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Studijńı program: Matematika
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Preface

All the results in this work are based on the paper of D.L. Burkholder and R.F.
Gundy and papers of many other authors, who continued their work and proved
various extensions. All of them worked with the basic idea of relating two oper-
ators, the first of which is “good” in a certain sense, while the other one is “bad”,
by the suitable inequality, that allows to transfer some of the properties of the
good operator to the bad one. This kind of inequalities was later called the good
λ-inequalities.

The aim of this thesis is to compile and generalize scattered results about
various λ-inequalities and norm estimates for an integral operator T and a cor-
responding maximal operator M on the function spaces over the quasi-metric
spaces with the so called “doubling” measure and supplement it with some new
results extended from function spaces over the metric spaces or the n-dimensional
Euclidean space Rn. Unlike Rn, where T is considered to be quite general, we
restrict ourselves to the case when T equals to a particular form of the Riesz
potencial.

The first chapter contains definitions of some fundamental objects and an
introduction to the theory of Banach function spaces with a particular focus on
the Lebesgue and Lorentz spaces and after it as well their weighted variants.
The rest of the chapter is devoted to the various covering lemmas, whose use is
essential in the third chapter.

In the second chapter we compile the previously known results for the function
spaces over Rn, i.e. we formulate three important λ-inequalities for the Lebesgue
measurable functions on Rn along with their corollaries which mostly concern
various norm estimates for the Lebesgue spaces.

The third and main chapter defines the Riesz potential I and, in this case, a
corresponding pair of fractional maximal operators on the function spaces over
the quasi-metric space with the doubling measure. The main aim is the proof
of the so-called “better good λ-inequality”, which allows to derive the other two
λ-inequalities very easily and from them also a few corollaries in the form of
norm estimates between I and one of the fractional maximal operators. The last
section of this chapter extends the last mentioned norm estimates and survey the
boundedness of the operator I on the Lebesgue and Lorentz spaces.

Regrettably, a generalization to the quasi-metric space brings some complica-
tions that does not enable us to run an analogical progress as in Rn. Some of the
cases are solved by adjusting the method of proof or by creating a different one
but a few results known in Rn still remain open in general.

2



1. Notation and preliminaries

1.1 Banach function spaces

In this section we introduce the idea of a quasi-metric space with the so-called
“doubling” measure which is a measure that satisfies two growth conditions. On
this slightly generalized metric space we build a theory of Banach function spaces
which provides a general setting for all function spaces we need.

Definition 1.1.1 (quasi-metric space with a doubling measure) Let X be a set
endowed with a function % : X ×X → R satisfying

(i) %(x, y) ≥ 0,

(ii) %(x, y) = 0 if and only if x = y,

(iii) %(x, y) = %(y, x), (symmetry)

(iv) %(x, y) ≤ d(%(x, z) + %(z, y)) (d-relaxed triangle inequality)

for every x, y, z ∈ X and some d ≥ 1. The function % is called a quasi-metric
and the pair (X, %) denotes a quasi-metric space. Then for the quasi-metric space
(X, %), x ∈ X and a set E ⊂ X we define the distance

dist(x,E) = inf
y∈E

%(x, y)

and the diameter
diam(E) = sup

x,y∈E
%(x, y).

Let x ∈ X and 0 < r < 2 diam(X). Then we define the ball B(x, r) by

B(x, r) = {y ∈ X : %(x, y) < r}.

Moreover we say that a set E ⊂ X is bounded whenever there is a ball B such
that E ⊂ B.

We further assume that there is a non-negative outer Borel-regular measure
µ defined on (X, %), i.e. such a measure µ on the quasi-metric space (X, %) that
all Borel sets are µ-measurable and for every set A there is a Borel set B such
that A ⊂ B and µ(A) = µ(B), satisfying the following two properties:

(i) there is a doubling constant D ≥ 1 such that for every 0 < r < diam(X)
and every x ∈ X we have

µ(B(x, 2r)) ≤ Dµ(B(x, r)), (doubling condition)

(ii) there are two constants Cµ > 0 and n > 1 such that for every x ∈ X
and every 0 < r < 2 diam(X) we have

µ(B(x, r)) ≥ Cµr
n. (lower bound condition)

A non-negative outer Borel-regular measure satisfying the previous two conditions
is called a doubling measure and (X, %, µ) denotes a quasi-metric space X with a
doubling measure µ, which will be further referred to as a space of homogeneous
type.
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Lemma 1.1.2 Let (X, %, µ) be a space of homogeneous type. Then for every k > 1
there is a constant Dk such that

µ(B(x, kr)) ≤ Dkµ(B(x, r))

for every x ∈ X and 0 < r < 2
k

diam(X).

Proof. For fixed k we find m ∈ N such that 2m−1 < k ≤ 2m. Then, using the
doubling condition, we obtain

µ(B(x, kr)) ≤ µ(B(x, 2mr)) ≤ Dmµ(B(x, r)).

Thus it suffices to set Dk = Dm.

Remark: The letter D with the various subscripts will further denote the powers
of the doubling constant D corresponding to the multiple of the radius in the same
way as in the previous Lemma 1.1.2. Note that D2 = D.

Remark: Let (X, %, µ) be a space of homogeneous type, then

(i) every ball has a strictly positive measure,

(ii) if there is a ball B ⊂ X with µ(B) = ∞, then every ball has infinite
measure.

Proof. The part (i) is a trivial consequence of the lower bound condition.
For the part (ii) let B = B(x, r), x ∈ X, r > 0, be a fixed ball with µ(B) =∞

and let B′ = B(x′, r′), x′ ∈ X, 0 < r′ < 2 diam(X), be an arbitrary ball. Then
there is k ≥ 1 such that B ⊂ B(x′, kr′) and by Lemma 1.1.2 there is Dk > 0 such
that Dkµ(B′) ≥ µ(B(x′, kr′)). Therefore

µ(B′) ≥ 1

Dk

µ(B(x′, kr′)) ≥ 1

Dk

µ(B) =∞.

In the view of (ii) in the last remark we omit the deformed spaces and further
assume that every ball has finite measure.

Lemma 1.1.3 Let (X, %, µ) be a space of homogeneous type, then

(i) the measure µ is σ-finite, in particular X =
⋃∞
j=1Bj, where Bj are balls

with µ(Bj) <∞,

(ii) X is a separable space.

Proof. For the part (i) let x ∈ X.
If µ(X) < ∞, then the space X has finite diameter, otherwise, using the

lower bound condition, we can find a ball B in X with radius big enough such
that µ(B) > µ(X) and that is a contradiction. Thus the ball B(x, r), where
r > diam(X), contains whole X and has finite measure.

If µ(X) =∞, then diam(X) is obviously infinite and {B(x, r)}r∈N is a count-
able collection of open concentric balls in X such that X =

⋃
r∈NB(x, r) and

µ(B(x, r)) <∞ for every r ∈ N.
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In the part (ii), using (i), we deduce that

X =
∞⋃
j=1

B(xj, rj),

where Bj = B(xj, rj), xj ∈ X and rj > 0. Then the countability of {Bj}j∈N
implies that it suffices to prove that for every j and ε > 0 there is a finite ε-net
Aεj ⊂ Bj, i.e. for every x ∈ Bj there is y ∈ Aεj with %(x, y) < ε. Let ε > 0.

If ε ≥ rj, then we set Aεj = {xj} and we are finished. If ε < rj, then the
collection {B(x, ε

2d
)}x∈Bj covers Bj and for every x ∈ Bj and every z ∈ B(x, ε

2d
)

we have

%(z, xj) ≤ d(%(z, x) + %(x, xj)) < d(
ε

2d
+ rj) < d(

rj
2d

+ rj) < 2drj,

which implies B(x, ε
2d

) ⊂ B(xj, 2drj) for every x ∈ Bj. Now we inductively
construct the set Aεj in the following way.

• For k = 1 we choose any x1
j ∈ Bj and put it into Aεj .

• For a positive integer k > 1, either there exists xkj ∈ Bj such that

B(xkj ,
ε

2d
) ∩B(xij,

ε

2d
) = ∅

for every i = 1, . . . , k − 1 and we put it into Aεj , or the construction stops.

Since the ball B(xj, 2drj) has finite measure, B(x, ε
2d

) ⊂ B(xj, 2drj) for every

x ∈ Bj and µ(B(x, ε
2d

)) ≥ Cµ
(
ε
2d

)n
for every x ∈ X, the construction has to stop

for a finite k. Thus the set Aεj is finite. Now {B(x, ε)}x∈Aεj covers Bj, otherwise
there is z ∈ Bj such that for every x ∈ Aεj we have

ε ≤ %(z, x) ≤ d(dist(z,B(x,
ε

2d
)) +

ε

2d
) ⇒ dist(z,B(x,

ε

2d
)) ≥ ε

2d

and thus
B(z,

ε

2d
) ∩B(x,

ε

2d
) = ∅,

which is the contradiction with the construction of Aεj . Hence Aεj is a finite ε-net
of Bj and taking εm = 1

2m
,m ∈ N, we have that

⋃∞
m=1

⋃∞
j=1A

εm
j is a countable

dense subset of X.

Definition 1.1.4 (Banach function space) Let (X, %, µ) be a space of homoge-
neous type and let M = M(X, %, µ) be the space of (equivalence classes of)
µ-measurable functions on X.

Then a function norm on M is a function ϕ : M → [0,∞] satisfying the
following properties:

(BF1) ϕ(f) = 0 if and only if f = 0,

(BF2) ϕ(αf) = |α|ϕ(f) for every α 6= 0,

(BF3) ϕ(f + g) ≤ ϕ(f) + ϕ(g),

(BF4) |f | ≤ |g| µ-a.e. implies ϕ(f) ≤ ϕ(g),

(BF5) 0 ≤ fm ↗ f µ-a.e. implies ϕ(fm)↗ ϕ(f),

(BF6) ϕ(χE) <∞ for every µ-measurable set E ⊂ X, where µ(E) <∞,
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(BF7) for every f ∈M and every µ-measurable set E ⊂ X with µ(E) <∞,
there is a constant C such that∫

E

|f | dµ ≤ Cϕ(f)

for all f, g, fm ∈ M, m ∈ N, and α ∈ R. If ϕ is a function norm, then the space
Z = {f ∈ M, ϕ(f) < ∞} is called a Banach function space. For f ∈ Z, we use
‖f‖Z instead of ϕ(f).

Remark: The above mentioned equivalence is meant as equality of functions
almost everywhere.

Even though a Banach function space is a collection of functions f ∈M such
that the function norm of f , ϕ(f), is finite, a function norm in general is defined
for all f ∈M.

Remark: The letter C, without any subscript or superscript, will throughout
this thesis denote an universal constant. It may change its value between the
theorems and if it cannot cause any misunderstanding even from line to line.

We finish this section with two examples of classes of Banach function spaces.

Definition 1.1.5 (Lebesgue spaces) Let (X, %, µ) be a space of homogeneous
type, then for 1 ≤ p ≤ ∞ and a µ-measurable function f on X we define the
Lebesgue norm

‖f‖p =


(∫

X
|f(x)|p dµ(x)

) 1
p , 1 ≤ p <∞,

esssup
x∈X

{|f(x)|}, p =∞.

Then the Lebesgue space Lp(X, %, µ) is a space consisting of all µ-measurable
functions f on X for which the Lebesgue norm ‖f‖p is finite. We further denote
the space Lp(X, %, µ) by Lp.

We also define the space of locally integrable functions L1
loc(X, %, µ) = L1

loc

consisting of µ-measurable functions f , where f ∈ L1(K) for every compact
subset K of X.

