Univerzita Karlova v Praze

Matematicko-fyzikalni fakulta

DIPLOMOVA PRACE

Radoslav Zapotocky

Shlukovani textovych dokumentii a jejich ¢asti
Clustering of text documents and their parts

Katedra softwarového inzenyrstvi

Vedouci diplomové prace: RNDr. Michal Kopecky, Ph.D.

Studijni program: informatika

Studijni obor: softwarové systémy

Praha 2011

Velké podékovani patii hlavné vedoucimu diplomové prace RNDr. Michalovi
Kopeckému, Ph.D. za ndpomocnou ruku a piinosné konzultace pii psani diplomové
prace.

Prohlasuji, ze jsem tuto diplomovou praci vypracoval samostatné a vyhradné
s pouzitim citovanych prament, literatury a dalSich odbornych zdroji. Souhlasim se
zapijCovanim prace.

Beru na védomi, Ze se na moji praci vztahuji prdva a povinnosti vyplyvajici
ze zakona ¢. 121/2000 Sb., autorského zédkona v platném znéni, zejména skutecnost,
ze Univerzita Karlova v Praze ma pravo na uzavieni licen¢ni smlouvy o uZiti této
prace jako Skolniho dila podle § 60 odst. 1 autorského zakona.

V Praze dne 3. 8. 2011 Radoslav Zapotocky

Nézev prace: Shlukovani textovych dokumentt a jejich ¢asti
Autor: Radoslav Zapotocky

Katedra (ustav): Katedra softwarového inzenyrstvi

Vedouci diplomové prace: RNDr. Michal Kopecky, Ph.D.

Abstrakt: Prace analyzuje moZnosti pouziti vektorového modelu a shlukovani
aplikované na jednotlivé ¢asti dokumentu — kapitoly, odstavce a véty — z hlediska
moznosti usnadnéni navigace v dokumentu mezi podobnymi ¢astmi. Soucasti prace
je rovnéz simulaéni aplikace (SimDIS), napsana v jazyce C#, kterd model
implementuje a nabizi nastroje pro vizualizaci vektort a shluki.

Klic¢ova slova: vektorovy model, shlukovani, zpracovani textu, C#

Title: Clustering of text documents and their parts
Author: Radoslav Zapotocky

Department: Department of Software Engineering
Supervisor: RNDr. Michal Kopecky, Ph.D.

Abstract: This thesis analyses use of vector-space model and data clustering
approaches on parts of single document — on chapters, paragraphs and sentences — to
allow simple navigation between similar parts. A simulation application (SimDIS),
written in C# programming language is also part of this thesis. The application
implements the described model and provides tools for visualization of vectors and
clusters.

Keywords: vector-space model, clustering, text processing, C#

Table of contents

O 638 (076 1017 5) s RSP 7
BN 1 ;) TSRS 8
2.1. Vector space and CluStering CONCEPLS........eeeveerueeeiieriieeieeeiiieeerieeeeeireeeeenens 8
2.1.1. Document vocabulary and terms...........cccueeeeieeeiieeiiieeeiie e eeieeee e 8
2.1.2. Document vector and iNdEXINg.........ccceeeveeriierieeniienieeieeeie e sere e 10
2.1.3. Document CIUSTETING.......c.ueeeiiieeiiieeiieeeiee ettt et e e e ereeeaaee s 11
2.1.4. Spherical K-means clustering algorithm...............cccoeeveeiiiiiiiiieniineee, 12
2.1.5. Hierarchical agglomerative clustering algorithm.............ccccceeeennnnnn.... 13
2.1.6. Cluster 1abeling...........cceeviiiiieiieeiieiece et 14
2.2. Application of the theory to a single document.............ccccceeveeeeiiiiiiieeeennnns 15
2.2.1. Term, vocabulary and indexing of single document..................cc.cc....... 16
2.2.2. Example usage of vector model on single document................cccouueee.... 16
2.2.3. Example usage of clustering on single document.............cccceervuveenneenne 17
2.3. Document summarization based on affinity graph...........cccccceevviviiieeennnnnen. 17
2.3.1. Construction of affinity graph..........cccecveviiiiiiniiieiieiie e 18
2.3.2. Computation of information richness...........c.cceeevvieeiieeniiieniiieeiieeeeenn 18
2.3.3. Computation of affinity rank using diversity penalty..............cccecurennenee. 18
2.3.4. Selection of sentences for SUMMATY..........ccocvveeeiieeeciieeniieeeie e 19
2.4. Document summarization using Clustering............cccceevveenieriiienieeiieeeniieeens 19
RO 51 010) 5300153 017218 0 4 OO PRPRRPPRR 20
3.1. Design and main deCISIONS.........c.eeeruieeriieeriieeiteeeieeeeeeeieeeeaeeesreeesearaeeee s 20
3.2. Development tOOLS.cc.eeiiiiiieiieeiiecie et 21
3.3, Data SIIUCTUTES. ...ccueiiiiiiieiiee ettt ettt ettt ettt 21
3.4. Application arChiteCtUIE.cccuieriieriieeieeiie ettt e e e e 22
3.4.1. WINAOWS fOTMS...coutiiiiiiiieiiiiiieieeee e 22
3.4.2. PIUZIN MANAZET......coiuiieiieiieeiieiie ettt et ette et e st eteesnaeebeeseseeeeennees 23
343, PrOCESSOTS. .ttt ettt ettt s e e e 23

R O B o (0 <ot 1 TSRS UUPPPRP 23
345, SEIVICES. .ttt ettt et ettt et e 24
3.5. Plugin inteTfaces......ccueeiiiiiiieiiieiieeie ettt ettt st 25
3.6. Configuration PrOPETTIES.......cceuveerurrerrreerieeeiieeesteeeeereeesseeeessnerreeeesesssnssneeess 28
3.7. Implemented pIUGINS..........cccvieiiiiiiiiiieiiiee e 28
3.7.1. INPULt HTIML PATSET...ceeieiiiiieieiiiieeeeiiteeeeiteeeeeitee et e e e ee s seraeeeennees 28
3.7.2. Term normalizers and filters...........ccceeviirriiiiiiiniieiieeee e 28
3.7.3. SIMIlarity MEASUIES.eeevreeeiieeeiieenrieeeieeesteeesreeeareeenreeeeeessnnsnaeeaeeans 29
3.7.4. Clustering algorithms.............cooouieiiiiiiiiiiienie e 30
3.7.5. CIUSter 1abeling.......ccuvvevviiiiiieiie et 30
3.7.6. DOCUMENt VISUALIZETS.evueirieieniienieeiesitesieee ettt 30
3.7.7. CIUStEr VISUALIZETS. ..ccueiiiieiiiiiieeiieeee ettt e 31
3.7.8. Document MOAIfIETS.ooverieriirieiieniieieeie et 32

4. Usage eXample analySis........ccceerieiiieiiieniieiiesie ettt ettt ee e ebaee e 33

4.1. BasiC VISUALIZATION TOOIS....uuueeeeeieeeeeeee e e e e e e e e e e eenans 33

4.2. DOCUMENT SUIMMATIZATION.veeeneeeeeeenneaeseesennnans 34

4.3. Additional document NAVIZAtioN..........ccueeervieerieeeiieeeciieeeciteeereeeeirareee e e e 35
4.4. Comparison of cluster labelers...........cccverieriieniiiiiieieceee e 37
4.5. Other dOCUIMENLS.eetieiiiieiieiie ettt ettt et e et e e et eesanbeeeeens 38

S COMNCIUSION. ¢ttt ettt ettt et e st e e b e s bt e e s anbeeeeennbeeeenes 39
5.1. Project CONIIDULION.eetieiieiieeie ettt e 39
5.2. APPlICAtiON TESUILS......cceiiieeiiie ettt e e e e e e e saraaeee s 39
5.3. Possible future Work...........cocuerieiiiiiniiiiiieee e 40

6. USer dOCUMENTALION.ecutiriieiieiiiitieieeiteste ettt ettt e e s 41
6.1. SYSteM TEQUITEIMENLS.ccvvieeieieeetieeeiieeeteeeeteeeereeesereeeseaeeessreeenssreeeeeesnssseeeas 41
6.2, INStAllAtioN...c..eoiiiiiiiiiiiiieee e e 41
6.3. Working with the application...........ccceevviiieiiiieiiieeieeeee e 41
6.3.1. Starting @ PrOJECL.....ccuviriieitieeie ettt ettt ettt ettt et et e e ebeeseae e 41
6.3.2. DOCUMENT LISt....coiiiiiiiiiiiiie e 42
6.3.3. Configuration WindOW...........cccueeiieriieniieniieiie et 43
6.3.4. Document WINAOW..........coiuiiiiiiiiiiiieiieie et 44
6.3.5. Chapter, paragraph and sentence similarity............cocceevveriieenienieenienne 46
6.3.6. Words and terms visualization.............coceerieiiienienieeniie e 47
6.3.7. Working with CIUSLETS.........ccccuiiiiiiiiiiiieietee e 47
6.3.8. Generating teXt SUIMMATY........cc.eeerieeerieeeireenieeesieeesserereeeeessssnnreeaasannns 49

7. Programmer dOCUMENtAtION.eeeiuvieriiieeeiieeciieeeieeeiree et eeeireeeaeeesaeeesnsee e nenes 50
7.1, SYSteM TEQUITEIMENES.eetieeuieeiieeiiesiteeteesieeeteeseteebeesseeenseesneeesnseeeesnnseeaennes 50
7.2. Compiling the whole application.............ccccveeeviieeriiieeniieeeiee e 50
7.3. Custom plugin CTEAtION.c..eerieeiiieriieeiieriie ettt ettt et e e 50
BibIIO@IaAPNYeeiiiiieee e e 53
CD COMEENES...uiveieeeiiiee e ettt e ettt e e et ee e e ettt eeeestteeeeestaeeeesnaseeeessssaeeesssneeeansssaeeenans 55

| IS T o)l 721 0) (< TOUUR OO OO UPROT T UUUO O PR P PR UPPOPRPPPR 56

1. Introduction

The number of documents in electronic form is growing rapidly with increased
number of people having access to the computer and Internet. With massive number
of documents it is impossible for users to read them all to find the information they
wants. Therefore, a number of techniques were invented to search for documents and
new approaches are still under research. Most of these approaches are used mainly
on collections of documents and take each document as one entity.

Some of problems appearing on document collections could be seen also on
document level. Many documents like technical manuals or lexical dictionaries etc
are often very long, not entirely well structured and with limited search or navigation
ability. Those problems could be even more visible in case the documents are to be
read on electronic book readers. Reading the document at whole could be time
consuming and in case the document does not contain the relevant information it
could be helpful to know an approximate summary of the document without any
need to read it completely.

This work focuses on possibilities of applying text retrieval techniques on
individual parts of a single document for addressing above mentioned issues. We will
use vector-space model to look at the single document as a hierarchy of vectors, and
provide tool for document content analysis.

The goal of this thesis is to create a prototype application that will allow indexing
parts of the document with different levels of granularity, clustering them according
to their mutual similarity by different clustering algorithms and processing them
using various text retrieval approaches. The main goal is to enhance documents by
additional navigation aid. The application should also visualize obtained data and
make them available for further analysis in third-party applications. Never the less, it
should be designed with respect to requirement on adding new extensions and
features in the future.

