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Introduction

Testing randomness of a given univariate time series usually stands at the beginning of any further
in-depth analysis and helps to answer several important questions such as the economic hypotheses
of the life cycle-permanent income (see [Hall, 1978]), market efficiency (see [Kantor, 1979]) or
rational expectations (see [Fama, 1970] or [Fama, 1991]). That is why this topic still attracts
attention of many researchers and why a large number of testing procedures have already been
developed for this purpose, see [Kuan, 2003] for a selective introductory overview.

Uncomplicated portmanteau tests (see [Arranz, 2005]) play a dominant role among them,
especially in practical applications. They have also been used for testing seasonality (by con-
sidering only proper autocorrelations) or goodness-of-fit (see [McLeod and Li, 1983]), for statis-
tical process control (see [Atienza et al., 2002]) and for inference in time series of counts (see
[Jung and Tremayne, 2003]), among others.

Roughly speaking, such tests are usually somehow related to the popular one introduced in
[Box and Pierce, 1970] and they only concentrate on the dependence among the observations not
too distant in time, at least by the definition considered here. As practitioners strongly prefer
versatile, simple, quick, and easy to implement diagnostic tools, we further consider only those
portmanteau tests based on autocorrelation-like coefficients, computed in time domain and not
requiring any simulations. We review them extensively in Chapter 1.

Then we focus attention on the portmanteau tests based on ranks due to their wide range of
possible applications even in the frequent cases of some data distortion or distributional uncer-
tainty.

In Chapter 2, we summarize some common features of most Monte Carlo experiments con-
ducted in this work, including the null hypothesis, alternatives, software and realization details.

In Chapter 3, we introduce weighted serial modifications of the well known sign and turning
point test statistics to any positive lag, explore their asymptotic properties as well as finite sample
moment characteristics, show their benefits and use them successfully for portmanteau testing
against some common alternatives. We also propose their orthonormal versions and illustrate
their advantages in the case of shorter time series and also in Chapter 4 where we employ them in
a newly developed methodology for assessing random number generators (RNGs). We then test
the new evaluating approach in a large Monte Carlo study involving five popular RNGs.

In Chapter 5, we extend the theory regarding Kendall’s rank autocorrelations by computing
their exact variances at higher lags. This allows us to use these coefficients in correctly sized
portmanteau tests whose application is also discussed and illustrated by Monte Carlo experiments.

The Kendall autocorrelations are computationally quite demanding when calculated from
longer time series. This is one of the reasons why we introduce their simpler weighted versions
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in Chapter 6. Besides, we also find their exact means and variances, establish their joint asymp-
totic normality and search for some good weighting functions and trimming rules by means of
simulations.

Next we deal with certain (signed-)rank autocorrelations of scores in Chapter 7. Especially, we
discuss their joint asymptotic normality and find simple exact formulae for their means, variances
and covariances. Besides, we also discover and analyse their surprisingly good performance in
testing against conditional heteroscedasticity, not reported yet to the best of our knowledge.

Then we proceed with some recommendations on how to construct powerful portmanteau tests.
In Chapter 8, we criticise every portmanteau statistic based on a (possibly weighted) sum of

some common serial correlation coefficients and show both theoretically and empirically that its
finite sample and asymptotic distribution may differ significantly even if quite long time series are
examined.

In Chapter 9, we suggest a unifying view of portmanteau testing, introduce original portman-
teau statistics in the new spirit and show their dominance over the most widespread benchmark
in many important cases.

We proceed in the same way even in Chapter 10 where we establish joint asymptotic indepen-
dence of various types of rank autocorrelation coefficients and solve the problem on how to combine
them optimally in a single portmanteau statistic. This combining is then shown advantageous for
testing against trend alternatives in a Monte Carlo study.

Finally, we summarize some interesting results achieved, discuss their possible applications,
suggest further extensions to our work and produce several related problems to be solved.

It remains to note that virtually all the results are derived under a null hypothesis. The only
exception can be found in Chapter 4 and lies in providing some asymptotic relative efficiency
details regarding contiguous ARMA and trend alternatives.

The accompanying CD contains an electronic hypertext copy of this publication and the direc-
tories corresponding to each chapter where all the outputs and auxiliary computations are placed
to help the reader with prospective checking of all the information provided, see readme.rtf therein
for more comments.

There is a great deal of programming and computer work hidden behind these pages. Even most
theoretical derivations are performed or at least verified with the aid of a software tool (concretely
Maple 8.00), which is not surprising, for the computer algebra systems like this are known to be
very beneficial in the context of nonparametric statistics, see e.g. [Dufour and Roy, 1986] and in
particular [van de Wiel et al., 1999].

We hope that this work will be found useful and that it will help the others to improve their
portmanteau testing skills.



Chapter 1

Portmanteau Tests Under Review

First of all, we explain our notation and terminology used throughout this work.

1.1 Notation

Let R1, R2, R3, . . . and R+
1 , R+

2 , R+
3 , . . . be the ranks respectively associated with a given time

series Y1, Y2, . . . , YT and its absolute values |Y1|, |Y2|, . . . , |YT |. We use the natural convention
R

(+)
k = R

(+)
((k−1) mod T )+1 for k = T + 1, T + 2, . . .

Independent and identically distributed random variables will be called white noise. They
figure in most of the null hypotheses considered:

HN
0 : Yt’s are independent and identically distributed gaussian random variables

HW
0 : Yt’s are independent and identically distributed random variables with finite variance

H0: Yt’s are independent and identically distributed continuous random variables
HS

0 : Yt’s are independent and identically distributed symmetric continuous random variables
HE

0 : Yt’s are exchangeable random variables with a continuous distribution
As a rule, HS

0 occurs mainly in Chapter 7, HE
0 or H0 are generally assumed for rank tests and

HN
0 or HW

0 are usually supposed to hold for parametric tests. Apparently, HE
0 ⊃ H0 ⊃ HS

0 ⊃ HN
0 .

We point out that the distribution of any rank-based statistic is the same under both H0 and HE
0 .

We sometimes write E0, var0 or cov0 to highlight the fact that the means, variances or covari-
ances are computed under a prespecified null hypothesis.

Portmanteau tests do not require their alternatives to be specified concretely and they are thus
ordinarily assumed very general.

Cumulative and quantile distribution functions will be denoted by F∗ and F−1
∗ with the sub-

script ∗ clearly indicating the associated distribution. Besides, FN(0,1) and its density will be
sometimes symbolised by Φ and ϕ as usual.

Let us also recall the widespread definitions of sample ordinary and partial autocorrelations
r̂(k)’s and p̂(k)’s at lag k < T , very useful in the context of portmanteau tests:

r̂(k) =
∑T−k

i=1 (Yi − Ȳ )(Yi+k − Ȳ )∑T
i=1(Yi − Ȳ )2

, Ȳ =
1
T

T∑
i=1

Yi,

5



CHAPTER 1. PORTMANTEAU TESTS UNDER REVIEW 6

p̂(k) =
|R̂∗(k)|
|R̂(k)|

,

where R̂(k) = (r̂(i − j))k
i,j=1 stands for the sample correlation matrix of the random vector

(Y1, . . . , Yk)′ and R̂∗(k) differs from R̂(k) only in the last column that is replaced by the vec-
tor of the first k sample autocorrelations

r̂k =
(
r̂(1), r̂(2), . . . , r̂(k)

)′
.

And lastly, we refer to [Pollock et al., 1999] where accurate calculation, consistency and as-
ymptotic moments of the sample ordinary autocorrelations are discussed, among others. We know
at present that

√
T r̂k is asymptotically standard normal not only under HN

0 , but also under HW
0

(see [Dufour and Roy, 1986]) which still guarantees that the function mapping r̂k to

p̂k =
(
p̂(1), . . . , p̂(k)

)′
is continuous. As

√
T p̂k is asymptotically standard normal under HN

0 (see e.g. [Monti, 1994]),
it keeps the same asymptotic distribution under HW

0 as well. Although we further report the
original assumptions given to ensure the asymptotic distributions of the portmanteau statistics
(often primarily intended for goodness-of-fit testing), it follows that their asymptotic properties
usually remain unchanged even under HW

0 .

1.2 A Brief Excursion to the Universe of Portmanteau Tests

We start in the early seventies of the last century when [Box and Pierce, 1970] proposed the
portmanteau statistics

Q1 = T

m∑
k=1

r̂2(k),

Q2 = T (T + 2)
m∑

k=1

r̂2(k)
T − k

with the so called portmanteau (= threshold) parameter m selected conveniently in advance, and
proved their χ2(m) asymptotic distribution under HN

0 . That is to say that the sample ordinary
autocorrelations are then asymptotically standard normal with

E0

(
r̂(k)

) .= 0 and var0
(
r̂(k)

) .=
T − k

T (T + 2)
.=

1
T

.

It is well known (under HN
0 and for T large enough) that the true distribution of Q1 is always

shifted to the left of the asymptotic one, while that of Q2 is almost centered but with a slightly
heavier right tail than χ2(m) for m > 2. Therefore the actual significance level for Q1 is likely to
be smaller (and for Q2 larger) than expected. Besides, this discrepancy increases with m in both
cases. See [Battaglia, 1990].

Many fruitful ideas on how to modify or further improve these statistics have appeared since
then. The most interesting are briefly outlined below.
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1.2.1 Idea 1: to transform or rearrange data before testing

Portmanteau tests can alternatively be applied to transformed or rearranged observations, which
can sometimes lead to a substantial power increase. For example, absolute values or their pow-
ers are usually successfully employed this way for testing against time series with time varying
higher order moments (see e.g. [Rodŕıguez and Ruiz, 2005] and references therein), and [Lai, 2001]
showed that portmanteau tests of HN

0 against some noisy low dimensional chaos alternatives are
much more powerful if applied unchanged to rearranged data Y (1), . . . , Y (T−1), where Y (k) = Yi if
Yi−1 is the kth lowest observation (i = 2, . . . , T , k = 1, . . . , T − 1).

In general, the choice of a suitable transform may be a delicate problem. However, both
the link between ordinary autocorrelations of a generalised linear process and of its squares from
[Palma and Zevallos, 2004] and the connection between autocovariance functions of two transforms
of a time series established in [Abadir and Talmain, 2005] could provide some guidance in this
respect.

It should perhaps be mentioned as well that suitably transformed data may meet all required
moment (or other) conditions while the original data need not.

1.2.2 Idea 2: to stabilize variances of sample autocorrelations

Portmanteau tests (or at least their size) can be improved by using sample autocorrelations mod-
ified with a variance stabilizing transformation. [Kwan and Sim, 1996a, Kwan and Sim, 1996b]
follow this idea, use Fisher’s (∼ z1), Jenkins’ (∼ z4) and both Hotelling’s (∼ z2 and z3)
transformations of r̂(k)’s:

z1k =
1
2

ln
(1 + r̂(k)

1− r̂(k)

) {
E0(z1k)

.= 0, var0(z1k)
.=

1
T − k − 3

}
,

z2k = z1k −
(
3z1k + r̂(k)

)
4(T − k)

{
E0(z2k)

.= 0, var0(z2k)
.=

1
T − k − 1

}
,

z3k = z2k −
23z1k + 33r̂(k)− 5r̂3(k)

96(T − k)2
{

E0(z3k)
.= 0, var0(z3k)

.=
1

T − k − 1

}
,

z4k = sin−1
(
r̂(k)

) {
E0(z4k)

.= 0, var0(z4k)
.=

T − k − 1
(T − k)2

}
,

and show both their asymptotic normality and asymptotic independence under HN
0 . The port-

manteau statistics

Q2+i =
m∑

k=1

z2
ik

var0(zik)
, i = 1, 2, 3, 4,

are then asymptotically χ2(m) distributed. However, the more accurate χ2
(
E(Q2+i)

)
approximate

distribution is suggested for their application in practice. For example, if m is small relative to
the time series length T , then

E0(Q3)
.= E0(Q4)

.= E0(Q5)
.= m− m(m + 4)

T
, and E0(Q6)

.= m− m(m + 1)
T

.

Q3 to Q6 control test size with increasing m slightly better than Q2 or Q1. On the other hand,
they are usually less powerful than Q2. See also [Lai, 2001] and [Kwan et al., 2005], among others.
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Virtually the same approach can hypothetically be applied even to other measures of ser-
ial dependence. For example, the case of rank autocorrelations and Fisher’s variance-stabilizing
transformation is addressed in [Kwan et al., 2004].

1.2.3 Idea 3: to employ alternative measures of dependence

In principle, portmanteau tests can be based on other than ordinary autocorrelations. For example,
[Baragona and Battaglia, 2000] and [Gallagher, 2001] suggested to use sample inverse autocorre-
lations and sample covariations, respectively. But the portmanteau statistics based on the former
coefficients are quite complicated to handle and those using the covariations do not lead to any
significant improvement in the case of finite variance data, and therefore we do not discuss any of
them in detail here.

On the other hand, sample partial autocorrelations are far more popular and their asymptotics
is clarified much better. [Anderson, 1993] derived both asymptotic normality and asymptotic
independence of p̂(k)’s, k � T , under HN

0 :
√

T
(
p̂(k) +

(1 + δ)
T

)
∼asympt. N(0, 1)

where δ = 0 for k odd and δ = 1 if k is an even number. At the same time, [Monti, 1994] proposed
the test statistic Q7:

Q7 = T (T + 2)
m∑

k=1

p̂2(k)
T − k

and proved its χ2(m) asymptotic distribution under HN
0 . Finally, [Kwan, 2003] considered its

finite sample modification

Q8 = T 2
m∑

k=1

(
p̂(k) + δ/T + (k/δ − δ)/T 2

)2
T − k − 2

based on Anderson’s more accurate approximations to E0

(
p̂(k)

)
and var0

(
p̂(k)

)
, see references

given ibidem.
Simulation experiments indicate that Q8 is better than Q7 as for the test size. However, Q8

does not appear, on average, more efficient than Q2 although it may be sometimes significantly
more powerful, see also [Kwan and Wu, 1997] or [Peña and Rodŕıguez, 2002].

Rank measures of serial dependence and their use in portmanteau tests are discussed in another
subsection.

1.2.4 Idea 4: to standardize the autocorrelations or statistics properly

The finite sample behaviour of portmanteau statistics could possibly be improved if the sam-
ple autocorrelations or the whole statistics were standardized conveniently, for example by their
(almost) exact means and variances. This is the reason why [Ljung and Box, 1978] advocated
Q2 against Q1 and why both [Li and McLeod, 1981] and [Kheoh and McLeod, 1992] argued for
another revised statistic Q9:

Q9 = T

m∑
k=1

r̂2(k) +
m(m + 1)

2T
.
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However, there is hardly any reason for employing Q9 instead of Q2, at least according to the
Monte Carlo studies performed ibidem.

[Dufour and Roy, 1985], [Dufour and Roy, 1986] derived the exact means, variances and co-
variances of sample ordinary autocorrelations under HN

0 (1 ≤ k < h < T/2, T > 3):

E0

(
r̂(k)

)
= − (T − k)

T (T − 1)
,

var0
(
r̂(k)

)
=

T 4 − (k + 3)T 3 + 3kT 2 + 2k(k + 1)T − 4k2

(T + 1)T 2(T − 1)2
,

cov0

(
r̂(k), r̂(h)

)
=

2
[
kh(T − 1)− (T − h)(T 2 − k)

]
(T + 1)T 2(T − 1)2

,

and used them for building portmanteau statistics:

Q10 =
(
r̂m − E0(r̂m)

)′(var0(r̂m)
)−1(r̂m − E0(r̂m)

)
,

Q11 =
m∑

k=1

(
r̂(k)− E0r̂(k)

)2
var0

(
r̂(k)

) ,

asymptotically χ2(m) distributed under the null hypothesis. Empirical studies show that Q10 and
Q11 behave similarly and slightly better than Q2 as for the test size, and that Q11 usually outdoes
Q2 a little in terms of power. See also [Kwan et al., 2005], [Lai, 2001], [Kwan and Sim, 1996a],
and [Kwan and Sim, 1988].

Other attempts in this spirit include using beta approximations for sample autocorrelations
with lower T ’s (see e.g. [Hallin and Mélard, 1988] and references given there) or rewriting r̂(k)’s
as ratios of quadratic forms and employing the corresponding approximation theory, see e.g.
[Ayadi and Mélard, 2004] and also references given there for yet other approaches.

Besides, [Dufour and Roy, 1985], [Dufour and Roy, 1986] also found quite accurate bounds for
var
(
r̂(k)

)
’s and cov

(
r̂(k), r̂(h)

)
’s, valid for any continuous white noise (1 ≤ k < h < T/2, T > 3):

var0
(
r̂(k)

)
≤ T 3 − (k + 5)T 2 + (5k + 6)T + 2k(k − 4)

T (T − 1)2(T − 3)
,

cov0

(
r̂(k), r̂(h)

)
≤ (T − h)(T + k)− 2kh

T (T − 1)(T − 2)(T − 3)
− E0

(
r̂(k)

)
E0

(
r̂(h)

)
=

2(k + 2)
T 3

+ O(T−4),

cov0

(
r̂(k), r̂(h)

)
≥ −(T − h)(T + k)− 2kh

T 2(T − 1)(T − 3)
− E0

(
r̂(k)

)
E0

(
r̂(h)

)
= −2(T − h + 3)

T 3
+ O(T−4),

the upper and lower bounds are interchanged for (T − h)(T + k) − 2kh < 0. They allow us to
construct conservative portmanteau tests, see ibidem.

These results are further extended by [Dufour et al., 2006] who propose several ways on how
to bound the distribution of r̂(k)’s computed from some observations that are symmetric about
known medians (but possibly not identically distributed, discontinuous or arbitrarily heavy-tailed).

1.2.5 Idea 5: not to ignore covariances between sample autocorrelations

Considering the pattern among sample autocorrelations could possibly lead to further improve-
ments.
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[Rodŕıguez and Ruiz, 2005] propose a solution essentially different from Q10. They suggest to
use the portmanteau statistics

Q12(i) = T

m−i∑
k=1

( i∑
j=0

r̂(k + j)
)2

, i = 0, 1, 2, . . . ,m− 1,

and to approximate them under any white noise with the finite fourth order moments as follows:

Q12(i)
a

∼asympt. χ2(b)

where

a =
v

u
, b =

u2

v
, u = (i + 1)(m− i), v = (m− 2i)(i + 1)2 + 2

i∑
j=1

j2
(
m− 1 + i− 3(j − 1)

)
.

Besides, the authors also give complicated formulae for the parameters β, µ and σ that can be
used to approximate Q12(i) with a normal distribution:

1
σ

(
Qβ

12(i)− µ
)
∼ N(0, 1),

and tabularize their values for some common choices of i and m.
Monte Carlo experiments reveal that both these approximations behave similarly if m > 10

and T is sufficiently large. Besides, it appears that i
.= [m3 ]− 1 often proves best and that Q12(i)

with optimum i can provide more satisfactory results than Q1 or Q14 when applied to the absolute
values of some time series with highly persistent volatility.

1.2.6 Idea 6: to assign higher weights to lower lags

It also seems very fruitful to assign higher weights to the autocorrelations that are expected
the most significant under the alternatives. This idea dates back to [Knoke, 1977] and has been
applied several times since then, see e.g. [Hong, 1996] or [Hong and Shehadeh, 1999] and references
therein. Such a representative portmanteau statistic is

Q13 = T

m∑
k=1

wkr̂
2(k)

where wk ≥ 0, k = 1, . . . ,m, are some suitable weights, for example those derived from the Bartlett
kernel:

wk = 1− k − 1
m

, k = 1, . . . ,m.

The threshold parameter m can be selected wisely in advance or perhaps determined by a conve-
nient data-driven procedure, see e.g. [Hong, 1996].

Both the asymptotic distribution of Q13 under HW
0 and its upper quantiles can be approxi-

mated using the theory developed for quadratic forms in normal variables, see e.g. [Imhof, 1961],
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[Solomon and Stephens, 1977] or [Kuonen, 1999]. For example, if we assume at least one positive
weight and define

µi =
m∑

k=1

wi
k, i = 1, 2, 3, . . .

then two such simple (two-moment and three-moment) approximations are as follows:

Q13

a
∼asympt. χ2(b) and (Q13 − µ1)

√
h

µ2
+ h ∼asympt. χ2(h)

where

a =
µ2

µ1
, b =

µ2
1

µ2
, and h =

µ3
2

µ2
3

.

Alternatively, one could possibly use a normalizing root transformation, preferably that from
[Chen and Deo, 2004] which gives (for all positive wk’s):

Qβ
13 − µβ

1 − β(β − 1)µβ−2
1 µ2

βµβ−1
1

√
2µ2

∼asympt. N(0, 1) where β = 1− 2µ1µ3

3µ2
2

.

Comparative Monte Carlo studies show that Q13 with the Bartlett weights clearly outperforms
Q1 and Q2 in many respects, at least in a series of common situations considered.

[Peña and Rodŕıguez, 2002, Peña and Rodŕıguez, 2006] proposed two other portmanteau sta-
tistics interpretable in the same spirit:

Q14 = T
(
1− |R̂(m + 1)|

1
m
)
,

Q15 = − T

m + 1
log
(
|R̂(m + 1)|

)
,

based on the determinant of the sample autocorrelation matrix R̂(m + 1) = (r̂(i− j))m+1
i,j=1 where

r̂(k)’s can be possibly replaced with r̂a(k)’s:

r̂a(k) =

√
(T + 2)
(T − k)

r̂(k), k = 1, . . . ,m.

Besides, [Mokkadem, 1997] (see also [Dette and Spreckelsen, 2000]) introduced an unweighted
portmanteau statistic based on −

∑m
k=1 log

(
1− p̂2(k)

)
that is closely related to Q15 because

|R̂(m + 1)| =
m∏

k=1

(
1− p̂2(k)

)m+1−k
,

see e.g. [Peña and Rodŕıguez, 2002].
In fact, the distributions of Q14 and Q15 were approximated under HN

0 the same way as Q13

with wk = (m− k + 1)/m and wk = (m− k + 1)/(m + 1), respectively:

Q14 : µ1 = m+1
2 , µ2 = (m+1)(2m+1)

6m , µ3 = (m+1)2

4m , h = 2(2m+1)3

27m(m+1) , β = m2+m+1
(2m+1)2

→ 1
4 ,

Q15 : µ1 = m
2 , µ2 = m(2m+1)

6(m+1) , µ3 = m2

4(m+1) , h = 2(2m+1)3

27m(m+1) , β = m2+m+1
(2m+1)2

→ 1
4 .
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The authors considered both the power transformation and the two-moment one. Both of them
are said to produce comparable results in practice. It also appears that Q14 often equals or even
outperforms both Q2 and Q7 and that Q15 usually beats Q14 and some versions of Q13. Besides,
Q15 seems less sensitive to the values of m than Q2 or Q7. The same holds for Q13 and Q14 to
a certain extent, too.

Some portmanteau statistics of the form of weighted sums are also discussed in the next
subsection.

1.2.7 Idea 7: to consider the signs of sample autocorrelations

The well-known statistics Q1, Q2 and Q7 completely ignore the information present in the auto-
correlation signs. That is why [Levich and Rizzo, 1998] proposed the test statistics

Q16 =
√

T

m∑
k=1

r̂(k),

Q17 =
√

T

m∑
k=1

π̂(k),

based on the sum of the first few sample ordinary or partial autocorrelation coefficients. They
were approximated by their N(0,m) asymptotic distribution under the null hypothesis and shown
advantageous in the presence of small (but persistent) autocorrelations of a specific sign (and for
large T ’s only).

A few other (possibly weighted) sum-based portmanteau statistics appear in the literature
([Hong, 1997], [Hallin et al., 1985], . . . ); see also [Richardson and Smith, 1994] and [Daniel, 2001]
for unifying approaches to such statistics and for their power investigation.

1.2.8 Idea 8: to allow for outliers or infinite variance

Robust autocorrelation estimators (see e.g. [Bustos and Yohai, 1986] and [Chan and Wei, 1992])
can be found useful in the presence of outliers and they have already been employed successfully
in portmanteau tests indeed, see e.g. [Li, 1988], [Chan, 1994] and [Duchesne, 2004]. Besides, they
can likewise be used even for robust goodness-of-fit portmanteau testing of estimated residuals,
see also [Jiang et al., 2001] and [Allende et al., 2004]. However, all these estimators usually lead
to the tests with lower power in comparison to their non-robust counterparts, which is undesirable
especially if the data are not contaminated with any outlier.

In principle, if some observations are clearly identifiable as outliers, they can be treated as miss-
ing values and used in some portmanteau tests allowing for them (see [Stoffer and Toloi, 1992]).

[Runde, 1997] proposed an impractical modification of Q1, usable (only) for infinite variance
observations. [Gallagher, 2001] used the so called autocovariations in the portmanteau tests as-
suming only a finite mean. However, their application to finite variance time series do not result
in any significant improvement in comparison with the tests based on Q1 or Q2.

Alternatively, some rank measures of autocorrelation can be employed. This approach seems
very promising because it usually works well even in the case of some distribution uncertainty or
severe data distortion (caused e.g. by outliers).
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The Spearman sample rank autocorrelations r̂S(k)’s:

r̂S(k) =
∑T−k

i=1 (Ri − R̄)(Ri+k − R̄)∑T
i=1(Ri − R̄)2

, R̄ =
1
T

T∑
i=1

Ri, k = 1, . . . , T − 1,

(where R̄ and
∑T

i=1(Ri − R̄)2 are only deterministic functions of T ) are probably most fre-
quently employed in this context. They were discussed in detail in [Dufour and Roy, 1985] and
[Dufour and Roy, 1986] where their exact means, variances and covariances under HE

0 were derived
(1 ≤ k < h < T/2):

E0

(
r̂S(k)

)
= − (T − k)

T (T − 1)
,

var0
(
r̂S(k)

)
=

5T 4 − (5k + 9)T 3 + 9(k − 2)T 2 + 2k(5k + 8)T + 16k2

5(T − 1)2T 2(T + 1)
,

cov0

(
r̂S(k), r̂S(h)

)
= −2[5T 3 − (5h− 6)T 2 − (5hk − k + 6h)T − 8hk]

5(T − 1)2T 2(T + 1)
,

useful for defining the standardized versions r̃S(k)’s of r̂S(k)’s:

r̃S(k) =
r̂S(k)− E0

(
r̂S(k)

)√
var0

(
r̂S(k)

) .

The asymptotic multivariate standard normal distribution of
(
r̃S(1), . . . , r̃S(m)

)′ under HE
0 was

proved ibidem.
Spearman’s rank autocorrelations have already been employed in portmanteau statistics similar

to Q2 (see e.g. [Dufour and Roy, 1986], [Wong and Li, 1995] or [Burns, 2002]) that appear much
more credible (but usually also slightly less powerful) than their parametric alternatives if applied
to heavy-tailed or contaminated data.

Several other rank autocorrelation-like measures of serial dependence have already been pro-
posed in the literature:

• autocorrelations of scores (= transformed ranks), see for example [Ferretti et al., 1995] and
[Hallin et al., 1985, Hallin et al., 1987] - the sums of suchlike coefficients or of their squares
have also been used for testing very successfully, see ibidem

• signed f -rank autocorrelations, tailored to HS
0 (see [Hallin et al., 1990])

• rank-based partial autocorrelations, see [Garel and Hallin, 2000]

• Kendall’s rank autocorrelations, see [Ferguson et al., 2000]

• Gini’s rank autocorrelations, see [Borroni, 2003a] and [Borroni, 2003b]

• sign-and-rank autocorrelations, recently proposed for testing zero median white noise (see
[Hallin et al., 2006])
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Sufficient conditions for asymptotic normality of general serial rank coefficients were given in
[Mason and Turova, 2000], [Haeusler et al., 2000], [Turova, 2004] for continuous white noise and
in [Tran, 1990], [Nieuwenhuis and Ruymgaart, 1990], [Harel and Puri, 1990] for some weakly de-
pendent alternatives.

In general, rank tests require ranking the data first, which is usually more time and space
consuming, especially for longer time series. However, the test statistics based on signs or turning
points do not suffer from this drawback as they can be computed directly from the original data.

Besides, rank tests are often supposed to be behind with their power. But in fact, numerous
optimal rank-based methods (including portmanteau tests) are uniformly at least as powerful as
their parametric alternatives, see e.g. [Paindaveine, 2004] and references therein.