Definition 1.1.6 (Lorentz spaces) Let (X, %, µ) be a space of homogeneous type,
then for 1 ≤ p, q ≤ ∞ and a µ-measurable function f on X we define the Lorentz
norm

‖f‖p,q =


(∫∞

0
qsq−1 (µ({x ∈ X : |f(x)| > s}))

q
p ds

) 1
q
, 1 ≤ p, q <∞,

sup
s>0
{s (µ({x ∈ X : |f(x)| > s}))

1
p}, 1 ≤ p ≤ ∞, q =∞.

Then the Lorentz space Lp,q(X, %, µ) is a space consisting of all µ-measurable
functions f on X for which the Lorentz norm ‖f‖p,q is finite. We further denote
the space Lp,q(X, %, µ) by Lp,q.
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Remark: Let (X, %, µ) be a space of homogeneous type. Then

(i) the Lebesgue norms ‖.‖p, 1 ≤ p ≤ ∞, are function norms,
(ii) the Lorentz norms ‖.‖p,q, 1 ≤ q ≤ p <∞, are function norms,
(iii) for every 1 < p < ∞ and 1 ≤ q ≤ ∞ there is another norm ‖.‖X
equivalent to the Lorentz norm ‖.‖p,q, i.e. there are two constants Cl, Cu > 0
satisfying Cl ‖.‖p,q ≤ ‖.‖X ≤ Cu ‖.‖p,q, such that the space Lp,q with ‖.‖X is
a Banach function space,

(iv) the Lorentz space Lp,p = Lp for every 1 ≤ p ≤ ∞ and if we considered
L∞,q for every 1 ≤ q <∞, then L∞,q would contain only zero function,

(v) for every 1 < q ≤ ∞ the Lorentz norm ‖.‖1,q is only a quasi-norm and
there exists no norm ‖.‖X equivalent to ‖.‖1,q as in (iii).

Proof. For (i)− (iv) see e.g. Chapter 1 and Chapter 4 in Bennett and Sharpley
[5] and for (v) see [12].

1.2 Weights and rearrangements

For both classes of function spaces defined in the previous section there is a
weighted variant, but before we introduce the weighted Lebesgue and Lorentz
spaces we need to recall a few facts about weights and also rearrangements. The
Lorentz spaces are closely associated with the distributions and rearrangements
and therefore they can be introduced by the means of the non-increasing rear-
rangement or the distribution function. We consider both approaches and prove
their equivalence.

Definition 1.2.1 (weights and Muckenhoupt weight classes) Let (X, %, µ) be a
space of homogeneous type. Then a weight is a positive µ-measurable function
w ∈ L1

loc and we set

w(E) =

∫
E

w(x)dµ(x)

for any µ-measurable set E ⊂ X. Moreover we say that

(i) w belongs to the Muckenhoupt A∞ class, w ∈ A∞, if for given 0 < ε < 1,
there exists 0 < ε′ < 1 such that for every ball B from X and every
µ-measurable set E ⊂ B we have

µ(E) < ε′µ(B)⇒ w(E) < εw(B),

(ii) w belongs to the Muckenhoupt A′∞ class, w ∈ A′∞, if there are constants
CA′∞ ≥ 1 and δ ≥ 1 such that for every ball B from X and every µ-
measurable set E ⊂ B we have

µ(E)

µ(B)
≤ CA′∞

(
w(E)

w(B)

)δ
,

(iii) w belongs to the Muckenhoupt Ap class, w ∈ Ap, 1 < p <∞, if there is
a positive constant CAp such that for every ball B from X we have(∫

B

w(x)dµ(x)

)(∫
B

w(x)−
1
p−1dµ(x)

)p−1

≤ CApµ(B)p.
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(iv) w belongs to the Muckenhoupt A1 class, w ∈ A1, if there is a positive
constant CA1 such that for every ball B from X and x ∈ B we have

1

µ(B)

∫
B

w(x)dµ(x) ≤ CA1essinf
x∈B

w(x).

Before we formulate and prove lemma that shows some relations between the
Ap and A∞ classes, we need to adopt one theorem from [18] (Theorem 13 on
page 8). For the easier application and better understanding we reformulate it to
the form more suitable for our purpose. This modification is only a slightly less
general version of the original theorem and thus can be proved in the same way.

Theorem 1.2.2 Let (X, %) be a quasi-metric space and suppose that µ and ν
are two measures on (X, %) satisfying the doubling condition and that there are
0 < ε0, ε

′
0 < 1 such that for each ball B ⊂ X and each µ-measurable set E ⊂ B we

have ν(E) < (1 − ε′0)ν(B) whenever µ(E) < ε0µ(B). Then there are a constant
C > 0 and an index δ ≥ 1 such that

ν(E)

ν(B)
≤ C

(
µ(E)

µ(B)

) 1
δ

for each ball B ⊂ X and each µ-measurable set E ⊂ B.

Proof. See [18], pages 16 and 17.

Lemma 1.2.3 Let (X, %, µ) be a space of homogeneous type. Then for a weight
w and 1 < p <∞ we have the following set of implications:

w ∈ Ap ⇒ w ∈ A′∞ ⇒ w ∈ A∞.

Proof. Let 1 < p < ∞ and let w ∈ Ap. Then, using the Hölder inequality, we
obtain

µ(E) =

∫
B

χE(y)w(y)
1
pw(y)−

1
pdµ(y)

≤
(∫

E

w(y)dµ(y)

) 1
p
(∫

B

w(y)−
1
p−1dµ(y)

) p−1
p

≤ C
1
p

Ap
w(E)

1
pµ(B)w(B)−

1
p

for any ball B ⊂ X, µ-measurable set E ⊂ B and 1 < p < ∞. Notice that the
Ap condition was used in the last estimate and therefore indeed w ∈ Ap implies

w ∈ A′∞ with δ = 1
p

and CA′∞ = C
1/p
Ap

.
For the proof of the second implication let w ∈ A′∞.Then, using the doubling

condition of µ and w ∈ A′∞, we have

CA′∞

(
w(B(x, r))

w(B(x, 2r))

)δ
≥ µ(B(x, r))

µ(B(x, 2r))
≥ 1

D

for any x ∈ X and r > 0. Thus

(DCA′∞)1/δw(B(x, r)) ≥ w(B(x, 2r))
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and hence the measure ν defined by dν(x) = w(x)dµ(x) also satisfies the doubling
condition with doubling constant (DCA′∞)1/δ.

From w ∈ A′∞ also follows that

µ(B r E)

µ(B)
≤ CA′∞

(
w(B r E)

w(B)

)δ
(1.1)

for each ball B ⊂ X and µ-measurable set E ⊂ B. Hence, if we suppose that
µ(E) < ε0µ(B) for an arbitrary 0 < ε0 < 1, then certainly (1 − ε0)µ(B) <
µ(B r E). Now, using (1.1), we obtain

(1− ε0) <
µ(B r E)

µ(B)
≤ CA′∞

(
w(B r E)

w(B)

)δ
.

Thus (1− ε0)
1
δC
− 1
δ

A′∞
w(B) < w(B r E) which implies

ν(E) = w(E) < (1− (1− ε0)
1
δC
− 1
δ

A′∞
)w(B) = (1− ε′0)ν(B),

where ε′0 = (1 − ε0)
1
δC
− 1
δ

A′∞
. Evidently 0 < ε′0 < 1 and therefore we have satisfied

all the assumptions of Theorem 1.2.2. Applying it we obtain

w(E)

w(B)
=
ν(E)

ν(B)
≤ C

(
µ(E)

µ(B)

) 1
δ

(1.2)

for each ball B ⊂ X and each µ-measurable set E ⊂ B.
Now let 0 < ε < 1, let B ⊂ X be a ball and let E ⊂ B be a µ-measurable set.

Let µ(E) < ε′µ(B), where 0 < ε′ < 1 with exact value to be specified later, then
from (1.2) follows

w(E)

w(B)
≤ C

(
µ(E)

µ(B)

) 1
δ

< Cε′
1
δ .

Thus by setting ε′ small enough such that Cε′
1
δ < ε we proved that w ∈ A∞.

Definition 1.2.4 (distribution and rearrangement) Let (X, %, µ) be a space of
homogeneous type, f be a µ-measurable function on X and let w be a weight.
Then for s > 0 we define the distribution function of f with respect to w by

Df,w(s) = w({x ∈ X : |f(x)| > s}).

Furthermore, for t > 0 we define the non-increasing rearrangement of f with
respect to w by

f ∗w(t) = inf{s > 0 : Df,w(s) ≤ t}

and the averaged rearrangement of f with respect to w by

f ∗∗w (t) =
1

t

∫ t

0

f ∗w(s)ds.
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Definition 1.2.5 (weighted Lebesgue spaces) Let (X, %, µ) be a space of homoge-
neous type, then for a weight w, a µ-measurable function f on X and 1 ≤ p ≤ ∞
we define the weighted Lebesgue norm

‖f‖p,w =


(∫

X
|f(x)|pw(x)dµ(x)

) 1
p , 1 ≤ p <∞,

esssup
x∈X

{|f(x)|w(x)}, p =∞.

Then the weighted Lebesgue space Lpw(X, %, µ) consists of all µ-measurable func-
tions f on X for which the weighted Lebesgue norm ‖f‖p,w is finite. We further
denote the space Lpw(X, %, µ) by Lpw.

Definition 1.2.6 (weighted Lorentz spaces) Let (X, %, µ) be a space of homoge-
neous type, then for a weight w, a µ-measurable function f onX and 1 ≤ p, q ≤ ∞
we define the weighted Lorentz (quasi-)norm

‖f‖p,q,w =


(∫∞

0
qsq−1 (Df,w(s))

q
p ds

) 1
q
, 1 ≤ p <∞, 1 ≤ q <∞,

sup
s>0
{s (Df,w(s))

1
p}, 1 ≤ p ≤ ∞, q =∞,

or, in the terms of the rearrangement,

‖f‖p,q,w =


(∫∞

0
q
p
t
q
p
−1 (f ∗w(t))q dt

) 1
q
, 1 ≤ p <∞, 1 ≤ q <∞,

sup
t>0
{t

1
pf ∗w(t)}, 1 ≤ p ≤ ∞, q =∞.

Then the weighted Lorentz space Lp,qw (X, %, µ) consists of all µ-measurable func-
tions f on X for which the weighted Lorentz norm ‖f‖p,q,w is finite. We further
denote the space Lp,qw (X, %, µ) by Lp,qw .

Remark: The previous two definitions are equivalent.

Proof. For q = ∞ let fm =
∑m

j=1 cjχEj ,m ∈ N, be a simple function, where Ej
are w-measurable sets, µ(Ej) > 0 for every j = 1, . . . ,m, Ej ∩ Ek = ∅ if j 6= k
and c1 > c2 > . . . > cm > cm+1 = 0. Let aj = w(E1) + . . . + w(Ej), 1 ≤ j ≤ m,
and define a0 to be 0. Then the distribution function Dfm,w has the form

Dfm,w(s) =

{
aj, cj+1 ≤ s < cj, 1 ≤ j ≤ m,

0, c1 ≤ s,

and the non-increasing rearrangement (fm)∗w has the form

(fm)∗w(t) =

{
cj, aj−1 ≤ t < aj, 1 ≤ j ≤ m,

0, am ≤ t.