The rest of this thesis is structured as follows:

The second chapter provides general introduction into text retrieval topic based on
vector representation of documents that allows various needed computations known
from linear algebra. Later it describes transformation of classical approach to
indexing and processing document parts. Following third chapter takes closer look at
implementation of visualization application. The fourth chapter describes an example
visualizations. The following fifth chapter contains conclusion and future remarks.
The user documentation and programmer documentation are located in sixth and
seventh chapter.

2. Analysis

This chapter contains a short introduction into vector representation of documents
and document clustering. Based on this representation it then describes the
possibilities of algorithms for usage on single document and its parts.

2.1. Vector space and clustering concepts

Vector space model is a form of ranked information retrieval. The term
information retrieval or information search in this context usually means finding the
document(s) from a collection of documents, which satisfies needed information
(based on definition in [1]). The result documents of the search are usually identified
with respect to search query, a query that user formulated to express his information
needs. In ranked information retrieval the search algorithm computes for each
document the rank, the measure how much the document satisfies the search query,
and then — using this rank — it decides which documents are to be returned as a search
result and in what particular order.

There exist more document models allowing ranked query that differs from each
other by document representation and/or by the used search algorithm. In Vector
space model, each document has assigned representing document vector. This vector
then represents the document content for the search algorithm. More detailed
description of document vector could be found in section 2.1.2..

The clustering (or data clustering) is a process of grouping documents into
clusters, where documents in one cluster should be as mutually similar as possible
while documents taken from different clusters should be as different as possible from
each other. In general, the clustering is not limited to documents, but can be used for
various different types of data (images, music and other [2]). In this work we focus
on clustering of document parts, such as chapters, paragraphs or sentences. More
about it could be found in section 2.1.3..

2.1.1. Document vocabulary and terms

To create representing vector from a document, we first need to get information
about its content. The common way of looking at document content, is considering it
as a bag of words. This allows us to transform document text into vocabulary of
terms and theirs frequencies — numbers of term occurrences inside individual
documents. The first step is this process is a tokenization — a process of parsing the
document text and splitting it into words (tokens). The term in this document
represents a token in its normalized form. There are many normalization steps, which
could use more or less complex computer linguistic approaches like lemmatization,

disambiguation, named entity identification etc [1]. The steps mentioned below do

not require such sophisticated approaches while still provide sufficient processing for

the purpose of this work. The normalization usually uses several steps:

Diacritics — Many languages (including Czech and Slovak ones) are using
diacritics in their official form. However, in many cases the text is not written
with correct diacritics or is written without any diacritics at all. This is mostly
common on the Internet, where many users don't use diacritics because of
laziness, software limitations or habits. To solve this problems, the text could
be stripped of diacritics and converted to 7-bit ASCII characters. The
disadvantage of this approach is merging possibly different words into one
common term.

Case-folding — The words are converted to lower case. This allows to handle
word with different case as the same. As a drawback, some abbreviations as
“IT” could be converted to common terms.

Stemming — Many different word occurrences in text could represent the same
term, but differs in inflexion — prefixes or suffixes (for example car vs. cars).
Stemming is a heuristic process that proposes an alternative to more complex
lemmatization. It removes prefixes and suffixes from word and leaves only its
base, called stem. For example, words transporting, transported and
transports should be all considered as forms of common term transport.

Synonyms replacing — In common language one think could be expressed
using several different words — synonyms. For example, words start, begin
and initiate have the same meaning for human, but they are different words
for computer. A possible approach to help the computer to handle synonyms
is to replace all terms with the same meaning with one term. This could be
done using predefined dictionary of synonyms, called thesaurus.

Stop words filtering — Stop words are usually referred as words, which occurs
in language very often and usually don't have any essential meaning of their
own. In English the typical words, that could be considered as stop words are
a, the, an, can or have etc. By removing stop words, we could significantly
decrease the space dimensionality — the number of different terms in index —
and thus reduce process time and space required for indexes (according to
Rule of 30"). During the text processing the stop words are usually predefined
in stop list. The opposite approach could use whitelist of allowed terms in
index instead of blacklist (stop list).

1

Rule of 30 states that the 30 most common words account for 30% of all terms in written text
(Chapter 5 of [1]).

2.1.2. Document vector and indexing

In Vector space model the document d is represented by n-dimensional vector
V,, where each dimension represents weight W, , of term t;. In other words, the
document vector is defined in form:

\7d=<wd,,l, Wy s wd’tﬂ>

The simplest way of computing term weights W, , is to define it as a number of
occurrences of term f; in the document. This is value called term frequency 4, .

Using the term frequency is not optimal, because it considers all terms equally
important. On the other hand, when we take documents about insurance companies,
the term insurance would be probably very often in all of them, so it has almost none
discriminating power. To reflect this, the #f-idf weighting could be used instead,
which — according to [3] — produces better results in data clustering.

Before defining tf~idf weight, we need to define:

« Document frequency df, — is defined as the number of documents

containing the term ;.
* Inverse document frequency df, — for term ¢, is defined as:

. N
idf L log? , where N is total number of documents.
t;

The term weight W, , now can be defined using #f-idf weight as:
w,, = tdf, = o, -idf,

Looking at the documents as a vectors allows us to use standard vector operators
and calculate lengths or distances. Furthermore we can easily compute similarity of
two documents, where two documents are similar when their document vectors are
directionally close to each other. The commonly used measure for this purpose is the

cosine similarity, which is for two documents d, and d, in [1] defined as:

—»

This cosine similarity allows us to compare relative distribution of terms in

sim(d, d,) = cos(¢p) = | i i
’ vV,

where ¢ is an angle between vectors V; and V..

document independently of the document vector length.
Another similarity measure could be based on Jaccard coefficient described in [4]
as:
|d\nd
|d\ud

where |d,Nd,| represents the number of terms the documents have in common

J(d1,d2)=

and |d,Ud,| represents the total number of terms occurring at least in one of these

10

two documents. The occurrence of term in document is binary evaluated and does
not take into account weights of terms.

There are many other variants of Jaccard coefficient, of which probably the most
common is Generalized Jaccard coefficient, which is a proven metric — according to
[5] — and is defined as:

Z min(wdl‘tl, wdz_li)
GJC(d, d,)="

z max(wdht!, wdlt’)

i=1

The advantage of Generalized Jaccard coefficient over its basic form is that it
reflects weights of terms in the documents.

2.1.3. Document clustering

Using clustering, documents could be divided into clusters, where document pairs
taken from the same cluster should be as similar as possible and documents in one
cluster should be as dissimilar as possible from those in any other cluster.

Based on the organization of clusters, we can distinct two basic types of
clustering:

* Flat clustering — the set of clusters is defined without any explicit
organization between individual clusters.

* Hierarchical clustering — created clusters are organized in hierarchical
structure.

Another important distinction of clustering is based on document assignment.
From this point of views we can talk about:

* Hard clustering — where each document is assigned to exactly one cluster.

* Soft clustering — where document could be assigned to more clusters. In case
the assignment is weighted, we are talking about so-called Fuzzy clustering.

The clustering of document collections is commonly used in web search, to speed
up finding documents or pages matching the user's query by eliminating dissimilar
cluster content from similarity evaluation. Moreover, the clustering could be used to
increase diversity of the result by clustering resulting set of found documents. For
example, when the user enters query “apple”, he or she may want to find
information about the fruit, about the music recording company or about the
computer manufacturer. But the search engine doesn't know which one the user
wants, so by showing documents from different result clusters in the first page, it is
probable that the user will find some relevant document sooner.

11

Another example use of clustering is creating a summary of document collection.
This could be done by grouping similar documents into clusters and then replacing
all documents in each cluster with surrogate piece of text, which represents them.

2.1.4. Spherical K-means clustering algorithm

K-means presented in [6] or its modification for information retrieval — spherical
k-means — 1s one of the most important flat clustering algorithms, with hard
assignment of documents. The algorithm starts by creating k& random clusters, also
known as seeds. Then it tries to optimize document assignment to clusters according
to similarity of documents vectors to their cluster centroid, computed as mean vector
of assigned documents. The value of & is needed as a parameter. The algorithm could
be formally described as it is shown below in Algorithm 1:

K-means (k, {Vy, - Vy })
begin
create k initial random seed clusters
recompute clusters centroids
while not clusters are stable
begin
for each document
begin
reassign document to cluster with closest centroid
end
recompute clusters centroids
end
return R clusters
end

Algorithm 1: K-means

Within each iteration in the while cycle, the algorithm reassigns document to the
closest centroid and then recomputes the centroids. This way the centroids move
around vector space to find their optimal assignments.

The k-means algorithm provides following advantages:

* It is one of the most used clustering algorithm, because it is relatively quick
on large data sets. Its complexity is linearly proportional to the number of
documents.

e Works well on numerical data.

On the other hand, it has several disadvantages:

* Result clusters have convex shapes only.

* The value of parameter k£ needs to be defined in advance.

12

* It provides only local optimization and could find an assignment, which is
suboptimal in global scale.

* Its performance depends on initial random selection of % clusters. Different
runs starts from different random assignments of vectors to clusters and thus
could convert to different local maximum — different result.

* Performs poorly on high-dimensional data (such as textual documents, [7]).

2.1.5. Hierarchical agglomerative clustering algorithm

Hierarchical agglomerative clustering (HAC) represents one of the basic
hierarchical clustering algorithms, presented in [8]. The algorithm starts with
separate cluster for each document and in each step it creates new cluster, linking
two most similar clusters (Algorithm 2) together.

Based on the way the similarity between two clusters is computed, HAC creates a
whole class of algorithms. For example:

» single link — the similarity between two clusters is computed as the similarity
of their most similar members

* complete link — the similarity between two clusters is computed as the
similarity of their most dissimilar members

* average link — the similarity between two clusters is computed as an average
value of similarities of all couples

* centroid — the similarity between two clusters is computed from their centroid
vectors

HAC ({ Vg Va, })
begin
create separate cluster for each document
while count(clusters) > 1
begin
find two most similar clusters
replace them with one new cluster, which is linked to them
end
return clusters
end

Algorithm 2: Hierarchical agglomerative clustering

The HAC algorithm provides hierarchy of clusters representing the topic
hierarchy of documents and it is considered as one to provide the best clustering
results. However, it is not very usable on large data sets, because it is very slow.

The algorithm usually stops when all clusters have been linked and only one —
forming the root of the cluster tree — is left. The algorithm could be also expanded

13

with stop condition, which stops the linking of clusters when similarity of the
clusters reaches predefined threshold value. Resulting cluster hierarchy would have
broader root linked with all obtained top clusters. In general it is hard to tell the
proper value of the threshold. Better result can be obtained by cutting through the
final hierarchy.

As an opposition to HAC there is also hierarchical divisive clustering, which
starts with only one cluster and iteratively splits largest clusters until individual
documents or small enough clusters are reached.

2.1.6. Cluster labeling

Once we get the set of clusters we may need to present them to the user. For this
purpose we would like to add a label to each of the clusters. The label should
correspond with the content of the items contained within the cluster. This way the
user will have approximate overview about the content of the cluster.

The label could be a word, group of words or a sentence. A good label should be
short, should correctly describe contents of its cluster and in case of sentences, it
should be in correct grammar form. There are several approaches, how to generate
cluster labels.

The simplest approach to get a label for a cluster is to take one or more words
with largest sum of weights from each of the documents within. In case a centroid
vector for the cluster is known, we could take the words having biggest weights in it.

Another simple labeling approach is to choose a sentence, which is most similar to
its centroid vector. This way we could get a grammatically correct sentence.