Most rank autocorrelations also have other advantages such as

• simplicity and intuitive interpretation

• simple exact asymptotics without any need of simulations or tabularized critical values

• independence from the type of the underlying continuous distribution

• extreme robustness to outliers

• easy use in one-sided testing

• straightforward multivariate generalization (several concepts of ranks and signs have already
been proposed for multivariate data and a great many univariate rank methods have already
been generalised this way, see e.g. [Oja and Randles, 2004], [Hallin and Paindaveine, 2005],
[Oja and Paindaveine, 2005], [Taskinen et al., 2005] and references therein)

We should also mention the fact that there are several extensive surveys of older results re-
garding nonparametric tests in the time series context, see at least the bibliographical one in
[Dufour et al., 1982].

1.3 Selection of the Threshold Parameter

It still remains to discuss the choice of the threshold parameter m that can in general significantly
affect both the test size and power, see for example [Peña and Rodŕıguez, 2006]. We have already
mentioned its recommended values for some specific portmanteau statistics. In the other cases,
m is supposed not to be chosen pointlessly too high, which is in good accordance with the theo-
retical results achieved in [Battaglia, 1990]. Similarly, [Burns, 2002] investigated the statistic Q2

empirically and recommended not to set the parameter m higher than 5% of the total time series
length (see also [Chen, 2002]). Besides, rich empirical experience with shorter time series often
favours m ≤ 10, too.

In practice, one should also take into account the alternatives most often expected. For exam-
ple, it is generally believed that portmanteau tests against seasonal alternatives of some specific
period(s) should be based only on sample autocorrelations (of a convenient kind) at the critical
lags.

We add that [Keenan, 1997] and [Harris et al., 2003] made the first steps to allow for the
thresholds and autocorrelation lags dependent on the time series length T .
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1.4 Portmanteau Testing of Dependent Data

The aforementioned portmanteau tests are insensitive to certain uncorrelated alternatives and
thus tempt to be used unaltered even for testing serial uncorrelatedness, which would be how-
ever wrong and quite misleading. This is evident in the light of [Romano and Thombs, 1996]
where it is clearly demonstrated that the normalized sample ordinary autocorrelation

√
T r̂(1)

may be both asymptotically dependent and of any positive asymptotic variance, even in the
case of 1-dependent serially uncorrelated sequences. Besides, [Taylor, 1984] found that the sam-
ple variances of

√
T r̂(k)’s computed from approximately uncorrelated long financial time series

are much higher than the asymptotic ones corresponding to a white noise process. See also
[Lo and MacKinlay, 1989], [Lobato et al., 2001] and [Lobato et al., 2002], among others.

However, the zero mean asymptotic normal distribution N(0,Σ) of
√

T
(
r̂m − E(r̂m)

)
was es-

tablished (under some additional conditions) even for some dependent data, for example for con-
ventional linear models (see e.g. [Anderson and Walker, 1964], [Anderson and de Gooijer, 1988],
[Boshnakov, 1989], [Brockwell and Davis, 1991], [Phillips and Solo, 1992]), for some long memory
linear (see e.g. [Hosking, 1996]) and nonlinear (see e.g. [Pérez and Ruiz, 2003]) processes, for
linear models driven by dependent innovations (see e.g. [Hannan and Heyde, 1972] and related re-
sults from [Wu and Min, 2005]), for α-mixing time series (see e.g. [Romano and Thombs, 1996])
and even for the processes that are near epoch dependent on α- and φ-mixing sequences (see
[de Jong and Davidson, 2000] and [Lobato et al., 2002]). See also [Davis and Mikosch, 2000] for
a review of the limit theory for the sample ordinary autocorrelations of some popular processes
including linear, stochastic volatility, bilinear, and ARCH time series.

Portmanteau testing for some null hypotheses of serial uncorrelatedness is thus possible and sev-
eral (usually Q1-like) portmanteau statistics have already been proposed for this problem, see e.g.
[Lo and MacKinlay, 1989], [Horowitz et al., 2006], [Guo and Phillips, 2001], [Lobato et al., 2001],
[Lobato, 2001] and [Lobato et al., 2002]. However, they generally require either bootstrap specifi-
cation of their null distribution or using an estimator of Σ that is consistent under the concrete null
hypothesis employed; see for example [Romano and Thombs, 1996] for some powerful bootstrap
techniques potentially useful in this context, [den Haan and Levin, 1997] for a guide on these es-
timators and [Jansson, 2002], [Kiefer and Vogelsang, 2002] and references therein for some recent
results on them.

The theory from [Harel and Puri, 1990], [Nieuwenhuis and Ruymgaart, 1990] and [Tran, 1990]
indicates that even rank autocorrelations could be used this way in the future.

Portmanteau tests are also widely used for testing the appropriateness of a fitted model. This
is most often realized by testing sample ordinary autocorrelations of (estimated) residuals or
their squares for their asymptotic (usually normal) distribution under correct model specification
that is known in a large variety of models, see e.g. [Box and Pierce, 1970] for ARMA models,
[Pierce, 1971] for regression models with ARMA errors, [Pierce, 1972] for dynamic-disturbance
models, [McLeod, 1978] for multiplicative seasonal ARMA models, [McLeod and Li, 1983] for
ARMA models (and squared-residual autocorrelations), [Li and McLeod, 1986] for FARIMA mod-
els, [Söderström and Stoica, 1990] for possibly nonlinear prediction error models, [Li, 1992] for gen-
eral nonlinear (e.g. threshold) models, [Monti, 1994] for ARMA models (and partial residual au-
tocorrelations), [Ling and Li, 1997] for FARIMA-GARCH models (and both residual and squared-
residual autocorrelations), [Whang, 1998] for nonlinear regression models with an unknown form
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of heteroscedasticity, [Berkes et al., 2003] for pure GARCH models (and squared-residual autocor-
relations), [Li and Yu, 2003] for autoregressive conditional duration models, [Berkes et al., 2004b]
for pure GARCH(1,1) models (and a weighted quadratic form of squared-residual autocorrela-
tions), [Andreou and Werker, 2005] for general locally asymptotically normal models (and both
residual and squared-residual autocorrelations), [Francq et al., 2005] for ARMA models with un-
correlated (possibly dependent) innovations, [Li and Li, 2005] for pure GARCH models (and both
absolute residual and squared-residual autocorrelations obtained by the least absolute deviation
approach) and [Wong and Ling, 2005] and [Chen, 2005] for models allowing for general conditional
mean and variance (the former for the joint distribution of residual and squared-residual autocorre-
lations and the letter for autocorrelations between transformed residuals). Besides, even rank auto-
correlations of estimated residuals have been investigated, see for example [Hallin and Puri, 1994],
[Ferretti et al., 1995] and [Andreou and Werker, 2005], and some autocorrelations computed from
(possibly transformed) autoregression or nonlinear rank scores (see [Hallin and Jurečková, 1999]
and [Mukherjee, 1999]) are likely to be used for goodness-of-fit testing soon; see [Hallin et al., 1999]
for a similar application of these rank scores in time series context.

The portmanteau statistics are then often constructed naturally as quadratic forms in the sam-
ple residual autocorrelations used. Besides, even the statistics Q1, Q2, Q7, and Q9 to Q15 were orig-
inally proposed for goodness-of-fit testing, see the original articles and also [Chen and Deo, 2000],
[Chen and Deo, 2004] for Q13 and [Hong, 1997] for a weighted Q16-like statistic.

Note that portmanteau tests of independence based on ordinary autocorrelations are inconsis-
tent against all the time series constituted by squared residuals well estimated from an ARMA(p,q)
process (see [McLeod and Li, 1983]) or even from a more general conditional homoscedasticity
model (see [Chen, 2005]).

If a large data set is available, one could possibly use one its part for model estimation and an-
other one for checking model validity and optimality. Considering ARMAX models, [Fassò, 2000]
formally derived the asymptotic multivariate normality of the residual autocorrelations in such
a validation subset.

1.5 Practical Application to Real Time Series

Portmanteau statistics based on sample ordinary autocorrelations can be seriously affected by
outliers, see e.g. [Martin and Yohai, 1986], [Chan, 1995], [Lee et al., 2001] and [Burns, 2002] for
exact theoretical justification and empirical illustration.

Monte Carlo studies performed in [Chen, 2002] and [Kwan et al., 2005] indicate that nonzero
skewness of tested data significantly influences the finite sample distribution of both the sample
ordinary autocorrelations and the portmanteau tests based on them. This observation corresponds
to the empirical evidence that some portmanteau tests deteriorate with the kurtosis of the data
whose squares they are applied to, see e.g. [Burns, 2002], [Chen, 2002] and [de Lima, 1997].

[Kwan et al., 2005] show considerable robustness of Q1 to heavy tails when the data comes
from a symmetric distribution. However, even this insensitivity is not absolute as [Burns, 2002]
and [Chen, 2002] illustrate by the data samples from the Student distribution with only a few
degrees of freedom.

Furthermore, the standardized sample ordinary autocorrelations converge in probability to zero
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when computed from independent, identically distributed random variables with finite mean but
infinite variance, see e.g. [Runde, 1997]. Apparently, it can influence a portmanteau test dramati-
cally as long as their asymptotic distribution is still assumed to be N(0,1) (see e.g. [de Lima, 1997],
[Burns, 2002] and [Chen, 2002]).

Note that the sample partial autocorrelations are very likely to mimic all these bad properties
of their ordinary counterparts.

Besides, the (possibly uncentered) sample ordinary autocorrelations computed from heavy-
tailed dependent data can also be very misleading, see for example [Davis and Resnick, 1985],
[Davis and Resnick, 1986], [Cohen et al., 1998], [Resnick et al., 1999], [Davis and Mikosch, 1998],
[Davis and Mikosch, 2000], . . . although they can still be used for correct testing even then, see
e.g. [Runde, 1999] and [Resnick and van den Berg, 2000]. For example, the sample ordinary au-
tocorrelation function of GARCH and other popular models and of their squares exhibits the
standard asymptotics only if their fourth and eighth moments are finite, respectively (see e.g.
[Davis and Mikosch, 1998] or [Davis and Mikosch, 2000]).

In the light of the information presented above, all common parametric portmanteau tests seem
quite likely to produce unreliable results in practice, especially when applied to higher powers of
real data or to their absolute values. Note that not the fourth or fifth moments of financial
time series are usually finite, see [Loretan and Phillips, 1994], [de Lima, 1997] and in particular
[Cont, 2001], a pedagogical overview of the statistical properties shared by the asset returns of
financial markets.

Nevertheless, all these problems can be overcome easily by using rank-based autocorrela-
tions that do not appear to suffer from any of these drawbacks, see e.g. [Burns, 2002] and
[Kwan et al., 2005].



Chapter 2

Details About Monte Carlo Studies

This chapter summarizes the common characteristics of most Monte Carlo experiments conducted
in this work.

2.1 Hypotheses

We always assume the null hypothesis HS
0 of continuous and symmetric white noise. We use

only that with zero mean and unit variance, denote it by {εt}T
t=1 and model it with N(0,1) or

standardized t(3) distribution.
Up to five groups of time series can figure in the simulations, each with eight different nontrivial

representatives and with the corresponding white noise. The groups are called TREND, SHORT-
TREND, LONGARMA, ARMA, and GARCH and all the results regarding them are stored in
the subdirectories OutputTREND, OutputSHORTTREND, OutputARMA, OutputLONGARMA
and OutputGARCH, respectively.

To be more specific, the time series for testing are always recruited from some of the under-
mentioned classess:

The TREND Class

These time series {Yt}T
t=1 are under consideration:

A) No trend (HS
0 ). Yt = εt

B) Linear trend. Yt = 0.015t + εt

C) Quadratic trend. Yt = 0.00015t2 + εt

D) Exponential trend. Yt = exp(0.01t) + εt

E) Piece-wise constant trend. Yt = 1.4 I(t > bT/5c) + εt

F) Piece-wise linear trend. Yt = 0.09 I(t > bT/5c)(t− bT/5c) + εt

G) Sinusoidal trend. Yt = 0.7 cos(2πt/T ) + εt

H) Arch-shaped trend. Yt = 0.6 cos(πt/T ) + εt

I) Increasing curly trend. Yt = 0.015t + 0.015 cos(πt/2) + εt

18



CHAPTER 2. DETAILS ABOUT MONTE CARLO STUDIES 19

Note that the eighth label (H) is somewhat misleading here (and in the SHORTTREND class
as well) because the actual trend is not arch-shaped as such but rather similar to the tilted ∼ or
to something like that.

The SHORTTREND Class

The following time series {Yt}T
t=1 are included:

A) No trend (HS
0 ). Yt = εt

B) Linear trend. Yt = 0.09t + εt

C) Quadratic trend. Yt = 0.0035t2 + εt

D) Exponential trend. Yt = exp(0.05t) + εt

E) Piece-wise constant trend. Yt = 2.0 I(t > b3T/4c) + εt

F) Piece-wise linear trend. Yt = 0.1 I(t > b3T/4c)(t− b3T/4c) + εt

G) Sinusoidal trend. Yt = 1.0 cos(2πt/T ) + εt

H) Arch-shaped trend. Yt = 0.9 cos(πt/T ) + εt

I) Increasing curly trend. Yt = 0.09t + 0.09 cos(πt/2) + εt

The ARMA Class

This group consists of weakly stationary ARMA(1,1) processes {Yt},

Yt = a1Yt−1 + εt + b1εt−1.

Their parameter vectors (a1, b1) are equal to (0, 0), (−0.3, 0), (0,−0.3), (0.3, 0), (0, 0.3), (0.2, 0.2),
(−0.2,−0.2), (0.2, 0.4), and (0.4, 0.2), respectively.

The LONGARMA Class

This class also includes weakly stationary ARMA(1,1) processes {Yt},

Yt = a1Yt−1 + εt + b1εt−1,

but this time determined by the parameter couples (a1, b1) equal to (0, 0), (−0.2, 0), (0,−0.2),
(0.2, 0), (0, 0.2), (0.1, 0.1), (−0.1,−0.1), (0.1, 0.2), and (0.2, 0.1).

The GARCH Class

Weakly stationary GARCH(1,1) models {Yt},

Yt = εtσt, σ2
t = c + a1Y

2
t−1 + b1σ

2
t−1,

are considered here, with c = 1 and with parameter vectors (a1, b1) equal to (0, 0), (0.15, 0.8),
(0.2, 0.2), (0.3, 0.3), (0.4, 0.4), (0.2, 0.4), (0.2, 0.6), (0.4, 0.2), and (0.6, 0.2).
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General Comments on the Alternatives

There is no doubt that ARMA processes deserve our attention as they stand at the birth of most
stochastic time series models ever created. The ARMA(1,1) ones with normal white noise are
especially popular among them. We further refer to [Brockwell and Davis, 1991] for a transparent
survey.

The pure GARCH (1,1) processes play a key role in modelling volatile time series and often out-
perform many other models for conditional heteroscedasticity, see e.g. [Hansen and Lunde, 2005].
They thus seem to represent the class of volatile alternatives quite well. They were proposed
by [Bollerslev, 1986] and reviewed in [Giraitis et al., 2006], [Li et al., 2002], [Berkes et al., 2004a],
and [Degiannakis and Xekalaki, 2004], among others.

In practice, the asymptotic distribution of the GARCH innovations εt’s is usually assumed
standard normal or the standardized Student one with three or slightly more degrees of freedom, see
e.g. [Tsay, 2001]. It is because such heavy-tailed symmetric distributions of εt’s better correspond
to the empirical findings that important economic variables usually exhibit finite variances but
already the fourth or fifth infinite moments (see e.g. [de Lima, 1997], [Cont, 2001] and references
therein) and that there is no need to assume nonzero skewness of many such variables, see for
example [Kim and White, 2004] or [Lisi, 2005].

Note that HS
0 corresponds to the choice a1 = b1 = 0 of the GARCH or ARMA parameters.

We test it on the absolute values |Yt|’s of the GARCH time series and on the original values Yt’s
in all the other cases considered.

As far as the simulations of the ARMA, LONGARMA and GARCH time series are concerned,
we generate them 300 observations longer and then trim them from the origin to the correct length
in order to eliminate the influence of the automatically preset initial conditions.

2.2 Realization and Output

All tests considered in the Monte Carlo studies use the asymptotic distributions of their test
statistics under HS

0 . The test TS associated with the test statistic

SS(m) =
m∑

k=1

r̃2
S(k)

is often employed as a benchmark, with the χ2(m) asymptotic distribution.
For each time series, each length T and each distribution of white noise considered, N = 10 000

realizations of {Yt}T
t=1 are generated and the empirical frequencies of rejection of HS

0 by each test
at the nominal level α = 0.10 are computed for a number of values of the threshold parameter m.
They are stored in the text files with the substring Port in their name. Besides, both the sample
means and sample standard deviations of the standardized or orthonormalized (see Section 3.7)
serial rank coefficients used for testing are stored in the files ∗Corr∗.txt or ∗OrtN∗.txt. The results
are graphically illustrated in the files with the eps extension, too. Each file name also includes
some important characteristics regarding the associated Monte Carlo experiment.

The outputs can be reproduced easily with the aid of MATLAB 6.5 [The MathWorks, 2002]
by running the program ∗SimAllFin.m, with the auxiliary functions ∗SimFin.m (and possibly
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∗SimFin2.m), rankitall.m and randraw.m (∗ always stands for a substring that differs from one
case to another). The paths in the first code must be set properly in advance. In fact, the first two
m–files are quite flexible so that the distribution of white noise, time series length and numerous
other features can be changed quite easily. The last two m–functions can be downloaded freely
from the internet, see references therein for more details. All the programs are placed in the
directory reserved for the corresponding chapter.

Any departure from this scheme will be indicated in the right place, as well as the use of other
codes created in Maple 8.00 [MapleSoft, 2002] or R 2.1.0 [R Development Core Team, 2005].



Chapter 3

New Serial Rank Coefficients

A great many rank measures of dependence have already been proposed (see e.g. [Tarsitano, 2002]
for an extensive overview) and others still appear, see for example [Genest and Plante, 2003],
[Blest, 2000], [Blest, 1999] or [Shieh, 1998]. Some of them have also been modified for testing serial
dependence, such as that of Spearman ([Dufour and Roy, 1985], [Dufour and Roy, 1986]), Gini
([Borroni, 2003a],[Borroni, 2003b]) or Kendall ([Ferguson et al., 2000]). We are going to introduce
serial versions of yet other rank coefficients and investigate both their asymptotic properties and
the finite sample behaviour.

3.1 Definitions and Notation

Let us recall that the MacMahon rank correlation, Fechner index and Moore–Wallis rank coefficient
are based, respectively, on the sums

T−1∑
i=1

i2 I(Ri > Ri+1),
T−1∑
i=1

[
I(Ri < Ri+1)− I(Ri > Ri+1)

]
,

T−1∑
i=1

I(Ri < Ri+1),

see e.g. [Tarsitano, 2002] and references therein. These coefficients were also investigated in a large
comparison experiment documented ibidem and they proved quite good in relevant situations.
The following definition introduces two useful and natural serial generalizations of such correla-
tions and of other tests of independence based on runs, signs or turning points, see for instance
[Jolliffe, 1981], [Goodman and Grunfeld, 1961], [Cox and Stuart, 1955], [Moore and Wallis, 1943],
and [Wallis and Moore, 1941].

Definition 1. Let the sample weighted (noncircular) Moore and Wallis serial rank coefficients
r̂M,w(k)’s and r̂W,w(k)’s, k = 1, 2, . . . , be defined as follows:

r̂M,w(k) =
T−k∑
i=1

w(i) I(Ri > Ri+k),

r̂W,w(k) =
T−2k∑
i=1

w(i)
[
I(Ri > Ri+k, Ri+k < Ri+2k) + I(Ri < Ri+k, Ri+k > Ri+2k)

]
,

22
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where w(·) is an arbitrary weighting function, possibly dependent on k. Their circular versions
r̂◦M,w(k)’s and r̂◦W,w(k)’s are defined in the same way but with T replaced by T +k. The unweighted
coefficients r̂M (k)’s, r̂W (k)’s, r̂◦M (k)’s and r̂◦W (k)’s correspond to the case of constant unit weights.
If w(i) = ij , j = 0, 1, 2 . . . , we will sometimes replace the subscript w with j.

Note. The coefficients r̂W (1) and r̂M (1) express the total number of turning points or negative
differences, respectively. Both such characteristics have already been suggested for testing in
the time series context, see e.g. [Moore and Wallis, 1943] and [Wallis and Moore, 1941]. Besides,
[Cox and Stuart, 1955] investigated a class of sign statistics including r̂M,w(k)’s for k > T/2 and
proposed a few such coefficients, and [Noether, 1956] considered a sequential test virtually based on
r̂M (k)’s. Furthermore, r̂W (k)’s are in spirit similar to the autocorrelation of two signs, considered
without any deeper statistical theory in [Christoffersen and Diebold, 2002] and for some (multi-
variate) time series problems in [Hallin and Paindaveine, 2005] and in the articles cited there.

3.2 Moment Structure

The means and variances of the Moore and Wallis serial rank coefficients are given by the following
theorem.

Theorem 2 (Means and variances). If HE
0 holds, then

E
(
r̂M,w(k)

)
=

1
2

T−k∑
i=1

w(i), (1 ≤ k < T )

var
(
r̂M,w(k)

)
=

1
2
aM +

1
3
bM +

1
4
cM −

[
E
(
r̂M,w(k)

)]2 =
1
4
aM − 1

6
bM , (1 ≤ k < T )

E
(
r̂W,w(k)

)
=

2
3

T−2k∑
i=1

w(i), (1 ≤ k < T/2)

var
(
r̂W,w(k)

)
=

2
3
aW +

5
6
bW +

9
10

cW +
4
9
dW −

[
E
(
r̂W,w(k)

)]2
=

2
9
aW − 1

18
bW +

1
90

cW , (1 ≤ k < T/2)

where

aM =
T−k∑
i=1

w2(i), bM =
T−2k∑
i=1

w(i)w(i + k), cM =
T−k∑
i=1

T−k∑
j=1

w(i)w(j)− aM − 2bM ,

and

aW =
T−2k∑
i=1

w2(i), bW =
T−3k∑
i=1

w(i)w(i + k),

cW =
T−4k∑
i=1

w(i)w(i + 2k), dW =
T−2k∑
i=1

T−2k∑
j=1

w(i)w(j)− aW − 2bW − 2cW .
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Furthermore, replacing T with T + k in these formulae leads directly to the expressions for the
means and variances of the circular coefficients r̂◦M,w(k)’s and r̂◦W,w(k)’s.

Note. Each sum is always treated as zero in this chapter if its lower bound on the summing index
exceeds the higher.

Proof. The ranks Ri’s are exchangeable under HE
0 and consequently

E
(
r̂M,w(k)

)
=

T−k∑
i=1

w(i)P (R1 > R2) =
1
2

T−k∑
i=1

w(i),

E
(
r̂W,w(k)

)
=

T−2k∑
i=1

w(i)
[
P (R1 > R2, R2 < R3) + P (R1 < R2, R2 > R3)

]
=

2
3

T−2k∑
i=1

w(i),

E
(
r̂2
M,w(k)

)
= aMpM

a + 2bMpM
b + cMpM

c ,

E
(
r̂2
W,w(k)

)
= aW pW

a + 2bW pW
b + 2cW pW

c + dW pW
d ,

where

pM
a = P (R1 > R2) =

1
2
,

pM
b = P (R1 > R2, R2 > R3) =

1
6
,

pM
c = P (R1 > R2, R3 > R4) =

1
4
,

and

pW
a = 0 + 0 + P (R1 > R2, R2 < R3) + P (R1 < R2, R2 > R3)

= 2 · 1
3

=
2
3
,

pW
b = 0 + 0 + P (R1 > R2, R2 < R3, R3 > R4) + P (R1 < R2, R2 > R3, R3 < R4)

= 2 · 5
24

=
5
12

,

pW
c = P (R1 > R2, R2 < R3, R3 > R4, R4 < R5)

+ P (R1 > R2, R2 < R3, R3 < R4, R4 > R5)
+ P (R1 < R2, R2 > R3, R3 < R4, R4 > R5)
+ P (R1 < R2, R2 > R3, R3 > R4, R4 < R5)

= 2 · 16
120

+ 2 · 11
120

=
9
20

,

pW
d = P (R1 > R2, R2 < R3, R4 > R5, R5 < R6)

+ P (R1 < R2, R2 > R3, R4 > R5, R5 < R6)
+ P (R1 > R2, R2 < R3, R4 < R5, R5 > R6)
+ P (R1 < R2, R2 > R3, R4 < R5, R5 > R6)

= 4 · 1
9

=
4
9
.
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The probabilities pW
c and pW

d can be checked with the R code MWProbs.r and the rest is abun-
dantly obvious.

Corollary. The means and variances of r̂M,w(k)’s, 1 ≤ k < T , and r̂W,w(k)’s, 1 ≤ k < T/2, can
be obtained under HE

0 for any polynomial weights with the aid of the two Maple programs
MWEsVarsM.mws and MWEsVarsW.mws. The exact formulae for E

(
r̂M,w(k)

)
, 1 ≤ k < T ,

var
(
r̂M,w(k)

)
, 1 ≤ k < T/2, E

(
r̂W,w(k)

)
, 1 ≤ k < T/2, and var

(
r̂W,w(k)

)
, 1 ≤ k < T/4, are given

below for some simple choices of weights. They can be checked with the R code MWExactMom.r.

w(i) = 1

E
(
r̂M (k)

)
=

1
2
(T − k)

var
(
r̂M (k)

)
=

1
12

(T + k)

E
(
r̂W (k)

)
=

2
3
(T − 2k)

var
(
r̂W (k)

)
=

8
45

(T − 2k) +
k

30

w(i) = i

E
(
r̂M,1(k)

)
=

1
4
(T − k)2 +

1
4
(T − k)

var
(
r̂M,1(k)

)
=

1
36

(T − k)3 +
2k + 1

24
(T − k)2 +

6k + 1
72

(T − k)− 1
36

(k3 − k)

E
(
r̂W,1(k)

)
=

1
3
(T − 2k)2 +

1
3
(T − 2k)

var
(
r̂W,1(k)

)
=

8
135

(T − 2k)3 +
3k + 16

180
(T − 2k)2 +

9k + 16
540

(T − 2k) +
1

180
(k3 + k)

w(i) = i2

E
(
r̂M,2(k)

)
=

1
6
(T − k)3 +

1
4
(T − k)2 +

1
12

(T − k)

var
(
r̂M,2(k)

)
=

1
60

(T − k)5 +
2k + 1

24
(T − k)4 − (2k2 − 6k − 1)

36
(T − k)3

− (k2 − k)
12

(T − k)2 − (10k2 + 1)
360

(T − k) +
1

180
(k5 − k)

E
(
r̂W,2(k)

)
=

2
9
(T − 2k)3 +

1
3
(T − 2k)2 +

1
9
(T − 2k)

var
(
r̂W,2(k)

)
=

8
225

(T − 2k)5 +
3k + 16

180
(T − 2k)4 − (k2 − 9k − 16)

270
(T − 2k)3

− (k2 − 3k)
180

(T − 2k)2 − (5k2 + 16)
2700

(T − 2k)− 1
900

(9k5 + k)
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Note. These results for r̂M (1) and r̂W (1) agree with those from [Moore and Wallis, 1943] and
[Wallis and Moore, 1941].

In general, circular serial coefficients can be found useful for some processes defined on a circle,
for example in the case of 24 measurements (at hourly intervals) of a daily cycle. However, we are
not interested in such time series and that is why we will focus on the noncircular coefficients in
the following text.