Thus we see that for p > 0 we have

sup
s>0
{s(Dfm,w(s))

1
p} = sup

1≤j≤m
{a

1
p

j cj} = sup
t>0
{t

1
p (fm)∗w(t)}. (1.3)

10



It is easy to see that for every µ-measurable function f there is a sequence of
simple function fm, defined as above, such that fm(x)↗ |f(x)| for every x ∈ X.
It is also clear that

Em
s = {x ∈ X : |fm(x)| > s} ⊂ Es = {x ∈ X : |f(x)| > s}

and
⋃∞
m=1E

m
s = Es for every s > 0. Thus also

Dfm,w(s) = w(Em
s ) ≤ w(Es) = Df,w(s) and lim

m→∞
Dfm,w(s) = Df,w(s) (1.4)

for every s > 0.
From the definition of the non-increasing rearrangement it now follows that

(fm)∗w(t) ≤ (fm+1)∗w(t) ≤ f ∗w(t) (1.5)

for m = 1, 2, 3, . . . and every t ≥ 0. For fixed t ≥ 0 let l = limm→∞(fm)∗w(t).
Since (fm)∗w(t) ≤ l, we have Dfm,w(l) ≤ Dfm,w((fm)∗w(t)) ≤ t. Thus Df,w(l) =
limm→∞Dfm,w(l) ≤ t and since f ∗w(t) is infimum over s, where Df,w(s) ≤ t, then
f ∗w(t) ≤ l. But from the inequality (fm)∗w(t) ≤ f ∗w(t) letting m tend to infinity we
obtain l ≤ f ∗w(t). It therefore follows that

lim
m→∞

(fm)∗w(t) = l = f ∗w(t). (1.6)

Now, using (1.3), (1.4), (1.5) and (1.6), we obtain

sup
s>0
{s(Df,w(s))

1
p} = lim

m→∞
sup
s>0
{s(Dfm,w(s))

1
p}

= lim
m→∞

sup
t>0
{t

1
p (fm)∗w(t)} = sup

t>0
{t

1
pf ∗w(t)}.

For 1 ≤ q <∞, using the Fubini’s theorem, we obtain(∫ ∞
0

q

p
t
q
p
−1(f ∗w(t))qdt

) 1
q

=

(∫ ∞
0

q

p
t
q
p
−1

(∫ (f∗w(t))q

0

1ds

)
dt

) 1
q

=

(∫ ∞
0

∫ ∞
0

q

p
t
q
p
−1χ(0,(f∗w(t))q)(s)dsdt

) 1
q

=

(∫ ∞
0

∫ ∞
0

q

p
t
q
p
−1χ(0,(f∗w(t))q)(s)dtds

) 1
q

=

(∫ ∞
0

∫ ∞
0

q

p
t
q
p
−1χ{t∈R:(f∗w(t))q>s}(t)dtds

) 1
q

=

(∫ ∞
0

∫ ∞
0

q

p
t
q
p
−1χ{t∈R:(f∗w(t))>r}(t)dtqr

q−1dr

) 1
q

=

(∫ ∞
0

∫ ∞
0

q2

p
t
q
p
−1rq−1χ(0,Df,w(r))(t)dtdr

) 1
q

=

(∫ ∞
0

∫ Df,w(r)

0

q2

p
t
q
p
−1rq−1dtdr

) 1
q

=

(∫ ∞
0

qrq−1Df,w(r)
q
pdr

) 1
q

.
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Remark: Let (X, %, µ) be a space of homogeneous type and let w be a weight.
Then

(i) the weighted Lebesgue norms ‖.‖p,w, 1 ≤ p ≤ ∞, are function norms,

(ii) the weighted Lorentz norms ‖.‖p,q,w, 1 ≤ q ≤ p <∞, are function norms,

(iii) for every 1 < p < ∞ and 1 ≤ q ≤ ∞ there is another norm ‖.‖X
equivalent to the Lorentz norm ‖.‖p,q,w, i.e. there are two constants Cl, Cu >
0 satisfying Cl ‖.‖p,q,w ≤ ‖.‖X ≤ Cu ‖.‖p,q,w, such that the space Lp,qw with
‖.‖X is a Banach function space,

(iv) the weighted Lorentz space Lp,pw = Lpw for every 1 ≤ p ≤ ∞ and if we
considered L∞,qw for every 1 ≤ q < ∞, then L∞,qw would contain only zero
function.

Proof. Considering that dν(x) = w(x)dµ(x), x ∈ X, is also a measure we can
again refer to [5].

Lemma 1.2.7 Let f be a µ-measurable function on a space of homogeneous type
(X, %, µ) and let w be a weight. Then for 1 ≤ p <∞ we have

p

∫ ∞
0

sp−1Df,w(s)ds =

∫
X

|f(x)|pw(x)dµ(x).

Proof. By the Fubini’s theorem we have

p

∫ ∞
0

sp−1Df,w(s)ds = p

∫ ∞
0

sp−1

∫
{|f |>s}

w(x)dµ(x)ds

= p

∫ ∞
0

∫
{|f |>s}

sp−1w(x)dµ(x)ds

= p

∫
X

∫ |f(x)|

0

sp−1w(x)dsdµ(x)

=

∫
X

|f(x)|pw(x)dµ(x).

1.3 Coverings

There are many versions of various covering lemmas and theorems with different
conditions and assertions. In this section we specify and prove those that will be
needed further. For reference see e.g. [1], [4], [10] and [14].

Lemma 1.3.1 Let (X, %, µ) be a space of homogeneous type and let E be a bounded
subset of X. Moreover assume that for every x ∈ E there exists a pair (yx, rx),
yx ∈ X and rx > 0, such that the ball B(yx, rx) contains x and supx∈E %(x, yx) is
finite. Then there is a sequence of disjoint balls {B(yxi , rxi)}∞i=1 ⊂ {B(yx, rx)}x∈E
such that

E ⊂
∞⋃
i=1

B(yxi , 5d
2rxi).
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Proof. The set E is bounded, hence either we can suppose that there is at least
one ball from the collection {B(yx, rx)}x∈E containing E, which would finish the
proof, or that supx∈E rx is finite. The latter case implies the existence of a ball
B such that B(yx, rx) ⊂ B for every x ∈ E.

Now we inductively construct a sequence {xk}k∈N ⊂ E in the following way.
For k = 1 we find x1 ∈ E such that

rx1 >
1

2
sup
x∈E

rx.

Then certainly x1 ∈ B(yx1 , rx1). For a positive integer k > 1 we find xk ∈ Ek =
E r

⋃k−1
i=1 B(yxi5d

2rxi) such that

rxk >
1

2
sup
x∈Ek

rx.

Then certainly xk ∈ B(yxk , rxk) and moreover the ball B(yxk , rxk) is disjoint with
every ball B(yxi , rxi), i < k, otherwise we can find i < k such that

B(yxk , rxk) ∩B(yxi , rxi) 6= ∅

and thus

%(xk, yxi) ≤ d(%(xk, yxk) + %(yxk , yxi)) < drxk + d2(rxi + rxk)

< 2d2rxi + d2rxi + 2d2rxi < 5d2rxi ,

which is the contradiction with xk ∈ Ek.
The construction can progress in two ways. Either for a finite k there is

no point xk ∈ Ek, i.e. E is already fully covered with the balls B(yxi , 5d
2rxi),

i = 1, . . . , k − 1, the construction stops and the proof is finished, or the construc-
tion continues infinitely. In the latter case rxk has to tend to zero, otherwise
there is a constant ε > 0 and infinitely many disjoint balls B(yxi , rxi) with the
radius greater than ε contained in B. Recalling the lower bound condition we
have µ(B(yxi , rxi)) ≥ Cµε

n and thus

∞∑
i=1

Cµε
n ≤

∞∑
i=1

µ(B(yxi , rxi)) = µ(
∞⋃
i=1

B(yxi , rxi)) ≤ µ(B),

which is the contradiction with the assumption that every ball has finite measure
applied to B. Hence we have an infinite sequence B(yxi , 5d

2rxi) of balls with the
radius tending to zero. Now for the contradiction we suppose that there is an
uncovered x ∈ E r

⋃∞
i=1B(yxi , 5d

2rxi). Since rxi ↘ 0, we can find big enough
k ∈ N such that rx > 2rxk . Hence in the k-th step of the construction there was
x ∈ Ek such that 1

2
rx > rxk and thus

rxk > sup
x∈Ek

1

2
rx > rxk ,

which is a contradiction. Thus the collection {B(yxi , 5d
2rxi)}∞i=1 covers E.

Lemma 1.3.2 Let W be a collection of balls in a separable quasi-metric space
(X, %). Then there is a maximal disjoint countable subcollectionW ′, i.e. for every
ball B from W there is a ball in W ′ with non-empty intersection with B.

13



Proof. In a separable quasi-metric space there is a countable collection of balls
{Bi}i∈N such that for every open set U we have U =

⋃
Bi⊂U Bi. Now we construct

the subcollection W ′ from W in the following way.

• For B1, either there exists a ball V1 ∈ W such that B1 ⊂ V1 and we put it
into W ′, or there is no such V1 and we continue to the next step.

• For Bk, k > 1, k ∈ N, either there exists a ball Vk ∈ W such that Bk ⊂ Vk
and Vk is disjoint with every ball Vi ∈ W ′, i < k, and we put it into W ′, or
there is no such a Vk and we repeat the process with k replaced by k + 1.

The constructed collection W ′ is obviously disjoint and countable. If we suppose
that there is a ball V ∈ W disjoint with every ball from W ′, i.e. W ′ is not
maximal, then we can find k such that Bk ⊂ V . Hence either there was no
suitable Vk in the construction which is the contradiction because V is suitable,
or there is Vk ∈ W ′ added in the k-th step and ∅ 6= Bk ⊂ V ∩ Vk = ∅ which is
also impossible. Thus W ′ is also maximal.

Lemma 1.3.3 Let E be a subset of a separable quasi-metric space (X, %) and let
W be a collection of balls B(x, r) in X with x ∈ E and r > 0 that covers E.
Assume that

R = sup{r > 0 : B(x, r) ∈ W} <∞.
Then there is a countable disjoint subcollection V ⊂ W such that

E ⊂
⋃

B(x,r)∈V

B(x, 5d2r).

Proof. Let W1 be a collection of balls from W such that their radius r satisfies
1
2
R < r ≤ R. Using Lemma 1.3.2 we find a maximal disjoint countable subcollec-

tion V1. For a positive integer k > 1, let Wk be a collection of balls from W such
that their radius satisfies 2−k < r

R
≤ 2−k+1 and their intersection with any ball

from
⋃k−1
i=1 Vi is empty. Using Lemma 1.3.2 we find a maximal disjoint countable

subcollection Vk. Then the collection of balls V =
⋃∞
i=1 Vi is obviously disjoint

and countable. Last property needed is

E ⊂
⋃

B(x,r)∈V

B(x, 5d2r).

We fix z ∈ E and find B(y, s) ∈ W such that z ∈ B(y, s). Then we find k ∈ N
such that 2−k < s

R
≤ 2−k+1. Now either B(y, s) ∈ Vk ⊂ V and the proof is finished

or B(y, s) /∈ Vk. In the latter case either B(y, s) ∈ Wk and there is B(x, r) ∈ Vk
such that B(x, r) ∩ B(y, s) 6= ∅ or B(y, s) /∈ Wk and there is B(x, r) ∈

⋃k−1
i=1 Vi

such that B(x, r) ∩B(y, s) 6= ∅. Hence we certainly have

B(x, r) ∈
k⋃
i=1

Vi such that B(x, r) ∩B(y, s) 6= ∅.

Moreover r > 2−kR and s ≤ 2−k+1R implies s < 2r. Thus we have

%(z, x) ≤ d(%(z, y) + %(y, x)) < d(s+ d(s+ r)) < 5d2r

and z ∈ B(x, 5d2r).
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Definition 1.3.4 Let (X, %, µ) be a space of homogeneous type and let E be an
open subset of X. Let R > 0 and z ∈ E. Then we say that B = B(z, r) is a
Whitney ball for E bounded by R if

r = min

{
1

2d
dist(z,X r E), R

}
.

A Whitney covering V of E bounded by R is a collection of countably many
Whitney balls for E bounded by R such that

(i) E =
⋃
B∈V B,

(ii) the balls {B(z, r/5d2)}B(z,r)∈V are pairwise disjoint,
(iii) there is a positive constant P such that∑

B∈V

χB(x) ≤ P

for every x ∈ E.

