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ABSTRACT 

One of the stylized facts about the behaviour of financial returns is that they tend to 

exhibit more probability mass in the tails of the distribution than would be suggested by 

the normal distribution. This phenomenon is called heavy tails. The first part of this 

thesis focuses on examining the tails of a distribution of returns on Czech stock market 

index PX. Parametric and semi-parametric approaches to estimation of the tail index, a 

measure of heaviness of tails, are applied and compared. The results indicate that the 

tails behave in a way one would expect from an emerging market stock index. 

In the second part of the thesis, implications for two quantile-based market risk 

measures, Value at Risk and Expected Shortfall, are investigated. The main conclusion 

is that heavy-tailed alternatives should be preferred to the normal distribution in order to 

avoid serious underestimation of risks embedded in the underlying process. 

 

JEL classification: C13, C14, C16, G15; 

 

Keywords: Heavy Tails, Parametric and Semi-parametric Estimation, Statistics of 

Extremes, Extreme Value Theory, Market Risk, Value at Risk, Expected Shortfall. 
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ABSTRAKT 

Těžké chvosty jsou jedním z mnoha dobře zdokumentovaných stylizovaných faktů o 

chování výnosů finančních aktiv. V první části této práce se zabýváme metodami 

odhadu parametru chvostu rozdělení výnosů hlavního českého akciového indexu PX a 

za tímto účelem zkoumáme řadu parametrických a semi-parametrických postupů. 

Výsledky naznačují, že chování chvostů výnosů indexu PX je v souladu s empirickými 

výsledky dostupnými v literatuře. 

Ve druhé části práce se zaměřujeme na dvě měřítka tržního rizika, Value at Risk a 

Expected Shortfall. Spolu s tradičními metodami odhadu založenými na normálním 

rozdělení diskutujeme i metody založené na výsledcích první části práce, které berou 

v potaz odlišné chování chvostů. Porovnání výsledků jednotlivých metod nás vede 

k závěru, že modelování finančních výnosů pomocí normálního rozdělení může vést 

k závažnému podcenění rizik. 

 

JEL klasifikace: C13, C14, C16, G15; 

 

Klíčová slova: těžké chvosty, parametrické a semi-parametrické metody odhadu, teorie 

extrémních hodnot, tržní riziko, Value at Risk, Expected Shortfall.  
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INTRODUCTION 

Since its very beginnings, major developments in financial economics have relied on the 

normal distribution. It is the legacy of Bachelier (1900) who spotted analogy between 

the diffusion of heat through substance and bond market price’s movements and 

formulated an equivalent of Brownian motion to describe the latter. This proved to be 

an important stepping stone for modern financial theories developed several decades 

later. 

It started with the pioneering work of Markowitz (1952) who argued that an investor, 

when contemplating an investment into some asset, takes into consideration the trade-

off between its expected return and riskiness. These two quantities are then 

approximated by the first two statistical moments of the distribution of returns, the 

mean and the variance. It is the normal distribution which is uniquely determined by 

these two parameters, making it a natural candidate for modelling the underlying 

distribution. 

The Modern Portfolio Theory of Markowitz was followed by the Capital Asset Pricing 

Model due to Sharpe (1964) and Lintner (1965). It distinguished between systemic and 

idiosyncratic risk and introduced the correlation of returns on an asset with overall 

market returns as the measure of its riskiness. In this framework, the normal distribution 

is assumed to govern random innovations of returns. 

Then came the option pricing model of Black and Scholes (1973). At its heart lies a 

simple formula for pricing more sophisticated financial instruments whose value is 

derived from and depends on price trajectory of certain underlying asset. Returns on the 

underlying asset are assumed to follow a geometric Brownian motion. 

And finally, in late 1980s J.P. Morgan introduced Value at Risk, a risk measure, as a 

response to an urgent need for new risk management tools. By definition, Value at Risk 

is equivalent to a quantile of the distribution of returns. As an empirical distribution 

cannot be extended beyond its maximum (or minimum), a theoretical distribution is 

used to approximate the behaviour of returns. Due to its convenient properties, such as 

easy conversion across different values of parameters, the normal distribution is 

frequently used. 

The stubborn reliance on the normal distribution is all the more surprising, given that 

soon after the emergence of the modern financial theory it was realised by many 
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researchers that the distribution of returns is not normal and they set out to examine in 

more detail its statistical properties. These efforts were further accelerated by the advent 

of personal computers powerful enough to process vast datasets of high-frequency data. 

Cont (2001) summarized the results of this still on-going research into eleven stylized 

facts about behaviour of financial returns. These are: 

• Absence of (linear) autocorrelations; 

• Heavy tails; 

• Gain/loss asymmetry; 

• Aggregational Gaussianity; 

• Intermittency; 

• Volatility clustering; 

• Conditional heavy tails; 

• Slow decay of autocorrelation in absolute terms; 

• Leverage effect; 

• Volume/volatility correlation; 

• Asymmetry in time scales. 

Throughout the years much effort has been put into finding a theoretical distribution or 

process which would be able to account for all the stylized facts. The classical models 

are stable distributions (Mandelbrot 1963), the mixed diffusion jump process (Press 

1967), the Student-t distribution (Blattberg and Gonedes 1974), ARCH process (Engle 

1982) and discrete mixtures of normal distributions (Kon 1984). As examples of more 

modern ones, normal inverse Gaussian distributions (Barndorff-Nielsen 1997), 

exponentially truncated stable distributions (Cont et al. 1997) and hyperbolic 

distributions (Eberlein et al. 1998) can be mentioned. 

