
Univerzita Karlova v Praze
Matematicko-fyzikální fakulta

DIPLOMOVÁ PRÁCE

Radoslav Zápotocký

Shlukování textových dokumentů a jejich částí
Clustering of text documents and their parts

Katedra softwarového inženýrství

Vedoucí diplomové práce: RNDr. Michal Kopecký, Ph.D.

Studijní program: informatika
Studijní obor: softwarové systémy

Praha 2011



Velké  poděkování  patří  hlavně  vedoucímu  diplomové  práce  RNDr.  Michalovi 
Kopeckému, Ph.D. za nápomocnou ruku a přínosné konzultace při psaní diplomové 
práce.



Prohlašuji,  že  jsem  tuto  diplomovou  práci  vypracoval samostatně  a  výhradně 
s použitím citovaných pramenů, literatury a dalších odborných zdrojů. Souhlasím se 
zapůjčováním práce.

Beru  na  vědomí,  že  se  na  moji  práci  vztahují  práva  a  povinnosti  vyplývající 
ze zákona č. 121/2000 Sb., autorského zákona v platném znění, zejména skutečnost, 
že Univerzita Karlova v Praze má právo na uzavření licenční smlouvy o užití této 
práce jako školního díla podle § 60 odst. 1 autorského zákona.

V Praze dne 3. 8. 2011 Radoslav Zápotocký

3



Název práce: Shlukování textových dokumentů a jejich částí
Autor: Radoslav Zápotocký
Katedra (ústav): Katedra softwarového inženýrství
Vedoucí diplomové práce: RNDr. Michal Kopecký, Ph.D.

Abstrakt:  Práce  analyzuje  možnosti  použití  vektorového  modelu  a  shlukování 
aplikované na jednotlivé části dokumentu – kapitoly,  odstavce a věty – z hlediska 
možnosti usnadnění navigace v dokumentu mezi podobnými částmi. Součásti práce 
je  rovněž  simulační  aplikace  (SimDIS),  napsaná  v  jazyce  C#,  která  model 
implementuje a nabízí nástroje pro vizualizaci vektorů a shluků.

Klíčová slova: vektorový model, shlukování, zpracování textu, C#

Title: Clustering of text documents and their parts
Author: Radoslav Zápotocký
Department: Department of Software Engineering
Supervisor: RNDr. Michal Kopecký, Ph.D.

Abstract:  This  thesis  analyses  use  of  vector-space  model  and  data  clustering 
approaches on parts of single document – on chapters, paragraphs and sentences – to 
allow simple navigation between similar parts. A simulation application (SimDIS), 
written  in  C# programming  language  is  also  part  of  this  thesis.  The  application 
implements the described model and provides tools for visualization of vectors and 
clusters.

Keywords: vector-space model, clustering, text processing, C#



Table of contents

1. Introduction...............................................................................................................7

2. Analysis.....................................................................................................................8
2.1. Vector space and clustering concepts...............................................................8

2.1.1. Document vocabulary and terms...............................................................8
2.1.2. Document vector and indexing................................................................10
2.1.3. Document clustering................................................................................11
2.1.4. Spherical K-means clustering algorithm.................................................12
2.1.5. Hierarchical agglomerative clustering algorithm....................................13
2.1.6. Cluster labeling........................................................................................14

2.2. Application of the theory to a single document..............................................15
2.2.1. Term, vocabulary and indexing of single document...............................16
2.2.2. Example usage of vector model on single document..............................16
2.2.3. Example usage of clustering on single document...................................17

2.3. Document summarization based on affinity graph.........................................17
2.3.1. Construction of affinity graph.................................................................18
2.3.2. Computation of information richness......................................................18
2.3.3. Computation of affinity rank using diversity penalty..............................18
2.3.4. Selection of sentences for summary........................................................19

2.4. Document summarization using clustering.....................................................19

3. Implementation.......................................................................................................20
3.1. Design and main decisions..............................................................................20
3.2. Development tools..........................................................................................21
3.3. Data structures.................................................................................................21
3.4. Application architecture..................................................................................22

3.4.1. Windows forms.......................................................................................22
3.4.2. Plugin manager........................................................................................23
3.4.3. Processors................................................................................................23
3.4.4. Projects....................................................................................................23
3.4.5. Services....................................................................................................24

3.5. Plugin interfaces..............................................................................................25
3.6. Configuration properties.................................................................................28
3.7. Implemented plugins.......................................................................................28

3.7.1. Input HTML parser..................................................................................28
3.7.2. Term normalizers and filters...................................................................28
3.7.3. Similarity measures.................................................................................29
3.7.4. Clustering algorithms..............................................................................30
3.7.5. Cluster labeling........................................................................................30
3.7.6. Document visualizers..............................................................................30
3.7.7. Cluster visualizers...................................................................................31
3.7.8. Document modifiers................................................................................32

4. Usage example analysis..........................................................................................33
4.1. Basic visualization tools..................................................................................33



4.2. Document summarization...............................................................................34
4.3. Additional document navigation.....................................................................35
4.4. Comparison of cluster labelers........................................................................37
4.5. Other documents.............................................................................................38

5. Conclusion..............................................................................................................39
5.1. Project contribution.........................................................................................39
5.2. Application results..........................................................................................39
5.3. Possible future work........................................................................................40

6. User documentation................................................................................................41
6.1. System requirements.......................................................................................41
6.2. Installation.......................................................................................................41
6.3. Working with the application..........................................................................41

6.3.1. Starting a project......................................................................................41
6.3.2. Document list...........................................................................................42
6.3.3. Configuration window.............................................................................43
6.3.4. Document window...................................................................................44
6.3.5. Chapter, paragraph and sentence similarity.............................................46
6.3.6. Words and terms visualization................................................................47
6.3.7. Working with clusters..............................................................................47
6.3.8. Generating text summary........................................................................49

7. Programmer documentation....................................................................................50
7.1. System requirements.......................................................................................50
7.2. Compiling the whole application....................................................................50
7.3. Custom plugin creation...................................................................................50

 Bibliography..............................................................................................................53

 CD contents................................................................................................................55

 List of tables...............................................................................................................56



1. Introduction

The number of documents in electronic form is growing rapidly with increased 
number of people having access to the computer and Internet. With massive number 
of documents it is impossible for users to read them all to find the information they 
wants. Therefore, a number of techniques were invented to search for documents and 
new approaches are still under research. Most of these approaches are used mainly 
on collections of documents and take each document as one entity.

Some  of  problems  appearing  on  document  collections  could  be  seen  also  on 
document level. Many documents like technical manuals or lexical dictionaries etc 
are often very long, not entirely well structured and with limited search or navigation 
ability. Those problems could be even more visible in case the documents are to be 
read  on  electronic  book  readers.  Reading  the  document  at  whole  could  be  time 
consuming and in case the document does not contain the relevant information it 
could be helpful to know an approximate summary of the document without any 
need to read it completely.

This  work  focuses  on  possibilities  of  applying  text  retrieval  techniques  on 
individual parts of a single document for addressing above mentioned issues. We will 
use vector-space model to look at the single document as a hierarchy of vectors, and 
provide tool for document content analysis.

The goal of this thesis is to create a prototype application that will allow indexing 
parts of the document with different levels of granularity, clustering them according 
to  their  mutual  similarity  by different  clustering  algorithms  and processing  them 
using various text retrieval approaches. The main goal is to enhance documents by 
additional navigation aid. The application should also visualize obtained data and 
make them available for further analysis in third-party applications. Never the less, it 
should  be  designed  with  respect  to  requirement  on  adding  new  extensions  and 
features in the future.

The rest of  this thesis is structured as follows:
The second chapter provides general introduction into text retrieval topic based on 

vector representation of documents that allows various needed computations known 
from  linear  algebra.  Later  it  describes  transformation  of  classical  approach  to 
indexing and processing document parts. Following third chapter takes closer look at 
implementation of visualization application. The fourth chapter describes an example 
visualizations. The following fifth chapter contains conclusion and future remarks. 
The user  documentation  and programmer  documentation  are  located  in  sixth and 
seventh chapter.

7



2. Analysis

This chapter contains a short introduction into vector representation of documents 
and  document  clustering.  Based  on  this  representation  it  then  describes  the 
possibilities of algorithms for usage on single document and its parts.

2.1. Vector space and clustering concepts
Vector  space  model is  a  form  of  ranked  information  retrieval.  The  term 

information retrieval or information search in this context usually means finding the 
document(s)  from a  collection  of  documents,  which  satisfies  needed  information 
(based on definition in [1]). The result documents of the search are usually identified 
with respect to search query, a query that user formulated to express his information 
needs.  In  ranked  information  retrieval the  search  algorithm computes  for  each 
document the rank, the measure how much the document satisfies the search query, 
and then – using this rank – it decides which documents are to be returned as a search 
result and in what particular order.

There exist more document models allowing ranked query that differs from each 
other by document  representation and/or by the used search algorithm. In  Vector  
space model, each document has assigned representing document vector. This vector 
then  represents  the  document  content  for  the  search  algorithm.  More  detailed 
description of document vector could be found in section 2.1.2..

The  clustering (or  data  clustering)  is  a  process  of  grouping  documents  into 
clusters, where documents in one cluster should be as mutually similar as possible 
while documents taken from different clusters should be as different as possible from 
each other. In general, the clustering is not limited to documents, but can be used for 
various different types of data (images, music and other [2]). In this work we focus 
on clustering of document parts, such as chapters,  paragraphs or sentences.  More 
about it could be found in section 2.1.3..

2.1.1. Document vocabulary and terms
To create representing vector from a document, we first need to get information 

about its content. The common way of looking at document content, is considering it 
as a  bag of words.  This allows us to transform document text into  vocabulary of 
terms and  theirs  frequencies  –  numbers  of  term  occurrences  inside  individual 
documents. The first step is this process is a tokenization – a process of parsing the 
document  text  and  splitting  it  into  words  (tokens).  The  term in  this  document 
represents a token in its normalized form. There are many normalization steps, which 
could use more or less complex computer linguistic approaches like  lemmatization, 

8



disambiguation,  named entity identification etc  [1]. The steps mentioned below do 
not require such sophisticated approaches while still provide sufficient processing for 
the purpose of this work. The normalization usually uses several steps:

• Diacritics – Many languages (including Czech and Slovak ones) are using 
diacritics in their official form. However, in many cases the text is not written 
with correct diacritics or is written without any diacritics at all. This is mostly 
common on the Internet, where many users don't use diacritics because of 
laziness, software limitations or habits. To solve this problems, the text could 
be  stripped  of  diacritics  and  converted  to  7-bit  ASCII  characters.  The 
disadvantage of this approach is merging possibly different words into one 
common term.