More complex approach is to use a modified version of Information gain function
presented in [9] and [10]. For term # and cluster ¢;, P(#) is the probability that
document contains term #, P(c;) is the probability that document is in cluster ¢; and
P(=t;) and P(-c;) are defined as 1—P(¢,) and 1-P(c,). P(t;c;) is then the
probability that document is in cluster ¢; and contains term 1, P(-¢;, —'Cj) is the
probability that document is not in cluster ¢; and does not contain term #, P(f,, ¢ j)
is the probability that document is not in cluster ¢; but contains term ¢ and
P(-t,c j) is the probability that document is in cluster ¢; and does not contain term
t;. Using this notation, the Information gain is defined as:

- P(x,y)
IG(ti, Cj)_xe{tmt,v},zye{c/ﬁc/} P(x, y)'log P(x)'P<y)

As explained in [4], with this definition the Information gain takes into account
the presence of term in the cluster and also its absence. The high value of /G(%;c))
means, that the presence or absence of # in a document tends to be highly indicative
of the document being or not-being in cluster ¢;. Because we need to select words for
a cluster label, we are not interested in indicative words not being in the cluster.

14

Therefore Information gain could be modified to account only for the presence of

word within clusters:

P(Z C-) P(_'ti’_'cj)

P(ti).l}.)(ch) + P(_'ti’_‘cj)'l()gP(ﬁti)-P(ﬁCj)

1G,(t;,¢c;) = P(t;, c;)log

2.2. Application of the theory to a single document

A single document could be viewed as a hierarchy of text fragments — chapters,
paragraphs and sentences. Depending on a level of granularity, it could be also
viewed as an ordered collection of chapters, ordered collection of paragraphs or as an
ordered collection of sentences. This way it is possible to use any of algorithms
originally invented for work on document collections on a collections of document
fragments with only minor changes. The key differences are:

* Instead of single collection of separate documents, three parallel collections
of chapters, paragraphs and sentences are used.

* Chapters, paragraphs and sentences are ordered and text fragments in them
form a hierarchy. This structure is defined by the document itself. We could
consider this hierarchy as a special type of hierarchical clustering where the
similarity is derived from proximity.

* The vector in vector space model would represent not only whole document
as in case of standard approach, but could also represent every single chapter,
every single paragraph or even every single sentence, depending on currently
working level of granularity.

The modified view on the document is shown in Figure 1. For the simplification,
only one chapter level is considered. Possible sub-chapters are ignored and their text
is taken as a content of top most chapter. Implementation of this approach in
proposed experimental application is discussed later in section 3.7.1.. For each node
d of the hierarchy we can define:

* Predecessor of d — the closest previous text part on the same level of
hierarchy.

* Successor of d — the closest next text part on the same level of hierarchy.

* Parent of d — the text part one level of hierarchy higher, which contains the
node d.

* Children of d — ordered collection of text parts one level lower, which are
contained by the node d.

Each node has assigned its own vector of term frequencies and representing vector
of weights. The node representing a document part on different levels in the

15

hierarchy would be referred as document, chapter, paragraph or sentence and the
corresponding representing vector would be referred as document, chapter,
paragraph or sentence vector.

Document

‘ Chapter ‘ Chapter | -~ ‘ Chapter ‘

Par - Par Par - Par Par --- Par

Figure 1: Overview of document hierarchy
Using clustering on document chapters, paragraphs or sentences, we will get

parallel hierarchies of clusters, organized by the real similarity of their content.

2.2.1. Term, vocabulary and indexing of single document

Because we are looking at the single document as a hierarchy, we need to slightly
adjust the theory used in standard approaches, described in section 2.1..

All vectors of all granularity levels must be compatible — have the same
dimension, because they will be used together in computations. Therefore, we would
need a global vocabulary for all parts. On the other hand, each document part —
chapter, paragraph or a sentence — would need to know its term occurrences to
compute its vector.

The vector of document part could be define similar as document vector v, , with
a d representing document part — chapter, paragraph or sentence. The difference
would be in computing term weights using #/-idf weight. The idf would be derived
from the number of paragraphs within the document and number of paragraphs
containing given term. This idf computation would be used globally for all parts on
all levels of hierarchy to get compatible numbers.

Because of that each inner node d in the hierarchy consists of a concatenation of
its children. It holds that the paragraph vector would be the vector sum of vectors of
its sentence children etc up to the document vector would be the vector sum of
vectors of its chapter children.

2.2.2. Example usage of vector model on single document

The document is at first converted to hierarchy of vectors that represents its
content, and enables further processing and content analysis, such as:

16

Computing similarity between chapters, paragraphs or sentences, discovering
similar or the same parts that are spread across the document. This could be
used for better orientation in documents, when the user would be provided
with information about similar document parts, located in other chapters. For
example, the user could get links to most similar chapters or link(s) to the
closest chapter(s), with similarity bigger than defined threshold(s) etc.

Analyzing consistency of document flow. For example, if consecutive
paragraphs in one chapter or consecutive chapters in the document are most
similar to each other or not.

Finding parts, which represents their parents the best. For example, finding a
paragraph, which represents best the content of its chapter etc.

2.2.3. Example usage of clustering on single document

The use of clustering algorithms would group together similar content of the

document. This would allow to:

Identify the topics of the document and document parts which talks about
them.

Create summary of the document, by extracting topics from the document
content. The topics could be represented by clusters, where each cluster
would represent one topic. Summary then would be created by taking part of
document (few sentences) from each cluster. This approach is closely
described later in section 2.4..

Extract keywords of the document in similar way, how summary could be
created.

Provide parallel navigation in the document by categorizing document parts
into groups similar by content.

Analyze consistency of document parts. For example, how much computed
sets of clusters correspond to their positions in the document.

2.3. Document summarization based on affinity graph

Document summarization method based on affinity graph, information richness

and a diversity penalization was proposed in [11]. This was based on affinity ranking

framework, which was proposed in [12] as a way to improve search performance.

17

In the context of one document it is possible to define:

* Information richness — in a document InfoRich(s)€[0,1] denote the
information degree of sentence s — the richness of information contained
within s with respect to the entire document.

* Diversity — the number of different topics within given document.

Document summarization is done in several steps, which are closely described in
following sections.

2.3.1. Construction of affinity graph

At first we need a similarity matrix M = (m,-j)nx" , which is created from sentences
using similarity measure previously defined in 2.1.2. with regards to a single
document as described in 2.2.1.. The value of similarity matrix M is defined as:

my=sim (¥, 7,)

where V; and V,, are vectors of i-th and j-th sentence.

In further computations we would use a normalized similarity matrix A7, which
has the sum of each row of M normalized to 1.

If we consider sentences as nodes, using normalized similarity matrix M we
could create links between sentences s; and s; if m; > 0. Otherwise no link is created.
This gives us an undirected weighted graph reflecting the relationship between
sentences based on their similarities. This graph is called the Affinity graph,

2.3.2. Computation of information richness

The computation of information richness is based on following intuitions:

1. The more neighbors sentence has in Affinity graph, the more informative it
is.

2. The more informative sentence's neighbors are, the more informative the
sentence is.

Based on above intuitions the information richness could be defined in recursive
manner as follows:
1—c
n

InfoRich(s;)=c-)_ InfoRich(s ;)-M ,+
J#I

where i, jE€I1,...,n and c is a dumping factor usually set to 0.85.

2.3.3. Computation of affinity rank using diversity penalty

Using information richness and affinity graph the affinity rank is computed by
implying diversity penalization. This is done be greedy algorithm where with each
step a sentence with highest current affinity rank is moved away and affinity rank is
recomputed by implying a diversity penalty. The algorithm goes as follows:

18

1. initialize two sets: A=0 and B={s|i=1..n};
for each (i in 1 ... n): set AR(s;) = InfoRich(s;)
2. sort all sentences in B descending by their current affinity rank AR
3. take sentence s; having highest rank in B and move it from B to 4
for each (jin 1 ... n, j=i):
AR(s;) = AR(s/)—w-Mi/-InfoRich(sl.)
4. if B#4 then goto 2
else stop the algorithm and return set A
The we(0,1> in step 3 is a dumping weight constant, which tells how strongly
should the penalty be applied. The default value is 1.
Note that by this algorithm the values of Affinity rank AR(s;) could become
negative. However, because we are always selecting the maximal value, it does not
matter.

2.3.4. Selection of sentences for summary

After the affinity rank is computed, the sentences found in first iterations are
selected into the summary text, until the length requirements are met.

This method has an advantage that once we had the affinity rank computed, we
could easily generate more summaries of different length from the same document.

2.4. Document summarization using clustering

As mentioned in section 2.2.3., clustering could be also used to create document
summary. The method described here is based on [13] with a difference in
computing local and global similarities.

The summary of documents would be generated by selecting sentences from the
text of the document. For each cluster, the sentence with maximal score is selected.
The score of each sentence is computed as a weighted sum of following factors:

* Local similarity — It is computed as similarity between sentence and centroid
of containing cluster. The more similar sentence to centroid, it is probable
that it could best reflect the contents of the cluster.

* Global similarity — The similarity between sentence and the document, which
ensures that the global context is reflected in selection.

* Sentence length — The length of summary could often be limited. This factors
adds penalization for too short or too long sentences. The sentence length

factor is defined as follows:
1

fClCtOr length™ e length (sentence)— length,eqm,m‘

19

3. Implementation

This chapter describes implementation of simulation application SimDIS. It
contains application design, describes used data structures and necessary interfaces.

3.1. Design and main decisions

The application should serve as an experimental visualization tool with presumed
rich interaction with the user. Therefore, the application with graphical user interface
(GUI) is preferable to the console application.

Expected typical use case example usage of the application would be:

Opening of desired document.

Splitting document to its parts and computation of representing vectors.
Analyzing mutual similarities of objects at given level of granularity.
Computation of clusters of objects using selected clustering algorithm.

Nk =

In many cases the user would probably like to visualize the data in some
understandable way.

6. Explore the results and/or export them for further processing outside the
application.

Because the user will probably work with one document more times in different
scenarios, the application should import it locally. So the user would not have to
search for the document in file system over and over.

Because the user may want to work on more documents, the application should
allow to store more documents at the same time. To allow better management or
moving between computers, the application should save documents grouped within
projects, which are closely described later in 3.4.4..

To allow easy importation of documents, the application would support
documents in HTML [14] file format. It is easy to analyze it and many third-party
tools could be used to convert documents in almost any other format to it. It should
be also possible to add support of more file formats later. Internally the document
should be stored in custom format, best suiting the application needs for fast loading
and processing. Import of document in any external format then should provide
necessary conversion. The document list with document meta-data would be stored
separately from the documents themselves for better performance. Used data
structures are described in section 3.3..

As complex technical manuals could contain thousands and more documents
parts, the application should support caching of already computed data to avoid

20

repeating of time-consuming computations, like clusters and/or similarity matrices
evaluation etc. Caches are closely described within project in section 3.4.4..

The application should be also easy to expand implemented features and to add
new ones, because there exist more than one ways of text processing and
visualization and it would be impossible to implement them all at once. The
expandability of the application is discussed closely later in section 3.5..

3.2. Development tools

SimDIS 1s a GUI application written in C# language for Microsoft .Net
Framework [15] with minimal required version 2.0. The application is targeted to run
under Microsoft Windows [16] operating system. This platform was chosen mainly
because it is most widely used.