Cont (2001) points out that for a parametric model to be able to reproduce all the 

required properties it has to have at least four parameters: a location parameter, a scale 

parameter, a parameter describing the decay of the tails and an asymmetry parameter 

allowing each tail to behave differently. These requirements are met by most of the 

modern distributions like normal inverse Gaussian distribution, generalized hyperbolic 

distribution or exponentially truncated stable distribution, but their use is somewhat 

constrained by their complexity and difficult tractability, both analytical and 

computational. 



3 
 

Nonetheless, it is not always necessary to have a universal model perfectly describing 

the entire distribution of returns. Sometimes, it is more reasonable to focus on just one 

or a few properties of returns which are central to the purpose of enquiry and pick a less 

complex model that is capable of reliably reproducing these features. 

The focus of this thesis will be on the tendency of financial returns to accumulate more 

probability mass in the tail regions than would be suggested by the normal distribution. 

Notions like heavy tails, thick tails, fat tails or long tails all refer to this phenomenon 

and will be used interchangeably in the remainder of the thesis. Investigating the tails of 

a distribution equals in essence to inferring on the extreme realizations of the underlying 

process and chances of their occurrence. This is mainly the dominion of risk managers 

but as Mandelbrot and Hudson (2008) point out even the ordinary small investor may be 

more preoccupied with the chance that a sudden price swing erases her life-time savings 

rather than with minor differences in expected returns. 

The interest in the tails of a distribution is not exclusive to finance. It is shared 

especially with natural sciences. In hydrology, estimation of extreme flood discharges is 

of paramount importance. The 100-year discharge, i.e., level which is exceeded once in 

every 100 years on average, is a standard benchmark. Since estimates are usually based 

on discharges for a period shorter than 100 years, the need for proper modelling of tails 

is obvious. In meteorology, data on wind speed, ozone concentration and rainfall 

intensity go generally unnoticed until they break some specific threshold. Also the 

global warming and climate change debate is characteristic for examining extreme 

observations over time. 

Non-life insurance industry is a typical example of thinking in terms of extremes. 

Surely, catastrophes like earthquakes, hurricanes or air plane crashes result in very large 

claims. But more ordinary events like car accidents and fires do so as well. Evaluating 

these risks in terms of expected (average) events, rather than extreme ones, could be 

deceptive. 

The pioneer of heavy tails in finance is Mandelbrot (1963) who firstly spotted this 

phenomenon in a time series of cotton prices. Nevertheless, for a long time extreme 

events were frequently considered as outliers rather than observations possessing 

essential information, presumably in order to maintain the comfort provided by the 

easily tractable normal distribution. The situation started to change after the October 

1987 market crash which wrought havoc among financial practitioners and forced 
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mainstream academicians to contemplate ways of modelling extreme events instead of 

eliminating them as outliers. 

Since then, much research has been undertaken in this area, using a wide range of 

methods on many different financial assets. The truth is that the majority of researchers 

focused on mature capital markets and currencies and, due to their short history, the 

emerging markets have been largely ignored. The honourable exceptions are Jondeau 

and Rockinger (2003), LeBaron and Samanta (2004) and Horák and Šmíd (2009). 

Therefore, the first aim of this thesis is to contribute with a comprehensive description 

of the tail behaviour of the Czech stock market index PX to this overlooked branch of 

research. 

The second aim of the thesis is to illustrate the impact of heavy tails on estimation of 

two quantile-based market risk measures, Value at Risk and Expected Shortfall. In 

general, quantile-based risk measures are very sensitive to the choice of theoretical 

distribution which is used for modelling the underlying process. Therefore, using a thin-

tailed distribution, such as the normal distribution, may lead to underestimation of risk. 

A couple of heavy-tailed alternatives will be discussed. 

The thesis is structured as follows. Section 1 deals with preliminaries. Apart from data 

analysis and tail index definition, it also touches upon the methodological question of 

tail symmetry. In Section 2 the underlying theoretical results about behaviour of 

extreme events are presented and parametric and semi-parametric methods of tail index 

estimation are applied to PX returns. These results are then used in Section 3 for 

estimation of Value at Risk and Expected Shortfall based on a couple of different 

distributional assumptions. 

 

The thesis at its present form is an updated version of master thesis successfully 

defended in September 2010. No major amendments were made. The biggest change is 

enlargement of dataset which now runs from January 1995 to December 2010 and 

contains about 3% more observations. The impact on estimated values is very limited 

and does not alter any of the previous conclusions. 

Following remarks in opponent’s report, some formal deficiencies have been corrected: 

reference to statistical packages has been added; statistically significant estimates in 

tables have been marked; referencing was improved; typos and mistakes have been 

removed. Also some arguments have been re-formulated and extensive explanations 

added where deemed necessary. 
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Apart from these changes, whole passages have been re-organized and re-written to 

facilitate understanding and support the flow of argument. Subsections 1.4 and 1.5 from 

previous version, dealing with QQ-plots and mean excess plots, were scrapped 

altogether. Their theoretical parts were replaced with relevant reference while the rest of 

their contents was condensed and incorporated into subsection 1.1. 

Occasionally, a new reference was added based on author’s additional reading on the 

topic. 
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1. PRELIMINARIES 

How can we detect the presence of heavy tails in a dataset? How do they demonstrate 

themselves? What does it exactly mean to say that the tails of a distribution are heavy 

(or fat or thick)? How can we measure this quality? Should be both tails supposed to be 

identical? These are just some of the elementary question to be addressed in this section 

which is meant to lay foundations and prepare ground for subsequent, more profound 

inference on the behaviour of tails. 

1.1 DATA DESCRIPTION 

The data underlying this thesis are daily observations of returns on PX index, the major 

stock market index of the Prague Stock Exchange (PSE). PX is a price index of blue-

chip shares with weights based on market capitalization. 