As a consequence of Lemma 1.3.3 we have the following metric version of the
Whitney covering lemma.

Lemma 1.3.5 Let (X, %, µ) be a space of homogeneous type and let E be an open
subset of X. Let R > 0 and let W be a collection of all Whitney balls B(z, r),
z ∈ E, for E bounded by R. Then there is a Whitney covering V ⊂ W of E
bounded by R.

Proof. Recalling the separability of X from Lemma 1.1.3 and applying Lemma
1.3.3 to the balls B(z, r

5d2
), B(z, r) ∈ W , we obtain a collection of balls V =

{B(xj, rj)}∞j=1 that covers E and that B(xj,
rj

5d2
) are pairwise disjoint. Let x ∈ E.

Now if x ∈ B(xj, rj) for any j ∈ N, then for any y ∈ B(xj,
rj

5d2
) we have

%(y, x) ≤ d(%(y, xj) + %(x, xj)) ≤
rj
5d

+ drj ≤
5d2 + 1

5d
rj

and for any y ∈ B(x,
rj

5d2
) we have

%(y, xj) ≤ d(%(y, x) + %(xj, x)) ≤ rj
5d

+ drj ≤
5d2 + 1

5d
rj.

That implies

B(xj,
rj

5d2
) ⊂ B(x,

5d2 + 1

5d
rj) and B(x,

rj
5d2

) ⊂ B(xj,
5d2 + 1

5d
rj).

Thus, using Lemma 1.1.2, we have∑
B(xj ,rj)3x

µ(B(xj,
rj

5d2
)) = µ(

⋃
B(xj ,rj)3x

B(xj,
rj

5d2
)) ≤ µ(B(x,

5d2 + 1

5d
rj)),

∑
B(xj ,rj)3x

µ(B(xj,
rj

5d2
)) ≥ 1

D5d3+d

∑
B(xj ,rj)3x

µ(B(xj,
5d2 + 1

5d
rj))

≥ 1

D5d3+d

∑
B(xj ,rj)3x

µ(B(x,
rj

5d2
))

≥ 1

D2
5d3+d

∑
B(xj ,rj)3x

µ(B(x,
5d2 + 1

5d
rj)).
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Now for rj = R we have

µ(B(x,
5d2 + 1

5d
R)) ≥ 1

D2
5d3+d

∑
B(xj ,rj)3x
rj=R

µ(B(x,
5d2 + 1

5d
R)),

which implies ∑
B(xj ,rj)3x
rj=R

1 ≤ D2
5d3+d.

For rj = 1
2d

dist(xj, X r E) denote ∆(x) = dist(x,X r E). Then

2drj = ∆(xj) ≤ d(∆(x) + %(x, xj)) < d∆(x) + drj ⇒ rj < ∆(x)

and

∆(x) ≤ d(∆(xj) + %(x, xj)) < 2d2rj + drj ≤ 3d2rj ⇒ ∆(x)

3d2
< rj.

Hence, using Lemma 1.1.2, we have

µ(B(x,
5d2 + 1

5d
∆(x))) ≥ µ(B(x,

5d2 + 1

5d
rj))

≥ 1

D2
5d3+d

∑
B(xj ,rj)3x
rj<R

µ(B(x,
5d2 + 1

5d
rj))

≥ 1

D2
5d3+d

∑
B(xj ,rj)3x
rj<R

µ(B(x,
5d2 + 1

15d3
∆(x)))

≥ 1

D2
5d3+dD3d2

∑
B(xj ,rj)3x
rj<R

µ(B(x,
5d2 + 1

5d
∆(x)))

and that implies ∑
B(xj ,rj)3x
rj<R

1 ≤ D2
5d3+dD3d2 .

Thus for every x ∈ E we have∑
B∈V

χB(x) =
∑

B(xj ,rj)3x
rj<R

1 +
∑

B(xj ,rj)3x
rj=R

1 ≤ D2
5d3+d +D2

5d3+dD3d2

and the claim follows with P = D2
5d3+d +D2

5d3+dD3d2 .
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2. Good λ-inequalities in Rn

2.1 Good λ-inequality in Rn

The idea of the good λ-inequality was first introduced in early 1970s in the paper
of D.L. Burkholder and R.F. Gundy [6] as a method for studying operators on
the Lp spaces. The authors developed a technique consisting of relating a pair
of operators by the distribution function on the n-dimensional Euclidean space
Rn with the Lebesgue measure m. The “bad” operator, i.e. the complex one with
unknown properties, was denoted by T and the “good” operator, i.e. the simpler
one, was denoted by M . The inequality obtained by this technique allowed to
transfer some of the properties of M to T . This inequality became later known
as the good λ-inequality and it stated that for every ε > 0 there is γ > 0 such
that

m({x ∈ Rn : |Tf(x)| > 2λ, |Mf(x)| ≤ γλ}) ≤ εm({x ∈ Rn : |Tf(x)| > λ})
for every λ > 0. One of the important consequences of this inequality is the
desired Lp(Rn,m) norm estimate of the operator T in the terms of the operator
M . In other words, the Lp(Rn,m) norm of Tf is bounded whenever the Lp(Rn,m)
norm of Mf is bounded and that enables one to transfer the integrability of M
to T . Often, the method of proof allows one to replace the Lebesgue measure by
a weighted one.

Remark: We can also consider the Muckenhoupt weight classes in the Euclidean
space with the Lebesgue measure. The only difference is that the balls B are
usually replaced by the cubes Q with sides parallel to the axes. This replacement
does not change any properties and in addition sometimes makes the calculation
easier. The Muckenhoupt cube-version weight classes in Rn are further denoted
by A∞(Q), A′∞(Q), Ap(Q), where 1 ≤ p < ∞, and for 1 < p < q < ∞ they
satisfy

A1(Q) ( Ap(Q) ( Aq(Q) ( A′∞(Q) = A∞(Q).

If we assume that the measure on Rn satisfies only the doubling condition, then

A1(Q) ( Ap(Q) ( Aq(Q) ( A′∞(Q) ( A∞(Q).

Indeed, if we first assume that we are on R with the Lebesgue measure. Then
w ∈ Ap(Q) if and only if

w = |x|β , where

{
β ∈ (−1, p− 1), p > 1,

β ∈ (−1, p− 1], p = 1.

Moreover we have
A′∞(Q) =

⋃
1≤p<∞

Ap(Q).

Thus really A1(Q) 6= Ap(Q) 6= Aq(Q) 6= A′∞(Q). For the Euclidean space R with
the doubling measure µ let

dµ(x) =


3
2
dx, 0 ≤ x ≤ 1,

1
2
dx, 1 < x ≤ 2,

1 dx, otherwise,

dν(x) =

{
0 dx, 0 < x < 1,

1 dx, otherwise.
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Then the weight w defined by dν(x) = w(x)dµ(x) satisfies only A∞ condition. For
the more precise argument see Strömberg and Torchinsky [18] and Garćıa-Cuerva
and Rubio de Francia [9].

Due to the generality of the technique for the operators T and M , this kind of
result can be improved for suitable-chosen M and T . First improvement of this
type was introduced by R.R. Coifman and C. Fefferman [7]. They considered Mf
to be the Hardy-Littlewood maximal function

Mf(x) = sup
Q3x

1

m(Q)

∫
Q

|f(y)| dy, (2.1)

where Q denote a cube in Rn with sides parallel to the axes, and Tf as the general
singular integral operator, i.e. such an operator T : f → K ∗ f in Rn, where ∗
denotes the convolution, with the convolution kernel K that satisfies the standard
conditions:

(i) ||K̂||∞ ≤ C,
(ii) |K(x)| ≤ C

|x|n ,

(iii) |K(x)−K(x− y)| ≤ C|y|
|x|n+1 for |y| < |x|

2
,

where x, y ∈ Rn and K̂ denotes the Fourier transform of K. For the maximal
operator

T ∗f(x) = sup
Qx

∣∣∣∣∫
RnrQx

K(x− y)f(y)dy

∣∣∣∣ ,
where the supremum ranges over all cubes Qx centered at x with sides parallel to
the axes, they derived that for every w ∈ A′∞(Q) there is a constant C > 0 such
that

w({x ∈ Rn : T ∗f(x) > 2λ,Mf(x) ≤ γλ}) ≤ Cγδw({x ∈ Rn : T ∗f(x) > λ})

for every λ > 0, every γ > 0 and δ from A′∞(Q) condition. With this so-called
“good λ-inequality” as the heart of the proof they proved

Theorem 2.1.1 Let f be a Lebesgue measurable function on Rn. Suppose that
the weight function w satisfies A′∞(Q) condition, then∫

Rn
|Tf(x)|pw(x)dx ≤ 2p

γp(1− 2pγδ)

∫
Rn
|Mf(x)|pw(x)dx

for every 1 < p < ∞ and γ small enough such that 2pγδ < 1. Moreover, if
w ∈ Ap(Q), then there is a constant C ≥ 1 such that∫

Rn
|Tf(x)|pw(x)dx ≤ 2pCp

γp(1− 2pγδ)

∫
Rn
|f(x)|pw(x)dx

for all f ∈ Lpw(Rn,m).

Taking the p-th root, this can be rewritten as

‖Tf‖p,w ≤
2C

γ(1− 2pγδ)
1
p

‖f‖p,w = C(p, γ) ‖f‖p,w .
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This result has two main disadvantages. The first is that no single γ > 0 works
for all values of p since γ has to satisfy 2pγδ < 1 in order to C(p, γ) > 0. The
other is that due to the relation between p and γ, the expression 2

γ(1−2pγδ)1/p
is of

the order of 2p for p→∞. Thus the operator norm of T ,

‖T‖ = sup
‖f‖p,w≤1

‖Tf‖p,w ≤ sup
‖f‖p,w≤1

C(p, γ) ‖f‖p,w ≤
2C

γ(1− 2pγδ)
1
p

,

is also of the order of 2p. However while operators such a T should have operator
norm of the order of p (see [17]) when p → ∞. Both problems are caused by
the constant 2 in the good λ-inequality. With enough precision this constant can
be lowered to any β > 1, but never to 1, since it would imply boundedness of
the norm of T for large p. Unfortunately the improvement β > 1 does not solve
any of the problems, because the estimate then still yields only the exponential
growth.

2.2 Rearranged good λ-inequality in Rn

Next improvement was introduced by R.J. Bagby and D.S. Kurtz (see [2]). In their
joint work from 1986 they sharpened the good λ-inequality by reformulating it in
the terms of rearrangement rather than the distribution and proved an inequality,
in which the relation between p and γ is needed no more. Unlike Fefferman and
Coifman they worked with the Calderón-Zygmund kernel K, i.e. such a function
K(x), homogeneous of the degree −n, that satisfies the conditions:

(i) |K(x)| ≤ C
|x|n ,

(ii)
∫
{a<|x|<b}K(x)dx = 0, 0 < a < b,

(iii) |K(x)−K(x− y)| ≤ C|y|
|x|n+1 for |x| ≥ 2 |y|

for every x, y ∈ Rn. Then, in order to study the Calderón-Zygmund singular
integral operator

Kf(x) = lim
ε→0

∫
{y∈Rn:|x−y|>ε}

K(x− y)f(y)dy,

they considered the maximal singular integral operator

Tf(x) = sup
ε>0

∣∣∣∣∫
{y∈Rn:|x−y|>ε}

K(x− y)f(y)dy

∣∣∣∣ . (2.2)

In the rest of this section T and M are defined by (2.2) and (2.1) respectively
and for all proofs see [2].

