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2 Abstract 
The central role in the initiation and maintenance of the adaptive immune response is 

played by interaction of T cells with antigen presenting cells. Upon recognition of peptide-

loaded MHC glycoproteins on the surface of antigen presenting cells by specific T cell, 

immunological synapse is formed and signaling events are initiated in both cells involved. 

The signal propagation is regulated by various molecules that can have positive or negative 

function, or even both, depending on specific circumstances. In this work we focused our 

attention on three topics all encompassing processes of signal propagation or regulation. First, 

we extended our understanding of the signaling processes taking place in the immunological 

synapse by the discovery of a new transmembrane adaptor protein SCIMP expressed on 

antigen presenting cells. Detailed study of this protein demonstrated that it is a positive 

regulator of MHCII signaling. Next two projects were focused on T cells. We described the 

role of another transmembrane adaptor protein termed PRR7 in the regulation of apoptosis 

and T cell receptor (TCR) mediated signaling in T cells. Finally, we provided evidence that in 

human T cells CD148 phosphatase can have both activatory and inhibitory effect on T cell 

receptor signaling.  

 

Presented thesis consists of three publications : 

1. Draber P, Vonkova I, Stepanek O, Hrdinka M, Kucova M, Skopcova T, Otahal P, 

Angelisova P, Horejsi V, Yeung M, Weiss A, Brdicka T. 2011. SCIMP: 

transmembrane adaptor protein involved in MHCII signaling. Moll Cell Biol 

[published ahead of print on 19 September 2011, doi:10.1128/MCB.05817-11] 

 

2. Hrdinka M, Draber P, Stepanek O, Ormsby T, Otahal P, Angelisova P, Brdicka T, Paces 

J, Horejsi V, Drbal K. 2011. PRR7 is a transmembrane adaptor protein expressed in 

activated T cells involved in regulation of T cell receptor signaling and apoptosis. J 

Biol Chem 286: 19617-29 

 

3. Stepanek O, Kalina T, Draber P, Skopcova T, Svojgr K, Angelisova P, Horejsi V, Weiss 

A, Brdicka T. 2011. Regulation of Src family kinases involved in T cell receptor 

signaling by protein-tyrosine phosphatase CD148. J Biol Chem 286: 22101-12 
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3 Abstrakt 
Interakce T buněk s buňkami prezentujícími antigen hraje zásadní úlohu při zahájení a 

koordinaci adaptivní imunitní odpovědi. Poté, co T buňka rozpozná MHC glykoproteiny 

s navázaným antigenním peptidem na povrchu antigen prezentující buňky, dochází k tvorbě 

imunologické synapse a jsou spuštěny signální dráhy v obou zúčastněných buňkách. Aktivita 

signálních drah je regulována různými molekulami, které mají pozitivní nebo negativní efekt.  

Aktivity některých proteinů mohou mít i duální charakter v závislosti na dané situaci. V této 

práci jsme se zaměřili na tři témata týkající se regulace nebo propagace signálních drah. 

V první části jsme rozšířili znalost signálních dějů probíhajících v oblasti imunologické 

synapse, neboť jsme objevili nový transmembránový adaptorový protein SCIMP, který je 

exprimovaný na buňkách prezentujících antigen. Po důkladném studiu tohoto proteinu jsme 

prokázali, že se jedná o pozitivní regulátor signalizace přes MHCII glykoproteiny. Další dva 

projekty se týkaly T buněk. Nejprve jsme popsali význam dalšího transmembránového 

adaptorového proteinu nazvaného PRR7 v regulaci apoptózy a v signalizaci přes T buněčný 

receptor. Nakonec jsme se zaměřili na studium exprese fosfatázy CD148 v lidských T 

buňkách a prokázali jsme, že může mít aktivační i inhibiční efekt na signalizaci přes T 

buněčný receptor. 

 

Základem předkládané disertační práce jsou tři publikace: 

1. Draber P, Vonkova I, Stepanek O, Hrdinka M, Kucova M, Skopcova T, Otahal P, 

Angelisova P, Horejsi V, Yeung M, Weiss A, Brdicka T. 2011. SCIMP: 

transmembrane adaptor protein involved in MHCII signaling. Moll Cell Biol 

[published ahead of print on 19 September 2011, doi:10.1128/MCB.05817-11] 

 

2. Hrdinka M, Draber P, Stepanek O, Ormsby T, Otahal P, Angelisova P, Brdicka T, Paces 

J, Horejsi V, Drbal K. 2011. PRR7 is a transmembrane adaptor protein expressed in 

activated T cells involved in regulation of T cell receptor signaling and apoptosis. J 

Biol Chem 286: 19617-29 

 

3. Stepanek O, Kalina T, Draber P, Skopcova T, Svojgr K, Angelisova P, Horejsi V, Weiss 

A, Brdicka T. 2011. Regulation of Src family kinases involved in T cell receptor 

signaling by protein-tyrosine phosphatase CD148. J Biol Chem 286: 22101-12 
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4 Introduction  

4.1 Antigen presentation to T cells 
T cells are the central cells of the adaptive immune system, since they orchestrate and 

coordinate immune responses. The outcome of their action, if working properly, is the defense 

and long lasting protection against particular pathogens and also the surveillance of body 

tissues and prevention of cancer outbreak. Failure of T cell function results in profound 

defects varying from chronic or fatal infections to allergies, hypersensitivities, and 

autoimmune diseases.  

By their specific T cell receptor (TCR), T cells recognize antigenic peptides presented by 

various cells on major histocompatibility complex class I or II glycoproteins (MHCI, MHCII). 

The ability of T cells to recognize MHCI or II is restricted via the expression of co-

stimulatory molecules CD4 or CD8, respectively, on their surface. The process of antigen 

presentation leads to the activation of naive T cells by professional antigen presenting cells 

(APCs) and their differentiation into effector T cells. These effectors can subsequently both 

activate and coordinate different cells of the immune system to combat the pathogens (in the 

case of CD4+ T cells) or directly kill the infected target cells (in the case of CD8+ T cells). 

Dendritic cells, monocytes, macrophages and B cells (1, 2) are all considered professional 

APCs. Dendritic cells and macrophages recognize and acquire pathogens by various surface 

receptors, such as scavenger receptors, complement or Fc receptors. B cells are able to 

recognize and engulf pathogens following recognition by specific B cell receptor (BCR). 

Naive T cells are most efficiently activated by dendritic cells. Under some circumstances, 

macrophages and B cells can also be responsible for this process. Later in the immune 

response, effector CD4+ T cells recognize antigen presented on the surface of macrophages 

and B cells and activate these cells. As a result macrophages become more effective in killing 

of engulfed pathogens and B cells with BCR specific for particular pathogen enter into the 

cycle of affinity maturation, leading to the production of high affinity antibodies.  

