to classical error estimates, is virtually equation-
independent. In this work we are constructing the enriched �nite element space by
uniform subdivision of all mesh elements and by increasing all element polynomial
degrees by one, i.e.

uref = uh/2,p+1

The reference solution uref can be obtained e�ciently by utilizing information
about lower frequencies from uh,p [4, 21, 22] if iterative solvers are used or by recon-
structing the LU decomposition of the sti�ness matrix from the LU-decomposed
coarse mesh sti�ness matrix when using direct sparse solvers, e.g. UMFPACK.
However, we have not attempted any such optimization in this work, even though
we admit that this issue must be addressed in order for the methods to be usable
in practice.

3.4.2 Outline of the algorithm

The outer loop of our adaptivity algorithm is formally similar to the one of
L. Demkowicz et al. (see [6]), with minor di�erences. The outline of the algorithm
is as follows:

A) Assume an initial coarse mesh Th and an initial space Vh consisting of piecewise-
constant, linear or quadratic elements. User input includes:
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(a) prescribed relative tolerance TOL > 0 for the rate of a suitable norm of
the approximate error function (3.3) and the norm of the approximate
solution

(b) threshold ERRT specifying when to stop re�ning when re�ning elements
sequentially from the one with the largest values of the approximate
error function in each hp-adaptivity step.

B) User input may also include:

(a) maximum increase of degrees of freedom MAX_STEP_NDOF in each
adaptivity step
OR

(b) maximum number of degrees of freedom MAX_NDOF.

C) Create a �ne mesh Th/2 = {K1, K2, . . . , KMref} by splitting all elements of
Th into 4 elements.

D) Create a reference space, Vh/2,p+1 := {v ∈ L2(Ω); v|Km ∈ P pm(Km) +
1 for all 1 ≤ m ≤ Mref}, where the polynomial degree pm(Km) is inher-
ited from corresponding elements of the coarse mesh.

E) Compute �ne mesh approximation uh/2,p+1 ∈ Vh/2,p+1 on Th/2.

F) Project the �ne mesh approximation onto the coarse space Vh. In this way,
obtain a coarse mesh approximation.

G) Calculate the desired norm (H1 norm, H1 seminorm, L2 norm, custom norm)
of the �ne mesh approximations NORMi on every element Ki in the mesh,
i = 1, 2, . . . ,M . Construct the approximate error function (3.3) as the di�er-
ence between the �ne and coarse mesh approximations, calculate its energy
norm ERRi on every element Ki in the mesh, i = 1, 2, . . . ,M . Calculate the
global error estimate

ERR =

(
M∑
i=1

ERRi

)
/

(
M∑
i=1

NORMi

)
.

H) If ERR ≤ TOL, stop computation and proceed to postprocessing.

I) Sort all elements into a list L according to their value ERRi/NORMi in
decreasing order.

J) Determine the maximum of element errors, ERRmax = max{ERRi/NORMi},
by taking the �rst item of L.
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K) Let NDOF be the current number of degrees of freedom of Vh. Repeat the
following cycle:

(a) If MAX_STEP_NDOF is set, and if the already added degrees of free-
dom in this hp-adaptivity step is greater than MAX_STEP_NDOF,
break the cycle

(b) Take the next element Ki from the list L

(c) If ERRi/NORMi < ERRT · ERRmax, break the cycle

(d) Perform hp-re�nement of Ki (to be described in more detail below).

(e) If MAX_NDOF is set, and if the total number of degrees of freedom
is now greater than MAX_NDOF, end the cycle.

L) Continue with step C.

The crucial issue in the outer loop is determining how many elements should be
re�ned. In [6] all elements whose error ERR is greater than 70% of the maximum
error ERRmax are taken (ie. ERRT = 0.7). This is a relatively conservative choice
which leads to good convergence curves, but may result in too many steps of the
algorithm, which should be avoided as the evaluation of uref is very expensive.
Our experience shows that setting ERRT as low as 15% results in equally good
convergence curves for most problems, but achieved in much fewer steps and in turn
in much shorter time. Occasionally, however, the low value of ERRT may cause too
many elements to be re�ned and thus we introduced the limitMAX_STEP_NDOF
of the number of degrees of freedom added in each step. Typically, one should not
increase the number of degrees of freedom in each step by a large number.

3.4.3 Selecting optimal hp-re�nement

Some implementation of the algorithm for determining optimal hp-re�nements,
such as in [6], are quite complex. Built upon the projection-based interpolation
theory, such approach �rst �nds optimal hp-re�nement of mesh edges using a
1D version of the hp-adaptive algorithm. The edge re�nements then determine
h-re�nement of elements. Finally, best polynomial degrees for element interiors
are selected. Each step of the algorithm represents a considerable implementation
burden.

We have implemented a much simpler scheme, which is local in the sense that
element re�nements are selected without regard to the re�nements of neighboring
elements. For all elements K ∈ Th of polynomial degree p picked by the outer loop
we consider the following N = 83 hp-re�nement options:

A) Increase the polynomial degree of K to p+ 1 without spatial subdivision.
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B) Increase the polynomial degree of K to p+ 2 without spatial subdivision.

C) Split K into four similar triangles K1, K2, K3, K4. De�ne p0 to be the integer
part of (p + 1)/2. For each Ki, 1 ≤ i ≤ 4 consider polynomial degrees
p0 ≤ pi ≤ p0 + 2.

For each of these N options we perform a standard e.g. L2-projection of the ref-
erence solution uref onto the corresponding polynomial space. The candidate with
smallest projection error is selected for hp-re�nement of the element K.

Each of the N projection problems requires the solution of a small system of
linear algebraic equations with a symmetric positive-de�nite matrix. The solution
of these systems can be further optimized by exploiting the incremental nature of
the Cholesky decomposition algorithm and the fact that the spaces in item 3 above
are partially embedded.

Example We again solve the model problem (2.1) with the same settings as
in Paragraph 2.1. This time, automatic hp-adaptivity will be used. Although the
maximum value of the exact solution is 1.0, due to the presence of undershoots and
overshoots, the maximum values here are higher, as was seen already in section 2.4.
This can be avoided by using a suitable shock capturing method, as it is done in
the last chapter with numerical examples for the Euler equations.

Figure 3.14: Solution and a mesh, relative error between the �ne mesh and the
coarse mesh approximation: 25.7746%.
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Figure 3.15: Solution and a mesh, relative L2-norm di�erence between the �ne
mesh and the coarse mesh approximation: 10.3565%.

Figure 3.16: Solution and a mesh, relative L2-norm di�erence between the �ne
mesh and the coarse mesh approximation: 5.58551%.
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Figure 3.17: Solution and a mesh, relative L2-norm di�erence between the �ne
mesh and the coarse mesh approximation: 2.43584%.