Lemma 2.2.1 Let w ∈ A′∞(Q), then for every 0 < γ < 1 there is a constant
C = C(γ) > 0 such that

(Tf)∗w(t) ≤ C(Mf)∗w(γt) + (Tf)∗w(2t) (2.3)

for every Lebesgue measurable function f on Rn and every t > 0.
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Iterating (2.3), with γ = 1
2
, one can get

Theorem 2.2.2 Let w ∈ A′∞(Q), then there are two constants C1, C2 > 0 such
that

(Tf)∗w(t) ≤ C1(Mf)∗w

(
t

2

)
+ C1

∫ ∞
t

(Mf)∗w(s)
ds

s

and
(Tf)∗∗w (t) ≤ (Tf)∗w(t) + C2(Mf)∗∗w (t)

for every Lebesgue measurable function f on Rn and every t > 0.

A few applications of the previous theorem follow.

Corollary 2.2.3 Let w ∈ A′∞(Q) and let f be a Lebesgue measurable function
on Rn. If (Mf)∗w is finite-valued and Tf is bounded except on a set of finite
w-measure, then Tf is finite almost everywhere.

Corollary 2.2.4 If w ∈ A′∞(Q), then there is a constant C > 0, independent of
f and p, such that(∫

Rn
|Tf(x)|pw(x)dx

) 1
p

≤ Cp

(∫
Rn
|Mf(x)|pw(x)dx

) 1
p

for every Lebesgue measurable function f on Rn and every 1 ≤ p <∞.

Note that in Corollary 2.2.4 the expression Cp yields a linear growth in p
compared to Theorem 2.1.1, where the growth is exponential. Note also that due
to the rearrangement approach it is easy to derive the same result for the Lorentz
spaces Lp,qw (Rn,m).

The following Corollary concerns the space weak-L∞ introduced by Bennett,
DeVore and Sharpley in [3]. This space consists of w-measurable functions f
such that f ∗w is finite for t > 0 and f ∗∗w (t)− f ∗w(t) is a bounded function of t. The
“norm” in the space Weak−L∞ is defined by

‖f‖Weak−L∞ = sup
t>0

(f ∗∗w (t)− f ∗w(t)).

Remark: Function ‖.‖Weak−L∞ is not actually a function norm because it does
not satisfy (BF1). Indeed, if we take f ≡ c, c ∈ R, then also f ∗ = c = f ∗∗ and
‖f‖Weak−L∞ = 0.

Corollary 2.2.5 Let w ∈ A′∞(Q) and suppose that Tf is bounded except on a set
of finite w-measure. If f ∈ L∞w (Rn,m), then Tf is in the space Weak−L∞ and

‖Tf‖Weak−L∞ ≤ C ‖f‖∞,w .

If there is α > 1 such that (Mf)∗∗w (t) ≤ C(log(2
t
))α−1 for every 0 < t ≤ 1, then

there is ε > 0 such that exp(ε(Tf)
1
α ) is w-integrable over sets of finite w-measure.
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Lemma 2.2.6 Let w ∈ A1(Q), then there is a constant C > 0 such that

(Mf)∗w(t) ≤ Cf ∗∗w (t)

for every Lebesgue measurable function f on Rn and every t > 0.

Corollary 2.2.7 Let w ∈ A1(Q), then there is a constant C > 0 such that

(Tf)∗w(t) ≤ Cf ∗∗w (t) + C

∫ ∞
t

f ∗w(s)
ds

s

and

(Tf)∗w(t) ≤ C
1

t

∫ t

0

f ∗∗w (s)ds+ C

∫ ∞
t

f ∗w(s)
ds

s

≤ C
1

t

∫ t

0

f ∗∗w (s)ds+ C

∫ ∞
t

f ∗∗w (s)
ds

s

for every Lebesgue measurable function f on Rn and every t > 0.

2.3 Better good λ-inequality in Rn

A year later D.S. Kurtz introduced in [13] a slightly different approach. His idea
was to eliminate the requirement that allow the good λ-inequality to hold only
for Mf relatively small and replace it with a pointwise estimate between Mf and
Tf . Working with this idea and T and M defined by (2.2) and (2.1) respectively
he obtained

Theorem 2.3.1 Let w ∈ A∞(Q) and let 0 < ε < 1, then there is a constant
C > 0 such that

w({x ∈ Rn : Tf(x) > CMf(x) + λ}) ≤ εw({x ∈ Rn : Tf(x) > λ})

for every Lebesgue measurable function f on Rn and every λ > 0.

Notice that this “better good λ-inequality” immediately implies the classical
one with γ = 1

C
. It is also easy to see that the assertion of Theorem 2.3.1

is equivalent to the assertion of the Lemma 2.2.1 and thus has also the same
applications.
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3. Better good λ-inequality

3.1 Fractional maximal operators

In this section we consider two versions of the fractional maximal operator that
are variants of the Hardy-Littlewood maximal operator suitable for our purpose.

Definition 3.1.1 Let (X, %, µ) be a space of homogeneous type and let E be a
µ-measurable subset of X. Let f be a µ-measurable function on X, then

−
∫
E

f(x)dµ(x) =
1

µ(E)

∫
E

f(x)dµ(x).

Definition 3.1.2 Let (X, %, µ) be a space of homogeneous type, 0 ≤ α < n,
R > 0, x ∈ X and f ∈ L1

loc, then we define the fractional maximal operators

MR
α f(x) = sup

0<r<R
−
∫
B(x,r)

rα |f(y)| dµ(y),

Mαf(x) = sup
B(z,r)3x

1

µ(B(z, r))1−α
n

∫
B(z,r)

|f(y)| dµ(y).

It is easy to see that for every x ∈ X we have

MR
α f(x) ≤ C

−α
n

µ Mαf(x). (3.1)

Lemma 3.1.3 Let (X, %, µ) be a space of homogeneous type and 0 ≤ α < n, then
for the constant D5d2 from Lemma 1.1.2 we have

µ({x ∈ X : Mαf(x) > λ}) ≤ D5d2λ
n

α−n

(∫
X

|f(y)| dµ(y)

) n
n−α

for every f ∈ L1 and λ > 0.

Proof. Fix λ > 0 and f ∈ L1. Denote the set {x ∈ X : Mαf(x) > λ} by Ωλ and
for every x ∈ Ωλ let Bx = B(y, r) be a ball containing x such that

1

µ(Bx)
1−α

n

∫
Bx

|f(y)| dµ(y) > λ. (3.2)

Such a ball has to exist by the definition of Ωλ and Mα. Obviously, the collection
of balls {Bx}x∈Ωλ covers Ωλ and due to the integrability of f we have∫

X

|f(y)| dµ(y) ≤ C

for some C > 0. Now we see that balls Bx, x ∈ Ωλ, with radius greater than

C
−1/n
µ

(
C
λ

)1/(n−α)
cannot exist, because, by applying the lower bound condition,

we would have

1

µ(Bx)
1−α

n

∫
Bx

|f(y)| dµ(y) ≤ C

(Cµrn)1−α
n

<
C

((C
λ

)
n

n−α )
n−α
n

= λ,
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which is the contradiction with (3.2). Therefore Bx, x ∈ Ωλ, have uniformly
bounded diameter. Recalling the separability of X from Lemma 1.1.3 we apply
Lemma 1.3.3 to {Bx}x∈Ωλ to obtain a countable disjoint subcollection {Bxk =
B(yk, rk)}∞k=1 ⊂ {Bx}x∈Ωλ such that

µ(Ωλ) ≤
∞∑
k=1

µ(B(yk, 5d
2rk)). (3.3)

Therefore, combining (3.2), (3.3) and Lemma 1.1.2, we get

µ(Ωλ) ≤
∞∑
k=1

µ(B(yk, 5d
2rk)) ≤ D5d2

∞∑
k=1

µ(B(yk, rk))

≤ D5d2

∞∑
k=1

λ
n

α−n

(∫
Bxk

|f(y)| dµ(y)

) n
n−α

≤ D5d2λ
n

α−n

(
∞∑
k=1

∫
Bxk

|f(y)| dµ(y)

) n
n−α

≤ D5d2λ
n

α−n ‖f‖
n

n−α
L1 .

3.2 Better good λ-inequality

The aim of this section is to prove the better good λ-inequality for the Riesz po-
tential and a few of its corollaries, which create the base for deriving the weighted
Lebesgue and Lorentz norm estimates.

Definition 3.2.1 Let (X, %, µ) be a space of homogeneous type, 0 ≤ α < n,
R > 0, x ∈ X and f ∈ L1

loc, then we define the Riesz potential

IRα f(x) =

∫ R

0

(
−
∫
B(x,t)

f(y)dµ(y)

)
dtα.

The sharp Lorentz-norm estimates for this version of the Riesz potential are
thoroughly studied by Malý and Pick in [15] and a very similar version with a few
results also appear in [14].

Lemma 3.2.2 Let (X, %, µ) be a space of homogeneous type, R > 0, 0 ≤ α < n
and suppose that f, g are µ-measurable functions on X. Then for the constant
D2d from Lemma 1.1.2 we have∫

X

IRα f(x)g(x)dµ(x) ≤ D2d

∫
X

IRα g(y)f(y)dµ(y).

Proof. For y ∈ B(x, r) we have B(y, r) ⊂ B(x, 2dr) and thus, using Lemma 1.1.2,
we have

µ(B(y, r)) ≤ µ(B(x, 2dr)) ≤ D2dµ(B(x, r)).
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Hence∫
X

IRα f(x)g(x)dµ(x) =

∫
X

(∫ R

0

(
−
∫
B(x,t)

f(y)dµ(y)

)
dtα
)
g(x)dµ(x)

=

∫ R

0

(∫
X

(∫
B(x,t)

f(y)g(x)

µ(B(x, t))
dµ(y)

)
dµ(x)

)
dtα

=

∫ R

0

(∫
X

(∫
X

f(y)χ
B(x,t)

(y)g(x)

µ(B(x, t))
dµ(y)

)
dµ(x)

)
dtα

=

∫ R

0

(∫
X

(∫
X

f(y)χ
B(x,t)

(y)g(x)

µ(B(x, t))
dµ(x)

)
dµ(y)

)
dtα

=

∫ R

0

(∫
X

(∫
X

f(y)χ
B(y,t)

(x)g(x)

µ(B(x, t))
dµ(x)

)
dµ(y)

)
dtα

≤ D2d

∫ R

0

(∫
X

f(y)

(∫
X

χ
B(y,t)

(x)g(x)

µ(B(y, t))
dµ(x)

)
dµ(y)

)
dtα

= D2d

∫
X

(∫ R

0

(
−
∫
B(y,t)

g(x)dµ(x)

)
dtα
)
f(y)dµ(y)

= D2d

∫
X

IRα g(y)f(y)dµ(y).

Theorem 3.2.3 (Better good λ-inequality) Let (X, %, µ) be a space of homoge-
neous type, 0 < ε < 1, 0 ≤ α < n, R > 0 and w ∈ A∞. Then there is a constant
C such that for every µ-measurable function f on X we have

w({x ∈ X : IRα f(x) > CMR
α f(x) + C ′λ}) ≤ εw({x ∈ X : IRα f(x) > λ}) (3.4)

for C ′ = max{1, D4d3

(2d2)α
} and every λ > 0.

Proof. Fix λ > 0, µ-measurable function f on X and let C > 0 be a constant
with the exact value to be specified later. Set

G = {x ∈ X : IRα f(x) > λ}, GC = {x ∈ X : IRα f(x) > CMR
α f(x) + C ′λ}.

Obviously G, GC are open. Let z ∈ G and r = min
{

1
2d

dist(z,X r E), R
3

}
, then

B = B(z, r) is a Whitney ball for G bounded by R
3

. At first we show that for
every 0 < ε′ < 1 the constant C can be set such that

µ
(
B ∩GC

)
≤ ε′µ(B). (3.5)

Fix arbitrary z′ ∈ B and set

a =
rα

µ(B(z′, 3d2r))

∫
B(z′,3d2r)

f(y)dµ(y).