• Case-folding – The words are converted to lower case. This allows to handle 
word with different case as the same. As a drawback, some abbreviations as 
“IT” could be converted to common terms.

• Stemming – Many different word occurrences in text could represent the same 
term, but differs in inflexion – prefixes or suffixes (for example car vs. cars). 
Stemming is a heuristic process that proposes an alternative to more complex 
lemmatization. It removes prefixes and suffixes from word and leaves only its 
base,  called  stem.  For  example,  words  transporting,  transported and 
transports should be all considered as forms of common term transport.

• Synonyms replacing – In common language one think could be expressed 
using several different words – synonyms. For example, words  start,  begin 
and initiate have the same meaning for human, but they are different words 
for computer. A possible approach to help the computer to handle synonyms 
is to replace all terms with the same meaning with one term. This could be 
done using predefined dictionary of synonyms, called thesaurus.

• Stop words filtering – Stop words are usually referred as words, which occurs 
in language very often and usually don't have any essential meaning of their 
own. In English the typical words, that could be considered as stop words are 
a,  the,  an,  can or have etc. By removing stop words, we could significantly 
decrease the space dimensionality – the number of different terms in index – 
and thus reduce process time and space required for indexes (according to 
Rule of 301). During the text processing the stop words are usually predefined 
in  stop list. The opposite approach could use  whitelist of allowed terms in 
index instead of blacklist (stop list).

1 Rule of 30 states that the 30 most common words account for 30% of all terms in written text 
(Chapter 5 of [1]).

9



2.1.2. Document vector and indexing
In  Vector space model the document  d  is represented by  n-dimensional vector 

v d , where each dimension represents  weight wd ,ti  of  term t i . In other words, the 
document vector is defined in form:

v d=〈wd , t1
, wd ,t 2

, ... , wd ,tn
〉

The simplest way of computing term weights wd ,ti  is to define it as a number of 
occurrences of term t i  in the document. This is value called term frequency tf d ,ti .

Using the  term frequency is not optimal, because it considers all terms equally 
important. On the other hand, when we take documents about insurance companies, 
the term insurance would be probably very often in all of them, so it has almost none 
discriminating  power.  To  reflect  this,  the  tf-idf weighting could  be  used  instead, 
which – according to [3] – produces better results in data clustering.

Before defining tf-idf weight, we need to define:

• Document  frequency df ti  –  is  defined  as  the  number  of  documents 
containing the term t i .

• Inverse document frequency idf ti  – for term t i  is defined as:

idf ti
=log N

df ti

, where N is total number of documents.

The term weight wd ,ti  now can be defined using tf-idf weight as:
wd ,ti

 =  tf-idf d ,t i
 = tf d , ti

⋅idf ti

Looking at the documents as a vectors allows us to use standard vector operators 
and calculate lengths or distances. Furthermore we can easily compute similarity of 
two documents, where two documents are  similar when their document vectors are 
directionally close to each other. The commonly used measure for this purpose is the 
cosine similarity, which is for two documents d 1  and d 2  in [1] defined as:

sim d 1, d 2  =  cos   = 
vd 1
⋅vd 2

∣ v d 1∣⋅∣ v d 2∣
where   is an angle between vectors v d1  and v d 2 .
This  cosine  similarity allows  us  to  compare  relative  distribution  of  terms  in 

document independently of the document vector length.
Another similarity measure could be based on Jaccard coefficient described in [4] 

as:

J d 1, d 2=
∣d 1∩d 2∣
∣d 1∪d 2∣

where ∣d 1∩d 2∣  represents the number of terms the documents have in common 
and ∣d 1∪d 2∣  represents the total number of terms occurring at least in one of  these 

10



two documents. The occurrence of term in document is binary evaluated and does 
not take into account weights of terms.

There are many other variants of Jaccard coefficient, of which probably the most 
common is Generalized Jaccard coefficient, which is a proven metric – according to 
[5] – and is defined as:

GJC d 1, d 2=
∑
i=1

n

minwd 1, ti
, wd 2, ti



∑
i=1

n

max w d 1, t i
, wd 2, t i



The advantage of Generalized Jaccard coefficient over its basic form is that  it 
reflects weights of terms in the documents.

2.1.3. Document clustering
Using clustering, documents could be divided into clusters, where document pairs 

taken from the same cluster should be as similar as possible and documents in one 
cluster should be as dissimilar as possible from those in any other cluster.

Based  on  the  organization  of  clusters,  we  can  distinct  two  basic  types  of 
clustering:

• Flat  clustering –  the  set  of  clusters  is  defined  without  any  explicit 
organization between individual clusters.

• Hierarchical  clustering –  created  clusters  are  organized  in  hierarchical 
structure.

Another  important  distinction  of  clustering  is  based  on  document  assignment. 
From this point of views we can talk about:

• Hard clustering – where each document is assigned to exactly one cluster.

• Soft clustering – where document could be assigned to more clusters. In case 
the assignment is weighted, we are talking about so-called Fuzzy clustering.

The clustering of document collections is commonly used in web search, to speed 
up finding documents or pages matching the user's query by eliminating dissimilar 
cluster content from similarity evaluation. Moreover, the clustering could be used to 
increase diversity of the result by clustering resulting set of found documents. For 
example,  when  the  user  enters  query  “apple”,  he  or  she  may  want  to  find 
information  about  the  fruit,  about  the  music  recording  company  or  about  the 
computer  manufacturer.  But  the  search  engine  doesn't  know which  one  the  user 
wants, so by showing documents from different result clusters in the first page, it is 
probable that the user will find some relevant document sooner.

11



Another example use of clustering  is creating a summary of document collection. 
This could be done by grouping similar documents into clusters and then replacing 
all documents in each cluster with surrogate piece of text, which represents them.

2.1.4. Spherical K-means clustering algorithm
K-means presented in [6] or its modification for information retrieval – spherical  

k-means –  is  one  of  the  most  important  flat  clustering  algorithms,  with  hard 
assignment of documents. The algorithm starts by creating  k random clusters, also 
known as seeds. Then it tries to optimize document assignment to clusters according 
to similarity of documents vectors to their cluster centroid, computed as mean vector 
of assigned documents. The value of k is needed as a parameter. The algorithm could 
be formally described as it is shown below in Algorithm 1:

Within each iteration in the while cycle, the algorithm reassigns document to the 
closest  centroid and then recomputes  the centroids.  This  way the centroids  move 
around vector space to find their optimal assignments.

The k-means algorithm provides following advantages:

• It is one of the most used clustering algorithm, because it is relatively quick 
on large data sets. Its complexity is linearly proportional to the number of 
documents.

• Works well on numerical data.

On the other hand, it has several disadvantages:

• Result clusters have convex shapes only.

• The value of parameter k needs to be defined in advance.

12

K-means (k, { v d1
, ... , vd n

})
begin
    create k initial random seed clusters
    recompute clusters centroids
    while not clusters are stable
    begin
        for each document
        begin
            reassign document to cluster with closest centroid
        end
        recompute clusters centroids
    end
    return k clusters
end

Algorithm 1: K-means



• It provides only local optimization and could find  an assignment, which is 
suboptimal in global scale.

• Its performance depends on initial random selection of  k clusters. Different 
runs starts from different random assignments of vectors to clusters and thus 
could convert to different local maximum – different result.

• Performs poorly on high-dimensional data (such as textual documents, [7]).

2.1.5. Hierarchical agglomerative clustering algorithm
Hierarchical  agglomerative  clustering  (HAC)  represents  one  of  the  basic 

hierarchical  clustering  algorithms,  presented  in  [8].  The  algorithm  starts  with 
separate cluster for each document and in each step it creates new cluster, linking 
two most similar clusters (Algorithm 2) together.

Based on the way the similarity between two clusters is computed, HAC creates a 
whole class of algorithms. For example:

• single link – the similarity between two clusters is computed as the similarity 
of their most similar members

• complete  link –  the  similarity  between  two  clusters  is  computed  as  the 
similarity of their most dissimilar members

• average link – the similarity between two clusters is computed as an average 
value of similarities of all couples

• centroid – the similarity between two clusters is computed from their centroid 
vectors

The  HAC  algorithm  provides  hierarchy  of  clusters  representing  the  topic 
hierarchy of documents and it  is considered as one to provide the best  clustering 
results. However, it is not very usable on large data sets, because it is very slow.

The algorithm usually stops when all clusters have been linked and only one – 
forming the root of the cluster tree – is left. The algorithm could be also expanded 

13

HAC ({ v d1
, ... , vd n

})
begin
    create separate cluster for each document
    while count(clusters) > 1
    begin
        find two most similar clusters
        replace them with one new cluster, which is linked to them
    end
    return clusters
end

Algorithm 2: Hierarchical agglomerative clustering



with  stop  condition,  which  stops  the  linking  of  clusters  when  similarity  of  the 
clusters reaches predefined threshold value. Resulting cluster hierarchy would have 
broader root linked with all  obtained top clusters. In general it  is hard to tell the 
proper value of the threshold. Better result can be obtained by cutting through the 
final hierarchy.

As an opposition  to HAC there  is  also  hierarchical  divisive  clustering,  which 
starts  with  only  one  cluster  and  iteratively  splits  largest  clusters  until  individual 
documents or small enough clusters are reached.

2.1.6. Cluster labeling
Once we get the set of clusters we may need to present them to the user. For this 

purpose  we  would  like  to  add  a  label  to  each  of  the  clusters.  The  label  should 
correspond with the content of the items contained within the cluster. This way the 
user will have approximate overview about the content of the cluster.

The label could be a word, group of words or a sentence. A good label should be 
short, should correctly describe contents of its cluster and in case of sentences, it 
should be in correct grammar form. There are several approaches, how to generate 
cluster labels.

The simplest approach to get a label for a cluster is to take one or more words 
with largest sum of weights from each of the documents within. In case a centroid 
vector for the cluster is known, we could take the words having biggest weights in it.

Another simple labeling approach is to choose a sentence, which is most similar to 
its centroid vector. This way we could get a grammatically correct sentence.