Some of the data are stored in SQLite database [17] using System.Data.SQLite
library [18]. This database is small, doesn't require user to install any additional
software and data can be stored within a single file.

The application was developed under Microsoft Visual Studio development
environment [19] and for better source code management, Subversion [20] was used.

3.3. Data structures

The application uses several data structures for storing parsed document tree,
vectors, terms and clusters. Almost all of them needs to be accessible from plugins to
be able to normalize terms, to run data visualizations or to create clusters. This is the
reason, why they are stored in SimDIS.Plugininterface.

The most notable data structures provided are:

* Document — the root of document hierarchy, consisting of Chapters,
Paragraphs and Sentences. All of them are derived from ADocumentPart, an
abstract class for document part.

* DocumentVector — vector representation of document part.

* DocumentTerms — the hierarchy parallel to Document, containing a set of
Terms for each document part.

* Term — containing information about normalized term, its frequency and also
list of original words used in document .

* Cluster — the hierarchy of clusters, created by clustering algorithm. Clusters
contain the set of sub clusters in case of an internal node and a set of
document parts in case of the leaves.

Detailed documentation of data classes with descriptions of methods and
properties could be found in Code documentation on attached CD.

21

3.4. Application architecture

The Figure 2 bellow illustrates the architecture of the application from the logical
view. Parts of the application are described in following sections.

Windows Forms

PluginManager . Processors

" | TextProcessor | |

Services |

: ; " | VectorProcessor | !

" | DocumentService | | o ;
' | PlginService |
" | PropertyService | !

Figure 2: Overview of SimDIS core application

3.4.1. Windows forms

In the center of the application are Windows Forms, the GUI windows, which are
responsible for interaction with the user. The most notable forms are:

* MainWindow — Displays list of documents stored in current project and
allows document import and export. The list of documents is loaded from
SQLite database and displayed using standard DataGridView component
of .Net Framework.

* DocumentWindow — Represents one opened document and allows to further
work with it. The document is displayed as a HTML using WebBrowser
component. The window allows to apply modifications to the document and
also shows a list of visualizers, loaded from plugins, as a tool buttons to run
visualization.

There are several other forms used in programs, mostly using standard
components of .Net Framework.

Visualization plugins also contains window forms to visualize data to the user.
They use their own forms, which are not limited or predefined by core application.
This provides unlimited potential for data visualization.

22

3.4.2. Plugin manager

PluginManager is a static class, which takes care of all types of plugins. It loads
all available plugins at the application start-up, holds lists of them and also provides
some useful methods to work with them. Plugins are more described in section 3.5..

3.4.3. Processors

In this application the processors are static classes in SimDIS.Processors
namespace, which encapsulate text processing and creation of terms and document
vectors. There are following processors:

» TextProcessor — is used for parsing document text and creating hierarchy of
terms for document parts. The main methods 1s
createDocumentTerms(Document), which takes the document as parameter
and walks through its parts and extracts words from them. From the words,
the normalized terms are created, using active normalization plugins. If the
normalization would result in and empty string, the word is considered as a
stop word. At the end, the DocumentTerms object is created.

* VectorProcessor — is used for creating document vector hierarchy from
already prepared hierarchy of document terms — the DocumentTerms object.
The createDocumentVectors(Document, DocumentTerms) walks through
document parts and from prepared terms it creates and assigns instances of
DocumentVector to them.

3.4.4. Projects

The projects are used as a container for storing documents and user work. They
also allow to easy transfer the work from one computer to another and to have
multiple parallel projects saved in application at the same time.

Physically each project is saved as a separate sub-directory of projects directory
located under the user-defined workspace directory. The location of workspace is
stored in Windows registry in:

HKEY CURRENT USER\Software\SimDIS

The project directory contains:

« XML file project.xml with basic description of the project (for example,
name of the project). It is used only to quickly identify the project. The
example of the file is presented in Figure 3.

<?xml version="1.0" encoding="utf-8"?>
<project>

<project-name value="The name of project" />
</project>

Figure 3: Example of project.xml file

23

The

SQLite database in file storage.sq3, where for example list of documents is
stored. SQL provides better and faster access to data collections or changing
data than XML. The database also contains user-configurable data like
properties or list of enabled plugins and their order.

Saved documents and computation cache as separate files, using serialization
of .Net Framework. The serialization has been used because it is much faster
than SQLite, when storing lots of textual data and object hierarchy. The name
of each cache file is derived from the document to which it belongs, cache
name and “.cache” extension. For example:
document_3_SimilarityParagraphs.cache

list of projects is accessed through static class SimDIS.Project.

ProjectManager, which could check the projects directory and get the list of all

projects by calling getProjectList().

Once opened, the project is represented by Project class in SimDIS.Project

namespace and is partially defined in more files to increase readability of the code.

The Project class provides functionality regarding the project and its documents,

such as:

Loading and saving the project itself — this is done automatically in its
constructors, where from the parameters it knows whether is should load
from directory or a new project is being created.

Managing SQLite database — the database is accessible by the
DocumentStorage property, which returns DbConnection. By accessing the
property, database connection is automatically initialized. When it is accessed
for the first time and the database file doesn't exist, the file is automatically
created including SQL schema. This is done by initializeDb() and
createDbSchema() methods.

Saving document to project using saveDocument(), loading using
getDocument() and deleting using deleteDocument(). Title and name of the
document is saved into database and the document it selves is stored into
separate file using serialization of .Net Framework.

Getting the list of authors and titles of stored documents using

getDocumentTitles(). The list is loaded from database.

3.4.5. Services

The service classes provide various utility methods. They could be used within the

core application and through the interface mapping they could be used from any

plugin as well. The mapping for plugins is accessible through class:

SimDIS. Plugininterface. Common.Services

24

The following services are available:

DocumentService — provides functionality regarding the actual document,
such as computing the similarity between two vectors or cutting through
cluster hierarchy according to current configuration.

PluginService — wraps functionality around plugins and plugin manager
itself. For example, it determines the order of normalization and filtering
plugins.

PropertyService — covers complex functionality regarding the configuration
properties. As mentioned before, the properties are stored in the database.
Inside the application each property is mapped to ConfigurationProperty
object. The service provides methods to find, save and even parse configured

values.

3.5. Plugin interfaces

To meet the requirements for a tool for testing, visualizing and analyzing impact

of vector model and clustering used on document and its parts — The SimDIS

application implements several tools for loading documents, parsing them, indexing

their sub-parts, analyzing their mutual similarities, clustering them and visualizing

the results. For better extensibility and easier maintenance in the future the

application uses plugins for individual visualization tools, implemented clustering

algorithms etc. All plugins are loaded at the start of the application from external

dynamic-link libraries (DLL's). This allows adding new features without the need for

source code of core application and its recompilation.

The features which may be desirable to be added or modified later are:

More supported file formats — the file types for importing and exporting
documents to/from the application. For example, it would be suitable to allow
processing documents in some of e-book format as epub or another XML
based format.

Term normalization and filtering — the application should allow to add more
complex filtering steps within the term normalization process discussed in
section 2.1.1..

Similarity measures — there are many various metric measures, which are
possible to use as a similarity. Some of them were described in section 2.1.2..

Clustering algorithms — there are many various algorithms, which vary in
way the clusters are computed.

25

* Cluster labeling — as discussed in 2.1.6., there are more possible approaches
to creation of cluster labels.

* Clustering and non-clustering visualizations — would allow to add different
ways to look at document and its content.

* Document manipulation — based on computed data, various information could
be added to the document. For example, additional navigation, links similar
parts or navigation through the cluster.

SimDIS.PluginInterface

,,,

Plugin (dll) Plugin (dll)

SimDIS
core application

plugin class
implementations

plugin class
implementations

Plugin (dlI) Plugin (dlI)

plugin class
implementations

plugin class
implementations

Figure 4: Basic concept of plugin implementation

Figure 4 shows the concept of plugin implementation, where the left box
represents the application core part, which links the SimDIS.Plugininterface library
depicted by box at the top of the picture, which makes accessible all necessary
interfaces to plugins trough their respective and maintains data, needed by plugins to
work with document. Boxes at the right side enclosed in dashed box represent the
implementations of interfaces via plugins in application context. A plugin is a
container which could contain several different plugin classes of following types
inherited from /PluginBase:

* [FilePlugin — implements support for new file types to importing and
exporting documents.

* [WordNormalizerPlugin — implements one step in term normalization
process, like case-folding or stemming, etc. Normalization steps are closely
described in section 2.1.1..

* [WordFilterPlugin — implements one type of term filtering. For example
filtering using stop words, which was described within term normalization
steps in section 2.1.1..

26

* ISimilarityMeasurePlugin — the implementation of similarity measures.
* [AlgorithmPlugin — the implementation of clustering algorithms.
* [LabelingPlugin — the implementation of cluster labeling approaches.

* [VisualizerPlugin — the non-cluster visualization, visualizing mainly chapter
vectors, paragraph vectors, sentence vectors or document terms. To this
category fits almost anything else, for example, plugin that displays similarity
matrix of paragraphs or plugin that shows table of processed document terms.

* [ClusterVisualizerPlugin — for the visualization of clusters. For example,
plugin that displays clustered document parts as a browseable tree.

* [DocumentModifierPlugin — a plugin for inserting additional informations
based on computed data directly into the document.

Each plugin is represented by one or more classes, where each one implements
one or more of previous interfaces. The plugin is a dynamically loaded library
(DLL), which must be located in plugins directory and could contain more than one
plugin class.

The plugin directory is scanned at the startup of application and found plugins are
loaded and registered automatically. This is done by SimDIS. Plugins. PluginManager
using System.Reflection.Assembly and System.Activator of .Net framework. In
loading process, each class from each DLL is checked, whether it implements some
of the plugin interfaces mentioned above and if so, it is registered — added to
appropriate list within the PluginManager. Later in application those lists are used to
generate menu items, get supported file type or normalize words.

The PluginManager also provides methods to process some of the plugin
functionality:

* openDocument() — reads document from file, using appropriate file plugin

* saveDocument() — saves document to an external file, using appropriate file
plugin

To allow DLL to contain more than just plugin classes and for better orientation in
files and classes, a naming convention is enforced:

* The name of plugin DLL must end with “Plugin” (for example,
BasicFilePlugin.dll) to be loaded by application.

* The name of plugin class must end with one of: “Visualizer”,
“VisualizerCluster”, “File”, “Similarity”, “Algorithm”, “Labeling”, “Filter”,
“Normalizer” or “Modifier”. Otherwise the class will not be loaded.

27

3.6. Configuration properties

Several algorithms need some value as a predefined parameter, e.g. the K value of
K-means algorithm from 2.1.4.. Because SimDIS application is targeted on
experimental usage a possibility to easily change these parameters is required. What
is more, even the core application needs to be configurable, e.g. to choose similarity
measure to use. Therefore a unified configuration using properties was implemented.

The properties are stored in basic key-value pairs, where each property must have
its unique key name. In application it is represented with ConfigurationProperty
object, which — besides key and value — also contains additional information, such as
descriptive name, default value and for internal use also information, whether it
should be editable in configuration editor directly by the user.

Every plugin class has to implement getPluginProperties method, where it could
return a list of ConfigurationProperty objects. This list defines all custom properties
the plugin wants to use. This method is used by application to detect all properties.

The properties are configurable by user in Configuration window inside the
application and are stored into the project database. The configuration could be
different for each project.

Inside the application or within the plugins, the properties could be accessed using
the PropertyService as described in 3.4.5..