Process of antigen presentation is accompanied by the formation of immunological 

synapse (IS) at the APC - T cell interface (3). Since the first observation of IS it has become 

clear that it is composed of several distinct regions, creating structure resembling “bull´s eye“. 

At the center of IS is an area known as central supramolecular activation cluster (cSMAC), 

containg pairs of TCR-MHC, coreceptors CD4 and CD8 and several signaling molecules, 

such as Src family kinases. Around cSMAC is an area called peripheral SMAC (pSMAC) 

containing pairs of adhesion molecules such as CD2-CD58 or LFA1-ICAM1 or LFA1-
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ICAM3. Finally distal SMAC (dSMAC) contains molecules with large extracellular domains 

like CD45 (4).  

Recognition of peptide-loaded MHC by TCR leads to various signaling events in both 

cells involved that will be described in the next sections. 

 

4.2 TCR induced signaling pathways  
Signaling pathways in T cells are well studied (Fig. 1). Upon TCR activation, Src family 

kinases Lck and Fyn phosphorylate immunoreceptor tyrosine-based activation motifs 

(ITAMs) present in TCR associated CD3 subunits and ζ chains. Phosphorylated ITAMs 

subsequently serve as binding sites for Syk family kinase ZAP-70. 

ZAP-70 is a cytoplasmic molecule containing two Src homology 2 (SH2) domains 

followed by a kinase domain at the C-terminus. In non-activated cells, ZAP-70 is held in 

autoinhibited closed conformation (5). Binding of ZAP-70 via its SH2 domains to 

phosphorylated ITAMs, induces a structural change in ZAP-70 resulting in the release of its 

kinase domain followed by stabilization of the open conformation via phosphorylation of 

tyrosines Y315 and Y319 by Lck or by another active ZAP-70 molecule (6). Once ZAP-70 is 

docked in active conformation at the membrane, it phosphorylates critical adaptor protein - 

linker for activation of T cells (LAT). 

LAT is a member of the family of transmembrane adaptor proteins (TRAPs), 

characterized by a short extracellular part, a transmembrane domain followed by a 

palmitoylation motif and an intracellular part containing several protein-protein interaction 

motifs. Upon tyrosine phosphorylation, LAT functions as a scaffold molecule that binds to 

Grb2-related adaptor downstream of Shc (GADS). GADS forms a stable complex with Src 

homology 2 domain-containing leukocyte protein of 76 kDa (SLP76) and thus brings 

cytoplasmic adaptor SLP76 to the plasma membrane, where it becomes phosphorylated by 

ZAP-70. Subsequently phospholipase Cγ1 (PLCγ1) binds to LAT-GADS-SLP76 complex 

together with the member of Tec family kinases called IL2-inducible T-cell kinase (Itk) (7-9). 

Itk phosphorylates and activates PLCγ1, which subsequently cleaves membrane lipid 

fosfatidylinositol-4,5-bisphosphate (PIP2) to cytosolic inositol-1,4,5-trisphosphate (IP3) and 

membrane attached diacylglycerol (DAG), each of them serving as a second messenger. 

Increase in the concentration of cytoplasmic IP3 leads to the activation of calcium 

channels present on endoplasmic reticulum (ER), promoting release of calcium from ER to 

the cytoplasm. This event promotes opening of plasma membrane localized calcium-release 
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activated calcium (CRAC) channels, further increasing intracellular calcium concentration 

(10). The mechanism of this process, called store-operated calcium entry (SOCE), has been 

elucidated by the discovery that ER localized protein stromal interacting molecule 1 (STIM1) 

functions as a calcium sensor (11, 12). Decrease in calcium concentration in ER enables 

aggregation of STIM1 under the plasma membrane and this is then detected by the subunit of 

CRAC chanel ORAI1 (13, 14). Increase in cytoplasmic calcium concentration subsequently 

turns on the serine/threonine phosphatase calcineurin. Calcineurin dephosphorylates the 

transcription factor nuclear factor of activated T-cells (NF-AT), which is then translocated 

into the nucleus and initiates transcription of various genes (15).  

Pathway initiated by the formation of DAG leads to the activation of transcription factor 

nuclear factor κB (NF-κB). NF-κB is held inactive in the cytoplasm by binding to inhibitor of 

NF-κB (IκB). The formation of DAG enables recruitment of protein kinase C-θ (PKCθ) to the 

plasma membrane and its activation. PKCθ then orchestrates formation of trimolecular 

complex CARMA1-BCL10-MALT1 (termed CBM). CBM promotes polyubiquitination and 

degradation of regulatory subunit NEMO of IκB kinase (IKK). This step releases active IKK 

that subsequently phosphorylates IκB, marking it for polyubiquitination and degradation in 

the proteasome. This releases active NF-κB, which may translocate into the nucleus and 

initiate transcription of various genes (16, 17). 

Moreover, DAG also promotes membrane recruitement and PKCθ mediated activation of 

Ras guanyl nucleotide releasing protein (RasGRP) (18). RasGRP functions as guanyl 

nucleotide exchange factor (GEF) for small GTPase Ras (19, 20). Active Ras then initiates 

signaling cascade leading to the activation of mitogen-activated protein kinases (MAPK) 

extracellular signal-regulated kinase (Erk). Activated MAPK can subsequently phosphorylate 

and regulate function of various proteins, including subunits of transcription factor AP1 (21, 

22). 

Additional signaling pathway leading to Ras activation is mediated by binding of protein 

growth-factor-receptor-bound protein 2 (GRB2) to LAT. GRB2 interacts with Ras GEF called 

Son of sevenless homolog 1 (SOS1), and therefore brings SOS1 to the plasma membrane, 

where it mediates exchange of GDP for GTP on the membrane bound Ras, again leading to 