Figure 3.18: Solution and a mesh, relative L2-norm di�erence between the �ne
mesh and the coarse mesh approximation: 1.27544%.
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Figure 3.19: Solution and a mesh, relative L2-norm di�erence between the �ne
mesh and the coarse mesh approximation: 0.919277%.
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3.4.4 Automatic hp-adaptivity for time-dependent problems

In the previous chapters we were concerned with the stationary problems. Let us
now discuss automatic adaptivity for transient problems. Time-dependent coupled
problems are challenging since one has to capture transient phenomena with su�-
cient accuracy, while the size of the problem must stay reasonably small. This leads
to an obvious need for dynamically changing meshes for such problems. In most
scienti�c computations, where dynamical meshes are used for time-dependent prob-
lems, data-transfer methods are necessary to move solution values between meshes
for di�erent time levels. Data-transfer methods can cause additional error and in
case of time-dependent problems, repeated transfers (usually simple interpolation)
between meshes can have disastrous consequences.

We use orthogonal projections of the solution of transient problems using dy-
namical hp-meshes obtained fully automatically by the hp-adaptive algorithm.
With the automatic hp-adaptivity and dynamical meshes the question of coarsen-
ing meshes between time levels arises. Mesh dere�nement is particularly important
in problems where sharp fronts (internal layers) move through the domain leaving
smooth solutions behind them. We propose an original coarsening algorithm suit-
able for hp-FEM based on the super-coarse solution, which results in substantially
fewer adaptive iterations.

The adaptive hp-FEM algorithm for time-dependent problems we use is ob-
tained by combining the classical Rothe's method for time discretization with
adaptive hp-FEM for the space discretization. The Rothe's method is a natural
counterpart of the widely used Method of Lines (MOL). Recall that the MOL
performs discretization in space while keeping the time variable continuous, which
leads to a system of ODEs in time. The Rothe's method, on the contrary, preserves
the continuity of the spatial variable while discretizing time. In every time step,
an evolutionary PDE is approximated by means of one or more time-independent
ones. For one step methods (such as implicit Runge-Kutta), the number of the
time-independent equations per time step is proportional to the order of accuracy
of the time discretization method. For example, when employing the implicit Euler
method, one has to solve just one time-independent PDE per time step:

∂u

∂t
= F (t, u) ⇒ un+1 − un

∆t
= F (tn+1, un+1) (3.4)

The Rothe's method is similar to the MOL if no adaptivity in space or time
takes place, but it provides a better setting for the application of spatially adaptive
algorithms. The spatial discretization error can be controlled by solving the time-
independent equations adaptively, and the size of the time step can be adjusted
using standard ODE techniques [3].

In this subsection, �rst the notion of dynamical meshes will be presented, then
the re�ning and coarsening algorithms for time dependent problems are shown.
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Dynamical meshes By Tm let us denote a uniform coarse mesh covering the
computational domain Ω. This mesh (called master mesh) is shared by the solution
at all time levels, in other words all meshes can be obtained from this mesh by
elementary re�nements. At each time instant tn an optimal mesh is found to suit
the best the solution un(x). On the (n+1)st time level, the approximated solution
un(x), that has been obtained in the previous time step, is used as data. Note,
however, that un is de�ned on a locally re�ned mesh that was created automatically
during the nth time step, while the unknown un+1 is solved adaptively starting
from a coarser mesh. As a result, the meshes obtained on each time level are
di�erent, i.e., the mesh changes dynamically in time.

As mentioned above, in transient problems the optimal meshes are on each time
level obtained automatically and they can change from one time step to another,
which induces need for both re�ning and coarsening strategies.

Re�ning algorithm

In the previous the goal of the adaptive algorithm was to decrease the error as
low as possible. On the other hand for time-dependent problems we want to sus-
tain the space error on approximately the same level, which would result into
meshes with smoothly changing number of degrees of freedom. For time-dependent
problems, as well as for time-independent, the amount of elements re�ned in one
adaptive iteration will depend on the global solution error estimate in that itera-
tion. As described, one can drive the re�ning algorithm by variables TOL, ERRT ,
MAX_STEP_NDOF , MAX_NDOF .

Coarsening algorithm

The most primitive strategy to coarsen the mesh on the next time level is to
start on each level from the very coarse (master) mesh and perform the automatic
adaptivity to �nd the optimal mesh for a particular solution un(x). Although this
would result in the optimal meshes in each iteration, it is virtually impossible to
carry it out due to the immense computational time demands. Moreover, a lot of
work would be wasted since the solutions from two adjacent time steps usually
di�er only mildly even though the solution changes signi�cantly in the whole time
domain. Global dere�nement would result in similar di�culties.

We present a coarsening algorithm that prepares the mesh for the adaptive
algorithm on the next time level by local dere�nements. Thus, we remove only
unnecessary re�nements from previous time levels. In this way the meshes for par-
ticular time steps are suboptimal, but the number of adaptive iterations performed
in each time step signi�cantly decreases.

In higher-order �nite element method we have two questions. First question is
which elements can be coarsened and second is how to coarsen them. In hp-FEM
we can either decrease the polynomial order of the element or dere�ne the element
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geometrically. We can also employ various choices for assigned polynomial degree.
Some possible choices are in Figure 3.20.

Figure 3.20: Coarsening choices for an element.

However, the coarsening serves only to prepare the mesh for the next adaptive
process, thus we do not have to search for the best unre�nement as we do in case of
re�nements. It is perfectly su�cient to perform any coarsening that does not cause
error increase and the mesh will optimize itself in the next adaptive loop. To keep
the algorithm reasonably simple we allow only coarsening as reversing of previous
element re�nements. In this way the tree-like structure of meshes starting from the
master mesh is preserved. Unfortunately, the coarsening algorithm cannot be just
an opposite to the re�ning. While with the re�ning algorithm we are seeking for the
best candidate in the sense of error decrease, here we are looking for a candidate
whose error will not exceed some tolerance (so that it would not be subsequently
re�ned).

Let us denote by emax the error of the element with maximal error from the last
adaptive iteration. From Alg. 3.4.2 we know that errors of all elements are below
ERRmax and that it should be satis�ed as well after the coarsening procedure.
First we calculate so called super-coarse solution for polynomial orders. By that
we mean that polynomial order on all elements is decreased by one. We calculate
error estimates for all elements in the super-coarse mesh with respect to the refer-
ence solution and lower the polynomial order on those elements whose error after
coarsening is less than k ∗ERRmax, where parameter k ∈ (0, 1) is chosen to ensure
that element will not be subsequently re�ned in the adaptive procedure on the
next time level. Similar procedure is run for a spatial coarsening � super-coarse
solution is calculated on the mesh where all elements with four active subelements
are coarsened and polynomial order on such elements is assigned to be the maxi-
mum of orders on four subelements. In a similar way as before we determine which
elements can be also spatially unre�ned without signi�cant increase of the error.

The whole procedure for time-dependent problems with the re�ning and coars-
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ening strategy is described in Algorithm 1. E�ectivity of the approach is demon-
strated on the numerical examples in the last chapter of this thesis.