The PSE itself was established in late 1992 and the first trading transactions took place 

on its floor in April 1993. The predecessor to PX, called PX50, was introduced, with 

initial value set to 1,000 points, a year later on April 5, 1994 but regular 5-days-a-week 

quotations were available since no sooner than September 19, 1994. Without any effect 

on the continuity of index values, PX50 was succeeded by PX on March 20, 2006. 

Somewhat truncated dataset spanning 16 years, starting on January 5, 1995 and ending 

on December 30, 2010, will be used in following sections. The reason behind cutting off 

earlier and later observations is essentially a formal one – by this modification it is 

ensured that exactly the same data will be used in all estimation procedures1 while the 

impact on results is negligible. 

The dataset contains 3,998 observations of daily returns. Here and throughout the 

following sections, by returns we mean log-returns 

 1
1 1log log log ,t

t t t

t

P
r P P

P

+
+ +

 
= = − 

 
 (1.1) 

where tP  is the index value at time t . The time series is plotted in Figure 1. 

                                                 
1 In subsection 2.2.1 the Block Maxima method of tail estimation will be used. It relies on temporal 
blocks of data and in case of larger blocks, e.g., annual or semi-annual, an issue with incomplete blocks 
might arise. Excluding them altogether may lead to a loss of valuable information, while using them 
entails the risk of distorting results. 
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Figure 1 Daily returns on PX index in period from 1995/01/05 to 2010/12/30. Source: author’s calculations. 

The returns have a positive mean of 0.0197% and a high standard deviation of 1.4482%. 

The distribution is slightly skewed (-0.4420) and exhibits excess kurtosis (11.9680) over 

the normal distribution. There is a moderate serial correlation in the data – the first-

order autocorrelation coefficient is statistically significant and positive at 0.0878 with 

some of the higher-order lags significant as well. Strong serial correlation of squared 

returns (with both the first- and the second-order coefficients above 0.35) then suggests 

(G)ARCH effects and volatility clustering. The autocorrelation and partial 

autocorrelation functions of simple and squared returns are included in Appendix A. 

At first glance, the dependence structure in returns might raise worries as the theoretical 

concepts and estimation methods used in the next section are built on IID assumptions. 

However, as will be shown later, it is not the entire dataset which is used in estimation; 

instead, either the extremal observations from blocks of data or observations exceeding 

some high threshold are used. Danielsson and de Vries (2000) point out that the 

empirical properties of extreme observations surpassing some high threshold are not the 

same as the properties of the entire returns process and provide evidence that 

dependency for these extreme observations is much reduced compared to the entire 

process. Jondeau and Rockinger (2003) then discuss the relative resistance of block 

maxima to dependency in the return process. 
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Focusing now on tail observations, both the minimal (-16.1856%) and the maximal 

(12.3641%) return over the entire period were products of the recent financial crisis and 

occurred in the same month on October 10 and 29, 2008, respectively. Considering 

minima and maxima recorded for each calendar year separately, a couple of interesting 

insights comes up.  

Firstly, there are great discrepancies between the yearly minima and maxima. The 

highest minimal daily return (i.e., the most severe daily loss in that year, but the softest 

among the minima of all the years) and the lowest maximal daily return (i.e., the 

beefiest gain in that year, but the slimmest among maxima of all the years) were 

recorded in 1995 and reached -3.1260% and 2.4586%, respectively. 

Secondly, year 2008 was the only one which saw absolute values of extreme returns 

breaching the 7.5% threshold, i.e., in any other year than 2008 there was not a single 

daily gain larger than 7.5%, nor a single daily loss more severe than -7.5%. What is 

more, in 2008 there were eleven such unprecedented events (six positive and five 

negative) with nine of them occurring in one month (October) and four of them in just 

one trading week (October 13-17). 

This observation hints at the tendency of extremes to cluster together backed, for 

example, by Longin (1996) who reports that in 28 years (out of 106 years in his sample 

of daily returns of an index of the most traded stocks on the New York Stock Exchange) 

the yearly minima and maxima occurred in the same week. This is not the case of PX 

returns though; there is not a single such week in the sample and it happened only three 

times2 that the yearly extremes coincided in the same month. It should be added that, 

even if it was the case, this temporal clustering does not impede the earlier suggestion 

of reduced dependency in extreme observations, since in estimation we focus on one 

side of the distribution only. 

Even such a brief and basic description of the data at hand is more than sufficient to 

draw suspicion of heavy tails. The first obvious clue is the excess kurtosis of the 

distribution which indicates that there are more observations in the central region 

around the mean of the distribution than would be implied by the normal distribution. 

This feature is nicely illustrated by histogram of the PX returns (Figure 2). The shape of 

the histogram is typical for financial returns and reveals that, apart from the bulk of the 

data in the centre, the empirical distribution significantly deviates from the Gaussian 

                                                 
2 Apart from year 2008, this holds also for years 2002 and 2010. 
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curve in the tail regions in the sense that the frequency of large observations is higher 

than normal. 

Another clue is the volatility clustering which is apparent in Figure 1: steadier periods 

of weaker fluctuations are intermitted by stormy periods of relatively high volatility and 

vice versa. Volatility clustering and its impact on heaviness of tails were investigated 

by, among others, Ghose and Kroner (1995). Using GARCH models, they found 

evidence supporting their hypothesis that the fat tails in financial data are indeed, 

although not exclusively, caused by temporal volatility clustering. However, as Cont 

(2001) points out, even after correction for volatility clustering, the residual time series 

usually still exhibits heavy tails (so-called conditional heavy tails). 

 
Figure 2 Histogram of daily PX returns in period from 1995/01/05 to 2010/12/30. Source: author’s calculations. 

