
Univerzita Karlova v Praze

Matematicko-fyzikálńı fakulta
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theoretical aspects of this task.

Poděkováńı
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V Praze dne 15.4.2011 Radek Žlebč́ık
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Abstrakt: V této práci jsou analyzována současná měřeńı difrakčńı fotoprodukce
dijet̊u na urychlovači HERA s d̊urazem na možné narušeńı faktorizace. Jsou
zkoumány možné d̊uvody rozd́ılnosti studíı H1 a ZEUS kolaboraćı, jako rozd́ılné
hadronizačńı korekce a rozd́ılný fázový prostor obou měřeńı.

Kĺıčová slova: difračńı fotoprodukce, dijety, suppression

Abstract: Recent experimental data on dijet cross section in diffractive photopro-
duction at HERA collider are analyzed with an emphasis on QCD factorization
breaking effects. The possible sources of the contradiction in conclusions of
H1 and ZEUS collaborations such as different hadronization corrections and
different phase space of both analysis are studied.

Keywords: diffractive photoproduction, dijet, suppression
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Chapter 1

Introduction

Diffractive events in high energy pp or ep collisions are characterized by the presence
of a leading proton or anti-proton, which remains intact and by presence of a rapidity
gap between a leading p(p̄) and the hadronic system.

One of the most interesting questions which are discussed in the studies of such
diffractive processes with the hard scale, like photon virtuality or transverse jet
energy, is whether they can be considered being factorisable into diffractive parton
distribution functions and perturbatively calculable partonic cross sections. Such
concept, called hard QCD factorisation, was theoretically and experimentally probed
to be valid in the regime of diffractive ep deep inelastic scattering.

On the other hand far from clear is the situation in the photoproduction regime
of the diffractive ep scattering. Small virtuality of the exchanged photon in photo-
production allows for partonic fluctuations that live long enough. It means that the
photon does not need to interact directly, but could act as a hadron with similar
quantum numbers like the photon. Structure of such (resolved) photon is described
by photon distribution functions.

These resolved photon interactions resemble hadron-hadron ones since two par-
ticles with the structure scattered on each other. However the factorisation concept
was found not to be valid for hard processes in diffractive hadron-hadron scattering
as measured for example in pp̄ interactions at Tevatron.

The puzzle of the validity of factorisation in diffractive photoproduction of dijets
is even more emphasize by the presence of analyses with contradictory conclusions
about factorisation breaking made by H1 and ZEUS collaborations.

In this thesis the possible sources of the contradiction in conclusions of H1 and
ZEUS collaborations such as different hadronization corrections, NLO QCD calcu-
lations and different phase space of both analyses are studied.

5



Chapter 2

Theory

2.1 Deep Inelastic Scattering

2.1.1 Kinematics

Deep inelastic scattering (DIS) is in general scattering of charged (e, µ, τ) or neutral
(νe, νµ, ντ ) leptons on nucleons. In DIS the virtuality of the exchanged intermediated
particle is much higher than mass of the nucleon. Further we restrict our discussion
to ep interactions where e is electron or positron

e(k) + p(P ) → e(k′) +X(PX) (2.1)

and k, P , k′ and PX are four-momentum vectors (see Fig. 2.1). Proton dissociates
to a hadronic final state (HFS) X which has higher invariant mass than proton while
electron stays intact.

2. Deep Inelastic electron-proton Scattering

2. Deep Inelastic electron-proton Scattering

In deep inelastic scattering (DIS) the interaction between the electron1 e and proton p

can be described by the exchange of virtual bosons. The process allows the measure-
ment of the static and dynamic structure of the proton. The virtual bosons can be
mediators either of the electromagnetic force or of the weak force. A Feynman graph
of the lowest order DIS process is displayed in figure 2.1a) and b). It depicts the in-
coming electron with four-momentum k, the virtual boson carrying a four-momentum
q and the proton which carries a four-momentum P. Thus the proton is probed with a
four-momentum transfer squared −q2 = Q2 or virtuality. Depending on the mediating

b)a)

p(P)

X

W±(q)

νe(k
�)e(k)

p(P)

X

γ, Z0(q)

e(k�)e(k)

Figure 2.1.: The leading order Feynman diagram for deep inelastic electron proton
scattering (Bold letters indictate the four-momentum of a particle.). The
exchanged virtual boson can be, depending on the four-momentum squared
−q2 = Q2 of the interaction, a photon (γ) or Z0 for the neutral current or
a W± for the charged current.

force the final state of the incoming electron can change. In case the mediating boson
is a photon (γ) or a Z0 (neutral current, NC) an electron can be observed as the final
state. In case of the W± (charged current, CC) bosons the neutrino ν

e
can not be

directly observed. Due to the large mass of the weak force bosons, which enters a cross
section calculation via the propagator, contributions from the weak force are strongly
suppressed and negligible at a four-momentum transfer of Q2

� m2(W±, Z0).

Next-to-leading order QED Corrections in DIS

The standard DIS NC process with the one-photon exchange as illustrated in figure
2.1a) is a QED leading-order (LO) process. Moreover higher orders of quantum elec-
trodynamics (QED) have to be taken into account. The real next-to-leading (NLO)
corrections in QED to the NC processes as depicted by the diagrams shown in figure
2.2 have to be considered. Furthermore there are virtual corrections at one-loop level

1The phrase electron is used as synonym for electron and positron.

8

Fig. 2.1: The leading order Feynman diagram for DIS.

To describe the kinematics of this process, the following invariants are useful
(electron mass is always neglected, neglecting of proton mass is expressed by ≃):

6



CHAPTER 2. THEORY 7

• Total energy square in the center of mass system (CMS)

s = (k + P )2 ≃ 4Ebeam
e Ebeam

P . (2.2)

• Virtuality of the exchanged intermediated particle (γ∗ or Z0)

Q2 = −q2 = −(k − k′)2. (2.3)

• Inelasticity (relative loss of electron energy in the proton rest system)

y =
qP

kP
=

Elab
e − E

′lab
e

Elab
e

≃ W 2 +Q2

s
. (2.4)

• Fraction of the proton four-momentum transfered to the interaction

x =
Q2

2qP
≃ Q2

W 2 +Q2
. (2.5)

• Invariant mass of HFS

W 2 = M2
X = (q + P )2 = M2

P +

(
1

x
− 1

)

Q2. (2.6)

Elastic scattering occurs if W = MP ⇔ x = 1.
In case of unpolarized particles only two variables are independent (except of

CMS energy which is usually the same for all events). This statement can by seen
with the help of the relation

xy =
Q2

s−M2
P

≃ Q2

s
. (2.7)

Common choice of these two independent variables is (x, Q2), (y, Q2) or (x, y). If
particle masses are neglected then 0 < x < 1, 0 < y < 1 and 0 < Q2 < s.

Previous quantities can be obtained for example from θ′, E′
e measurement of the

scattered electron.

Rapidity

Useful variable to describe a polar angle of the particle is a rapidity yη defined as

yη =
1

2
ln

E + pz
E − pz

(2.8)



where E is the energy and pz the third component of momentum. If we define

transverse energy as ET =
√

m2 + p2T , then the E and pz are expressed as

E = ET cosh yη (2.9)

pz = ET sinh yη (2.10)

and Sudakov variables p± are then defined as

p± =
1√
2
(E ± pz) =

1√
2
ET e

±yη . (2.11)

Difference of rapidities is invariant with respect to boost along z axis1. For rela-
tivistic particles E ≫ m the rapidity can be approximately expressed as

yη = − ln tan
θ

2
. (2.12)

Formula (2.12) is simultaneously definition of pseudorapidity η for particles with
arbitrary energy.

2.1.2 Cross Section

In considered kinematics region (Q2 ≪ M2
Z) the Z0 contribution can be safely ne-

glected hence γ∗ exchange dominates. Photon acts here as a probe of the proton with
a characteristic size of 1/Q. From fundamental principles like Lorentz invariance,
parity conservation and gauge invariance of electromagnetic interactions follows that
cross section of DIS must have following form

dσ

dxdQ2
=

4πα2
em

Q4

[(

1− y − M2
Pxy

s

)
F2(x,Q

2)

x
+

1

2
y22F1(x,Q

2)

]

, (2.13)

where αem is electromagnetic coupling and F1,2 are DIS structure functions of proton.
For high energy scattering the term with proton mass could be neglected. We further
assume validity of Callan-Gross relation [1] F2 = 2xF1 which is exactly true in
parton model approach discussed later. Taking into account these approximations,
we obtain

dσ

dxdQ2
=

4πα2
em

Q4

(

1− y +
1

2
y2
)

F2(x,Q
2)

x
. (2.14)

1If the moving system has a speed β then y′

η = yη + 1

2
ln 1+β

1−β
and E′

T = ET

8



CHAPTER 2. THEORY 9

2.1.3 Parton model

Small Q2 dependence of F2 for Q2 above resonances region in ep scattering (see
Fig. 2.2) as was measured at SLAC [2] yields to an assumption that electron is
scattered on point-like proton’s constituents. It means that proton is composed
from more elementary objects called partons and γ∗ interacts only with one of them,
others stay intact (see Fig. 2.3). It is obvious that these partons must carry electric
charge. In this approach x has a clear interpretation as a fraction of the proton
momentum carried by the struck parton.

W 2 = 2mpν − Q2 + M2
p

W 2 = Q2(ω − 1)

Figure 5.6: SLAC results, taken from [91–93].

89

Fig. 2.2: SLAC measurement of F2 = νW2

dependence on Q2 (in GeV2) for x =
1/ω = 1/3 [2].

2.1. Kinematics

Näıve Quark Parton Model of DIS

The results of early deep inelastic scattering measurements as depicted in figure 2.3a)
were explained in the näıve quark parton model (QPM) [Bjo66; Bjo69; BP69] with a
physical interpretation from Feynman [Fey69]. In this model the constituents of the
proton are considered to be non-interacting quasi-free particles. The underlying picture
is the infinite momentum frame (IMF) where the proton is moving fast, such that the
mass of the proton is negligible. A schematic Feynman graph of the deep inelastic
scattering process in the QPM interpretation is depicted in figure 2.3b). Deep inelastic

p(P)

X

e(k�)e(k)

x · P

γ, Z0(q)

b)

Figure 2.3.: One of the first measurements of F2 from fixed target experiments [FK72]
at a fixed value of x a). The interpretation of the deep inelastic ep scatter-
ing process in the quark parton model as electron-parton scattering where
the parton carries a fractional momentum x of the proton is illustrated b).

electron-proton scattering in the IMF is described as elastic electron-parton scattering:
The proton is interpreted as a loose cloud of point-like partons moving parallel with the
proton and carrying momentum fractions x. These partons have later been identified
with the three quarks of the proton necessary to explain the quantum numbers of the
proton.
For partons with spin 1/2 the Callan-Gross relation [Cal70] uses the fact that a massless
spin 1/2-particle can not absorb a longitudinally polarised virtual vector boson and
consequently for non-interacting partons the longitudinal structure function FL(x, Q2)
is zero in the QPM:

FQPM
2 (x, Q2) − 2x · FQPM

1 (x, Q2) = FQPM

L
(x, Q2) = 0 . (2.9)

In this picture the structure functions F QPM
1 (x, Q2) and FQPM

2 (x, Q2) take the following
form:

FQPM
1 (x, Q2) =

1

2
i

e2
i
fi(x) and FQPM

2 (x, Q2) = x
i

e2
i
fi(x) . (2.10)

For each parton type of the proton the function fi(x) describes the probability to find
a parton i carrying the fractional moment xi. The electric charge of the parton i is
given by ei.
The structure functions can not be predicted by first principles and need to be mea-
sured. The result of deep inelastic scattering measurements [FK72] was interpreted to

11

Fig. 2.3: Leading order Feynman
diagram of ep collision in parton
model
.

Cross section for scattering of two charged particles with spin 1/2 (electron and
parton) neglecting its mass is according to quantum electrodynamics (QED)

dσ

dQ̂2
=

4πα2
eme2q

Q̂4

(

1− y +
1

2
y2
)

, (2.15)

where eq is electric charge of the corresponding parton. The previous formula is
consistent with (2.14) if we suppose that proton is composed from partons with
spin 1/2 and qi(x)dx, respective qi(x)dx, is the probability that we find a parton,
respective anti-parton, of type i with momentum fraction (x,x + dx) inside the
proton. If the partons would be bosons with spin 0 or 1 the scattering formula
analogous to (2.15) would be not consistent with the measurement. Proton structure
function F2 is therefore within parton model expressed as

F2(x,Q
2) = x

∑

i

e2i (qi(x) + qi(x)) . (2.16)

As the parton distribution functions (PDFs) behave like 1/x for small x (see
Fig. 2.4), mean number of partons of type i inside proton (

∫ 1
0 qi(x)dx) goes to



0.2

0.4

0.6

0.8

1

-410 -310 -210 -110 1

0.2

0.4

0.6

0.8

1

 HERAPDF1.0 

 exp. uncert.

 model uncert.

 parametrization uncert.

 

x

xf 2 = 10 GeV2Q

vxu

vxd
 0.05)×xS (

 0.05)×xg (

                H1 and ZEUS

0.2

0.4

0.6

0.8

1

Fig. 2.4: DIS parton distribution functions as measured at HERA in 2010 [4].

infinity. The quantities which relate to the quarks in additive SU(3) quark flavour
model [3] are so called valence parton distribution functions

qvali (x) = qi(x)− qi(x). (2.17)

Mean values of u and d quarks inside proton are then 2 and 1, respectively, in
agreement with the additive quark flavour model. The flavour index i denotes up,
down, strange, charm, bottom or top quark.