Algorithm 1: Adaptive algorithm for time-dependent problems with im-
proved stopping criterion.
foreach time level do

repeat
compute reference solution uref ;
project to get a solution on current mesh u;
evaluate global error estimate ERRgl and local errors on elements
ERRi;
if ERRgl < TOL then

done = true;
break;

else
sort all elements by their error;
processed error = 0;
foreach element do

if (processed error > c ∗ (ERRgl - TOL)) or
(ERRi < k ∗ ERRmax) then

done = true;
break;

else
�nd optimal re�nement;
processed error + = ERRi;

until not done;
calculate super-coarse solution for polynomial orders;
decrease polynomial orders when possible;
calculate super-coarse solution for spatial re�nements;
geometrically coarsen elements when possible;
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Chapter 4

Dicontinuous Galerkin discretization

of the Euler equations

4.1 Discontinuous Galerkin space semidiscretiza-

tion

The approximate solution will be sought at each time instant t as an element of
the �nite-dimensional space

[Vh]
4 , (4.1)

where Vh is de�ned in Section 3.1.1. Functions ϕh ∈ [Vh]
4 are in general discontin-

uous on interfaces Γij.
By ϕh|Γij

and ϕh|Γji
we denote the values of ϕh on Γij considered from the

interior and the exterior of Ki, respectively. The symbols

〈ϕh〉ij =
1

2

(
ϕh|Γij

+ϕh|Γji

)
, [ϕh]ij = ϕh|Γij

−ϕh|Γji
(4.2)

denote the average and jump of a function ϕh on Γij = Γji.
In order to derive the discrete problem, we multiply (1.73) by a test function

ϕh ∈ [Vh]
4, integrate over any element Ki, i ∈ I, apply Green's theorem and sum

over all i ∈ I. Then we approximate �uxes through the faces Γij with the aid of a
numerical �ux H = H(u,w,n) in the form∫

Γij

2∑
s=1

f s(w(t)) (nij)s ·ϕh dS ≈
∫

Γij

H(wh(t)|Γij
,wh(t)|Γji

,nij) ·ϕh dS. (4.3)
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If we introduce the forms

(wh,ϕh)h =

∫
Ωh

wh ·ϕh
dx

d,
(4.4)

b̃h(wh,ϕh) = −
∑
K∈Th

∫
K

2∑
s=1

f s(wh) ·
∂ϕh
∂xs

dx

d,
(4.5)

+
∑
Ki∈Th

∑
j∈S(i)

∫
Γij

H(wh|Γij
,wh|Γji

,nij) ·ϕh
dS

d,

we can de�ne an approximate solution of (1.73) as a function wh satisfying the
conditions

(a) wh ∈ C1([0, T ]; [Vh]
4), (4.6)

(b)
d

dt
(wh(t),ϕh)h + b̃h(wh(t),ϕh) = 0

∀ϕh ∈ [Vh]
4 ∀ t ∈ (0, T ),

(c) wh(0) = Πhw
0,

where Πhw
0 is the L2-projeftion of the initial condition w0 onto the space [Vh]

4.

4.2 Numerical �uxes

The DGFEM discretization of the Euler equations in their conservative form follows
the principles of the section 2.4. We take the equations in the form (1.73). We
leave the time derivative for now, and we need to �nd suitable numerical �uxes to
approximate the �uxes ∂fx, ∂fy through the faces Γij. The numerical �uxes will be
sought so that the requirements from the subsection 2.2.2 are met.

Construction of some numerical �uxes The following type of numerical
�uxes are usually called �ux vector splitting schemes and we use the knowledge
from the section 1.2, namely (1.81), (1.83), ..., and (1.102). On the basis of (1.102)
we de�ne the matrices

Λ± = diag
(
λ±1 , ..., λ

±
m

)
, |Λ| = diag (|λ1|, ..., |λm|) . (4.7)

Also we de�ne
P± = PΛ±P−1, |P| = P|Λ|P−1. (4.8)

These matrices depend on w ∈ D and n ∈ S1. Now we de�ne the following two
schemes that will later be used in the numerical examples.
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A) The Steger-Warming scheme has the numerical �ux:

HSW (u, v,n) = P+ (u,n)u + P− (v,n) v, u, v ∈ D, n ∈ S1.

This scheme is rather di�usive, so another scheme is preferred.

B) The Vijayasundaram scheme has the numerical �ux:

HV (u, v,n) = P+

(
u + v

2
,n

)
u + P−

(
u + v

2
,n

)
v, u, v ∈ D, n ∈ S1.

This scheme contains a partial upwinding, where the �ux is computed at the
point xi+ 1

2

(
xi− 1

2

)
with the use of the value wk

i or w
k
i+1

(
wk
i−1 or wk

i

)
corresponding

to the mesh point located in the upwind direction wrt. the propagation speed given
by the eigenvalues λi. In the Steger-Warming scheme we speak of a full upwinding.

4.3 Time discretization

This section closely follows [7]. Using numerical �uxes we can introduce new forms

(wh,ϕh) =

∫
Ω

wh (x) ·ϕh (x) dx,

b̃h (wh,ϕh) = −
∑
K∈Th

∫
K

2∑
s=1

fs (wh (x)) · ∂ϕh (x)

∂xs
dx (4.9)

+
∑
Ki∈Th

∑
j∈S(i)

∫
Γij

H
(
w (t) |Γij

,w (x) |Γji
,nij

)
·ϕh (x) dS

for wh,ϕh ∈ [Vh]
4. We say that wh is the approximate solution of (1.73) in

QT = Ω× (0, T ), if it satis�es the conditions

A)
wh ∈ C1

(
[0, T ] , [Vh]

4) (4.10)

B)
d

dt
(w (t) ,ϕh) + b̃h (wh (t) ,ϕh) = 0 ∀ϕh ∈ [Vh]

4 ∀t ∈ (0, T ) (4.11)

C)
wh (0) = Πhw

0, (4.12)
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Relations (4.11) represent a system of ordinary di�erential equations which can
be solved by a suitable numerical method. Since we are interested in applying the
Rothe's method, we now want to discretize the time derivative. In order to do so,
we consider a partition 0 = t0 < t1 < t2 < ... of the time interval (0, T ) and set
τk = tk+1 − tk. We use the notation wk

h for the approximation of wh (tk). Then we
apply the simple implicit backward Euler method and our discrete problem reads:
for each k ≥ 0 �nd wk+1

h such that

A)
wk+1
h ∈ [Vh]

4 (4.13)

B) (
wk+1
h − wkh
τk

,ϕh

)
+ b̃h

(
wk+1
h ,ϕh

)
= 0 ∀ϕh ∈ [Vh]

4 , k = 0, 1, ... (4.14)

C)
w0
h = Πhw

0. (4.15)

This scheme leads to a system of highly nonlinear algebraic equations whose nu-
merical solution is rather complicated. In order to simplify the problem, in the
following we shall linearize relations (4.14) and obtain a linear system.