Now we define δ = δ(ε,D) ∈ (0, 1) with the exact value to be specified later and
set

E = B ∩
{
x ∈ X : Iδrα f(x) > a

}
.
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Since δ ∈ (0, 1), for y ∈ B(x, r), y′ ∈ B(z′, 3d2r) and x ∈ B(z, r) we have

%(y, z′) ≤ d(%(y, x) + %(x, z′)) ≤ dr + d2(%(x, z) + %(z, z′)) ≤ 3d2r

and
%(y′, z) ≤ d(%(y′, z′) + %(z′, z)) ≤ 3d3r + dr ≤ 4d3r.

Thus B(x, δr) ⊂ B(x, r) ⊂ B(z′, 3d2r) ⊂ B(z, 4d3r) for every x ∈ B(z, r). We
also notice that for y /∈ B(z′, 3d2r), t ∈ (0, δr), the intersection of B(y, t) and
B(z, r) is empty, otherwise there is y′′ ∈ B(y, t) ∩B(z, r) and

%(z′, y) ≤ d(%(z′, z) + %(z, y)) < dr + d2(%(z, y′′) + %(y′′, y)) < 3d2r,

which is the contradiction with y /∈ B(z′, 3d2r). Thus for y /∈ B(z′, 3d2r) we have

Iδrα χB(y) =

∫ δr

0

−
∫
B(y,t)

χ
B

(x)dµ(x)dtα =

∫ δr

0

µ(B(y, t) ∩B(z, r))

µ(B(y, t))
dtα = 0

and for y ∈ B(z′, 3d2r) we have

Iδrα χB(y) =

∫ δr

0

µ(B(y, t) ∩B(z, r))

µ(B(y, t))
dtα ≤ δαrα.

Using Lemma 3.2.2, Lemma 1.1.2 and the definition of E, we get

aµ(E) =

∫
E

adµ(x) <

∫
B

Iδrα f(x)dµ(x)

=

∫
X

Iδrα f(x)χ
B

(x)dµ(x) ≤ D2d

∫
X

Iδrα χB(y)f(y)dµ(y)

≤ D2d

∫
B(z′,3d2r)

δαrαf(y)dµ(y) ≤ D2dδ
αaµ(B(z′, 3d2r))

≤ D2dδ
αaµ(B(z, 4d3r)) ≤ D2dD4d3δ

αaµ(B(z, r)),

which gives us µ(E) ≤ D2dD4d3δ
αµ(B) and thus for δ satisfying D2dD4d3δ

α < ε′

we get

µ(E) ≤ ε′µ(B). (3.6)

To finish the proof of (3.5) we will show that we can set the constant C such that

B ∩GC r E = ∅ and thus µ
(
B ∩GC r E

)
= 0.

Fix x ∈ B∩GCrE and suppose 4r < R
2d2

. Then we decompose IRα f(x) as follows:

IRα f(x) = Iδrα f(x)

+

∫ 4r

δr

−
∫
B(x,t)

f(y)dµ(y)dtα

+

∫ R
2d2

4r

−
∫
B(x,t)

f(y)dµ(y)dtα

+

∫ R

R
2d2

−
∫
B(x,t)

f(y)dµ(y)dtα.
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For the case 4r ≥ R
2d2

we consider the same decomposition only, the second
integral is treated as zero. Now we can easily see that∫ 4r

δr

−
∫
B(x,t)

f(y)dµ(y)dtα ≤MR
α f(x)

∫ 4r

δr

dtα

tα

= MR
α f(x)

∫ (4r)α

(δr)α

ds

s
= αMR

α f(x) log

(
4

δ

)
(3.7)

and analogously ∫ R

R
2d2

−
∫
B(x,t)

f(y)dµ(y)dtα ≤ αMR
α f(x) log(2d2). (3.8)

For the integration from 4r to R
2d2

we observe that for a non-trivial case we
have 4r < R

2d2
and thus, from the definition of the Whitney balls, we can find

z′′ ∈ B(z, 3dr) rG. Due to z′′ /∈ G we obtain

IRα f(z′′) ≤ λ (3.9)

and since t > 4r, we have the following set of inclusions

B(x, t) ⊂ B(z′′, 2d2t) ⊂ B(x, 4d3t). (3.10)

From (3.9) and (3.10) now follows∫ R
2d2

4r

−
∫
B(x,t)

f(y)dµ(y)dtα ≤
∫ R

2d2

4r

1

µ(B(x, t))

∫
B(z′′,2d2t)

f(y)dµ(y)dtα

≤
∫ R

2d2

4r

D4d3

µ(B(x, 4d3t))

∫
B(z′′,2d2t)

f(y)dµ(y)dtα

≤
∫ R

2d2

4r

D4d3−
∫
B(z′′,2d2t)

f(y)dµ(y)dtα

=

∫ R

8d2r

D4d3

(2d2)α
−
∫
B(z′′,t)

f(y)dµ(y)dtα

≤ D4d3

(2d2)α
IRα f(z′′) ≤ C ′λ. (3.11)

To estimate Iδrα f(x) we recall that z′ was chosen arbitrarily. Therefore we can set
z′ = x and since x /∈ E, we get

Iδrα f(x) ≤ a =
rα

µ(B(z′, 3d2r))

∫
B(z′,3d2r)

f(y)dµ(y)

=
rα

µ(B(x, 3d2r))

∫
B(x,3d2r)

f(y)dµ(y)

≤ 1

(3d2)α
MR

α f(x). (3.12)
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From (3.12), (3.7), (3.8) and (3.11) we see that for x ∈ B ∩GC r E we have

IRα f(x) ≤
(

1

(3d2)α
+ log(

4

δ
) + log(2d2)

)
MR

α f(x) + C ′λ.

Thus by setting C = ( 1
(3d2)α

+log(4
δ
)+log(2d2)) and because x ∈ GC we also have

IRα f(x) >

(
1

(3d2)α
+ log(

4

δ
) + log(2d2)

)
MR

α f(x) + C ′λ.

Therefore µ
(
B ∩GC r E

)
= 0 and

µ(B ∩GC) ≤ µ
(
B ∩GC r E

)
+ µ(E) ≤ ε′µ(B),

which proves (3.5). Now for any 0 < ε < 1 and P from Lemma 1.3.5, applying
A∞ condition, we can set ε′ small enough to get

w(B ∩GC) ≤ ε

P
w(B).

Then, using Lemma 1.3.5 and summing over the balls in the Whitney covering
V , we obtain

w(GC) = w(
⋃
B∈V

B ∩GC) ≤
∑
B∈V

w(B ∩GC) ≤
∑
B∈V

ε

P
w(B) ≤ εw(G),

which is the assertion of the theorem.

Because we have chosen the better good λ-inequality approach, we obtain the
rearranged good λ-inequality as an easy consequence.

Corollary 3.2.4 Let (X, %, µ) be a space of homogeneous type, w ∈ A∞, R > 0
and 0 ≤ α < n. Then for 0 < γ < 1 and a µ-measurable function f there is a
constant C > 0 such that

(IRα f)∗w(t) ≤ C(MR
α f)∗w(γt) + C ′(IRα f)∗w(2t) (3.13)

for C ′ = max{1, D4d3

(2d2)α
} and every t > 0.

Proof. Setting λ = (IRα f)∗w(2t) in Theorem 3.2.3 we get

w({x ∈ X : IRα f(x) > CMR
α f(x) + C ′(IRα f)∗w(2t)})

≤ εw({x ∈ X : IRα f(x) > (IRα f)∗w(2t)}). (3.14)

Fix 0 < γ < 1 and set ε = 1−γ
2

. By the definition of f ∗w we have

Df,w(f ∗w(t)) = Df,w(inf{s > 0 : Df,w(s) ≤ t}) ≤ t.

Hence, using (3.14), we obtain

w({x ∈ X : IRα f(x) > C(MR
α f)∗w(γt) + C ′(IRα f)∗w(2t)})

≤ w({x ∈ X : IRα f(x) > CMR
α f(x) + C ′(IRα f)∗w(2t)})

+ w({x ∈ X : MR
α f(x) > C(MR

α f)∗w(γt)})
≤ εw({x ∈ X : IRα f(x) > (IRα f)∗w(2t)}) +DMR

α f,w
((MR

α f)∗w(γt))

≤ εDIRα f,w
((IRα f)∗w(2t)) +DMR

α f,w
((MR

α f)∗w(γt)) ≤ 2εt+ γt = t.
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Thus

DIRα f,w
(C(MR

α f)∗w(γt) + C ′(IRα f)∗w(2t)) ≤ t

and that implies

(IRα f)∗w(t) = inf{λ > 0 : DIRα f,w
(λ) ≤ t} ≤ C(MR

α f)∗w(γt) + C ′(IRα f)∗w(2t).

Next easy consequence of the better good λ-inequality is the good λ-inequality,
which is a bit weaker but on the other hand it is easier to work with.

Corollary 3.2.5 Let (X, %, µ) be a space of homogeneous type and w ∈ A∞. Let

0 < ε < 1, 1 ≤ p ≤ ∞, R > 0 and a > C ′ = max{1, D4d3

(2d2)α
}, 0 ≤ α < n. Then

there is a constant σ = σ(ε,D), where D is the doubling constant, such that

w({x ∈ X : IRα f(x) > aλ,MR
α f(x) ≤ σλ}) ≤ εw({x ∈ X : IRα f(x) > λ}) (3.15)

for every λ > 0 and every µ-measurable function f on X.

Proof. For fixed ε > 0 and a > C ′ we obtain C > 0 from Theorem 3.2.3. By
setting σ = C−1(a− C ′) we have

MR
α f(x) ≤ σλ = C−1(a− C ′)λ ⇒ aλ ≥ CMR

α f(x) + C ′λ (3.16)

for any x ∈ X and thus, using (3.16) and (3.4), we obtain

w({x ∈ X : IRα f(x) > aλ,MR
α f(x) ≤ σλ})

≤ w({x ∈ X : IRα f(x) > CMR
α f(x) + C ′λ,MR

α f(x) ≤ σλ})
≤ w({x ∈ X : IRα f(x) > CMR

α f(x) + C ′λ})
≤ εw({x ∈ X : IRα f(x) > λ}).

Corollary 3.2.6 Let (X, %, µ) be a space of homogeneous type. Let w ∈ A∞,

R > 0 and a > max{1, D4d3

(2d2)α
}, 0 ≤ α < n. Then for every 1 ≤ p <∞ and every

µ-measurable function f on X we have∥∥IRα f∥∥p,w ≤ a

σ(1− apε)1/p

∥∥MR
α f
∥∥
p,w

as long as ε < a−p.

Proof. Let 1 ≤ p <∞, ε < a−p, z ∈ X, m ∈ N and set

fm(x) = χB(z,2m)(x) min{f(x), 2m}.

Then, using (3.15), we have

DIRα fm,w
(aλ)−DMR

α fm,w
(σλ) = w({x ∈ X : IRα fm(x) > aλ})

− w({x ∈ X : MR
α fm(x) > σλ})

≤ w({x ∈ X : IRα fm(x) > aλ,MR
α fm(x) ≤ σλ})

≤ εw({x ∈ X : IRα fm(x) > λ})
= εDIRα fm,w

(λ)
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and thus

DIRα fm,w
(aλ) ≤ εDIRα fm,w

(λ) +DMR
α fm,w

(σλ). (3.17)

Now, using (3.17), Lemma 1.2.7 and several changes of variables, we get∫
X

IRα fm(x)pw(x)dµ(x) = p

∫ ∞
0

λp−1DIRα fm,w
(λ)dλ

= ap

∫ ∞
0

(aλ)p−1DIRα fm,w
(aλ)dλ

≤ ap

∫ ∞
0

(aλ)p−1εDIRα fm,w
(λ)dλ

+ ap

∫ ∞
0

(aλ)p−1DMR
α fm,w

(σλ)dλ

= appε

∫ ∞
0

λp−1DIRα fm,w
(λ)dλ

+ p
ap

σp−1

∫ ∞
0

(σλ)p−1DMR
α fm,w

(σλ)dλ

= apε

∫
X

IRα fm(x)pw(x)dµ(x)

+
(a
σ

)p ∫
X

MR
α fm(x)pw(x)dµ(x).