the initiation of MAPK Erk pathway (23).   
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Figure 1. TCR induced signaling pathways. 
Upon recognition of MHC glycoprotein loaded with specific peptide by TCR (1), Src family kinase 
Lck is activated and phosphorylates (P) several immunoreceptor tyrosine-based activation motifs 
(ITAMs) on TCR associated CD3 subunits and ζ chains (2). Zap70 binds to phosphorylated ITAMs 
and subsequently phosphorylates LAT (3). LAT associates with GADS-SLP76-PLCγ1 complex (4) 
and PLCγ1 becomes activated by Itk and cleaves membrane lipid PIP2 to cytoplasmic IP3 and 
membrane bound DAG (5). IP3 promotes release of calcium from the endoplasmic reticulum (ER) (6) 
and this potentiates calcium flux from CRAC channels (7). Increase in intracellular calcium activates 
phosphatase calcineurin that dephosphorylates transcription factor NF-AT (8) and this allows 
accumulation of NF-AT in the nucleus (9). PLCγ1 produced DAG enables membrane recruitment and 
activation of PKCθ (10), that initiates formation of CARMA1-BCL10-MALT1 complex (11) and 
cleavage of NEMO regulatory subunit of inhibitor of NF- κB (IκB)  kinase (IKK) (12). Active IKK 
phosphorylates IκB, that is subsequently polyubiquitinated and degraded (13). Released transcription 
factor NF-κB then translocates into the nucleus (14). PKCθ can also activate RasGRP (15) that 
activates membrane bound Ras (16) and this initiates the MAPK signaling pathway (17), leading to 
activation of transcription factors such as AP-1 (18). Ras can be activated also via membrane 
recruitment of GRB2-SOS to LAT (19). Coordinated action of various transcription factors then 
regulates transcription of various genes (20). 
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4.3 The signal propagation after MHCII crosslinking 
The initiation and propagation of signaling from TCR has been studied in great detail. In 

contrast, precise knowledge of signaling pathways emanating from MHCII glycoproteins at IS 

is still lacking. Traditionally, MHCII glycoproteins were perceived as passives tools serving 

just for antigen presentation, not as receptors capable of signal transduction into the cells. 

However, a number of studies have provided the evidence that crosslinking of MHCII 

molecules using antibodies leads to various signaling events, including the activation of both 

Src and Syk family kinases, increase in overall tyrosine phosphorylation and calcium influx. 

Moreover, cytoskeleton rearrangement and cell aggregation have been described (24, 25), as 

well as triggering of distal signaling pathways including activation of MAPKs, NF-AT or 

PKCδ and PKCθ (26-28). Altogether, these data provide strong evidence that MHCII 

glycoproteins can propagate various signaling events. 

The functional outcome of MHCII crosslinking is highly dependent on the cell type and 

the activation status. In both dendritic cells and monocytes MHCII ligation may induce cell 

death as well as maturation and expression of co-stimulatory molecules (29, 30). Ligation of 

MHCII on B cells produces caspase independent apoptosis, but also upregulation of co-

stimulatory molecule CD86 (31, 32). From the clinical point of view, humanized antibodies 

targeting MHCII molecules represent interesting tools for treatment of B cell lymphomas. 

First, they can directly kill these cells and they also synergise with widely used drug 

rituximab, an antibody against CD20 (33-35). 

The molecular mechanism of signal initiation after MHCII crosslinking is still unknown. 

Since MHCII possesses only a very short cytoplasmic tail, it cannot transmit signals on its 

own and must be coupled to other signaling molecules. Only few proteins were implicated to 

fulfill this function, namely Igα and Igβ (36), CD19 and CD20 (37). However, all these 

molecules are expressed in B cells only. Proteins responsible for MHCII signal transduction 

in other APC are not known; it also is not known whether in B cells there are other molecules 

involved in this pathway. It should be noted that one new protein involved in the signal 

propagation downstream of MHCII termed SCIMP has been identified in this thesis. Negative 

regulation of MHCII signaling is also mysterious, since so far, only a single protein, MPYS, 

has been shown to be phosphorylated upon MHCII triggering and to bind inhibitory 

molecules SHP1 and SHIP (27).  
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One of the possibilities, how MHCII glycoproteins could be connected to downstream 

signaling is the localization of MHCII molecules in some type of membrane microdomains, 

such as lipid rafts or tetraspanin microdomains. 

 

4.4 Membrane microdomains - tetraspanin enriched microdomains 

and lipid rafts. 
Tetraspanins form a large protein family with 33 members described both in human and 

mouse. All tetraspanins are characterized by a conserved structure of four transmembrane 

domains separated by two extracellular loops (one small and one large loop of characteristic 

composition) and one intracellular loop. Both N- and C- terminal ends face the cytoplasm. 

The intracellular parts of tetraspanins are palmitoylated on several submembrane cysteine 

residues (38).  

With very few exceptions, tetraspanins do not function as surface receptors. Instead, they 

interact with various membrane proteins, including ICAM-1, VCAM-1, integrins (38), CD19 

(39), EWI-F, EWI-2 (40) and importantly also MHCII molecules (41, 42). Direct interactions 

between particular protein and a specific member of tetraspanin family are called ”first level 

interactions“. These associations are resistant to relatively strong detergents such as Triton-

X100. ”Second level interactions“ are mediated by clustering of individual tetraspanins 

together. Since tetraspanins are bound to particular membrane proteins, this promotes an 

indirect cross-talk between various tetraspanin associated proteins. Indeed, tetraspanins are 

known to immunoprecipitate with each other after lysis in certain relatively mild detergents, 

such as CHAPS or Brij98 (43). Finally, ”third level interactions“ represent large aggregates of 

tetraspanins and tetraspanin associated proteins, as well as several intracellular signaling 

molecules, including PKCθ or phosphoinoside 4-kinase (38). Resulting membrane domains 

are also known as tetraspanin-enriched microdomains (TEMs) (44). The most likely function 

of TEMs is in the formation of membrane platforms, where different receptors, membrane 

molecules and signaling molecules might be enriched based on their preferences for 

association with particular tetraspanin. As a result, different receptors and effector proteins 

could be coupled together without the necessity of being direct interacting partners. 

It should be noted that even though much of our knowledge of tetraspanin biology has 

been gained using biochemical methods and various detergents, the tetraspanin domains have 

been detected also in the living cells using TIRF microscopy (45). 
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Opposite to TEMs that are based on protein-protein interactions, lipid rafts are based on 

protein-lipid and lipid-lipid interactions. They are enriched in sphingolipids, cholesterol and 

saturated phospholipids and certain acylated or GPI linked proteins. In the resting state, lipid 

rafts are nanoscale and highly dynamic domains, that might coalesce in larger raft platforms 

upon stimulation (46). 

The historically most often used method for lipid raft isolation is dependent on the 

extraction of cellular membranes with non-ionic detergents. However, since great number of 

detergents of varying concentrations and efficiencies were used by different research groups, 

a lot of controversy has arisen (47). As a standard, resistance of proteins to extraction using 

Triton X-100 or NP-40 detergents is usually accepted as a biochemical proof of their 

localization into “classical“ lipid rafts. It should be noted that these detergents are dissolving 

TEMs. Using milder detergents (such as Brij98 or CHAPS), both TEMs and lipid rafts can be 

isolated and it is not possible to distinguish whether proteins resisting extraction with these 

mild detergents are part of TEMs or lipid rafts. Therefore tetraspanins were described in 

several publications as constituents of lipid rafts, but current view is that TEMs and lipid rafts 

are two separate types of domains (48).   