4.3.1 Linearization

By (4.9), for wk+1
h ,ϕh ∈ [Vh]

4 we have

b̃h
(
wk+1
h ,ϕh

)
= −

∑
K∈Th

∫
K

2∑
s=1

fs
(
wk+1
h (x)

)
· ∂ϕ (x)

∂xs
dx (=: σ̃1) (4.16)

+
∑
Ki∈Th

∑
j∈S(i)

∫
Γij

H
(
wk+1
h |Γij

,wk+1
h |Γji

,nij
)
·ϕh (x) dS (=: σ̃2) (4.17)

The terms σ̃1, and σ̃2 are linearized as follows. We set

σ̃1 ≈ σ1 =
∑
K∈Th

∫
K

2∑
s=1

As

(
wk
h (x)

)
wk+1
h (x) · ∂ϕh (x)

∂xs
dx (4.18)

and

σ̃2 ≈ σ2 =
∑
Ki∈Th

∑
j∈s(i)

∫
Γij

[
P+
(〈
wk
h

〉
ij
,nij

)
wk+1
h |Γij

(4.19)

+ P−
(〈
wk
h

〉
ij
,nij

)
wk+1
h |Γji

]
·ϕhdS (4.20)

+
∑
Ki∈Th

∑
j∈S(i)\s(i)

∫
Γij

H
(
wk+1
h |Γij

,wk+1
h |Γji

,nij
)
·ϕh (x) dS. (4.21)
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We omit details of linearization of the �uxes across domain boundaries, for details
see [7]. Finally, we de�ne the form

bh
(
wk
h,w

k+1
h ,ϕh

)
= −σ1 + σ2. (4.22)

The form is linear with respect to the second and third variable. Using this form
we come to the following semi-implicit linearized numerical scheme: for each k ≥ 0
�nd wk+1

h such that

A)
wk+1
h ∈ [Vh]

4 (4.23)

B) (
wk+1
h ,ϕh

)
+ τkbh

(
wk
h,w

k+1
h ,ϕh

)
=
(
wk
h,ϕh

)
∀ϕh ∈ [Vh]

4 , k = 0, 1, ...
(4.24)

C)
w0
h = Πhw

0. (4.25)

4.4 Boundary conditions

In all examples in the next chapter, the boundary of the computational domain Ω
is divided into three parts.

A) On a �xed impermeable wall ΓW ⊂ ∂Ω we use the condition v · n = 0. Then
the �ux P (w,n) has the form

P (w,n) =
2∑
s=1

fs (w)ns (4.26)

= (v · n)w + p (0, n1, n2, v · n)T (4.27)
= p (0, n1, n2, 0)T , (4.28)

which is uniquely determined on ΓW by the extrapolated value of the pres-
sure, i.e. by pkj := pki . Therefore, on the part ΓW of the boundary we de�ne
the numerical �ux

H
(
wk
i ,w

k
j ,n
)

= pki (0, n1, n2, 0)T . (4.29)

We can see that on the impermeable part of the boundary, 2 eigenvalues λ2, λ3

are zero, the eigenvalue λ1 is negative, and the eigenvalue λ4 is positive. We
prescribe only v · n = 0, and extrapolate the pressure.
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B) On the inlet
ΓI (t) = {x ∈ ∂Ω; v (x, t) · n (x) < 0}

and the outlet
ΓO (t) = {x ∈ ∂Ω; v (x, t) · n (x) > 0}

parts of the boundary it is necessary to use nonre�ecting boundary con-
ditions. In this case we used the so-called characteristics-based bounadry
conditions, according to [11]. Using the rotational invariance, we tranform
the Euler equations to the coordinates x̃1, in the direction of the outer nor-
mal n to the boundary, and x̃2, tangential to the boundary and linearize the
resulting system around the state qij = Q (nij). Then we obtain the linear
system

∂q

∂t
+ A1

(
qij
) ∂q
∂x̃1

= 0, (4.30)

for the vector-valued function q = Q (nij)w, considered in the set (−∞, 0)×
(0,∞) and equipped with the initial and boundary conditions

q (x̃1, 0) = qij, x̃1 < 0, (4.31)
q (0, t) = qij, t > 0. (4.32)

The goal is to choose qij in such a way that this initial-boundary value prob-
lem is well-posed, i.e. has a unique solutions. The method of characteristics
leads to the following process:

Let us put q∗ji = Q (nij)w
∗
ji, where wji is a prescribed boundary state at the

inlet or outlet. We calculate eigenvectors rs corresponding to the eigenvalues
λ1, ..., λ4, of the matrix A1

(
qij
)
, arrange them as columns in the matrix T

and calculate T−1 (explicit formulae can be found in [10], section 3.1). Now
we set

α = T−1qij, β = T−1q∗ji. (4.33)

and de�ne the state qji by the relations

qji :=
4∑
s=1

γsrs, γs =

{
αs, λs ≥ 0,

βs, λs < 0.
(4.34)

Finally, the sought boundary state wji is de�ned as

w|Γji
= wji = Q−1 (nij) qji. (4.35)
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4.5 Shock capturing

For the �ow containing discontinuities we need to employ suitable stabilization
technique to avoid spurious overshoots and undershoots in computed solutions
near the discontinuities. This phenomenon does not occur in low Mach number
regimes, but in transonic �ow it causes instabilities in the numerical solution.

Two approaches will be presented and later used in the numerical examples.
The �rst one, the so-called vertex based limiter is taken from [14]. The second one,
based on adding arti�cial viscosity into the system of equations is taken from [11].

4.5.1 Vertex based limiter

The vertex based limiter is based on a simple idea of limiting the slope of the
solution on an element by limiting the polynomial degree of approximation used
on that element. Let v be a component of the numerical solution. Given an element
Ki ∈ Th, the value of the solution on Ki in the center of gravity of Ki, denoted by
vci , and the average value of the gradient of the solution in the center of gravity,
denoted by (∇v)ci , the goal is to determine the maximum admissible slope for a
constrained reconstruction of the form

vh (x) = vci + αi (∇v)ci · (x− x
c
i) , 0 ≤ αi ≤ 1, x ∈ Ki, (4.36)

where xci is the center of gravity of Ki. The correction factor αi is de�ned so that
the �nal solution values at the vertices of Ki, denoted in what follows as xi,j, j =
1, ..., number of vertices, are bounded by the maximum and minumum values of
v in all elements sharing the vertex xi,j. We de�ne these values as vmax

i,j , vmin
i,j .

The elementwise correction factors αi for (4.36) guarantee that

vmin
i,j ≤ v (xi,j) ≤ vmax

i,j , ∀j. (4.37)

This vertex-based condition can be enforced using

αi = min
j


min

{
1,

vmax
i,j −vci

v(xi,j)−vci

}
, if v (xi,j)− vci > 0,

1,

min
{

1,
vmin
i,j −vci

v(xi,j)−vci

}
, if v (xi,j)− vci < 0.