Since ε < a−p, from the last inequality we derive∫
X

IRα fm(x)pw(x)dµ(x) ≤ ap

σp(1− apε)

∫
X

MR
α fm(x)pw(x)dµ(x).

Then letting m→∞, using Levi’s theorem and taking the p-th roots we obtain∥∥IRα f∥∥p,w ≤ a

σ(1− apε)1/p

∥∥MR
α f
∥∥
p,w

.

Corollary 3.2.7 Let (X, %, µ) be a space of homogeneous type. Let w ∈ A∞,
R > 0 and 0 ≤ α < n. Then for p > 1 there is a constant C > 0 such that∥∥IRα f∥∥p,∞,w ≤ C

∥∥MR
α f
∥∥
p,∞,w

for every µ-measurable function f on X.

Proof. Let p > 1, a > max{1, D4d3

(2d2)α
}, z ∈ X, m ∈ N and set

fm(x) = χB(z,2m)(x) min{f(x), 2m}.
Now, using Corollary 3.2.5, we get

(aλ)pw({x ∈ X : IRα fm(x) ≥ aλ}) ≤ εapλpw({x ∈ X : IRα fm(x) ≥ λ})
+ apλpw({x ∈ X : MR

α fm(x) ≥ σλ})
≤ εap

∥∥IRα fm∥∥pp,∞,w + C
∥∥MR

α fm
∥∥p
p,∞,w

for every λ > 0. Taking the supremum over λ, letting m → ∞ and using Levi’s
theorem we obtain the required inequality whenever ε is chosen such that

εap < 1.
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3.3 Norm estimates

In this section we extend the results of the last two corollaries in the way that
we prove the norm estimates between Mf and f on the weighted Lebesgue and
Lorentz spaces.

First we introduce some notation which will be used in the following two
lemmas and theorem inspired by [1] and [4]. Let B = B(x, r), x ∈ X, r > 0, be a

ball. Let 0 ≤ α < n, A = D15d5 , b = 2A2+1 and k ∈ Z. Then set B̃ = B(x, 5d2r),

B̂ = B(x, 15d5r) and Ωk = {x ∈ X : bk+1 ≥Mαf(x) > bk}. If f is a non-negative
L1 function and E is a µ-measurable set, we denote 1

µ(E)1−α/n

∫
E
|f(y)|dµ(y) by

mEf . Note that if µ(X) < ∞, then mXf ≤ Mαf(x) for all x ∈ X. In this case,
for each f , we denote by k0 the integer such that bk0+1 ≥ mXf > bk0 . Then
clearly Ωk = ∅ for every k < k0.

Lemma 3.3.1 Let (X, %, µ) be a space of homogeneous type and let A, b, k0,
k and Ωk be as above. Then for any non-negative L1 function f with bounded
support and any k ∈ Z such that Ωk 6= ∅ there is a sequence {Bk

i }i∈N of balls
satisfying:

(i) Ωk ⊂
⋃∞
i=1 B̃

k
i .

(ii) Bk
i ∩Bk

j = ∅ if i 6= j.

(iii) If µ(X) =∞, then for every Bk
i there is xki ∈ Bk

i such that if rki is the
radius of Bk

i , r ≥ 5d2rki and xki ∈ B = B(y, r), then

bk+1 ≥Mαf(xki ) ≥ mBki
f > bk ≥ mBf.

(iv) If µ(X) <∞, then (iii) still holds for k > k0, but if k = k0 we only have
one ball Bk0

1 such that Ωk0 ⊂ Bk0
1 = X and

bk0+1 ≥Mαf(xk01 ) ≥ m
B
k0
1
f > bk0

for some xk01 ∈ Bk0
1 .

(v) If x /∈
⋃∞
j=k

⋃∞
i=1 B̃

j
i and Mαf(x) <∞, then Mαf(x) < bk.

Proof. In order to obtain (i)− (iv) we first assume that µ(X) = ∞. If x ∈ Ωk,
then the integrability of f implies that there is a constant C > 0 such that∫
X
f(y)dµ(y) < C. Thus, by the lower bound condition, we can take r > 0 big

enough such that for the ball with radius r, B(x, r), we have mB(x,r)f ≤ bk for
every x ∈ X. Therefore, for fixed k, the sets

Rk(x) = {r > 0 : there is a ball B = B(y, r) 3 x, y ∈ X, such that mBf > bk}

are uniformly bounded. Hence we can choose rx ∈ Rk(x) in such a way that if
r ≥ 5d2rx, then r /∈ Rk(x). Thus there is a point yx ∈ X such that

bk+1 ≥Mαf(x) ≥ mB(yx,rx)f > bk ≥ mB(y,r)f (3.18)

for every ball B(y, r) 3 x whenever r ≥ 5d2rx. Thus for every x ∈ Ωk we have a
ball B(yx, rx) and the collection {B(yx, rx)}x∈Ωk is suitable for applying Lemma
1.3.1. Moreover, the boundedness of the support of f implies that Ωk is also
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bounded and therefore Lemma 1.3.1 can be used to obtain a countable sequence
{Bk

i }∞i=1 ⊂ {B(yx, rx)}x∈Ωk satisfying (i)− (iii). If µ(X) < ∞ and k > k0, it is
easy to see that we can still find rx ∈ Rk(x) and yx ∈ X such that (3.18) holds.
Then, using Lemma 1.3.1 again, we obtain (i), (ii) and the first part of (iv). If
k = k0, we notice that µ(X) < ∞ implies the finiteness of the diameter of X,
otherwise, due to the lower bound condition, we could find a ball B in X with
the radius big enough such that µ(B) > µ(X) and that would be a contradiction.
Thus we are able to choose x ∈ Ωk and r > 0 such that B(x, r) = X. Then with
xk01 = x and rk01 = r we have the last part of (iv). To finish the proof we notice
that (v) follows easily from (i)− (iv).

Now we add some more notation valid for the next lemma and theorem. For
every k ∈ Z, let {Bk

i }i∈N be a collection of balls satisfying (i)− (v) from the
previous lemma. Then set

Ikj = {(l,m) ∈ Z× N : l ≥ k + 2, B̃l
m ∩ B̃k

j 6= ∅},

Akj =
⋃

(l,m)∈Ikj

B̃l
m, Ek

j = B̃k
j r Akj , F k

j = Bk
j r Akj . (3.19)

Lemma 3.3.2 Let (X, %, µ) be a space of homogeneous type. Let A, b, k0, k, Ωk,
Ikj , Akj , Ek

j , F k
j be as above, let f be a non-negative L1 function with bounded

support and for every k ∈ Z, such that Ωk 6= ∅, let {Bk
i }i∈N be a collection of balls

satisfying (i)− (v) from Lemma 3.3.1. Then we have

(i) 2µ(Akj ) ≤ µ(Bk
j ),

(ii) 2µ(Ek
j ) ≥ µ(B̃k

j ), µ(X r
⋃∞
j=1

⋃∞
k=−∞E

k
j ) = 0 and if x ∈ Ek

j and

Mαf(x) <∞, then Mαf(x) ≤ bk+2,

(iii) µ(F k
j ) ≥ µ(B̃kj )

2D5d2
and

∞∑
k=−∞

∞∑
j=1

χFkj (x) ≤ 2

for any x ∈ X.

Proof. In order to get (i), let us first show that if l ≥ k+2,m ∈ N and B̃l
m∩B̃k

j 6= ∅,
then

B̃l
m ⊂ B̂k

j , (3.20)

or even more, that rlm ≤ rkj . To prove it, we suppose that rlm > rkj and show

that it leads to a contradiction. From our assumption we get B̃k
j ⊂ B̂l

m and from

inequalities in Lemma 3.3.1 (iii), (iv) (applying B(y, r) = B̂l
m in (iii) and in the

part of (iv), where k > k0, and setting Bk0
1 = B̃k

j = B̂l
m in the other part) we

have

bk+1 ≥ mB̂lm
f ≥

(
µ(Bl

m)

µ(B̂l
m)

)1−α
n

mBlm
f ≥ 1

A
mBlm

f.
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Now the third inequality in Lemma 3.3.1 (iii) and (iv), applied to the pair (l,m)
and definition of b, gives

bk+1 ≥ 1

A
mBlm

f >
1

A
bl ≥ 1

A
bk+2 ≥

(
2

b− 1

) 1
2

bk+2 ≥ bk+2− 1
2 ,

which is a contradiction.
Now, using again the third inequality in Lemma 3.3.1 (iii) and (iv), we obtain

µ(Akj ) ≤
∑

(l,m)∈Ikj

µ(B̃l
m) ≤ A

∑
(l,m)∈Ikj

µ(Bl
m)

≤ A
∑

(l,m)∈Ikj

(
b−l
∫
Blm

f(x)dµ(x)

) n
n−α

.

Since Bl
m are for fixed l pairwise disjoint over index m and (3.20) holds, we have

µ(Akj ) ≤ A

(
∞∑

l=k+2

b−
nl
n−α

)(∫
B̂kj

f(x)dµ(x)

) n
n−α

≤ A

(
b−

n(k+1)
n−α

(
b

n
n−α − 1

)−1
)
µ(B̂k

j )
(
mB̂kj

f
) n
n−α

≤ A2

(
b−

n(k+1)
n−α

(
b

n
n−α − 1

)−1
)
b

(k+1)n
n−α µ(Bk

j )

≤ A2

b
n

n−α − 1
µ(Bk

j ) ≤ A2

b− 1
µ(Bk

j )

≤ A2

2A2 + 1− 1
µ(Bk

j ) =
µ(Bk

j )

2
.

In order to prove (ii), let x be a point such that Mαf(x) <∞. Then x ∈ Ωk

for some k ∈ Z. By Lemma 3.3.1 (i), x ∈ B̃k
j for some j ∈ N. Assume that

x ∈ Akj , then there exists (l,m) ∈ Ikj such that x ∈ B̃l
m and from Lemma 3.3.1

(iii) and (iv) we obtain

Mαf(x) ≥ mB̃lm
f ≥ A−1mBlm

f > A−1bk+2 > bk+1,

which is a contradiction. Thus x /∈ Akj and the sequence {Ek
j } is a covering

of {x ∈ X : Mαf(x) < ∞}. Moreover, on account of Lemma 3.1.3, we have
µ({x ∈ X : Mαf(x) =∞}) = 0. Thus we also have µ(X r

⋃∞
j=1

⋃∞
k=−∞E

k
j ) = 0.

The inequality 2µ(Ek
j ) ≥ µ(B̃k

j ) now follows easily from 2µ(Akj ) ≤ µ(Bk
j ):

2µ(Ek
j ) ≥ 2µ(B̃k

j )− 2µ(Akj ) ≥ 2µ(B̃k
j )− µ(Bk

j ) ≥ 2µ(B̃k
j )− µ(B̃k

j ) = µ(B̃k
j ).

And the estimate Mαf(x) ≤ bk+2 for x ∈ Ek
j is the consequence of the definition

of the set Ek
j because x ∈ Ek

j implies x /∈ Ωl, l ≥ k + 2.
To prove (iii) we notice that due to Lemma 3.3.1 (ii) we have

∞∑
j=1

χFkj (x) = χ⋃∞
j=1 F

k
j
(x) ≤ χ⋃∞

j=1 E
k
j
(x)
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for any k ∈ Z. By the definition of Ek
j (3.19) it follows that no point of X belongs

to more than two of the sets Ek =
⋃∞
j=1E

k
j . Indeed, if x ∈ Ek, then there is j ∈ Z

such that x ∈ B̃k
j and x /∈ Akj , which implies that x /∈ B̃l

j for l ≥ k + 2 because if

x ∈ B̃l
j, then B̃l

j ∩ B̃k
j 6= ∅ and x ∈ Akj , which is a contradiction. Thus also x /∈ El

for l ≥ k + 2 and x can only belongs to one additional set and that is Ek+1 or
Ek−1. Using this fact we get

∞∑
k=−∞

∞∑
j=1

χFkj (x) ≤
∞∑

k=−∞

χ⋃∞
j=1 E

k
j
(x) ≤ 2.