More advanced statistical tools, such as the mean excess plot and Quantile-Quantile plot 

(shortly QQ-plot), may be used in search for evidence of fat tails. The two plots have 

very convenient properties for exponential distribution. Since the normal distribution 

has exponentially decaying tails, these properties can be exploited to investigate the 

nature of the tails of any underlying empirical distribution. We refer to Beirlant et al. 

(2004) for the theoretical background and derivation of results which will be used in 

this context. 
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For exponential tails, QQ-plot should deliver linear pattern. Figure 3 shows the 

exponential QQ-plots for absolute values of observations exceeding arbitrarily chosen 

threshold of 0.01, taken from each tail of PX returns. Up to a certain point the plots are 

indeed linear but then start to bend rightwards, resulting in visibly concave pattern 

which indicates heavier than exponential tails as values of the extreme empirical 

quantiles tend to be larger than their theoretical counterparts. Interestingly, the QQ-plot 

of the right tail seems to straighten up for the most extreme quantiles. 

 
Figure 3 The exponential QQ-plots of the left and the right tail of PX returns, respectively. Source: author's 

calculations. 

The theoretical mean excess function for the exponential distribution is constant and 

does not vary with the threshold above which the excesses are computed. When the 

empirical distribution has thicker tail than the exponential distribution, the empirical 

mean excess plot ultimately increases, while for thinner tail it ultimately decreases. 

Figure 4 and Figure 5 show the mean excess plots for negative and positive returns on 

PX index. Apparently, from a certain threshold on, both plots have positive slope, 

indicating heavy tails. Similarly to its QQ-plot, there is a twist at the end of the mean 

excess plot of the right tail, hinting at relative loss of probability mass in its most 

extreme region. Zivot and Wang (2006) report similar behaviour of the right tail of S&P 

500 returns. 
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Figure 4 The mean excess plot of negative returns on PX index. Source: author’s calculations. 

 

 
Figure 5 The mean excess plot of returns on PX index. Source: author’s calculations. 
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Finally, Table 1 and Table 2 reports percentiles of the standardized PX returns. The 

time series was centred by subtracting the mean and divided by the standard deviation 

to have unit variance so that it would be easily comparable to the theoretical quantiles of 

the standard normal distribution. In the light of preceding paragraphs, it is hardly 

surprising that the 1st and 99th percentiles in absolute values are larger than the 

corresponding normal quantiles. On the other hand, there are not enough observations 

for the 5th and 95th percentiles to be compatible with the normal distribution. Notice 

also that while the mass in the left tail is thicker than normal already for 2.5% of most 

extreme observations, the right tail is still thinner than normal at this point. 

 

 1% 2.5% 5% 10% 

PX returns -2.8663 -2.0132 -1.5218 -1.0421 

Normal -2.3263 -1.9600 -1.6449 -1.2816 

Table 1 Percentiles of standardized PX returns (left tail). Source: author’s calculations. 

 99% 97.5% 95% 90% 

PX returns 2.4357 1.8373 1.4471 1.0327 

Normal 2.3263 1.9600 1.6449 1.2816 

Table 2 Percentiles of standardized PX returns (right tail). Source: author’s calculations. 
 

1.2 THE SYMMETRY OF TAILS 

The Efficient Market Hypothesis maintains that prices reflect all publicly available 

information and, therefore, the returns should follow the so-called random walk. As a 

consequence, one would naturally expect both tails of the distribution of returns to be 

perfectly symmetric. Yet, the empirical evidence often contradicts the classical theories 

and their assumptions. There are plenty of hints in the preceding subsection that the tails 

of PX returns do not follow identical patterns, starting with the histogram through the 

QQ-plots through the mean excess plots to the percentiles. 

It is a wide-spread and generally accepted notion that the left tail should be heavier than 

the right one. This belief is commonly explained by the predisposition of markets to 

occasionally inflate price bubbles. While the bubble is typically inflated gradually by a 

series of moderate gains over a longer time period, it usually takes no more than a 

couple of sudden and exceptionally strong negative returns to correct for it. 
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More elaborate explanation was offered by Campbell and Hentschel (1992). Their 

starting point is a simple premise that returns are moved by news. Apart from 

generating volatility, news tends to cluster together in the sense that news is often 

followed by additional news. A piece of good news increases stock prices, but some of 

this increase is offset by the increase in risk premium requested by investors for higher 

volatility. On the other hand, the impact of a piece of bad news is a decrease in stock 

prices which is further intensified by the increase in the risk premium. As a result, 

clustering of news might lead to the left tail of returns being heavier than the right one. 

Whatever the theoretical justification, the empirical evidence on this issue is ambiguous. 

Horák and Šmíd (2009) found that left tails of stock returns are significantly heavier 

than the right ones, but only in case of three from their sample of 22 world-wide stocks. 

Their inference was based on the asymptotic normality of the Hill estimator and 

therefore rested on certain distributional assumptions. Instead, LeBaron and Samanta 

(2004) used Monte Carlo approach and bootstrapping methods on their sample of 8 

emerging markets’ and 12 developed markets’ stock indices. Their results were mixed 

but in most cases there was no statistically significant asymmetry. Nevertheless, when 

present, tail asymmetry was more likely to be found in emerging markets, especially in 

Asia and South America. And finally, Jondeau and Rockinger (2003), using the block 

maxima method on the sample of 20 stock indices including mature as well as emerging 

markets, reported they were not able to reject the hypothesis that the tail indices of the 

left and the right tail were equal for any country in their sample. 

The discussion about the asymmetry of tails is important also from the methodological 

point of view. Basically, there are two alternatives. If symmetry is assumed, one can 

take the absolute values of centred observations and treat the data as coming from a 

single tail.3 This approach has the advantage of effectively doubling the scarce 

empirical material available for estimation. The obvious disadvantage is a possibly 

serious distortion of results in case the tails differ significantly. 