More complex approach is to use a modified version of Information gain function 
presented  in  [9] and  [10].  For  term  ti and  cluster  cj,  P(ti)  is  the  probability  that 
document contains term ti,  P(cj) is the probability that document is in cluster  cj and 
P ¬t i  and P ¬c j  are defined as 1−P t 1  and 1−P c j . P t i , c j  is then the 

probability that document is in cluster  cj and contains term  ti,  P ¬t i ,¬c j  is the 
probability that document is not in cluster cj and does not contain term ti, P t i ,¬c j  
is  the  probability  that  document  is  not  in  cluster  cj but  contains  term  ti and 
P ¬t i , c j  is the probability that document is in cluster cj and does not contain term 

ti. Using this notation, the Information gain is defined as:

IG t i , c j= ∑
x∈{t i ,¬t i}, y∈{c j ,¬c j }

P x , y ⋅log P x , y
P x ⋅P  y

As explained in  [4], with this definition the Information gain takes into account 
the presence of term in the cluster and also its absence. The high value of  IG(ti,cj) 
means, that the presence or absence of ti in a document tends to be highly indicative 
of the document being or not-being in cluster cj. Because we need to select words for 
a cluster label,  we are not interested in indicative words not being in the cluster. 

14



Therefore Information gain could be modified to account only for the presence of 
word within clusters:

IGmt i , c j  = P t i , c j⋅log
P t i , c j

P t i⋅P c j
   P ¬t i ,¬c j⋅log

P ¬ti ,¬c j
P ¬ti⋅P ¬c j

2.2. Application of the theory to a single document
A single document could be viewed as a hierarchy of text fragments – chapters, 

paragraphs  and  sentences.  Depending  on  a  level  of  granularity,  it  could  be  also 
viewed as an ordered collection of chapters, ordered collection of paragraphs or as an 
ordered collection of sentences.  This way it  is  possible  to  use any of algorithms 
originally invented for work on document collections on a collections of document 
fragments with only minor changes. The key differences are:

• Instead of single collection of separate documents, three parallel collections 
of chapters, paragraphs and sentences are used.

• Chapters, paragraphs and sentences are ordered and text fragments in them 
form a hierarchy. This structure is defined by the document itself. We could 
consider this hierarchy as a special type of hierarchical clustering where the 
similarity is derived from proximity.

• The vector in vector space model would represent not only whole document 
as in case of standard approach, but could also represent every single chapter, 
every single paragraph or even every single sentence, depending on currently 
working level of granularity.

The modified view on the document is shown in Figure 1. For the simplification, 
only one chapter level is considered. Possible sub-chapters are ignored and their text 
is  taken  as  a  content  of  top  most  chapter.  Implementation  of  this  approach  in 
proposed experimental application is discussed later in section 3.7.1.. For each node 
d of the hierarchy we can define:

• Predecessor of  d  –  the  closest  previous  text  part  on  the  same  level  of 
hierarchy.

• Successor of d – the closest next text part on the same level of hierarchy.

• Parent of d – the text part one level of hierarchy higher, which contains the 
node d.

• Children of  d – ordered collection of text parts one level lower, which are 
contained by the node d.

Each node has assigned its own vector of term frequencies and representing vector 
of  weights.  The  node  representing  a  document  part  on  different  levels  in  the 

15



hierarchy would be referred as document,  chapter,  paragraph or sentence and the 
corresponding  representing  vector  would  be  referred  as  document,  chapter, 
paragraph or sentence vector.

Using  clustering  on  document  chapters,  paragraphs  or  sentences,  we  will  get 
parallel hierarchies of clusters, organized by the real similarity of their content.

2.2.1. Term, vocabulary and indexing of single document
Because we are looking at the single document as a hierarchy, we need to slightly 

adjust the theory used in standard approaches, described in section 2.1..
All  vectors  of  all  granularity  levels  must  be  compatible  –  have  the  same 

dimension, because they will be used together in computations. Therefore, we would 
need a global  vocabulary for all  parts.  On the other  hand, each document  part  – 
chapter,  paragraph  or  a  sentence  –  would  need  to  know its  term occurrences  to 
compute its vector.

The vector of document part could be define similar as document vector vd , with 
a  d representing  document  part  –  chapter,  paragraph or  sentence.  The  difference 
would be in computing term weights using  tf-idf weight. The  idf would be derived 
from the  number  of  paragraphs  within  the  document  and  number  of  paragraphs 
containing given term. This idf computation would be used globally for all parts on 
all levels of hierarchy to get compatible numbers.

Because of that each inner node d in the hierarchy consists of a concatenation of 
its children. It holds that the paragraph vector would be the vector sum of vectors of 
its  sentence  children  etc  up to  the  document  vector  would  be the vector  sum of 
vectors of its chapter children.

2.2.2. Example usage of vector model on single document
The  document  is  at  first  converted  to  hierarchy  of  vectors  that  represents  its 

content, and enables further processing and content analysis, such as:

16

Figure 1: Overview of document hierarchy

Document

Chapter

Par

SS S S

Par

SS S S

Chapter

Par

SS S S

Par

SS S S

Chapter

Par

SS S S

Par

SS S S



• Computing similarity between chapters, paragraphs or sentences, discovering 
similar or the same parts that are spread across the document. This could be 
used for better orientation in documents, when the user would be provided 
with information about similar document parts, located in other chapters. For 
example, the user could get links to most similar chapters or link(s) to the 
closest chapter(s), with similarity bigger than defined threshold(s) etc.

• Analyzing  consistency  of  document  flow.  For  example,  if  consecutive 
paragraphs in one chapter or consecutive chapters in the document are most 
similar to each other or not.

• Finding parts, which represents their parents the best. For example, finding a 
paragraph, which represents best the content of its chapter etc.

2.2.3. Example usage of clustering on single document
The  use  of  clustering  algorithms  would  group together  similar  content  of  the 

document. This would allow to:

• Identify the topics of the document and  document parts  which talks about 
them.

• Create summary of the document,  by extracting topics from the document 
content.  The  topics  could  be  represented  by  clusters,  where  each  cluster 
would represent one topic. Summary then would be created by taking part of 
document  (few  sentences)  from  each  cluster.  This  approach  is  closely 
described later in section 2.4..

• Extract keywords of the document  in similar way, how summary could be 
created.

• Provide parallel navigation in the document by categorizing document parts 
into groups similar by content.

• Analyze consistency of document parts.  For example, how much computed 
sets of clusters correspond to their positions in the document.

2.3. Document summarization based on affinity graph
Document summarization method based on affinity graph, information richness 

and a diversity penalization was proposed in [11]. This was based on affinity ranking 
framework, which was proposed in [12] as a way to improve search performance.

17



In the context of one document it is possible to define:

• Information  richness – in  a  document  InfoRich  s∈[0,1]  denote  the 
information  degree  of  sentence  s – the  richness  of  information  contained 
within s with respect to the entire document.

• Diversity – the number of different topics within given document.

Document summarization is done in several steps, which are closely described in 
following sections.

2.3.1. Construction of affinity graph

At first we need a similarity matrix M=mij n×n , which is created from sentences 
using  similarity  measure  previously  defined  in  2.1.2. with  regards  to  a  single 
document as described in 2.2.1.. The value of similarity matrix M is defined as:

mij=sim  vsi
, v s j



where v si  and v s j  are vectors of i-th and j-th sentence.
In further computations we would use a normalized similarity matrix  M , which 

has the sum of each row of M normalized to 1.
If  we consider  sentences  as  nodes,  using  normalized  similarity  matrix  M  we 

could create links between sentences si and sj if mij > 0. Otherwise no link is created. 
This  gives  us  an  undirected  weighted  graph  reflecting  the  relationship  between 
sentences based on their similarities. This graph is called the Affinity graph,

2.3.2. Computation of information richness
The computation of information richness is based on following intuitions:

1. The more neighbors sentence has in Affinity graph, the more informative it 
is.

2. The  more  informative  sentence's  neighbors  are,  the  more  informative  the 
sentence is.

Based on above intuitions the information richness could be defined in recursive 
manner as follows:

InfoRich  si=c⋅∑
j≠i

InfoRich s j⋅ M ij
1−c

n
where i , j∈1 , , n  and c is a dumping factor usually set to 0.85.

2.3.3. Computation of affinity rank using diversity penalty
Using information richness and affinity graph  the affinity rank is computed by 

implying  diversity penalization. This is done be greedy algorithm where with each 
step a sentence with highest current affinity rank is moved away and affinity rank is 
recomputed by implying a diversity penalty. The algorithm goes as follows:

18



1. initialize two sets: A=∅  and B={si∣i=1 ...n} ;
for each (i in 1 ... n): set AR(si) = InfoRich(si)

2. sort all sentences in B descending by their current affinity rank AR
3. take sentence si having highest rank in B and move it from B to A

for each (j in 1 ... n, j=i):
AR s j  =  AR s j−w⋅ M ij⋅InfoRich  si

4. if B≠∅  then goto 2
else stop the algorithm and return set A

The w∈(0,1>  in step 3 is a dumping weight constant, which tells how strongly 
should the penalty be applied. The default value is 1.

Note  that  by  this  algorithm the  values  of  Affinity  rank  AR(sj)  could  become 
negative. However, because we are always selecting the maximal value, it does not 
matter.

2.3.4. Selection of sentences for summary

After  the  affinity  rank is  computed,  the  sentences  found in  first  iterations  are 
selected into the summary text, until the length requirements are met.

This method has an advantage that once we had the affinity rank computed, we 
could easily generate more summaries of different length from the same document.

2.4. Document summarization using clustering
As mentioned in section 2.2.3., clustering could be also used to create document 

summary.  The  method  described  here  is  based  on  [13] with  a  difference  in 
computing local and global similarities.

The summary of documents would be generated by selecting sentences from the 
text of the document. For each cluster, the sentence with maximal score is selected. 
The score of each sentence is computed as a weighted sum of following factors:

• Local similarity – It is computed as similarity between sentence and centroid 
of containing cluster. The more similar sentence to centroid,  it is probable 
that it could best reflect the contents of the cluster.

• Global similarity – The similarity between sentence and the document, which 
ensures that the global context is reflected in selection.

• Sentence length – The length of summary could often be limited. This factors 
adds penalization for too short or too long sentences.  The sentence length 
factor is defined as follows:

factor length=
1

e∣length sentence −lengthrequired∣

19



3. Implementation

This  chapter  describes  implementation  of  simulation  application  SimDIS.  It 
contains application design, describes used data structures and necessary interfaces.

3.1. Design and main decisions
The application should serve as an experimental visualization tool with presumed 

rich interaction with the user. Therefore, the application with graphical user interface 
(GUI) is preferable to the console application.