It is possible to measure total momentum fraction carried by the all quarks in
proton

∫ 1

0
dxxΣ(x) =

∫ 1

0
dxx

∑

i

(qi(x) + qi(x))dx. (2.18)

Value ≃ 0.5 which was obtained indicates that there must be others, electrically
neutral partons carrying remaining half of proton momentum. These partons were
identified as gluons known from quantum chromodynamics.

2.2 Quantum Chromodynamics

Quantum chromodynamics (QCD) is non-abelian gauge theory of strong interac-
tion based on SU(3) group. It describes interactions between quarks with spin 1/2
by exchange of gluons – massless gauge bosons with spin 1. Each quark has a

10



CHAPTER 2. THEORY 11

color (”strong charge”), analog of electric charge in QED. In contrast to quantum
electrodynamics gluons have color too; the interaction between gluons is possible.
There exist three colors for quarks and eight colors for gluons which correspond to
dimension of fundamental representation and adjoin representation of SU(3) color
group.

Strong interaction is characterised by a strong coupling constant αs. Contrary
to QED this constant decreases with increasing renormalization scale which can by
matched to Q2 in the case of inclusive DIS. It means that for very high energy (small
distances) is the strong interaction negligible which is known as asymptotic freedom.
On the other hand for small scales (close to ΛNf

defined in (2.19)) strong constant
grows which disables using of perturbative theory. These properties could be clearly
seen from one-loop expression for αs

αs(µ/ΛNf
) =

1

b lnµ/ΛNf

where b =
33− 2Nf

6π
(2.19)

and the number of active flavors is denoted as Nf . Constant Λ4
.
= 0.2GeV or

equivalently αs(MZ)
.
= 0.118 must be determined from the experiment.

The fact that strength of QCD grows with distance causes that only color neutral
objects (hadrons) are stable. Observation of individual quarks is impossible. This
phenomenon is known as confinement [5].

2.2.1 Space Time Picture of Interaction

Although the perturbative QCD (p-QCD) is unable to describe whole process of
interaction (due to presence of soft physic at least when partons are hadronised to
color singled objects), there still exists a class of ”hard” collisions where QCD has
a predictive power.

The general interaction of hadrons, leptons or gauge bosons A, B

A+B → F (2.20)

could be factorised to tree steps (see Fig. 2.5) [6].

The initial evolution

is represented by the distribution functions Da/A(x1,M1) and Db/B(x2,M2)
which can be interpreted as the probability density of finding parton a (b)
with longitudinal momentum fraction x1 (x2) in the hadron A (B). The fac-
torisation scales are denoted as M1 and M2. These densities are determined
by interaction at large distances and thus are incalculable within p-QCD.

The hard scattering of partons

a+ b → c+ d (2.21)



Figure 10.1: The general scheme of QCD improved QPM

FS1, FS2 are factorization schemes defining the distribution functions Da/A, Db/B . The hard scattering
cross–section (10.3) is calculable in PQCD, provided the process is dominated by short distances, which
in practice means that some measure of “hardness” is large compared to the mass of proton. The QPM
provides the lowest order approximation to (10.3) which is then systematically improved in PQCD.

C: The hadronization of the partonic state produced in (10.2) remains the least understood stage of the
collision. PQCD is not applicable here and various sorts of models must be employed. In the inde-

pendent fragmentation model of Chapter 5, the fragmentation functions Dh/p(z, M,FS) acquire,
similarly to parton distribution functions inside hadrons, the dependence on the M and FS.

In this chapter only the first two stages will be discussed. The reader interested in hadronization models
should turn to reviews [146, 147]. The general formula for the evaluation of cross–sections of the hard
scattering processes (10.1) in PQCD is basically the same as in the QPM. Schematically it reads

σ(A + B → F + anything) = (10.4)

abcd

dx1dx2Da/A(x1, M1)Db/B(x2, M2)σab→cd(s, x1, x2, pc, pd, M1, M2)⊗ Dhadr(pc, pd, PF )

model dependent

,

where the sum runs over all parton combinations which can lead to the required final hadronic state F and
the cross–section σab→cd contains all appropriate δ–functions expressing the overall momentum conservation
on the partonic level. The symbol of convolution ⊗ stands for further integrations over the momenta of final
state partons pc, pd, which lead to the final hadronic state F . The initial partonic distribution functions
depend on the (in general different) factorization scales M1, M2 as well as on the corresponding factorization
conventions, discussed in detail in next section. In this section the latter dependence will not be written out
explicitly. The factorization scales Mi are, similarly to the hard scale µ, unphysical and the cross–sections
of physical processes must, if evaluated to all orders, be independent of them.

The following discussion is divided into two parts. First we shall consider the interaction of partons with

their own chromodynamic field. Here the calculations can be carried out in a close analogy to QED and,
indeed, the basic idea of partons within partons has been borrowed from the old papers of Weizsäcker
and Williams on QED [148]. This is the true arena of PQCD, contrary to the much more complicated task
of describing the interactions of partons within hadrons.

174

Fig. 2.5: General schema of QCD improved parton model.

where the partonic cross section σab→cd could be calculated by p-QCD

σab→cd(s, x1, x2, pc, pd, µ,M1,M2). (2.22)

The resulting cross section depends in addition on previously defined variables
x1 and x2, M1 and M2, on the CMS energy of collision s = (pA + pB)

2,
four-momenta of outgoing partons pc, pd and renormalization scale µ which
describes the ”hardness” of the process.

Hadronization

The existence of color charge objects (partons) at large distance is not possible
as well as using of p-QCD. New quark-anti-quark pairs are created to make
the outgoing objects color neutral to ensure confinement. First models of
hadronization were based on the fragmentation functions Dh/p(z, p

2
T ) which

describe probability density of finding hadron h with longitudinal momentum
fraction z and the transverse momentum pT with respect to the initial parton p.
In this approach is fragmentation of each parton considered to be independent
on the other ones. At the present time Monte Carlo (MC) generators allow to
use more complex models of hadronization.

In all steps the same renormalization scheme (MS or DIS) must be used. Cross
section of the interaction A+B → F is then

σ(A+B → F ) =
∑

abcd

∫ ∫

dx1dx2Da/A(x1,M1)Db/B(x2,M2)

σab→cd(s, x1, x2, pc, pd, µ,M1,M2)⊗Dhadr(pc, pd, PF ), (2.23)

where Dhadr is model-dependent term which describes hadronization.

12
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The final cross section depends on values of factorisation and renormalization
scales and on factorisation scheme used. This unphysical dependence theoretically
vanishes if the perturbative series is summed to all orders (see for example Figs. 2.6
and 2.7).
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Fig. 2.6: Scale dependence of inclusive single differen-
tial jet cross section dσ/dET |ET=100GeV in p̄p interac-
tions for

√
s = 1.8TeV (0.1 < |η| < 0.7) [7].
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production in pp inter-
actions [8].

2.2.2 Parton Distribution Functions

Parton distribution functions (PDFs) describe the probability density of finding a
parton with momentum fraction x inside a hadron. There exists PDF for each quark
and anti-quark flavour and for gluon; together 2Nf + 1 functions (Nf is number of
active quark flavours).

Parton model predicts independence of PDFs on the scale. Indeed small logarith-
mic dependence exists (see Fig. 2.8) which disappears only for x ∼ 1/6. Although it
is impossible to estimate PDFs from first principles, QCD fully describes the depen-
dence of parton distribution functions on the scale. If the quark and gluon densities
fi(x,M0) are known at some initial scale M0 for interval x ∈ (x0, 1) then DGLAP
evolution equations [9] provide PDFs at arbitrary scale M

dfi(x,M)

d lnM2
=

∑

j

∫ 1

x

dy

y
P

(n)
ij

(
x

y
,M

)

fj(y,M). (2.24)
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P (0)
qq (x/ξ,M) P

(0)
qG (x/ξ,M) P

(0)
Gq (x/ξ,M) P

(0)
GG(x/ξ,M) (2.26)

2.3. Heavy Quark Production Mechanisms in ep Scattering
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Figure 2.7.: Each of the splitting functions Pab(x/ξ), shown with their corresponding

process graph, describes the behaviour of an incident parton b radiating a

new parton a.

CFM90b; CFM90a; Mar95], which provides an evolution in x and Q2 and resums
terms in ln(1/x) and ln(Q2) to all orders.
At small x the result of the CCFM evolution approaches the one from the BFKL
evolution scheme which should be more appropriate at small x. The emission is
strictly ordered in the angle θi as illustrated in figure 2.6b) which corresponds to
an ordering in x and kT : Q2

� k2
i,T � . . . � k2

1,T � Q2
0 and x � xi � . . . �

x1 � x0. However, for small angles and not too small x the same ordering as in
DGLAP is achieved. Due to the kT factorisation implemented in CCFM the kT

of a parton can be of the order of the kT of the hard subprocess, thus it can not
be neglected. CCFM provides partons with an intrinsic kT that are expected to
change the transverse momenta of the final state particles.

Even though HERA reaches very low x a clear break-down of the DGLAP scheme has
not been observed, but there are indications that DGLAP indeed shows deficiencies
for special event topologies like forward jet production. A recent H1 publication on
three- to four-jet production at low x [A+08c] observes a better description of the data
by the color dipole model [Lon95; AGLP89; Lon92] using gluons carrying un-ordered
intrinsic kT .

2.3. Heavy Quark Production Mechanisms in ep Scattering

The heavy quark production in DIS at HERA is dominated by the interaction be-
tween the exchanged virtual photon and a gluon from the proton side γg → cc̄, the
boson-gluon-fusion (BGF) process. In the following only c-quarks are mentioned here,
although the theoretical concepts are applicable also for b-quarks. Because of the BGF
process the measured charm cross section is directly sensitive to the gluon density in
the proton.
The lowest order Feynman diagram for the direct BGF process of charm production is
the first diagram shown in figure 2.8a), which corresponds to a next-to-leading order
process in inclusive DIS. At small photon virtualities the so-called hadronic component
of the photon emerges and produces a resolved contribution to the charm production.
The present analysis uses a range in virtuality of Q2 > 5 GeV2 which suppresses the
resolved component such that it is completely negligible [A+07]. Figure 2.8b) shows
the direct process of charm production and highlights the theoretical ingredients and

17

Fig. 2.9: Feynman diagrams of QCD splitting functions in the leading order, for
analytic expressions see [10].

The indexes i and j run over all quarks and anti-quark flavours and gluon. The
partonic splitting functions P (n) can be derived from p-QCD at arbitrary order. In
the leading order (LO) are non zero only

P (0)
qiqi , P

(0)
qig , P

(0)
gqi , P

(0)
gg , P

(0)
q̄iq̄i , P

(0)
q̄ig , P

(0)
gq̄i (2.25)

splitting functions which are factorisation scheme independent (see Fig. 2.9).
To make next to leading order (NLO) evolution which is widely used nowadays,

one must use splitting functions P (1) depending on factorisation scale and factori-
sation scheme. In addition to leading order the splitting functions between different

flavours P
(1)
qiqj , P

(1)
qiq̄j and P

(1)
q̄iqj are non-zero. Explicit form of NLO evolution equations

and splitting functions can be found in [10].

2.2.3 QCD Matrix Element

The second part of formula (2.23) is the matrix element. It must be of the same
order as PDFs and in the same factorisation scheme as well.

In perturbative calculations ultraviolet, collinear and soft divergences occur. The
first ones are absorbed to new defined renormalized quantities like coupling constant
or wave functions. Infrared divergences disappear with proper definition of initial
and final state according to Kinoshita-Lee-Nauenberg theorem [11]. Definition must
reflects for instance inability to distinguish emission of soft gluon with energy below
some threshold (energy resolution of the detector) from no gluon emission or emis-
sion of nearly collinear gluon from quark from no emission (emmision below angle
resolution). Next reason why it is not possible to distinguish between ”close” par-
tons is the hadronization effect. In simulations is this ambiguity removed by means
of the jet algorithms (see section 2.2.4) with merge neighbouring partons into one
object – jet.

As an example of this procedure Feynman diagrams for γ∗q are depicted in
Fig 2.10, where (b) and (c) configurations have collinear and soft singularities if the



gluon is emitted close to quark. These infinities disappear by adding of negative
infinity from the interference term.

2.4. SPACE-TIME PICTURE OF DIS 11

(a) (b) (c)

(d) (e) (f)

Figure 2.2: Processes contributing to the γ∗q processes; (a) the bare photon-
quark scattering; in (b) the t channel real gluon emission; in (c) the s channel
real gluon emission. In figures (d) − (f) are shown the virtual gluon emissions
that cancel the infrared divergencies of the above real gluon emissions.

2.4 Space-time picture of DIS

Perturbative QCD calculations are made under an assumption that the quarks

and gluons are as real as any other elementary particle. We already know, that

the interaction strength grows between the color non-singlet objects at large dis-

tances. Luckily, the separation in time of the two stages into the hard sub-process

and the long-distance process is possible, though not trivial. Unfortunately, the

long-distance processes do not involve the hard scale and perturbative calculations

are not possible, only approximative approaches are used to describe the transi-

tion of the partons into observable hadrons, generally referred to as hadronization.

The very first model of hadronization was a so called Independent Fragmen-

tation Model [8] where fragmentation functions are introduced (Dh

i
(z, pT )) which

describe the probability that a hadron h is produced with the transverse momen-

tum of pT with respect to the momentum of the original parton i carrying the

fractional momentum of z. The fragmentation functions must be extracted from

experiments.

There are also other approaches how to cope with the hadronization. Usually

it is performed by means of models which are employed by the Monte Carlo

generators (section 6.1.1). They provide both the generation of hard process and

also the subsequent phase of hadronization.