Analysis of protein resistance to extraction with particular detergents is a very convenient 

method for determining its association with lipid rafts, due to its relative simplicity. On the 

other hand, this method is prone to artifacts and more subtle methods based on high-resolution 

microscopy and lipidomics are now used for studying composition of lipid rafts (46).   

 

4.5 Regulation of Src family kinases 
Function of both TEMs and lipid rafts is to facilitate interaction among various proteins, 

such as transmembrane receptors and signal propagating molecules. Src family kinases, which 

are enriched mainly in lipid rafts (49), but were reported also in association with tetraspanin 

CD63 (50), play a prominent role in cell signaling, since they are the first signal transducing 

molecules to be activated upon triggering of various surface receptors. 

Family of Src kinases comprises eight members: Src, Lck, Fyn, Lyn, Hck, Yes, Fgr, Blk 

and Yrk. All Src kinases share the same structure: acylation site at N-terminus is followed by 

unique domain (this domain differs the most among individual members of Src family), SH3 

domain, SH2 domain, kinase domain and C-terminal regulatory tail (51). Regulation of the 

Src kinase activity is mediated by two critical tyrosines – inhibitory tyrosine located in the C-

terminus (Y527 in Src) and activatory tyrosine located in the kinase domain (Y416 in Src). 
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Analysis of crystal structures revealed that intramolecular binding of SH2 domain to 

inhibitory tyrosine holds Src kinases in the inactive conformation, that is further stabilized by 

the interaction of the SH3 domain with the linker region between the SH2 domain and the 

kinase domain (51). Phosphorylation of the inhibitory tyrosine is mediated by C-terminal Src 

kinase (Csk). Opposing Csk are phosphatases CD45 and CD148 that can dephosphorylate this 

inhibitory tyrosine. However, for full activation, Src kinases must also auto-phosphorylate the 

activatory tyrosine in the kinase domain. This activatory tyrosine might be also substrate for 

CD45, and as demonstrated in this thesis also for CD148. 

 

4.5.1 Mechanism of Src family kinases regulation by Csk 

Csk is the main negative regulator of Src family kinase activity. Indeed, Csk knock-out 

mice die during embryonic development due to the defect in the neural tube development (52, 

53), caused by aberrant activity of Src family kinases. Studies of mice with conditional Csk 

deletion in thymocytes have demonstrated that Csk-deficient T cells can evolve even without 

TCR (54) due to the strong signal obtained from deregulated kinases Lck and Fyn. In the 

triple knock-out of Lck, Fyn, and Csk this phenotype is reversed (55). Accordingly, Csk-

deficient granulocytes are hyperresponsive to various types of stimulations (56). These data 

clearly demonstrate that Csk mediated regulation of Src family kinases is mandatory for 

proper coupling of surface receptors to intracellular signaling pathways.    

Domain organization of Csk is similar to Src family kinases, since it contains an SH2 

domain, an SH3 domain and a C-terminal kinase domain. However, in contrast to Src family 

kinases, Csk does not contain an acylation motif for membrane anchoring. Moreover, Csk 

possesses neither inhibitory nor activatory tyrosines present in Src. In order to exert its 

functions, Csk must bind via its SH2/SH3 module to the membrane anchored proteins. This 

positions Csk within the proximity of its substrates and it also facilitates conformational 

change in the Csk kinase domain from inactive to catalytically active state (57, 58). Several 

membrane anchored proteins have been described as Csk binding partners, including TRAPs 

termed phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG) (59) 

and Lck-interacting molecule (LIME) (60), or caveolin-1, or scaffolding protein paxilin (61). 

Csk is also able to bind via its SH3 or SH2 domain to some members of PEST family of 

protein tyrosine phosphatases. These are cytoplasmic proteins capable of dephosphorylating 

Src kinases at their activatory tyrosines. A concomitant anchoring of Csk and PEST 

phosphatases to the membrane seems to serve as a strong negative regulator of cell activation 

(62).  
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4.5.2 Mechanism of Src kinases regulation by phosphatases CD45 and CD148 

While the role of Csk is to phosphorylate inhibitory tyrosines of Src kinases, the main 

function of phosphatases CD45 and CD148 is to dephosphorylate this tyrosine and therefore 

release Src kinases from inactive state. 

A comparison between CD45 and CD148 demonstrates that these proteins have rather 

different structures, even though they have very similar functions. CD45 contains a highly 

variable N-terminal part resulting from differential splicing depending on the cell type and 

maturation status. The variable part is followed by a conserved cysteine rich domain, three 

fibronectin type III repeats, a transmembrane domain, a submembrane wedge region 

regulating the phosphatase activity (63, 64), and two homologous phosphatase domains D1 

and D2, of which only D1 is catalytically active (65). On the other hand, extracellular part of 

CD148 is not known to be subject to alternative splicing and consist of eight to nine 

fibronectin type III repeats. The transmembrane domain is followed again by the wedge 

domain and only one phosphatase domain (65). 

Expression pattern is also different. While CD45 expression is restricted to nucleated 

hematopoietic cells, CD148 is broadly expressed including a number of non-immune tissues, 

with notable exception of mature naive murine T cells. 

Mice deficient in CD45 have severe block in thymocyte development that is caused by 

defective signaling from pre-TCR and TCR due to the hyperphosphorylation of the inhibitory 

tyrosines of Src kinases (65-67). Accordingly, humans deficient in CD45 suffer from severe 

combined immmunodeficiency (SCID) (68-70). Suprisingly, analysis of B cells in CD45 

deficient mice revealed that B cell numbers are relatively normal (66) and CD45-deficient B 

cells are able to signal via BCR, even though less efficiently than wild-type controls. 

However B cells, in contrast to mouse T cells, express CD148 phosphatase that can partially 

substitute for CD45 deficiency. Indeed, combined deficiency in CD45 and CD148 leads to a 

marked reduction of B cell numbers in the periphery and a highly defective signaling upon 

BCR activation (71). Thus, the weak phenotype of CD45 deficiency in the majority of 

hematopoietic cells outside the T cell compartment can be explained by redundant expression 

of CD148 (72). 

Both CD45 and CD148 are known to be positive regulators of Src kinase activation. 

However, CD45 also functions as a negative regulator of cell activation, since activatory 

tyrosines of Src kinases are substrates for CD45. This phenomenon was nicely shown in the 

studies analyzing mice with various levels of CD45 expression (73, 74). Only 3% of 
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expression of CD45 compared to wild-type controls could rescue the T cells development. 

Increasing the CD45 expression up to 30% of the wild-type level further enhanced thymocyte 

responses, including calcium flux and Erk activation. However additional increase in CD45 

expression resulted in downregulation of thymocyte responses. These data demonstrate that 

CD45 functions predominantly as positive regulator to a certain level of expression, while 

higher level of expression leads to increased dephosphorylation of activatory tyrosine as well. 