Expected typical use case example usage of the application would be:

1. Opening of desired document.
2. Splitting document to its parts and computation of representing vectors.
3. Analyzing mutual similarities of objects at given level of granularity.
4. Computation of clusters of objects using selected clustering algorithm.
5. In many cases the user would probably like to visualize the data  in some 

understandable way.
6. Explore  the  results  and/or  export  them for  further  processing  outside  the 

application.

Because the user will probably work with one document more times in different 
scenarios, the application should import  it  locally.  So the user would not have to 
search for the document in file system over and over.

Because the user may want to work on more documents, the application should 
allow to store more documents at the same time. To allow better management or 
moving between computers, the application should save documents grouped within 
projects, which are closely described later in 3.4.4..

To  allow  easy  importation  of  documents,  the  application  would  support 
documents in HTML [14] file format. It is easy to analyze it and many third-party 
tools could be used to convert documents in almost any other format to it. It should 
be also possible to add support of more file formats later. Internally the document 
should be stored in custom format, best suiting the application needs for fast loading 
and  processing.  Import  of  document  in  any  external  format  then  should  provide 
necessary conversion. The document list with document meta-data would be stored 
separately  from  the  documents  themselves  for  better  performance.  Used  data 
structures are described in section 3.3..

As  complex  technical  manuals  could  contain  thousands  and  more  documents 
parts,  the  application  should  support  caching  of  already  computed  data  to  avoid 

20



repeating of time-consuming computations,  like clusters and/or similarity matrices 
evaluation etc. Caches are closely described within project in section 3.4.4..

The application should be also easy to expand implemented features and to add 
new  ones,  because  there  exist  more  than  one  ways  of  text  processing  and 
visualization  and  it  would  be  impossible  to  implement  them  all  at  once.  The 
expandability of the application is discussed closely later in section 3.5..

3.2. Development tools
SimDIS is  a  GUI  application  written  in  C#  language  for  Microsoft  .Net  

Framework [15] with minimal required version 2.0. The application is targeted to run 
under  Microsoft Windows [16] operating system. This platform was chosen mainly 
because it is most widely used.

Some of the data are stored in  SQLite database  [17] using  System.Data.SQLite 
library  [18].  This  database  is  small,  doesn't  require  user  to  install  any additional 
software and data can be stored within a single file.

The  application  was  developed  under  Microsoft  Visual  Studio development 
environment [19] and for better source code management, Subversion [20] was used.

3.3. Data structures
The application  uses  several  data  structures  for  storing  parsed  document  tree, 

vectors, terms and clusters. Almost all of them needs to be accessible from plugins to 
be able to normalize terms, to run data visualizations or to create clusters. This is the 
reason, why they are stored in SimDIS.PluginInterface.

The most notable data structures provided are:

• Document –  the  root  of  document  hierarchy,  consisting  of  Chapters, 
Paragraphs and Sentences. All of them are derived from ADocumentPart, an 
abstract class for document part.

• DocumentVector – vector representation of document part.

• DocumentTerms – the hierarchy parallel  to Document,  containing a  set  of 
Terms for each document part.

• Term – containing information about normalized term, its frequency and also 
list of original words used in document .

• Cluster – the hierarchy of clusters, created by clustering algorithm. Clusters 
contain  the  set  of  sub  clusters  in  case  of  an  internal  node  and  a  set  of 
document parts in case of the leaves.

Detailed  documentation  of  data  classes  with  descriptions  of  methods  and 
properties could be found in Code documentation on attached CD.

21



3.4. Application architecture
The Figure 2 bellow illustrates the architecture of the application from the logical 

view. Parts of the application are described in following sections.

3.4.1. Windows forms
In the center of the application are Windows Forms, the GUI windows, which are 

responsible for interaction with the user. The most notable forms are:

• MainWindow –  Displays  list  of  documents  stored  in  current  project  and 
allows document import  and export.  The list of documents is loaded from 
SQLite  database  and  displayed  using  standard  DataGridView component 
of .Net Framework.

• DocumentWindow – Represents one opened document and allows to further 
work  with  it.  The  document  is  displayed  as  a  HTML using  WebBrowser 
component. The window allows to apply modifications to the document and 
also shows a list of visualizers, loaded from plugins, as a tool buttons to run 
visualization.

There  are  several  other  forms  used  in  programs,  mostly  using  standard 
components of .Net Framework.

Visualization plugins also contains window forms to visualize data to the user. 
They use their own forms, which are not limited or predefined by core application. 
This provides unlimited potential for data visualization.

22

Figure 2: Overview of SimDIS core application

Windows Forms

Projects

Documents
SQLite

PluginManager

TextProcessor

VectorProcessor

Processors

DocumentService

PluginService

PropertyService

Services



3.4.2. Plugin manager
PluginManager is a static class, which takes care of all types of plugins. It loads 

all available plugins at the application start-up, holds lists of them and also provides 
some useful methods to work with them. Plugins are more described in section 3.5..

3.4.3. Processors
In  this  application  the  processors  are  static  classes  in  SimDIS.Processors 

namespace, which encapsulate text processing and creation of terms and document 
vectors. There are following processors:

• TextProcessor – is used for parsing document text and creating hierarchy of 
terms  for  document  parts.  The  main  methods  is 
createDocumentTerms(Document),  which takes the document  as parameter 
and walks through its parts and extracts words from them. From the words, 
the normalized terms are created, using active normalization plugins. If the 
normalization would result in and empty string, the word is considered as a 
stop word. At the end, the DocumentTerms object is created.

• VectorProcessor –  is  used  for  creating  document  vector  hierarchy  from 
already prepared hierarchy of document terms – the DocumentTerms object. 
The  createDocumentVectors(Document,  DocumentTerms) walks  through 
document parts and from prepared terms it creates and assigns instances of 
DocumentVector to them.

3.4.4. Projects
The projects are used as a container for storing documents and user work. They 

also  allow to  easy  transfer  the  work  from one computer  to  another  and to  have 
multiple parallel projects saved in application at the same time.

Physically each project is saved as a separate sub-directory of  projects directory 
located under the user-defined workspace directory.  The location of workspace is 
stored in Windows registry in:

HKEY_CURRENT_USER\Software\SimDIS
The project directory contains:

• XML file  project.xml  with  basic  description  of  the  project  (for  example, 
name of  the  project).  It  is  used  only to  quickly  identify  the  project.  The 
example of the file is presented in Figure 3.

23

<?xml version="1.0" encoding="utf-8"?>
<project>

<project-name value="The name of project" />
</project>

Figure 3: Example of project.xml file



• SQLite database in file storage.sq3, where for example list of documents is 
stored. SQL provides better and faster access to data collections or changing 
data  than  XML.  The  database  also  contains  user-configurable  data  like 
properties or list of enabled plugins and their order.

• Saved documents and computation cache as separate files, using serialization 
of .Net Framework. The serialization has been used because it is much faster 
than SQLite, when storing lots of textual data and object hierarchy. The name 
of each cache file is derived from the document to which it belongs, cache 
name  and  “.cache”  extension.  For  example:                         
document_3_SimilarityParagraphs.cache

The  list  of  projects  is  accessed  through  static  class  SimDIS.Project.  
ProjectManager,  which  could check the  projects directory and get  the list  of  all 
projects by calling getProjectList().

Once  opened,  the  project  is  represented  by  Project class  in  SimDIS.Project 
namespace and is partially defined in more files to increase readability of the code. 
The  Project class provides  functionality  regarding the project  and its  documents, 
such as:

• Loading  and  saving  the  project  itself  –  this  is  done  automatically  in  its 
constructors,  where  from the  parameters  it  knows whether  is  should  load 
from directory or a new project is being created.

• Managing  SQLite  database  –  the  database  is  accessible  by  the 
DocumentStorage property,  which returns  DbConnection.  By accessing the 
property, database connection is automatically initialized. When it is accessed 
for the first time and the database file doesn't exist, the file is automatically 
created  including  SQL  schema.  This  is  done  by  initializeDb() and 
createDbSchema() methods.

• Saving  document  to  project  using  saveDocument(),  loading  using 
getDocument() and deleting using  deleteDocument(). Title and name of the 
document is saved into database and the document  it  selves is stored into 
separate file using serialization of .Net Framework.

Getting  the  list  of  authors  and  titles  of  stored  documents  using 
getDocumentTitles(). The list is loaded from database.

3.4.5. Services
The service classes provide various utility methods. They could be used within the 

core application  and through the interface  mapping they could be used from any 
plugin as well. The mapping for plugins is accessible through class:

SimDIS.PluginInterface.Common.Services

24



The following services are available:

• DocumentService – provides  functionality  regarding  the  actual  document, 
such  as  computing  the  similarity  between  two  vectors  or  cutting  through 
cluster hierarchy according to current configuration.

• PluginService – wraps  functionality  around  plugins  and  plugin  manager 
itself.  For  example,  it  determines  the  order  of  normalization  and filtering 
plugins.

• PropertyService – covers complex functionality regarding the configuration 
properties.  As mentioned before,  the properties are  stored in the database. 
Inside  the  application  each  property  is  mapped  to  ConfigurationProperty 
object. The service provides methods to find, save and even parse configured 
values.

3.5. Plugin interfaces
To meet the requirements for a tool for testing, visualizing and analyzing impact 

of  vector  model  and  clustering  used  on  document  and  its  parts  –  The  SimDIS 
application implements several tools for loading documents, parsing them, indexing 
their sub-parts, analyzing their mutual similarities, clustering them and visualizing 
the  results.  For  better  extensibility  and  easier  maintenance  in  the  future  the 
application uses plugins for individual  visualization tools,  implemented clustering 
algorithms etc. All plugins are loaded at the start of the application from external 
dynamic-link libraries (DLL's). This allows adding new features without the need for 
source code of core application and its recompilation.
The features which may be desirable to be added or modified later are:

• More supported  file  formats  –  the  file  types  for  importing  and exporting 
documents to/from the application. For example, it would be suitable to allow 
processing documents in some of e-book format as epub or another XML 
based format.

• Term normalization and filtering – the application should allow to add more 
complex filtering steps within the term normalization process discussed in 
section 2.1.1..

• Similarity  measures  – there  are  many various metric  measures,  which are 
possible to use as a similarity. Some of them were described in section 2.1.2..

• Clustering algorithms  – there are  many various  algorithms,  which vary in 
way the clusters are computed.

25



• Cluster labeling – as discussed in 2.1.6., there are more possible approaches 
to creation of cluster labels.