Models of hadronization implemented in the Monte Carlo programs are widely

used in these days. There is an important assumption that the dynamics of

hadrons after the hadronization step is well correlated with the dynamics of hard

scattered quarks and gluons. Yet it is assumed that the hadronization models

Fig. 2.10: γ∗q interactions. (a) Zero order parton model γ∗ absorption, (b,c) LO
QCD Compton process in t and s channel. Diagrams (d,e,f) in combination with
(a) – 2Re[(d+ e+ f)× (a)] represent LO contribution which removes infrared gluon
singularities of (b,c).

2.2.4 Hadronization

Various models exists to describe the transition from partons to hadrons . The most
common are Lund string model implemented in PYTHIA [12] and RAPGAP [13]
and cluster model in HERWIG [14] MC generators.
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Fig. 2.11: Simplified picture of hadron production from q− q̄ pair flying in opposite
directions with respect to z axis.

The string model of hadronization can be described in the following way. The
potential between quarks is known to grow linearly from some distance which is

16
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modeled by a color string. If the quarks are moving apart the string is stretching
and if its length exceeds some limit, the string breaks. At the ends of this break
point new quark and anti-quark are created and so on as long as the quarks have
enough energy to break the string (see Fig. 2.11).

Jet Algorithm

The observation of the jets provides a view of the underlying hard quark and gluon
interactions that occur at very small distance scales. However, this view is inevitably
clouded by the subsequent long distance showering and eventual hadronization of
the primary quarks and gluons. Furthermore, since the quarks and gluons carry non-
zero color charges and the final hadrons do not, there can be no unique association
of a jet of hadrons with a particular quark or gluon. Nevertheless, with a suitable
definition of the jet cross section (by means of suitable jet algorithm) one hopes to
minimize the effect of long distance physics and of the inherent jet ambiguities and
obtain a fairly precise picture of the short distance dynamics.

In this thesis the inclusive kT jet algorithm [15, 16] is used which fulfils all nec-
essary conditions like infrared and collinear safety, z-boost invariance, good corre-
spondence between different levels (hadron, parton, detector) and small dependence
on hadronization model. Roughly saying this algorithm merges particles which are
close in (η, φ) plane into jets.

Inclusive kT algorithm works with proto-jets here denoted with indexes i, j, k, l,m
which are on the beginning identical with the particles. The procedure is following:

1. Define a distances

Dij =
(ηj − ηi)

2 + (φj − φi)
2

R2
min

(
P 2
T i, P

2
Tj

)
Di = P 2

T i (2.27)

2. Find the smallest value from each pair Dij (i 6= j) and each Di.

• If this value is Dkl then merge jets k and l into jet m.

PT,m = PT,k + PT,l (2.28)

ηm =
PT,kηk + PT,lηl

PT,m
(2.29)

φm =
PT,kφk + PT,lφl

PT,m
(2.30)

• If the smallest value is Dk then the corresponding proto-jet k turns into
jet and is removed from the proto-jet list.

3. Go to step 1 until any proto-jet remains.



Fig. 2.12: Differential cross section as a function of scattered angle for interaction
of proton with atom or proton [17].

2.3 Diffraction

The diffraction of light in optics is known from 17th century. For diffraction is
typical a pattern of diffractive maxima and minima behind the obstacle. In twentieth
century similar behavior was observed for X-rays and electrons. It was found that
even larger objects like protons can have wave-like behavior (see Fig. 2.12). Positions
of diffractive minima provide information about size of the obstacle, for smaller
objects are the minima farther one of each other. Intensities of minima depend on
the shape and oscillations of the obstacle. The Fig. 2.12 shows that even in particle
physics (here pp) diffraction occurs.

Diffraction in particle physics can be defined in the following alternative ways [18].

1. A reaction in which no quantum numbers are exchanged between the colliding
particles is, at high energies, a diffractive reaction.

2. A diffractive reaction is characterized by a large, non exponentially suppressed
rapidity gap in the final state.

In both definitions the contamination from non-diffractive events exists. In the
first case the contamination disappears in the high energy limit with respect to the
particle masses. In the second case the distribution of diffractive events with respect

18
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to rapidity gap ∆η is constant

dNdiff

d∆η
∼ constant (2.31)

while the non-diffractive background is exponentially suppressed

dNnon−diff

d∆η
∼ e−∆η. (2.32)

The bridge between these two definitions provides Regge model [19] which de-
scribes diffractive scattering as a consequence of exchange of a colorless object with
vacuum quantum numbers – the pomeron.

The colliding particles in diffraction need not to be the same as the final particles.
One or both particles can dissociate into the system X with the same quantum
numbers as incoming particles

1 + 2 → 1′ + 2′ 1 + 2 → 1′ +X2 1 + 2 → X1 +X2. (2.33)

Soft diffraction without any hard scale cannot be described by perturbative quan-
tum chromodynamics.

Renewed interest in diffraction was risen with the observation of the diffractive
production of ”hard” jets in pp̄ collisions at UA8 experiment at CERN in 1988 [20].
Existence of such a class of events was theoretically predicted by Ingelman and
Schlein [21] in 1985 and is often referred as a hard diffraction.

In 1993 were in ep interaction in DIS at HERA [22] observed events with a large
gap in pseudorapidity between the scattered proton p′ and other final state hadrons.
So the process (γ∗ is a virtual photon ”emitted” from the electron)

γ∗ + p → X + p′(Y ) (2.34)

is according to the second definition diffractive. The virtual photon is dissociated to
the hadronic system X with the same quantum numbers as photon while the beam
proton usually stays intact or dissociates to low mass hadronic system Y .

As well as in pp̄ collision was the hard scale provided by transverse energy of
the jets, in ep collision it is a photon virtuality Q2 for inclusive diffractive DIS or
the function of transverse jet energy and Q2 for dijet production in DIS. The hard
diffraction can be then described within the framework of p-QCD.

2.3.1 Kinematics

Inclusive Diffraction

To describe inclusive diffractive process 2 → 3 of unpolarized particles (see Fig. 2.13)

e(k) + p(P ) → e(k′) +X(PX) + Y (PY ) (2.35)
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Fig. 2.13: Leading order diagram of inclusive diffractive process. States X and Y
are separated by large gap in rapidity.

four independent variables are needed. We suppose that system Y is either proton
or low mass hadronic state with mass MY ≤ Mmax

Y where the limit mass Mmax
Y is

usually done by the detector properties. In addition to the DIS variables (see section
2.1.1) we define (symbol ≃ means neglecting of t and mass MY ):

• Longitudinal momentum fraction carried by the diffractive exchange

xIP =
q(P − PY )

qP
≃ M2

X +Q2

W 2 +Q2
. (2.36)

• Momentum fraction of the stuck parton with respect to diffractive exchange

β =
Q2

q(P − PY )
≃ Q2

M2
X +Q2

. (2.37)

• Momentum transfer at the proton vertex

t = (P − PY )
2. (2.38)

For x variable then holds the relation x = βxIP . Variables xIP and β are by virtue
of their definition dimensionless and have the values between 0 and 1.

Widely used set of variables for description of inclusive diffractive DIS is (β,Q2, xIP , t)
or (x, Q2, xIP , t).
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Diffractive Dijet Production

In more exclusive diffractive process

e+ p → e+ jj +X ′

︸ ︷︷ ︸

X

+Y, (2.39)

where jj denotes system of two jets, additional kinematic variables are needed.
Leading order diagrams of diffractive dijet production are shown in figure 2.14.
In DIS regime (Q2 ≫ 0) is contribution from diagram (b) negligible whereas in
photoproduction (Q2 ∼ 0) must be both diagrams taken into account. The four-
momenta of partons entering the hard subprocess from photon and pomeron side
are denoted as u and v. In case of (a) is u identical with four-momentum q of the
virtual photon.

We define the invariant mass of dijet system M12 as

M12 =
√

(u+ v)2 (2.40)

and longitudinal fraction of pomeron (photon) four-momentum zIP (xγ) entering to
the hard subprocess

zIP =
qv

q(P − PY )
xγ =

Pu

Pq
. (2.41)

Variable xγ is for diagram (a) where u = q identically equal to one whilst for (b) it
has values between 0 and 1. Due to this feature xγ is usually used in experiments
as a discriminator between direct (a) and resolved (b) photoproduction.

2.3.2 Regge Phenomenology of Diffraction

Regge phenomenology [19] originates from studying of analytical properties of scat-
tering amplitude A(s, t)2 of process 2 → 2. It was realised that in Regge limit (
s ≫ |t|) dominant behaviour of amplitude is

A(s, t) ∼ sα(t). (2.42)

This expression follows from partial wave expansion of A(s, t) in the t channel. The
relativistic partial wave amplitude Al(t) can be analytically extended to complex l
values in a unique way. The position of the pole in l plane with the highest real part
is denoted as α(t).

2s, t and u are so called Mandelstam variables of process a + b → c + d with corresponding
four-momenta pa, pb, pc, pd. Mandelstam variables are defined as s = (pa + pb)

2, t = (pa − pc)
2 and

u = (pa − pd)
2.
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Fig. 2.14: Leading order diagrams of direct (a) and resolved (b) diffractive dijet
production.

This leading singularity relates to the exchanging particles (resonances) which
can be plotted on Chew-Frautschi graph (J = α(t) vs. M2 = |t|). The mesonic
trajectory (see Fig. 2.15) seems to be linear

α(t) = α(0) + α′t (2.43)

with α(0) ≃ 0.5 and slope α′ ≃ 1GeV−2.
Total cross section can be obtained from scattering amplitude (2.42) with help

of optical theorem
σtot ∼ sα(0)−1. (2.44)

If one interprets pp interaction as a consequence of exchange of the mesonic trajec-
tory (exchange of reggeon) then σtot ∼ s−1/2. In reality growing of total cross section
is observed for high energies (see Fig. 2.16) in pp(p̄), pn(n̄), π±p, γp interactions
which yields to introduction of the pomeron trajectory αIP (t) with α(0) > 1.

Total cross section is then fitted by formula

σtot = AIP s
αIP (0)−1 +AIRs

αIR(0)−1. (2.45)

In contrast to reggeon trajectory αIR(t) no real particle was discovered at the
pomeron line. Therefore pomeron is interpreted as a hypothetical object with vac-
uum quantum numbers.
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Figure 2Figure 2

Fig. 2.15: The leading mesonic trajectory – dependence of spin of the mesons on
square of their mass [23].

Diffractive ep interactions are well described by parametrization based on ex-
change of pomeron and reggeon. Reggeon trajectory is not negligible only in region
xIP & 0.01 and for xIP = 0.01 is its contribution around 10 % [24].

2.3.3 Factorisation in Inclusive Diffractive DIS

Cross section of inclusive diffractive DIS can be written in the similar way like in
DIS (2.14)

d4σ

dxdQ2dxIPdt
=

4πα2
em

xQ4

(

1− y +
1

2
y2
)

σD(4)
r (x,Q2, xIP , t). (2.46)

Reduced diffractive cross section σ
D(4)
r is expressed by diffractive structure functions

σD(4)
r = F

D(4)
2 − y2

1 + (1− y)2
F

D(4)
L , (2.47)

where longitudinal structure function F
D(4)
L , which relates to the scattering of pho-

tons with longitudinal polarisation, can be usually neglected except of region with
high y.



Figure 1Figure 1

Fig. 2.16: Total cross sections for pp, πp, pn and γp. All cross sections are fitted by
formula As0.08 +Bs−0.45 where A is the same for particle and anti-particle [23].

It has been proven in p-QCD [25] that like in inclusive DIS scattering, a factorisa-
tion theorem holds for diffractive DIS processes. Therefore the diffractive structure
functions FD

2,L can be written by means of diffractive parton distribution functions

fD
i which represent the probability to find a parton i in a hadron under the condition
that the hadron undergoes diffractive scattering

F
D(4)
2,L (x,Q2, xIP , t) =

∑

i

∫ xIP

x
dξfD

i (ξ, µ2, xIP , t)F̂
i
2,L

(
x

ξ
,Q2, µ2

)

. (2.48)

The perturbatively calculable coefficients F̂ i
2,L are so called coefficient functions

which are the same as in non-diffractive DIS [26]. At the lowest order their are
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expressed as

F̂ q
2 (z,Q

2, µ2) = e2qδ(1− z) F̂ g
2 (z,Q

2, µ2) = 0 F̂ i
L(z,Q

2, µ2) = 0. (2.49)

Formulas (2.48) allow to calculate σ
D(4)
r from diffractive parton distribution func-

tions (DPDFs). These DPDFs obey the same DGLAP evolution equations as non-
diffractive PDFs

d

d lnµ2
fD
i (x, µ2, xIP , t) =

∑

j

∫ 1

x

dξ

ξ
P

(n)
ij

(
x

ξ
, αs(µ)

)

fD
j (ξ, µ2, xIP , t) (2.50)

where P
(n)
ij is a splitting function between parton i and j in order n+ 1 of αs.

Unphysical factorisation scale (µ2) dependence in (2.48) is cancelled in each

order of αs. The structure functions F
D(4)
2,L are in reality µ2 dependent because the

coefficient functions are known only in finite order as well as DGLAP evolution of
DPDFs,.

Factorisation theorem can be written in more general way as a convolution of
DPDFs with the elementary partonic cross section σ̂ (for comparison see 2.23)

dσγ∗p→Xp(x,Q2, xIP , t) =
∑

i

fD
i (x,Q2, xIP , t)⊗ dσ̂γ∗i(x,Q

2). (2.51)

2.3.4 Regge Factorisation of DPDFs

Regge theory which describes diffraction as a consequence of pomeron and sub-
leading reggeon exchange makes an extra assumption for DPDFs

fD
i (x,Q2, xIP , t) = fIP/p(xIP , t) fi/IP (β = x/xIP , Q

2) +

+ nIR fIR/p(xIR, t) fi/IR(β = x/xIP , Q
2). (2.52)

Probability of finding parton i inside proton p is factorised as a product of pomeron
flux fIP/p (probability of finding pomeron inside proton) and parton densities of
pomeron fi/IP . The reggeon contribution is added in the same way with the scale
factor nIR.