Alternatively, avoiding the assumption of symmetry and investigating the tails 

separately allows for more precise modelling and comparison of the behaviour of the 

underlying distribution of either tail. Eventually, statistical tests may be performed to 

decide upon symmetry. The snag here is that by using less data the results tend to give 

                                                 
3 It should be noted here that, apart from Mandelbrot’s method of cumulative sample moments, all 
methods of estimation used later focus only on one tail of the distribution. 
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more blurry picture about the tails in terms of higher standard errors. Besides, in certain 

applications one is interested in behaviour of only one tail (e.g., downside risks). 

Although the empirical evidence of asymmetry is shabby and depends on statistical 

tools used, we feel that our dataset is large enough to provide sufficient material for 

investigating either tail separately. It has to be stressed that from here on we will work 

with absolute values of observations from the left tail, i.e., losses will be positive 

numbers. The reason for this is merely a formal one as the statistical methods which 

will be used throughout the following sections are constructed in a way that they 

assume observations from the right tail of the distribution. We will return to the 

question of symmetry of distribution of PX returns at the end of Section 2. 

1.3 MEASURING THE FATNESS OF TAILS 

In our exposition so far, we have treated heavy tails simply as tails with more 

probability mass in their furthermost regions than would be suggested by the normal 

distribution. Such a characterization is clearly insufficient and calls for a more rigorous 

definition. 

Let X  be a random variable. Suppose that CDF ( )F x  varies regularly at infinity with 

tail index α  

 
( )
( )

1
lim ,

1t

F tx
x

F t

α−

→∞

−
=

−
 (1.2) 

where 0α >  and 0x > . Then the unconditional distribution of X  is heavy-tailed and a 

parametric form for the tail shape of ( )F x  can be obtained by taking a second order 

expansion of ( )F x  as x → ∞ . The only non-trivial possibility under mild assumptions 

is 

 ( ) 1 1F x ax bxα β− − − + ≃  (1.3) 

for x  large and where , 0α β > . The crucial coefficient is the Tail Index α , which 

determines the fatness of the tail. Coefficient a  is the scale parameter and embodies the 

dependency effect through the so-called extremal index. Coefficients β  and b  are the 

second order counterparts of α  and a . For more details and proofs see Danielsson and 

de Vries (1997). 
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Alternatively, the tail index α  can be defined as the order of the highest absolute 

moment which is finite. Consequently, the tail index is sometimes called the maximal 

moment exponent. The higher the tail index, the thinner the tail; for a Gaussian or 

exponential tail α = +∞  and therefore all moments are finite, while for a power-law 

distribution with exponent k , the tail index is equal to k  (Cont 2001). 

In some applications, the tail index is substituted by the Extreme Value Index ξ . It is 

defined simply as an inverse to the tail index, i.e., 1ξ α −= . To add to the confusion, in 

the framework of the Generalized Extreme Value distribution and the Generalized 

Pareto distribution, introduced in Section 2, ξ  is referred to as the Shape Parameter. 
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2. STATISTICS OF EXTREMES 

The first academic forays into the area of extreme events can be traced back to early 

20th century. In its initial stages, the statistics of extremes was preoccupied with 

theoretical results on limiting behaviour of sample maxima, due to Fisher and Tippett 

(1928), which laid the foundations of so-called Extreme Value Theory (EVT). In 1970s 

EVT was substantially enriched with theoretical results on limiting behaviour of 

extreme observations exceeding a high threshold, elaborated by Balkema and de Haan 

(1974) and Pickands (1975). 

From mid-1970s, a parallel line of research on extreme events started to emerge thanks 

to the ground-breaking works of Hill (1975) and again Pickands (1975) and the 

attention started to gradually shift towards semi-parametric estimators. Their simplicity 

and convenient asymptotic properties were very appealing, although many challenges 

remained to be addressed. 

In the following decades, researchers focused mainly on accommodating and mitigating 

the most severe drawbacks of the various estimation methods and on investigating the 

validity of these results for non-IID observations. Among others, a second-order 

reduced-bias estimator (weighted Hill estimator) and the mixed moment estimator were 

developed. For a summary of these developments see Gomes et al. (2008). 

Nowadays, the statistics of extremes is firmly established and has its place in many 

fields of research. The best evidence of its importance is an increasing number of self-

contained publications focusing solely on this branch of statistics: Embrechts et al. 

(1997) has already become a classic reference in the field of finance and insurance; 

Beirlant et al. (2004) offer a broader spectrum of applications in their exposition; and de 

Haan and Ferreira (2006) contributed with an extensive introductory text. 

In this section, we will focus on only a handful of estimators which are most commonly 

used in finance and related areas. Whether by chance or by design, these estimators 

correspond to the key developments in the field and therefore provide an excellent 

overview. 
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2.1 MANDELBROT’S METHOD OF SAMPLE MOMENTS 

Introduced by Mandelbrot (1963), the method of sample moments cannot be counted 

among the proper tail index estimation methods. The reason is simple: it does not 

provide exact numerical estimates. Instead, and more fittingly, it can be thought of as a 

sort of educated guess in what regions the tail index could lie. 

The method is based on the alternative definition of tail index as the maximal moment 

exponent, implying that heavy-tailed distributions do not possess a complete set of 

statistical moments, i.e., for α < +∞  and k α≥  

 ( ) .kE X ≈ ±∞  (2.1) 

In words, sample moments of order higher than the theoretical value of the tail index are 

infinite. Therefore, by cumulatively computing sample moment as a function of sample 

size, only two outcomes are possible. If the theoretical moment is finite, the sample 

moment will eventually settle down to a region defined around its theoretical limit and 

will fluctuate around that value. In the opposite case, when the true value is infinite, the 

sample moment will either diverge or exhibit erratic behaviour and large fluctuations. 