(4.38)

To limit higher order terms, all derivatives of order p are multiplied by a com-
mon correction factor α(p)

i . We denote the �rst component of (∇v)ci by
∂v
∂x1
|c, the

second by ∂v
∂x2
|c, analougously for the second derivatives, and by f (x1, x2) the vol-
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ume average of f on Ki. Then we set

vh (x1, x2) = vh + α
(1)
i

{
∂v

∂x1

|c (x1 − (xci)1) +
∂v

∂x2

|c (x2 − (xci)2)

}
(4.39)

+ α
(2)
i

{
∂2v

∂x2
1

|c

[
(x1 − (xci)1)2

2
−

(x1 − (xci)1)2

2

]

+
∂2v

∂x2
2

|c

[
(x2 − (xci)2)2

2
−

(x2 − (xci)2)2

2

]

+
∂2v

∂x1∂x2

|c
[
(x1 − (xci)1) (y − (xci)2)− (x1 − (xci)1) (y − (xci)2)

]}
.

For details, see [14]. The values of α(1)
i and α(2)

i are determined using the vertex-
based limiter, as applied to the linear reconstructions

v(2)
x1

(x1, x2) =
∂v

∂x1

|c + α(2)
x

{
∂2v

∂x2
1

|c (x1 − (xci)1) +
∂2v

∂x1∂x2

|c (x2 − (xci)2)

}
, (4.40)

v(2)
x2

(x1, x2) =
∂v

∂x2

|c + α(2)
y

{
∂2v

∂x1∂x2

|c (x1 − (xci)1) +
∂2v

∂x2
2

|c (x2 − (xci)2)

}
, (4.41)

v(1) (x1, x2) = vh + α
(1)
i

{
∂v

∂x1

|c (x1 − (xci)1) +
∂v

∂x2

|c (x2 − (xci)2)

}
. (4.42)

The last step is identical to (4.36). In the �rst and second step, �rst-order deriva-
tives with respect to x1 and x2 are treated in the same way as values in the center
of gravity, while second-order derivatives represent the gradients to be limited.

Since the mixed second derivative appears in both (4.40) and (4.41), the correc-
tion factor α(2)

i for the limited quadratic reconstruction (4.39) is de�ned as

α
(2)
i = min

{
α(2)
x1
, α(2)

x2

}
. (4.43)

The general scheme, that is also implemented in the code that was used in calcu-
lation of the examples in this thesis, decreases the polynomial degree sequentially
in descending order, as opposed to making the assumption that no oscillations are
present in vh if they are not detected in the linear part as proposed in [14]. The
outline of the algorithm then is as follows:

The limiting then works for the linear terms in the following way:

4.5.2 Limiter based on adding arti�cial viscosity

First part of this approach is introducing the discontinuity indicator g (i) proposed
in [8] and de�ned by

g (i) =

∫
∂Ki

[
ρkh
]2
dS/

(
hKi
|Ki|3/4

)
, Ki ∈ Th. (4.44)
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Algorithm 2: Limiting algorithm.
foreach element do

p := polynomial degree of the element;
repeat

compute α(p)
i ;

if alpha
(p)
i < 1 then

p = p - 1;
else

end the cycle;
until p = 0 ;

Further we de�ne the discrete indicator

G (i) = 0 if g (i) < 1 and G (i) = 1 if g (i) ≥ 1, Ki ∈ Th. (4.45)

To the left hand-side of (4.24) we add the arti�cial viscosity forms

βh
(
wk
h,w

k+1
h ,ϕ

)
= ν1

∑
i∈I

hKi
Gk (i)

∫
Ki

∇wk+1
h · ∇ϕdx (4.46)

and

Jh
(
wk
h,w

k+1
h ,ϕ

)
= ν2

∑
i∈I

∑
j∈s(i)

1

2

(
Gk (i) +Gk (j)

) ∫
Γij

[
wk+1
h

]
· [ϕ] dS, (4.47)

where ν1, ν2 ≈ 1. Thus, the resulting scheme reads

A)
wk+1
h ∈ [Vh]

4 (4.48)

B) (
wk+1
h ,ϕh

)
+ τkbh

(
wk
h,w

k+1
h ,ϕh

)
+ τkβh

(
wk
h,w

k+1
h ,ϕ

)
(4.49)

+ τkJh
(
wk
h,w

k+1
h ,ϕ

)
=
(
wk
h,ϕh

)
∀ϕh ∈ [Vh]

4 , k = 0, 1, ...

C)
w0
h = Πhw

0. (4.50)

An important characteristic of this approach is that G (i) vanishes in regions, where
the solution is regular. Therefore, the scheme does not produce any nonphysical
entropy in these regions.
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Chapter 5

Numerical experiments

In all numerical experiments, we consider the CFL stability condition of the form

τk max
Ki∈Th

1

|Ki|

(
max
j∈S(i)

|Γij|λmax
P(wk

h|Γij
,nij)

)
≤ CFL. (5.1)

Here, CFL is a given constant and λmax
P(wk

h|Γij
,nij)

is the maximum over Γij of the

spectral radius of the matrix P
(
wk
h|Γij

,nij
)
.

Also in all numerical experiments, we consider the medium in which we study
the �ow to be air, and therefore we set κ = 1.4.

In the light of 4.4, the prescribed boundary states are derived from primitive
variables denoted as ρEXT , v1EXT , v2EXT

, pEXT using the transformations described
in Subsection 1.2.2.

5.1 Transonic �ow

The �rst three examples demonstrate transonic �ows with high Mach numbers,
where applying of shock capturing is crucial.

5.1.1 Re�ected shock benchmark

This is a classic benchmark for the solution of compressible �ow described in [24].
The prescribed relative tolerance TOL for guiding the hp-adaptivity was set to
0.5%. There are two di�erent prescribed boundary states for two in�ow regimes,
corresponding to the left (denoted with LEFT ), and to the top (denoted with TOP )

66



part of the boundary, and are derived from the following prescribed values

ρLEFTEXT = 1.0 (5.2)
v1LEFT

EXT
= 2.9 (5.3)

v2LEFT
EXT

= 0.0 (5.4)

pLEFTEXT = 0.714286 (5.5)
(5.6)

ρTOPEXT = 1.7 (5.7)
v1TOP

EXT
= 2.619334 (5.8)

v2TOP
EXT

= −0.5063 (5.9)

pTOPEXT = 1.52819. (5.10)

The initial state is chosen to be the one prescribed on the left part of the boundary
(denoted with TOP ). The bottom part of the boundary is a solid wall, and the right
part is out�ow, with respective corresponding boundary conditions. In the solution
of this problem, we employed the shock capturing scheme described in 4.5.1.

In Figures 5.1 - 5.10, the solution and corresponding meshes (the whole mesh
and a detail) at various time levels is shown.

Figure 5.1: Solution, time = 0.879538.
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Figure 5.2: Mesh and polynomial orders, time = 0.879538, number of DOFs: 80672.

Figure 5.3: Detail of the mesh, layer on the left, time = 0.879538.
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Figure 5.4: Solution, time = 1.4307.

Figure 5.5: Mesh and polynomial orders, time = 1.4307, number of DOFs: 109824.
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Figure 5.6: Detail of the mesh, middle bottom, time = 1.4307.

Figure 5.7: Final solution.
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Figure 5.8: Final mesh and polynomial orders, number of DOFs: 120736.

Figure 5.9: Detail of the �nal mesh, top-right corner.
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Figure 5.10: Detail of the �nal mesh, middle bottom.