Pomeron and reggeon fluxes are usually parametrized as

fIP/p(xIP , t) = AIP
eBIP t

x
2αIP (t)−1
IP

fIR/p(xIP , t) = AIR
eBIRt

x
2αIR(t)−1
IP

(2.53)

with linear pomeron αIP (t) and reggeon αIR(t) trajectories (2.43). Coefficients A,
B, α(0) and α′ for both trajectories are obtained from the experiment.



2.3.5 Factorisation in Diffractive Dijet Photoproduction

Contrary to inclusive diffractive DIS where the photon acts as a small distance
probe of pomeron structure, in diffractive photoproduction is rather the structure
of the photon tested. The factorisation theorem was not proved for diffractive dijet
photoproduction and there are a theoretical indications that the factorisation is here
broken [27].

There exist two kinds of photoproduction processes (see Fig. 2.14) the direct,
where photon enters with all its momentum to the hard subprocess and resolved
where photon dissociates into a hadronic system which is a source of quarks and
gluons. The partonic structure of the photon is described by γ-PDFs fj/γ which are
of order αem

αs
[28]. The physical meaning has only the sum of direct and resolved

contributions.
The factorisation formulas for resolved (res) and direct (dir) photoproduction

have the following form

dσres(ep → e+ 2jets +X + Y ) =
∑

i,j

∫

dy fγ/e(y)

∫

dxγ fj/γ(xγ , µ
2
F )⊗

∫

dt

∫

dxIP

∫

dzIP dσ̂(ij → 2jets)fD
i (zIP , µ

2
F , xIP , t), (2.54)

dσdir(ep → e+ 2jets +X + Y ) =
∑

i

∫

dy fγ/e(y)⊗
∫

dt

∫

dxIP

∫

dzIP dσ̂(γi → 2jets)fD
i (zIP , µ

2
F , xIP , t), (2.55)

where fγ/e is the equivalent photon flux done byWeizsäcker-Williams formula [29, 30]

fγ/e(y) =
αem

2π

[
1 + (1− y)2

y
ln

Q2
max

Q2
min

− 2m2
ey

(
1

Q2
min

− 1

Q2
max

)]

. (2.56)

In the photoproduction is Q2
min lowest kinetically allowed value Q2

min = m2
ey

2

1−y and

Q2
max is determined from the Q2 cut of the measurement.
DPDFs can be for small xIP (where reggeon term is negligible) written as a

product of ”integrated” pomeron flux3 and pomeron PDF (2.52). Factorisation
formula for the resolved part has then same form from photon and pomeron side
with clear physical meaning. Formula for direct cross section is obtained by setting

3In the diffractive measurement using large rapidity gap method to identify of diffractive events,
the momentum transfer t cannot be measured, there exists only the upper limit of |t|. The lower

limit of |t| is kinematically restricted to |t| = M2

P
x2

IP

1−xIP

. The formula is then integrated over t within
this range.
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fj/γ = δ(1− xγ)

dσres(ep → e+ 2jets +X + Y ) =
∑

i,j

∫

dy

∫

dxγ fγ/e(y)fj/γ(xγ , µ
2
F )⊗

∫

dxIP

∫

dzIP dσ̂(ij → 2jets)fi/IP (zIP , µ
2
F )fIP/p(xIP ). (2.57)

The matrix element is in the LO (NLO) approach of order4 αemαs (αemα2
s) for

direct photoproduction and α2
s (α3

s) for resolved photoproduction. The number of
produced partons (jets) within the NLO (LO) matrix element in direct or resolved
photoproduction is therefore maximally 3 (2) [31].

2.3.6 Methods of Detection of Diffractive Events

Large Rapidity Gap

In a typical inclusive DIS event (see Fig. 2.17) is a beam proton completely destroyed
and the rapidity interval between the struck quark and the proton remnant is due
to color interaction completely filled by particles created in hadronization process.
The hadronic activity in the forward region of the detector is observed.

In the diffractive case (see Fig. 2.17) the leading proton remains nearly intact
and is lost in the beam pipe. Because the diffractive exchange pomeron has vacuum
quantum numbers, there is no hadronic activity between hadronic system X and
system of the scattered (leading) proton Y . The gap in pseudorapidity between these
two systems is observed. The Fig. 2.18 shows the distribution of the pseudorapidity
ηmax of the most forward hit cluster in ZEUS detector. It can be seen that for low
ηmax values (events with no detected hadronic activity for η > ηmax) the diffractive
contribution, which is not described by non-diffractive MC model, dominates.

With the applying of tight cut on ηmax, large number events of interests are
loosed. This cut i.e. limits the upper MX bound. Better way is to detect a rapidity
gap in very forward region. The H1 collaboration requires no activity in region
3.2 < η < 7.55. This rapidity range is not completely covered with the detectors
(see section 3.1.1), so the real gap in pseudorapidity should be smaller. The rapidity
gap ∆η relates to the xIP variable by formula

xIP ≃ e−∆η. (2.58)

Therefore the xIP reconstructed from the HFS also provides information about ra-
pidity gap. For instance H1 analysis [32] requires xIP < 0.03 which corresponds to
∆η & 3.5.

4Note that the γ-PDF are of order αem

αs
.

5The pseudorapidity η = 7.5 corresponds to t = −1GeV2 for HERA proton beam energy.
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Figure 3.1: (a) A ‘standard’ deep-inelastic event with no rapidity gap, as

seen in the H1 detector. (b) A deep-inelastic event with a rapidity gap, as

seen in the H1 detector.

Fig. 2.17: a) ”Standard” DIS event, b) event with large rapidity gap (no activity in
the forward region of the detector) as seen in H1 detector at HERA.

Fig. 2.18: Distribution of ηmax, the maximum pseudorapidity of a calorimeter cluster
in an event, compared with non-diffractive Monte Carlo [22].
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M-Subtraction

The M-subtraction method is based on the different M2
X distribution for diffractive

and non-diffractive events

dNdiff

d lnM2
X

∼ 1

M
2αIP (0)−1
X

∼ const.
dNnon−diff

d lnM2
X

∼ exp
(
a lnM2

X

)
, with a > 0.

(2.59)
The non-diffractive background is therefore for small lnM2

X exponentially suppressed
while the diffractive contribution remains constant.

Distributions of the logarithms of the invariant hadronic mass squared as mea-
sured at HERA [33] are plotted in Fig. 2.19. It can be seen that the diffractive
events selected by large rapidity gap method dominate for small MX values.

The diffractive sample is defined by a means of M-subtraction method as the
excess of the contribution in the lnM2

X distribution above the exponential fall-off
(2.59) of the non-diffractive peak.

This M-subtraction method was used only by ZEUS collaboration.

Leading-Proton Detection

The diffractive events are characterised by a final state proton scattered at very
small angle and with energy nearly to that of the incoming proton. The scattered
proton can be detected in the forward proton spectrometers which are positioned
very close to the beam pipe approx. 100 m from the interaction point. From the
scattered proton energy and the position of the hit cluster in the detector can be
estimated xIP and t variables.

The measured relative energy spectrum xL = 1− xIP of the scattered proton is
shown in Fig. 2.20. It could be seen that in the diffractive peak around xL ∼ 1 the
pomeron contribution dominates whilst for smaller xL the pion exchange contribu-
tion must be take into account.

The main disadvantage of the leading-proton detection method is small geometric
acceptance of the forward proton spectrometers – the most part of the scattered
protons from the diffractive events is undetected.



W = 60-74 GeV W = 110-134 GeV

Q
2 =
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eV
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27
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Fig. 2.19: Distribution of lnM2
X (black points) of reaction γ∗p → X + anything,

where X is the system observed in the detector as measured at ZEUS [33]. It
was measured for three γ∗p CMS energies and for two photon virtualities. The
straightforward blue line gives the non-diffractive contributions as obtained from
the fits. The yellow area is the same measurement with additional cut ηmax < 1.5.
It means the events where no particles are detected in the forward region η > 1.5 –
events with a rapidity gap.
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Fig. 2.20: Observed momentum fraction xL = 1 − xIP of the leading proton with
respect to the beam proton momentum. Note the diffractive peak around xL = 1.
Diffractive signal modeled by MC is represented by the dashed line. The dotted line
is pion-exchange contribution and shaded area corresponds to proton dissociation
[34].



Chapter 3

Motivation and Recent Results

In this chapter the recent progress in the study of the factorization in diffractive ep
and pp interactions will be reported.

3.1 HERA Collider

The HERA (Hadron-Elektron Ring Anlage) was a particle collider located at DESY
(Deutsches Elektron Synchrotron) laboratory in Hamburg. Its circumference is ap-
proximately 6.3 km (see Fig. 3.1) and is roughly 20 m under the ground.

After major upgrade in 2004 (HERA II phase) protons with energy 920 GeV were
collided with the electrons (positrons) at energy 27.5 GeV. Total collected integrated
luminosity is 400 pb−1 and 140 pb−1 before the upgrade (1992-2000).

HERA

PETRA

DORIS

HASYLAB

DESY

Halle NORD (H1)
Hall NORTH (H1)

Halle OST (HERMES)
Hall EAST (HERMES)

Halle SÜD (ZEUS)
Hall SOUTH (ZEUS)

Halle WEST (HERA-B)
Hall WEST  (HERA-B)

Elektronen / Positronen
Electrons / Positrons

Protonen
Protons

Synchrotronstrahlung
Synchrotron Radiation

Hall nord  (H1)

Hall ouest  (HERA-B)

Hall est (HERMES)

Rayonnement Synchrotron

Hall sud (ZEUS)

Electrons / Positons 

Protons


Fig. 3.1: The HERA accelerator with H1 detector in the north and ZEUS detector
in the south.
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Fig. 3.2: H1 detector Fig. 3.3: ZEUS detector

The ep collisions are highly asymmetric, the rapidity of CMS is about 1.75 in the
system where the proton beam direction conventionally corresponds to the positive
z axis. Two general purpose detectors H1 and ZEUS must reflect this setup.

3.1.1 H1 Detector

The ep interaction point (the origin of the coordinate system) is surrounded by
silicon strip detectors.

Concentric drift chambers in 1.16 T solenoidal magnetic field cover −1.5 < η <
1.5 pseudorapidity range and measure charged tracks with accuracy ∆pT /pT =
0.005pT /GeV.

The liquid argon calorimeter covers range −1.5 < η < 3.4 with resolution
∆E/E = 0.11/

√

E/GeV for electromagnetic showers and ∆E/E = 0.50/
√

E/GeV
for hadrons.

A lead-scintillating fibre calorimeter covers backward region −4 < η < −1.4 and
its main purpose is detection of scattered electron.

The Forward Muon Detector (FMD) and Proton Remnant Tagger (PRT) covered
the forward region 1.9 < η < 3.7 (or higher due to secondary scattering within the
beam pipe) and 6 < η < 7.5. These detectors are used to reject events which do
not exhibit a rapidity gap between Y and X system in LRG method of diffraction
detection.

Photoproduction events can be selected by tagging positrons scattered to a very
small angles, corresponding to quasi-real photon emission, using a crystal Cerenkov
calorimeter at z = −33m (electron tagger).



3.1.2 ZEUS Detector

The central tracking detector in magnetic field of 1.43 T covers pseudorapidity region
−2 < η < 2 and measured resolution is ∆pT /pT = 0.006pT /GeV.

The uranium-scintillator calorimeter covers region −4.3 < η < 3.8 and consists
from three parts. The energy resolution for electromagnetic showers was ∆E/E =
0.18/

√

E/GeV and ∆E/E = 0.35/
√

E/GeV for hadrons.
Forward plug calorimeter increases forward rapidity coverage to η . 5 and it is

used to identify diffractive events by large rapidity gap method.
The luminosity is measured from the rate of QED bremsstrahlung processes

ep → eγp. The resulting small-angle photons are detected by the luminosity monitor
placed at z = −107m. The similar method was used also by H1 collaboration.

3.2 DPDFs from Diffractive Inclusive Data

The widely used H1 2006 DPDF fit [24] was obtained from the analysis of inclusive
diffractive data (see Fig. 2.13) measured by H1 collaboration using large rapidity
gap method (see section 2.3.6). This method allows to measure the diffractive cross
section as a function of xIP , β and Q2. The t dependence can be obtained only by
direct scattered proton measurement (see section 3.3). Therefore only the integrated
reduced cross section in the region |t| < 1GeV2 and MY < 1.6GeV is measured.
In addition a diffractive cut xIP < 0.05 is applied because the rapidity gap ∆η ∼
ln 1/xIP .

The measured reduced cross section σ
D(3)
r (xIP , β,Q

2) (2.46) is fitted by means
of NLO QCD fit (see Figs. 3.4, 3.5, 3.6).

From the diffractive parton densities which obey DGLAP evolution (2.50) is the
reduced cross section determined by formulas (2.48) and (2.47) with explicitly known
perturbatively calculable coefficient functions.

In addition a Regge proton vertex factorisation expressed by formula (2.52) is
supposed to be valid.

The pomeron and reggeon flux factors fIP/p(xIP ), fIR/p(xIP ) (2.53) are integrated

over |t| < 1GeV2 and their parameters are mostly fixed - known from other experi-
ments (mainly from previous leading proton analysis [35]). Only two free parameters
which will be fitted are the pomeron intercept αIP (0) and the scale factor nIR which
determines the fraction of the reggeon contribution.