• Clustering and non-clustering visualizations – would allow to add different 
ways to look at document and its content.

• Document manipulation – based on computed data, various information could 
be added to the document. For example, additional navigation, links similar 
parts or navigation through the cluster.

Figure 4: Basic concept of plugin implementation

Figure  4 shows  the  concept  of  plugin  implementation,  where  the  left  box 
represents the application core part, which links the  SimDIS.PluginInterface library 
depicted  by box at  the  top  of  the  picture,  which  makes  accessible  all  necessary 
interfaces to plugins trough their respective and maintains data, needed by plugins to 
work with document. Boxes at the right side enclosed in dashed box represent the 
implementations  of  interfaces  via  plugins  in  application  context.  A  plugin  is  a 
container  which could contain  several  different  plugin classes of  following types 
inherited from IPluginBase:

• IFilePlugin –  implements  support  for  new  file  types  to  importing  and 
exporting documents.

• IWordNormalizerPlugin –  implements  one  step  in  term  normalization 
process, like case-folding or stemming, etc. Normalization steps are closely 
described in section 2.1.1..

• IWordFilterPlugin –  implements  one  type  of  term  filtering.  For  example 
filtering using stop words, which was described within term normalization 
steps in section 2.1.1..

26

SimDIS.PluginInterface

SimDIS
core application

Plugin (dll)

plugin class
implementations

Plugin (dll)

plugin class
implementations

Plugin (dll)

plugin class
implementations

Plugin (dll)

plugin class
implementations



• ISimilarityMeasurePlugin – the implementation of similarity measures.

• IAlgorithmPlugin – the implementation of clustering algorithms.

• ILabelingPlugin – the implementation of cluster labeling approaches.

• IVisualizerPlugin –  the non-cluster visualization, visualizing mainly chapter 
vectors,  paragraph  vectors,  sentence  vectors  or  document  terms.  To  this 
category fits almost anything else, for example, plugin that displays similarity 
matrix of paragraphs or plugin that shows table of processed document terms.

• IClusterVisualizerPlugin –  for  the  visualization  of  clusters.  For  example, 
plugin that displays clustered document parts as a browseable tree.

• IDocumentModifierPlugin –  a  plugin  for  inserting  additional  informations 
based on computed data directly into the document.

Each plugin is represented by one or more classes, where each one implements 
one  or  more  of  previous  interfaces.  The  plugin  is  a  dynamically  loaded  library 
(DLL), which must be located in plugins directory and could contain more than one 
plugin class.

The plugin directory is scanned at the startup of application and found plugins are 
loaded and registered automatically. This is done by SimDIS.Plugins.PluginManager 
using  System.Reflection.Assembly and  System.Activator of  .Net  framework.  In 
loading process, each class from each DLL is checked, whether it implements some 
of  the  plugin  interfaces  mentioned  above  and  if  so,  it  is  registered  –  added  to 
appropriate list within the PluginManager. Later in application those lists are used to 
generate menu items, get supported file type or  normalize words.

The  PluginManager also  provides  methods  to  process  some  of  the  plugin 
functionality:

• openDocument() – reads document from file, using appropriate file plugin

• saveDocument() – saves document to an external file, using appropriate file 
plugin

To allow DLL to contain more than just plugin classes and for better orientation in 
files and classes, a naming convention is enforced:

• The  name  of  plugin  DLL  must  end  with  “Plugin”  (for  example, 
BasicFilePlugin.dll) to be loaded by application.

• The  name  of  plugin  class  must  end  with  one  of:  “Visualizer”, 
“VisualizerCluster”, “File”, “Similarity”,  “Algorithm”, “Labeling”, “Filter”, 
“Normalizer” or “Modifier”. Otherwise the class will not be loaded.

27



3.6. Configuration properties
Several algorithms need some value as a predefined parameter, e.g. the K value of 

K-means  algorithm  from  2.1.4..  Because  SimDIS application  is  targeted  on 
experimental usage a possibility to easily change these parameters is required. What 
is more, even the core application needs to be configurable, e.g. to choose similarity 
measure to use. Therefore a unified configuration using properties was implemented.

The properties are stored in basic key-value pairs, where each property must have 
its  unique  key name.  In  application  it  is  represented  with  ConfigurationProperty 
object, which – besides key and value – also contains additional information, such as 
descriptive  name,  default  value  and for  internal  use  also  information,  whether  it 
should be editable in configuration editor directly by the user.

Every plugin class has to implement getPluginProperties method, where it could 
return a list of ConfigurationProperty objects. This list defines all custom properties 
the plugin wants to use. This method is used by application to detect all properties.

The  properties  are  configurable  by  user  in  Configuration  window  inside  the 
application  and  are  stored  into  the  project  database.  The  configuration  could  be 
different for each project.

Inside the application or within the plugins, the properties could be accessed using 
the PropertyService as described in 3.4.5..

3.7. Implemented plugins
A lot of important functionality is implemented as a plugin and as a part of this 

application,  various  plugins  were  implemented  as  normalizers,  visualizers  or 
clustering algorithms etc. This section describes some of them.

3.7.1. Input HTML parser
Simple HTML parser is contained within HtmlFile plugin. It parses the input file 

in  several  steps using regular  expressions and trying to extract  the contents.  The 
basic principle is to extract the text and ignore everything else.

Although  HTML  standard  allows  to  use  H1  heading  more  times,  many  web 
documents  use  it  only  for  a  title  and  for  actual  chapters  H2  or  higher  is  used. 
Therefore the parsers takes both H1 and H2 as a beginning of new chapter. Other 
headings and tags DIV, TD and P are considered as beginnings of paragraphs.

Except from that, the parser also tries to extract the title of the document from the 
TITLE tag and the author from the META tag.

3.7.2. Term normalizers and filters
The normalization is used for grouping together words with similar meaning, but 

different  written  form.  It  is  part  of  document  processing,  which  is  described  in 
section 2.1.1..

28



Term  normalizers  are  implementations  of  IWordNormalizerPlugin with 
normalize(string) being the main method. The method takes word as a parameter and 
applies one step of normalization on it.

The  execution  of  normalizers  is  piped  in  order  defined  by  the  user  in 
Configuration  window.  The  user  could  also  exclude  specific  normalizer(s)  from 
execution.

Following normalizers were implemented:

• ToAsciiNormalizer – removes diacritics.

• ToLowerNormalizer – converts all characters to lower-case.

• TrivialStemmerNormalizer –  represents  a  trivial  implementation  of  word 
stemming. It tries to remove English, Slovak and Czech prefixes and suffixes 
to get their stems. It uses regular expressions to find first suitable prefix and 
suffix to remove. Because it mixes multiple languages, it cannot guarantee 
that the stem would be generated always correctly.  On the other hand, this 
cannot be guaranteed even by more complex stemmers.

• ThesaurusNormalizer –  represents  a  simple  implementation  of  synonym 
replacing algorithm using predefined dictionary,  which defines words with 
the same meaning. The dictionary is stored as definition for replacements in 
thesaurus.txt, where each line define a word to replace in format from>>to.

After  the  term  is  normalized,  configured  filters  are  applied.  The  filters  are 
implementations  of  IWordFilterPlugin interface.  The main method is  the boolean 
isFiltered(string) one, which should return true if and only if the given word should 
be  filtered  and  marked  as  a  stop  word.  Following  filtering  methods  were 
implemented:

• StopWordsFilter – compares word against stop list located in stoplist.txt file. 
If given word is a stop word, it results and empty string. The stop list contains 
stop  words  from English,  Slovak  and  Czech  language  in  lowercase  7-bit 
ASCII form and their stems created by the TrivialStemmerNormalizer.

• WhiteListFilter –  compares  word  against  so  called  white  list  from  file 
whitelist.txt. The word is marked as a stop word if it is not presented in the 
list.  Current  file contains basic set  of English words,  but to be used, it  is 
highly suggested to provide a domain specific list.

3.7.3. Similarity measures
As presented  in  section  2.1.2. there  are  more  measures  to  compute  similarity. 

Therefore  similarity  measures  were  moved  into  plugins  implementing 

29



ISimilarityMeasurePlugin interface  and  the  user  may  choose  in  Configuration 
window which one to use.

Plugins  CosineSimilarity,  JaccardCoefficientSimilarity and  GeneralizedJaccard–
CoefficientSimilarity were  implemented  as  a  representation  of  Cosine  similarity, 
Jaccard coefficient and Generalized Jaccard coefficient.

3.7.4. Clustering algorithms
Clustering algorithms  are  implementations  of  IAlgorithmPlugin and their  main 

purpose  it  to  create  clustering  from  set  of  document  parts  (ADocumentPart)  in 
method computeCluster().

There are following groups of clustering algorithms implemented:

• Flat  clustering – represented by  KMeansAlgorithm,  the implementation of 
K-Means clustering algorithm. In addition, TrivialListAlgorithm was created, 
which just puts each part in its own cluster.

• Hierarchical  clustering –  representation  by  CentroidHACAlgorithm,  the 
implementation  of  hierarchical  agglomerative  clustering  using  centroid 
vectors.

• Trivial  Clustering –  In  addition,  TrivialListAlgorithm was  created,  which 
creates flat structure of clusters simply by putting each part in its own cluster. 
This algorithm allows applying algorithms as cluster labeling on individual 
chapters, paragraphs, etc.

The result of clustering algorithm is a hierarchy of Cluster objects. In case of flat 
algorithms the hierarchy consists of one level linked under fictional cluster root.

3.7.5. Cluster labeling
Cluster labelers are implementations of  ILabelingPlugin. In section  2.1.6. three 

possible approaches were discussed: most common words, most similar sentence and 
Modified  information  gain.  All  of  them  were  implemented  in  CommonWord–
Labeling, SentenceLabeling and ModifiedInformationGainLabeling.

The user could choose which one to use in Configuration window.

3.7.6. Document visualizers
Document visualizers, the implementations of IVisualizerPlugin, are used for non-

cluster visualization. Some of the visualizations, that were implemented:

• WordsHtmlVisualizer – allows to explore results of document processing, by 
showing tables of terms for each document part embedded in text. The output 
is  displayed  using  combination  of  HTML and  JavaScript  in  WebBrowser 
component.

30



• DocumentTermsVisualizer – shows the document term vocabulary table using 
DataGridView.