In Figure 5.11, the same comparison to the exact solution, as in [24] was carried
out, with more satisfying results.

Figure 5.11: Density along y = 0.25, exact solution(red), and calculated solu-
tion(blue). See [24], Fig. 4, for comparison
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5.1.2 GAMM channel

This is another classic benchmark for the solution of compressible �ow.

Domain The domain is a horizontal channel with a 10% circular arc bump on
the lower wall as described in [10], Section 3.7.2. With respect to Section 4.4, we
denote

inlet: ΓI =
{
x ∈ R2;x1 = −1, x2 ∈ (0, 1)

}
, (5.11)

outlet: ΓO =
{
x ∈ R2;x1 = 1, x2 ∈ (0, 1)

}
, (5.12)

lower wall: Γ1
W =

{
x ∈ R2;x1 ∈ [−1,−0.5] , x2 = 0

}
(5.13)

∪
{
x ∈ R2;x1 ∈ [−0.5, 0.5] , x2 =

√
1.69− x2

1 − 1.2

}
(5.14)

∪
{
x ∈ R2;x1 ∈ [0.5, 1] , x2 = 0

}
, (5.15)

outlet: Γ2
W =

{
x ∈ R2;x1 ∈ [−1, 1] , x2 = 1

}
. (5.16)

The prescribed primitive variables for the boundary state are as follows:

ρEXT = 1.0 (5.17)
v1EXT

= 1.25 (5.18)
v2EXT

= 0.0 (5.19)
pEXT = 2.5. (5.20)

In the solution of this problem, we employed the shock capturing scheme described
in 4.5.2 which proved to be much better in terms of resolution than the vertex-
based limiter described in 4.5.1. The prescribed relative tolerance TOL for guiding
the hp-adaptivity was set to 0.45%, later decreased to 0.25% for better resolution
of the shock wave. In Figures 5.12 - 5.17, the solution and corresponding mesh at
various time levels is shown. The distribution of Mach number, and density on the
lower wall are shown in Figures 5.19, and 5.20 respectively. Detail of the �nal mesh
is shown in Figure 5.18.
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Figure 5.12: Solution, time = 0.469071.
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Figure 5.13: Mesh and polynomial orders, time = 0.469071, number of DOFs:
62816.
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Figure 5.14: Solution, time = 0.900324.
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Figure 5.15: Mesh and polynomial orders, time = 0.900324, number of DOFs:
75904.
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Figure 5.16: Solution, time = 4.46887.
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Figure 5.17: Mesh and polynomial orders, time = 4.46887, number of DOFs:
302880.

Figure 5.18: Detail of the �nal mesh.
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Figure 5.19: Final distribution of Mach number along the lower wall.

Figure 5.20: Final distribution of density along the lower wall.
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5.1.3 Forward facing step

This is a classic benchmark for the solution of compressible �ow. In the light of 4.4,
the prescribed boundary state is derived from the following prescribed values.

ρEXT = 1.4 (5.21)
v1EXT

= 3.0 (5.22)
v2EXT

= 0.0 (5.23)
pEXT = 1.0 (5.24)

The left part of the boundary is an inlet part, whereas the right part is an outlet.
The rest of the boundary is formed by solid walls. The initial state is chosen to
be the one prescribed on the left part of the boundary. In the solution of this
problem, we again employed the shock capturing scheme described in 4.5.1. The
prescribed relative tolerance TOL for guiding the hp-adaptivity was set to 3.0%,
later decreased to 2.0% to capture the solution development. In Figures 5.21 - 5.28,
the solution and corresponding meshes (the whole mesh and a detail) at various
time levels is shown.

Figure 5.21: Solution, time = 0.188878.
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Figure 5.22: Mesh and polynomial orde�s, time = 0.188878, number of DOFs:
54876.

Figure 5.23: Solution, time = 0.616281.
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Figure 5.24: Mesh and polynomial orde�s, time = 0.616281, number of DOFs:
87512.

Figure 5.25: Detail of the mesh, time = 0.616281.
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Figure 5.26: Solution, time = 2.32643.

Figure 5.27: Mesh and polynomial orders, time = 2.32643, number of DOFs:
111104.
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Figure 5.28: Detail of the mesh, time = 2.32643.

5.2 Low Mach number �ow

These additional examples show that our method is suitable also for low Mach
number regimes, where no shock capturing is needed.

5.2.1 Heating-induced vortex

This is a simple example of low Mach number �ow. Its purpose was to test our
algorithm on an example that allows us to a-priori tell where the mesh re�nements
will be necessary, and to check whether or not the algorithm behaves as we would
expect. The prescribed relative tolerance TOL for guiding the hp-adaptivity was
set to 5.0%, later decreased to 1.0% to capture the solution development. The
domain Ω is a square [0,3]x[0,3] (in meters). The boundary ∂Ω is a solid wall
everywhere but the part

Ω− = {x ∈ ∂Ω, x1 ∈ [2, 3] , x2 = 0}

where the inlet boundary condition is prescribed with the following state:

ρEXT = 1.0 (5.25)
v1EXT

= 0.0 (5.26)
v2EXT

= 0.0 (5.27)
pEXT = 2.0. (5.28)
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The initial condition state is the following:

ρINITIAL (x1, x2) = 0.5− 0.2 ∗ x2/3 (5.29)
v1INITIAL

(x1, x2) = 0.0 (5.30)
v2INITIAL

(x1, x2) = 0.0 (5.31)
pINITIAL (x1, x2) = 1.5− 0.5 ∗ x2/3. (5.32)

(5.33)

In Figures 5.29 - 5.30, and 5.33 - 5.34, the solution as a vector �eld of velocity at
various time levels is shown. Development of the mesh is captured in Figures 5.31
- 5.32, and 5.35 - 5.36.

Figure 5.29: Velocity �eld, values representing magnitude, time 0.361136, 0.566087.
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Figure 5.30: Velocity �eld, values representing magnitude, time 1.14554, 1.76134.

Figure 5.31: Mesh with polynomial orders, time 0.361136, 0.566087.
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Figure 5.32: Mesh with polynomial orders, time 1.14554, 1.76134.

Figure 5.33: Velocity �eld, values representing magnitude, time 2.10994, 2.43558..
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Figure 5.34: Velocity �eld, values representing magnitude, time 3.06784, 3.83475.

Figure 5.35: Mesh with polynomial orders, time 2.10994, 2.43558..
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Figure 5.36: Mesh with polynomial orders, time 3.06784, 3.83475.

We can see that the mesh adapts to the location of the vertex being created by
the �ow.

5.2.2 Joukowski pro�le

We shall consider stationary �ow past a negatively oriented Joukowski pro�le given
by parameters ∆ = 1.2, a = 0.6, h = 1.2 (under the notation from [9], Section
2.2.68) with zero angle of attack. Magnitude of the far �eld velocity was considered
of γ∞ = 0.7158 and the far �eld Mach number of M∞ = 0.0001. The prescribed
relative tolerance TOL for guiding the hp-adaptivity was set to 1e − 04%. In
Figures 5.37 - 5.42, the solution and corresponding meshes (the whole mesh and a
detail) at various time levels is shown. The resolution of the �nal solution is high
only in the vicinity of the airfoil, due to limited resources for the calculation (home
Personal Computer).
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Figure 5.37: Solution, time = 0.09563.