In can be concluded that CD45 (and  also CD148, as demonstrated in this thesis) functions as 

a rheostat holding activity of Src kinases in the optimal range. 

 

4.6 The role of adaptor proteins  
Proper signal propagation is based on positioning of various proteins with enzymatic 

functions in order to enable their mutual interactions, access to the substrates and to the 

upstream regulators. Important molecules responsible for spatio-temporal organization of 

signal propagating molecules are adaptors proteins. They do not posses any enzymatic activity 

but organize and facilitate the activity of other signaling molecules. They can be divided into 

two groups depending on their localization - transmembrane or cytoplasmic adaptor proteins.  

Transmembrane adaptors, or TRAPs, contain a short extracellular part, a transmembrane 

domain and cytoplasmic part with various protein-protein interacting motifs. Several TRAPs 

have a submembrane palmitoylation motif that positions them in the lipid rafts – namely non-

T cell activation linker (NTAL), PAG, LIME and LAT. On the other hand, TRAPs without a 

palmitoylation motif have also been described – linker for activation of X cells (LAX), SH2-

domain-containing protein tyrosine phosphatase (SHP2)-interacting TRAP (SIT) and TCR-

interacting molecule (TRIM). The function of TRAPs is to anchor effector molecules at the 

plasma membrane upon stimulation of various receptors and thus enable the formation of 

larger signalosomes, such as in the case of LAT (75). 

 

Similar to TRAPs, cytoplasmic adaptor proteins also serve as scaffolding proteins 

enabling interaction of various signaling molecules. For the purpose of this thesis, two 

important families of cytoplasmic adaptors involved in the immunoreceptor signaling are 

described in the next chapters. 
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4.6.1 SLP76 and SLP65 

SLP76 and SLP65 (known also as BLNK or BASH) are two closely related proteins. 

SLP76 is expressed mainly in T cells, NK cells, mast cells, platelets, neutrophils, 

macrophages, dendritic cells and developing B cells. Notably it is absent in mature B cells. 

SLP65 is expressed mainly in B cells and macrophages (76).  

SLP76 contains a C-terminal SH2 domain, a central proline rich domain binding both 

PLCγ1 and GADS and an N-terminal part with several tyrosines that enable interactions with 

various signaling molecules, as described below. In order to function, SLP76 must be 

anchored to the plasma membrane. In T cells, this is mediated by binding of the complex 

GADS-SLP76 to phosphorylated LAT. PLCγ1 then binds to both SLP76 and LAT. 

Subsequently SLP76 becomes phosphorylated by Syk family kinases and binds Itk, the 

activator of PLCγ1. Activation of PLCγ within this complex then results in the initiation of 

calcium flux and downstream signaling events, as discussed in the introduction. However, 

SLP76 has also other functions. Binding of proteins Vav and non-catalytic region of tyrosine 

kinase (Nck) to phosphorylated SLP76 leads to the remodeling of actin cytoskeleton, while  

binding of the SH2 domain of SLP76 to an adaptor protein termed adhesion- and 

degranulation-promoting adaptor (ADAP) is important for “inside-out“ signaling, leading to 

the activation of integrins (76).  

Organization of SLP65 is similar, except that at its N-terminal part it contains conserved 

leucine zipper (LZ) motif. In order to function, SLP65 must be also anchored to the plasma 

membrane. In contrast to SLP76, this can be mediated by several means. First, LZ motif via 

an unknown mechanism enables SLP65 to interact with the membrane (77). Furthermore, 

SLP65 can bind via its SH2 domain to the phosphorylated tyrosine in Igα subunit of B cell 

receptor (78). Finally, interaction with phosphorylated, ITAM bound Syk via SH2 domain of 

SLP65 has been described as a means for anchoring SLP65 and also for regulation of both 

SLP65 and Syk functions (79). After cell activation, SLP65 becomes phosphorylated and 

binds SH2 domains of PLCγ2 and its activator Btk, as well as Vav and Nck (76). 

Interestingly, SLP65 exists in two isoforms, differing in splicing of exon 8 coding proline rich 

domain, responsible for binding of the adaptor protein GRB2 (80). 

Altogether, recruitement of both SLP65 and SLP76 on the membrane and their 

phosphorylation is a key step in downstream signaling events. Mouse deficient in SLP76 have 

severe block in T cells development, due to the defective signaling from from pre-TCR (81), 

signal transduction in  mast cells upon high affinity Fcε receptor crosslinking is diminished 

(82) and platelets are unable to signal from collagen receptors (83). Moreover, mice deficient 
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in SLP76 suffer from subcutaneous haemorrhage caused by the defective separation of 

lymphatic and blood vascular systems (84). Similary, mouse deficient in SLP65 have block in 

B cell development, due to the defective signaling from pre-BCR (85, 86).  

 

4.6.2 GRB2 

GRB2 is closely related to two other proteins – already mentioned GADS and GRB2-

related adaptor protein (GRAP). GRB2 is a cytoplasmic adaptor composed of N-terminal SH3 

domain, central SH2 domain and C-terminal SH3 domain. It has broad tissue distribution and 

its general importance is well documented by the fact that mice deficient in GRB2 die early 

during embryogenesis (87). 

As mentioned in the introduction, GRB2 binds via its SH3 domain to SOS. After T cell 

activation, GRB2 can bind via its SH2 domain phosphorylated LAT, therefore anchoring SOS 

at the plasma membrane, where it gets activated (7). In this way, GRB2 is an important 

regulator of Ras/MAPK activation.  

Further function of GRB2 relies on its ability to oligomerize surface molecules. SOS1 

can bind two GRB2 adaptors that can subsequently be bound to several phosphorylated 

tyrosines on LAT, leading to the clustering of these molecules (88). Since several other GRB2 

binding molecules have been described, it can be a more general means of promoting protein 

aggregation after the cell activation.  

In mice with conditional deletion of GRB2 in T cells, both positive and negative thymic 

selection are impaired and activation of MAPKs p38 and JNK upon TCR is markedly 

diminished (89). Interestingly, conditional deletion of GRB2 in B cells leads to increased 

calcium response and MAPKs activation. This phenotype, very opposite of that in T cells, can 

be explained by the observation that GRB2 deficient cells have markedly reduced 

phosphorylation of the inhibitory molecule CD22 upon activation (90). After phosphorylation, 

CD22 binds inhibitory phosphatases SHP1 and SHP2 that dephosphorylate several activatory 

proteins including Igα/Igβ and SLP65 and downregulate the signaling events (91). Thus it 

seems that in B cells, the main function of GRB2 is to connect the BCR signalosome to the 

inhibitory molecules such as CD22 rather than to activatory molecules such as SOS.  
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5 Aims of the study 
The aim of this thesis was to study propagation and regulation of signaling from MHCII 

and TCR. 