Naturally, the simplicity of this procedure brings about certain considerable limitations. 

Firstly, it does not produce a precise estimate of the tail index value. The best possible 

outcome is an interval bounded by two integers. On the other hand, in certain 

circumstances even such a limited insight is sufficient, for instance, when the purpose of 

enquiry is to check whether the variance of a sample is well defined. 

Secondly, as emphasised by Cont (2001), sample moments of higher orders tend to be 

unstable. For instance, the standard deviation of kurtosis, i.e., the fourth sample 

moment, involves the eighth moment of the distribution which reaches enormous 

numerical values. Thus, despite being finite, kurtosis is likely to behave erratically. 

And thirdly, by working with sample moments of the distribution we implicitly assume 

symmetric behaviour of both tails. Drawbacks of such assumption have been thoroughly 

discussed in subsection 1.2. 

Figure 6 through Figure 9 plot the first four sample moments of PX returns as 

cumulative functions of number of observations.4 As a point of reference, similar plots 

of cumulative sample moments of a random series drawn from Student-t distribution 

                                                 
4 Although actually being functions of number of observations, they are plotted against time axis to 
facilitate intuitive identification of breaking points. 
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with 3 degrees of freedom (DF) are included in Appendix B. The convenient property of 

the Student-t distribution is that its statistical moments are finite up to its number of DF. 

The number of DF was chosen based on empirical evidence summarized in subsection 

2.4 and should provide a feasible benchmark. In all four figures the impact of recent 

financial turmoil starting in late 2008 is apparent. While there is only a minor dip in the 

mean, jumps in the second and the third moment are more pronounced, although their 

relative significance pales in the face of the hike experienced by the fourth moment. All 

these moves are in line with intuition: fluctuations naturally increase variance while 

their unprecedented magnitude in this case led to the sharp spike in kurtosis; on the 

other hand, decreasing mean and leaning of the distribution leftwards documented by 

skewness give us a clue about the general direction of these wild market moves, i.e., 

downwards. 

It might be very tempting and convenient to discard the crisis time observations and cut 

off the sample in September 2008. In that case we would have all four moments more or 

less converging and thus indicating that the value of tail index could be expected to lie 

somewhere above 4. But it is exactly these extreme times when the fat tails are formed 

by putting on their weight and disregarding them would be misleading, especially when 

they are our primary focus. 

So, what to make of these figures? The first moment is apparently stable and there is 

nothing to suggest divergence or erratic oscillation. By contrast, this is definitely not the 

case of the fourth moment with its gigantic leap upwards. Therefore, we may consider it 

a safe bet to state that the tail index will lie between 1 and 4. Regarding the second and 

the third moment, there are also some moderate hikes and slumps. Curiously, at first 

glance the behaviour of cumulative skewness looks more stable than that of cumulative 

variance but this is mostly due to larger scale of Y-axis in case of skewness caused by 

wilder oscillations at the beginning of the sample. However, when compared to the 

patterns of the second and the third moment of benchmark distribution in Appendix B, 

no palpable qualitative difference is apparent and thus we may conclude that the tail 

index estimates produced in the following subsections are likely to lie between 3 and 4. 
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Figure 6 Cumulative mean of PX returns. Source: author’s calculations. 

 
 

 
Figure 7 Cumulative variance of PX returns. Source: author’s calculations. 
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Figure 8 Cumulative skewness of PX returns. Source: author’s calculations. 

 
 

 
Figure 9 Cumulative kurtosis of PX returns. Source: author’s calculations. 

 

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 1996  1998  2000  2002  2004  2006  2008  2010

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1996  1998  2000  2002  2004  2006  2008  2010



21 
 

2.2 PARAMETRIC APPROACHES TO TAIL ESTIMATION 

As suggested by their name, the parametric methods of tail estimation are based on 

fitting a theoretical statistical distribution to certain type of extreme events. Two 

methods will be introduced, each with its respective theoretical background. The main 

difference between them lies in the type of extreme events they are concerned with. 

While the Block Maxima method draws on information contained in extreme 

observations from temporal blocks of data, the Peaks over Threshold method relies on 

information embedded in tail observations exceeding a predetermined high threshold. 

2.2.1 THE BLOCK MAXIMA METHOD 

The Block Maxima method has its theoretical cornerstone in the work of Fisher and 

Tippett (1928) complemented by Gnedenko (1943).  Their findings are summarized in 

the so-called Fisher-Tippett Theorem, also known as the Extreme Value Theorem or the 

First Theorem in Extreme Value Theory. In a sense, it is an analogue to the classical 

Central Limit Theorem (CLT), which says that, regardless of underlying distribution, 

the limiting distribution of the sample mean is the normal distribution. In a similar 

fashion, the Fisher-Tippet Theorem states that the limiting distribution of the sample 

maximum is an extreme value distribution. 

To better illustrate the analogy between CLT and the Fisher-Tippett Theorem, CLT can 

be re-formulated in the following way: 

 

(Re-formulated) Central Limit Theorem: Let 1 2 3, , ,...X X X  be a sequence of IID 

random variables drawn from an unknown distribution with mean µ  and variance 

20 σ< < ∞  and let 
1

1 n

n ii
S X

n =
= ∑  be a sequence of partial means. If we normalize this 

sequence of partial sums with coefficients na
n

σ
=  and nb µ= , then the resulting 

statistic  

 ( )0,1 .dn n
n

n

S b
Z N

a

−
= →  (2.2) 
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In words, CLT says that the limiting distribution of the normalized sequence of partial 

means is the standard normal distribution. But what happens if one is not interested in 

the behaviour of averages of the underlying statistical process but rather in its extremes? 