Theorem 3 (Covariances between r̂M,w(k)’s). Under the null hypothesis HE
0 , the covariances

between r̂M,w(k)’s can be expressed in the following way (1 ≤ h < k < T ):

cov
(
r̂M,wk

(k), r̂M,wh
(h)
)

= pMπM
p + qMπM

q + rMπM
r + sMπM

s + tMπM
t

− E
(
r̂M,wk

(k)
)
E
(
r̂M,wh

(h)
)

=
1
12

(pM − qM − rM + sM ),

where

pM =
T−k∑
i=1

wk(i)wh(i), qM =
T−h−k∑

i=1

wk(i)wh(i + k),

rM =
T−h−k∑

j=1

wk(j + h)wh(j), sM =
T−k∑
i=1

wk(i)wh(i + k − h),

tM =
T−k∑
i=1

T−h∑
j=1

wk(i)wh(j)− pM − qM − rM − sM ,

πM
p = P (R1 > R2, R1 > R3) =

1
3
, πM

q = P (R1 > R2, R2 > R3) =
1
6
,

πM
r = P (R1 > R2, R3 > R1) =

1
6
, πM

s = P (R1 > R2, R3 > R2) =
1
3
,

πM
t = P (R1 > R2, R3 > R4) =

1
4
.

Proof. All that follows directly from the definition of covariances and from the exchangeability of
the ranks under HE

0 . The ranks may coincide and each such case must be treated separately.

Theorem 4 (Covariances between r̂W,w(k)’s). Under the null hypothesis HE
0 , the covariances

between r̂W,w(k)’s can be expressed in the following way (1 ≤ h < k < T/2):

cov
(
r̂W,wk

(k), r̂W,wh
(h)
)

= pW πW
p + qW πW

q + rW πW
r + sW πW

s + tW πW
t + uW πW

u + vW πW
v + wW πW

w + xW πW
x

+ zW πW
z − E

(
r̂W,wk

(k)
)
E
(
r̂W,wh

(h)
)

=
1

180
(pW − 2qW − 2rW + sW + tW + 4uW + vW − 2wW − 2xW ) if k 6= 2h,

=
1

180
(−5pW − 5qW − 2rW + sW + tW + 4uW + vW − 2wW − 2xW ) if k = 2h,
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where

pW =
T−2k∑
i=1

wk(i)wh(i),

qW =
T−2k∑
i=1

wk(i)wh(i + k) if k > 2h,

=
T−2h−k∑

i=1

wk(i)wh(i + k) if k ≤ 2h,

rW =
T−2k−h∑

j=1

wk(j + h)wh(j), sW =
T−2h−2k∑

i=1

wk(i)wh(i + 2k),

tW =
T−2k−2h∑

j=1

wk(j + 2h)wh(j), uW =
T−2k∑
i=1

wk(i)wh(i + k − h),

vW =
T−2k∑
i=1

wk(i)wh(i + 2k − 2h) if k 6= 2h,

= 0 if k = 2h,

wW =
T−h−2k∑

i=1

wk(i)wh(i + 2k − h),

xW =
T−2k∑
i=1

wk(i)wh(i + k − 2h) if k > 2h,

= 0 if k = 2h,

=
T−k−2h∑

j=1

wk(j − k + 2h)wh(j) if k < 2h,

zW =
T−2k∑
i=1

T−2h∑
j=1

wk(i)wh(j)− pW − qW

− rW − sW − tW − uW − vW − wW − xW ,

πW
p = 2P (R1 > R2, R2 < R3, R1 > R4, R4 < R5) + 2P (R1 > R2, R2 < R3, R1 < R4, R4 > R5)

= 2 · 16
120

+ 2 · 11
120

=
9
20

if k 6= 2h,

= 2P (R1 > R2, R2 < R3, R1 > R4, R4 < R2) + 2P (R1 > R2, R2 < R3, R1 < R4, R4 > R2)

= 2 · 2
24

+ 2 · 3
24

=
5
12

if k = 2h,

πW
q = 2P (R1 > R2, R2 < R3, R2 > R4, R4 < R5) + 2P (R1 > R2, R2 < R3, R2 < R4, R4 > R5)

= 2 · 8
120

+ 2 · 18
120

=
13
30

if k 6= 2h,

= 2P (R1 > R2, R2 < R3, R2 > R4, R4 < R3) + 2P (R1 > R2, R2 < R3, R2 < R4, R4 > R3)

= 2 · 2
24

+ 2 · 3
24

=
5
12

if k = 2h,

πW
r = 2P (R1 > R2, R2 < R3, R4 > R1, R1 < R5) + 2P (R1 > R2, R2 < R3, R4 < R1, R1 > R5)

= 2 · 8
120

+ 2 · 18
120

=
13
30

,

πW
s = 2P (R1 > R2, R2 < R3, R3 > R4, R4 < R5) + 2P (R1 > R2, R2 < R3, R3 < R4, R4 > R5)

= 2 · 16
120

+ 2 · 11
120

=
9
20

,
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πW
t = 2P (R1 > R2, R2 < R3, R4 > R5, R5 < R1) + 2P (R1 > R2, R2 < R3, R4 < R5, R5 > R1)

= 2 · 16
120

+ 2 · 11
120

=
9
20

,

πW
u = 2P (R1 > R2, R2 < R3, R4 > R2, R2 < R5) + 2P (R1 > R2, R2 < R3, R4 < R2, R2 > R5)

= 2 · 24
120

+ 2 · 4
120

=
7
15

,

πW
v = 2P (R1 > R2, R2 < R3, R4 > R5, R5 < R3) + 2P (R1 > R2, R2 < R3, R4 < R5, R5 > R3)

= 2 · 16
120

+ 2 · 11
120

=
9
20

,

πW
w = 2P (R1 > R2, R2 < R3, R4 > R3, R3 < R5) + 2P (R1 > R2, R2 < R3, R4 < R3, R3 > R5)

= 2 · 8
120

+ 2 · 18
120

=
13
30

,

πW
x = 2P (R1 > R2, R2 < R3, R4 > R5, R5 < R2) + 2P (R1 > R2, R2 < R3, R4 < R5, R5 > R2)

= 2 · 8
120

+ 2 · 18
120

=
13
30

,

πW
z = 4P (R1 > R2, R2 < R3, R4 > R5, R5 < R6)

= 4 · 1
9

=
4
9
.

Proof. All that follows immediately from the definition of covariances and from the exchangeability
of the ranks under HE

0 . The ranks may coincide and each such case must be treated separately.
Some details can be verified by means of the R code MWProbs.r.

Note. We mark w with the h or k to denote the proper lag to be used in case the weights are
lag-dependent.

Corollary. The exact formulae for the covariances cov
(
r̂M,wh

(h), r̂M,wk
(k)
)
’s, 1 ≤ h < k < T,

and cov
(
r̂W,wh

(h), r̂W,wk
(k)
)
’s, 1 ≤ h < k < T/2, can be obtained under HE

0 for any polynomial
weighting function with the aid of the Maple codes MWCovsM.mws and MWCovsW.mws, re-
spectively. They are listed below for some simple choices of weights and under the additional
assumptions h + k < T in the former case and h + k < T/2 in the latter. They can be verified
with the program MWExactMom.r.

w(i) = 1

cov
(
r̂M (k), r̂M (h)

)
=

=
1
6
h
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cov
(
r̂W (k), r̂W (h)

)
=

= − 1
45

k +
2
45

h if k < 2h

= − 2
45

T +
11
180

k +
1
18

h if k = 2h

= 0 if k > 2h

w(i) = i

cov
(
r̂M,1(k), r̂M,1(h)

)
=

=
1
12

hT 2 +
(
− 1

12
kh− 1

12
h2 +

1
12

h
)
T +

1
24

kh2 +
1
72

h3 − 1
24

kh− 1
24

h2 +
1
36

h

cov
(
r̂W,1(k), r̂W,1(h)

)
=

=
(
− 1

90
k +

1
45

h
)
T 2 +

( 1
45

k2 − 1
45

kh− 2
45

h2 − 1
90

k +
1
45

h
)
T

− 1
135

k3 − 1
90

k2h +
1
18

kh2 +
2

135
h3 +

1
90

k2 − 1
90

kh− 1
45

h2 − 1
270

k +
1

135
h if k < 2h

= − 2
135

T 3 +
( 19

360
k +

1
20

h− 1
45

)
T 2 +

(
− 4

45
k2 − 1

30
kh− 1

9
h2 +

19
360

k +
1
20

h− 1
135

)
T

+
67

1080
k3 − 1

45
k2h +

1
15

kh2 +
2
27

h3 − 2
45

k2 − 1
60

kh− 1
18

h2 +
11

1080
k +

1
108

h if k = 2h

=
1
90

kh2 if k > 2h

w(i) = i2

cov
(
r̂M,2(k), r̂M,2(h)

)
=

=
1
12

hT 4 +
(
−2

9
kh− 1

6
h2 +

1
6
h
)
T 3 +

(1
4
k2h +

1
4
kh2 +

1
6
h3 − 1

3
kh− 1

4
h2 +

1
12

h
)
T 2

+
(
−1

6
k3h− 1

12
k2h2 − 1

6
kh3 − 1

12
h4 +

1
4
k2h +

1
4
kh2 +

1
6
h3 − 1

9
kh− 1

12
h2
)
T

+
1
18

k4h +
1
36

k2h3 +
1
24

kh4 +
7

360
h5 − 1

12
k3h− 1

24
k2h2 − 1

12
kh3 − 1

24
h4 +

1
24

k2h

+
1
24

kh2 +
1
36

h3 − 1
180

h
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cov
(
r̂W,2(k), r̂W,2(h)

)
=

=
(
− 1

90
k +

1
45

h
)
T 4 +

( 2
45

k2 − 2
45

kh− 4
45

h2 − 1
45

k +
2
45

h
)
T 3

+
(
− 1

15
k3 +

1
45

k2h +
7
45

kh2 +
7
45

h3 +
1
15

k2 − 1
15

kh− 2
15

h2 − 1
90

k +
1
45

h
)
T 2

+
( 2

45
k4 − 4

45
k2h2 − 8

45
kh3 − 2

15
h4 − 1

15
k3 +

1
45

k2h +
7
45

kh2 +
7
45

h3 +
1
45

k2 − 1
45

kh

− 2
45

h2
)
T − 8

675
k5 +

1
270

k4h− 2
135

k3h2 +
14
135

k2h3 +
1
30

kh4 +
4
75

h5 +
1
45

k4 − 2
45

k2h2

− 4
45

kh3 − 1
15

h4 − 1
90

k3 +
1

270
k2h +

7
270

kh2 +
7

270
h3 +

1
1350

k − 1
675

h if k < 2h

= − 2
225

T 5 +
( 19

360
k +

1
20

h− 1
45

)
T 4 +

(
−101

540
k2 − 1

15
kh− 29

135
h2 +

19
180

k +
1
10

h− 2
135

)
T 3

+
(2

5
k3 − 7

90
k2h +

14
45

kh2 +
19
45

h3 − 101
360

k2 − 1
10

kh− 29
90

h2 +
19
360

k +
1
20

h
)
T 2

+
(
−4

9
k4 +

8
45

k3h− 1
15

k2h2 − 4
9
kh3 − 2

5
h4 +

2
5
k3 − 7

90
k2h +

14
45

kh2 +
19
45

h3 − 101
1080

k2

− 1
30

kh− 29
270

h2 +
1

675

)
T +

1061
5400

k5 − 4
45

k4h− 8
135

k3h2 +
16
135

k2h3 +
53
270

kh4 +
4
27

h5

− 2
9
k4 +

4
45

k3h− 1
30

k2h2 − 2
9
kh3 − 1

5
h4 +

1
15

k3 − 7
540

k2h +
7

135
kh2 +

19
270

h3

− 11
5400

k − 1
540

h if k = 2h

=
( 1

45
kh2 − 1

45
h3
)
T 2 +

(
− 2

45
k2h2 +

2
45

h4 +
1
45

kh2 − 1
45

h3
)
T

+
2
45

k2h3 − 7
270

kh4 − 4
135

h5 − 1
45

k2h2 +
1
45

h4 +
1

270
kh2 − 1

270
h3 if k > 2h

Note. In general, the assumption of polynomial weights is not too restrictive because any suffi-
ciently smooth function can be approximated satisfactorily by its Taylor polynomial.

Theorem 5 (Covariances between r̂M,wM
(h)’s and r̂W,wW

(k)’s). If HE
0 holds, then the coeffi-

cients r̂M,wM
(h)’s and r̂W,wW

(k)’s are mutually uncorrelated for every possible choice of weighting
functions wM and wW , i.e.

cov
(
r̂M,wM

(h), r̂W,wW
(k)
)

= 0, 1 ≤ h < T, 1 ≤ k < T/2. (3.1)

Proof. It follows directly from the definition of covariances and from the exchangeability of the
ranks under HE

0 that

cov
(
r̂M,wM

(h), r̂W,wW
(k)
)

= AπA + BπB + CπC + DπD + EπE + FπF + GπG

− E
(
r̂M,wM

(h)
)
E
(
r̂W,wW

(k)
)
,
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where

A =
T−h∑
i=1

wW (i)wM (i) if h > 2k,

=
T−2k∑
i=1

wW (i)wM (i) if h ≤ 2k,

B =
T−2k−h∑

j=1

wW (j + h)wM (j),

C =
T−h−k∑

i=1

wW (i)wM (i + k) if h > k,

=
T−2k∑
i=1

wW (i)wM (i + k) if h ≤ k,

D =
T−h−k∑

j=1

wW (j + h− k)wM (j) if h > k,

= 0 if h = k,

=
T−2k∑
i=1

wW (i)wM (i + k − h) if h ≤ k,

E =
T−2h−k∑

i=1

wW (i)wM (i + 2k),

F =
T−h∑
j=1

wW (j + h− 2k)wM (j) if h > 2k,

= 0 if h = k or h = 2k,

=
T−2k∑
i=1

wW (i)wM (j + 2k − h) otherwise,

G =
T−2k∑
i=1

T−h∑
j=1

wW (i)wM (j)−A−B

− C −D − E − F −G,

πA = P (R1 > R2, R2 < R3)

=
1
3

if h = k,

= P (R1 > R2, R2 < R3, R1 > R3) + P (R1 < R2, R2 > R3, R1 > R3)

=
1
6

+
1
6

=
1
3

if h = 2k,

= P (R1 > R2, R2 < R3, R1 > R4) + P (R1 < R2, R2 > R3, R1 > R4)

=
5
24

+
3
24

=
1
3

otherwise,

πB = P (R1 > R2, R2 < R3, R4 > R1) + P (R1 < R2, R2 > R3, R4 > R1)

=
3
24

+
5
24

=
1
3

if k 6= 2h,



CHAPTER 3. NEW SERIAL RANK COEFFICIENTS 32

πC = P (R1 < R2, R2 > R3)

=
1
3

if h = k,

= P (R1 > R2, R2 < R3, R2 > R4) + P (R1 < R2, R2 > R3, R2 > R4)

=
2
24

+
6
24

=
1
3

if h 6= k,

πD = P (R1 > R2, R2 < R3, R4 > R2) + P (R1 < R2, R2 > R3, R4 > R2)

=
6
24

+
2
24

=
1
3
,

πE = P (R1 > R2, R2 < R3, R3 > R4) + P (R1 < R2, R2 > R3, R3 > R4)

=
5
24

+
3
24

=
1
3
,

πF = P (R1 > R2, R2 < R3, R4 > R3) + P (R1 < R2, R2 > R3, R4 > R3)

=
3
24

+
5
24

=
1
3
,

πG = P (R1 > R2, R2 < R3, R4 > R5) + P (R1 < R2, R2 > R3, R4 > R5)

=
1
6

+
1
6

=
1
3
.

Therefore

cov(r̂M,wM
(h), r̂W,wW

(k)) =
1
3
(A + B + C + D + E + F + G)− 2

3
· 1
2

T−2k∑
i=1

T−h∑
j=1

wW (i)wM (j) = 0.

Some details regarding this proof can be verified by means of the programs MWProbs.r and
MWCovsMW.mws.

Corollary. The well known sign and turning point statistics r̂M (1) and r̂W (1) are thus uncor-
related under HE

0 . Later we shall see that this implies their asymptotic independence in that
case.

3.3 Standardization

Apparently, too small/high values of r̂M,w(k)’s or r̂W,w(k)’s agree with strong positive/negative
serial dependence at lag k. However, they should be standardized in some way that would allow
their better interpretation, for example by rescaling them to be just covered by the [−1, 1] interval.
We prefer to normalize them with their true means and variances under HE

0 , which leads to another
useful definition:

Definition 6. We define the standardized Moore and Wallis serial rank coefficients r̃M,w(k)’s and
r̃W,w(k)’s as follows:

r̃M,w(k) =
E0

(
r̂M,w(k)

)
− r̂M,w(k)√

var0
(
r̂M,w(k)

) , (1 ≤ k < T )
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r̃W,w(k) =
E0

(
r̂W,w(k)

)
− r̂W,w(k)√

var0
(
r̂W,w(k)

) , (1 ≤ k < T/2)

and we define their standardized circular modifications analogously. All the subscripts of r remain
unchanged and always keep their original meaning.

Note. Higher values of these standardized coefficients correspond to positive serial dependence as
usual. Their evaluation under HE

0 is made possible by the following theorem.

3.4 Asymptotic Distribution

Theorem 7 (Asymptotic distribution under HE
0 ). Let us assume that HE

0 holds and that p, q ≥ 1
are two integers.

1. If

max1≤i≤T−1 wM (i)

min1≤k≤p

√
var
(
r̂M,wM

(k)
) = o(1) for T →∞, (3.2)

then

r̃M = r̃M,wM ,p =
(
r̃M,wM

(1), . . . , r̃M,wM
(p)
)′ ∼asympt. N(0, Up×p).

2. If

max1≤i≤T−2 wW (i)

min1≤k≤q

√
var
(
r̂W,wW

(k)
) = o(1) for T →∞, (3.3)

then

r̃W = r̃W,wW ,q =
(
r̃W,wW

(1), . . . , r̃W,wW
(q)
)′ ∼asympt. N(0, Vq×q).

3. If both (3.2) and (3.3) hold, then even the vector r̃MW = (r̃′M,wM
, r̃′W,wW

)′ is asymptotically

zero mean normal with the block diagonal variance matrix W =
(

Up×p 0
0 Vq×q

)
.

The matrices Up×p and Vq×q can be inferred from the theory in Section 3.2.

Note. Analogous statements can be formulated even for the circular standardized coefficients
r̃◦M,wM

(k)’s and r̃◦W,wW
(k)’s.

Proof. We only focus on (3) because (1) and (2) can be treated in the same way.
If H0 holds, then the asymptotic distribution of r̃MW does not depend on L(Yt), hence we can

assume that Yt’s are uniformly distributed on the [0, 1] interval.
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If we set z = max(p, 2q) and define random vectors

X(i) =
(
X1(i), . . . , Xp+q(i)

)′
, i = 1, 2, . . . , T − z,

such that

Xk(i) =
wM (i)

[
1
2 − I(Yi > Yi+k)

]√
var
(
r̂M,wM

(k)
) , 1 ≤ k ≤ p,

Xp+m(i) =
wW (i)

[
2
3 − I(Yi > Yi+m, Yi+m < Yi+2m)− I(Yi < Yi+m, Yi+m > Yi+2m)

]√
var
(
r̂W,wW

(m)
) , 1 ≤ m ≤ q,

then the assumptions (3.2) and (3.3) guarantee that r̃MW is asymptotically equivalent to the
sum ST of the zero mean z-dependent random vectors X(i)’s,

ST =
T−z∑
i=1

X(i).

The asymptotic zero mean normal distribution thus follows easily from (3.1) and from any suitable
central limit theorem for m-dependent random vectors. Alternatively, we could use the Cramér-
Wold device and a univariate central limit theorem of this type.

The joint distribution of Ri’s is identical under both H0 and HE
0 (see [Dufour and Roy, 1986]),

which implies that the same holds even for the asymptotic distribution of r̃MW .

Corollary. If wM (i) = ijM , jM = 0, 1, 2, wW (i) = ijW , jW = 0, 1, 2, and 1 ≤ h < k < T/4, then

cov
(
r̃M,wM

(k), r̃M,wM
(h)
)

= O(T−1),

cov
(
r̃W,wW

(k), r̃W,wW
(h)
)

= O(T−1) if k < 2h,

= −1
4

if k = 2h,

= 0 or O(T−3) if k > 2h,

and the asymptotic variance matrix W = (Wkh)p+q
k,h=1 of r̃MW has then the following elements:

Wkh = 1 if k = h and k, h = 1, 2, . . . , p + q,

= −1
4

if k − p = 2(h− p) or h− p = 2(k − p), p < k, h ≤ p + q,

= 0 otherwise.

In other words, certain components of r̃MW are then asymptotically jointly zero mean normal and
independent, for example r̃M and r̃W , or all the Moore serial rank coefficients together with all
the Wallis ones at odd lags. This fact has strong implications for any statistical inference based
on r̃M and r̃W .
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The proof of Theorem 7 indicates that r̃MW remains asymptotically normal even under a large
number of mixing alternatives as far as a proper central limit theorem can be applied, see
[Bradley, 2005] for a survey of strong mixing conditions and their properties. We recall that many
important models (such as numerous Markov, ARMA, GARCH or ACD processes) have been
proved α-mixing, see [Bradley, 2005], [Meitz and Saikkonen, 2004], [Carrasco and Chen, 2000] and
references therein.

Besides, both r̃M,w(k)’s and r̃W,w(k)’s are closely related to the weighted serial rank statistics
considered in [Harel and Puri, 1990] and the r̃M,w(k)’s roughly correspond to those investigated
in [Jogdeo, 1968].

More theoretical results can be applied in the special case of constant weights. For example,
r̃W (k)’s have much in common with U -statistics, e.g. with the following incomplete ones of degree
two:

UT (k) =
2

(T − k)(T − k − 1)

T−k∑
i=1

T−k∑
j=i+1

ui,jg(Zi,Zj),

where

Zi = (Yi, Yi+k), Zj = (Yj , Yj+k),
g(Zi,Zj) = I(Yi > Yj , Yi+k < Yj+k) + I(Yi < Yj , Yi+k > Yj+k),

and

ui,j = 1 if j = i + k,

= 0 otherwise.

See [Hsing and Wu, 2004] and references therein for current knowledge in this field. Another
relation of r̃W (k)’s (and r̃M (k)’s) to U-statistics follows from [Hallin et al., 1985].

Another theory suitable for individual r̃M (k)’s and r̃W (k)’s can be found in [Turova, 2004]
and includes the Berry-Esseen and central limit theorems. Besides, all the results proved for
serial linear rank statistics (see, for example, [Hallin et al., 1985] and [Hallin et al., 1987]) may
be applied to r̃M (k)’s and r̃W (k)’s as well. For example, useful asymptotic relative efficiency
details can be obtained this way in the context of testing randomness against contiguous ARMA
alternatives. We illustrate this in the next section.

Although there exists a good deal of related theory, we believe that Theorem 7 still remains
useful because it allows for general weights, its proof is easy, its weak assumptions can be easily
verified and some of its statements for inconstant wM or wW do not follow directly from any other
available results, at least to the best of our knowledge.

3.5 Asymptotic Relative Efficiency (ARMA Alternatives)

First, let us consider the statistics SM (k)’s and SW (k)’s:

SM (k) =
1

T − k

T−k∑
i=1

I(Ri > Ri+k),
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SW (k) =
1

T − 2k

T−2k∑
i=1

[
I(Ri > Ri+k, Ri+k < Ri+2k) + I(Ri < Ri+k, Ri+k > Ri+2k)

]
,

with the associated score-generating functions JM,k(u1, . . . , uk+1) and JW,k(u1, . . . , u2k+1) defined
in [0, 1]× · · · × [0, 1]:

JM,k(u1, . . . , uk+1) = I(u1 > uk+1),
JW,k(u1, . . . , u2k+1) = I(u1 > uk+1, uk+1 < u2k+1) + I(u1 < uk+1, uk+1 > u2k+1).

In particular, we focus on their centered versions Sc
M (k) and Sc

W (k) that arise from replacing JM,k

and JW,k with J?
M,k and J?

W,k:

J?
M,k(u1, . . . , uk+1) = I(u1 > uk+1)− u1 + uk+1 −

1
2
,

J?
W,k(u1, . . . , u2k+1) = I(u1 > uk+1, uk+1 < u2k+1) + I(u1 < uk+1, uk+1 > u2k+1)

+ u2
1 − u1 + u2

2k+1 − u2k+1 + 2uk+1 − 2u2
k+1 −

2
3
.

[Hallin et al., 1985] developed a theory for such statistics that can be applied directly in this
context. Their results relevant for us are summarized in the following theorems.

Theorem 8 (ARMA alternatives contiguous to H0). Let εt’s be independent and identically dis-
tributed zero mean random variables with the finite third moments, density f(x), distribution
function F (x) and the quantile function F−1(u) = inf{x|F (x) ≥ u}, 0 < u < 1, such that

1. f(x) is almost everywhere (a.e.) derivable and its derivative f ′(x) satisfies∫ ∞

−∞
|f ′(x)|dx < ∞.

2. f(x) is absolutely continuous on finite intervals and

0 < I(f) =
∫ ∞

−∞

(
f ′(x)
f(x)

)2

f(x)dx < ∞.

3. The function φ,

φ
(
F−1(u)

)
= −

f ′
(
F−1(u)

)
f
(
F−1(u)

) , 0 < u < 1,
(
i.e. φ(x) = −f ′(x)

f(x)
a.e.

)
,

is derivable (a.e.), and its derivative φ′(x) satisfies (a.e.) a Lipschitz condition

|φ′(x)− φ′(y)| < A|x− y|.
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Then the ARMA(p,q) alternative H1(T ) with its associated vector d = (d1, . . . , dmax(p,q)):

Yt − T−1/2
p∑

i=1

aiYt−i = εt + T−1/2
q∑

i=1

biεt−i

where a1, . . . , ap, b1, . . . , bq are arbitrary real numbers and

di = ai + bi if 1 ≤ i < min(p, q),
= ai if i ≤ p and i > q,

= bi if i ≤ q and i > p,

is contiguous to H0 = H0(T ).

Proof. See [Hallin et al., 1985], in particular Proposition 3.1.

Theorem 9 (Asymptotic distribution under contiguous ARMA alternatives). If a contiguous
ARMA alternative from the preceding theorem holds, then

Sc
M (k) ∼asympt. N

( k∑
i=1

diC
M
i,k(F ), VM,k

)
and Sc

W (k) ∼asympt. N
( 2k∑

i=1

diC
W
i,k(F ), VW,k

)
(

i.e. r̃M (k) ∼asympt. N
( −1√

VM,k

k∑
i=1

diC
M
i,k(F ), 1

)
, r̃W (k) ∼asympt. N

( −1√
VW,k

2k∑
i=1

diC
W
i,k(F ), 1

))

where

VM,k =
∫

[0,1]k+1

J?
M,k

2(u1, . . . , uk+1)du1 . . . duk+1

+ 2
k∑

j=1

∫
[0,1]j+k+1

J?
M,k(u1, . . . , uk+1)J?

M,k(uj+1, . . . , uj+k+1)du1 . . . duj+k+1

=
1
12

, (independent of k and F )

VW,k =
∫

[0,1]2k+1

J?
W,k

2(u1, . . . , u2k+1)du1 . . . du2k+1

+ 2
2k∑

j=1

∫
[0,1]j+2k+1

J?
W,k(u1, . . . , u2k+1)J?

W,k(uj+1, . . . , uj+2k+1)du1 . . . duj+2k+1

=
8
45

, (independent of k and F )

CM
i,k(F ) =

∫
[0,1]k+1

J?
M,k(u1, . . . , uk+1)

k−i∑
j=0

φ
(
F−1(uk+1−j)

)
F−1(uk+1−j−i)du1 . . . duk+1

= 0, (independent of k, i or F )
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CW
i,k(F ) =

∫
[0,1]2k+1

J?
W,k(u1, . . . , u2k+1)

2k−i∑
j=0

φ
(
F−1(u2k+1−j)

)
F−1(u2k+1−j−i)du1 . . . du2k+1

= 0 if i 6= k and i 6= 2k,

= a number independent of k and i otherwise.

Besides, CW
k,k(F ) = −CW

2k,k(F ), and

CW
k,k(FNorm) .= −0.184, CW

k,k(FLog) = − 7
36

.= −0.194, CW
k,k(FLap) = −2

9
.= −0.222

for the N(0,1), standard logistic and standard Laplace white noise distribution, respectively.

Proof. It is a direct application of general Propositions 4.1 and 4.2 from [Hallin et al., 1985] to the
special case of r̃M (k)’s and r̃W (k)’s addressed here. The simple score-generating functions J?