• ChapterSimilarityVisualizer,  ParagraphSimilarityVisualizer –  display  a 
similarity matrix between chapters or paragraphs. The output is displayed in 
SimilarityWindow form using  DataGridView component  or alternatively as 
image,  where each pixel  represents  one value of similarity  matrix  in gray 
scale. The pixel is the brighter the bigger the similarity is. While grid view 
provide  exact  information  about  similarities,  the  image  viewer  allows 
obtaining quick overall insight into similarity distribution.

• ChapterConsistencyVisualizer,  ParagraphConsistencyVisualizer and
SentenceConsistencyVisualizer – compute similarity of document part  with 
its  predecessor,  successor  and with  its  parent.  The  output  is  displayed  in 
GridWindow form.

• SentenceSummaryFromDiversityVisualizer –  by  using  affinity  graph, 
information richness and diversity,  as closely described in  2.3., this plugin 
creates document summarization of required length, entered by the user at the 
top of summary visualization window. Other parameters of this algorithm are 
configurable in Configuration window.

• ParagraphSummaryFromDiversityVisualizer – uses  the same approach with 
affinity  graph  as  described  in  2.3.,  but  instead  of  sentences,  it  uses 
paragraphs. The result would be a set of paragraphs which were chosen to be 
in resulting summary.

Many  of  above  mentioned  visualizers  also  provide  ability  to  export  data  for 
further analysis.  The formats  of exported files could vary with  type of visualized 
data. For example, the similarity matrix is possible to export as HTML file, CSV file 
and/or grayscale PNG file.

3.7.7. Cluster visualizers
Cluster  visualizers  are  made  as  implementations  of  IClusterVisualizerPlugin. 

Their purpose it to provide visualization of document parts clustering. Examples of 
implemented cluster visualization:

• SentenceTreeVisualizerCluster –  displays  clustering  of  sentences  in 
browsable tree.

• ParagraphTreeVisualizerCluster –  displays  clustering  of  paragraphs  in 
browsable tree.

31



• ChapterTreeVisualizerCluster – displays clustering of chapters in browsable 
tree.

• ChapterSummaryVisualizerCluster,  ParagraphSummaryVisualizerCluster 
and  SentenceSummaryVisualizerCluster –  using  the  method  described  in 
section 2.4. this visualizer allow to generate text summary. The summary is 
generated  from  clusters  of  corresponding  document  parts  –  clusters  of 
chapters, paragraphs of sentences.

Cluster visualizers  allows to set  the  threshold for cutting  the cluster  hierarchy 
when using hierarchical clustering.  For example,  the threshold of 0.4 will cut the 
cluster  hierarchy,  where clusters with similarities of their siblings bigger than 0.4 
will be left as whole and those with smaller will be split.

3.7.8. Document modifiers
Document modifiers, the implementations of IDocumentModifierPlugin interface, 

are  used  to  add  additional  information  into  the  document.  The  interface  defines 
methods for  beginning and ending of  document parts, which are called during the 
rendering of the document in Document  window. The method receives document 
part  and  current  context  and  should  return  generated  HTML,  which  would  be 
inserted directly into the document.

The examples of implemented modifiers:

• KMostSimilarChaptersModifier –  adds  table  with  K most  similar  chapters 
before  each  chapter.  It  also  shows  the  position  of  each  chapter  and  its 
similarity. The K value can be configured in Configuration.

• NextChapterInClusterModifier –  for each chapter it adds a link to previous 
and next chapter within the same cluster. It also shows the label of the cluster 
and the similarity between chapters.

• AllSimilarModifier –  for  each  chapter  this  modifier  shows  a  list  of  all 
chapters with similarity equal or greater than configured threshold. The list is 
divided  in  two tables:  previous  chapters  and next  chapters.  The threshold 
value is configurable in Configuration.

• NextSimilarModifier – this modifier shows a link to next and previous chapter 
with similarity equal or greater than the configured threshold. The threshold 
value could be different than the threshold mentioned in previous modifier.

32



4. Usage example analysis

This section provides an example of application usage and compares some of the 
visualization results with respect to granularity level. The example is made on book 
The Underground City from Jules  Verne  (available  on enclosed  CD in  directory 
TestDocuments), which consists of 19 chapters, 1043 paragraphs and 2330 sentences. 
All tests were run and measured on common desktop PC with 1.66 GHz dual core 
processor. The sample summarization results were exported and are attached on CD 
in UsageExampleResults directory.

4.1. Basic visualization tools
After importing the document into application and generating document terms and 

vectors,  using  DocumentTermsVisualizer we  could  see,  that  document  contained 
44051 different words, which resulted in 4010 terms in document  term table.  As 
could be seen in Table 1, which shows first 12 terms ordered by their word count, the 
first 11 are stop words and the first non stop term is on twelve position. The total 
number of stop word terms was 536 and they stopped 25526 word occurrences.

Id Term Word count Stop word Inverse frequency
22 the 3010 True 0,1183334
32 of 1544 True 0,2369451
20 to 1197 True 0,2681921
125 and 900 True 0,31455
30 a 746 True 0,3626023
61 was 629 True 0,4528527
105 in 628 True 0,4243079
158 that 480 True 0,4923612
150 it 423 True 0,559308
112 his 389 True 0,6330943
93 had 377 True 0,6439521
47 harry 354 False 0,5162734

Table 1: First 12 terms in document ordered by word count

With use of ChapterConsistencyVisualizer, ParagraphConsistencyVisualizer and 
ChapterConsistencyVisualizer  we  could  get  similarity  of  document  part  with  its 
parents. The average values are presented in Table 2 and this values confirms that the 
document contains a lot of short paragraphs with 2.23 sentences in average, because 
the sentences are very similar to theirs paragraphs.

33



Similarity with paragraph Similarity with chapter Similarity with document

Chapters x x 0,5614398

Paragraphs x 0,1919763 0,1199073

Sentences 0,6228683 0,1346669 0,0840155

Table 2: Similarity of document parts with theirs parents

4.2. Document summarization
Two  approaches  to  document  summary  generating  were  implemented.  First 

approach uses Affinity graph described in section 2.3., while the second one is based 
on document clustering as described in section 2.4..

The Affinity graph method is in its standard form based on sentences. For the The 
Underground  City document,  the  computation  of  similarity  matrix  on  its  2330 
sentences took about 8.3 seconds and the computation of Affinity rank and sentence 
order  required  additional  3.4  seconds,  which  is  11.7  seconds  in  total.  The  final 
selection of sentences into summary text was done in almost no time. This is one of 
the advantages of this method, because once we have the computed data, we could 
quickly get several summarizations of different lengths.

If we take Affinity graph method and apply it  on paragraphs, the computation 
time become lower compared to Affinity graph method applied on sentences due to 
lower number of fragments taken into account – here 1043 paragraphs instead of 
2330 sentences. In this  case it  takes 2.47 seconds to compute Affinity graph and 
further 0.69 seconds on Affinity rank computation – 3.16 seconds in total.

Clustering  method  could  be  used  on  chapters,  paragraphs  or  sentences,  which 
gives us three parallel cluster structures of the document content. Therefore it may be 
interesting to compare them.

The  application  so  far  implements  two  real  clustering  algorithms  mentioned 
before  in  section  2.1. and  Table  3 shows  the  time  in  seconds  spent  on  their 
computation. It is clear that with deeper granularity the computing time raises rapidly 
and with Centroid HAC even more.

Algorithm used On chapters On paragraphs On sentences

K-means, k=10 0.78 sec. 5.88 sec. 14.28 sec.

Centroid HAC 1.17 sec. 34.22 sec. 135.6 sec.

Table 3: Time spent on computation of clusters in seconds

The Table  4 shows  times  spent  on  generating  summarization  of  about  10 
sentences  long  from  previously  computed  clusters.  In  it we  can  see,  that  both 
algorithms spent approximately the same time on generating summary from clusters 
over  different  granularity.  The  required  sentence  length  was  set  to  0  characters, 

34



which means that the algorithm will not look at the length and will  choose most 
similar sentences.

Algorithm Chapters Paragraphs Sentences

K-means, k=10 0.45 sec. 0.53 sec. 0.51 sec.

Centroid HAC 0.7 sec. 0.8 sec. 0.78 sec.

Table 4: Time spent on generating document summaries

Using HAC for document summarization seems to be not so suitable. The main 
reason is its  slowness in comparison to K-means and Affinity graph. The second 
problem is, that near to the root is has clusters which are not much mutually similar 
and  often  they contain  only  one  item.  If  we choose some of  this  items  into  the 
summary, they would not tell much about the rest of the content.

On the other side, the K-means clustering seem to take reasonable amount of time 
for  computation.  When  we  compare  the  summaries  of  100  sentence  length,  the 
K-means method generated pretty good results2 on both sentences and paragraphs.

The Affinity graph method is a bit faster and the results on sentences3 also looks 
pretty  well  and  some  of  the  selected  parts  were  the  same  as  selected  by  those 
K-means.

The Affinity graph method on paragraphs is the fastest  one, but selects  whole 
paragraphs instead of just sentences4. Selecting whole paragraph into the summary 
may provide more continuous piece of information, not just one sentence out of the 
context.

4.3. Additional document navigation
When we look at the similarity matrix at  Figure 5, we could see that there are 

some parts, which are very similar – almost white – far away from the diagonal line.
By use of implemented document modifiers, we could add additional navigation 

into the document, which would follow us to related parts in other sections of the 
document.

2 Results could be found in files  Verne -03- Summary from sentences - kmeans100 len0.html and 
Verne  -03-  Summary  from  paragraphs  -  kmeans100  len0.html attached  on  CD  in 
UsageExampleResults directory.

3 Result of Affinity graph on sentences is could be found in file Verne -02- Sentence summary using  
diversity - 100 sentences.html. More detailed result in context of the whole document could be 
found in file Verne -05- Sentence summary using diversity - 100 sentences info.html.

4 The  Affinity  graph  results  on  paragraph  and  sentences  could  be  found  in  files  Verne  -02- 
Paragraph summary using diversity - 50 paragraphs.html and Verne -02- Sentence summary using 
diversity - 100 sentences.html.

35



Figure 6 shows document with added modifiers K most similar chapters, Next and 
previous chapter in cluster and Next and previous similar chapter.

By use of this links, one could quickly go through most similar chapters. Because 
this  application  is  designed  primarily  for  experimental  use,  the  similarity  and 
positional data are also shown.

Links  generated  using  clusters  are  not  the  same  as  links  based  on  similarity. 
Cluster  structure  depends  on  clustering  algorithm  and  selected  thresholds.  The 
similarity links have advantage in possibility to find link specifically for each part. 
The clusters group parts together and it could happen that some part would be on the 
edge of the cluster  and its content could be more similar to a part from different 
cluster.