The first project describes the discovery of new TRAP that we named SCIMP. We 

focused on general description of this protein, with the emphasis on the expression analysis, 

biochemical characterization and identification of associated partners. Finally we proposed a 

role for SCIMP in MHCII signaling. 

The second project analyzes the role of another TRAP known as PRR7. This protein has 

been so far described only in the brain while in the cells of the immune system it has never 

been studied. We analyzed its expression it T lymphocytes and proposed its potential role in 

the regulation of T cell apoptosis and TCR mediated responses. 

The third project deals with the regulation of TCR signaling by CD148 phosphatase and 

clarified several issues that had been unresolved for some time. We thoroughly analyzed the 

expression of CD148 at various stages of thymocyte maturation and we provided evidence 

that CD148 can function as both positive and negative regulator of TCR signaling.  
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6 Results and discussion 

6.1 SCIMP: transmembrane adaptor protein involved in MHCII 

signaling 
 

6.1.1 Identification of SCIMP  

Csk is an important cytoplasmic regulatory molecule that must be anchored at the plasma 

membrane to exert its function. In order to find new proteins interacting with Csk, we 

employed ScanProsite tool at ExPASy Proteomics Server  

(http://www.expasy.org/tools/scanprosite/) (92) to detect unknown proteins with a 

transmembrane domain and a consensus binding site for SH2 domain of Csk in the 

cytoplasmic domain. This approach led to the discovery of a new protein termed C17orf87. 

The purpose of this research was to provide basic characterization and to investigate the 

function of this new protein. 

C17orf87 is a typical member of the TRAPs family, since it contains a very short 

extracellular part, a transmembrane domain, followed by a palmitoylation motif and in its 

intracellular part it possesses four potential tyrosine based protein-protein interaction motifs, a 

proline rich domain, but no obvious enzymatically active domain.  

Based on the known preferences of a number of SH2 domains to bind to particular amino 

acid sequences containing phosphotyrosine, it was possible to predict binding partners for 

three of these tyrosines. Namely Grb2, SLP65/SLP76 and Csk. Based on these interactions, 

that were later confirmed biochemically, we decided to name this protein SCIMP, an 

abbreviation for SLP65/SLP76 and Csk Interacting Membrane Protein.  

 

6.1.2 SCIMP expression profile 

Since no information concerning SCIMP was available, we first performed expression 

analysis. The expression profile of a protein may be an important hint for elucidating its 

function. A wide expression of a protein indicate a general role in the organism (such as in the 

case of already mentioned GRB2 or Csk), while the restricted expression pattern may suggest 

a highly specialized role. Examples from the immune system may include the subunits of the 

TCR or BCR complexes.  

The analysis of SCIMP expression on both mRNA transcript and protein level revealed 

that SCIMP is restricted to the immune system tissues, most notably spleen and lymph nodes. 

Moreover, within the immune system, SCIMP appeared to be expressed only in professional 
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APC (1, 2), such as monocytes, dendritic cells and B cells, but not in T cells, platelets or 

granulocytes. Accordingly, the expression of SCIMP highly correlated with the expression of 

MHCII in these cells. Altogether these results indicated that SCIMP might have a role in the 

process of antigen presentation. 

 

6.1.3 Both SCIMP and MHCII are members of tetraspanin-enriched microdomains 

SCIMP contains a highly conserved palmitoylation motif in its submembrane part. Using 

an elegant approach termed acyl-biotinyl exchange reaction (93) we provided evidence that 

SCIMP is S-acylated (most likely palmitoylated) at one of its submembrane cysteines (94). 

Acylation of transmembrane proteins is often required for their association with 

membrane microdomains, such as lipid rafts or TEMs. We employed several approaches to 

establish SCIMP as a constituent of TEMs. First, TEMs are known to be localized in the 

uropod of migrating cells (40). Indeed SCIMP could also be detected in the uropod of 

spontaneously polarized Ramos cells. Second, TEMs are localized in IS on both T cell side 

and APC side (95). SCIMP was also translocated into IS and co-localized there with several 

members of tetraspanin family. Third, TEMs are resistant to the lysis in mild detergents 

CHAPS and Brij98, but not to the lysis in the lipid raft preserving detergent NP-40 (43). 

Using flotation in sucrose density gradient and gel filtration on sepharose 4B we observed 

exactly the same behavior for both SCIMP and several teteraspanins. Finally, we were able to 

co-immunoprecipitate SCIMP with several tetraspanins after cell lysis in mild detergents.  

These results are of great interest, since MHCII molecules are also constituents of TEMs 

(41, 42, 96). Indeed, upon solubilization in Brij98, co-immunoprecipitation of SCIMP with 

MHCII molecules could be observed. It should be noted that this interaction was markedly 

weaker than interaction of SCIMP with tetraspanins. The most plausible explanation is that 

both SCIMP and MHCII molecules are components of TEMs, but not direct binding partners. 

 

6.1.4 SCIMP in MHCII pathway 

Expression profile, localization in TEMs and translocation into IS all pointed towards a 

role of SCIMP in MHCII signaling. Indeed in B cells, SCIMP became phosphorylated after 

MHCII crosslinking, but not after crosslinking of BCR. Moreover, we were able to confirm 

by immunoprecipitation the binding of GRB2, SLP65 (or SLP76 in monocytic cell line 

THP1), and Csk to phosphorylated SCIMP and interestingly also binding of Src kinase Lyn 

via its SH3 domain to the proline rich sequence of SCIMP.  
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6.1.5 Signaling mediated by SCIMP 

Concomitant binding of SCIMP to both SLP65 and to Csk is a very interesting feature 

since these proteins have fundamentally opposing functions. Csk, as noted above, is a major 

negative regulator of Src family kinases and cell activation. On the other hand, SLP65 is an 

adaptor necessary for signal propagation. To function properly, both these proteins must be 

anchored to the plasma membrane. This raises an interesting question, whether SCIMP is an 

activatory molecule that brings SLP65 to the membrane or an inhibitory molecule that 

anchors Csk to the membrane. 

In order to study the signals directly emanating from SCIMP, we employed a very useful 

method for studying transmembrane adaptor proteins. We prepared chimeric protein 

consisting of an extracellular part of CD25 fused to human SCIMP without initiation 

methionine. Crosslinking of this construct on the surface of B cells with anti-CD25 antibodies 

allowed us to crosslink CD25-SCIMP chimera and observe signaling pathways initiated by 

SCIMP alone. 