The distribution function of the pomeron has at the initial scale Q2
0 = 1.75GeV2

for fit A, respectively Q2
0 = 2.5GeV2 for fit B the following form

zfi/IP (z,Q
2
0) = Aqz

Bq(1− z)Cq i = u, d, s, ū, d̄, s̄ (3.1)

zfg/IP (z,Q
2
0) = Ag(1− z)Cg . (3.2)
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The contribution of heavy flavours is set to be zero for initial scale Q2
0 and is gener-

ated by DGLAP evolution above heavy quark mass threshold.
The parton densities fi/IR of sub-leading reggeon exchange are taken from a

parameterisation derived from fits to pion structure function data [36].
Finally there are 7 (6 for Fit B) free parameters to be fitted. Results are shown

in Tab. 3.1. Fit B differs in different starting scale and by fixing of Cg coefficient
to zero. The gluon part is therefore supposed to be constant for Q2

0. The χ2 values
obtained for both fits are comparable.
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Fig. 3.4: The β dependence of σr for xIP = 0.003 (left) and xIP = 0.03 (right) and
several Q2 values. The data are plotted by red points, the DPDF Fit A has a blue
color. The black line denotes contribution from longitudinal structure function (in
the left) and from sub-leading reggeon (IR) exchange (in the right) to σr [24].

Fit Parameter Fit A Fit B

αIP (0) 1.118± 0.008 1.111± 0.007
nIR 1.7× 10−3 1.4× 10−3

Aq 1.06± 0.32 0.70± 0.11
Bq 2.30± 0.36 1.50± 0.12
Cq 0.57± 0.15 0.45± 0.09
Ag 0.15± 0.03 0.37± 0.02
Cg −0.95± 0.20 0 (fix)

Tab. 3.1: Fitted parameters of H1 2006 Fit A and H1 2006 Fit B [24].
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Fig. 3.5: The Q2 dependence of σr for xIP = 0.003 (left) and xIP = 0.03 (right) and
various β. The data are plotted by red points, the DPDF Fit A has a blue color
[24].

The fact that DPDF fits describe the data for different Q2 values demonstrates
that the DGLAP evolution and generally QCD approach is valid for inclusive diffrac-
tion. This measurement also proved validity of ”integrated” Regge vertex factorisa-
tion, i.e. xIP dependence of σr is described by fit A (see Fig. 3.6).

3.3 Diffraction Measured by Forward Proton Spectrom-

eters

Regge factorisation of proton vertex can be in detail studied using of method of

detection of the scattered proton (see section 2.3.6). It allows to measure σ
D(4)
r

in all four variables including the momentum transfer t. Other advantage of this
method is the accessibility of higher xIP values (up to xIP < 0.1 in the latest H1
analysis [37]) in comparison with the large rapidity gap method. Unfortunately due
to low geometrical acceptance of the forward proton spectrometers this method can

36



CHAPTER 3. MOTIVATION AND RECENT RESULTS 37

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

10
-4

10
-2

10
-4

10
-2

10
-4

10
-2

10
-4

10
-2

10
-4

10
-2

10
-4

10
-2

10
-4

10
-2

x IP
 σ

rD
(3

)
β=0.01 β=0.04 β=0.1 β=0.2 β=0.4 β=0.65 β=0.9

3.5

Q2

[GeV2]

5

6.5

8.5

12

15

20

25

35

45

60

90

200

400

800

xIP

1600

H1 Data
H1 2006 DPDF Fit A
(extrapol. fit)

Fig. 3.6: The xIP dependence of σr for different β and Q2. The data are plotted by
red points, the DPDF Fit A has a blue color [24].



not be an only source of measurements for QCD fits.
Test of Regge factorisation was done in [37] by dividing the phase space into

three regions

4 < Q2 < 12 12 < Q2 < 36 36 < Q2 < 110 , where Q2 is in GeV2. (3.3)

Parameters of the pomeron flux were fitted to the data independently in each Q2

interval whereas other parameters are keeping fixed. Pomeron flux parameters are
Q2 range independent (see Fig. 3.7) and therefore we can conclude that Regge
factorisation holds.
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Fig. 3.7: The dependence of pomeron flux parameters on the Q2. The white line
with yellow error bar denotes the global full Q2 range Regge fit [37].
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Fig. 3.8: The ratio of the reduced diffractive cross section σ
D(3)
r for MY < 1.6GeV

and |t| < 1GeV2 obtained by large rapidity gap method to that for MY = MP and
|t| < 1GeV2 obtained from measurement with forward proton spectrometer as a
function of Q2, β and xIP [37].

When a large rapidity gap is observed the scattered proton usually stays intact
but can also dissociate to the low mass hadronic system with the mass MY <
1.6GeV. In the measurement with forward proton spectrometer only bare proton
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is detected and the ratio of the cross sections using these two methods determines
relative contribution of the dissociation. The dependence of this ratio on various
kinematic parameters is shown in Fig. 3.8. The cross section ratios are within the
errors independent on the kinematic variables Q2, β, xIP and the mean value is

σ(MY < 1.6GeV)

σ(MY = MP )
= 1.20± 0.11. (3.4)

It means that in measurement by large rapidity gap method in about 20 % of the
events the scattered proton dissociated into hadronic system with mass smaller than
1.6GeV.

3.4 Diffractive Dijet Production in DIS

The measurement of diffractive dijet in DIS is directly sensitive to the gluon contribu-
tion of DPDFs1 and represents the one of the tests of the factorisation in diffraction.
The NLO QCD analysis of measured data was performed by both collaborations and
the detailed description can be found in [38], [39].

The H1 collaboration [38] sets a renormalization and factorisation scale equal to2

(E∗jet1
T )2 +Q2 whereas ZEUS collaboration [39] sets renormalization scale equal to

(E∗jet1
T )2 and factorization scale to Q2. The E∗

T jets cuts in NLO QCD data analysis
must by asymmetric. It was the reason why H1 collaboration [38] has chosen

E∗jet1
T > 5.5GeV and E∗jet2

T > 4GeV (3.5)

and ZEUS [39]
E∗jet1

T > 5GeV and E∗jet2
T > 4GeV. (3.6)

The reason for this asymmetric cutting is following. If one fixes E∗jet2
T cut and

decreases cut on E∗jet1
T the phase space of the measurement is increasing and there-

fore the total cross section must grow. Indeed the NLO cross section reaches the
maximum but then nonphysically drops off to smaller values because of not fully
cancelled negative interference terms [40].

Fig. 3.9 shows that H1 2006 Fit A overestimates the measured cross sections
while NLO calculation with H1 2006 Fit B agrees with the data well. A similar
feature observed also ZEUS collaboration (see Fig. 3.10).

The fact that inclusive measurements are not sensitive to a gluon part of DPDFs
could mean that the agreement of H1 2006 Fit B with the dijet data is simply a
coincidence. Therefore the combined H1 2007 Fit Jets [38] has been done by fitting

1The dominant leading order process is a boson-gluon fusion in this case.
2The sign * denotes variables in the γ∗p center of mass frame with z axis collinear with proton

and γ∗ momentum.
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Fig. 3.10: ZEUS measurement of ET and pseudorapidity of the leading jet in γ∗p
CMS, zIP and xγ distribution [39] compared with NLO predictions with different
DPDFs fits.
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simultaneously inclusive and dijet diffractive data. Similar procedure was used also
by ZEUS collaboration in [41] and this combined fit is called ZEUS SJ DPDF. The
quark singlet and gluon parts of most common diffractive structure functions are
shown in Fig. 3.11. It can be seen that the fits differ mostly in the gluon part
where H1 Fit B has the highest values and the combined fits from H1 and ZEUS
collaborations are smaller.
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Fig. 3.11: Function values of quark singlet and gluon densities for DPDFs used in this
analysis. Structure functions are integrated over |t| < 1GeV2 and MY < 1.6GeV.

We can conclude that the measurements of both collaborations confirm the fac-
torisation theorem for the diffractive dijet production in DIS.

3.5 Factorisation Breaking in Hadron-Hadron Collisions

The hard diffraction was in a detailed way studied in pp̄ collision at Tevatron with
the highest CMS energy around 2 TeV. The difference between diffraction at HERA
and Tevatron is that diffraction at Tevatron can occur not only on either p or p̄
side but also on both sides. We call it single and double pomeron exchange (see
Fig 3.12). Diffraction events can be detected by (anti-)proton spectrometers or by



means of large rapidity gap method. The hard scale is ensured by the presence of
jets with high transverse energy.
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Fig. 17. Scheme of direct (left) or resolved (right) photoproduction events.

p and p̄. The upper black curve represents the case where the t of the p and
p̄ are similar and close to 0. In that case, only a weak dependence on ΔΦ
is observed. The conclusion is different for asymmetric cases or cases when
t is different from 0: Fig. 19 also shows the result in full red line for the
asymmetric case (t1 = 0.2, t2 = 0.7 GeV2), and in full and dashed blue lines
for t1 = t2 = 0.7 GeV2 for two different models of survival probabilities. We
notice that we get a very strong ΔΦ dependence of more than one order of
magnitude.

The Φ dependence can be tested directly using the roman pot detectors

Fig. 3.12: Scheme of inclusive, single diffractive and double diffractive pp̄ collisions.

The interesting question is whether the diffractive structure function from HERA
can be used at Tevatron. For this purpose the ratio R of dijet events in single
diffractive and non-diffractive has been studied (see Fig 3.12)

R =
NSD

jj

NND
jj

. (3.7)

This ratio can be estimated from non-diffractive and diffractive parton distribution
functions. In Fig. 3.13 is the R factor plotted as a function of fraction of the
pomeron momentum with respect to the diffractive exchange β as measured by
CDF collaboration [42]. The predicted values from HERA DPDFs are about one
order in magnitude higher than the measurement!

This observation is explained theoretically assuming that factorisation breaking
results from absorptive effects caused by multiple re-scattering effects. The rapidity
gap can than be populated by secondary particles which spoil the experimental
signature of the diffractive events [27].

The concept of so called rapidity gap survival probability S2 was introduced. By
definition in ep diffractive DIS interactions is S2 = 1. For Tevatron it reaches values
S2 ∼ 0.1 and is only a little bit β dependent (see Fig 3.13).

Understanding of the rapidity gap survival probability factors is of vital impor-
tance nowadays. Indeed a substantial attention is devoted to the central exclusive
channel which is believed to be a discovery channel for the Higgs boson [43]

p+ p → p+ p+H. (3.8)

The advantage of this double pomeron exchange process is the presence of rapidity
gap from both proton sides which provides a clean environment for Higgs production
in the central region.
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Fig. 3.13: The measurement of the R factor as a function of β at Tevatron. Result
is compared with the prediction based on diffractive HERA DPDFs.

3.6 Diffractive Dijet Photoproduction

In diffractive photoproduction (see Fig. 2.14), in the leading order approximation,
the small photon virtuality (Q2 ≪ 1GeV2) allows for partonic fluctuations that live
long enough.

The photon may not couple directly to the quarks in the pomeron, but only a
part of its four-momentum participates in the hard interaction. Such interactions are
called resolved. The photon can still couple directly (with its whole four-momentum)
to the quarks and these interactions are called direct. The resolved photon interac-
tions resemble the hadron-hadron ones since two particles with structure, which is
described by photon and diffractive structure functions, scatter on each other.

The variable xγ , which is defined as a four-momentum fraction taking part in the
hard interaction, is used to distinguish between the two regimes in photoproduction.
Obviously, following relations hold: xγ = 1 and xγ < 1 for the direct and resolved
photon interactions, respectively. Effects of fragmentation and a finite experimental
resolution impose a smearing on the value of xγ . In experiments, often a value of
xγ around 0.75 is considered to be a discriminator below (above) which the events
are regarded as being due to resolved (direct) photon interaction, with reasonably
low contamination of one in each other.

Because of the presence of these two photon interaction regimes, studying diffrac-
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tive processes in photoproduction is a useful tool for tests of the validity of the hard
factorisation in diffraction.

The partonic structure of the photon was measured in γ∗γ deep inelastic scat-
tering at LEP in eē interactions [46]. The photon structure function contains per-
turbative point-like part and the resolved contribution which resembles to vector
mesons. The photon PDFs are supposed to have a similar form as a PDFs of a
meson at the starting scale Q2

0 and the point-like component at the initial scale is
supposed to be zero. The evolution to the higher scales provides DGLAP equation
which differs from equation for the proton by an additional inhomogeneous term.
This term generate the point-like (or inhomogeneous) part of the photon PDFs and
for high scales the point-like part is dominated except small xγ values. The GRV
HO [44] and AFG HO [45] γ-PDFs used in this thesis are plotted in Fig. 3.14.

There was an earlier prediction of Kaidalov et al. [47] that the factorisation
breaking of the resolved part should induce a suppression of the NLO QCD expec-
tation by about a factor of 0.34 due to additional interaction between the spectators
which spoils the rapidity gap (see Fig. 3.15). This idea was widely discussed and
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Figure 1: The simplest diagram for inclusive diffractive jet production in DIS at HERA. xP is

the fraction of the longitudinal momentum of the proton carried by the Pomeron P .

Figure 2: Diffractive dijet production at HERA from a resolved photon. xγ is the fraction of the

photon’s longitudinal momentum carried by the resolved gluon. Diagrams (a) and (b) show the

single-Pomeron-exchange and the multi-Pomeron-exchange contributions, respectively. Similar

diagrams apply to diffractive dijet production in pp collisions.