M,k

and J?
W,k lead to some simplification, together with the fact that∫ 1

0
φ
(
F−1(u)

)
du = 0 and

∫ 1

0
F−1(u)du = 0.

Some computational details can be checked with the programs MWAREM.mws, MWAREW.mws
and MWAREW.r.

Note. The variances VM,k and VW,k should be the same even under the null hypothesis H0 and
therefore they could be inferred directly from Theorem 2.

Corollary. The asymptotic distribution of r̃M (k)’s or r̃W (k)’s does not distinguish the type of
linear process (AR, MA and ARMA) used as a contiguous alternative. Besides, the Moore au-
tocorrelations r̃M (k)’s are completely insensitive to such alternatives while the Wallis serial rank
coefficients r̃W (k)’s exhibit the same drawback only for dk = d2k. Apparently, the contiguous
ARMA alternatives driven by the Laplace white noise are more easily detectable by means of
r̃W (k)’s than if they were based on normal or logistic innovations. Furthermore, we can deduce
that CW

k,k remains invariant under scale transformations of f . See [Hallin et al., 1985] for more
details.

Now the asymptotic relative efficiency (ARE) of r̃W (k)’s with respect to other statistics relevant
to our work can be computed easily. For comparison, we will consider the sample standardized
ordinary autocorrelations r̃(k)’s as well as the standardized van der Waerden, Wilcoxon, Laplace
and Spearman serial rank coefficients r̃vdW(k)’s, r̃Wil(k)’s, r̃Lap(k)’s and r̃S(k)’s, associated with
the score-generating functions

JvdW(u1, . . . , uk+1) = φNorm

(
F−1

Norm(u1)
)
F−1

Norm(uk+1),

JWil(u1, . . . , uk+1) = φLog

(
F−1

Log(u1)
)
F−1

Log(uk+1),

JLap(u1, . . . , uk+1) = φLap

(
F−1

Lap(u1)
)
F−1

Lap(uk+1),

JS(u1, . . . , uk+1) = u1uk+1.
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Some tests based on r̃vdW(k)’s, r̃Wil(k)’s and r̃Lap(k)’s are known to have certain optimal properties
in the case of contiguous ARMA alternatives with normal, logistic and Laplace white noise, re-
spectively (see for example [Hallin et al., 1985], [Hallin et al., 1987], [Hallin and Puri, 1988a] and
[Hallin and Puri, 1988b]).

Let us recall the fact that if r̃A, r̃B and r̃C are three sample standardized autocorrelation
coefficients with N(mA, VA), N(mB, VB) and N(mC , VC) asymptotic distributions under a spe-
cific contiguous alternative, mA,mB,mC , VA, VB, VC 6= 0, then the asymptotic relative efficiency
e(r̃A, r̃B) of r̃A with respect to r̃B is defined as

e(r̃A, r̃B) =
m2

A/VA

m2
B/VB

, i.e. e(r̃A, r̃B) =
e(r̃A, r̃C)
e(r̃B, r̃C)

.

The coefficient r̃W (k) is somewhat exceptional as its asymptotic distribution depends not
only on dk, but also on d2k. Therefore its direct comparison to the other autocorrelations seems
problematic. However, the following theorem could still be found useful.

Theorem 10 (Asymptotic relative efficiency of r̃W (k)’s). Let the assumptions of Theorem 9 hold
and let us consider two nontrivial cases with dk 6= 0: d2k = 0 and d2k = −dk. Then

Normal white noise Logistic white noise Laplace white noise
d2k = 0 d2k = −dk d2k = 0 d2k = −dk d2k = 0 d2k = −dk

e
(
r̃W (k), r̃(k)

) .= 0.19 0.76 0.20 0.81 0.23 0.91
e
(
r̃W (k), r̃vdW(k)

) .= 0.19 0.76 0.20 0.81 0.23 0.91
e
(
r̃W (k), r̃Wil(k)

) .= 0.20 0.80 0.19 0.78 0.19 0.75
e
(
r̃W (k), r̃Lap(k)

) .= 0.31 1.24 0.26 1.05 0.14 0.56
e
(
r̃W (k), r̃S(k)

) .= 0.21 0.83 0.21 0.85 0.22 0.88

Proof. It follows from the preceding comment, Theorem 9 and from Corollary 5.1. with Table 1
in [Hallin et al., 1985]. Computational details can be checked with MWAREComp.mws.

Note. These results can be checked thanks to [Knoke, 1977] and [Aiyar, 1981], where some ARE’s
regarding the turning point test, r̂S(1) and r̂vdW(1) are computed in a similar context.

In fact, the ARE’s of various sums of these coefficients or of their squares could be calculated
virtually in the same way; see also [Hallin et al., 1987] where Theorem 9 is generalised to the joint
distribution of the (unweighted) serial rank statistics.

Unfortunately, the assumptions adopted in [Hallin et al., 1985] and here rule out any white
noise coming from the Cauchy, Student, (centered) uniform and other useful distributions. Besides,
these results are only of asymptotic nature. Although the Wallis coefficients appear clearly worse
than the others in our ARE comparison, there is still some hope that they could prove better
under some contiguous ARMA alternatives with other white noise distributions or under fixed
ones. Besides, both r̃M (k)’s and r̃W (k)’s might be found useful in other context, e.g. for evaluating
random number generators or for testing against other types of alternatives.
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3.6 Asymptotic Relative Efficiency (Trend Alternatives)

For short, we focus in detail only on the most frequent case of the increasing linear trend alterna-
tives with N(0,1) white noise {εt}:

Yt = α + βt + εt, β ≥ 0, (t = 1, . . . , T ).

The null hypothesis then corresponds to β = 0.
Now we recall the theory from [Stuart, 1954], [Noether, 1955] and [Stuart, 1956] that can be

employed in this situation. Let S1, S2 be two consistent and asymptotically normal test statistics
computed from Yt’s and let mi be the least integer such that

E
(mi)
0 (Si) ≡

[ ∂mi

∂βmi
E(Si)

]
β=0

6= 0, i = 1, 2.

If we further define δi > 0 and c2
i > 0 by

lim
T→∞

(
E

(mi)
0 (Si)

)2
T (2miδi) var0(Si)

= c2
i , i = 1, 2

(assuming that the limit exists), then the asymptotic relative efficiency (ARE) e(S1, S2) of S1

compared to S2 is

e(S1, S2) = 0 if δ1 < δ2

=
(c2

1

c2
2

)1/(2mδ)
if δ1 = δ2 = δ and m1 = m2 = m.

The values of m, δ, and c2 have already been determined for a large number of statistics
including r̂S(1), r̂M (1), r̂W (1) and also the ordinary least squares estimator r̂OLS of the slope β
(see [Stuart, 1954] and [Stuart, 1956]). Moreover, we computed these characteristics for the Moore
and Wallis autocorrelations at any fixed lag:

m δ c2

r̂OLS 1 3
2

1
12

r̂S(1) 2 5
4

1
4π2

r̂M (k) (k ≤ T
2 ) 1 1

2
3k2

π

r̂W (k) (k ≤ T
4 ) 2 1

4
135k4

8π2

It appears that r̂M (k)’s and r̂W (k)’s are inefficient with respect to both r̂OLS and r̂S(1) for any
fixed k, at least from this point of view. However, we are going to show that these conclusions need
not hold if we choose k proportionately to T . In fact, anyway one cannot distinguish between the
fixed and proportionate choice of k in practical applications. For example, there is no difference
between k = 25 and k = T/4 in the case of time series with T = 100 observations.

It turns out that r̂M (k)’s maximize their contribution to ARE for kopt = 2T/3 and r̂W (k)’s
do so for kopt = 2T/5. Besides, if we choose k = aT , 0 < a < 1, then m remains the same
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and δ increases by one, which leads to nonzero e(r̂M (k), r̂OLS) and e
(
r̂W (k), r̂S(1)

)
, see Tables

3.1 and 3.2. These findings significantly extend the results from [Cox and Stuart, 1955] where the
optimality of r̂M (2T/3) among all r̂M (k)’s, k > T/2, is shown.

We also considered r̂M,w(k)’s and r̂W,w(k)’s with w(i) = ip for several reasonable power
exponents p’s. We achieved the same m’s and δ’s for p > −1/2 and calculated the ARE’s
e(r̂M,w(k), r̂OLS) and e

(
r̂W,w(k), r̂S(1)

)
for selected k’s, see Tables 3.1 and 3.2. As the depen-

dence of these ARE’s on k looks similarly for all p’s considered, we illustrate it only for p = 0 that
seems optimal in this respect (see Figures 3.1 and 3.2).

As far as all the new statements in this section and their proofs are concerned, they follow
directly from the theory mentioned above and from the fact that

(Yt − Yt+k) ∼ N(−kβ, 2),

(Yt − Yt+k, Yt+k − Yt+2k) ∼ N

((
−kβ
−kβ

)
,
(

2 −1
−1 2

))
under the alternative. See MWTrendARE1.mws and MWTrendARE2.mws for more details, out-
puts and for all the computations.

Finally, we would like to point out that [Aiyar et al., 1979] calculated the ARE’s for a large
number of statistics (including r̂M (k)’s, k > T/2) in the case of quite general increasing trends
with possibly non-normal errors. Their results indicate that kopt for r̂M (k)’s, k > T/2, often lies
in the interval [2T/3, 3T/4] and that the asymptotic relative efficiency of r̂M (kopt) with respect to
the best linear rank test grows with the trend rate of increase. The authors themselves suggest to
use r̂M (k)’s with kopt = 3T/4 if nothing is known about the trend a priori.

Asymptotic relative efficiencies of r̂M,w(k)’s

p = \k = 0.1T 0.2T 0.3T 0.4T 0.5T 0.6T 2T/3 0.7T 0.8T 0.9T

−1/4 ? ? ? ? 0.752 0.788 0.795 0.793 0.757 0.650

−1/8 ? ? ? ? 0.776 0.814 0.821 0.819 0.782 0.672

0 0.439 0.625 0.730 0.778 0.782 0.819 0.827 0.825 0.788 0.676

1/8 ? ? ? ? 0.778 0.816 0.824 0.822 0.785 0.674

1/4 ? ? ? ? 0.771 0.808 0.816 0.814 0.777 0.667

1/2 0.420 0.593 0.685 0.729 0.752 0.788 0.795 0.793 0.757 0.650

1 0.387 0.541 0.626 0.673 0.710 0.744 0.752 0.750 0.716 0.615

3/2 0.359 0.498 0.578 0.629 0.674 0.706 0.713 0.711 0.679 0.583

2 0.336 0.464 0.541 0.595 0.643 0.674 0.680 0.678 0.648 0.556

5/2 0.316 0.436 0.511 0.568 0.616 0.646 0.652 0.650 0.621 0.533

Table 3.1: The asymptotic relative efficiencies of r̂M,w(k)’s, w(i) = ip, with respect to r̂OLS in the
case of the linear trend alternatives with N(0,1) errors. The symbol ? stands for the values that
could not have been computed explicitly with the aid of Maple.
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ARE details regarding the Moore coefficients [ w(i) = 1 ]
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Figure 3.1: The asymptotic relative efficiency of r̂M (k)’s with respect to r̂OLS in the case of the
linear trend alternatives with N(0,1) errors.

Asymptotic relative efficiencies of r̂W,w(k)’s

p = \k = 0.10T 0.15T 0.20T 0.25T 0.30T 0.35T 0.40T 0.45T

−1/4 ? ? ? ? ? 0.736 0.755 0.722

−1/8 ? ? ? ? ? 0.751 0.770 0.737

0 0.350 0.470 0.572 0.655 0.715 0.754 0.773 0.740

1/8 ? ? ? ? ? 0.752 0.771 0.738

1/4 ? ? ? ? ? 0.748 0.767 0.734

1/2 0.342 0.459 0.557 0.637 0.695 0.736 0.755 0.722

1 0.330 0.442 0.536 0.612 0.669 0.711 0.730 0.698

3/2 0.319 0.427 0.517 0.590 0.647 0.689 0.707 0.677

2 0.309 0.414 0.501 0.572 0.628 0.670 0.688 0.658

5/2 0.301 0.402 0.487 0.556 0.612 0.653 0.670 0.641

Table 3.2: The asymptotic relative efficiencies of r̂W,w(k)’s, w(i) = ip, with respect to r̂S(1) in the
case of the linear trend alternatives with N(0,1) errors. The symbol ? stands for the values that
could not have been computed explicitly with the aid of Maple.
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ARE details regarding the Wallis coefficients [ w(i) = 1 ]
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Figure 3.2: The asymptotic relative efficiency of r̂W (k)’s with respect to r̂S(1) in the case of the
linear trend alternatives with N(0,1) errors.

3.7 Orthonormalization

The joint asymptotic normality of r̃M,w(k)’s and r̃W,w(k)’s under HE
0 allows us to use these coef-

ficients together for statistical inference (e.g. in correlogram-based tools) instead of the ordinary
autocorrelations. However, the nonzero covariances between them could complicate the decision
making in finite samples and even asymptotically. This problem can partly be solved by using only
selected r̃W,w(k)’s (e.g. only those at odd lags). Nevertheless, a complex solution of this problem
also exists and lies in the use of some asymptotically independent modifications of the coefficients.
Prime candidates for this application are defined below.

Definition 11 (Orthonormal(ized) coefficients). Let the orthonormal(ized) coefficients r⊥M,w(k)’s
and r⊥W,w(k)’s be defined with the aid of the Gram-Schmidt orthogonalization in the following
recursive way:

r⊥M,w(1) = r̃M,w(1),

r⊥M,w(k) =
r̃M,w(k)−

∑k−1
i=1 cov0

(
r̃M,w(k), r⊥M,w(i)

)
r⊥M,w(i)√

1−
∑k−1

i=1 cov2
0

(
r̃M,w(k), r⊥M,w(i)

) , k = 2, 3, . . . ,

r⊥W,w(1) = r̃W,w(1),

r⊥W,w(k) =
r̃W,w(k)−

∑k−1
i=1 cov0

(
r̃W,w(k), r⊥W,w(i)

)
r⊥W,w(i)√

1−
∑k−1

i=1 cov2
0

(
r̃W,w(k), r⊥W,w(i)

) , k = 2, 3, . . . ,
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and if, say,

r⊥M,w(i) =
i∑

j=1

aj r̃M,w(j) and r⊥W,w(i) =
i∑

j=1

bj r̃W,w(j),

then

cov0

(
r̃M,w(k), r⊥M,w(i)

)
=

i∑
j=1

aj cov0

(
r̃M,w(k), r̃M,w(j)

)
,

cov0

(
r̃W,w(k), r⊥W,w(i)

)
=

i∑
j=1

bj cov0

(
r̃W,w(k), r̃W,w(j)

)
.

Corollary. The orthonormal coefficients r⊥M,w(k)’s and r⊥W,w(k)’s are mutually uncorrelated and,
under the assumptions of Theorem 7, also asymptotically independent standard normal.

Note. These orthonormal coefficients have at least two important advantages: they can be used
straightforwardly in correlograms and they can be combined in a single portmanteau statistic
quite simply. Both these benefits will be found important further in this work. We will also show
that this concept of orthonormalization leads to significant improvements in statistical inference
even if applied to other standardized rank autocorrelations. This holds especially in the case of
short time series when one cannot rely on any asymptotic results too much. The importance of
considering the finite sample covariance structure of sample autocorrelations will be stressed again
in Chapter 8.

In practice, the vectors of some sample autocorrelation coefficients are often orthonormalized
by multiplying by the square root of their inverse variance matrix. However, such approach may
lead to the orthonormal vectors whose elements are difficult to interpret meaningfully. Our ortho-
normalization procedure thus seems more reasonable even from this point of view, as its output
vectors consist again of some measures of autocorrelation at the same individual lags. Apparently,
either of the two orthonormal vectors resulting from the two orthonormalization procedures can
be multiplied with a suitable orthonormal matrix to coincide with the other.

Our concept of the orthonormal autocorrelations is likely to be new as we are not aware of its
practical application of any kind.

3.8 Advantages and Disadvantages

The sample Moore and Wallis serial rank coefficients possess all the advantages common to all
rank autocorrelations and mentioned in Subsection 1.2.8, and also another three:

• speed and other computational benefits. This may be the key merit in some financial ap-
plications when a large number of long sequences (typically with thousands of observations)
have to be processed simultaneously. These coefficients can be computed directly from the
original series, do not need any time consuming ranking of the data, and their calculation
requires little computer memory space and is quite resistant to numerical inaccuracies.

• forecast interpretation. Obviously, r̃M (k)’s and r̃W (k)’s can be interpreted easily as measures
of predictability of the forecast direction in the first one or two periods of length k.
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• quick update. The coefficients r̂M,w(k)’s and r̂W,w(k)’s can be updated quickly with every
new observation because there is no need to rank the data again or to employ all the time
series history. Their unweighted versions are thus especially convenient for sequential testing,
see e.g. [Noether, 1956] for such a modification of r̂M (k)’s.

On the other hand, these coefficients also exhibit several drawbacks. For example, they com-
pletely ignore the magnitudes of all observations, which often weakens their power in testing.
Besides, their unweighted versions take no account of the location of the signs or turning points
in time and even the weighted modifications do not solve this problem completely. However, un-
equal weighting could be found useful if we wanted to lay emphasis on the time series behaviour
in certain time spans (typically if we intended to favour the most topical observations) or if we
expected some alternatives of a special type.

3.9 Monte Carlo Simulations

We have conducted many Monte Carlo experiments to find possible applications of the Moore
and Wallis serial rank coefficients and to justify their existence that way. Some interesting results
regarding their use in portmanteau tests will be presented in this section.

To be more specific, we will focus on the portmanteau tests TS , TM,j , TW,j , TMW,j , j = 0, 1, 2,
and their ⊥ versions, based on the statistics listed below:

SS(m) =
m∑

k=1

r̃2
S(k), S⊥S (m) =

m∑
k=1

r⊥2
S (k),

SM,j(m) = r̂′M,j,mV −1
M,j,mr̂M,j,m, S⊥M,j(m) =

m∑
k=1

r⊥2
M,j(k),

SW,j(m) = r̂′W,j,mV −1
W,j,mr̂W,j,m, S⊥W,j(m) =

m∑
k=1

r⊥2
W,j(k),

SMW,j(m) = SM,j(m) + SW,j(m), S⊥MW,j(m) = S⊥M,j(m) + S⊥W,j(m),

where V•,j,m is the finite sample variance matrix of r̂•,j,m =
(
r̂•,j(1), . . . , r̂•,j(m)

)′ under the null
hypothesis HS

0 (j = 0, 1, 2, and • substitutes either M or W ). Obviously, SS(m), S⊥S (m), SM,j(m),
S⊥M,j(m), SW,j(m), S⊥W,j(m) ∼asympt. χ2(m) and SMW,j(m), S⊥MW,j(m) ∼asympt. χ2(2m) under the
null hypothesis. ⊥ versions are included in order to investigate the advantages and disadvantages
of the orthonormal coefficients.

The power of the tests will be investigated separately in each category SHORTTREND +
TREND, ARMA, and GARCH. It is good to keep in mind that TM,0(1) corresponds to the sign
test while TW,0(1) virtually coincides with the turning point one.

The TREND Class (T = 100, 200) + the SHORTTREND Class (T = 25)

As far as the test power is concerned, all the simulations support the conclusions listed below and
agree quite well with the ARE considerations in Section 3.6:
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• The Moore coefficients are more suitable for testing here than the Wallis ones, at least in
most situations considered. However, the reverse can be true in some special cases. See
Figures 3.3, 3.4, 3.7, 3.8 and 3.11.

• TM,j(1) and TW,j(1) are far less powerful than the tests TM,j(m) and TW,j(m) with opti-
mum values of m, j = 0, 1, 2 (see Figures 3.3, 3.4 and 3.9). In fact, this striking rise in
power with increasing m can by itself fully justify the introduction of the Moore and Wallis
autocorrelations at higher lags.

• Each of the tests TM,0(m), TM,1(m) and TM,2(m) can outperform the other two in some
situations, which justifies the existence of the weighted modifications of the Moore coeffi-
cients. To be more specific, TM,0(m) appears the most generally applicable while TM,1(m)
and TM,2(m) seem useful only in certain special cases (e.g. for some alternatives with a struc-
ture change) that are fortunately often identifiable a priori, see Figure 3.3. The same holds
even for the tests TW,0(m), TW,1(m) and TW,2(m), see Figure 3.4.

• The portmanteau tests based on the Moore autocorrelations can often almost achieve the
maximum power of the benchmark test TS and even exceed it, see Figures 3.3 and 3.9.

• The overall performance of TMW,j(m) with an optimum m is better than that of the indi-
vidual tests TM,j(m) and TW,j(m), j = 0, 1, 2, (see Figures 3.7, 3.8 and 3.11). Such tests can
also outdistance the benchmark, see Figure 3.10.

• The sums of the squared orthonormal coefficients achieve virtually the same power as the
alternative tests based on the quadratic forms, compare Figures 3.5 and 3.6 with Figures
3.3 and 3.4. However, they are much better than the sums of the squared standardized
coefficients (compare the performance of TS and T⊥S in Figures 3.11 and 3.12). This feature
will be illustrated in Chapter 7, too.

We further present the average values of the standardized and ortonormalized Spearman and
Moore coefficients resulting from our Monte Carlo testing under the alternative

Yt = 0.09t + εt, εt ∼ N(0, 1), t = 1, . . . , 25 :

k= 1 2 3 4 5 6 7 8
r̃S(k) 1.406 1.260 1.105 0.944 0.761 0.586 0.406 0.231
r⊥S (k) 1.406 1.390 1.372 1.353 1.317 1.292 1.265 1.243

r̃M,0(k) 0.414 0.786 1.093 1.376 1.580 1.763 1.907 2.005
r⊥M,0(k) 0.414 0.757 0.968 1.093 1.088 1.050 0.973 0.859

They speak for themselves and also confirm our claims that the covariances between sample
autocorrelation coefficients may play an important role in the case of short time series.

• If the null hypothesis does not hold, some coefficients typically testify against it more than
the others. Apparently, the tests based solely on them would be even more powerful than
those considered here. For example, leaving the first few Moore or Wallis coefficients out in
the tests against a monotone trend alternative would probably lead to further power increase.
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The ARMA Class with T = 200 and T = 500

The test power investigation strongly suggests the following conclusions:

• All tests based on the Moore coefficients are virtually insensitive to all the ARMA(1,1)
alternatives considered, see Figure 3.16. This is in good accordance with the results regarding
their ARE, see Theorem 9.

• TW,0(1) beats all the other examined tests based on the Moore or Wallis rank autocorrelations
and it can be quite powerful even for relatively short time series, see Figures 3.13 to 3.15.

In other words, there is hardly any advantage in using the Moore and Wallis coefficients at higher
lags in this context. However, there is still some hope that they could be found useful in the case
of some higher order (S)AR(I)MA alternatives (with possibly unconventional innovations).

The GARCH Class with T = 1 000 and T = 5 000

As for the test power, the logical inferences drawn from the simulations are as follows:

• In general, the Moore serial rank coefficients do not seem successfully applicable in this
context, at least in the case of symmetric GARCH time series with only several thousands
of observations at most. See Figures 3.17 and 3.19. However, they could possibly prove
better if applied to some GARCH alternatives with asymmetric innovations and/or with
other formulae for the conditional variance σ2

t .

• On the other hand, the tests TW,1, TW,2 and especially TW,0 appear much more promis-
ing, although all of them are still less powerful than the benchmark TS . See Figures 3.18
and 3.20. TW,0(m) can therefore be recommended for quick testing of extremely long time
series hypothetically driven by a GARCH process. Such series are quite common (not only)
in finance.

• Besides, TW,0(m) often achieves its maximum power for m > 1, which again shows the great
importance of the Wallis serial rank coefficients at higher lags (see Figure 3.18 or 3.20).

Test Size Comparison

The most interesting findings regarding the test size can be summarized in the following items:

• Generally, the tests TM,i(m), TW,i(m), and TMW,i(m), i = 0, 1, 2, seem correctly sized for
almost all considered values of m, contrary to the benchmark test TS(m) (see Figures 3.3
and 3.4). The small discrepancies for m = 1 might be attributed to the discrete nature of
the test statistic, although the pseudorandom number generator could be to blame, too (see
Chapter 4). This drawback diminishes with increasing T or m (see the upper left subplot
in Figures 3.8 to 3.20) and some proposals for its elimination are given in the last chapter.
Note that the Moore serial rank coefficients at higher lags are useful for portmanteau testing
even from this point of view.

• These tests reach virtually the same size as their alternatives based on the orthonormal
coefficients, see also Figures 3.5 and 3.6.
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3.10 Accompanying Figures
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Empirical power: Trend alternatives with t(3) noise (T = 100, N = 10000)
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Figure 3.3: Behaviour of the tests based on SS(m) (◦◦◦◦◦), SM,0(m) ( ), SM,1(m) ( ) and
SM,2(m) ( ) when applied to a trend plus standardized t(3) white noise (T = 100 . . . time
series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals
for the empirical size).
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Empirical power: Trend alternatives with t(3) noise (T = 100, N = 10000)

 B) Linear trend 

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
 C) Quadratic trend 

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Em
pir

ica
l po

we
r  D) Exponential trend 

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
 E) Piece−wise constant trend 

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
 F) Piece−wise linear trend 

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Em
pir

ica
l po

we
r

m

 G) Sinusoidal trend 

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

m

 H) Arch−shaped trend 

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

m

 I) Increasing curly trend 

Figure 3.4: Behaviour of the tests based on SS(m) (◦◦◦◦◦), SW,0(m) ( ), SW,1(m) ( ) and
SW,2(m) ( ) when applied to a trend plus standardized t(3) white noise (T = 100 . . . time
series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals
for the empirical size).
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Empirical power: Trend alternatives with t(3) noise (T = 100, N = 10000)
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Figure 3.5: Behaviour of the tests based on S⊥S (m) (◦◦◦◦◦), S⊥M,0(m) ( ), S⊥M,1(m) ( ) and
S⊥M,2(m) ( ) when applied to a trend plus standardized t(3) white noise (T = 100 . . . time
series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals
for the empirical size).
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Empirical power: Trend alternatives with t(3) noise (T = 100, N = 10000)
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Figure 3.6: Behaviour of the tests based on S⊥S (m) (◦◦◦◦◦), S⊥W,0(m) ( ), S⊥W,1(m) ( ) and
S⊥W,2(m) ( ) when applied to a trend plus standardized t(3) white noise (T = 100 . . . time
series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals
for the empirical size).
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Empirical power: Trend alternatives with t(3) noise (T = 100, N = 10000)
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Figure 3.7: Behaviour of the tests based on SS(m) (◦◦◦◦◦), SM,0(m) ( ), SW,0(m) ( ) and
SMW,0(m) ( ) when applied to a trend plus standardized t(3) white noise (T = 100 . . . time
series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals
for the empirical size).
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Empirical power: Trend alternatives with t(3) noise (T = 200, N = 10000)
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Figure 3.8: Behaviour of the tests based on SS(m) (◦◦◦◦◦), SM,0(m) ( ), SW,0(m) ( ) and
SMW,0(m) ( ) when applied to a trend plus standardized t(3) white noise (T = 200 . . . time
series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals
for the empirical size).
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Empirical power: Short−Trend alternatives with t(3) noise (T = 25, N = 10000)
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Figure 3.9: Behaviour of the tests based on SS(m) (◦◦◦◦◦), SM,0(m) ( ), SM,1(m) ( ) and
SM,2(m) ( ) when applied to a short trend plus standardized t(3) white noise (T = 25 . . . time
series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals
for the empirical size).
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Empirical power: Short−Trend alternatives with t(3) noise (T = 25, N = 10000)
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Figure 3.10: Behaviour of the tests based on SS(m) (◦◦◦◦◦), SMW,0(m) ( ), SMW,1(m) ( )
and SMW,2(m) ( ) when applied to a short trend plus standardized t(3) white noise (T = 25
. . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence
intervals for the empirical size).
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Empirical power: Short−Trend alternatives with t(3) noise (T = 25, N = 10000)
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Figure 3.11: Behaviour of the tests based on SS(m) (◦◦◦◦◦), SM,0(m) ( ), SW,0(m) ( )
and SMW,0(m) ( ) when applied to a short trend plus standardized t(3) white noise (T = 25
. . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence
intervals for the empirical size).
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Empirical power: Short−Trend alternatives with t(3) noise (T = 25, N = 10000)
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Figure 3.12: Behaviour of the tests based on S⊥S (m) (◦◦◦◦◦), S⊥M,0(m) ( ), S⊥W,0(m) ( )
and S⊥MW,0(m) ( ) when applied to a short trend plus standardized t(3) white noise (T = 25
. . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence
intervals for the empirical size).
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Empirical power: ARMA(1,1) alternatives with t(3) noise (T = 200, N = 10000)
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Figure 3.13: Behaviour of the tests based on SS(m) (◦◦◦◦◦), SW,0(m) ( ), SW,1(m) ( )
and SW,2(m) ( ) when applied to ARMA(1,1) processes with standardized t(3) white noise
(T = 200 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size, A,B . . . ARMA parameters a1, b1).
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Empirical power: ARMA(1,1) alternatives with t(3) noise (T = 500, N = 10000)
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Figure 3.14: Behaviour of the tests based on SS(m) (◦◦◦◦◦), SW,0(m) ( ), SW,1(m) ( )
and SW,2(m) ( ) when applied to ARMA(1,1) processes with standardized t(3) white noise
(T = 500 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size, A,B . . . ARMA parameters a1, b1).
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Empirical power: ARMA(1,1) alternatives with normal noise (T = 500, N = 10000)
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Figure 3.15: Behaviour of the tests based on SS(m) (◦◦◦◦◦), SW,0(m) ( ), SW,1(m) ( )
and SW,2(m) ( ) when applied to ARMA(1,1) processes with standard normal white noise
(T = 500 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size, A,B . . . ARMA parameters a1, b1).
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Empirical power: ARMA(1,1) alternatives with t(3) noise (T = 500, N = 10000)
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Figure 3.16: Behaviour of the tests based on SS(m) (◦◦◦◦◦), SM,0(m) ( ), SM,1(m) ( )
and SM,2(m) ( ) when applied to ARMA(1,1) processes with standardized t(3) white noise
(T = 500 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size, A,B . . . ARMA parameters a1, b1).
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Empirical power: GARCH(1,1) alternatives with t(3) noise (T = 5000, N = 10000)
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Figure 3.17: Behaviour of the tests based on SS(m) (◦◦◦◦◦), SM,0(m) ( ), SM,1(m) ( )
and SM,2(m) ( ) when applied to GARCH(1,1) models with standardized t(3) innovations
(T = 5 000 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size, A,B . . . GARCH parameters a1, b1).
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Empirical power: GARCH(1,1) alternatives with t(3) noise (T = 5000, N = 10000)
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Figure 3.18: Behaviour of the tests based on SS(m) (◦◦◦◦◦), SW,0(m) ( ), SW,1(m) ( )
and SW,2(m) ( ) when applied to GARCH(1,1) models with standardized t(3) innovations
(T = 5 000 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size, A,B . . . GARCH parameters a1, b1).
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Empirical power: GARCH(1,1) alternatives with normal noise (T = 5000, N = 10000)
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Figure 3.19: Behaviour of the tests based on SS(m) (◦◦◦◦◦), SM,0(m) ( ), SM,1(m) ( )
and SM,2(m) ( ) when applied to GARCH(1,1) models with standard normal innovations
(T = 5 000 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size, A,B . . . GARCH parameters a1, b1).
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Empirical power: GARCH(1,1) alternatives with normal noise (T = 5000, N = 10000)
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Figure 3.20: Behaviour of the tests based on SS(m) (◦◦◦◦◦), SW,0(m) ( ), SW,1(m) ( )
and SW,2(m) ( ) when applied to GARCH(1,1) models with standard normal innovations
(T = 5 000 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size, A,B . . . GARCH parameters a1, b1).