3.7. Implemented plugins

A lot of important functionality is implemented as a plugin and as a part of this
application, various plugins were implemented as normalizers, visualizers or
clustering algorithms etc. This section describes some of them.

3.7.1. Input HTML parser

Simple HTML parser is contained within HtmlFile plugin. It parses the input file
in several steps using regular expressions and trying to extract the contents. The
basic principle is to extract the text and ignore everything else.

Although HTML standard allows to use H1 heading more times, many web
documents use it only for a title and for actual chapters H2 or higher is used.
Therefore the parsers takes both H1 and H2 as a beginning of new chapter. Other
headings and tags DIV, TD and P are considered as beginnings of paragraphs.

Except from that, the parser also tries to extract the title of the document from the
TITLE tag and the author from the META tag.

3.7.2. Term normalizers and filters

The normalization is used for grouping together words with similar meaning, but
different written form. It is part of document processing, which is described in
section 2.1.1..

28

Term normalizers are implementations of [WordNormalizerPlugin with

normalize(string) being the main method. The method takes word as a parameter and

applies one step of normalization on it.

The execution of normalizers is piped in order defined by the user in

Configuration window. The user could also exclude specific normalizer(s) from

execution.

Following normalizers were implemented:

ToAsciiNormalizer — removes diacritics.
ToLowerNormalizer — converts all characters to lower-case.

TrivialStemmerNormalizer — represents a trivial implementation of word
stemming. It tries to remove English, Slovak and Czech prefixes and suffixes
to get their stems. It uses regular expressions to find first suitable prefix and
suffix to remove. Because it mixes multiple languages, it cannot guarantee
that the stem would be generated always correctly. On the other hand, this
cannot be guaranteed even by more complex stemmers.

ThesaurusNormalizer — represents a simple implementation of synonym
replacing algorithm using predefined dictionary, which defines words with
the same meaning. The dictionary is stored as definition for replacements in
thesaurus.txt, where each line define a word to replace in format from>>to.

After the term is normalized, configured filters are applied. The filters are

implementations of /WordFilterPlugin interface. The main method is the boolean

isFiltered(string) one, which should return true if and only if the given word should

be filtered and marked as a stop word. Following filtering methods were

implemented:

StopWordsFilter — compares word against stop list located in stoplist.txt file.
If given word is a stop word, it results and empty string. The stop list contains
stop words from English, Slovak and Czech language in lowercase 7-bit
ASCII form and their stems created by the TrivialStemmerNormalizer.

WhiteListFilter — compares word against so called white list from file
whitelist.txt. The word is marked as a stop word if it is not presented in the
list. Current file contains basic set of English words, but to be used, it is
highly suggested to provide a domain specific list.

3.7.3. Similarity measures

As presented in section 2.1.2. there are more measures to compute similarity.

Therefore similarity measures were moved into plugins implementing

29

ISimilarityMeasurePlugin interface and the user may choose in Configuration
window which one to use.

Plugins CosineSimilarity, JaccardCoefficientSimilarity and GeneralizedJaccard—
CoefficientSimilarity were implemented as a representation of Cosine similarity,
Jaccard coefficient and Generalized Jaccard coefficient.

3.7.4. Clustering algorithms

Clustering algorithms are implementations of [A4lgorithmPlugin and their main
purpose it to create clustering from set of document parts (ADocumentPart) in
method computeCluster().

There are following groups of clustering algorithms implemented:

» Flat clustering — represented by KMeansAlgorithm, the implementation of
K-Means clustering algorithm. In addition, TrivialListAlgorithm was created,
which just puts each part in its own cluster.

* Hierarchical clustering — representation by CentroidHACAlgorithm, the
implementation of hierarchical agglomerative clustering using centroid
vectors.

» Trivial Clustering — In addition, TrivialListAlgorithm was created, which
creates flat structure of clusters simply by putting each part in its own cluster.
This algorithm allows applying algorithms as cluster labeling on individual
chapters, paragraphs, etc.

The result of clustering algorithm is a hierarchy of Cluster objects. In case of flat
algorithms the hierarchy consists of one level linked under fictional cluster root.

3.7.5. Cluster labeling

Cluster labelers are implementations of /LabelingPlugin. In section 2.1.6. three
possible approaches were discussed: most common words, most similar sentence and
Modified information gain. All of them were implemented in CommonWord—
Labeling, SentenceLabeling and ModifiedInformationGainLabeling.

The user could choose which one to use in Configuration window.

3.7.6. Document visualizers

Document visualizers, the implementations of /VisualizerPlugin, are used for non-
cluster visualization. Some of the visualizations, that were implemented:

* WordsHtmlVisualizer — allows to explore results of document processing, by
showing tables of terms for each document part embedded in text. The output
is displayed using combination of HTML and JavaScript in WebBrowser
component.

30

DocumentTermsVisualizer — shows the document term vocabulary table using
DataGridView.

ChapterSimilarityVisualizer, ParagraphSimilarityVisualizer — display a
similarity matrix between chapters or paragraphs. The output is displayed in
SimilarityWindow form using DataGridView component or alternatively as
image, where each pixel represents one value of similarity matrix in gray
scale. The pixel is the brighter the bigger the similarity is. While grid view
provide exact information about similarities, the image viewer allows
obtaining quick overall insight into similarity distribution.

ChapterConsistencyVisualizer, ParagraphConsistencyVisualizer and
SentenceConsistencyVisualizer — compute similarity of document part with
its predecessor, successor and with its parent. The output is displayed in
GridWindow form.

SentenceSummaryFromDiversityVisualizer — by wusing affinity graph,
information richness and diversity, as closely described in 2.3., this plugin
creates document summarization of required length, entered by the user at the
top of summary visualization window. Other parameters of this algorithm are
configurable in Configuration window.

ParagraphSummaryFromDiversityVisualizer — uses the same approach with
affinity graph as described in 2.3., but instead of sentences, it uses
paragraphs. The result would be a set of paragraphs which were chosen to be
in resulting summary.

Many of above mentioned visualizers also provide ability to export data for

further analysis. The formats of exported files could vary with type of visualized

data. For example, the similarity matrix is possible to export as HTML file, CSV file

and/or grayscale PNG file.

3.7.7. Cluster visualizers

Cluster visualizers are made as implementations of [ClusterVisualizerPlugin.

Their purpose it to provide visualization of document parts clustering. Examples of

implemented cluster visualization:

SentenceTreeVisualizerCluster — displays clustering of sentences in
browsable tree.

ParagraphTreeVisualizerCluster — displays clustering of paragraphs in
browsable tree.

31

ChapterTreeVisualizerCluster — displays clustering of chapters in browsable
tree.

ChapterSummaryVisualizerCluster, — ParagraphSummaryVisualizerCluster
and SentenceSummaryVisualizerCluster — using the method described in
section 2.4. this visualizer allow to generate text summary. The summary is
generated from clusters of corresponding document parts — clusters of
chapters, paragraphs of sentences.

Cluster visualizers allows to set the threshold for cutting the cluster hierarchy

when using hierarchical clustering. For example, the threshold of 0.4 will cut the

cluster hierarchy, where clusters with similarities of their siblings bigger than 0.4

will be left as whole and those with smaller will be split.

3.7.8. Document modifiers

Document modifiers, the implementations of IDocumentModifierPlugin interface,

are used to add additional information into the document. The interface defines

methods for beginning and ending of document parts, which are called during the

rendering of the document in Document window. The method receives document

part and current context and should return generated HTML, which would be

inserted directly into the document.

The examples of implemented modifiers:

KMostSimilarChaptersModifier — adds table with K most similar chapters
before each chapter. It also shows the position of each chapter and its
similarity. The K value can be configured in Configuration.

NextChapterInClusterModifier — for each chapter it adds a link to previous
and next chapter within the same cluster. It also shows the label of the cluster
and the similarity between chapters.

AllSimilarModifier — for each chapter this modifier shows a list of all
chapters with similarity equal or greater than configured threshold. The list is
divided in two tables: previous chapters and next chapters. The threshold
value is configurable in Configuration.

NextSimilarModifier — this modifier shows a link to next and previous chapter
with similarity equal or greater than the configured threshold. The threshold
value could be different than the threshold mentioned in previous modifier.

32

4. Usage example analysis

This section provides an example of application usage and compares some of the
visualization results with respect to granularity level. The example is made on book
The Underground City from Jules Verne (available on enclosed CD in directory
TestDocuments), which consists of 19 chapters, 1043 paragraphs and 2330 sentences.
All tests were run and measured on common desktop PC with 1.66 GHz dual core
processor. The sample summarization results were exported and are attached on CD
in UsageExampleResults directory.

4.1. Basic visualization tools

After importing the document into application and generating document terms and
vectors, using DocumentTermsVisualizer we could see, that document contained
44051 different words, which resulted in 4010 terms in document term table. As
could be seen in Table 1, which shows first 12 terms ordered by their word count, the
first 11 are stop words and the first non stop term is on twelve position. The total
number of stop word terms was 536 and they stopped 25526 word occurrences.

Id Term | Word count | Stop word | Inverse frequency

22 the 3010 True 0,1183334
32 of 1544 True 0,2369451
20 to 1197 True 0,2681921
125 and 900 True 0,31455
30 a 746 True 0,3626023
61 was 629 True 0,4528527
105 in 628 True 0,4243079
158 that 480 True 0,4923612
150 it 423 True 0,559308
112 his 389 True 0,6330943
93 had 377 True 0,6439521
47 harry 354 False 0,5162734

Table 1: First 12 terms in document ordered by word count

With use of ChapterConsistencyVisualizer, ParagraphConsistencyVisualizer and
ChapterConsistencyVisualizer we could get similarity of document part with its
parents. The average values are presented in Table 2 and this values confirms that the
document contains a lot of short paragraphs with 2.23 sentences in average, because
the sentences are very similar to theirs paragraphs.

33

Similarity with paragraph | Similarity with chapter | Similarity with document
Chapters X X 0,5614398
Paragraphs X 0,1919763 0,1199073
Sentences 0,6228683 0,1346669 0,0840155

Table 2: Similarity of document parts with theirs parents

4.2. Document summarization

Two approaches to document summary generating were implemented. First
approach uses Affinity graph described in section 2.3., while the second one is based
on document clustering as described in section 2.4..

The Affinity graph method is in its standard form based on sentences. For the The
Underground City document, the computation of similarity matrix on its 2330
sentences took about 8.3 seconds and the computation of Affinity rank and sentence
order required additional 3.4 seconds, which is 11.7 seconds in total. The final
selection of sentences into summary text was done in almost no time. This is one of
the advantages of this method, because once we have the computed data, we could
quickly get several summarizations of different lengths.

If we take Affinity graph method and apply it on paragraphs, the computation
time become lower compared to Affinity graph method applied on sentences due to
lower number of fragments taken into account — here 1043 paragraphs instead of
2330 sentences. In this case it takes 2.47 seconds to compute Affinity graph and
further 0.69 seconds on Affinity rank computation — 3.16 seconds in total.

Clustering method could be used on chapters, paragraphs or sentences, which
gives us three parallel cluster structures of the document content. Therefore it may be
interesting to compare them.

The application so far implements two real clustering algorithms mentioned
before in section 2.1. and Table 3 shows the time in seconds spent on their
computation. It is clear that with deeper granularity the computing time raises rapidly
and with Centroid HAC even more.

Algorithm used On chapters On paragraphs On sentences
K-means, k=10 0.78 sec. 5.88 sec. 14.28 sec.
Centroid HAC 1.17 sec. 34.22 sec. 135.6 sec.