2

Fig. 3.15: Feynman diagrams for resolved diffractive photoproduction with exchange
of one pomeron (left) and multiple pomeron (right) [27].

applied to published data in the studies of Klasen and Kramer [48, 49]. However
recently [50] theoretical expectations were revised stressing the fact that due to the
inhomogeneous term in the DGLAP evolution there is also point-like part of the
γ-PDF the hadron-like part of the photon structure occurs only at lowest values
of four-momentum fractions xγ ∼ 0.1 which are experimentally hardly accessible.
The dominant part of the resolved processes is therefore represented by the point-like
photon interactions resulting in a significantly weaker suppression effect as compared
to the 0.34 factor following from [50].

The first H1 measurement of diffractive dijet photoproduction with NLO QCD
analysis [51] of the data was done in 20073. H1 collaboration observed a global
suppression of the dijet cross section with respect to NLO QCD calculation by a
factor 0.5± 0.2. A new study of H1 collaboration [32] with a three time larger data
sample and similar kinematic region (only exception is additional zIP < 0.8 cut)
confirms the previous study [51] with a suppression factor of data with respect to
NLO calculations 0.6± 0.2. Both H1 analyses used H1 2006 Fit B DPDF.

The ZEUS collaboration has made only one measurement with asymmetric cuts
on ET of the jets [54] in year 2007. They observed a suppression of the data about
0.8 for H1 2006 Fit B DPDF. In a recent study [41] ZEUS tests their new fit ZEUS
SJ DPDF (see Fig. 3.11) also for diffractive dijet photoproduction data [54]. They
obtained agreement of data and NLO simulations in shape and in normalisation
for both published differential cross sections (xγ and Ejet1

T ). The hadronization
corrections (see section 4.3) were taken from older publication [54].

In contradiction with expectations from [47, 50] neither experiment did observe
a difference in suppression for the resolved enriched part (xγ < 0.75) and the direct
enriched part of the cross section (xγ > 0.75). The calculations where such a kind
of suppression is assumed do not describe the shape of xγ distribution much worse

3Previous measurements of diffractive dijet photoproduction from H1 [52] and ZEUS [53] col-
laborations have been done with symmetric E

jets

T cuts and therefore are not suitable for NLO QCD
analysis.
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Figure 2: Diffractive dijet photoproduction cross sections differential in (a) xjets
γ , (b) E

jet1

T , (c)

log xIP , (d) z
jets

IP , (e)
�

ηjets
�

, (f)
�

�Δηjets
�

�, (g) W , (h) M12 and (i) MX . The data points are shown

with inner error bars corresponding to statistical uncertainties and outer error bars representing

statistical and uncorrelated systematic uncertainties added in quadrature. The correlated sys-

tematic errors are indicated by the open bands between the two solid black lines. The white

lines show NLO QCD calculations obtained using the FR framework [26, 32, 33] and the H1

2006 Fit B DPDFs, corrected for hadronisation effects. The dark bands around the theoretical

predictions indicate the result of propagating the uncertainties on the Fit B DPDFs to the NLO

calculation. The light bands show this DPDF uncertainty added in quadrature with the effect on

the calculation of varying µR and µF by factors of 0.5 and 2.0. In all figures, the predictions of

the RAPGAP MC model are also shown.
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Fig. 3.16: The H1 [32] (left) and ZEUS [41] (right) measurements of xγ distribution
compared with NLO QCD predictions.
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FIG. 4: Differential cross sections for diffractive dijet photoproduction as measured by H1 with low-

E
jet
T cuts and compared to NLO QCD with global, resolved, and resolved/direct-IS suppression.

Note that some of the theoretical predictions coincide with the experimental values.

experimental data. Of course, since the ‘H1 2006 fit A’ PDFs have a larger gluon component

at large z, the cross sections are larger and therefore need a larger suppression of R = 0.32.

Note that in the published low-E
jet
T H1 analysis as well as in the comparison presented here

the contribution from the largest z
obs
IP -bin has been removed from all other distributions.

From Figs. 5a and b we conclude that the dependence on the chosen DPDFs is then weaker,
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FIG. 10: Differential cross sections for diffractive dijet photoproduction as measured by ZEUS and

compared to NLO QCD with global, resolved, and resolved/direct-IS suppression.

larger than the corresponding H1 diffractive DIS cross section. This amounts to a total

correction factor of 0.79± 0.06. If we apply this correction factor to our ZEUS suppression

factors, we obtain a global (resolved-only) suppression of 0.56 ± 0.05 rather than 0.71 (0.42

± 0.04 rather than 0.53), i.e. suppression factors which are closer to the results found for

the similar high-Ejet
T H1 analysis. Here, the errors refer only to the errors coming from

the renormalization of the ZEUS data and do not include the experimental stat./syst. and

23

Fig. 3.17: The comparison of H1 [32] (left) and ZEUS [54] (right) measurements of xγ
distribution with NLO QCD prediction with H1 Fit B DPDF and GRV HO γ-PDF
as calculated in [49]. Blue lines denote NLO distribution with global suppression
factor, red and green lines represent NLO calculations with suppressed resolved part.
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H1 ZEUS

Q2 < 0.01GeV2 Q2 < 1GeV2

0.3 < y < 0.65 0.2 < y < 0.85

Ejet1
T > 5GeV Ejet1

T > 7.5GeV

Ejet2
T > 4GeV Ejet2

T > 6.5GeV

−1 < ηjet1(2) < 2 −1.5 < ηjet1(2) < 1.5

Diffractive cuts

xIP < 0.03 xIP < 0.025
zIP < 0.8

|t| < 1GeV2 |t| < 1GeV2

MY < 1.6GeV MY = MP

Tab. 3.2: Cuts used in H1 [32] and ZEUS [41, 54] analyses of diffractive dijet pho-
toproduction.

than the predictions with global suppression factor (see Fig. 3.17).
In H1 and ZEUS analyses the diffractive events were selected with a large ra-

pidity gap method and jets were identified using the inclusive kT cluster algorithm
(see section 2.2.4) in the laboratory frame. The phase space of both analyses was
different (see Tab. 3.2), the main difference being at somewhat larger Ejet

T of ZEUS
measurement. H1 collaboration collected data with a tagged electron that allowed
to restrict the Q2 to very low values (Q2 < 0.01GeV2), the ZEUS analysis was
done with an untagged electron sample of events (Q2 < 1GeV2). In H1 analysis
the additional cut zIP < 0.8 was applied since the DPDF sets are not valid at the
largest values of zIP due to higher twist contribution.

There was a suggestion that the different conclusions about factorisation breaking
of H1 and ZEUS analysis could be caused by different Ejets

T cuts of the analysis.
The ET jet dependence of the factorisation was motivated by observation that the
suppression decreases with increasing ET of the leading jet (see Fig. 3.18).

To study this effect in a more detailed way the H1 Hight Pt analysis [55] was
done with the cuts similar to ZEUS analysis. The only differences between both
analyses are in y, Q2 and MY cuts (see Fig. 5.1). Suppression factor in [55] was
really a little bit smaller (0.61 whereas Low Pt analysis [32] gives 0.58, both for H1
Fit B DPDF) but it was still present.

The challenge of this thesis is to check and discuss a possible sources for different
H1 and ZEUS conclusions which concern diffractive dijet in photoproduction.
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Figure 3.8: Double ratio of dσ/dpjet1
T for data to NLO QCD prediction based on

H1 2006 Fit B in photoproduction to DDIS. The plot is based on published data
from [3]. Thanks to Sebastian Schätzel.

harder pjet1
T slopes in data than in the NLO predictions in [3, 18] the figure 3.8

suggests weaker suppression as pjet1
T increases. The figure itself has not been

published, it is, however, based on the published data from [3]. Given the large

errors the statistical significance of the dependence in 3.8 is not high but it is

interesting and supporting the idea of the pT dependence of the factorization

breaking. It would be, therefore, highly desirable to repeat similar analysis with

newer HERA data.

3.5 Survival Probability at HERA, Tevatron and

LHC

A suggestion of a factorization breaking can be seen already from comparison

of rates of diffractive events at HERA and Tevatron. At HERA about 10% of

events are diffractive whilst at Tevatron it is only about 1%. The mechanism of

the factorization breaking was outlined in section [1] and in figure 3.5. It was

explained by means of multiple IP exchange. As it was shown in section 3.3 the

survival probability for diffractive dijet production at Tevatron is about 10% if

compared with predictions based on H1 DPDF fits.

At the LHC the protons and antiprotons will collide with center of mass energy

of about 14 TeV. A substantial attention is given to central exclusive production

(CEP) channels which are hoped to be discovery channel for the Higgs boson

production in processes of type;

pp → p + H + p , (3.1)

Fig. 3.18: The double ratio of dσ/dEjet1
T for data to NLO QCD predictions in

diffractive photoproduction to DDIS. Plot is based on published data from [51].

3.7 Diffractive Open Charm Production in Photopro-

duction

The H1 and ZEUS collaborations measured diffractive photoproduction ep → eXY
where the diffractive system X contains at least one charmed hadron [56, 57]. The
D∗ mesons are reconstructed via a golden decay into a kaon and two pions.

The measured distributions for y and W variable4 are presented in Fig. 3.19. It
can be seen that the NLO predictions overestimated H1 data while ZEUS data are
above NLO calculations.

The cross section ratios of data and NLO calculations for H1 and ZEUS open
charm analysis are

σH1
data/σ

H1
NLO = 0.74± 0.25± 0.17 (3.9)

σZEUS
data /σZEUS

NLO = 1.35± 0.23± 0.40, (3.10)

where the NLO calculations were performed with H1 2006 Fit B DPDF. The first
error is experimental and the second error is theoretical one connected with a scale
uncertainty of NLO calculations. It is obvious that due to large errors results of
both collaboration are compatible with no suppression hypothesis.

4In photoproduction W =
√
ys
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Fig. 5. Differential cross section (dots) for diffractive photo-
production of D∗ mesons, measured with respect to xIP . The
inner bars show the statistical errors; the outer bars corres-
pond to the statistical and systematic uncertainties added in
quadrature. The data are compared to the NLO QCD calcu-
lations (histograms) using the H1 2006 Fit A (solid), Fit B
(dashed), both multiplied by a factor of 0.81, and the ZEUS
LPS+charm Fit (dotted) diffractive parton distribution param-
eterisations. The shaded bands show the uncertainties coming
from variations of the charm-quark mass and the factorisation
and renormalisation scales

out re-weighting (Sect. 4.1). To compare the shapes with
the measured cross sections, the model prediction was
normalised by a factor 0.34. Reasonable agreement be-
tween the shapes of the calculated and measured dif-
ferential cross sections is observed. The relative contri-
bution of resolved photon processes predicted by RAP-
GAP increases towards forward η(D∗), small z(D∗) and
largeMX .
Figures 5–7 compare the measurements to the three

sets of NLO predictions obtained from the FMNR cal-
culations using the H1 2006 Fit A, Fit B and ZEUS
LPS+charm Fit dPDFs. The estimated calculation uncer-
tainties (see Sect. 4.2) are shown as the shaded band only
for H1 2006 Fit A and are similar for other calculations.
The uncertainties of the NLO QCD predictions are larger
than the experimental ones in most bins.
The NLO QCD calculations reproduce the xIP differen-

tial cross section (Fig. 5), in both shape and normalisation.
A similar agreement between the calculations and the data
is seen in Figs. 6 and 7 for the pT(D

∗), η(D∗), MX and
W differential cross sections in both ranges xIP < 0.035
and xIP < 0.01. The shapes of the differential distributions
dσ/dz(D∗) are not well reproduced by the NLO calcula-
tions. A better shape description of the z(D∗) distributions
is provided by RAPGAP (Fig. 4). The agreement between
the NLOQCD predictions and the data supports the valid-
ity of the QCD factorisation theorem in diffraction, imply-
ing the universality of diffractive PDFs. However, given the

Fig. 6. Differential cross sections (dots) for diffractive pho-
toproduction of D∗ mesons with respect to pT(D

∗), η(D∗),
z(D∗), MX and W, measured for xIP < 0.035. The inner bars
show the statistical errors; the outer bars correspond to the
statistical and systematic uncertainties added in quadrature.
The data are compared to the NLO QCD calculations (his-
tograms) using the H1 2006 Fit A (solid), Fit B (dashed), both
multiplied by a factor of 0.81, and the ZEUS LPS+charm Fit
(dotted) diffractive parton distribution parameterisations. The
shaded bands show the uncertainties arising from variations of
the charm-quark mass and the factorisation and renormalisa-
tion scales

large experimental and theoretical uncertainties and the
small hadron-like contribution expected by the NLO calcu-
lations, a suppression of the hadron-like component cannot
be excluded.

7.2 Fraction of D�� meson diffractive
photoproduction

The fraction of the diffractive to the inclusive (ep→
eD∗Y ) photoproduction cross sections for D∗ mesons was

Fig. 3.19: Measurement of y (left) and W (right) distribution for diffractive open
charm production in photoproduction published by H1 [56] (left) and ZEUS [57]
(right) collaborations. NLO calculations with H1 Fit B are denoted with full blue
line on the left and with dashed line on the right.

The double ratio between H1 and ZEUS measurements with experimental un-
certainty

σH1
data/σ

H1
NLO

σZEUS
data /σZEUS

NLO

= 0.55± 0.21 (3.11)

can however signalise that similar discrepancy between analyses like in diffractive
dijet photoproduction could be not excluded.



Chapter 4

Crosscheck of H1 and ZEUS

Results

In the following the crosscheck of theoretical calculations which were published by H1
[32] and ZEUS [41, 54] collaborations will be done (see section 3.6). Both collabora-
tion made their calculation in next-to-leading order accuracy. Unfortunately no NLO
Monte Carlo (with incorporated hadronization) exists nowadays for ep interactions.
It means that the parton-level NLO results must be corrected for hadronization by
so called hadronization corrections (HC). These HC are estimated from LO Monte
Carlo. Final results are obtained as a product of NLO cross sections and HC.