Chapter 4

Testing Random Number Generators

The means, variances and covariances of the Moore and Wallis serial rank coefficients should be the
same for both independent and pseudo-random sequences, which might be used for testing the qual-
ity of (pseudo-)random number generators (RNGs). Such general tests do not figure in any of the
recent summary papers covering this area, see e.g. [Soto, 1999] and [L’Ecuyer and Simard, 2005],
and this is why we investigate this possibility here. Besides, we would like to show that the Moore
and Wallis orthonormal autocorrelations can be helpful even in this context.

4.1 Methodology and Realization

We focus on the following five RNGs:

RNG1: the Wichmann-Hill generator,
RNG2: Marsaglia’s multiply-with-carry generator,
RNG3: Marsaglia’s Super-Duper generator,
RNG4: the Mersenne-Twister generator,
RNG5: the Knuth-TAOCP generator (the 2002 version),

that are implemented and referenced in R, see [R Development Core Team, 2005]. We use each
of them with three different seed initializations (−1, 0, and 1). For comparison, we also analyse
Marsaglia’s allegedly perfect random numbers from his well known CD [Marsaglia, 1995], stored
in the subdirectory TrueRandNum.

We always get r = 200 time series with T = 500 000 observations, use each of them to compute
the orthonormal Moore and Wallis serial rank coefficients at lags 1 to c = 500 and calculate the
one-sided (upper) p–values from their squares by means of the χ2(1) inverse distribution function.
Finally, we analyse the matrices PM

200×500 = (pM
i,j) and PW

200×500 = (pW
i,j) of the p–values associated

with the Moore and Wallis orthonormal rank autocorrelations, respectively. (Generally, we use M
and W to distinguish anything related to these two kinds of coefficients.)

Suppose we are just processing such a matrix P = (pi,j). First, we employ the Fisher and
Tippett combining methods, used and described in Chapter 9 in a different context. To be more
specific, we use Fisher’s method to combine all p–values from the column Tippett ones, which

57
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leads to the final p–value pF from the test TF based on the statistic

SF = −2
c∑

j=1

ln
(
1−

(
1− min

i=1,...,r
(pi,j)

)r)
with the χ2(2c) asymptotic distribution under the null hypothesis H0 of ideal randomness.

And second, we apply Pearson’s χ2 multinomial goodness-of-fit test to all pi,j ’s and compute
both its p–values pn for any reasonably small integer number n of isometric interval cells and the
overall p–values

p̄N = (N − 1) min
n=2,...,N

pn

resulting from Bonferroni’s crude approach to combining possibly dependent tests. The choice of
just the Pearson test can be justified easily, see e.g. [Cressie and Read, 1984], [Haberman, 1988]
and references therein. By the way, it also seems promising to combine the p–values pi,j ’s into
m–tuples (m = 2, 3, . . . ) in a reasonable way and then to test their m–dimensional uniformity, e.g.
again with a goodness-of-fit test.

Our primary intention is to show that the Moore and Wallis orthonormal autocorrelations can
be useful in this context and that even common RNGs can significantly influence some Monte
Carlo studies based on them. Even these elementary statistical tools are then sufficient for this
purpose. That is to say there is a common belief that perfect RNGs should pass any simple
statistical test. Besides, the Moore and Wallis coefficients can be interpreted as measures of the
forecast direction predictability and that is another reason why any good RNG should not fail in
the tests based on them.

The generation of (pseudo-)random numbers and computation of the standardized Moore and
Wallis autocorrelations can be reproduced with RNGDat.r and RNTrueRan.r, their orthonormal-
ization with RNGDatOrt.m and RNTrueRanOrt.m and the statistical analysis with RNEval.r,
RNEvalAdd.r, RNEvalAdd2.r and RNExam.r. All the final results are stored in the RNGAnaly-
sis subdirectory and some of them are also illustrated in Tables 4.1 to 4.6.

It remains to assess the results and provide them with a few comments. We consider several
evaluation schemes for the purpose of greater objectivity. All of them are based on pM

F , pW
F , p̄M

NM

and p̄W
NW

and differ from one another only in the choice of NM and NW . We reject H0 at a level α
if at least one of these p–values is less than α/4.

It is evident that RNG2(-1) leads to rejecting H0 at the level α = 0.003, and both RNG2(0) and
RNG2(1) allow us to reject H0 even for α as low as 0.0001. Besides, the pM

n ’s and p̄M
N ’s observed

also indicate some discrepancies regarding this generator. We thus conclude that there is something
wrong with RNG2 and we do not consider it hereafter. It is quite surprising because RNG2 is said
to pass all the Diehard tests (see [Marsaglia, 1995]), at least according to the R documentation.

We can get very interesting results, depending on NM and NW :

• (NM = 500, NW = 500) This is the choice where the benchmark Marsaglia’s numbers clearly
look as perfectly random from all our points of view. Nevertheless, both RNG3(1) and
RNG5(0) would reject H0 at a significance level lower than 0.05.

• (NM = 700, NW = 700) Although there is no apparent change in the behaviour of Marsaglia’s
numbers, we could reject H0 in the case of RNG3(1), RNG4(0), and RNG5(0) at the levels
0.05, 0.04, and 0.02, respectively.
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• (NM = 800, NW = 800) The benchmark still seems all right but RNG1(0), RNG1(1),
RNG3(-1), RNG3(0), RNG3(1), RNG4(0), RNG5(0) and RNG5(1) reject H0 for α = 0.05
and RNG1(0), RNG3(-1), RNG4(0), RNG5(0) do so even for α = 0.003.

• (NM = 700, NW = 1400) Marsaglia’s numbers and all the generators except for RNG4(-1),
RNG4(1) and RNG5(-1) reject H0 at a level lower than 0.03, with RNG1(0), RNG1(1),
RNG3(-1), RNG3(0), RNG4(0) and RNG5(0) rejecting at a level lower than 0.002.

• (NM = 1200) We can reject H0 due to p̄NM
at a level lower than 0.0002 in all the cases.

Note that RNG1, RNG3, RNG4, and RNG5 would appear even much worse if we based their
evaluation only on p̄W

NW
’s and if we computed these overall p–values more naturally, i.e. only from

the individual p–values pn’s with sufficiently high n’s.
You can also consult the files RNGOrtCoefMsExam.txt and RNGOrtCoefWsExam.txt where

the individual contributions of all cells to the Pearson χ2 statistic are reported for several prob-
lematic n’s in each case. They further confirm the peculiar behaviour of some generators and give
deeper insight into why their randomness is rejected.

In principle, these results need not be infallible due to several factors including round-off errors,
numerical inaccuracies, bad implementation or asymptotic approximations to the finite sample
distributions. All of them might deteriorate (but almost never improve) the output. We neither
plan to investigate all these factors in detail, nor do we intend to conduct similar experiments with
other T ’s, r’s, and c’s because it would lie far beyond the scope of this work. Therefore we are
not going to render any definitive judgments. In fact, we are not even competent enough to draw
irrefutable conclusions regarding RNGs and related topics.

However, it seems reasonable to assume the results quite reliable at least when Marsaglia’s
numbers appear correct (although they need not be absolutely faultless either, see [Davies, 1999]).
The implications are then straightforward:

• the outputs of Monte Carlo studies should be judged very reservedly and with extreme care,

• the way RNGs are initialised matters considerably (and thus it should not be chosen at
random),

• RNG4(1) appears the best of all the possibilities investigated.

Nevertheless, much more investigation would be necessary to assess the RNGs at least a little
objectively. Some proposals for further improvements are made in the last chapter.

We can conclude that the Moore and Wallis orthonormal autocorrelations can be useful for
testing the quality of RNGs and that all the Monte Carlo studies in this work may be somewhat
biased due to the RNG employed.
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4.2 Accompanying Tables

Random Number Generator No. 1
Seed = −1 Seed = 0 Seed = 1

M W M W M W
pF 0.11381 0.32835 0.82310 0.42284 0.14625 0.23693
p̄2 0.68565 (2) 0.04170 (2) 0.74225 (2) 0.36578 (2) 0.29669 (2) 0.77111 (2)
p̄100 1 (95) 1 (2) 1 (74) 1 (76) 1 (92) 1 (80)
p̄200 1 (155) 1 (2) 1 (161) 1 (114) 1 (153) 1 (105)
p̄300 1 (238) 1 (2) 1 (239) 1 (243) 1 (248) 1 (105)
p̄400 1 (395) 1 (2) 0.24703 (366) 1 (243) 0.52437 (397) 1 (105)
p̄500 0.90174 (405) 1 (478) 0.30894 (366) 1 (486) 0.02084 (459) 1 (478)
p̄600 1 (405) 1 (478) 0.37085 (366) 1 (502) 0.02502 (459) 0.14984 (536)
p̄700 0.84657 (682) 1 (671) 0.43276 (366) 1 (676) 0.02920 (459) 0.17485 (536)
p̄800 0.03247 (797) 0.12670 (778) 0.01413 (751) 0.00054 (782) 0.00282 (727) 0.00229 (778)
p̄900 0.00169 (882) 0.00693 (877) 0.00076 (881) 0.00012 (813) 0.00318 (727) 0.00019 (847)
p̄1000 1.5E-06 (983) 0.00379 (909) 0.00003 (995) 0.00013 (813) 0.00017 (986) 0.00021 (847)
p̄1100 9.8E-09 (1078) 0.00417 (909) 1.5E-06 (1069) 0.00015 (813) 4.6E-06 (1061) 0.00023 (847)
p̄1200 6.1E-14 (1189) 0.00455 (909) 1.5E-11 (1194) 0.00016 (813) 1.5E-08 (1146) 0.00025 (847)
p̄1300 – – 0.00493 (909) – – 0.00017 (813) – – 0.00027 (847)
p̄1400 – – 0.00531 (909) – – 0.00019 (813) – – 0.00029 (847)

Table 4.1: Selected outputs regarding RNG1, including both Fisher’s p–values pF ’s and Pearson’s overall
p–values p̄N ’s, N = 2, 100, . . . , 1 400, each with the most influential number of cells in parenthesis. The
letters M , W denote the relation to the Moore or Wallis orthonormal autocorrelations.

Random Number Generator No. 2
Seed = −1 Seed = 0 Seed = 1

M W M W M W
pF 0.00052 0.81083 0.00001 0.22623 0.00002 0.65180
p̄2 0.00461 (2) 0.06208 (2) 0.65797 (2) 0.84952 (2) 0.01682 (2) 1 (2)
p̄100 0.45595 (2) 1 (2) 0.01379 (77) 1 (18) 0.01341 (4) 1 (18)
p̄200 0.91651 (2) 1 (2) 0.01328 (160) 1 (166) 0.02695 (4) 1 (18)
p̄300 1 (2) 1 (2) 0.01996 (160) 1 (274) 0.04050 (4) 1 (18)
p̄400 1 (2) 1 (2) 0.02663 (160) 1 (332) 0.00649 (379) 1 (18)
p̄500 1 (2) 1 (2) 0.03331 (160) 1 (332) 0.00812 (379) 1 (18)
p̄600 1 (2) 1 (2) 0.03999 (160) 1 (332) 0.00975 (379) 1 (18)
p̄700 1 (629) 1 (671) 0.04666 (160) 1 (699) 0.01137 (379) 1 (646)
p̄800 1 (727) 1 (722) 0.00519 (777) 0.00974 (776) 0.00167 (755) 0.09831 (797)
p̄900 0.00184 (825) 0.59274 (898) 0.00448 (851) 0.00402 (870) 0.00001 (861) 0.04151 (875)
p̄1000 7.5E-07 (957) 0.44242 (935) 0.00011 (989) 0.00446 (870) 3.8E-07 (974) 0.04613 (875)
p̄1100 1.6E-08 (1080) 0.48671 (935) 1.4E-06 (1099) 0.00491 (870) 5.0E-10 (1097) 0.05075 (875)
p̄1200 4.8E-10 (1178) 0.53099 (935) 2.1E-09 (1167) 0.00536 (870) 6.2E-13 (1199) 0.05537 (875)
p̄1300 – – 0.57528 (935) – – 0.00581 (870) – – 0.05998 (875)
p̄1400 – – 0.61956 (935) – – 0.00625 (870) – – 0.06460 (875)

Table 4.2: Selected outputs regarding RNG2, including both Fisher’s p–values pF ’s and Pearson’s overall
p–values p̄N ’s, N = 2, 100, . . . , 1 400, each with the most influential number of cells in parenthesis. The
letters M , W denote the relation to the Moore or Wallis orthonormal autocorrelations.
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Random Number Generator No. 3
Seed = −1 Seed = 0 Seed = 1

M W M W M W
pF 0.85716 0.57444 0.55431 0.56818 0.38730 0.48162
p̄2 0.14230 (2) 0.57783 (2) 0.64884 (2) 1 (2) 0.31461 (2) 0.33007 (2)
p̄100 1 (92) 0.47135 (97) 1 (96) 1 (96) 0.85076 (94) 1 (22)
p̄200 0.14577 (169) 0.33606 (184) 1 (158) 1 (96) 1 (94) 1 (166)
p̄300 0.21902 (169) 0.50493 (184) 1 (201) 1 (253) 1 (279) 1 (166)
p̄400 0.04604 (368) 0.25077 (327) 1 (336) 1 (253) 1 (391) 1 (166)
p̄500 0.04850 (434) 0.10158 (487) 1 (420) 1 (470) 0.29736 (431) 0.00812 (498)
p̄600 0.05822 (434) 0.12194 (487) 1 (420) 1 (470) 0.35695 (431) 0.00975 (498)
p̄700 0.06794 (434) 0.14229 (487) 1 (691) 0.20928 (682) 0.13842 (695) 0.01137 (498)
p̄800 0.07766 (434) 0.00066 (790) 1 (764) 0.00213 (768) 0.03489 (794) 0.00751 (772)
p̄900 0.00012 (899) 0.00002 (864) 0.00381 (900) 9.7E-07 (825) 0.00063 (867) 0.00057 (817)
p̄1000 3.5E-06 (992) 0.00002 (864) 0.00005 (958) 1.1E-06 (825) 0.00001 (997) 0.00063 (817)
p̄1100 1.8E-08 (1030) 0.00002 (864) 0.00006 (958) 1.2E-06 (825) 8.9E-08 (1100) 0.00070 (817)
p̄1200 2.7E-11 (1171) 0.00002 (864) 1.8E-08 (1114) 1.3E-06 (825) 4.4E-11 (1162) 0.00076 (817)
p̄1300 – – 0.00003 (864) – – 1.4E-06 (825) – – 0.00082 (817)
p̄1400 – – 0.00003 (864) – – 1.5E-06 (825) – – 0.00089 (817)

Table 4.3: Selected outputs regarding RNG3, including both Fisher’s p–values pF ’s and Pearson’s overall
p–values p̄N ’s, N = 2, 100, . . . , 1 400, each with the most influential number of cells in parenthesis. The
letters M , W denote the relation to the Moore or Wallis orthonormal autocorrelations.

Random Number Generator No. 4
Seed = −1 Seed = 0 Seed = 1

M W M W M W
pF 0.55659 0.41500 0.87013 0.58007 0.91034 0.97978
p̄2 0.36914 (2) 0.63977 (2) 0.75663 (2) 0.72795 (2) 0.14402 (2) 0.64884 (2)
p̄100 1 (94) 1 (58) 1 (24) 1 (86) 1 (72) 1 (5)
p̄200 1 (136) 1 (136) 1 (190) 0.96578 (170) 1 (72) 1 (5)
p̄300 1 (292) 1 (210) 1 (230) 1 (170) 1 (72) 1 (5)
p̄400 1 (292) 1 (210) 1 (345) 0.74362 (340) 1 (72) 1 (5)
p̄500 1 (431) 1 (485) 1 (345) 0.19897 (474) 1 (72) 1 (467)
p̄600 1 (431) 1 (485) 1 (345) 0.23885 (474) 1 (72) 1 (467)
p̄700 1 (431) 1 (696) 1 (690) 0.00787 (691) 1 (649) 1 (649)
p̄800 0.02559 (792) 0.20206 (758) 0.13542 (799) 0.00069 (749) 1 (781) 1 (761)
p̄900 0.01051 (881) 0.22735 (758) 0.00085 (872) 0.00017 (808) 0.03882 (875) 0.40773 (832)
p̄1000 1.5E-06 (978) 0.25264 (758) 3.6E-07 (1000) 0.00019 (808) 0.00230 (983) 0.45308 (832)
p̄1100 9.6E-07 (1019) 0.27793 (758) 4.2E-11 (1084) 0.00021 (808) 1.1E-06 (1096) 0.49843 (832)
p̄1200 2.4E-08 (1191) 0.30322 (758) 4.5E-11 (1084) 0.00023 (808) 3.5E-09 (1113) 0.54379 (832)
p̄1300 – – 0.32851 (758) – – 0.00024 (808) – – 0.58914 (832)
p̄1400 – – 0.35380 (758) – – 0.00026 (808) – – 0.63449 (832)

Table 4.4: Selected outputs regarding RNG4, including both Fisher’s p–values pF ’s and Pearson’s overall
p–values p̄N ’s, N = 2, 100, . . . , 1 400, each with the most influential number of cells in parenthesis. The
letters M , W denote the relation to the Moore or Wallis orthonormal autocorrelations.
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Random Number Generator No. 5
Seed = −1 Seed = 0 Seed = 1

M W M W M W
pF 0.66292 0.74477 0.43675 0.87417 0.11573 0.87557
p̄2 0.37252 (2) 1 (2) 0.19698 (2) 0.64884 (2) 0.55217 (2) 1 (2)
p̄100 1 (98) 1 (91) 1 (8) 1 (91) 1 (74) 1 (4)
p̄200 1 (196) 1 (125) 1 (8) 1 (193) 1 (146) 1 (4)
p̄300 1 (196) 1 (125) 1 (8) 1 (272) 1 (146) 1 (261)
p̄400 1 (392) 1 (339) 1 (371) 0.35297 (332) 0.50148 (379) 1 (314)
p̄500 1 (392) 1 (471) 1 (371) 0.01218 (477) 0.62718 (379) 1 (435)
p̄600 1 (392) 1 (471) 1 (371) 0.01215 (506) 0.75286 (379) 1 (435)
p̄700 1 (392) 1 (471) 1 (371) 0.00404 (685) 0.87855 (379) 0.88785 (696)
p̄800 1 (780) 0.70505 (792) 1 (757) 0.00029 (794) 0.32536 (776) 0.00652 (776)
p̄900 0.17347 (890) 0.09737 (815) 0.70935 (898) 0.00001 (849) 0.00399 (876) 0.00322 (823)
p̄1000 0.00199 (924) 0.10820 (815) 0.02111 (1000) 0.00001 (849) 0.00006 (992) 0.00358 (823)
p̄1100 0.00001 (1020) 0.11903 (815) 0.00049 (1093) 0.00001 (849) 2.5E-06 (1091) 0.00394 (823)
p̄1200 2.5E-06 (1175) 0.12986 (815) 0.00004 (1174) 0.00001 (849) 2.0E-08 (1154) 0.00430 (823)
p̄1300 – – 0.14069 (815) – – 0.00001 (849) – – 0.00465 (823)
p̄1400 – – 0.15152 (815) – – 0.00001 (849) – – 0.00501 (823)

Table 4.5: Selected outputs regarding RNG5, including both Fisher’s p–values pF ’s and Pearson’s overall
p–values p̄N ’s, N = 2, 100, . . . , 1 400, each with the most influential number of cells in parenthesis. The
letters M , W denote the relation to the Moore or Wallis orthonormal autocorrelations.

Marsaglia’s Random Numbers
M W

pF 0.61085 0.81276
p̄2 0.90435 (2) 0.09250 (2)
p̄100 1 (4) 1 (52)
p̄200 1 (4) 1 (52)
p̄300 1 (255) 1 (52)
p̄400 0.86766 (370) 1 (52)
p̄500 1 (370) 1 (429)
p̄600 1 (370) 1 (429)
p̄700 0.75951 (699) 1 (429)
p̄800 0.04278 (772) 0.19087 (707)
p̄900 0.00740 (862) 0.00231 (898)
p̄1000 0.00014 (989) 0.00257 (898)
p̄1100 0.00001 (1051) 0.00283 (898)
p̄1200 4.3E-08 (1138) 0.00309 (898)
p̄1300 – – 0.00334 (898)
p̄1400 – – 0.00360 (898)

Table 4.6: Selected outputs regarding Marsaglia’s numbers, including Fisher’s p–values pF ’s and Pearson’s
overall p–values p̄N ’s, N = 2, 100, . . . , 1 400, each with the most influential number of cells in parenthesis.
The letters M , W denote the relation to the Moore or Wallis orthonormal autocorrelations.



Chapter 5

Kendall’s Rank Autocorrelations

In this chapter, we are going to extend the results regarding the noncircular Kendall rank auto-
correlations (from [Ferguson et al., 2000]) and to judge their usefulness and possible application
in portmanteau tests.

5.1 Theory

We start with the definition from [Ferguson et al., 2000]:

Definition 12. The Kendall rank autocorrelations r̂K(k)’s, k = 1, 2, . . . , are defined by

r̂K(k) = 1−
4Nk,T

(T − k)(T − k − 1)
where Nk,T =

T−k∑
i=1

T−k∑
j=1

I(Ri < Rj , Ri+k > Rj+k).

Here we will also consider their exactly and roughly standardized versions r̃K(k)’s and r̄K(k)’s:

r̃K(k) =
r̂K(k)− E0

(
r̂K(k)

)√
var0

(
r̂K(k)

) , r̄K(k) =
r̂K(k)− E0

(
r̂K(k)

)
2/(3

√
T )

.

The following theorem summarizes some relevant results proved ibidem.

Theorem 13. If we assume the null hypothesis HE
0 to be true, then

E0

(
Nk,T

)
=

(3T − 3k − 1)(T − k)
12

− k

6
for 1 ≤ k < T

2 ,

=
(T − k)(T − k − 1)

4
for T

2 ≤ k < T − 1,

var0(N1,T ) =
10T 3 − 37T 2 + 27T + 74

360
for T ≥ 4,

√
T r̂K(k) ∼asympt. N(0, 4

9) for k ≥ 1.

Besides, it also holds asymptotically that r̃K(k)’s are then equivalent to r̃S(k)’s, jointly standard
normal and independent.

63
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Proof. See [Ferguson et al., 2000].

Unfortunately, there are no formulae for var0
(
r̂K(k)

)
’s at lags k > 1 given there (because of

their extremely tedious computation), although the authors indicated that they could be found
essentially in the same way. But such formulae are needed for the accurate standardization of
r̂K(k)’s and that is why we derive them now.

Theorem 14 (Variances of r̂K(k)’s). If HE
0 holds, T > k > 0, and T ≥ 8, then

var0
(
r̂K(k)

)
=

=
2[10T 3 + (−30k + 15)T 2 + (30k2 − 30k − 25)T + (−10k3 + 15k2 + 25k)]

45(T − k)2(T − k − 1)2
, k < T < 2k,

=
2[10T 3 + (−30k + 13)T 2 + (30k2 − 34k − 21)T + (−10k3 + 31k2 + 17k)]

45(T − k)2(T − k − 1)2
, 2k ≤ T < 3k,

=
2[10T 3 + (−30k − 7)T 2 + (30k2 + 46k − 37)T + (−10k3 − 29k2 + 65k)]

45(T − k)2(T − k − 1)2
, 3k ≤ T < 4k,

=
2[10T 3 + (−30k − 7)T 2 + (30k2 + 46k − 49)T + (−10k3 − 29k2 + 113k)]

45(T − k)2(T − k − 1)2
, T ≥ 4k.

Proof. It is sufficient to get var0(Nk,T ). The second moment

E0(N2
k,T ) =

T−k∑
i

T−k∑
j

T−k∑
p

T−k∑
q

P (Ri < Rj , Ri+k > Rj+k, Rp < Rq, Rp+k > Rq+k)

can be decomposed as in [Ferguson et al., 2000]:

E0(N2
k,T ) = A + 2B + 2C + D,

A =
∑
i,j

P (Ri < Rj , Ri+k > Rj+k),

B =
∑

i,j,q 6=j

P (Ri < Rj , Ri+k > Rj+k, Ri < Rq, Ri+k > Rq+k),

C =
∑

i,j 6=p,p6=i

P (Ri < Rj , Ri+k > Rj+k, Rp < Ri, Rp+k > Ri+k),

D =
∑

i,j,p,q distinct

P (Ri < Rj , Ri+k > Rj+k, Rp < Rq, Rp+k > Rq+k),

where A = E0(Nk,T ) is already known.
As far as the terms B, C, D are concerned, the indices of R’s may mutually coincide and thus

numerous special cases must be considered separately, see [Ferguson et al., 2000] for some details.
All the complicated computation was realized by means of the Maple program KMomComp.mws
(with almost 20 pages of a dense code). The auxiliary R files KProbs.r and KExactMom.r compute
empirically the probabilities P (Ri < Rj , Ri+k > Rj+k, Rp < Rq, Rp+k > Rq+k) and the variances
var(Nk,T ) for small T ’s (and under HE

0 ).