Crosslinking of SCIMP chimera led to a markedly strong cellular response, including 

activation of PLCγ isoforms, calcium flux and Erk1/2 activation. Importantly, all these 

responses were lost when SLP65 binding site in CD25-SCIMP chimera was mutated. This 

finding clearly shows that SCIMP binds SLP65 in order to propagate signaling and it is in 

accord with known functions of SLP65. 

An obvious question then was, what is the role of Csk. When we mutated the Csk binding 

site on CD25-SCIMP chimera, all cellular responses after SCIMP chimera crosslinking were 

enhanced. This provided evidence that Csk binding to SCIMP is important for negative 

regulation of signals emanating from SCIMP. To our knowledge SCIMP is the first protein 

known to bind both activatory SLP65/SLP76 molecules and the inhibitory Csk molecule. The 

role of Csk in the negative feedback loop regulating a particular protein is interesting, because 

often membrane anchored Csk is regarded as general regulator of Src kinase activity, rather 

than a specific regulator with effects limited to a particular pathway. 

The binding of activatory molecule together with Csk might be a more general 

phenomenon of signal regulation. Indeed, a proteomic study searching for binding partners of 

SH2 domain of Csk have revealed a large group of various proteins (97), possibly indicating 

that the specificity of the inhibitory effect exerted by Csk is strongly dependent on its binding 

partner.    
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6.1.6 SCIMP as a regulator of MHCII mediated signal propagation 

Discovery that crosslinking of CD25-SCIMP chimera leads to various signaling 

responses in the cell was intriguing. This led us to analyze the role played by SCIMP in 

MHCII signal transduction. We demonstrated that in murine K46 B cell line SCIMP 

deficiency resulted in fifty percent decrease of sustained Erk1/2 activity 10 minutes after 

MHCII activation. Moreover this phenotype could be rescued by transfecting the cells with 

human wild-type SCIMP, but not with SCIMP with mutated SLP65 binding site. Conversely, 

mutation of the Csk binding site led to an increase of Erk1/2 activation.  

Altogether, this work provided basic characterization of so far unknown protein and 

demonstrated its role in the propagation of the signals emanating from MHCII. Further 

direction of SCIMP research should focus on the process of antigen presentation in mice 

deficient in SCIMP (currently in preparation). 

 

 

6.2 PRR7 is a transmembrane adaptor protein expressed in 

activated T cells and involved in the regulation of T cell receptor 

signaling and apoptosis 
 

6.2.1 Expression of PRR7 in the immune system 

Another TRAP analyzed in our laboratory was proline rich 7 (PRR7). Similar to SCIMP, 

PRR7 was found in human genome database as typical member of TRAP family. It contains a 

short N-terminal extracellular part, transmembrane domain, palmitoylation motif and in its 

cytoplasmic part it contains a WW domain binding sequence, several potential tyrosine based 

interaction motifs, predicted SH3 domain binding motifs and a PDZ domain binding motif at 

its C-terminus. The name of this protein is derived from the notion that PRR7 contains high 

proportion of proline residues (98). 

PRR7 has been described as a constituent of post synaptic density (PSD) of rat forebrain. 

There, PRR7 constitutively associates with scaffolding protein PSD95 and with two subunit 

of N-methyl-D-aspartate receptor (NMDAR), NR1 and NR2B (98). These data suggest that 

PRR7 might have a role in organizing the signaling network at the PSD fraction of neural 

synapse. Since neural and immune synapse share many similar features (99), the goal of this 
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project was to find out whether PRR7 is present in the immune system and what might be its 

potential role there.  

Even though PRR7 is expressed most strongly in the brain, its mRNA transcripts are 

detectable in the majority of human tissues, including immune system organs thymus and 

lymph nodes. Furthermore, expression of PRR7 at both transcript and protein level is 

increased in peripheral blood lymphocytes upon stimulation with CD3 and CD28 antibodies 

as well as upon treatment of these cells with other mitogens.  

 

6.2.2 Apoptosis induced by PRR7 expression 

In order to provide further functional characterization of PRR7, Jurkat T cells transfected 

with PRR7 were prepared. However, such transfection resulted in rapid apoptotic death of 

these cells. This observation was verified also in Jurkat cell line with inducible expression of 

PRR7.  

Further analysis of the regions of PRR7 responsible for apoptosis induction detected a 

critical region between amino acids 159-171. It is interesting that this sequence is part of WW 

domain binding motif that might be responsible for the interaction with some so far unknown 

regulatory proteins. Homologous sequence was described in protein WW domain binding 

protein 1 (WBP-1), where it mediates the interaction with various WW domain containing 

proteins including members of NEDD4 ubiquitin ligase family (100).  

 

6.2.3 Effect of PRR7 on TCR signaling pathways 

Explanation of the effect of overexpression of PRR7 on Jurkat T cells might lay in the 

ability of PRR7 to pre-activate some signaling pathways. Indeed, inducible expression of 

PRR7 resulted in increased surface expression of CD69 in Jurkat T cells. Moreover, while 

Jurkat wild-type cells produce very low level of IL-2 upon PMA and ionomycin stimulation, 

PRR7 expression sensitized these cells to produce large amounts of IL-2 upon this 

stimulation. At the same time, induction of PRR7 expression led to a highly increased 

expression c-Jun, a subunit of AP-1 transcription factor, phosphorylated on activatory serine 

(101). The most plausible explanation is that PMA and ionomycine treatment led to an 

activation of NF-κB and NF-AT transcription factors that synergized with PRR7-upregulated 

c-Jun in enhancing the production of IL-2. In the case of basal expression of CD69 upon 

PRR7 expression, the increased AP-1 activity is also likely responsible. 

Since PRR7 potentiated the activity of distal signaling pathways, it was surprising that all 

the proximal signaling events generated after TCR crosslinking were decreased. Indeed, 
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upregulation of PRR7 led by so far unknown mechanism to reduced expression of Lck and 

reduced basal phosphorylation of TCR ζ chain. Accordingly, upon TCR stimulation, cells 

inducibly expressing PRR7 had weaker calcium response, decreased overall tyrosine 

phosphorylation and decreased phosphorylation of several signaling molecules including 

ZAP-70, LAT, PLCγ1, and Erk compared to control cells.  

It seems that PRR7 induces signaling events leading to c-Jun activation and subsequently 

to apoptosis. This is counterbalanced by decreased ability of the cells to signal from TCR, 

probably due to a so far unknown negative feedback or due to cell exhaustion and incapability 

to support further signaling events. The fact that PRR7 is expressed in activated lymphocytes 

points to a possible role of PRR7 in the regulation of T cell activation. Whether PRR7 really 

functions as a regulator of T cell activation also in vivo should be addressed in further 

research focusing on analysis of knock-out mice. 