In next three sections the crosscheck of NLO calculations at parton level (sec-
tion 4.2), hadronization corrections (section 4.3) and NLO predictions corrected
for hadronization (section 4.4) will be presented. At the end the sensitivity of the
calculation to photon structure function will be studied (section 4.5).

4.1 Reconstruction Formulas

Invariant quantities which are defined in the theory chapter must by obtained from
momenta of the particles or the jets. There usually exist more reconstructions
formulas for particular kinematic quantity. The choice of the method depends on
experimental ability and accuracy of the measurement of observables using different
reconstruction formulas.

In the case of tagged photoproduction the scattered electron energy E′
e is mea-

sured directly in electron tagger. Inelasticity y is then calculated as

y = 1− E′
e

Ebeam
e

(4.1)

where Ebeam
e is a beam energy of the electron. For untagged photoproduction y is
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determined from all particles in HFS (system X) according to the formula

y =

∑

HFS(Ei − Pz,i)

2Ebeam
e

=

∑

HFSET,ie
−ηi

2Ebeam
e

. (4.2)

The invariant mass of γ∗p system W in photoproduction is always determined from
the relation W =

√
sy.

Because the scattered proton is not detected in neither analysis the analog of
formula (4.2) is used to reconstruct xIP

1

xIP =

∑

HFS(Ei + Pz,i)

2Ebeam
P

=

∑

HFSET,ie
ηi

2Ebeam
P

. (4.3)

Next variables which must be reconstructed are the fractions of four-momentum
transferred to the hard process from photon and pomeron side (xγ and zIP )

xγ =

∑

jets(Ei − Pz,i)

2yEbeam
e

=

∑

jets(Ei − Pz,i)
∑

HFS(Ei − Pz,i)
=

∑

jetsET,ie
−ηi

∑

HFSET,ie−ηi
(4.4)

zIP =

∑

jets(Ei + Pz,i)

2xIPEbeam
P

=

∑

jets(Ei + Pz,i)
∑

HFS(Ei + Pz,i)
=

∑

jetsET,ie
ηi

∑

HFSET,ieηi
. (4.5)

Sum over jets is sum of contributions from leading and sub-leading jet reconstructed
using inclusive kT -jet algorithm in laboratory frame with parameter R = 1 (see
section 2.2.4).

Mean pseudorapidity 〈ηjets〉 of dijet system and the interval in pseudorapidities
between jets

∣
∣∆ηjets

∣
∣ is defined in a natural way

∣
∣∆ηjets

∣
∣ =

∣
∣ηjet1 − ηjet2

∣
∣ 〈ηjets〉 = 1

2

(
ηjet1 + ηjet2

)
. (4.6)

Invariant masses of diffractive system X and effective mass of the dijet system
are reconstructed as

MX =
√
yxIP s M12 =

√

2J (1) · J (2) (4.7)

where J (1) and J (2) are four-momenta of the first and the second jet which are
regarded to be massless.

1In the analyses with scattered proton measured in forward proton spectrometers is xIP estimated

directly by analogy with (4.1) as xIP = 1− E′

P

Ebeam

P

.



4.2 Parton-Level NLO Calculations

For our NLO calculation the program Frixione et al. [58] adopted for diffractive
photoproduction was used. The renormalization and factorisation scales are both
set to the leading jet transverse energy i.e. µR = µF = Ejet1

T . The NLO calcula-
tions are performed with number of flavours fixed to 5 and with Λ5 = 0.228GeV,
corresponding to 2-loop αs(MZ) = 0.118. These parameters are the same as in
H1 analysis. NLO results only slightly depend on the number of active flavours (5
or 4) used. Scale error band is conventionally given by varied renormalization and
factorization scale simultaneously by factor 0.5 and 2.

ZEUS collaboration uses alternative NLO QCD program written by Klasen and
Kramer [59]. A compatibility of both NLO programs was checked in [55]. The
difference between these two programs in differential cross sections is mostly much
smaller than scale uncertainty and is caused by another method of cancellations of
infrared and collinear singularities. ZEUS calculations in [54] are performed with
Nf = 4. Changing of number of active flavours to Nf = 5 (with the same αs(MZ) )
leads [54] to increase of cross section for xγ > 0.75 by about 10 % and is negligible
elsewhere.

Frixione NLO program was written to simulate hadron-hadron and photon-
hadron collisions. Adoption of NLO program for diffractive photoproduction is done
by segmentation in xIP and y variables from proton and electron side. Effectively the
program simulates the interaction of resolved photon with pomeron (hadron-hadron
type of collision) or photon with pomeron (photon-hadron type) for direct photo-
production. These cross sections are summed for all (xIP , y) combinations with the
weight done as product of pomeron (2.53) and photon flux (2.56) according to the
factorization formula (2.57). Photon has energy yEbeam

e and pomeron xIPE
beam
P .

At the end the direct and resolved parts must by summed because only sum has
a physical meaning. This approach is possible because virtuality of the ”colliding”
photon Q2 and pomeron −t (both maximally 1GeV2) are much smaller than square
of the hard scale (µ2 > 25GeV2) so the time of life of colliding objects is long enough
in comparison with time of the collision.

Results of NLO calculations for H1 (ZEUS) kinematics are plotted with full line
in Fig. 4.1 (Fig. 4.2). In the calculations the GRV HO (High Order) γ-PDF is
used. Calculation are made for H1 2006 Fit B, H1 2007 Fit Jets and ZEUS 2009 SJ
DPDFs (see section 3.4). The H1 data measured by large rapidity gap method and
the fits done by H1 collaboration are published for MY < 1.6GeV range whereas
ZEUS unfolds cross sections and fits to the proton mass (MY = MP ). Therefore the
ZEUS fits must be multiplied by factor 1.2 to convert them to the H1 MY convention
or H1 fits must by divided by 1.2 to convert them to MY = MP convention used in
ZEUS analysis. This factor was determined from the measurements with forward
proton spectrometers (see section 3.3). From Figs. 4.1 and 4.2 is seen that the most
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Fig. 4.1: Crosscheck of NLO calculations for H1 phase space for three DPDFs and
GRV γ-PDF. Doted lines are H1 calculations published in [32].

sensitive variable from the point of view of the diffractive structure function used
is zIP variable. The total calculated cross section is the largest for H1 Fit B, the
smallest for ZEUS SJ and H1 Fit Jets gives intermediate values. This behavior is
determined by course of DPDFs plotted in Fig. 3.11.

Published NLO calculations are denoted with dotted lines. The small disagree-
ment between published and recalculated differential ZEUS cross sections for H1
Fit B can be caused by using of different NLO program and the smaller number of
quark flavours in ZEUS calculations [54].

4.3 Hadronization Corrections

It was already mentioned in the introduction of this chapter that no NLO program
for ep interactions with incorporated hadronization exists in the present. Leading
order Monte Carlo models imitate some features of NLO by using initial and final
state parton showers so the shapes of parton-level distributions could be comparable
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whereas the normalisation could differ significantly. The only way is to assume that
hadronization simulated by LO MC will by similar to explicitly unknown hadroniza-
tion of NLO parton-level.

Usual procedure of estimating of hadron-level NLO cross sections is:

1. Calculate parton-level NLO.

2. Calculate LO MC differential cross sections and reweight them in order to
obtain very close LO parton-level and NLO parton-level cross section distri-
butions.

3. From this reweighted LO MC model calculate the hadronization corrections
Ci for all bins in kinematic variables we are interested

Ci =
σLOhadr
i

σLOpart
i

(4.8)
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where the binning of the histograms and the kinematic cuts are the same at
both levels.

4. Apply these HC to NLO from step 1. Hadron-level cross section in particular
bin is then expressed as

σNLOhadr
i = Ciσ

NLOpart
i . (4.9)

There are some important aspects of this method:

• To ensure conformity between Monte Carlo models and NLO predictions the
same photon and diffractive structure functions should be used. On the other
side the NLO structure functions cannot be applied directly in LO MC at
least because there arises a question which NLO factorisation scheme (MS,
DIS) one should use in LO program. So if both versions of the fit are available
the proper procedure is to use LO version in Monte Carlo and NLO version in
NLO program. It is demonstrated in Fig. 4.3 where are shown LO and NLO
versions of GRV photon PDF. It is clear they differ significantly.
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Fig. 4.3: GRV γ-PDF in LO and NLO (HO) version. NLO γ-PDF is plotted in
DISγ and MS factorisation scheme. Contribution from quark singlet of light quarks
is denoted with full line, charm component with doted line and gluon part with
dashed line. Gluon component in NLO is scheme independent.

• Hadronization corrections depend on the model of hadronization which is im-
plemented in MC (see section 2.2.4). In our analysis the RAPGAP MC with



Lund String Model of hadronization is used. Using of an alternative cluster
model of the fragmentation implemented in MC program HERWIG [14] can
provide valuable information about systematic errors. Such a procedure was
used in [51], where the HERWIG MC was adopted to the diffraction by means
of method described in previous section. Differences between HC calculated
by RAPGAP and HERWIG were about 3 % in all bins.

• The reweighting procedure to LO MC distributions is applied in order to
achieve better agreement of NLO and LO MC parton-levels. In general there
exists 4 classes of events.

1. Events which fulfill parton and hadron-level cuts.

2. Events which fulfill parton-level cuts but not hadron-level cuts.

3. Events which do not fulfil parton-level cuts but fulfill cuts in hadron-level.

4. Events which are outside of the phase space at both levels.

The weights of the events Wai are mostly set in a way that some crucial
distribution ai (i indexes bins of this distribution at parton level) is after
reweighting at parton-level identical to NLO distribution. Then

Wai =
σNLOpart
ai

σLOpart
ai

(4.10)

and we can tell the parton-level MC was reweighted to NLO in ai variable.
The shapes of other distributions after reweighting change too. If all stud-
ied distributions are closer to the NLO after reweighting, the procedure was
successful.

All kinematic variables where the cuts are applied and which will be plotted
must be defined at both levels in the same way (even when the event do not
fulfill the cuts in one level). For example there can not be any limit for the
lowest transverse energy of the jets recognised by jet algorithm otherwise there
arises a risk that event will fulfill hadron cuts but at parton-level there will be
only one jet and the jets variables zIP , xγ and M12 lost their sense as well as
formula (4.10) for a = zIP , xγ ,M12.

If even after this reweighting to one variable the agreement between NLO and
LO parton-level is not sufficient more complex reweighting procedure must be
used, typically 2D reweighting or stepwise reweighting to more variables.

Reweighting is in general not unique because the events from class 3 do not
influence parton level distributions but influence hadron-level ones. Changing
of weights of these events will change hadron-level distributions and also HC
but will preserve parton level distributions.
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Here the hadronization corrections were estimated for 3 DPDFs (H1 Fit B, H1
Fit Jets and ZEUS SJ) and photon structure function GRV LO. The hadronization
corrections were calculated using MC RAPGAP in the phase space defined in H1
[32] and ZEUS [54] analyses.

ZEUS SJ DPDF fit is defined from starting scale Q2
0 = 1.8GeV2 and therefore

the backward DGLAP evolution to 1GeV2 was performed with program QCDNUM
[60] with the same parameters as used ZEUS [41] in forward evolution to larger
scales. The reason for the extension of the region of definition is that RAPGAP
uses for simulation of parton showers DPDFs from the scale of 1GeV2.

H1 Fit Jets DPDF was not directly implemented into RAPGAP instead ZEUS
SJ was reweighted to NLO with H1 Fit Jets.

The reweighting method was identical for H1 and ZEUS phase space and for all
DPDFs and is inspired by ZEUS analysis. Two 2D histograms (zIP , xγ) with two
bins in xγ (xγ < 0.75 and xγ > 0.75) and the same binning in zIP like in original
H1 (ZEUS) analysis were filled by NLO and by parton-level RAPGAP calculated
distributions. Weights were determined using (4.10).

The correspondence between NLO and LO parton-levels is demonstrated in the
upper part of figures 4.4, 4.5, 4.6 and 4.8, 4.9, 4.10. NLO parton distributions mostly
agree in shape with parton-level RAPGAP distributions but the normalisation is
completely different. NLO differential cross sections are approximately two times
higher than in LO model. Similar behaviour has been observed in H1 analyses
[51, 32]. On the contrary in ZEUS analysis are NLO calculations smaller than
leading order RAPGAP cross sections[54, 61]. Reweighting of LO model slightly
improves the agreement between NLO and LO parton-level cross sections (see Figs.
4.4, 4.5, 4.6 and 4.8, 4.9, 4.10).

Calculated hadronization corrections are shown at the lower parts of figures 4.4,
4.5, 4.6 and 4.8, 4.9, 4.10. The reweighting procedure mostly affects bins with small
cross section where the migration from other bins plays substantial role. Values of
HC in these bins have however small impact to the total cross section.

Overview of all HC calculated for H1 and ZEUS can be seen in Fig. 4.7 and 4.11.
The choice of the different DPDFs influences HC only a little and mostly in bins
with low cross sections. HC calculated for H1 agree with published hadronization
corrections [32] however HC calculated for ZEUS are lower than published ones [54].
Reason for this difference is difficult to establish. Some effect could have the fact
that ZEUS used very old DPDF (H1 1997 LO Fit 2 from data measured in 1994 [62])
when knowledge of the gluon part of the DPDF (most important in this analysis)
was limited.

The mean values of HC are shown in Tab. 4.1. It can be seen that ZEUS
published correction are about 16 % higher than HC calculated here.