Figure 5.38: Mesh and polynomial orders, time = 0.09563, number of DOFs: 41088.
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Figure 5.39: Solution, time = 0.122241.

Figure 5.40: Mesh and polynomial orders, time = 0.122241, number of DOFs:
68736.
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Figure 5.41: Solution, time = 0.477426.

Figure 5.42: Mesh and polynomial orders, time = 0.477426, number of DOFs:
81536.
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Conclusion

In the �rst chapters, a brief introduction to the problem we solve (�ow of compress-
ible media) was given, together with derivation of equations describing the �ow.
Some properties of the system of equations we then solved, important for creation
of the numerical schemes, and for the solution, were presented. The purpose of the
very short comparison of various methods (Finite Element method, Finite Volume
method) possible to be employed to solve problems of �ow was to emphasize the
qualities of the DG method. Description of the adaptive strategies used for the
numerical solution was given and some aspects were emphasized, or even shown in
computer code in appendix. The application of the DG method on the system of
equations at hand was carried out with detail, and the DG method was successfully
applied to the standard problems in the solution of the compressible �ow.

The hp-adaptive algorithm gave very good resolution of the quantity distribu-
tions that we were interested in, it also kept our linear systems su�ciently small
so that the calculations were possible to be carried out on a normal PC. From
the computational results we could see though that the algorithm pays for its
universality and robustness by longer time of the computation.

Outlook

A) The semi-implicit scheme, though deemed to be unconditionally stable does
not behave in this way for all problems. Some time-dependent problems re-
quire the time step to be rather small in order to satisfy the CFL condition.
Further analysis of stability of this method would be required.

B) We have to be aware that more challenges for hp-adaptivity algorithms ap-
pear in 3-dimensional setting (more ways to re�ne an element, more integra-
tion points for higher order elements), but interesting applications usually
require the 3-dimensional setting

C) The algorithm can still be optimized in terms of parallelization, especially
the possibility to run it on a cluster of many processors, or over the internet.
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Appendix

Appendix 1 - Source code snippets

Details of the data structures We are maintaining two independent layers
of nodes: the �rst layer contains all vertex nodes, the second all edge nodes. The
following two functions can be called:

Node∗ get_vertex_node ( int id1 , int id2 ) ;
Node∗ get_edge_node ( int id1 , int id2 ) ;

All nodes, apart from being accessible by their id number, can be reached using
these functions by passing the ids of their �parent� nodes. Top-level vertex nodes
(those loaded from the mesh �le) are stored at the beginning of the node array and
can be accessed directly without hashing. Mesh initialization then becomes trivial:

for a l l Elements
vertex_numbers = read element ver tex id numbers
for a l l edges o f the Element

Element . vn = vertex_numbers
Element . en [ 0 ] = get_edge_node ( vertex_numbers [ 0 ] , vertex_numbers [ 1 ] ) ;
Element . en [ 1 ] = get_edge_node ( vertex_numbers [ 1 ] , vertex_numbers [ 2 ] ) ;
Element . en [ 2 ] = get_edge_node ( vertex_numbers [ 2 ] , vertex_numbers [ 3 ] ) ;
// In case o f t r i a n g l e s
Element . en [ 3 ] = get_edge_node ( vertex_numbers [ 3 ] , vertex_numbers [ 0 ] ) ;

Element re�nement is also very straightforward. No care must be taken of the
neighboring elements, regardless of their re�nement level or even existence:

c r e a t e_t r i ang l e (Node v0 , Node v1 , Node v2 )
{

Element e ;
e . vn [ 0 ] = v0 ;
e . vn [ 1 ] = v1 ;
e . vn [ 2 ] = v2 ;
e . en [ 0 ] = get_edge_node ( v0 . id , v1 . id ) ;
e . en [ 1 ] = get_edge_node ( v1 . id , v2 . id ) ;
e . en [ 2 ] = get_edge_node ( v2 . id , v0 . id ) ;

}

void r e f i n e_ t r i a n g l e ( Element e )
{

Node x0 = get_vertex_node ( e . vn [ 0 ] . id , e . vn [ 1 ] . id ) ;
Node x1 = get_vertex_node ( e . vn [ 1 ] . id , e . vn [ 2 ] . id ) ;
Node x2 = get_vertex_node ( e . vn [ 2 ] . id , e . vn [ 0 ] . id ) ;
e . sons [ 0 ] = c r e a t e_t r i ang l e ( e . vn [ 0 ] , x0 , x2 ) ;
e . sons [ 1 ] = c r e a t e_t r i ang l e ( x0 , e . vn [ 1 ] , x1 ) ;
e . sons [ 2 ] = c r e a t e_t r i ang l e ( x2 , x1 , e . vn [ 2 ] ) ;
e . sons [ 3 ] = c r e a t e_t r i ang l e ( x0 , x1 , x2 ) ;
e . a c t i v e = 0 ;

}

create_quad (Node v0 , Node v1 , Node v2 )
{

Element e ;
e . vn [ 0 ] = v0 ;
e . vn [ 1 ] = v1 ;
e . vn [ 2 ] = v2 ;
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e . vn [ 3 ] = v3 ;

e . en [ 0 ] = get_edge_node ( v0 . id , v1 . id ) ;
e . en [ 1 ] = get_edge_node ( v1 . id , v2 . id ) ;
e . en [ 2 ] = get_edge_node ( v2 . id , v3 . id ) ;
e . en [ 3 ] = get_edge_node ( v3 . id , v0 . id ) ;

}

void ref ine_quad ( Element e )
{

Node x0 = get_vertex_node ( e . vn [ 0 ] . id , e . vn [ 1 ] . id ) ;
Node x1 = get_vertex_node ( e . vn [ 1 ] . id , e . vn [ 2 ] . id ) ;
Node x2 = get_vertex_node ( e . vn [ 2 ] . id , e . vn [ 3 ] . id ) ;
Node x3 = get_vertex_node ( e . vn [ 3 ] . id , e . vn [ 0 ] . id ) ;
e . sons [ 0 ] = create_quad ( e . vn [ 0 ] , x0 , mid , x3 ) ;
e . sons [ 1 ] = create_quad (x0 , e . vn [ 1 ] , x1 , mid ) ;
e . sons [ 2 ] = create_quad (mid , x1 , e . vn [ 2 ] , x2 ) ;
e . sons [ 3 ] = create_quad (x3 , mid , x2 , e . vn [ 3 ] ) ;
e . a c t i v e = 0 ;

}

Each hash table is implemented as an array of linked lists. This hash table
organization has the advantage of simple node removal, which is required if a node
is no longer needed by any element.