Let ( )1max ,...,n nM X X=  be the maximum of a subsample of n  observations. If the 

variables 1 2 3, , ,...X X X  are IID with a distribution function F , then the exact 

distribution of the statistic nM  can be immediately written as a function of the 

underlying distribution F  and the subsample size n  

 ( ) ( )( ) .
n

n

M
F x F x=  (2.3) 

Obviously, the limiting distribution of  nM  as n → ∞  is either nil (for x  smaller than 

the maximum of the sample) or equal to one (for x  larger than the maximum of the 

sample). This result is not very exciting since the exact limiting distribution is 

degenerate. Moreover, the distribution of the parent variable is typically unknown and, 

consequently, so is the exact distribution of the extremes. For theoretical purposes as 

well as for practical ones, it is the asymptotic behaviour of the extremes which is of 

much more interest. That is the area where the Fisher-Tippett Theorem provides 

guidance. 

 

Fisher-Tippett (and Gnedenko) Theorem: Let 1 2 3, , ,...X X X  be a sequence of IID 

random variables
5
 and let ( )1max ,...,n nM X X=  be the maximum of the first n  terms. 

If there are constants 0nσ >  and nµ  and some non-degenerate distribution function H  

such that 

 dn n
n

n

M
Z H

µ
σ
−

= →  (2.4) 

then H  belongs to one of the three standard extreme value distributions: 

                                                 
5 The Fisher-Tippett Theorem applies to IID observations, but the GEVD may be shown (c.f. Embrechts 
et al. 1997) to be the correct limiting distribution for maxima computed from stationary time series in 
general, including stationary GARCH-type processes. 
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( ) ( )
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where 0α > . 

 

In words, the Fisher-Tippett Theorem says that the limiting distribution of the 

standardized sequence of sample maxima is one of the extreme value distributions. The 

parallel between Fisher-Tippett and CLT is nearly perfect. 

The Fréchet, Weibull and Gumbel distributions can be re-written in terms of a single-

parameter (ξ ) family: 

 ( )
( )

( )

1

exp 1 , 0

exp , 0z

z if
H z

e if

ξ

ξ

ξ ξ

ξ

−

−

  − + ≠ 
 = 

 − =

 (2.5) 

where x  is such that 1 0xξ+ > . The distribution function ( )H zξ  is called the 

Generalized Extreme Value Distribution (GEVD). This representation is obtained from 

the Fréchet distribution by setting 1ξ α −= , from the Weibull distribution by setting 

1ξ α −= −  and by interpreting the Gumbel distribution as the limit case for 0ξ = . Figure 

10 and Figure 11 show examples of PDFs and CDFs of the respective extreme value 

distributions. 

The Fisher-Tippett Theorem implies that to infer on the distribution of extreme events, 

knowledge of the exact parametric form of the marginal distribution F is not necessary. 

The value of ξ  depends solely on the tail behaviour of F . 

A distribution F  is said to belong to the Maximum Domain of Attraction (MDA) of an 

extreme value distribution Hξ , denoted by ( )M
F D Hξ∈ , if ( )1max ,...,n nM X X=  

satisfies Equation (2.4), where iX ’s are random variables with distribution F . 
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Figure 10 GEVD CDFs H(ξ, µ, σ) for Fréchet, Weibull and Gumbel cases. Source: Zivot and Wang (2006, p. 146). 

 
 

 
Figure 11 GEVD PDFs h(ξ, µ, σ) for Fréchet, Weibull and Gumbel cases. Source: Zivot, Wang (2006, p. 146). 
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Distributions with finite support, such as beta and uniform distributions, have 0ξ <  and 

belong to MDA of the Weibull distribution. Distributions with tails governed by power-

law with exponent α  fall into the Fréchet class and 1 0ξ α −= > . Pareto, Burr and log-

gamma distributions are examples of distributions from MDA of the Fréchet 

distribution.  These are the heavy-tailed distributions. The Gumbel distribution can be 

regarded as a transitional limiting form between the Fréchet and the Weibull 

distributions. For small values of ξ , the latter distributions are very close to the 

Weibull. For instance, normal, log-normal and exponential distributions belong to MDA 

of the Gumbel distribution (Longin 1996). 

To be formally correct, the necessary and sufficient first order condition for 

( )M
F D Hξ∈  has to be mentioned: 

 ( ) ( ) ( )
( )

1
0

lim

ln 0
M

t

x
ifU tx U t

F D H
a t

x if

ξ

ξ

ξ
ξ

ξ
→∞

 −
≠− 

∈ ⇔ = 
 =

 (2.6) 

for every 0x >  and some positive measurable function a , with U  standing for a 

quantile type function associated to F  by 

 ( ) ( ) 1
inf : 1 .U t x F x

t

 = ≥ − 
 

 (2.7) 

For heavy-tailed models, i.e., distributions ( )MF D H ξ∈  with 0ξ > , ( )a t  in Equation 

(2.6) may be picked such that ( ) ( )a t U tξ= . Then for every 0x >  

 ( ) ( )
( )

lim ,M
t

U tx
F D H x

U t

ξ
ξ →∞

∈ ⇔ =  (2.8) 

i.e., U  is of regular variation with index ξ  (Gomes et al. 2008). 