Note. These formulae agree exactly with the results obtained for k = 1 in [Ferguson et al., 2000].
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5.2 Monte Carlo Simulations

Both the coefficients r̃K(k)’s and r̄K(k)’s are asymptotically independent and thus they seem to be
prime candidates for using in the portmanteau tests. The empirical study in [Ferguson et al., 2000]
indicates that some improvement could really be achieved this way in practice (despite the asymp-
totic equivalence of r̃K(k)’s and r̃S(k)’s under HE

0 ).
We investigate such possibility in this small comparative Monte Carlo study where the bench-

mark test TS(m) and the tests TKA
(m) and TKE

(m) based on the statistics SKA
(m) and SKE

(m)
are judged,

SKA
(m) =

m∑
k=1

r̄2
K(k) ∼asympt. χ2(m), SKE

(m) =
m∑

k=1

r̃2
K(k) ∼asympt. χ2(m).

We take account of all the time series from the classes TREND (T = 100), SHORTTREND
(T = 25), ARMA (T = 100) and GARCH (T = 200). The lines , and ◦◦◦◦◦ correspond
to the tests TS , TKA

and TKE
, respectively.

The results lead to the following conclusions:

• The test TKA
(m) is badly sized even for very small m’s and quite long time series with

T = 200 observations, see Figure 5.4. It clearly demonstrates that the standardization by
means of the asymptotic variance is inappropriate, and it also justifies our effort spent on
the derivation of the exact formulae for var0

(
r̂K(k)

)
’s.

• In general, the tests TS and TKE
always exhibit virtually the same size. Besides, they also

have almost the same power when longer time series are investigated, see Figures 5.3 and 5.4.
Therefore we cannot recommend to use TKE

for longer time series, as the computation of
SKE

is then usually more demanding than the evaluation of SS .

• However, TKE
(m) clearly outperforms TS(m) in the case of short trend alternatives when it

is much less sensitive to the misspecification of m and its maximum power may exceed that
of TS(m) even by more than 5 percentage points, see Figures 5.1 and 5.2.

• TKE
(1) is sometimes much less powerful than TKE

(m) with a higher value of m (see e.g.
Figures 5.1, 5.2 and 5.4), which speaks in favour of the use and existence of the precisely
standardized Kendall rank autocorrelations at higher lags.
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5.3 Accompanying Figures
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Empirical power: Short−Trend alternatives with normal noise (T = 25, N = 10000)
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Figure 5.1: Behaviour of the tests based on SS(m) ( ), SKA
(m) ( ) and SKE

(m) (◦◦◦◦◦)
when applied to a short trend plus N(0,1) white noise (T = 25 . . . time series length, N = 10 000
. . . number of replications, . . . bounds of 95% confidence intervals for the empirical size).
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Empirical power: Short−Trend alternatives with t(3) noise (T = 25, N = 10000)
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Figure 5.2: Behaviour of the tests based on SS(m) ( ), SKA
(m) ( ) and SKE

(m) (◦◦◦◦◦)
when applied to a short trend plus standardized t(3) white noise (T = 25 . . . time series length,
N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals for the empirical
size).
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Empirical power: ARMA(1,1) alternatives with normal noise (T = 100, N = 10000)
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Figure 5.3: Behaviour of the tests based on SS(m) ( ), SKA
(m) ( ) and SKE

(m) (◦◦◦◦◦)
when applied to ARMA(1,1) processes with N(0,1) white noise (T = 100 . . . time series length,
N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals for the empirical
size, A,B . . . ARMA parameters a1, b1).
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Empirical power: GARCH(1,1) alternatives with t(3) noise (T = 200, N = 10000)
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Figure 5.4: Behaviour of the tests based on SS(m) ( ), SKA
(m) ( ) and SKE

(m) (◦◦◦◦◦)
when applied to GARCH(1,1) models with standardized t(3) innovations (T = 200 . . . time series
length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals for the
empirical size, A,B . . . GARCH parameters a1, b1).



Chapter 6

Weighted Kendall’s Serial Rank
Coefficients

Kendall’s rank autocorrelations are quite slow to compute, especially in the case of long time
series. We show that this drawback can be overcome by introducing their weighted modifications
that can be obtained easily as the most natural generalization of both those serial unweighted
[Ferguson et al., 2000] and nonserial weighted [Shieh, 1998] Kendall’s serial rank coefficients.

6.1 Theory

For simplicity, we only introduce the standardized versions of the weighted Kendall autocorrela-
tions.

Definition 15. The standardized weighted Kendall serial rank coefficients r̃K,w(k)’s, k = 1, 2, . . . ,
are defined in the following way:

r̃K,w(k) =
Nk,w,T − E0(Nk,w,T )√

var0(Nk,w,T )
, where Nk,w,T =

T−k∑
i=1

T−k∑
j=1

w(i, j) I(Ri < Rj , Ri+k > Rj+k)

and w is a real function symmetric in its arguments and possibly dependent on k.

As we want to speed up the computation, we focus only on the trimmed weighting functions
satisfying w(i, j) = 0 for |i− j| > m, m < T , namely on those listed below:

w1(i, j) = I(|i− j| ≤ m), w2(i, j) = |i− j| I(|i− j| ≤ m),
w3(i, j) = (m + 1− |i− j|) I(|i− j| ≤ m), w4(i, j) = (i + j) I(|i− j| ≤ m).

The means, variances and joint asymptotic normality of r̃K,w(k)’s can be obtained easily in all
these cases.

Theorem 16. If the null hypothesis HE
0 holds, w = w1, w2, w3 or w4, T ≥ 8, T ≥ 5k + m, and

m ≥ 3k, then the means and variances of Nk,w,T ’s are as follows:

E0(Nk,w1,T ) =
(1

2
m +

1
6

)
T − 1

4
m2 − 1

2
km− 1

4
m− 1

3
k,

68
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var0(Nk,w1,T ) =
(1

9
m2 +

13
180

m− 1
15

k − 23
180

)
T − 5

54
m3 − 43

360
m2 − 1

9
km2 − 29

1080
m +

1
12

km

+
31
180

k2 +
23
60

k,

E0(Nk,w2,T ) =
(1

4
m2 +

1
4
m +

1
6
k
)
T − 1

6
m3 − 1

4
m2 − 1

4
km2 − 1

4
km− 1

12
m− 1

3
k2,

var0(Nk,w2,T ) =
( 1

36
m4 +

79
540

m3 +
59
360

m2 − 2
9
km2 − 2

9
km +

49
1080

m− 19
90

k2 +
7
60

k3 − 1
30

k
)
T

− 4
135

m5 − 1
36

km4 − 307
2160

m4 − 23
120

m3 +
1

540
km3 +

16
45

k2m2 − 167
2160

m2

+
7

120
km2 +

16
45

k2m +
31

1080
km +

1
540

m− 217
1080

k4 +
4
5
k3 +

37
1080

k2,

E0(Nk,w3,T ) =
(1

4
m2 +

5
12

m− 1
6
k +

1
6

)
T − 1

12
m3 − 1

4
m2 − 1

4
km2 − 7

12
km− 1

6
m +

1
3
k2 − 1

3
k,

var0(Nk,w3,T ) =
( 1

36
m4 +

5
108

m3 − 59
360

m2 +
7
45

km2 +
8
15

km− 11
90

k2m− 67
216

m +
7
60

k3 − 1
3
k2

+
31
90

k − 23
180

)
T − 17

1080
m5 − 107

2160
m4 − 1

36
km4 − 23

540
km3 − 29

1080
m3 +

13
432

m2

+
127
360

km2 − 11
60

k2m2 +
17
270

k3m +
5

216
m +

791
1080

km− 107
90

k2m− 217
1080

k4

+
233
270

k3 − 1049
1080

k2 +
197
540

k,

E0(Nk,w4,T ) =
(1

2
m +

1
6

)
T 2 +

(
−1

4
m2 +

1
4
m− km− 1

2
k +

1
6

)
T +

1
4
km2 − 1

4
m2 − 1

4
km

+
1
2
k2m− 1

4
m +

1
3
k2 − 1

3
k,

var0(Nk,w4,T ) =
( 4

27
m2 +

13
135

m− 4
45

k − 23
135

)
T 3

+
(
− 5

27
m3 − 4

9
km2 − 1

60
m2 +

49
540

m +
1
45

km +
8
9
k +

43
90

k2 − 23
90

)
T 2

+
( 17

216
m4 − 11

270
m3 +

10
27

km3 +
4
9
k2m2 − 13

135
m2 − 2

45
km2 − 3

5
k2m +

7
135

km

− 1
360

m− 467
540

k3 − 71
45

k2 +
134
135

k − 23
270

)
T − 1

60
m5 − 83

2160
m4 − 17

216
km4

− 5
27

k2m3 − 31
360

m3 +
11
270

km3 +
7
60

k2m2 − 4
27

k3m2 +
13
135

km2 − 35
432

m2

− 47
540

k2m +
29
45

k3m +
23
216

km− 1
60

m +
23
40

k4 +
107
90

k3 − 27
40

k2 +
23
90

k.

Proof. This proof is similar to that of Theorem 14 but the resulting formulae obtained directly
that way are too difficult to simplify. Fortunately, the weighting functions w1, . . . , w4 lead to the
means and variances in a polynomial form whose maximum possible powers of T , k, and m can
be determined easily in advance. We therefore compute the values of E0(Nk,w,T ) and var0(Nk,w,T )
for numerous choices of T , k, and m and then fit them with an adequate polynomial.

All the computations can be reproduced by means of the Maple codes KWMomCompW1.mws,
KWMomCompW2.mws, KWMomCompW3.mws, and KWMomCompW4.mws that also allow us
to calculate the moment characteristics for any weights if T and k are given. The results can be
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checked with KWExactMom.r and KWMeanVarCheck.mws.
We discuss only the case when T ≥ 5k + m and m ≥ 3k, which is usually the most relevant

in the time series context. Nevertheless, the other possibilities could be treated analogously with
the same programs.

Note. Apparently, the exact formulae for E0(Nk,w,T ) and var0(Nk,w,T ) can be derived the same
way even for any other weighting functions in a polynomial (or other similar) form. Recall that
a large number of weighting functions may be approximated by a polynomial thanks to the Taylor
formula.
Note. Unfortunately, the covariances cov0

(
r̃K,w(h), r̃K,w(k)

)
’s, 1 ≤ h < k < T, still remain un-

known because their computation seems tedious even for us. The use of r̃K,w(k)’s in portmanteau
tests thus remains problematic. However, these autocorrelations can still be employed individu-
ally, especially the coefficient r̃K,w(1). Its asymptotic standard normal distribution is guaranteed
by the next theorem.

Theorem 17 (Asymptotic distribution under HE
0 ). Let us assume that HE

0 holds and that w is an
arbitrary symmetric weighting function such that w(i, j) = 0 for |i− j| > m. Then the individual
coefficient r̃K,w(k) is asymptotically standard normal for any k ≥ 1.

Proof. If H0 holds, then the asymptotic distribution of r̃K,w(k) does not depend on L(Yt) and
hence Yt’s can be treated as uniformly distributed in [0, 1] without any loss of generality. As
Nk,w,T can be rewritten in the following form:

Nk,w,T =
T−k∑
i=1

T−k∑
j=1

w(i, j) I(Ri < Rj , Ri+k > Rj+k)

=
T−k∑
i=1

T−k∑
j=i+1

w(i, j)
[
I(Yi < Yj , Yi+k > Yj+k) + I(Yi > Yj , Yi+k < Yj+k)

]
=

T−k∑
i=1

Si,k,

where

Si,k =
i+m∑

j=i+1

w(i, j)
[
I(Yi < Yj , Yi+k > Yj+k) + I(Yi > Yj , Yi+k < Yj+k)

]
are (m + k)-dependent random variables and

E(Nk,w,T ) =
T−k∑
i=1

E(Si,k),

it suffices to apply any suitable central limit theorem for m-dependent random variables, just as
in the proof of Theorem 7.

The joint distribution of Ri’s is identical under both H0 and HE
0 (see [Dufour and Roy, 1986]),

which implies that the same holds even for the asymptotic distribution of r̃K,w(k).
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Note. This theorem deserves a few more comments. First, the joint asymptotic zero mean normal
distribution of the first r̃K,w(k)’s (possibly together with other such coefficients at the same lags
but with different weighting functions) could be proved virtually the same way as in Theorem 7.

Second, Nk,w,T can be treated as a serial linear rank statistic if the trimmed weights w(i, j)’s de-
pend only on the difference j−i. Then the relevant theory might be applied, see e.g. [Turova, 2004],
[Harel and Puri, 1990], [Hallin et al., 1987], and [Hallin et al., 1985].

And third, Nk,w,T ’s have much in common with the weighted U -statistics UT (k)’s of degree
two:

UT (k) =
2

(T − k)(T − k − 1)

T−k∑
i=1

T−k∑
j=i+1

w(i, j)g(Zi,Zj),

where

Zi = (Yi, Yi+k), Zj = (Yj , Yj+k),
g(Zi,Zj) = I(Yi > Yj , Yi+k < Yj+k) + I(Yi < Yj , Yi+k > Yj+k).

See [Hsing and Wu, 2004] and references therein for current knowledge on them.

Now we are going to proceed with the empirical investigation of r̃K,w(1).

6.2 Monte Carlo Simulations

We investigate the performance of the newly introduced weighted Kendall serial rank coefficients
r̃K,w1(1), r̃K,w2(1), r̃K,w3(1), and r̃K,w4(1) in dependence on the trimming parameter m. To be
more specific, we use the two-sided tests TK , TK,w1(m), TK,w2(m), TK,w3(m), and TK,w4(m) based
on the statistics SK , SK,w1(m), SK,w2(m), SK,w3(m), and SK,w4(m):

SK = r̃K(1),
SK,wi(m) = r̃K,wi(1), i = 1, 2, 3, 4,

that are all asymptotically standard normal under HS
0 . TK is included only as a benchmark.

We consider the classes ARMA (T = 50), LONGARMA (T = 100) and GARCH (T = 200)
and all the time series therein. In fact, it is quite natural to aim at longer time series where the
differences in the computational costs are more significant and where the Moore and Wallis serial
rank coefficients cannot be applied too successfully. The lines , , ◦◦◦◦◦ , and
correspond to the tests TK , TK,w1(m), TK,w2(m), TK,w3(m), and TK,w4(m), respectively.

All the results (illustrated in Figures 6.1 to 6.4) speak for the following conclusions:

• All the tests are correctly sized for all the time series lengths considered (T = 50, 100, 200).
The only exception regards the tests TK,w1 and TK,w3 for small values of T and m (T = 50
and m ≤ 5).

• The test TK,w4 clearly exhibits the lowest power. However, it might still be reasonable to
apply in some special cases, e.g. if we decided to prefer more topical observations.
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• On the other hand, TK,w1 proves the best in the case of ARMA processes and TK,w2 appears
so for GARCH(1,1) alternatives, especially for those with persistent volatility. As far as
their overall behaviour is concerned, TK,w2 seems to be the winner.

• The tests Twi , i = 1, 2, 3, 4, never beat TK significantly, at least in all the situations investi-
gated.

• There is hardly any reason for setting m > T/3. In fact, satisfactory results can often be
achieved even with much lower values of m.

It seems that the newly proposed tests could really be found useful for quick testing against
extremely long ARMA or GARCH time series alternatives.
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6.3 Accompanying Figures
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Empirical power: ARMA(1,1) alternatives with normal noise (T = 50, N = 10000)
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Figure 6.1: Behaviour of the tests based on SK ( ), SK,w1(m) ( ), SK,w2(m) (◦◦◦◦◦),
SK,w3(m) ( ) and SK,w4(m) ( ) when applied to ARMA(1,1) processes with N(0,1) white
noise (T = 50 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of
95% confidence intervals for the empirical size, A,B . . . ARMA parameters a1, b1).
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Empirical power: Long−ARMA(1,1) alternatives with normal noise (T = 100, N = 10000)
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Figure 6.2: Behaviour of the tests based on SK ( ), SK,w1(m) ( ), SK,w2(m) (◦◦◦◦◦),
SK,w3(m) ( ) and SK,w4(m) ( ) when applied to long ARMA(1,1) processes with N(0,1)
white noise (T = 100 . . . time series length, N = 10 000 . . . number of replications, . . . bounds
of 95% confidence intervals for the empirical size, A,B . . . ARMA parameters a1, b1).
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Empirical power: GARCH(1,1) alternatives with normal noise (T = 200, N = 10000)
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Figure 6.3: Behaviour of the tests based on SK ( ), SK,w1(m) ( ), SK,w2(m) (◦◦◦◦◦),
SK,w3(m) ( ) and SK,w4(m) ( ) when applied to GARCH(1,1) models with N(0,1) innova-
tions (T = 200 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of
95% confidence intervals for the empirical size, A,B . . . GARCH parameters a1, b1).
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Empirical power: GARCH(1,1) alternatives with t(3) noise (T = 200, N = 10000)
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Figure 6.4: Behaviour of the tests based on SK ( ), SK,w1(m) ( ), SK,w2(m) (◦◦◦◦◦),
SK,w3(m) ( ) and SK,w4(m) ( ) when applied to GARCH(1,1) models with standardized
t(3) innovations (T = 200 . . . time series length, N = 10 000 . . . number of replications,
. . . bounds of 95% confidence intervals for the empirical size, A,B . . . GARCH parameters a1, b1).



Chapter 7

Autocorrelations of Scores

Contrary to the Moore and Wallis serial rank coefficients, the Spearman ones are not invariant to
all possible increasing transformations of the ranks. This chapter contains a few comments and
suggestions on this issue.

7.1 Introduction

Correlation of scores is a common tool for statistical analysis of ordered nonserial data, see e.g.
[Tarsitano, 2002] for a review. It has been successfully generalised to the time series context
in a string of articles including [Hallin et al., 1985], [Hallin et al., 1987], [Hallin and Puri, 1988a],
and [Hallin and Puri, 1988b] where the f -rank (sample) autocorrelation coefficients r̂f (k)’s and
their standardized versions r̃f (k)’s are introduced:

r̂f (k) =
1

T − k

T−k∑
i=1

G
(Ri+k

T+1

)
F−1

(
Ri

T+1

)
, r̃f (k) =

r̂f (k)− E0

(
r̂f (k)

)√
var0

(
r̂f (k)

) ,

where G(·) = −f ′
(
F−1(·)

)
/f
(
F−1(·)

)
and F−1(·) is the quantile function associated with the

density type f . For example, the van der Waerden rank autocorrelations r̂ϕ(k)’s,

r̂ϕ(k) =
1

T − k

T−k∑
i=1

Φ−1
(Ri+k

T+1

)
Φ−1

(
Ri

T+1

)
,

correspond to the standard normal density ϕ and beat the sample ordinary ones in many respects.
Subject to certain regularity conditions, r̂f (k)’s are known asymptotically jointly normal un-

der HE
0 and optimal from several points of view for testing against ARMA alternatives with the

underlying white noise density f (same references). Unfortunately, these conditions rule out several
important distributions such as the Cauchy, Student, and uniform ones. Besides, the original for-
mulae for E0

(
r̂f (k)

)
and var0

(
r̂f (k)

)
are very complicated and unusable in practice for higher T ’s as

they include complicated double and quadruple sums over almost all the ranks, see ibidem. Fortu-
nately, their simplification in [Hallin and Mélard, 1988] (see also [Hallin and Puri, 1994]) weakens
the last mentioned drawback significantly.

75
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If the null hypothesis HS
0 is assumed, the signed-rank modifications r̂−f (k)’s with much simpler

means and variances may be employed as well, see e.g. [Hallin et al., 1990] and references therein.
They are claimed to yield substantially better performance in some cases, although they are
known to be asymptotically equivalent to r̂f (k)’s under HS

0 (and therefore also under all local
alternatives). For example, the signed-rank van der Waerden autocorrelations r̂−ϕ (k)’s,

r̂−ϕ (k) =
1

T − k

T−k∑
i=1

sign(YiYi+k)Φ−1
(

1
2 +

R+
i+k

2(T+1)

)
Φ−1

(
1
2 + R+

i
2(T+1)

)
,

are tailored to normal white noise and strongly encouraged to be used in practice, see ibidem.
Other related references are probably also worth mentioning. First, the signed-and-rank auto-

correlations (suitable for testing the zero median white noise null hypothesis) are introduced and
investigated in [Hallin et al., 2006]. Second, the application of (possibly signed) f -rank autocorre-
lations to the estimated residuals from ARMA(X) models is considered in [Hallin and Puri, 1994]
and [Ferretti et al., 1995]. And third, multivariate generalizations of these coefficients also exist,
see [Hallin and Paindaveine, 2006], [Oja and Paindaveine, 2005], [Hallin and Paindaveine, 2005],
[Hallin and Paindaveine, 2004a], [Hallin and Paindaveine, 2004b], [Hallin and Paindaveine, 2002].

7.2 Theory

First, we specify the autocorrelation coefficients of our current interest.

Definition 18. Let us define the transformed ranks Pi(F )’s, the transformed ranks of absolute
values P+

i (F )’s and their signed versions P−
i (F )’s in the following way:

Pi(F ) = F−1
(

Ri
T+1

)
, P+

i (F ) = F−1
(
ξ + (1− ξ) R+

i
(T+1)

)
, P−

i (F ) = sign(Yi)P+
i (F ),

where F−1 stands for any increasing quantile function and ξ is the number satisfying F−1(ξ) = 0.
Their sample (F -rank) autocorrelations will be further denoted by r̂F (k)’s, r̂+

F (k)’s and r̂−F (k)’s,
respectively. For example,

r̂F (k) =
∑T−k

i=1

(
Pi(F )− P̄ (F )

)(
Pi+k(F )− P̄ (F )

)∑T
i=1

(
Pi(F )− P̄ (F )

)2 , P̄ (F ) =
1
T

T∑
i=1

Pi(F ).

Besides, the symbol r̂∗F (k) will be used to replace all the coefficients r̂F (k), r̂+
F (k), r̂−F (k).

Basic properties of these coefficients are established by the next theorems.

Theorem 19. If 1 ≤ k < h < T/2 , T > 3 and F−1 is an arbitrary increasing quantile function,
then:

|r̂∗F (k)| ≤ 1,

E0

(
r̂∗F (k)

)
= − T − k

T (T − 1)
,
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var0
(
r̂∗F (k)

)
≤ V C =

T 3 − (k + 5)T 2 + (5k + 6)T + 2k(k − 4)
T (T − 1)2(T − 3)

,

E0

(
r̂∗F (k)r̂∗F (h)

)
=

(
(T − h)(T + k)− 2kh

)(
2Q∗(F )− 1

)
T (T − 1)(T − 2)(T − 3)

,

and

E0

(
r̂∗F (k)

)2 =
(−T 3 + (k + 3)T 2 − kT − 6k2)Q∗(F ) + T 3 − T 2(k + 4) + 3T (k + 1) + 3k(k − 1)

T (T − 1)(T − 2)(T − 3)
,

where

1
T
≤ Q∗(F ) =

∑T
i=1

(
P ∗

i (F )− P̄ ∗(F )
)4(∑T

i=1

(
P ∗

i (F )− P̄ ∗(F )
)2)2 ≤ 1,

P̄ ∗(F ) =
1
T

T∑
i=1

P ∗
i (F ).

The subscript 0 refers to HS
0 if ∗ stands for − (and to HE

0 otherwise). This convention holds
everywhere in this chapter.

Note. The variances and covariances follow immediately.

Proof. It suffices to realize that

• both Pi(F )’s and P+
i (F )’s are exchangeable under HE

0 and the same holds even for P−
i (F )’s

under HS
0 ,

• Q∗(F ) is a deterministic factor depending solely on F and T in this context,

• P
(
P ∗

1 (F ) = P ∗
2 (F ) = · · · = P ∗

T (F )
)

= 0 due to (strictly) increasing F−1.

The rest follows from the theory developed in [Dufour and Roy, 1985], [Dufour and Roy, 1986] for
the autocorrelations of exchangeable variables. Partial verification of the results is possible by
means of SCMoms.r.

These moment characteristics can naturally be used for standardization.

Definition 20. Let us define the standardized coefficients r̃∗F (k)’s:

r̃∗F (k) =
r̂∗F (k)− E0

(
r̂∗F (k)

)√
var0

(
r̂∗F (k)

) ,

and both their orthonormal versions r∗⊥F (k)’s (see Section 3.7) and conservative modifications

r̈∗F (k) =
r̂∗F (k)− E0

(
r̂∗F (k)

)
√

V C
, k = 1, 2, . . .

see e.g. [Dufour and Roy, 1986] for another example of the use of conservative variances of some
autocorrelations in portmanteau tests.
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Although the coefficients like r̂∗F (k)’s are already known and their exact means and variances
follow easily from [Hallin and Mélard, 1988], we are not aware of any use of their conservative
variances or finite sample covariances and therefore we present the formulae here.

Note. Apparently, cov
(
r̃∗F (k), r̃∗F (h)

)
= O(T−1), 1 ≤ k < h < T/2, independently of F .

Theorem 21. Let F−1 be an increasing quantile function continuously differentiable in (0, 1) that
corresponds to a finite variance distribution. If HE

0 holds and m > 0 is a fixed integer, then

r̃F (k) ∼asympt. N(0, 1), k = 1, . . . ,m,

and these coefficients are moreover asymptotically both jointly normal and independent.
The same holds even for r̃+

F (k)’s when it suffices to consider the differentiability condition only
in (ξ, 1).

Proof. We can focus on r̃F (k)’s without any loss of generality. The only important stochastic term
in the definition of r̃F (k) is the product

∑T−k
i=1 Pi(F )Pi+k(F ) whose asymptotic normal distribution

under H0 results from [Harel and Puri, 1990]. The extension to HE
0 is straightforward and the

statement regarding the joint asymptotic normality and independence follows directly from the
Cramér-Wold device and the preceding note.

Note. The asymptotic normality of r̃F (k)-like coefficients is also discussed elsewhere, see e.g.
[Nieuwenhuis and Ruymgaart, 1990], [Tran, 1990], [Haeusler et al., 2000], and [Turova, 2004]. Be-
sides, the case of r̃Φ(k)’s under HE

0 is also covered by [Hallin et al., 1987].
As far as r̃−F (k)’s are concerned, it is quite natural to assume them asymptotically jointly

normal as well (see e.g. [Hallin et al., 1990]) and this normal approximation indeed works well in
our Monte Carlo experiments. We do not analyse their asymptotic normality and independence
here because our simulation results indicate that it is not worth any effort, and we rather refer to
[Hallin and Puri, 1994], [Hallin and Paindaveine, 2006] and references therein.

Note. All these coefficients r̃∗F (k)’s have a strong advantage over the f -rank ones: their stan-
dardization is very simple and their finite sample covariances are also known and easy to com-
pute. Furthermore, we show in Chapter 10 that r̃F (k)’s (and r̃+

F (k)’s) are uncorrelated with and
asymptotically independent of r̃M (k)’s and r̃W (k)’s under HE

0 , contrary to the f -rank autocor-
relations with unequal score functions. Besides, r̃Φ(k) is asymptotically equivalent (under HE

0 )
to the most promising f -rank autocorrelation coefficient r̃ϕ(k) and the same holds for r̃−Φ (k) and
r̃−ϕ (k) under HS

0 . It also explains why we leave the (possibly signed) f -rank autocorrelations out
in further considerations.

Now we proceed with a few Monte Carlo experiments to reveal some pros and cons of r̃∗F (k)’s.