36

Figure 5: Part of paragraph similarity matrix of The Underground City

Figure 6: Document with additional navigation



4.4. Comparison of cluster labelers
In section 2.1.6. were proposed three possible approaches of cluster labeling:

• Most common words – choosing words with the highest weights in cluster 
centroid vector

• Most similar sentence – choosing a sentence which is the most similar to a 
cluster centroid vector

• Modified  information  gain – choosing  words  with  the  highest  value  of 
Modified information gain

Using the K-means algorithm with K=10 on sentences  in document mentioned 
before, we get ten clusters with following labels:

Most common words Most similar sentence Modified information gain

Starr, James, Mr, said, Yes "To you and to me, Mr. Starr. Starr, Mr, James, servant, 
relative

new, work, Aberfoyle, vein, 
possible

Like these caves, New 
Aberfoyle was not the work of 
men, but the work of the 
Creator.

new, work, diligently, sonorous, 
centuries

old, engineer, good, man, 
overman

"Good–by, Simon," said the 
engineer.

lad, appetite, signal, doesn, 
supper

pit, Dochart, shaft, did, Yarrow "What! In the Dochart pit?" pit, Dochart, vain, concluded, 
warm

Harry, say, Nell, sea, cried I say, do look, Harry!" cried 
Jack.

terrified, hoax, hidden, fierce, 
specimen

t, know, feet, shall, great "Well, I don’t know. shook, earnest, jealous, pickax, 
obstinate

day, coal, Town, lived, life Afterwards you will be free, if 
you wish it, to continue your life 
in the coal mine, like old Simon, 
and Madge, and Harry.

farm, Melrose, convey, gliding, 
labor

Simon, Ford, Loch, left, Sir Come along," said Simon Ford. Loch, Katrine, guest, English, 
irrevocable

opening, years, Harry, able, air "You’re right there, Jack Ryan. endure, mixture, hope, toy, 
invented

little, bed, coal, sandstone, 
schist

As the waters were contained in 
no bed, and were spread over 
every part of the globe, they 
rushed where they liked, tearing 
from the scarcely–formed rocks 
material with which to compose 
schists, sandstones, and 
limestones.

forests, strata, Rob, sandstone, 
pressure

Table 5: Comparison of cluster labeling methods

37



As it could be seen on Table 5, the labels created by Most common words are not 
so bad at all. This is because the weights in vectors were normalized using tf-idf as 
described in section 2.1.2., where the words which are occurring in more parts across 
the document receive a penalty in favor of words with local occurrence.

Most similar sentence may create a label with better sense, but it could happen 
that the selected sentence would not cover all important words from the cluster. For 
example, if the parts within the cluster are dissimilar to each other.

The Modified information gain approach seems to add into labels words which are 
more  unique  to  the  cluster,  compared  to  the  Most  common  words  approach. 
Therefore the Modified information gain is generating more unique cluster labels and 
seems to be a bit better.

4.5. Other documents
The application was also tested on other documents.  The books attached on CD5 

in Czech language had very similar results, but some plugins could not be used – e.g. 
Thesaurus  or  White  list  filtering  –  because  they  currently  contains  only  English 
dictionary.

When using more technical documents – e.g. this diploma thesis6 – the results 
could in some cases  depend on the structure of the text.  For example,  document 
containing  a  lot  of tables,  formulas  or images  could have a lot  of scattered  text, 
which could influence algorithms.

5 Some examples of test documents are located in TestDocuments directory on attached CD.
6 A version  possible  to  use  in  application  could  be  found in  file  diplomova  prace  test.html in 

TestDocuments directory.

38



5. Conclusion

5.1. Project contribution
This work took a closer look at a possibilities of non-standard applying of vector-

space model and clustering techniques on individual parts within a single document. 
The analysis of results has shown, that a transformation from document collection to 
intra-document  analysis  needs  only  a  minor  adjustment  and  the  theory  and 
algorithms then can bring useful additional information about the inner structure and 
consistency of document.

Implemented application with built-in visualizing tools provides and easy way for 
testing and analyzing the content of documents in interactive form. This could help 
to measure the suitability of used techniques. The data could be analyzed within the 
application itself or could be exported for further processing.

5.2. Application results
Using list of terms, it was possible to verify the document indexation and by the 

frequencies of the terms, to identify possible candidates for addition to stop list.
The image presentations of  similarity matrices show that real documents contain 

often  similar  areas  located  far  away  each  from other.  The  application  generates 
additional easy navigation between them. The same visualization could be used by 
authors as a hint for better document structuring by describing similar topics closer 
together.

Comparing K-mean and HAC algorithms, the HAC was able to detect parts which 
are dissimilar from the rest of the content and so it could better detect the topics of 
the document. However, when generating summary the K-mean was giving better 
results,  because it  was able  to  select  more  relevant  sentences,  which were better 
reflecting the overall content of document.

Generated summaries showed, that for longer texts the summaries from sentence 
level  clusters  and  paragraph  level  clusters  were  very  similar  in  quality.  The 
application  also  showed,  that  it  is  possible  to  use  Affinity  graph  method  to  use 
paragraphs instead of sentences. The number of paragraphs is lower than the number 
of sentences and therefore the computation over paragraphs would take significantly 
less time.

39



5.3. Possible future work
The  possible  ways  of  visualization  are  practically  unlimited.  Therefore,  it  is 

probable that more of them would be added in future. It could be also suitable to 
implement more clustering algorithms.

The implemented plugins for word stemming provides only basic approach. To 
improve  the  token  normalization,  some  advanced  lemmatizers  or  stemmers 
dependent on document language could be involved into the process.

The  supported  HTML  format  proven  itself  as  sufficient  for  testing  purposes. 
There are a lot of tools, which allows converting other types of documents to it. On 
the  other  hand,  there  are  a  lot  of  free  electronic  books  available  targeted  for 
electronic book readers. So it could be handy to add native support for some of them.

40



6. User documentation

6.1. System requirements
This application designed to run under Microsoft Windows XP SP3, Windows 

Vista SP1 and Windows 7 in 32bit version. There is also native 64bit build of the 
application  available  on  the  enclosed  CD.  It  could  overcome  the  4GB  memory 
barrier  from  the  32bit  operating  systems  and  is  limited  only  by  the  amount  of 
memory available on the computer. Using this version it is possible to process larger 
documents as well.

To run the application, Microsoft .Net Framework 2.0 or later is required to be 
installed.

6.2. Installation
The installation of 32 bit version could be done via provided setup.exe wizard or 

simply by extracting SimDIS.zip package. The 64 bit version could be installed by 
extracting SimDIS.x64.zip package. All files could be found on attached CD.

No other steps are required to run the application.

6.3. Working with the application
The application is started by executing SimDIS.exe file.

6.3.1. Starting a project
If the application is launched for a first time, it prompts for a workspace directory, 

where it could save project data. Selected directory needs to be writable, otherwise 
the application would prompt for the directory again. Once the directory is selected, 
the welcome screen is shown to user (Figure 7). On this screen, the user can create 
and start a new project or to load (Figure 8) data from existing projects. The projects 
are represented as a directories in projects directory.

41



When creating the project, the name of directory is generated automatically from 
the  project  name.  In  could  be  later  renamed  or  copied  using  common  tools  for 
browsing file system in Windows.

6.3.2. Document list
After the project  is loaded,  the main window with list of documents is shown 

(Figure  9).  The  list  contains  author  and  title  of  documents  and  also  number  of 
chapters,  paragraphs  and  sentences. The  user  can  select  one  or  more  documents 
within the list by the mouse.

Here it is possible to manage documents, stored within the project:

• Open selected document – opens the first document that is selected in list. 
The document could be also opened by double clicking on it in the list.

• Import document – opens file dialog and imports one or more documents.

• Delete selected document – deletes all documents selected in list.

Under section Tools in menu, the user could find following:

• Clear  project  cache  –  deletes  all  cache  files  withing  the  project.  Already 
computed values will have to be computed again when they are necessary 
instead of taken them from the cache.

42

Figure 7: Welcome screen

Figure 8: Project loading selection



• Configuration – opens a Configuration window, which is described later and 
allows to configure normalizer,  plugins,  properties and choosing similarity 
measure and cluster labeling method.

• Test normalizers – opens a window, which allows to enter the words into the 
text  box on left  side – each on single  line – and then by use of selected 
normalizer it shows the output in the text box on the right side. For example, 
entering a list of stop words, applying stemmer on it and taking the result as a 
new list of stop words.

• About SimDIS – information about the application.

6.3.3. Configuration window
Configuration window allow user to configure the behavior  of application and 

plugins.  Figure 10 illustrates the configuration of text normalizers. The check box 
next to each of them allows to set whether the normalizer should be used or not. The 
order of chained execution is the same as the order in the list and could be changed 
by selecting wanted normalizer and by clicking on buttons up or down. The selected 
line would move up or down in the list. The same principle is used on text filters.

43

Figure 10: Configuration window - Text normalizers

Figure 9: Document list window illustration



The optimal order of Text normalizers is: To ASCII Normalizer, To lowercase 
Normalizer, Thesaurus Normalizer and Trivial stemmer Normalizer. The Thesaurus 
contains currently only basic set of English synonyms, so it would not have desired 
effect in other languages.

The order of Text filters is not very important, because they could only mark stop 
words. But the White List Filter contains currently only basic set of English words 
and therefore is should be mostly disabled and used only with a whitelist suitable for 
the domain of processed document. Otherwise it could mark word as a stop word 
incorrectly. In worst case it could mark all words as stop words.

Figure 11 show the configuration window in the Application properties tab. Here 
the user could configure properties for plugins and the application. The left column 
show a read-only description of the property and the value in right column could be 
edited by double clicking at it.

On the last tab – Other configuration – user can choose which similarity measure 
and cluster labeling are to be used.

After all desired changes in configuration are finished, the changes could be saved 
by clicking at OK button or by closing the window.

6.3.4. Document window
By  opening  document  from  document  list,  the  Document  window  is  shown 

(Figure 12).  It  shows the text  of the document  with applied modifiers,  allows to 
choose modifiers and to run visualization on the document.

Document window offers following actions in top menu:

• Export HTML – opens save file dialog and then exports current document 
with applied modifiers into selected file.

44

Figure 11: Configuration window - Application properties



• Clear  document  cache  –  deletes  all  cache  files,  which  belongs  to  current 
document.