Neither collaboration published errors of their hadronization corrections.
A detailed study of HC and the correspondence between NLO and LO cross
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Fig. 4.5: At the top: correspondence between NLO and parton-level RAPGAP
(before and after reweighting).
At the bottom: Hadronization correction calculated by means of RAPGAP.
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Fig. 4.6: At the top: correspondence between NLO and parton-level RAPGAP
(before and after reweighting).
At the bottom: Hadronization correction calculated by means of RAPGAP.
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Fig. 4.7: Hadronization corrections Ci recalculated for H1 Fit B, H1 Fit Jets and
ZEUS SJ and GRV γ-PDF. HC were calculated by RAPGAP reweighted to NLO
distributions. Hadronization corrections published by H1 in [32] are plotted by
dashed black line.

H1 ZEUS

H1 Fit B 0.84 0.92
H1 Fit Jets 0.85 0.95
ZEUS SJ 0.85 0.93

Published 0.85 1.08

Tab. 4.1: The mean values (σLOhadr/σLOpart) of hadronization corrections.

sections for non-diffractive DIS dijet production [63] shows that hadronization cor-
rections are smaller than unity and approach to unity with increasing of scale. Ratio
between NLO to LO cross sections decreases with growing scale and is asymptoti-
cally getting to unity (see Fig. 4.12).
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Fig. 4.8: At the top: correspondence between NLO and parton-level RAPGAP
(before and after reweighting).
At the bottom: Hadronization correction calculated by means of RAPGAP.
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Fig. 4.9: At the top: correspondence between NLO and parton-level RAPGAP
(before and after reweighting).
At the bottom: Hadronization correction calculated by means of RAPGAP.
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Fig. 4.10: At the top: correspondence between NLO and parton-level RAPGAP
(before and after reweighting).
At the bottom: Hadronization correction calculated by means of RAPGAP.
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Fig. 4.11: Hadronization corrections Ci recalculated for H1 Fit B, H1 Fit Jets and
ZEUS SJ and GRV γ-PDF. HC were calculated by RAPGAP reweighted to NLO
distributions. Hadronization corrections published by ZEUS in [54] plotted as dashed
black line.

4.4 Hadron-Level NLO QCD Predictions

Estimating of hadron-level NLO cross sections from parton-level NLO calculations
and hadronization correction is straightforward (4.9).

Results are shown in figures 4.13 and 4.14. Data are taken from H1 [32] and
ZEUS [54] publications. Even after revision of NLO calculations remain the con-
clusions of both analyses unchanged - H1 data cross sections agree in shape with
NLO predictions but are suppressed while in ZEUS case NLO calculations agree
with the data. The difference between our NLO and ZEUS published calculations is
caused by different hadronization corrections as it was discussed in previous section.
Overall suppression factors are shown in Tab. 4.2.
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Fig. 4.12: Dependence of σNLO/σLO on scale for DIS dijet production [63].

H1 ZEUS
revised published revised published

H1 Fit B 0.57 0.58 0.88 0.77
H1 Fit Jets 0.63 0.64 1.08 1.01
ZEUS SJ 0.72 0.70 1.11 0.98

Tab. 4.2: Suppression factors (σDATA/σNLO). Uncertainties of the data (QCD scale)
are around 20 % (25 %) respectively.

4.5 Alternative Photon Structure Function

In the analysis mentioned above the GRV photon structure function [44] was used
for NLO calculations and hadronization corrections. It was noticed [50] that the
point-like part of the resolved contribution in GRV could be overestimated by about
25 % in comparison with more recent AFG photon structure function [45].

In this section the NLO calculations using AFG and GRV γ-PDF will be com-
pared. To proceed in a correct way, the hadronization corrections must be also
recalculated. Unfortunately AFG is available only in NLO MS version. It can be
however simply transformed to DISγ scheme which is more similar to LO (see Fig.
4.3). Even after this transformation is RAPGAP with GRV LO closer to NLO cross
sections with AFG than RAPGAP with AFG DISγ . Therefore MC calculations were
performed with GRV photon structure function and the parton-level distributions
were reweighted to NLO. Only one representative DPDF for each phase space was
chosen – H1 Fit B for H1 kinematics and ZEUS SJ for ZEUS phase space.

Calculations of AFG NLO cross sections were however not straightforward as it
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Fig. 4.13: NLO calculation corrected for hadronization compared with H1 data.
Scale uncertainty band is plotted for H1 Fit B DPDF, GRV γ-PDF is used every-
where. Published NLO calculations are plotted with dotted line.
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was expected because of the bug in PDFs libraries which caused that AFG NLO
cross sections were approx. 50 % higher than GRV NLO cross sections. Indeed u and
d (anti-)quark densities implemented in PDFLIB [64] and LHAPDF [65] libraries
were two times higher than in correct AFG fit. The librarians of LHAPDF were
contacted and the bug was fixed2. In older not further supported PDFLIB this bug
still persists.

NLO parton-level and MC parton-level distributions are compared in figures 4.15
and 4.16. In addition NLO with GRV is plotted which makes possible to compare
NLO at parton-level with different photon PDFs. RAPGAP is reweighted by the
same method as described before.

NLO calculations corrected for hadronization are shown in Fig. 4.17 and 4.18.
Differential cross sections calculated with AFG photon structure function are really
smaller. The change of photon PDF affects mostly resolved part xγ . 0.75 so the
influence to the total cross section is higher for H1 kinematics where resolved part
dominates. Overall suppression factors for both photon structure functions can be
seen in Tab. 4.3.

H1 ZEUS
GRV AFG GRV AFG

all 0.57 0.63 1.11 1.16
direct 0.60 0.63 1.11 1.12

resolved 0.56 0.63 1.11 1.27

Tab. 4.3: Comparison of the total suppression factors (σDATA/σNLO) for GRV and
AFG γ-PDF. Experimental limit between direct and resolved part is 0.80 in H1 and
0.75 in ZEUS kinematic region which corresponds to the width of the highest xγ
bin. Uncertainties of the data (QCD scale) are around 20 % (25 %) respectively.

2See the patch from 11.11.2010 at http://projects.hepforge.org/lhapdf/patches-5.8.4

http://projects.hepforge.org/lhapdf/patches-5.8.4
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Fig. 4.15: At the top: correspondence between NLO and parton-level RAPGAP
(before and after reweighting).
At the bottom: Hadronization correction calculated by means of RAPGAP.
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Fig. 4.17: NLO calculation using GRV and AFG γ-PDF corrected for hadronization
compared with H1 data.
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Chapter 5

Extrapolation between

Measurements

H1 [32] and ZEUS [54] data cannot be compared directly since they were measured
in different kinematic regions. It was suspected that contradictory conclusions can
be caused by different cuts on ET of the jets in H1 and ZEUS analysis. It was
observed in H1 analysis [66] that the suppression decreases with increasing ET of
the leading jet. To study this effect in a more detailed way the H1 Hight Pt analysis
[55] was done with the cuts similar to ZEUS analysis. The only differences between
both analyses are in y, Q2 and MY cuts (see Fig. 5.1). Suppression factor in [55] was
really smaller (0.61 whereas Low Pt analysis gives 0.58, both for H1 Fit B DPDF)
but it was still present.

Our next challenge is to test the compatibility of all three data sets. It will
be done by the transformation of data sets from one kinematic region to another.
MC model will be tuned to the data which will reduce model dependence of this
procedure.

Overview of all three phase spaces is shown in Fig. 5.1. The arrows illustrate
directions of the extrapolation between data sets. The method is more accurate if
the phase spaces differ only a little and if the final phase space is a subset of the
initial one.

5.1 Description of the Method

For concreteness we will discuss extrapolation from ZEUS to H1 High Pt phase space
(red arrow in Fig. 5.1).

For this purpose a matrix is constructed, by means of MC RAPGAP, which
accounts on transition from the ZEUS phase space to that of H1 High Pt, MZ→H .
The matrix is determined separately for each pair of corresponding differential cross
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Fig. 5.1: Scheme of extrapolations between measurements [32, 55, 54] which have
been done in this thesis.

sections from both analyses (xZγ –x
H
γ , EZjet1

T –EHjet1
T ,. . . , yZ–WH1.). The matrix

contains the probabilities that a particular event belonging to the i-th bin will end
up in the j-th one of the given cross section as one makes the transition from the
ZEUS to the H1 High Pt analysis phase space. Although the shapes of differential
cross sections measured by ZEUS are rather well described by MC, to achieve a
higher accuracy of the matrix determination, the MC spectra are reweighted to
match the data better.

In general case (other extrapolations in Fig. 5.1) the contribution of events
generated outside of the initial phase space but fulfilling cuts in final one needs to
be taken into account. The normalization of this contribution is provided by the
previously discussed reweighting of MC. The including of these events depends on
the validity of used model in the region uncovered by the data in initial phase space.
For each variable the result of the extrapolation procedure is given by a histogram
σH determined as

σH = MZ→HσZ + σ
add
H (5.1)

where σZ is the vector of values of the measured cross sections (not-differential) for

1Because W and y are in photoproduction binded by relation W =
√
ys



certain kinematic variable and σ
add
H is the contribution from outside of the initial

phase space.
In all cases RAPGAP MC with H1 Fit B DPDF and GRV γ-PDF is used.
Uncertainties of the extrapolated data are determined by propagations of the

original errors by means of the matrix MZ→H . The relative uncertainty of the σ
add
H

is assumed to be the same as the one of the total published cross section in initial
phase space.

5.2 H1 Low Pt → H1 High Pt

This transformation was provided to test the method.
Cut on xIP and ET are in final phase space tighter whereas the range in zIP is

extended. Fortunately in H1 Low Pt analysis exists measurement in bin zIP ∈ (0.8, 1)
(without applying zIP cut) so the MC can be tuned by reweighting in zIP to the
data in the full zIP range. Cuts on pseudorapidities changed from −1 < ηjets < 2
to −1.5 < ηjets < 1.5. Comparison of the H1 Low Pt data with reweighted MC is
shown at the upper part of Fig. 5.2.

Results of this extrapolation at the lower part of Fig. 5.2 show that within
the errors are both measurements compatible. The ratio of the extrapolated cross
section to the H1 High Pt cross section [55] is:

σH1lowPt
extrap /σH1highPt = 1.0± 0.1 (5.2)

5.3 ZEUS → H1 High Pt

Bridging of ZEUS and H1 High Pt phase space is the first test of compatibility of the
data between collaborations. These two phase spaces have very similar kinematics
cuts. The range of y and Q2 variables must be however reduced. Different MY range
is taken into account by using of the global factor 1.2 (see section 3.3).

Control plots and the results of the extrapolation can be seen in Fig. 5.3. The
total cross sections ratio is

σH1highPt/σZEUS
extrap = 0.6± 0.1 (5.3)

where σH1highPt is the total cross section from [55] and σZEUS
extrap is the total cross

section of extrapolated ZEUS data [54].

5.4 H1 Low Pt → ZEUS

Matching H1 and ZEUS results from publications [32] and [54] is the most compli-
cated case because phase spaces differ substantially. Here is even not obvious what
direction of extrapolation to choose.
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We proceeded in two steps.
At the first step the H1 data were converted to Q2 < 1GeV2 range applying of

bin by bin correction factors which were estimated from RAPGAP. Change of Q2

range increases the cross sections by factor about 35 %.
In the second step the method of extrapolation (5.1) was applied to this extended

data set. Due to the different MY cuts in the analyses the H1 data must by divided
by global factor 1.2 (see section 3.3).

Results of the last extrapolation are plotted in Fig. 5.4 together with ZEUS
published data. It can be seen that after the transformation to the identical phase
space the H1 differential cross sections are lower than the ZEUS results by factor
about 0.6. On the other hand the shapes of H1 and ZEUS differential cross sections
are very similar, except for zIP . The uncertainties of the extrapolated H1 data were
determined by propagation of the statistical and uncorrelated systematic errors from
[32]. The relative uncertainty of σadd

Z was assumed to be the same as the one of the
total cross section from [32].

The ratio of extrapolated cross sections to ZEUS published cross section is

σH1lowPt
extrap /σZEUS = 0.6± 0.2. (5.4)
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Fig. 5.3: At the top: Control plots which show the agreement between reweighted
RAPGAP and ZEUS data.
At the bottom: Comparison between H1 High Pt preliminary data and extrapolated
ZEUS data.
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Fig. 5.4: At the top: Control plots which show the agreement between reweighted
RAPGAP and H1 data unfolded to Q2 < 1GeV2.
At the bottom: Comparison between ZEUS published data and extrapolated H1
data.



Chapter 6

Conclusions

The analysis of published H1 and ZEUS results is done with the emphasis to un-
derstand better the possible sources of the discrepancies between the conclusions of
both collaborations. It is shown that results are not significantly sensitive to the
photon structure function used. Although, here the different hadronization correc-
tions are obtained than in [54], it has no crucial impact to the interpretation of
ZEUS differential cross sections. The conversion of H1 results to ZEUS phase space
is done. The shapes of differential cross sections measured by both collaborations
are in agreement (except for zIP variable), however, the H1 results are on average
lower by about 40 % than ZEUS ones. Within the limitations of the transformation
method (based on Monte Carlo) there is a suggestion that the observed discrep-
ancy between H1 and ZEUS results concerning factorisation breaking is not caused
by different phase space of both analyses. The puzzle of factorisation breaking in
diffractive dijet photoproduction could be resolved therefore by new experimental
analyses. Among them the most promising one could be the identification of diffrac-
tive events based on leading proton detection. This method has both an advantage of
providing a data sample free of proton dissociation and of reducing the uncertainties
of the diffractive selection if compared with large rapidity gap method.
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