Finding all neighbors of an element - algorithm

void f ind_neighbors ( Element∗ element , int edge )
{
// Try to get a neighbor d i r e c t l y from the s t r u c tu r e ( as exp la ined above )
neighb_el = element−>get_neighbor ( edge ) ;
// I f s u c c e s s f u l , t h i s i s the easy case .
i f ( neighb_el != NULL)
{
// There i s only one ne ighbor in t h i s case .
n_neighbors = 1 ;
ne ighbors . push_back ( neighb_el ) ;

}
else

{
// Peek the ver tex in the middle o f the a c t i v e edge
// ( i f the re i s none , ver tex w i l l be NULL) .
Node∗ ver tex = mesh−>peek_vertex_node ( element−>en [ edge]−>p1 ,
element−>en [ edge]−>p2 ) ;
// There i s no ver tex in the middle o f the a c t i v e edge ,
// from the po int o f view o f t h i s element .
// We c a l l t h i s case the "way up " .
i f ( ver tex == NULL)
{
// Get the parent element .
Element∗ parent = centra l_e l−>parent ;
// Array o f middle−point v e r t i c e s o f the in t e rmed ia t e parent
// edges that we cl imb up to the c o r r e c t parent element .
Node∗∗ par_mid_vertices = new Node ∗ [ max_level ] ;
// Number o f v i s i t e d in te rmed ia t e parents .
int n_parents = 0 ;
// Function w i l l be d i sp layed l a t e r , i t l ooks f o r an a c t i v e element going up .
find_act_elem_up ( parent , orig_vertex_id , par_mid_vertices , n_parents ) ;

}
// There i s a ver tex in the middle o f the cur rent element ' s cur r ent edge .
// We c a l l t h i s the "way down" .
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else

{
// An array o f v i r t u a l sons o f the element v i s i t e d on the way down
// to the neighbor .
int sons [ Transformations : : max_level ] ;
// Number o f used t rans f o rmat i ons .
int n_sons = 0 ;
// Star t the search by going down to the f i r s t son .
// Function w i l l be d i sp layed l a t e r .
find_act_elem_down ( vertex , orig_vertex_id , sons , n_sons + 1 ) ;

}
}

}

void find_act_elem_up ( Element∗ elem , int∗ orig_vertex_id ,
Node∗∗ par_mid_vertices , int n_parents )
{
// IDs o f v e r t i c e s bounding the cur rent in te rmed ia t e parent edge .
int p1 = elem−>vn [ edge]−>id ;
int p2 = elem−>vn [ ( edge + 1) \% elem−>get_num_surf()]−> id ;

// Find i f p1 and p2 bound a used edge ( used by the neighbor element ) .
common_edge = mesh−>peek_edge_node (p1 , p2 ) ;

// Add the ver tex in the middle o f the parent edge to the array
// o f in t e rmed ia t e parent v e r t i c e s . This i s f o r consequent t rans fo rmat ion
// o f f unc t i on s on neighbor element .
ver tex = mesh−>peek_vertex_node (p1 , p2 ) ;
i f ( ver tex != NULL)
{
i f ( n_parents == 0)
par_mid_vertices [ n_parents++] = vertex ;

else

i f ( par_mid_vertices [ n_parents − 1]−>id != vertex−>id )
par_mid_vertices [ n_parents++] = vertex ;

}

i f ( ( common_edge == NULL) | | ( cent ra l_e l−>en [ edge]−>id == common_edge−>id ) )
{
// We have not yet found the parent o f the c e n t r a l element complete ly
// adjacent to the ne ighbor .
find_act_elem_up ( elem−>parent , orig_vertex_id , par_mid_vertices , n_parents ) ;

}
else

{
for ( int i = 0 ; i < 2 ; i++)
{
// Get a po in t e r to the a c t i v e ne ighbor element .
i f ( ( edge−>elem [ i ] != NULL) && ( edge−>elem [ i ]−>ac t i v e == 1))
{
neighb_el = edge−>elem [ i ] ;
Node∗ n = NULL;

// Go back through the in t e rmed ia t e i n a c t i v e parents down to the c en t r a l
// element and stack cor respond ing ne ighbor_trans format ions in to the array
// ' ne ighbor_trans format ions ' .
for ( int j = n_parents − 1 ; j > 0 ; j−−)
{
n = mesh−>peek_vertex_node ( par_mid_vertices [ j ]−>id , p1 ) ;
i f (n == NULL)
p1 = par_mid_vertices [ j ]−>id ;

else

{
i f (n−>id == par_mid_vertices [ j−1]−>id )
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p2 = par_mid_vertices [ j ]−>id ;
else

p1 = par_mid_vertices [ j ]−>id ;
}

}
// There i s only one neighbor , . . .
n_neighbors = 1 ;
// . . . add i t to the vec to r o f ne ighbors .
ne ighbors . push_back ( neighb_el ) ;

}
}

}
}

find_act_elem_down ( Node∗ vertex , int∗ bounding_verts_id ,
int∗ sons , unsigned int n_sons )
{
// We are l ook ing f o r ne ighbor ing e lements on both ha lve s o f the edge .
for ( int i = 0 ; i < 2 ; i++)
{
// Store the cur rent element ' s t rans fo rmat ion .
sons [ n_sons−1] = ( edge + i ) \% centra l_e l−>get_num_surf ( ) ;
// Try to get a po in t e r to the edge between the middle ver tex and
// one o f the v e r t i c e s bounding the p r ev i ou s l y t e s t ed segment .
Node∗ common_edge = mesh−>peek_edge_node (mid_vert , bnd_verts [ i ] ) ;
// I f the edge i s not used , i . e . the r e i s no a c t i v e element on e i t h e r s i d e .
i f (common_edge == NULL)
{
// Get the middle ver tex o f t h i s edge and try again on the segments
// in to which t h i s ver tex s p l i t s the edge .
Node ∗ n = mesh−>peek_vertex_node (mid_vert , bnd_verts [ i ] ) ;
// Choose the c o r r e c t bounding v e r t i c e s f o r the cur rent h a l f o f the edge .
i f ( i == 0)
bounding_verts_id [ 1 ] = mid_vert ;

else

bounding_verts_id [ 0 ] = mid_vert ;
// Recur s ive ly c a l l the func t i on .
find_act_elem_down ( n , bounding_verts_id , sons , n_sons + 1 ) ;
// Fix the r e cu r s i on .
bounding_verts_id [ 0 ] = bnd_verts [ 0 ] ;
bounding_verts_id [ 1 ] = bnd_verts [ 1 ] ;

}
// We have found a used edge .
else

{
// Try both ha lve s and see i f the ne ighbor ing e lements are a c t i v e
// ( not r e f i n e d f u r t h e r ) .
for ( int j = 0 ; j < 2 ; j++)
{
i f ( ( edge−>elem [ j ] != NULL) && ( edge−>elem [ j ]−>ac t i v e == 1))
{
neighb_el = mesh−>get_element (common_edge−>elem [ j ]−>id ) ;
// Append the new neighbor .
n_neighbors++;
ne ighbors . push_back ( neighb_el ) ;

}
}

}
}

}
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