Again the inequality µ(F k
j ) ≥ µ(B̃k

j )/(2A) follows easily from 2µ(Akj ) ≤ µ(Bk
j ):

µ(F k
j ) ≥ µ(Bk

j )− µ(Akj ) ≥ µ(Bk
j )−

µ(Bk
j )

2
=
µ(Bk

j )

2
≥
µ(B̃k

j )

2D5d2
.

That finishes the proof of (iii) and also the Lemma.

Remark: In Lemma 3.3.2 the items (i) and (ii) are rather auxiliary, the main
result is the uniformly bounded overlapping of the sets F k

j over the both param-
eters.

Theorem 3.3.3 Let (X, %, µ) be a space of homogeneous type, 0 ≤ α < n and

1 < q ≤ p <∞. Let w, v be a pair of weights with w, u = v−
1
q−1 ∈ A′∞. Then

‖Mαf‖p,w ≤ C ‖f‖q,v (3.21)

for all f ∈ Lqv if and only if

w(B)
q
pu(B)q−1

µ(B)(1−α
n

)q
≤ C <∞ (3.22)

for every ball B ⊂ X.

Proof. The inequality (3.22) follows easily from (3.21) by taking f = v−
1
q−1χB for

a fixed ball B.
Now assume that (3.22) holds and let b, Ωk and A be as above. Let f be a

function in Lqv. First, in order to prove (3.21), we suppose that f has bounded
support. Then, from Lemma 3.3.1 (i)− (iv), we have

(Mαf(x))p =
∞∑

k=−∞

(Mαf(x))p χΩk(x) ≤ bp
∞∑

k=−∞

bkpχΩk(x)

≤ bp
∞∑

k=−∞

∞∑
i=1

bkpχB̃ki
(x) ≤ bp

∞∑
k=−∞

∞∑
i=1

(
mBki

f
)p
χB̃ki

(x).

Now, from w ∈ A′∞ and Lemma 1.1.2, we also have

w(B̃k
i ) ≤ C

1
δ

A′∞

(
µ(B̃k

i )

µ(Bk
i )

) 1
δ

w(Bk
i ) ≤ CD

1
δ

5d2w(Bk
i ) ≤ Cw(Bk

i )

33



and analogously, from u ∈ A′∞ and Lemma 3.3.2 (iii), we have

u(B̃k
i ) ≤ C

1
δ

A′∞

(
µ(B̃k

i )

µ(F k
i )

) 1
δ

u(F k
i ) ≤ C(2A)

1
δu(F k

i ).

Using all the three previous inequalities, (3.22), Lemma 3.3.2 (iii) and setting

Muf(x) = sup
B3x

1

u(B)

∫
B

|f(y)|u(y)dµ(y),

we obtain

‖Mαf‖qp,w ≤ C

∞∑
k=−∞

∞∑
i=1

(
mBki

f
)q
w(B̃k

i )
q
p

≤ C
∞∑

k=−∞

∞∑
i=1

(
1

µ(Bk
i )1−α

n

∫
Bki

f(x)dµ(x)

)q

w(Bk
i )

q
p

≤ C

∞∑
k=−∞

∞∑
i=1

w(Bk
i )

q
pu(Bk

i )q−1

µ(Bk
i )(1−α

n
)q

(
1

u(Bk
i )

∫
Bki

f(x)dµ(x)

)q

u(Bk
i )

≤ C
∞∑

k=−∞

∞∑
i=1

(
1

u(Bk
i )

∫
Bki

f(x)u−1(x)u(x)dµ(x)

)q

u(F k
i )

≤ C
∞∑

k=−∞

∞∑
i=1

∫
Fki

(
Mu(fu−1)(y)

)q
u(y)dµ(y)

≤ C
∥∥Mu(fu−1)

∥∥q
q,u
.

The operator Mu is actually the Hardy-Littlewood maximal operator on the space
(X, d, udµ). Hence, from its boundedness on (X, d, udµ) for 1 < q <∞ (see [8]),
we get

‖Mαf‖p,w ≤ C
∥∥Mu(fu−1)

∥∥
q,u
≤ C

∥∥fu−1
∥∥
q,u

= C ‖f‖q,v ,

which is (3.21). When f does not have bounded support, the result follows by
using a density argument.

Remark: For the implication (3.22)⇒ (3.21) in the last theorem is the restrictive
assumption 1 < q ≤ p <∞ not necessary.

Corollary 3.3.4 Let (X, %, µ) be a space of homogeneous type. Let 0 ≤ α < n,

w, v−
1
q−1 ∈ A′∞, 1 < q ≤ p <∞, R > 0 and

w(B)
q
p (u(B))q−1

µ(B)(1−α
n

)q
<∞

for every ball B ∈ X, then there is a constant C > 0 such that∥∥IRα f∥∥p,w ≤ C ‖f‖q,v

for every f ∈ Lqv.
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Proof. Combining Theorem 3.3.3 and Corollary 3.2.6 we have∥∥IRα f∥∥p,w ≤ C
∥∥MR

α f
∥∥
p,w
≤ C ‖Mαf‖p,w ≤ C ‖f‖q,v .

To obtain a similar estimate in the Lorentz space we need to introduce a few
facts.

Definition 3.3.5 Let (X, %, µ) be a space of homogeneous type, 0 ≤ α < n and
let either 1 < p <∞ and 1 ≤ q ≤ ∞ or p = q = 1. Let (w, v) be a pair of
weights. We say that the pair (w, v) is in A(p, q, α), (w, v) ∈ A(p, q, α), if there
is a constant C > 0 such that for any ball B ⊂ X we have

‖χB‖p,q,w
∥∥χBw−1

∥∥
p′,q′,v

≤ Cµ(B)1−α
n ,

where 1 = 1
p

+ 1
p′

and 1 = 1
q

+ 1
q′
. Note that ‖χE‖p,q,w = w(E)

1
p for every E ⊂ X.

For the proof of the following analogy of the Hölder inequality in the Lorentz
space see [11] or [16].

Lemma 3.3.6 Let (X, %, µ) be a space of homogeneous type, let w be a weight
and let 1 ≤ p, p1, p2, q, q1, q2 ≤ ∞ with

1

p
=

1

p1

+
1

p2

and
1

q
=

1

q1

+
1

q2

,

then there is a constant C > 0 such that

‖fg‖p,q,w ≤ C ‖f‖p1,q1,w ‖g‖p2,q2,w
for every f ∈ Lp1,q1,w and g ∈ Lp2,q2,w.

Lemma 3.3.7 Let (X, %, µ) be a space of homogeneous type, let w be a weight,
1 ≤ q ≤ p <∞ and let {Ej}∞j=1 be a collection of µ-measurable sets such that
there is a positive constant C so that

∑∞
j=1 χEj(x) ≤ C for any x ∈ X. Then we

have
∞∑
j=1

∥∥χEjf∥∥pp,q,w ≤ C ‖f‖pp,q,w .

Proof. Let r = p
q
≥ 1 and let ‖.‖lr be the classical norm of the sequence space.

Then (
∞∑
j=1

∥∥χEjf∥∥pp,q,w
) q

p

=

∥∥∥∥q ∫ ∞
0

(DfχEj ,w
(s))

1
r sq−1ds

∥∥∥∥
lr

≤ q

∫ ∞
0

∥∥∥(DfχEj ,w
(s))

1
r

∥∥∥
lr
sq−1ds

= q

∫ ∞
0

(
∞∑
j=1

DfχEj ,w
(s)

) 1
r

sq−1ds

≤ q

∫ ∞
0

(C(Df,w(s)))
q
p sq−1ds = C

q
p ‖f‖qp,q,w .
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Lemma 3.3.8 Let (X, %, µ) be a space of homogeneous type, 1 ≤ q ≤ p < ∞,
0 ≤ α < n, (w, v) ∈ A(p, q, w) and w ∈ A′∞, then there is a constant C > 0 such
that

‖Mαf‖p,∞,w ≤ C ‖f‖p,q,v
for every f ∈ Lp,qv .

Proof. Let R > 0 and Ωλ = {x ∈ X : Mα,Rf(x) > λ}, where

Mα,Rf(x) = sup
B(z,r)3x
r≤R

1

µ(B(z, r))1−α
n

∫
B(z,r)

|f(y)| dµ(y).

For every x ∈ Ωλ choose a ball Bx such that x ∈ Bx, radius of Bx is less than or
equal to R and

1

µ(Bx)
1−α

n

∫
Bx

|f(y)| dµ(y) > λ.

Since Ωλ ⊂
⋃
x∈Ωλ

Bx and Lemma 1.1.3 ensures the separability of X, we apply
Lemma 1.3.3 to obtain a countable sequence of disjoint balls {Bxi = B(xi, ri)}i∈N
such that

Ωλ ⊂
⋃
i∈N

B(xi, 5d
2ri) and

1

µ(Bxi)
1−α

n

∫
Bxi

|f(y)| dµ(y) > λ, i ∈ N.

Since (w, v) ∈ A(p, q, α) and w ∈ A′∞, we apply Lemma 1.1.2 and Lemma 3.3.6
to obtain

w(Ωλ) ≤
∑
i∈N

w(B(xi, 5d
2ri))

≤
∑
i∈N

w(Bxi)
1

CA′∞

(
µ(B(xi, 5d

2ri))

µ(Bxi)

) 1
δ

≤ C
∑
i∈N

w(Bxi)

≤ C

λp

∑
i∈N

w(Bxi)

(
1

µ(Bxi)
1−α

n

∫
Bxi

|f(y)|w(y)−1w(y)dµ(y)

)p

≤ C

λp

∑
i∈N

∥∥χBxi∥∥pp,q,w µ(Bxi)
−p(1−α

n
)
∥∥χBxif∥∥pp,q,v ∥∥χBxiw−1

∥∥p
p′,q′,v

≤ C

λp

∑
i∈N

∥∥χBxif∥∥pp,q,v .
Since the balls Bxi are disjoint, by Lemma 3.3.7, we have

w(Ωλ) ≤
C

λp
‖f‖pp,q,v ⇒ λ(DMα,Rf,w(λ))

1
p ≤ C ‖f‖p,q,v .

Now, taking the supremum over λ and letting R tend to infinity we obtain the
assertion of the Lemma.

Theorem 3.3.9 Let (X, %, µ) be a space of homogeneous type, 1 ≤ q ≤ p < ∞,
p > 1, 0 ≤ α < n, (w, v) ∈ A(p, q, w) and w ∈ A′∞, then there is a constant
C > 0 such that ∥∥IRα f∥∥p,∞,w ≤ C ‖f‖p,q,v
for every f ∈ Lp,qv .
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Proof. Combining Corollary 3.2.7 and Lemma 3.3.8 we have∥∥IRα f∥∥p,∞,w ≤ C
∥∥MR

α f
∥∥
p,∞,w ≤ C ‖Mαf‖p,∞,w ≤ C ‖f‖p,q,v .

Remark: Unlike the case with the singular integral operator in Rn, we are not
able to derive results in the spirit of Theorem 2.2.2 and following Corollaries 2.2.3,
2.2.4, 2.2.5 and 2.2.7 because the constant C ′ = max{1, D4d3

(2d2)α
} in our quasi-metric

rearranged good λ-inequality is in general greater than one, which does not allow
us to run the iteration process of (3.13).
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