Table 3: Time spent on computation of clusters in seconds

The Table 4 shows times spent on generating summarization of about 10
sentences long from previously computed clusters. In it we can see, that both
algorithms spent approximately the same time on generating summary from clusters
over different granularity. The required sentence length was set to 0 characters,

34

which means that the algorithm will not look at the length and will choose most
similar sentences.

Algorithm Chapters Paragraphs Sentences
K-means, k=10 0.45 sec. 0.53 sec. 0.51 sec.
Centroid HAC 0.7 sec. 0.8 sec. 0.78 sec.

Table 4: Time spent on generating document summaries

Using HAC for document summarization seems to be not so suitable. The main
reason is its slowness in comparison to K-means and Affinity graph. The second
problem is, that near to the root is has clusters which are not much mutually similar
and often they contain only one item. If we choose some of this items into the
summary, they would not tell much about the rest of the content.

On the other side, the K-means clustering seem to take reasonable amount of time
for computation. When we compare the summaries of 100 sentence length, the
K-means method generated pretty good results? on both sentences and paragraphs.

The Affinity graph method is a bit faster and the results on sentences® also looks
pretty well and some of the selected parts were the same as selected by those
K-means.

The Affinity graph method on paragraphs is the fastest one, but selects whole
paragraphs instead of just sentences®. Selecting whole paragraph into the summary
may provide more continuous piece of information, not just one sentence out of the
context.

4.3. Additional document navigation

When we look at the similarity matrix at Figure 5, we could see that there are
some parts, which are very similar — almost white — far away from the diagonal line.

By use of implemented document modifiers, we could add additional navigation
into the document, which would follow us to related parts in other sections of the
document.

2 Results could be found in files Verne -03- Summary from sentences - kmeansl00 len0.html and
Verne -03- Summary from paragraphs - kmeansl00 len0.html attached on CD in
UsageExampleResults directory.

3 Result of Affinity graph on sentences is could be found in file Verne -02- Sentence summary using
diversity - 100 sentences.html. More detailed result in context of the whole document could be
found in file Verne -05- Sentence summary using diversity - 100 sentences info.html.

4 The Affinity graph results on paragraph and sentences could be found in files Verne -02-
Paragraph summary using diversity - 50 paragraphs.html and Verne -02- Sentence summary using
diversity - 100 sentences.html.

35

Paragraph similarity - The Underground City X

aEy Export C5V gl Export HTML g Export PNG 1 e | Zoom level: 100% - 1043x1043

Info Grid table

b

F igure 5: Part of paragraph similarity matrix of The Underground Cily

Figure 6 shows document with added modifiers K most similar chapters, Next and

previous chapter in cluster and Next and previous similar chapter.

i Export HTML \',{ Clear document cache Configuration | Chapter: Paragraph: & Goto

Document modifiers: EXPLOR_I:\‘G e Document visualizers
[] Table of Conterts
K most similar chapters

Paragraph similarity

[Al simiizr chapters 5 most similar chapters Position | Similarity Paragraph consistency
e =X [NEW ABERFOYLE 6 (previous) 0,4600267 ch"‘S::"“E “T
[Mext and previous chepte| [THE FORD FAMILY 3 (previous)|0.4556799 P conssEney
e ——————— : Sentence similarity
« THE DOCHART PIT 2 (previcus) 0.4505182 Sentence summary using diversity
« SIMON FORD'S EXPERIMENT |5 (previous) 0.4315799 Document terms
» A FINAL THREAT 15 (next) [0.3893602 S EREITEE)
Paragraph summary using diversity
Previous in the same cluster Cluster label Next in the same cluster Chapter similarity
dowin 2 THE DOCHART PIT Harry 12 ON THE REVOLVING LADDER P S
uster visualizers

Previous chapter with similarity at least 0.2 Next chapter with similarity at least 0.2 Sl sl
Apply - - - K-Means flat v
& NEW ABERFOYLE (0,4600267) § THE FIRE-MAIDENS (0,3380333)
Paragraph tree visualizer
For each chapter it adds

z;';k;'fag::'&;;:qﬁe AT Harry's call, James Starr, Madge, and Simon Ford entered through the narrow orifice S W_suah_zer
same cluster. It also which put the Dochart pit in commmunication with the new mine. They found themselves at the S e
sctfr:;t:ﬁ;:igd i beginning of a tolerably wide gallery. One might well believe that it had been pierced by the Sy
similarity between hand of man, that the pick and mattock had emptied it in the working of a new vein. The Semayiiansetaes
chapters. explorers question whether, by a strange chance. they had not been transported into some +| Summary from paragraphs

Figure 6: Document with additional navigation

By use of this links, one could quickly go through most similar chapters. Because
this application is designed primarily for experimental use, the similarity and
positional data are also shown.

Links generated using clusters are not the same as links based on similarity.
Cluster structure depends on clustering algorithm and selected thresholds. The
similarity links have advantage in possibility to find link specifically for each part.
The clusters group parts together and it could happen that some part would be on the
edge of the cluster and its content could be more similar to a part from different
cluster.

36

4.4. Comparison of cluster labelers

In section 2.1.6. were proposed three possible approaches of cluster labeling:

* Most common words — choosing words with the highest weights in cluster
centroid vector

* Most similar sentence — choosing a sentence which is the most similar to a
cluster centroid vector

* Modified information gain — choosing words with the highest value of
Modified information gain

Using the K-means algorithm with K=10 on sentences in document mentioned

before, we get ten clusters with following labels:

Most common words

Most similar sentence

Modified information gain

Starr, James, Mr, said, Yes

"To you and to me, Mr. Starr.

Starr, Mr, James, servant,
relative

new, work, Aberfoyle, vein,
possible

Like these caves, New
Aberfoyle was not the work of
men, but the work of the
Creator.

new, work, diligently, sonorous,
centuries

old, engineer, good, man,
overman

"Good-by, Simon," said the
engineer.

lad, appetite, signal, doesn,
supper

pit, Dochart, shaft, did, Yarrow

"What! In the Dochart pit?"

pit, Dochart, vain, concluded,
warm

Harry, say, Nell, sea, cried

I say, do look, Harry!" cried
Jack.

terrified, hoax, hidden, fierce,
specimen

t, know, feet, shall, great

"Well, I don’t know.

shook, earnest, jealous, pickax,
obstinate

day, coal, Town, lived, life

Afterwards you will be free, if
you wish it, to continue your life
in the coal mine, like old Simon,
and Madge, and Harry.

farm, Melrose, convey, gliding,
labor

Simon, Ford, Loch, left, Sir

Come along," said Simon Ford.

Loch, Katrine, guest, English,
irrevocable

opening, years, Harry, able, air

"You’re right there, Jack Ryan.

endure, mixture, hope, toy,
invented

little, bed, coal, sandstone,
schist

As the waters were contained in
no bed, and were spread over
every part of the globe, they
rushed where they liked, tearing
from the scarcely—formed rocks
material with which to compose
schists, sandstones, and
limestones.

forests, strata, Rob, sandstone,
pressure

Table 5: Comparison of cluster labeling methods

37

As it could be seen on Table 5, the labels created by Most common words are not
so bad at all. This is because the weights in vectors were normalized using #f-idf as
described in section 2.1.2., where the words which are occurring in more parts across
the document receive a penalty in favor of words with local occurrence.

Most similar sentence may create a label with better sense, but it could happen
that the selected sentence would not cover all important words from the cluster. For
example, if the parts within the cluster are dissimilar to each other.

The Modified information gain approach seems to add into labels words which are
more unique to the cluster, compared to the Most common words approach.
Therefore the Modified information gain is generating more unique cluster labels and
seems to be a bit better.

4.5. Other documents

The application was also tested on other documents. The books attached on CD’
in Czech language had very similar results, but some plugins could not be used — e.g.
Thesaurus or White list filtering — because they currently contains only English
dictionary.

When using more technical documents — e.g. this diploma thesis® — the results
could in some cases depend on the structure of the text. For example, document
containing a lot of tables, formulas or images could have a lot of scattered text,
which could influence algorithms.

5 Some examples of test documents are located in TestDocuments directory on attached CD.
6 A version possible to use in application could be found in file diplomova prace test.html in
TestDocuments directory.

38

5. Conclusion

5.1. Project contribution

This work took a closer look at a possibilities of non-standard applying of vector-
space model and clustering techniques on individual parts within a single document.
The analysis of results has shown, that a transformation from document collection to
intra-document analysis needs only a minor adjustment and the theory and
algorithms then can bring useful additional information about the inner structure and
consistency of document.

Implemented application with built-in visualizing tools provides and easy way for
testing and analyzing the content of documents in interactive form. This could help
to measure the suitability of used techniques. The data could be analyzed within the
application itself or could be exported for further processing.

5.2. Application results

Using list of terms, it was possible to verify the document indexation and by the
frequencies of the terms, to identify possible candidates for addition to stop list.

The image presentations of similarity matrices show that real documents contain
often similar areas located far away each from other. The application generates
additional easy navigation between them. The same visualization could be used by
authors as a hint for better document structuring by describing similar topics closer
together.

Comparing K-mean and HAC algorithms, the HAC was able to detect parts which
are dissimilar from the rest of the content and so it could better detect the topics of
the document. However, when generating summary the K-mean was giving better
results, because it was able to select more relevant sentences, which were better
reflecting the overall content of document.

Generated summaries showed, that for longer texts the summaries from sentence
level clusters and paragraph level clusters were very similar in quality. The
application also showed, that it is possible to use Affinity graph method to use
paragraphs instead of sentences. The number of paragraphs is lower than the number
of sentences and therefore the computation over paragraphs would take significantly
less time.

39

5.3. Possible future work

The possible ways of visualization are practically unlimited. Therefore, it is
probable that more of them would be added in future. It could be also suitable to
implement more clustering algorithms.

The implemented plugins for word stemming provides only basic approach. To
improve the token normalization, some advanced lemmatizers or stemmers
dependent on document language could be involved into the process.

The supported HTML format proven itself as sufficient for testing purposes.
There are a lot of tools, which allows converting other types of documents to it. On
the other hand, there are a lot of free electronic books available targeted for
electronic book readers. So it could be handy to add native support for some of them.

40

6. User documentation

6.1. System requirements

This application designed to run under Microsoft Windows XP SP3, Windows
Vista SP1 and Windows 7 in 32bit version. There is also native 64bit build of the
application available on the enclosed CD. It could overcome the 4GB memory
barrier from the 32bit operating systems and is limited only by the amount of
memory available on the computer. Using this version it is possible to process larger
documents as well.

To run the application, Microsoft .Net Framework 2.0 or later is required to be
installed.

6.2. Installation

The installation of 32 bit version could be done via provided setup.exe wizard or
simply by extracting SimDIS.zip package. The 64 bit version could be installed by
extracting SimDIS.x64.zip package. All files could be found on attached CD.

No other steps are required to run the application.

6.3. Working with the application
The application is started by executing SimDIS.exe file.

6.3.1. Starting a project

If the application is launched for a first time, it prompts for a workspace directory,
where it could save project data. Selected directory needs to be writable, otherwise
the application would prompt for the directory again. Once the directory is selected,
the welcome screen is shown to user (Figure 7). On this screen, the user can create
and start a new project or to load (Figure 8) data from existing projects. The projects
are represented as a directories in projects directory.