• Configuration  – opens  the  Configuration  window described  before,  where 
user could change configuration.

• Go to – it is possible to enter the number of chapter and paragraph and by 
clicking  on  Go  to  button,  the  document  text  would  be  scrolled  to  this 
document part.

The  control  panel  from document  modification  is  at  the  left  side  of  window, 
where it is possible to:

• Enable or disable the modifier by checking or unchecking appropriate check 
box next to desired modifier.

• Change  the  order  by  selecting  one  modifier  and  clicking  on  up  or  down 
button. The selected item will be moved in the list which is in the same order 
as they would be applied on document.

• By selecting modifier from list, its description is shown in the bottom-left.

• By clicking on Apply button, the order current order and status of modifiers 
is saved and the text of the document in the center part would be regenerated.

45

Figure 12: Document window illustration



The visualizers plugins are automatically registered and are offered to user in side 
menu, from which he can execute them. When visualization is executed, it usually 
opens its own specific window.

The  visualizations  of  clusters  and  some  document  modifiers  uses  currently 
selected clustering algorithm.

6.3.5. Chapter, paragraph and sentence similarity
All three visualizers use the same window, which display the similarity as table, 

as in Figure 13, or as and image, as in Figure 14.

46

Figure 13: Similarity window showing grid view

Figure 14: Similarity window showing image



The user could play with it and event export it  into CSV, HTML or PNG for 
further processing in external programs.

6.3.6. Words and terms visualization
There are two direct visualizations for showing term vocabulary. First – Visualize 

words – shows whole text in a HTML window (Figure 15) and adds hidden “+” to 
every document part. After clicking on it, the term table and vector of corresponding 
document part is shown. The “+” changes to “–” and when clicked, it hides back the 
table.

By  selecting  in  top  menu,  the  user  could  affect  to  which  parts  the  “+”  are 
displayed.

The second visualization just shows global dictionary and allows to export it.

6.3.7. Working with clusters
The  clustering  algorithm,  which  is  to  be  used  for  creating  clusters  could  be 

selected in menu in document window as shown on Figure 16.

47

Figure 15: HTML word visualization window



Then  the  cluster  could  be  seen  clicking  on  Chapter  tree,  Sentence  tree  or 
Summary tree visualizers. The cluster tree window would be opened (Figure 17).

In this window, user could browse through the clusters. Each node represents one 
cluster, where first is the similarity of its sub-clusters or 1 in for leaf and then its 
label.  The  leaf  cluster  contains  member  document  parts,  where  the  first  number 
represents their location in document.

By hovering on document part, a title with full text is shown.

48

Figure 16: Selecting clustering algorithm

Figure 17: Cluster tree visualizer window



The user could also specify the threshold value in top menu, which is used to cut 
through the hierarchical clusters.

6.3.8. Generating text summary
For automated generating of text summary, there are four possibilities accessible 

from the document window:

• Summary from chapters – clusters on chapter level are used

• Summary from paragraphs – clusters on paragraph level are used

• Summary from sentences – clusters on sentence level are used

• Sentence  summary  using  diversity  –  using  affinity  graph,  information 
richness and diversity of sentences to generate summarization

• Paragraph  summary  using  diversity  –  using  affinity  graph  summarization 
method on paragraphs, instead of sentences

Figure 18 shows example of summary window. After pressing Generate button on 
top, it generates the text and also displays time spent of computation. The time spent 
on  creating  clusters  shows the  time  spent  on  getting  the  clusters  and  in  case  of 
loading from cache, it could be significantly lower, than real time needed to compute 
them.

On this  window,  the  user  could  set  threshold  and  sentence  length  value.  The 
threshold is used to cut through the hierarchical clusters. The ideal sentence length is 
used as a parameter for text generating, which is closely described in 2.4..

49

Figure 18: Summary generating window



7. Programmer documentation

7.1. System requirements
The application requires Microsoft .Net Framework [15] in version 2.0 or later to 

be  installed  and  Microsoft  Visual  Studio  [19] 2008  or  later  to  open  the  project 
solution.

For  compiling  the  application,  the  System.Data.SQLite  library  [18] and 
Subversion  [20] are  required.  The  Subversion  is  used  to  automatically  generate 
assembly version and it could be omitted by removing subwcrev command from pre-
build events of SimDIS project.

For creating and compiling custom plugins it is not required to have the source 
and compile the whole application.

7.2. Compiling the whole application
The source code of application is contained within SimDIS solution of Microsoft 

Visual Studio. To open it, run SimDIS.sln in root of the solution.
The solution  consists  of  several  projects,  of  which  the  main  are  SimDIS  and 

SimDIS.PluginInterface. Other projects are containers for plugins.
The whole application could be build by choosing Build > Build solution from the 

top menu.

7.3. Custom plugin creation
The types of plugins are described in section 3.5.. This section describes creation 

of custom plugin without the need of the whole application using Microsoft Visual 
Studio 2008.

At first, the project (and solution) must be created. It is a Class library project and 
its name must end with Plugin. Then the reference to SimDIS.PluginInterface class 
library must be added as shown on  Figure 19 and set the Copy Local property to 
false. Usually the System.Windows.Forms is also required to show visualization.

Next  step  it  to  rename  Class1  to  more  suitable  name,  for  example 
MyCustomVisualizer. It is important, that it ends correctly as described in section 
3.5.. In this example I have chosen visualizer plugin, so the class must implement 
SimDIS.PluginInterface.IVisualizerPlugin interface.

The  IVisualizerPlugin  interface  consists  of  getPluginName()  method,  which 
simply  returns  name  of  the  plugin,  getPluginProperties()  method,  which  should 
return the list of plugin-defined properties and visualize()  method, which receives 
information about document and runs visualization.

50



A simple  implementation  of  visualization  is  in  Figure  20,  where  it  shows the 
author and the title of provided document in System.Windows.Forms.MessageBox.

51

Figure 19: Adding SimDIS.PluginInterface



When building  the  plugin,  it  is  important  to  chose  right  target  platform.  The 
SimDIS  application  is  by  default  compiled  for  x86,  so  the  plugins  should  be 
compiled also for x86 or Any CPU.

To add and run compiled DLL of plugin,  it  is only needed to copy in plugins 
directory  of  SimDIS  application.  The  application  will  automatically  detect  and 
register the plugin.

52

namespace MyCustomPlugin
{

public class MyCustomVisualizer : IVisualizerPlugin
{

#region IVisualizerPlugin Members

public void visualize(IDocumentInfo documentInfo,
IWin32Window owner)

{
MessageBox.Show(documentInfo.getDocument().Author

+ ": " + documentInfo.getDocument().Title);
}

#endregion

#region IPluginBase Members

public string getPluginName()
{

return "My custom";
}

public IList<ConfigurationProperty> getPluginProperties()
{

return null;
}

#endregion
}

}

Figure 20: Implementation of simple visualization plugin



Bibliography

[1] Manning Ch. D., Raghavan P., Schütze H.: An Introduction to Information 
Retrieval, Cambridge University Press, Cambridge, England, 2009
[2] Gan Guojun, Chaoqun Ma, Jianhong Wu: Data Clustering: Theory,  
Algorithms, and Applications, ASA-SIAM Series on Statistics and Applied 
Probability, SIAM, Philadelphia, ASA, Alexandria, VA, 2007
[3] Aone Ch., Larsen B.: Fast and Effective Text Mining Using Linear-time 
Document Clustering, KDD-99 San Diego CA USA, 1999
[4] Geraci F.: Fast clustering for web information retrieval, PhD Thesis, Facolta di 
Ingegneria, University of Siena, Siena, Italy, 2008
[5] Charikar M. S.: Similarity Estimation Techniques from Rounding Algorithms, 
STOC-02, 34th Annual ACM Symposium on the Theory of Computing, Montreal, 
CA, 2002
[6] Lloyd S.P.: Least squares quantization in PCM, Technical report, Bell 
Laboratories, 1957, 1957
[7] Hinneburg A., Keim D.: Optimal grid-clustering: Towards breaking the curse 
ofdimensionality in high-dimensional clustering., In Proceedings of the 25th 
internationalconference on very large data bases (VLDB ’99), San Francisco, 1999
[8] Lance G. N., Williams W. T.: A general theory of classificatory sorting 
strategies 1. Hierarchical systems, The Computer Journal, 1967
[9] Cover T. M., Thomas J. A.: Elements of information theory, John Wiley & 
Sons, New York, USA, 1991
[10] Pedersen J. O., Yang Y.: A comparative study on feature selection in text  
categorization, ICML-97, 14th International Conference on Machine Learning, 
Nashville, USA, 1997
[11] Yang J., Xiaojun W.: Improved Affinity Graph Based Multi-Document 
Summarization, Proceedings of the Human Language Technology Conference of the 
North American Chapter of the ACL, New York, USA, 2006
[12] Chen Z., Fan W., Ji L., Li H., Liu Y., Ma W. Y., Xi W., Zhang B.: Improving 
Web Search Results Using Affinity Graph, SIGIR’05, Salvador, Brazil, 2005
[13] Bossard A.: Generating Update Summaries : Using an Unsupervized 
Clustering Algorithm to Cluster Sentences, Laboratoire d'Informatique de Paris-
Nord, 2011
[14] World Wide Web Consortium (W3C): W3C HTML, http://www.w3.org/html/
[15] Microsoft Corporation: Microsoft .Net Framework, http://www.microsoft.com/
net/
[16] Microsoft Corporation: Windows Homepage, http://windows.microsoft.com/

53



[17] SQLite development team: SQLite Home Page, http://www.sqlite.org/
[18] Simpson R., SQLite development team: System.Data.SQLite, 
http://sqlite.phxsoftware.com/
[19] Microsoft Corporation: Microsoft Visual Studio, 
http://www.microsoft.com/visualstudio/
[20] Apache Software Foundation: Subversion, http://subversion.apache.org/

54



CD contents

Enclosed CD contains:
• dp.pdf – A PDF version of this diploma thesis.
• Binary – Compiled version of the application
• Documentation – Generated documentation of the application
• Source – Source code of the application
• TestDocuments – A sample documents compatible with SimDIS application
• UsageExampleResults – Exported results from example usage

55



List of tables

Table 1: First 12 terms in document ordered by word count......................................33
Table 2: Similarity of document parts with theirs parents..........................................34
Table 3: Time spent on computation of clusters in seconds.......................................34
Table 4: Time spent on generating document summaries..........................................35
Table 5: Comparison of cluster labeling methods......................................................37

56