7.3 Monte Carlo Simulations

We investigate the portmanteau tests T̃ ∗• (m), T ∗⊥• (m) and T̈ ∗• (m) associated with the statistics

S̃∗•(m) =
m∑

k=1

(
r̃∗•(k)

)2
, S∗⊥• (m) =

m∑
k=1

(
r∗⊥• (k)

)2
, S̈∗•(m) =

m∑
k=1

(
r̈∗•(k)

)2;
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• always stands for the cumulative distribution functions of the standard normal, logistic, Laplace
and t(5) distributions. We use the subscripts t(5), Norm, Log, and Lap for short when referring to
them individually. Besides, we consider the benchmark tests T̃S(m), T̃+

S (m), and T̃−S (m), based on
the sum of the first m squared standardized Spearman coefficients computed from the ranks, from
the ranks of absolute values and from the signed ranks, respectively. They roughly correspond
to T̃ ∗• (m)’s with a uniform distribution used. The orthonormal and conservative modifications of
such Spearman coefficients are employed in ¨ and ⊥ versions of T̃ ∗S . It remains to note that we
assume the χ2(m) null asymptotic distribution for all the tests based on the first m autocorrelations
of any kind.

Simulation results have been obtained for all the classes SHORTTREND (T = 25), TREND
(T = 100), ARMA (T = 50), LONGARMA (T = 100) and GARCH (T = 200). They speak for
themselves and need little comment. The most important conclusions are illustrated in Figures
7.1 to 7.10:

• All the tests T̃ ∗• (m)’s and T ∗⊥• (m)’s exhibit roughly the same size behaviour as the bench-
mark T̃S(m). T̈ ∗• (m)’s seem convenient for application only if the other tests are oversized.

• Not surprisingly, the tests with ∗ equal to blank space are in general the most suitable for
testing against SHORTTREND, TREND, ARMA, and LONGARMA alternatives while the
+ tests are the most advisable against the GARCH ones. There is hardly any reason to
employ the − tests for testing against TREND or SHORTTREND alternatives and besides,
they never lead to a power growth higher than one or two percentage points even if the time
series from ARMA and LONGARMA classes are considered.

• The tests based on the orthonormal coefficients should generally be preferred, especially for
shorter time series when their use may cause a power increase higher than 12 percentage
points. This shows the importance of the covariances between the single coefficients.

• As far as the TREND and SHORTTREND alternatives are concerned, T⊥Norm(m) slightly
dominates the other tests T⊥• (m) in the case of N(0,1) white noise while T⊥S (m) clearly
leads the area when the t(3) distribution is used instead. But T⊥Norm(m) is never signifi-
cantly outperformed by any other test T⊥• (m) if applied to the ARMA and LONGARMA
alternatives.

• As for the GARCH alternatives, T+⊥
Lap(m) appears the best and sometimes beats the bench-

mark T+⊥
S (m) and the test T+⊥

Norm(m) even by more than 24 and 5 percentage points, re-
spectively. This conclusively confirms the qualities of the score autocorrelation coefficients
considered here and gives reasons for their existence. By the way, it is still quite possible
that there exists a function F leading to even better results.

Given a white noise or an ARMA time series, [Chan, 1995] convincingly demonstrates (both
theoretically and empirically) that two additive outliers of the same sign, say at times t and t+ k,
crucially influence the sample ordinary autocorrelation at lag k and force its value to 0.5 as their
magnitude and time series length increase. Besides, [Burns, 2002] further supports these results.
In light of this, the conclusions regarding GARCH alternatives are not as surprising as they could
seem at first sight because one typical feature of any volatile series is that the observations with
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high absolute values (and thus with high transformed ranks) occur close to one another in clusters.
This heuristics also partly explains why T+⊥

Log (m) and T+⊥
t(5)(m) achieve almost the same power as

the winner T+⊥
Lap(m) and clearly beat the benchmark T+⊥

S (m) in the GARCH context.
We should perhaps mention as well that [Abadir and Talmain, 2005] show an important case

when a simple logarithmic transformation results in much more autocorrelated data. Therefore
the success of F−1

Lap is not quite unexpected even from this point of view.
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7.4 Accompanying Figures
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Empirical power: Short−Trend alternatives with normal noise (T = 25, N = 10000)
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Figure 7.1: Behaviour of the tests T⊥S (m) ( ), T⊥Norm(m) ( ), T̃Norm(m) ( ), T−⊥S (m)
( ) and T−⊥Norm(m) (◦◦◦◦◦) when applied to a short trend plus N(0,1) white noise (T = 25
. . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence
intervals for the empirical size).
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Empirical power: Short−Trend alternatives with t(3) noise (T = 25, N = 10000)
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Figure 7.2: Behaviour of the tests T⊥S (m) ( ), T⊥Norm(m) ( ), T̃Norm(m) ( ), T−⊥S (m)
( ) and T−⊥Norm(m) (◦◦◦◦◦) when applied to a short trend plus standardized t(3) white noise
(T = 25 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size).
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Empirical power: Trend alternatives with normal noise (T = 100, N = 10000)
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Figure 7.3: Behaviour of the tests T⊥S (m) ( ), T⊥Norm(m) ( ), T̃Norm(m) ( ), T−⊥S (m)
( ) and T−⊥Norm(m) (◦◦◦◦◦) when applied to a trend plus N(0,1) white noise (T = 100 . . . time
series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals
for the empirical size).
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Empirical power: Trend alternatives with t(3) noise (T = 100, N = 10000)
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Figure 7.4: Behaviour of the tests T⊥S (m) ( ), T⊥Norm(m) ( ), T̃Norm(m) ( ), T−⊥S (m)
( ) and T−⊥Norm(m) (◦◦◦◦◦) when applied to a trend plus standardized t(3) white noise (T = 100
. . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence
intervals for the empirical size).
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Empirical power: ARMA(1,1) alternatives with normal noise (T = 50, N = 10000)
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Figure 7.5: Behaviour of the tests T⊥S (m) ( ), T⊥Norm(m) ( ), T̃Norm(m) ( ), T−⊥S (m)
( ) and T−⊥Norm(m) (◦◦◦◦◦) when applied to ARMA(1,1) processes with N(0,1) white noise
(T = 50 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size, A,B . . . ARMA parameters a1, b1).
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Empirical power: ARMA(1,1) alternatives with t(3) noise (T = 50, N = 10000)
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Figure 7.6: Behaviour of the tests T⊥S (m) ( ), T⊥Norm(m) ( ), T̃Norm(m) ( ), T−⊥S (m)
( ) and T−⊥Norm(m) (◦◦◦◦◦) when applied to ARMA(1,1) processes with standardized t(3) white
noise (T = 50 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of
95% confidence intervals for the empirical size, A,B . . . ARMA parameters a1, b1).



CHAPTER 7. AUTOCORRELATIONS OF SCORES 84

1 5 10 15 20 25 30
0.06

0.08

0.1

0.12

0.14

Em
pir

ica
l p

ow
er

 A = 0, B = 0 

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Empirical power: Long−ARMA(1,1) alternatives with normal noise (T = 100, N = 10000)
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Figure 7.7: Behaviour of the tests T⊥S (m) ( ), T⊥Norm(m) ( ), T̃Norm(m) ( ), T−⊥S (m)
( ) and T−⊥Norm(m) (◦◦◦◦◦) when applied to long ARMA(1,1) processes with N(0,1) white noise
(T = 100 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size, A,B . . . ARMA parameters a1, b1).
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Empirical power: Long−ARMA(1,1) alternatives with t(3) noise (T = 100, N = 10000)

 A = −0.2, B = 0 

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
 A = 0, B = −0.2 

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Em
pir

ica
l p

ow
er

 A = 0.2, B = 0 

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
 A = 0, B = 0.2 

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
 A = 0.1, B = 0.1 

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Em
pir

ica
l p

ow
er

m

 A = −0.1, B = −0.1 

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

m

 A = 0.1, B = 0.2 

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

m

 A = 0.2, B = 0.1 

Figure 7.8: Behaviour of the tests T⊥S (m) ( ), T⊥Norm(m) ( ), T̃Norm(m) ( ), T−⊥S (m)
( ) and T−⊥Norm(m) (◦◦◦◦◦) when applied to long ARMA(1,1) processes with standardized t(3)
white noise (T = 100 . . . time series length, N = 10 000 . . . number of replications, . . . bounds
of 95% confidence intervals for the empirical size, A,B . . . ARMA parameters a1, b1).
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Empirical power: GARCH(1,1) alternatives with normal noise (T = 200, N = 10000)
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Figure 7.9: Behaviour of the tests T+⊥
S (m) ( ), T̃+

S (m) (◦◦◦◦◦), T+⊥
Norm(m) ( ) and T+⊥

Lap(m)
( ) when applied to GARCH(1,1) models with standard normal innovations (T = 200 . . . time
series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals
for the empirical size, A,B . . . GARCH parameters a1, b1).
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Empirical power: GARCH(1,1) alternatives with t(3) noise (T = 200, N = 10000)
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Figure 7.10: Behaviour of the tests T+⊥
S (m) ( ), T̃+

S (m) (◦◦◦◦◦), T+⊥
Norm(m) ( ) and T+⊥

Lap(m)
( ) when applied to GARCH(1,1) models with standardized t(3) innovations (T = 200 . . . time
series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals
for the empirical size, A,B . . . GARCH parameters a1, b1).



Chapter 8

A Cautionary Note

The asymptotic independence of some serial rank coefficients under a null hypothesis of randomness
tempts into the wrong belief that their mutual covariances can always be ignored completely. But
this conviction may lead to very badly sized tests (i.e. to very misleading results), which is
demonstrated in this chapter.

For example, let us consider the statistic

SΣ(m) =
m∑

k=1

r̃S(k).

It is quite representative as the tests based on (possibly weighted) sums of some autocorrelations
play an important role in statistical inference, see [Hallin et al., 1985], [Hallin and Puri, 1988a],
[Hallin and Puri, 1988b], [Richardson and Smith, 1994], [Hong, 1997], [Levich and Rizzo, 1998],
and [Daniel, 2001], among others.

SΣ(m) is asymptotically zero mean normal under HE
0 , see Subsection 1.2.8. If we neglect the

influence of cov0

(
r̃S(k), r̃S(h)

)
’s, its variance is var0

(
SΣ(m)

)
= m and does not depend on T . The

trouble is that all the covariances cov0

(
r̃S(k), r̃S(h)

)
’s are asymptotically O(−2/T ) and therefore

of the same sign for sufficiently large T ’s, see Subsection 1.2.8 or [Dufour and Roy, 1986]. If we
take account of them, we get var0

(
SΣ(m)

)
far from m even for high T ’s:

var0
(
SΣ(m)

)
T = 25 T = 50 T = 100 T = 200 T = 500 T = 1 000

m = 5 3.29 4.17 4.59 4.80 4.92 4.96
m = 10 3.13 6.38 8.19 9.10 9.64 9.82
m = 12 2.63 6.77 9.35 10.68 11.47 11.74
m = 15 – 6.91 10.82 12.90 14.16 14.58
m = 20 – 6.21 12.56 16.22 18.48 19.24
m = 24 – 5.25 13.36 18.54 21.80 22.90
m = 25 – – 13.48 19.08 22.61 23.80
m = 30 – – 13.67 21.47 26.54 28.26

These results can be checked by means of the Maple code CIVars.mws.
Fortunately, this discrepancy regarding the impact of cov0

(
r̃S(k), r̃S(h)

)
’s can be wrestled with

easily. For example, we could simply consider their influence when computing var0
(
SΣ(m)

)
, or we
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could use the orthonormal autocorrelations r⊥S (k)’s (see Section 3.7) instead of r̃S(k)’s. However,
the dependence and nonnormal null distribution of r̃S(k)’s or r⊥S (k)’s in finite samples may still
give rise to some inaccuracies.

Although this problem is illustrated only by r̃S(k)’s here, the results are of much more general
validity. For example, the standardized ordinary autocorrelations generally suffer from the same
drawback (see [Dufour and Roy, 1985]), e.g. their covariances are also asymptotically O(−2/T )
if computed from normal white noise. The Moore serial rank coefficients r̃M (k)’s, r̃M,1(k)’s and
r̃M,2(k)’s or the standardized score autocorrelations r̃F (k)’s also have their covariances under HE

0

of the same sign for T sufficiently large (see Section 3.2 and Chapter 7) and so on. This partly
explains why the sum-based tests are often empirically investigated only with very high T ’s (see
for example [Levich and Rizzo, 1998]) or not at all.



Chapter 9

Autocorrelation Signs Matter

The benchmark portmanteau test based on the first few squared autocorrelations totally ignores
their signs even when they are likely to play an important role. In this chapter, we introduce its
competitors not suffering from this drawback and show their clear dominance over the benchmark
in many important cases.

9.1 Theory

In principle, rank portmanteau tests check the joint asymptotic multivariate standard normal
distribution of some sample serial coefficients r•(k)’s standardized under HE

0 . However, they are
asymptotically gaussian under a great many alternatives as well (see e.g. Section 3.4, [Tran, 1990],
[Nieuwenhuis and Ruymgaart, 1990], and [Harel and Puri, 1990]) and thus this normal asymptotic
distribution seems less characteristic of the null hypothesis than its parameters themselves.

It therefore appears quite natural to check HE
0 with the aid of some tests based only on the

minimal sufficient statistic (r̄•, s̄2
•),

r̄• =
1
m

m∑
k=1

r•(k), s̄2
• =

1
m

m∑
k=1

(r•(k)− r̄•)2,

for unknown parameters of the univariate normal distribution of r•(k)’s, k = 1, . . . ,m. Besides,
such tests have the intuitive appeal that they can be sensitive even to the alternatives with small
nonzero autocorrelations of a dominant sign. As

√
mr̄• and ms̄2

• are continuous functions of(
r•(1), . . . , r•(m)

)
, they are asymptotically independent under HE

0 with asymptotic distributions
N(0,1) and χ2(m− 1), respectively.

For example, we could apply some methods for combining independent tests of the same null
hypothesis. In this special case, we want to combine two χ2 tests based on mr̄2

• and ms̄2
•. Available

literature on this topic indicates that we can focus only on the sum, Fisher and Tippett procedures
(see e.g. [Koziol and Perlman, 1978] and references therein).

Fisher’s one is known superior to many others and asymptotically Bahadur optimal in the class
of virtually all possible combination methods, see [Littell and Folks, 1971, Littell and Folks, 1973].
Contrary to many others, both Fisher’s and Tippett’s procedure are admissible in this context
(see [Marden, 1982]) and neither of them can be generally preferred, see [Westberg, 1985].

88
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In the case of combining independent χ2 tests, both the sum and Fisher method are known to
minimize the maximum shortcoming in power relative to several other procedures, respectively for
all degrees of freedom equal to one and greater than one, see [Koziol and Perlman, 1978]. Their
combination is recommended otherwise, see ibidem. Both these approaches may also have their
natural Bayes interpretation, see [Koziol and Perlman, 1978] and [Koziol and Tuckwell, 1999].

In the general case of n independent test statistics Ci ∼ χ2(pi), i = 1, . . . , n, under the same
null hypothesis, the Tippett, Fisher and sum methods and the combination of the last two lead
to the tests with the critical regions:

min
(
1− Fχ2(p1)(C1), . . . , 1− Fχ2(pn)(Cn)

)
≤ 1− (1− α)1/n,

n∑
i=1

−2 ln
(
1− Fχ2(pi)(Ci)

)
≥ F−1

χ2(2n)
(1− α),

n∑
i=1

Ci ≥ F−1
χ2(
Pn

i=1 pi)
(1− α),∑

i,pi=1

Ci − 2
∑

i,pi>1

ln
(
1− Fχ2(pi)(Ci)

)
≥ F−1

χ2(
P

i,pi=1 pi+2
P

i,pi>1 1)
(1− α),

respectively, where α is the overall significance level. Note that the Fisher and sum tests coincide
here if all pi = 2 (see [Koziol and Perlman, 1978]) and that [Han, 1989] also used the Fisher
method for combining single (but non-serial) correlations together (but in a completely different
way and context).

In the special situation considered in this chapter, these methods result in the tests T 1
• (m),

. . . , T 4
• (m) with the following critical regions:

T 1
• : min

(
1− Fχ2(1)(mr̄2

•), 1− Fχ2(m−1)(ms̄2
•)
)

≤ 1−
√

1− α,

T 2
• : − 2 ln

(
1− Fχ2(1)(mr̄2

•)
)
− 2 ln

(
1− Fχ2(m−1)(ms̄2

•)
)

≥ F−1
χ2(4)

(1− α),

T 3
• : mr̄2

• + ms̄2
• ≥ F−1

χ2(m)
(1− α),

T 4
• : mr̄2

• − 2 ln
(
1− Fχ2(m−1)(ms̄2

•)
)

≥ F−1
χ2(3)

(1− α).

Note that T 3
• is equal to the benchmark form of the portmanteau test, i.e. to the sum

∑m
k=1 r2

•(k).
However, it is likely to perform worse than T 4

• , especially for higher values of m (see for instance
[Koziol and Perlman, 1978]).

Another possibility is to use some weighted combining methods, for example those asymptot-
ically Bahadur optimal (see e.g. [Berk and Cohen, 1979]) or those with a natural Bayes interpre-
tation (see e.g. [Koziol and Perlman, 1978] and [Koziol and Tuckwell, 1999]). However, we do not
intend to proceed this way here.

Finally, even the full specification tests of the normal distribution summarized and investi-
gated in [Omelka, 2004], [Omelka, 2005] might come in handy. Unfortunately, they are designed
(and often also optimized) for the testing problem assuming some gaussian random sample also
under its alternative, which is usually not exactly the case of r•(k)’s obtained from the time se-
ries alternatives frequently considered in practice. However, there is still some hope that they
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will perform well even in our context. The most promising ones lead to the portmanteau tests
T 5
• (m), . . . , T 9

• (m) associated with the statistics

S5
• = mr̄2

• + m
(
s̄2
• − 1− ln(s̄2

•)
)

∼asympt. χ2(2),

S6
• =

mr̄2
•

s̄2
•

+
m(s̄2

• − 1)2

2s̄4
•

∼asympt. χ2(2),

S7
• = mr̄2

• +
m

2
(r̄2
• + s̄2

• − 1)2 ∼asympt. χ2(2),

S8
• = mr̄2

• +
m− 1

2

(
ms̄2

•
m− 1

− 1
)2

∼asympt. χ2(2),

S9
• = −2 ln

(
2
[
1− Φ(|

√
mr̄•|)

])
− 2 ln

[
1− Fχ2(2)

(
−2 ln(Hm)

)]
∼asympt. χ2(4),

where m is assumed greater than two and

Hm = 2 I
(
ms̄2

• ≤ F−1
χ2(m−1)

(0.5)
)
Fχ2(m−1)(ms̄2

•) + 2 I
(
ms̄2

• > F−1
χ2(m−1)

(0.5)
)
[1− Fχ2(m−1)(ms̄2

•)].

Their asymptotic distribution under the null hypothesis is stated behind the ∼ sign. Note that
T 2
• and T 9

• are based on the same idea, i.e. on the Fisher combination method.
Although a great number of portmanteau tests have already been proposed and some of them

have even been tailored for the alternatives with autocorrelations of a dominant sign (see Chap-
ter 1), none of them to the best of our knowledge coincides with any of the tests T 1

• , T 2
• , T 4

•
to T 9

• .

9.2 Monte Carlo Simulations

Now we investigate the tests T 1
• , . . . , T 9

• with some reasonable r•(k)’s in a small simulation ex-
periment. Its results regarding the SHORTTREND (T = 20, 25, 50), TREND (T = 75, 100, 200),
ARMA (T = 50, 100, 200), LONGARMA (T = 200, 500) and GARCH (T = 200, 2000) time series
indicate several conclusions that are partly illustrated in Figures 9.1 to 9.14 and briefly summarized
bellow:

• Only orthonormal coefficients prove good.

• T 5
• , T 6

• and T 7
• are poorly sized even for moderate values of m and they are therefore quite

inconvenient for any practical application.

• In general, T 2
• appears slightly superior to all its competitors as for the test size, especially

if r⊥S (k)’s or r⊥F (k)’s are considered.

• T 1
• , T 2

• , T 8
• , and T 9

• behave in much the same way as for their power. We suggest to use T 2
•

due to its excellent overall performance and more acceptable size for higher values of m.

• (TREND and SHORTTREND classes) Using T 2
• instead of T 3

• can lead to the power increase
as high as 40, 35, and 20 percentage points for r⊥M (k)’s, r⊥W (k)’s and r⊥S (k)’s (or r⊥Φ (k)’s)
employed, respectively. It seems then reasonable to set m close to T/2 for r⊥M (k)’s and
r⊥W (k)’s and close to max(7, T/10) for r⊥S (k)’s or r⊥Φ (k)’s, at least in the situations considered
here.
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• (ARMA and LONGARMA classes) We slightly prefer the test T 2
• although it is usually

inferior to T 3
• for higher values of m. Nevertheless, T 2

• is more than comparable to T 3
• for the

optimum threshold parameter m (∼ 3) and there is still some hope that T 2
• is more suitable

for testing against some other ARMA processes.

• (GARCH class) T 2
• performs the best especially against the most common alternatives with

highly persistent volatility when it can easily beat the benchmark T 3
• even by more than 25

percentage points if r⊥W (k)’s are used.
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9.3 Accompanying Figures
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Empirical power: Short−Trend alternatives with normal noise (T = 25, N = 10000)
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Figure 9.1: [r•(k) = r⊥M (k)] Behaviour of the tests T 1
• (m) ( ), T 2

• (m) ( ), T 3
• (m) ( ),

and T 8
• (m) (◦◦◦◦◦) when applied to a short trend plus N(0,1) white noise (T = 25 . . . time series

length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals for the
empirical size).
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Empirical power: Trend alternatives with normal noise (T = 100, N = 10000)
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Figure 9.2: [r•(k) = r⊥M (k)] Behaviour of the tests T 1
• (m) ( ), T 2

• (m) ( ), T 3
• (m) ( ),

and T 8
• (m) (◦◦◦◦◦) when applied to a trend plus N(0,1) white noise (T = 100 . . . time series

length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals for the
empirical size).
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Empirical power: Short−Trend alternatives with t(3) noise (T = 25, N = 10000)
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Figure 9.3: [r•(k) = r⊥W (k)] Behaviour of the tests T 1
• (m) ( ), T 2

• (m) ( ), T 3
• (m) ( ),

and T 8
• (m) (◦◦◦◦◦) when applied to a short trend plus standardized t(3) white noise (T = 25

. . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence
intervals for the empirical size).
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Empirical power: Trend alternatives with t(3) noise (T = 100, N = 10000)
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Figure 9.4: [r•(k) = r⊥W (k)] Behaviour of the tests T 1
• (m) ( ), T 2

• (m) ( ), T 3
• (m) ( ),

and T 8
• (m) (◦◦◦◦◦) when applied to a trend plus standardized t(3) white noise (T = 100 . . . time

series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals
for the empirical size).
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Empirical power: Short−Trend alternatives with t(3) noise (T = 20, N = 10000)
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Figure 9.5: [r•(k) = r⊥S (k)] Behaviour of the tests T 1
• (m) ( ), T 2

• (m) ( ), T 3
• (m) ( ),

and T 8
• (m) (◦◦◦◦◦) when applied to a short trend plus standardized t(3) white noise (T = 20

. . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence
intervals for the empirical size).
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Empirical power: Trend alternatives with t(3) noise (T = 75, N = 10000)
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Figure 9.6: [r•(k) = r⊥S (k)] Behaviour of the tests T 1
• (m) ( ), T 2

• (m) ( ), T 3
• (m) ( ),

and T 8
• (m) (◦◦◦◦◦) when applied to a trend plus standardized t(3) white noise (T = 75 . . . time

series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals
for the empirical size).
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Empirical power: ARMA(1,1) alternatives with normal noise (T = 100, N = 10000)
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Figure 9.7: [r•(k) = r⊥Φ (k)] Behaviour of the tests T 1
• (m) ( ), T 2

• (m) ( ), T 3
• (m) ( ), and

T 8
• (m) (◦◦◦◦◦) when applied to ARMA(1,1) processes with N(0,1) white noise (T = 100 . . . time

series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals
for the empirical size, A,B . . . ARMA parameters a1, b1).
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Empirical power: ARMA(1,1) alternatives with t(3) noise (T = 100, N = 10000)
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Figure 9.8: [r•(k) = r⊥Φ (k)] Behaviour of the tests T 1
• (m) ( ), T 2

• (m) ( ), T 3
• (m) ( ), and

T 8
• (m) (◦◦◦◦◦) when applied to ARMA(1,1) processes with standardized t(3) white noise (T = 100

. . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence
intervals for the empirical size, A,B . . . ARMA parameters a1, b1).
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Empirical power: Long−ARMA(1,1) alternatives with normal noise (T = 500, N = 10000)
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Figure 9.9: [r•(k) = r⊥W (k)] Behaviour of the tests T 1
• (m) ( ), T 2

• (m) ( ), T 3
• (m) ( ),

and T 8
• (m) (◦◦◦◦◦) when applied to long ARMA(1,1) processes with N(0,1) white noise (T = 500

. . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence
intervals for the empirical size, A,B . . . ARMA parameters a1, b1).
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Empirical power: Long−ARMA(1,1) alternatives with t(3) noise (T = 500, N = 10000)
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Figure 9.10: [r•(k) = r⊥W (k)] Behaviour of the tests T 1
• (m) ( ), T 2

• (m) ( ), T 3
• (m) ( ),

and T 8
• (m) (◦◦◦◦◦) when applied to long ARMA(1,1) processes with standardized t(3) white noise

(T = 500 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size, A,B . . . ARMA parameters a1, b1).
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Empirical power: GARCH(1,1) alternatives with normal noise (T = 200, N = 10000)
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Figure 9.11: [r•(k) = r⊥S (k)] Behaviour of the tests T 1
• (m) ( ), T 2

• (m) ( ), T 3
• (m) ( ),

and T 8
• (m) (◦◦◦◦◦) when applied to GARCH(1,1) models with N(0,1) innovations (T = 200 . . . time

series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals
for the empirical size, A,B . . . GARCH parameters a1, b1).
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Empirical power: GARCH(1,1) alternatives with t(3) noise (T = 200, N = 10000)
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Figure 9.12: [r•(k) = r+⊥
FLap

(k)] Behaviour of the tests T 1
• (m) ( ), T 2

• (m) ( ), T 3
• (m)

( ), and T 8
• (m) (◦◦◦◦◦) when applied to GARCH(1,1) models with standardized t(3) inno-

vations (T = 200 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of
95% confidence intervals for the empirical size, A,B . . . GARCH parameters a1, b1).
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Empirical power: GARCH(1,1) alternatives with normal noise (T = 2000, N = 10000)
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Figure 9.13: [r•(k) = r⊥W (k)] Behaviour of the tests T 1
• (m) ( ), T 2

• (m) ( ), T 3
• (m) ( ),

and T 8
• (m) (◦◦◦◦◦) when applied to GARCH(1,1) models with N(0,1) innovations (T = 2 000

. . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence
intervals for the empirical size, A,B . . . GARCH parameters a1, b1).
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Empirical power: GARCH(1,1) alternatives with t(3) noise (T = 2000, N = 10000)
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Figure 9.14: [r•(k) = r⊥W (k)] Behaviour of the tests T 1
• (m) ( ), T 2

• (m) ( ), T 3
• (m) ( ),

and T 8
• (m) (◦◦◦◦◦) when applied to GARCH(1,1) models with standardized t(3) innovations

(T = 2 000 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size, A,B . . . GARCH parameters a1, b1).



Chapter 10

Combining Different Types of
Autocorrelations

We start this chapter with investigating joint asymptotic distributions of some types of sample
autocorrelations. Then we proceed with a few suggestions in the spirit of Chapter 9 on how to
combine them together in an optimal way. Finally, all such proposals will be analysed by means
of Monte Carlo simulations.

10.1 Theory

First of all, we need some additional notation. To be specific, we will write r̂•(k) for any sample
autocorrelation at lag k and r̂•(m) for

(
r̂•(1), . . . , r̂•(m)

)′. Their standardized and orthonormal
versions (see Section 3.7) will be denoted with ˜ and ⊥ as usual. The index • always stands for
any meaningful subscript. If F is used instead of •, it will always be assumed to denote a quantile
function meeting all the conditions of Theorem 21.

As we already know, each of the vectors r⊥W (m), r̃K(m), r̃M (m), r̃S(m), and r̃F (m) is asymp-
totically standard normal and the same holds even for ⊥ versions of the last three ones. Besides,
r̃M (m) and r⊥W (m) are asymptotically jointly standard normal and mutually independent, see
Theorem 7. The following statements extend this result to other types of autocorrelation coeffi-
cients.