 

 

6.3 Regulation of Src family kinases involved in T cell receptor 

signaling by protein-tyrosine phosphatase CD148 
 

6.3.1 Expression profile of phosphatase CD148  

CD148 is an important regulator of Src kinase activity. However, several issues 

concerning this phosphatase had been unresolved. Early data concerning the expression of 

CD148 demonstrated the difference between mouse and human. While mouse naive mature T 

cells were reported as CD148 negative (72), human T cells were demonstrated to be positive 

for CD148 (102). However, no thorough analysis of the differences in CD148 expression was 

carried out. In the first part of this study the expression pattern of CD148 was analyzed in 

various developmental stages of human and mouse thymocytes. 

Evidence was provided that in mice, double negative (DN) T cells express CD148. 

However, this expression is lost as T cells progress to single positive (SP) stage. Interestingly, 

human thymocytes exhibited different pattern, with non-detectable CD148 on DN 

thymocytes, while strong expression was observed on mature SP cells.  
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6.3.2 Phosphatase CD148 can dephosphorylate inhibitory tyrosine of Src family 

kinases in T cells 

CD148 was shown to complement CD45 as a positive regulator of BCR and Fc receptor 

signaling (71). Whether CD148 might promote also TCR signaling in CD45 negative cells 

had not been previously addressed. In this work evidence was provided that in CD45 negative 

cell line JS-7 (with low basal level of CD148) a forced expression of CD148 led to an 

increase in overall tyrosine phosphorylation upon TCR stimulation accompanied by enhanced 

calcium response and CD69 upregulation. This was in accord with the observation that 

phosphorylation of inhibitory tyrosines of both Lck and Fyn was reduced. The direct link 

between CD148 and Lck and Fyn was provided by co-immunoprecipitation of CD148 with 

both kinases. Altogether, these data clearly demonstrated that CD148 can have the same 

positive effect on TCR signaling as CD45. 

This notion is seemingly in conflict with previous observation showing that forced 

expression of CD148 in CD45 positive Jurkat T cells has negative effect on the 

phosphorylation of PLCγ1 and LAT upon TCR stimulation (103). However, there is an 

explanation for this discrepancy. Since Jurkat cells already express CD45, these cells have 

sufficient phosphatase activity for dephosphorylating the inhibitory tyrosines of both Lck and 

Fyn, necessary for optimal TCR activation. Increasing phosphatase activity further with 

overexpression of CD148 leads to the dephosphorylation of the activatory tyrosines and 

therefore to the reduction of the Src kinase activity. Indeed, these conclusions are supported 

by our observation that forced expression of CD148 in Jurkat cells led to decreased 

phosphorylation of both activatory and inhibitory tyrosines.  

Finally we prepared substrate trapping mutant of CD148 that can bind via phosphatase 

domain to its target phosphotyrosine, but cannot dephosphorylate it. This mutant can be used 

to identify potential substrates. In this assay, CD148 trapped Lck. Moreover, this Lck was 

hyperphosphorylated at both activatory and inhibitory tyrosines, demonstrating that both 

tyrosines are substrates of CD148. 

Altogether these data demonstrate that CD148 can be positive as well as negative 

regulator of Src family kinases in T cells. The net effect of CD148 is dependent on overall 

combined phosphatase activity of CD45 and CD148. Under the conditions when low 

phosphatase activity is present, Src would be hyperphosphorylated by Csk on the inhibitory 

tyrosine with low amount of active Src remaining available. If too much phosphatase acitivity 

is present, Src kinases would be hypophosphorylated on the activatory tyrosine, leading again 

to suboptimal Src activity.  
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Suprisingly, patients deficient in CD45 suffer from SCID and CD148 cannot substitute 

for CD45 deficiency (68-70). This is probably reflecting the fact that the block in the 

development of T lymphocytes is at DP stage, when the expression of CD148 in human 

thymocytes is still low. 

 

 

7 Conclusions 
All projects presented in this thesis are related to the regulation of signal propagation. We 

report here the characterization of two TRAPs in the immune system. The first of them is a 

new protein that we named SCIMP. We thoroughly analyzed this protein and provided 

evidence that SCIMP is expressed in APCs, it is translocated into the IS and propagate 

signaling emanating from MHCII molecules due to its binding to SLP65/SLP76. 

Interestingly, signaling events emanating from SCIMP are negatively regulated by 

concomitant binding of Csk. The second TRAP analyzed is PRR7, a protein that has been so 

far described only in the brain. We provided evidence that PRR7 is also expressed in T cells. 

Overexpression of PRR7 in Jurkat T cell line led to cell apoptosis and attenuated TCR 

signaling, probably due to the pre-activation and exhaustion of the cells and/or reduced 

expression of Src-family kinase Lck. We concluded that expression of PRR7 might be an 

interesting mechanism of the regulation of T cell functions.  

Both SCIMP and PRR7 are able to regulate Src family kinases. While PRR7 

downmodulates the expression level of Src-family member Lck, SCIMP presumably regulates 

these enzymes via recruiting their negative regulator Csk which phosphorylates their 

inhibitory tyrosines. Yet another regulatory mechanism is represented by CD148. We 

provided evidence that CD148 is capable of dephosphorylating this inhibitory tyrosine. On the 

other hand, it can also dephosphorylate activatory tyrosine of Src family kinases and thus 

function as both positive and negative regulator of immunoreceptor signaling. Furthermore 

we clarified unresolved issue of CD148 expression in thymus and demonstrated different 

expression of CD148 on human and mouse thymocytes at various developmental stages. 

To summarize, we detected and provided basic characterization of two TRAPs involved 

in the regulation of APC (SCIMP) and T cell (PRR7) functions and we clarified the role of 

CD148 in signaling from TCR.  



29 
 

8 Contribution 
1. SCIMP: transmembrane adaptor protein involved in MHCII signaling. 

In this study, I designed majority of published experiments, prepared vectors coding for 

various mutants of SCIMP or CD25-SCIMP chimeras and performed cell transfections, 

analyzed association of SCIMP with various proteins, performed microscopy analysis, 

prepared and analyzed cells expressing shRNA against SCIMP and participated on the 

writing of the manuscript.  

 

2. PRR7 is a transmembrane adaptor protein expressed in activated T cells involved in 

regulation of T cell receptor signaling and apoptosis.  

In this project I tested anti-PRR7 antibodies prepared in our laboratory, performed basic 

biochemical analysis of this protein, and studied the expression of PRR7 in activated T 

cells. 

 

3. Regulation of Src family kinases involved in T cell receptor signaling by protein-

tyrosine phosphatase CD148. 

In this project I analyzed the association of CD148 with Src family kinases Lck and Fyn. 
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