41

32 Welcome to SImDIS

Create new project ‘ Load existing project I

Figure 7: Welcome screen

D
| I'\ project {F‘ro':-ct DII’:‘C(DI’"F

Figure 8: Project loading selection

When creating the project, the name of directory is generated automatically from
the project name. In could be later renamed or copied using common tools for
browsing file system in Windows.

6.3.2. Document list

After the project is loaded, the main window with list of documents is shown
(Figure 9). The list contains author and title of documents and also number of
chapters, paragraphs and sentences. The user can select one or more documents
within the list by the mouse.

Here it is possible to manage documents, stored within the project:

* Open selected document — opens the first document that is selected in list.
The document could be also opened by double clicking on it in the list.

* Import document — opens file dialog and imports one or more documents.
* Delete selected document — deletes all documents selected in list.

Under section Tools in menu, the user could find following:

* Clear project cache — deletes all cache files withing the project. Already
computed values will have to be computed again when they are necessary
instead of taken them from the cache.

42

* Configuration — opens a Configuration window, which is described later and
allows to configure normalizer, plugins, properties and choosing similarity
measure and cluster labeling method.

* Test normalizers — opens a window, which allows to enter the words into the
text box on left side — each on single line — and then by use of selected
normalizer it shows the output in the text box on the right side. For example,
entering a list of stop words, applying stemmer on it and taking the result as a
new list of stop words.

* About SimDIS — information about the application.

8 My project - Document list - SimDIS

@ Open selected document | Import document E Delete selected document 5% Tools -

Author Title Chapters Paragraphs Sentences
Alois Jirdsek Staré povésti Geské 26 2183 hB27
Author of document 1 Title of document 1 10 1 &7

Author of document 2 Title of document 2 10 1 &7

Author of document 3 Title of document 3 10 1 67

Author of documert 4 Title of document 4 10 1 &7
Jaroslav Hadek Svegle | & 1798 3744

Jules Veme The Underground City

Figure 9: Document list window illustration

6.3.3. Configuration window

Configuration window allow user to configure the behavior of application and
plugins. Figure 10 illustrates the configuration of text normalizers. The check box
next to each of them allows to set whether the normalizer should be used or not. The
order of chained execution is the same as the order in the list and could be changed
by selecting wanted normalizer and by clicking on buttons up or down. The selected
line would move up or down in the list. The same principle is used on text filters.

o2 Configuration

| Text nomnalizers || Text filters | Application properties || Other configuration |

Tao ASCII Nomalizer

To lowercase Nomalizer
Thesaurus Momalizer
Trivial stemmer Nomalizer

up

Figure 10: Configuration window - Text normalizers

43

The optimal order of Text normalizers is: To ASCII Normalizer, To lowercase
Normalizer, Thesaurus Normalizer and Trivial stemmer Normalizer. The Thesaurus
contains currently only basic set of English synonyms, so it would not have desired
effect in other languages.

The order of Text filters is not very important, because they could only mark stop
words. But the White List Filter contains currently only basic set of English words
and therefore is should be mostly disabled and used only with a whitelist suitable for
the domain of processed document. Otherwise it could mark word as a stop word
incorrectly. In worst case it could mark all words as stop words.

Figure 11 show the configuration window in the Application properties tab. Here
the user could configure properties for plugins and the application. The left column
show a read-only description of the property and the value in right column could be
edited by double clicking at it.

On the last tab — Other configuration — user can choose which similarity measure
and cluster labeling are to be used.

After all desired changes in configuration are finished, the changes could be saved
by clicking at OK button or by closing the window.

i Configuration

Text nommalizers | Text fiters | Application properties |Other configuration

Key Value

Threshold for minimal similarity for all similar chapters
K value of the K-Means algorthm 5

K value for K most similar chapters in document 5

Threshold for minimal similarity for next and previous sim... |0.20

Mirimal similarity fthreshold) for cutting hierarchical clust... [0.4

Maximal level for zooming the image in similarty window | 10

Stop list file stoplist bd
Thesaurus file thesaurus bd
White lit file whitelist

Figure 11: Configuration window - Application properties

6.3.4. Document window

By opening document from document list, the Document window is shown
(Figure 12). It shows the text of the document with applied modifiers, allows to
choose modifiers and to run visualization on the document.

Document window offers following actions in top menu:

* Export HTML — opens save file dialog and then exports current document
with applied modifiers into selected file.

44

Clear document cache — deletes all cache files, which belongs to current
document.

Configuration — opens the Configuration window described before, where
user could change configuration.

Go to — it is possible to enter the number of chapter and paragraph and by
clicking on Go to button, the document text would be scrolled to this
document part.

The control panel from document modification is at the left side of window,

where it is possible to:

Enable or disable the modifier by checking or unchecking appropriate check
box next to desired modifier.

Change the order by selecting one modifier and clicking on up or down
button. The selected item will be moved in the list which is in the same order
as they would be applied on document.

By selecting modifier from list, its description is shown in the bottom-left.

By clicking on Apply button, the order current order and status of modifiers
is saved and the text of the document in the center part would be regenerated.

il Export HTML Clear document cache - Configuration | Chapter: Paragraph: @ Goto

iers- BALURE i [A] Document visualizers
14LOCHLOMOND |4 FINAL THREAT 15 10335807 | 5 e ety
K most similar chapters . -
All similar chapters % THE "MONK" 16 03178134 Paragraph consistency
Nexdt and pravious Ghapter in cluster Dbl NELL’S WEDDING 17 02311407 Visuslize words
Next and previous chapter _— = hapte e
Next and previous simiar chapter 15 A FINAL THREAT |THE LEGEND OF OLD SILFAX 18 0.1801568 I R
Sentence similarity
16 THE "™MONK" Frevious in the Cluster | .t in the same cluster bacument terms
same cluster label Sentence consistency
17 NELL'S i 5 SIMON FORD'S Chapter similarity
: | WEDDING rone Harry EXPERIMENT Summary using Affirity graph
up —_—
. Previous chapter Next chapter Cluster visualizers
[oo] ISTHELEGENDOE = 1 ON THE ROAD (0.3580911) Ehistenng gt
OLD SILFAX — K-Means flat -
[Apply I Previous chapter with Next chapter with similarity = .
revious « aragraph tree visualizer
— — — similarity at least 0.2 at least 0,2 i ———
& begining e document, this J
modfier adds a i of chapters ttles with lnone 1 ON THE ROAD Sentence tree visualizer
links to them (0.3580911) Summary from chapters
Summary from sentences
ToMr. F. R Starr, Engineer, 30 Canongate, Edinburgh Summary from paragraphs

IF Mr. James Starr will come to—morrow to the Aberfoyle coal—
mines, Dochart pit. Yarrow shaft, a comnmmnication of an
interesting nature will be made to him.

"Mr. James Starr will be awaited for, the whole dav, at the
Callander station, by Harry Ford. son of the old overman Simon
Ford" =

Figure 12: Document window illustration

45

The visualizers plugins are automatically registered and are offered to user in side
menu, from which he can execute them. When visualization is executed, it usually
opens its own specific window.

The visualizations of clusters and some document modifiers uses currently
selected clustering algorithm.

6.3.5. Chapter, paragraph and sentence similarity

All three visualizers use the same window, which display the similarity as table,
as in Figure 13, or as and image, as in Figure 14.

Paragraph similarity - The Underground City =
i@ Export C5V ggele Fxport HTML - gggh Export PHNG
Info (Grid table Image
004745458 |0.04833347 |0 0007802564 (006750303 |0 |®
0.04745458 0.9999999 0.0800442 D 0.0541143 0.05738357 D.0184°
0.048333947 0.0800442 1 D 0.02605229 0.06077182 D
N N N] N N N
0 0 0 0 0 0
0.007302564 0.0541143 0.02605229 D 1 01327174 D
0.06750309 0.05738357 0.06077182 D 01327174 0.9999999 D.0466.:
D 0.01341503 D D D 0.04662863 0.9999¢
n N NRATNRTA n n N MNGEANT7R N NANRTAR nnna1d™
>
.S .S
To Mr. F_ R Starr, Engineer, 30 To Mr. F_ R Starr, Engineer, 30
[PSR i L S [PR [L SR s

Figure 13: Similarity window showing grid view

Wb Export CSY g Export HTML iy Export PNG 4 %= | Zoom level: 100% - 1043x1043
Info__ || Grid table

Figure 14: Similarity window showing image

46

The user could play with it and event export it into CSV, HTML or PNG for
further processing in external programs.

6.3.6. Words and terms visualization

There are two direct visualizations for showing term vocabulary. First — Visualize
words — shows whole text in a HTML window (Figure 15) and adds hidden “+” to
every document part. After clicking on it, the term table and vector of corresponding

document part is shown. The “+” changes to “—" and when clicked, it hides back the
table.
wih Export HTML Allwords Only for document Only for chapters Only for hedings Only for paragraphs =
"Then did Simon Ford send me a second letter to contradict the first?" asked the engineer [A
quickly. + =
T
"Wo, Mr. Starr," answered the young miner +
x
"Very well" said Starr, without spealing of the anonymous letter +Then, continuing, "And can
vou tell me what you father wants with me?"
Id | Term Words Count | Stop word | Inverse frequency
483 Then |Then(l) 1 True
1101 |continu |contimuing{1} |1 False i

Figure 15: HTML word visualization window

By selecting in top menu, the user could affect to which parts the “+” are
displayed.
The second visualization just shows global dictionary and allows to export it.

6.3.7. Working with clusters

The clustering algorithm, which is to be used for creating clusters could be
selected in menu in document window as shown on Figure 16.

47

52 The Underground City - Jules Verne - Document - SimDIS

ik Export HTML W Clear document cache - Configuration | Chapter: Paragraph: Wcoto
- LUV, L LGS UG LS Y LI, LML I, LRI LA Y AR .
oo C ters: his father had ever been exposed to any act of violence. If the (o] Document visualizers
L] Table Cantents stone which had fallen at the feet of James Starr had been Faragraph similarity
K most similar chapters o :
All similar chapters thrown by the hand of some ill-disposed person, it was the first Paragraph consistency
Next and previous chapterit criminal act of that description. Visualize words
Nok and revioussmrch y Chapter consstency
James Starr was of opinion that the stone had become detached (5] sentence similarity
from the roof of the gallery; but Harry would not admit of such a Document terms
simple explanation. Accordmlg to hn:rJ the stone hlad H.Ot fallen, it S e
had been thrown; for otherwise, without rebounding, it could o
. oL Chapter similarity
never have described a trajectory as it did.))
[] y Summary using Affinity graph
up
Harry saw in it a direct attempt against himself and his father, or Cl isualizers
[down] even aga.inst the enginea’_ ustering algorithm?
K-Means flat -
Lo | SNON FORD’S EXPERIMENT I
entroid HAC
Far each chapter this "~ >
modifier shows list of all 5 most similar chapters | Position |Similarity = alzer
chapters with similarity - Summary from chapters
equal or greater than E » EXPLORING 7 (next) 04517687
configured threshold. The Summary from sentences
list s divided in two tables: « THE DOCHART PIT |2 (previous) [0.4349183 Summary from paragraphs
previous chapters and next -
chapters. Thethreshold [|» NEW ABERFOYLE |6 (next) 0.4039847 v]

Figure 16: Selecting clustering algorithm

Then the cluster could be seen clicking on Chapter tree, Sentence tree or
Summary tree visualizers. The cluster tree window would be opened (Figure 17).