Theorem 22. If HE
0 holds and T > 3, then cov0

(
r̂F (k), r̂M (h)

)
= 0 and cov0

(
r̂S(k), r̂M (h)

)
= 0

for any positive integers k < T and h < T .

Proof. The proof is based on the exchangeability of Ri’s under HE
0 .

Let G be an arbitrary increasing function. It suffices to show that

E
T−k∑
i=1

G(Ri)G(Ri+k)r̂M (h) = E
(T−k∑

i=1

G(Ri)G(Ri+k)
)

E
(
r̂M (h)

)
,

i.e. that
T−k∑
i=1

T−h∑
j=1

E
(
G(Ri)G(Ri+k) I(Rj > Rj+h)

)
=

1
2
(T − h)(T − k)E

(
G(R1)G(R2)

)
.

99
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This will be satisfied if

M := E
(
G(Ri)G(Ri+k) I(Rj > Rj+h)

)
=

1
2

E
(
G(R1)G(R2)

)
for any allowable i, j, k, and h.

In general, M always equals to one of the following four terms

A1 = E
(
G(R1)G(R2) I(R3 > R4)

)
, A2 = E

(
G(R1)G(R2) I(R1 > R3)

)
,

A3 = E
(
G(R1)G(R2) I(R3 > R1)

)
, A4 = E

(
G(R1)G(R2) I(R1 > R2)

)
.

Each of them can be rewritten as a sum of T ! summands B(r1, . . . , rT ) over all the equiprobable
permutations (r1, . . . , rT ) of {1, 2, . . . , T}. Let us consider any fixed integers i, j, i 6= j, and all
such summands with r1 = i and r2 = j or with r1 = j and r2 = i. It is then easy to check that
exactly one half are zero and the others are G(i)G(j)/T !, no matter which of the terms A1, . . . , A4

is considered. Therefore

A1 = A2 = A3 = A4 =
1
2

E
(
G(R1)G(R2)

)
and the proof is complete.

Theorem 23. If HE
0 holds and T > 3, then cov0

(
r̂F (k), r̂W (h)

)
= 0 and cov0

(
r̂S(k), r̂W (h)

)
= 0

for any positive integers k < T and h < T/2.

Proof. The proof is based again on the exchangeability of Ri’s under HE
0 and closely mimics the

previous one.
Let G be an arbitrary increasing function. It suffices to show that

E
T−k∑
i=1

G(Ri)G(Ri+k)r̂W (h) = E
(T−k∑

i=1

G(Ri)G(Ri+k)
)

E
(
r̂W (h)

)
,

i.e. that

T−k∑
i=1

T−2h∑
j=1

E
(
G(Ri)G(Ri+k)

[
I(Rj > Rj+h, Rj+h < Rj+2h) + I(Rj < Rj+h, Rj+h > Rj+2h)

])
is equal to

2
3
(T − 2h)(T − k)E

(
G(R1)G(R2)

)
.

This will be satisfied if

M := E
(
G(Ri)G(Ri+k)

[
I(Rj > Rj+h, Rj+h < Rj+2h) + I(Rj < Rj+h, Rj+h > Rj+2h)

])
=

2
3

E
(
G(R1)G(R2)

)
for any allowable i, j, k, and h.
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In general, M always equals to one of the following five terms:

A1 = E
(
G(R1)G(R2)

[
I(R3 > R4, R4 < R5) + I(R3 < R4, R4 > R5)

])
,

A2 = E
(
G(R1)G(R2)

[
I(R1 > R3, R3 < R4) + I(R1 < R3, R3 > R4)

])
,

A3 = E
(
G(R1)G(R2)

[
I(R3 > R1, R1 < R4) + I(R3 < R1, R1 > R4)

])
,

A4 = E
(
G(R1)G(R2)

[
I(R1 > R2, R2 < R3) + I(R1 < R2, R2 > R3)

])
,

A5 = E
(
G(R1)G(R2)

[
I(R1 > R3, R3 < R2) + I(R1 < R3, R3 > R2)

])
.

Each of them can be rewritten as a sum of T ! summands B(r1, . . . , rT ) over all the equiprobable
permutations (r1, . . . , rT ) of {1, 2, . . . , T}. Let us consider any fixed integers i, j, i 6= j, and all such
summands with r1 = i and r2 = j or with r1 = j and r2 = i. It is then easy to check that exactly
one third are zero and the others are G(i)G(j)/T !, no matter which of the terms A1, . . . , A5 is
considered. Therefore

A1 = A2 = A3 = A4 = A5 =
2
3

E
(
G(R1)G(R2)

)
and the proof is complete.

Theorem 24. If the null hypothesis HE
0 holds and T ≥ 3, then cov0

(
r̂K(k), r̂M (h)

)
= 0 for

1 ≤ k, h < T and limT→∞ cov0

(
r̃K(k), r⊥W (h)

)
= 0 for 1 ≤ k < T , 1 ≤ h < T/2.

Proof. Let us focus on cov0

(
r̂K(k), r̂M (h)

)
’s first. It suffices to show that

E
T−k∑
i=1

T−k∑
j=1

I(Ri < Rj , Ri+k > Rj+k)r̂M (h) ≡
T−h∑
p=1

T−k∑
i=1

T−k∑
j=1

P
(
Ri < Rj , Ri+k > Rj+k, Rp > Rp+h

)
is equal to

T−k∑
i=1

T−k∑
j=1

P
(
Ri < Rj , Ri+k > Rj+k

)
E
(
r̂M (h)

)
≡ 1

2

T−h∑
p=1

T−k∑
i=1

T−k∑
j=1

P
(
Ri < Rj , Ri+k > Rj+k

)
.

This will be satisfied if

M := P
(
Ri < Rj , Ri+k > Rj+k, Rp > Rp+h

)
+ P

(
Ri > Rj , Ri+k < Rj+k, Rp > Rp+h

)
equals to

N :=
1
2

[
P
(
Ri < Rj , Ri+k > Rj+k

)
+ P

(
Ri > Rj , Ri+k < Rj+k

)]
for any allowable i, j, p, k, h such that i < j. We can alternatively prove M(a, b, c) = N(a, b, c) for
all a, b, c ∈ {1, . . . , 6} such that b 6= c,

M(a, b, c) = P
(
R1 < R2, Ra > R3, Rb > Rc

)
+ P

(
R1 > R2, Ra < R3, Rb > Rc

)
,
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N(a, b, c) =
1
2

[
P
(
R1 < R2, Ra > R3

)
+ P

(
R1 > R2, Ra < R3

)]
,

due to the exchangeability of Ri’s under HE
0 . But this really holds as can be verified easily by

means of CMCovsKM.r. The first part of the proof is thus complete. The second follows directly
from Theorem 23 and from the asymptotic equivalence of r̃K(k)’s and r̃S(k)’s under HE

0 :

lim
T→∞

(
r̃K(k)− r̃S(k)

)
= 0 in probability, k = 1, 2, . . . ,

proved in [Ferguson et al., 2000].

Note. All the covariances considered here can be computed exactly for T ≤ 9 with CMCovsEx.r.
A hybrid coefficient r̂H(k) based on

∑T−k
i=1 RiΦ−1(Ri+k) (i.e. with unequal score functions) is

also included in the exact empirical calculation to indicate generally nonzero covariances between
r̂f (k)’s and r̂M (k)’s or r̂W (k)’s. Really, as everybody can check easily for small values of T ,
cov0

(
r̂f (k), r̂M (h)

)
’s, cov0

(
r̂f (k), r̂W (h)

)
’s (and cov0

(
r̂K(k), r̂W (h)

)
’s) need not be zero, which

also shows another drawback of r̂f (k)’s in comparison with r̂F (k)’s.

Theorem 25. If HE
0 holds and T > 3, then each of the vectors

(
r⊥M (m)′, r⊥W (m)′, r̃K(m)′

)′,(
r⊥M (m)′, r⊥W (m)′, r⊥S (m)′

)′ and
(
r⊥M (m)′, r⊥W (m)′, r⊥F (m)′

)′ is asymptotically standard normal. The
same holds even if r̃M (m), r̃S(m) and r̃F (m) are used instead of their ⊥ versions.

Proof. It is an easy consequence of the Cramér-Wold device and Theorems 22 to 24.

It remains to solve the question on how to combine several types of sample autocorrelations into
a single portmanteau statistic in an optimal way. However, only combining the vectors r⊥M (mM ),
r⊥W (mW ), and r⊥S (mS)

(
or r⊥Φ(mP )

)
in the case of TREND and SHORTTREND alternatives seems

reasonable enough to be taken into consideration here.
Let r̄All and s̄All be the mean and standard deviation computed from all NAll coefficients of

nAll types considered together and let us introduce the following notation:

CAll = NAllr̄
2
All, DAll = NAlls̄

2
All,

PC
All = 1− Fχ2(1)(CAll), PD

All = 1− Fχ2(NAll−1)(DAll),

where All says which of the following seven possibilities:(
r⊥M (mM )′, r⊥W (mW )′, r⊥S (mS)′

)′ (NAll = mM + mW + mS , nAll = 3,All = {M,W,S}),(
r⊥M (mM )′, r⊥W (mW )′

)′ (NAll = mM + mW , nAll = 2,All = {M,W}),(
r⊥M (mM )′, r⊥S (mS)′

)′ (NAll = mM + mS , nAll = 2,All = {M,S}),(
r⊥W (mW )′, r⊥S (mS)′

)′ (NAll = mW + mS , nAll = 2,All = {W,S}),(
r⊥M (mM )′, r⊥W (mW )′, r⊥Φ(mΦ)′

)′ (NAll = mM + mW + mP , nAll = 3,All = {M,W,P}),(
r⊥M (mM )′, r⊥Φ(mΦ)′

)′ (NAll = mM + mP , nAll = 2,All = {M,P}),(
r⊥W (mW )′, r⊥Φ(mΦ)′

)′ (NAll = mW + mP , nAll = 2,All = {W,P}),
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is considered for testing. They are respectively denoted by the strings MNWNSN, MNWN, MNSN,
WNSN, MNWNPN, MNPN, and WNPN in the output files associated with this chapter. Besides,
we replace All with the subscripts M , W , S or P if only r⊥M (k)’s, r⊥W (k)’s, r⊥S (k)’s or r⊥Φ (k)’s are
considered, respectively.

Naturally, we employ the theory from Chapter 9 again. To be more specific, we will investigate
the tests T1, . . . , T14 with the following critical regions:

T1 : min
(
PC

All, P
D
All

)
≤ 1−

√
1− α,

T2 : − 2 ln
(
PC

All

)
− 2 ln

(
PD

All

)
≥ F−1

χ2(4)
(1− α),

T3 : CAll + DAll ≥ F−1
χ2(NAll)

(1− α),

T4 : CAll − 2 ln
(
PD

All

)
≥ F−1

χ2(3)
(1− α),

T5 : CAll +
(NAll − 1)

2

( DAll

(NAll − 1)
− 1
)2

≥ F−1
χ2(2)

(1− α),

T6 : min
∗∈All

(
PC
∗ , PD

∗
)

≤ 1− (1− α)1/(2nAll),

T7 :
∑
∗∈All

(
−2 ln

(
PC
∗
)
− 2 ln

(
PD
∗
))

≥ F−1
χ2(4nAll)

(1− α),

T8 :
∑
∗∈All

(
C∗ − 2 ln

(
PD
∗
))

≥ F−1
χ2(3nAll)

(1− α),

T9 : − 2 ln
(
PC

M

)
− 2 ln

(
PD

M

)
≥ F−1

χ2(4)
(1− α),

T10 : − 2 ln
(
PC

W

)
− 2 ln

(
PD

W

)
≥ F−1

χ2(4)
(1− α),

T11 : − 2 ln
(
PC

S

)
− 2 ln

(
PD

S

)
≥ F−1

χ2(4)
(1− α),

T12 : CM + DM ≥ F−1
χ2(mM )

(1− α),

T13 : CW + DW ≥ F−1
χ2(mW )

(1− α),

T14 : CS + DS ≥ F−1
χ2(mS)

(1− α).

The tests T9 to T14 are included only for comparison. T3 corresponds to the naive approach lying
in summing the squares of all the coefficients considered.

We further compare these tests in a Monte Carlo study and reveal their pros and cons in the
simplest case mM = mW = mS = mP = m.

10.2 Monte Carlo Simulations

Our simulation experiments with the tests T1, . . . , T14 applied to SHORTTREND (T = 20, 25)
and TREND (T = 50, 75, and 100) time series reveal several interesting facts that are illustrated
in Figures 10.1 to 10.8 and listed below:

• Combining r⊥W (k)’s with r⊥S (k)’s or r⊥Φ (k)’s leads to badly sized tests even for small values
of m (probably due to their discrete nature, finite sample dependence or possibly owing to
a weakness of the random number generator) and it would not be too beneficial anyway.
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• Only combining r⊥M (k)’s with either r⊥S (k)’s or r⊥Φ (k)’s gives, on average, better results than
the test T11. We slightly favour the tests based on r⊥S (k)’s because of their simplicity and
good overall behaviour.

• T1, T2, and T5 exhibit virtually the same power and clearly beat all their competitors in
most cases. Especially, their power can be higher than that of T3 and T11 by more than 25
and 10 percentage points, respectively. Even T7 is still almost uniformly better than the two
benchmarks T3 and T11.

• Nevertheless, we prefer T2 to both T1 and T5 due to its excellent size behaviour here, accept-
able for m not greater than max(10, T/5) for any T ≥ 20.

Note that even T11 is still much better than T14, as we already know from the previous chapter.
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10.3 Accompanying Figures
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Empirical power: Short−Trend alternatives with t(3) noise (T = 20, N = 10000)
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Figure 10.1: [All = {W,P}] Behaviour of the tests T2(m) (◦◦◦◦◦), T3(m) ( ), T5(m) ( ),
T7(m) ( ) and T11(m) ( ) when applied to a short trend plus standardized t(3) white noise
(T = 20 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size).
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Empirical power: Trend alternatives with normal noise (T = 75, N = 10000)
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Figure 10.2: [All = {M,W,S}] Behaviour of the tests T2(m) (◦◦◦◦◦), T3(m) ( ), T5(m) ( ),
T7(m) ( ) and T11(m) ( ) when applied to a trend plus plus N(0,1) white noise (T = 75
. . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence
intervals for the empirical size).
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Empirical power: Short−Trend alternatives with normal noise (T = 20, N = 10000)

 B) Linear trend 

3 5
0

0.2

0.4

0.6

0.8

1
 C) Quadratic trend 

3 5
0

0.2

0.4

0.6

0.8

1

Em
pir

ica
l p

ow
er

 D) Exponential trend 

3 5
0

0.2

0.4

0.6

0.8

1
 E) Piece−wise constant trend 

3 5
0

0.2

0.4

0.6

0.8

1
 F) Piece−wise linear trend 

3 5
0

0.2

0.4

0.6

0.8

1

Em
pir

ica
l p

ow
er

m

 G) Sinusoidal trend 

3 5
0

0.2

0.4

0.6

0.8

1

m

 H) Arch−shaped trend 

3 5
0

0.2

0.4

0.6

0.8

1

m

 I) Increasing curly trend 

Figure 10.3: [All = {M,S}] Behaviour of the tests T2(m) (◦◦◦◦◦), T3(m) ( ), T5(m) ( ),
T7(m) ( ) and T11(m) ( ) when applied to a short trend plus N(0,1) white noise (T = 20
. . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence
intervals for the empirical size).
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Empirical power: Short−Trend alternatives with t(3) noise (T = 20, N = 10000)
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Figure 10.4: [All = {M,S}] Behaviour of the tests T2(m) (◦◦◦◦◦), T3(m) ( ), T5(m) ( ),
T7(m) ( ) and T11(m) ( ) when applied to a short trend plus standardized t(3) white noise
(T = 20 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size).
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Empirical power: Short−Trend alternatives with normal noise (T = 20, N = 10000)
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Figure 10.5: [All = {M,P}] Behaviour of the tests T2(m) (◦◦◦◦◦), T3(m) ( ), T5(m) ( ),
T7(m) ( ) and T11(m) ( ) when applied to a short trend plus N(0,1) white noise (T = 20
. . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence
intervals for the empirical size).
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Empirical power: Short−Trend alternatives with t(3) noise (T = 20, N = 10000)
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Figure 10.6: [All = {M,P}] Behaviour of the tests T2(m) (◦◦◦◦◦), T3(m) ( ), T5(m) ( ),
T7(m) ( ) and T11(m) ( ) when applied to a short trend plus standardized t(3) white noise
(T = 20 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size).
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Empirical power: Trend alternatives with normal noise (T = 75, N = 10000)
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Figure 10.7: [All = {M,S}] Behaviour of the tests T2(m) (◦◦◦◦◦), T3(m) ( ), T5(m) ( ),
T7(m) ( ) and T11(m) ( ) when applied to a trend plus N(0,1) white noise (T = 75 . . . time
series length, N = 10 000 . . . number of replications, . . . bounds of 95% confidence intervals
for the empirical size).
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Empirical power: Trend alternatives with t(3) noise (T = 75, N = 10000)
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Figure 10.8: [All = {M,S}] Behaviour of the tests T2(m) (◦◦◦◦◦), T3(m) ( ), T5(m) ( ),
T7(m) ( ) and T11(m) ( ) when applied to a trend plus standardized t(3) white noise
(T = 75 . . . time series length, N = 10 000 . . . number of replications, . . . bounds of 95%
confidence intervals for the empirical size).



Concluding Remarks

First, let us aggregate the improvement proposals regarding portmanteau testing against all the
alternatives considered.

Generally, we suggest to orthonormalize all the sample autocorrelations used (see Section 3.7),
especially in the case of shorter time series. Furthermore, it also appears that

• T2 from Chapter 10 (based on r⊥S (k)’s and r⊥M (k)’s) should be recommended for testing
against trend alternatives. However, T9 or T2 using the coefficients r⊥M (k)’s with only the
most promising k’s might then be even much more powerful. Apparently, such test T9 would
be more advantageous for very long time series.

• T 2
• or T 3

• from Chapter 9 (both based on r⊥Φ (k)’s) should be recommended for testing against
ARMA alternatives. Note that T 3

• (= the benchmark sum of squared autocorrelations) is
optimal from a certain point of view in this case (see [Hallin et al., 1987]) and thus we
can hardly expect any significant improvement from T 2

• in this context, at least for normal
innovations.

• T 2
• from Chapter 9 (based on r+⊥

Lap(k)’s) should be recommended for testing against GARCH
alternatives.

Besides, we suggest to use T 2
• with r⊥W (k)’s (and suitable k’s) for quick analysis of very long

stationary time series. Alternatively, we could possibly employ r̃K,w1(1) for ARMA alternatives
and r̃K,w2(1) for GARCH ones (see Chapter 6) or combine both these approaches.

However, many more simulations should be performed to confirm these proposals and to cre-
ate some reliable rules for optimal selection of the portmanteau parameter. For example, the
portmanteau tests considered should also be investigated when applied to the trend, ARMA and
GARCH alternatives with asymmetric white noise, to higher order ARMA and GARCH processes
or to other (possibly nonlinear) models. It would be highly desirable to compare these tests with
other relevant competitors of theirs, too.

We would also like to recall that

• Simple parametric portmanteau tests are usually inappropriate for very short time series.

• Testing against trend alternatives may be very helpful, for example in automatized computer
time series analysis or in statistical process control.

• The test power need not always be the most important criterion. For example, if we have to
evaluate a large collection of long time series quickly and to choose only a few of them that

109
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are the most promising for future modelling or forecasting, it may then be quite reasonable
to do so just by the values of some r⊥W (k)-based portmanteau statistic.

Although this work answers a few important questions, many others still remain open. Some
of the proposals for future research are listed below:

• Other rank correlations could possibly be serialized and then investigated in detail, see
[Tarsitano, 2002] for some potential candidates. Besides, such score autocorrelations should
be found that would be optimal for testing against GARCH or other volatile alternatives.

• Some corrections for continuity, ties or missing observations could be introduced for every
type of rank-based autocorrelations. For example, both the Laplace correction for mean and
the Sheppard one for variance seem applicable in the case of r̂M (k)’s, r̂W (k)’s and r̂K(k)’s, see
[Hájek and Šidák, 1967]. In fact, such corrections have already been employed successfully
for k = 1, see [Ferguson et al., 2000], [Moore and Wallis, 1943], [Wallis and Moore, 1941].
The ties possibly occurring in practical applications could often be dealt with by standard
methods, see [Hájek and Šidák, 1967].

• Exact higher order moments and covariances of (not only) rank-based autocorrelations and
their squares could be calculated and used for finite sample corrections to each portmanteau
statistic as a whole, to the autocorrelations themselves or to their (possibly joint) asymptotic
distribution and its characteristics, for example by means of the orthonormalization (see
Section 3.7), variance stabilizing transformations (see Section 1.2) or some sophisticated
approximation techniques (see at least [Anderson et al., 1992] and recent review articles
such as [Reid, 1988], [Ronchetti, 1990], [Huzurbazar, 1999], [Goutis and Casella, 1999], and
[Strawderman, 2000]), among others. Such approximation methods could further be used
for power investigation of the portmanteau tests and for their optimization subject to some
parameters potentially involved such as the threshold parameter or weights.

However, r̃W (1) and r̃M (1) (after a continuity correction) behave like normally distributed
even for some T = 13 (see [Wallis and Moore, 1941] and [Moore and Wallis, 1943]), and
therefore the Moore and Wallis serial rank coefficients are not likely to require such refine-
ments very much.

• One could perhaps try to find some simple recurrence formulae for the probability distri-
butions of rank-based autocorrelations, see [Moore and Wallis, 1943] for such an example
regarding r̂M (1). These formulae could then serve for investigating the finite sample distrib-
utions and for establishing both their asymptotic normality and exact higher order moments,
just the same way [Jirina, 1976] proposed in a non-serial case.

• The methodology for evaluating RNG’s from Chapter 4 should be transferred to the C or
Fortran code, checked carefully for numerical inaccuracies, round-off errors and other pos-
sible flaws, and investigated with different values of the parameters T , r, c and especially m.
Other serial coefficients might also be used in this context, for example the weighted Moore
and Wallis rank autocorrelations or the Spearman ones that are more demanding to compute
but independent of both r̂M (k)’s and r̂W (k)’s, see Theorems 22 and 23. Besides, the com-
parison should be extended to encompass other RNGs and also other benchmarks because
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that of Marsaglia need not be perfect although it is said to pass all the Diehard tests, see
[Davies, 1999].

• We note that even the current Matlab random number generator is reported to fail some
tests of randomness dramatically, see [Kahanek, 2005]. Therefore it would be interesting to
know how it affected our simulations.

• Other serial rank coefficients based on the sums of some multiple products of the indicators(
such as I(Yi > Yi+a) and I(Yj < Yj+b)

)
could be introduced and investigated in the same

way as r̂M (k)’s and r̂W (k)’s. There is some hope that they could be found useful for testing
RNGs or elsewhere, possibly together with r̂M (k)’s or r̂W (k)’s.

• All the rank autocorrelations (and not only them) might be used for parameter estimation
of time series models. At worst, such estimators could be employed as initial values for some
better estimation procedures. First attempts in this direction have already been made, see
[Allal et al., 2001] for such an application of rank-based autocorrelations in ARMA models.

• Most standardized (or orthonormalized) rank autocorrelations possess the same asymptotic
joint normal distribution under HE

0 as the standardized ordinary or partial ones under
HW

0 ⊂ HE
0 . Therefore the former coefficients could be employed instead of the latter alterna-

tively, not only in all the portmanteau statistics Q1 to Q17 introduced in Chapter 1, but also
in other autocorrelation-based tests including spectrum-based tests (see e.g. [Milhoj, 1981],
[Hong, 1996], or [Kuan, 2003]), the variance ratio test and some other tests for random walk,
unit root or mean reversion (see [Lo and MacKinlay, 1989], [Richardson and Smith, 1994],
and [Daniel, 2001], for example) and some tests based on the maximum likelihood approach
(see e.g. [Buse, 1982] and [Newbold, 1980]), among others. Many ideas introduced for port-
manteau tests (see Chapter 1) could be transferred even to these tests and vice versa.

• On the other hand, some proposals regarding rank autocorrelations could be applied even
to the parametric ones, for example the orthonormalization concept (see Section 3.7) or the
theory from Chapters 8, 9 and 10. By the way, the choice of involved lags, mM ’s, mS ’s (or
mP ’s) and mW ’s in Chapter 10 would also deserve more attention.

• It seems very promising to extend the results from Chapters 9 and 10 in several ways. To be
more specific, some good weighted or Bayesian combining methods could be employed such as
those asymptotically Bahadur optimal (see e.g. [Berk and Cohen, 1979]) or those with a nat-
ural Bayes interpretation (see [Koziol and Perlman, 1978] and [Koziol and Tuckwell, 1999]).
Besides, optimal tests of N(0,1) normality (say of the sample X1, . . . , Xm) against the al-
ternatives assuming Xi ∼ N(µi, σ

2
i ), i = 1, . . . ,m, (where µi = βαi, β + αi, βiα, . . . and

σ2
i = 1, σ2, γ + δi,. . . ) might be derived (like those from [Omelka, 2004] or [Omelka, 2005])

and applied in the spirit of Chapters 9 and 10.

• The tests considered here could also be used to detect a trend in the dispersion about a fixed
location. For example, the time series could be divided into some reasonable subsets of
successive observations and the tests could then be applied to a sample measure of variability
within each of them. See [Cox and Stuart, 1955] and [Ury, 1966] for two illustrative examples
of such approach.
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• All the rank autocorrelations (and not only them) could be adapted to testing dependent
data, e.g. by means of sophisticated bootstrap techniques. See [Park and Lee, 2001] for
some of them applied to both the non-serial Spearman rank correlation coefficient and its
Fisher transform, and consult recent review articles ([Bühlmann, 2002], [MacKinnon, 2002],
[Härdle et al., 2003], [Horowitz, 2003], [Politis, 2003], [Davidson and MacKinnon, 2004], and
[MacKinnon, 2006]) on the use of bootstrap methods in time series context and in econo-
metrics at all. Note that both rank and parametric serial autocorrelations are often asymp-
totically normal even if computed from weakly dependent data, see Section 1.4.

• In times of powerful computers, goodness-of-fit tests are far less important than they used
to be, because one can simply estimate all the reasonable models and then choose the best
by means of a suitable criterion, for example by a reasonable function of their in-sample or
out-of-sample prediction errors. Nevertheless, it might still be useful to adapt both the rank
autocorrelations and the newly proposed portmanteau statistics to goodness-of-fit testing.

Let us focus on the last proposal in more detail. We know that the asymptotic distribution of
the sample (squared-)residual ordinary autocorrelations from some true models remains asymptot-
ically multivariate standard normal, see [Chen, 2005] and [McLeod and Li, 1983]. Therefore these
autocorrelations could then be used for model validation in all portmanteau statistics (including
those from Chapters 9 and 10) without any difficulties and with the same asymptotic distribu-
tion as under the null hypothesis of independence. Although most of the existing goodness-of-fit
portmanteau statistics result from the gaussian likelihood-based tests against reasonable alterna-
tives, there is still a considerable hope that the new ones from Chapters 9 and 10 might lead
to some improvement in finite samples, with non-normal innovations or at least in some cases of
misspecification.

The vectors of some sample (possibly rank) residual or squared-residual autocorrelations from
the true model are usually asymptotically zero-mean normal with a specific variance matrix (see
Section 1.4) that may be known in advance (or at least consistently estimated) and used for
orthonormalizing the autocorrelations in a cautious way. Resulting orthonormal coefficients might
then be employed almost as usual, especially if the asymptotic variance matrix were regular.
Otherwise this approach should be corrected for singularity in a clever way. Alternatively, some
sophisticated bootstrap techniques might be applied to the portmanteau statistics based on such
autocorrelations of any kind.

Note that the joint distribution of any residual and squared-residual rank autocorrelations
would be very helpful to know in this context as well. Unfortunately, the only similar results so
far available regard the ordinary autocorrelations (see [Wong and Ling, 2005]).

At the very end, we would like to wish the reader good luck with statistics and econometrics
and rosy future at all.
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