Threshold for dusters: 0,5 @ et

1-Mr: "es, Mr. Star,” replied Hamy. [J\’

1-engineer; "And how is Madge 7" asked the engineer.

1- Jack: Simon and Madge would have been glad to go with Nell; but they never left their cottage willingly, and could not make

1-lamp: "Hamy," said Simon Ford, tuming to his san, "light our safety lamps.”

1 -shall: "I shall soon say so, Hamy, | hope,” replied the gid; "l shall soon go with you to the word above; and yet—"

= 1- Stam: "Because those men were James Stam, my father, and mysef, Nell!”
0.5 - The engineer’s curiosity was excited to the highest pitch. i never occumed to him to doubt whether this letter might not
0.15 - So saying. James Stam wrung the homy hand of the oldest miner, whose eyes were dim with tears. Then the overmen
0.35 - Our worthy engineer belonged to that class of men whose brain is always on the boil, like a kettle on a hot fire. In som
1.5 - In the evening, Star made his preparations for departure. As it might happen that his absence would be prolonged for some
also wrote to excuse himself from two or three engagements which he had made for the week. Then, having ordered his servant
1.38 - "But you know what it is?"
218 - They walked into the shed which covered the opening of the Yamow shaft, whence ladders still gave access to the lo
228 - James Stam examined, as well as the insufficient light would pemit, the sides of the dark shaft, which were covered b
2.38 - "Some neighbaor, then?"
268 - A quarter of an hour afterwards James Star and Harmy descended the last ladder, and set foot on the lowest floor of t
3.5 - it was about this time that Simon Ford's ancestors penetrated into the bowels of Caledonian earth, and lived there ever
3.34 - "Well, in order to eat heartity, | must not be at all ardous. Mow | have two questions to put to you."

[] 3.66 - "Quite rested and quite refreshed, Simon. | arnlreadytn go with you wherever you like " [][Vl
£ I >

Figure 17: Cluster tree visualizer window

In this window, user could browse through the clusters. Each node represents one
cluster, where first is the similarity of its sub-clusters or 1 in for leaf and then its
label. The leaf cluster contains member document parts, where the first number
represents their location in document.

By hovering on document part, a title with full text is shown.

48

The user could also specify the threshold value in top menu, which is used to cut
through the hierarchical clusters.

6.3.8. Generating text summary

For automated generating of text summary, there are four possibilities accessible
from the document window:

* Summary from chapters — clusters on chapter level are used
e Summary from paragraphs — clusters on paragraph level are used
* Summary from sentences — clusters on sentence level are used

e Sentence summary using diversity — using affinity graph, information
richness and diversity of sentences to generate summarization

* Paragraph summary using diversity — using affinity graph summarization
method on paragraphs, instead of sentences

Figure 18 shows example of summary window. After pressing Generate button on
top, it generates the text and also displays time spent of computation. The time spent
on creating clusters shows the time spent on getting the clusters and in case of
loading from cache, it could be significantly lower, than real time needed to compute

them.
Summary from paragraphs =
miy Export HTML Threshold for dusters: 0 Ideal length of sentence: 70 &) Generate

o said)
Generated text:

"Was it your father who wrote telling me to come to the Yarrow shaft?"

"Oh, no, Harry; for a long time I had known every turn of the new mine "

The Rob Roy, still half a mile from land, experienced a violent shock.

"With my fathet’s consent she shall be my wife without further delay "

Woe betide vou! Woe betide vou all! Woe betide New Aberfoylel —SILFAX"
But I am talking too much about myself: the great thing is about yvou."

Simon Ford, followed by Harry, ushered their guest into the dwelling.

"Did not these fires cause any explosion?" asked the engineer quickly.

But I, ten vears older, often saw the last 'monk’ working in the mine.

James Starr fully entered into it; but he let Ford rave for them both.

Time spent on creating clusters: 0,96875 seconds
Time spent on generating swnmary: 0.609375 seconds :v:

Figure 18: Summary generating window
On this window, the user could set threshold and sentence length value. The

threshold is used to cut through the hierarchical clusters. The ideal sentence length is
used as a parameter for text generating, which is closely described in 2.4..

49

7. Programmer documentation

7.1. System requirements

The application requires Microsoft .Net Framework [15] in version 2.0 or later to
be installed and Microsoft Visual Studio [19] 2008 or later to open the project
solution.

For compiling the application, the System.Data.SQLite library [18] and
Subversion [20] are required. The Subversion is used to automatically generate
assembly version and it could be omitted by removing subwcrev command from pre-
build events of SimDIS project.

For creating and compiling custom plugins it is not required to have the source
and compile the whole application.

7.2. Compiling the whole application

The source code of application is contained within SimDIS solution of Microsoft
Visual Studio. To open it, run SimDIS.sln in root of the solution.

The solution consists of several projects, of which the main are SimDIS and
SimDIS.Pluginlnterface. Other projects are containers for plugins.

The whole application could be build by choosing Build > Build solution from the
top menu.

7.3. Custom plugin creation

The types of plugins are described in section 3.5.. This section describes creation
of custom plugin without the need of the whole application using Microsoft Visual
Studio 2008.

At first, the project (and solution) must be created. It is a Class library project and
its name must end with Plugin. Then the reference to SimDIS.Pluginlnterface class
library must be added as shown on Figure 19 and set the Copy Local property to
false. Usually the System.Windows.Forms is also required to show visualization.

Next step it to rename Classl to more suitable name, for example
MyCustomVisualizer. It is important, that it ends correctly as described in section
3.5.. In this example I have chosen visualizer plugin, so the class must implement
SimDIS.PluginInterface.lVisualizerPlugin interface.

The IVisualizerPlugin interface consists of getPluginName() method, which
simply returns name of the plugin, getPluginProperties() method, which should
return the list of plugin-defined properties and visualize() method, which receives
information about document and runs visualization.

50

~ 1 X

lorer - Solutio...

t =d| Properties
[=- | References

m Solution 'MyCustomPlugin' {1 proje
= [Z] MyCustomPlugin

Add Reference

Classl.cs | Start Page

<:Egr\"l11-'Custc:mF‘Iugin.Classl

1E| using System;

-« System

| .MET | coM | Projects | Browse |Recent|

-« System.Data
-~ {2 System,Xml
-] Classl.cs

Oblast hledani: |) Release

¥ @ & & =

) plugins

[projects

BB simD1s exe

SimDIS. PluginInterface.dl
%] system.Data 5qLite.dl

Nézev 'SmDIS Plugininterface.di

]

soubonu:

Soubary typu: |Componerrt Files (" dll;* tlb:* olb:™ oox;” exe . manifest)

]

[

x|

Cancel

|

Figure 19: Adding SimDIS. Pluginlnterface

A simple implementation of visualization is in Figure 20, where it shows the
author and the title of provided document in System.Windows.Forms.MessageBox.

51

namespace MyCustomPlugin

{

public class MyCustomVisualizer : IVisualizerPlugin

{

#region IVisualizerPlugin Members

public void visualize(IDocumentInfo documentInfo,
IWin32Window owner)

{

MessageBox.Show(documentInfo.getDocument().Author
+ ": " + documentInfo.getDocument().Title);

}

#endregion
#region IPluginBase Members

public string getPluginName()
{

}

return "My custom";

public IList<ConfigurationProperty> getPluginProperties()
{

}

return null;

#endregion

Figure 20: Implementation of simple visualization plugin

When building the plugin, it is important to chose right target platform. The
SimDIS application is by default compiled for x86, so the plugins should be
compiled also for x86 or Any CPU.

To add and run compiled DLL of plugin, it is only needed to copy in plugins
directory of SimDIS application. The application will automatically detect and
register the plugin.

52

Bibliography

[1] Manning Ch. D., Raghavan P., Schiitze H.: An Introduction to Information
Retrieval, Cambridge University Press, Cambridge, England, 2009

[2] Gan Guojun, Chaoqun Ma, Jianhong Wu: Data Clustering: Theory,
Algorithms, and Applications, ASA-SIAM Series on Statistics and Applied
Probability, SIAM, Philadelphia, ASA, Alexandria, VA, 2007

[3] Aone Ch., Larsen B.: Fast and Effective Text Mining Using Linear-time
Document Clustering, KDD-99 San Diego CA USA, 1999

[4] Geraci F.: Fast clustering for web information retrieval, PhD Thesis, Facolta di
Ingegneria, University of Siena, Siena, Italy, 2008

[5] Charikar M. S.: Similarity Estimation Techniques from Rounding Algorithms,
STOC-02, 34th Annual ACM Symposium on the Theory of Computing, Montreal,
CA, 2002

[6] Lloyd S.P.: Least squares quantization in PCM, Technical report, Bell
Laboratories, 1957, 1957

[7] Hinneburg A., Keim D.: Optimal grid-clustering: Towards breaking the curse
ofdimensionality in high-dimensional clustering., In Proceedings of the 25th
internationalconference on very large data bases (VLDB ’99), San Francisco, 1999

[8] Lance G. N., Williams W. T.: 4 general theory of classificatory sorting
strategies 1. Hierarchical systems, The Computer Journal, 1967

[9] Cover T. M., Thomas J. A.: Elements of information theory, John Wiley &
Sons, New York, USA, 1991

[10] Pedersen J. O., Yang Y.: A comparative study on feature selection in text
categorization, ICML-97, 14th International Conference on Machine Learning,
Nashville, USA, 1997

[11] Yang]J., Xiaojun W.: Improved Affinity Graph Based Multi-Document
Summarization, Proceedings of the Human Language Technology Conference of the
North American Chapter of the ACL, New York, USA, 2006

[12] ChenZ.,Fan W., JiL.,LiH, LiuY.,Ma W. Y., Xi W., Zhang B.: Improving
Web Search Results Using Affinity Graph, SIGIR’05, Salvador, Brazil, 2005

[13] Bossard A.: Generating Update Summaries : Using an Unsupervized
Clustering Algorithm to Cluster Sentences, Laboratoire d'Informatique de Paris-
Nord, 2011

[14] World Wide Web Consortium (W3C): W3C HTML, http://www.w3.org/html/

[15] Microsoft Corporation: Microsoft .Net Framework, http://www.microsoft.com/
net/

[16] Microsoft Corporation: Windows Homepage, http://windows.microsoft.com/

53

[17] SQLite development team: SQLite Home Page, http://www.sqlite.org/

[18] Simpson R., SQLite development team: System.Data.SQLite,
http://sqlite.phxsoftware.com/

[19] Microsoft Corporation: Microsoft Visual Studio,
http://www.microsoft.com/visualstudio/

[20] Apache Software Foundation: Subversion, http://subversion.apache.org/

54

CD contents

Enclosed CD contains:

dp.pdf — A PDF version of this diploma thesis.

Binary — Compiled version of the application

Documentation — Generated documentation of the application

Source — Source code of the application

TestDocuments — A sample documents compatible with SimDIS application

UsageExampleResults — Exported results from example usage

55

List of tables

Table 1: First 12 terms in document ordered by word count.............cccceevveevvrennnnnn. 33
Table 2: Similarity of document parts with theirs parents............ccccceeveeeciieenciniennnnn. 34
Table 3: Time spent on computation of clusters in seconds............ccceeveerevrrireennnnnnn. 34
Table 4: Time spent on generating document SUMMATIES.........cccveeervveeerrveeeenieeeeann. 35
Table 5: Comparison of cluster labeling methods............ccccevrieiiiieniiiieiniiieeeieeee 37

56