The Fisher-Tippett Theorem has been extended to time series. The same result stands if 

the variables are correlated (the sum of squared correlation coefficients remaining 

finite). Various processes based on the normal distribution, e.g., auto-regressive 

processes with normal disturbances, discrete mixtures of normal distributions and mixed 

diffusion jump processes, have thin tails so that they lead to the Gumbel distribution for 

the extremes. The maxima of ARCH processes follow the Fréchet distribution (see 

Longin (1996) and references therein). 
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The GEVD characterizes the limiting distribution of the standardized maxima. It turns 

out that the GEVD is invariant to location and scale transformations such that for 

location and scale parameters µ  and 0σ >  

 ( ) ( ), ,

x
H z H H xξ ξ ξ µ σ

µ
σ
− = = 

 
 (2.9) 

(Zivot and Wang 2006). 

The Fisher-Tippett Theorem may then be re-interpreted as follows. For n  large enough 

 ( ) ( )Pr Pr .n n
n

n

M
Z z z H zξ

µ
σ

 −
< = < ≈ 

 
 (2.10) 

Letting n nx zσ µ= +  then yields 

 ( ) ( ), , , ,Pr ,
n n

n
n

n

x
M x H H xξ µ σ ξ µ σ

µ
σ

 −
< ≈ = 

 
 (2.11) 

which is used in practical applications to make inferences about the maximum nM . 

The GEVD is characterised by three parameters: a shape parameter 1ξ α −= , a location 

parameter nµ  and a scale parameter nσ ). All three parameters have their interpretation. 

The location parameter nµ  indicates where extremes are located on average. The scale 

parameter nσ  indicates the extent to which extreme realizations are dispersed. The 

shape parameter ξ  describes the fatness of the tail; the higher the parameter, the more 

probability mass there is in the tail. Figure 12 illustrates this point. 

The shape parameter ξ  is an intrinsic parameter of the underlying process and does not 

depend on the number of observations n  the maximum is selected from. As n  

increases, the value of the tail index should settle down around a particular value. At the 

same time the absolute value of the location parameter µ  should rise, since extremes 

selected over longer periods are inevitably larger. There is little to say about the 

behaviour of the scale parameter σ  ex ante as the distribution of extreme observations 

may contract or expand (Longin 1996). 
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Figure 12 The Frechét PDFs with different shape parameters. Source: author’s calculations. 
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nM  is defined as the maximum value of ix  in block 1,...,j m= . The likelihood 

function for the parameters ξ , nσ  and nµ  of the GEVD is then constructed from the 

sample of block maxima { }1 , ..., m

n nM M . It is assumed that the block size n  is 

sufficiently large so that the Fisher-Tippett Theorem holds. 
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The log-likelihood function, assuming IID observations from a GEVD with 0ξ ≠ , can 

be written as 

 

( ) ( )
1

1/

1

1
, , ln 1 ln 1

1

jm
n

j
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n

j

M
l m

M
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µ
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ξ σ
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σ

=

−

=
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= − − + +   
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  −
− +  
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∑

∑
 (2.12) 

such that 

 1 0 .
j

nM µ
ξ

σ
 −

+ > 
 

 (2.13) 

If 0ξ = , the log-likelihood function is 

 ( ) ( )
1 1

, ln exp .
j jm m

n n

j j

M M
l m

µ µ
µ σ σ

σ σ= =

    − −
= − − − −    

    
∑ ∑  (2.14) 

For 0.5ξ > − , the ML estimates of µ , σ  and ξ  are consistent and asymptotically 

normal with asymptotic variance given by the inverse of the observed information 

matrix.  

The finite sample properties of ML estimates depend on the number of blocks m  and 

the block size n . The bias of the estimate decreases with increasing block size n  and 

the variance of the estimate decreases with increasing number of blocks m . Obviously, 

given a sample of observations, one cannot increase the size of blocks (and thus reduce 

the bias) and at the same time increase the number of blocks (and thus reduce the 

uncertainty). For details on ML estimation see Zivot and Wang (2006) and references 

therein. 

In Table 3 and Table 4 ML estimates of the parameters for the left and the right tail, 

respectively, for four different values of n  are reported. Overall, there is not much to be 

drawn from these results in terms of the key parameter ξ  as the estimates are hindered 

by high standard errors. In case of the left tail, only one estimate is statistically 

significant. The right tail estimates ended up better, with three of them being significant. 

The trouble is that for both tails it is the estimates based on smaller blocks that are 

significant – unfortunately, these estimates also carry the most severe bias whose build-

up with decreasing size of blocks is well-documented by the results. Despite their 

statistical significance, it is unlikely that the tail index would reach values exceeding 

four. 
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This is consistent with findings of Longin (1996) who performed similar analysis on 

much larger sample containing 106 years of U.S. stock market daily data. Based on 

results of a goodness-of-fit test, he concludes that while the actual distribution of 

extremes converges relatively quickly to GEVD as the size of blocks increases, 

sufficiently reliable estimates are achieved only for extremes selected over periods 

longer than a semester. 

Looking at the other two parameters, the estimates of location parameter µ  are in line 

with the intuition that it should increase with the size of blocks. The estimates of scale 

parameter σ  are then relatively stable for both tails with the exception of monthly 

blocks where higher dispersion of extremes is evident. All estimates of µ  and σ  are 

significant. 

 

Size of block Year Semester Quarter Month 

No. of blocks 16 32 64 192 

Xi 0.2800 0.2065 0.1552 0.1485** 

SE 0.1990 0.1476 0.0930 0.0530 

Alpha 3.5714 4.8426 6.4433 6.7340 

Sigma 0.0125** 0.0129** 0.0126** 0.0099** 

SE 0.0029 0.0021 0.0014 0.0006 

Mu 0.0459** 0.0343** 0.0257** 0.0168** 

SE 0.0035 0.0026 0.0018 0.0008 

Table 3 ML estimates of GEVD parameters of the left tail of PX returns. Source: author’s calculations. 
(* and ** denote estimates significant at 5% and 1% level, respectively) 

Size of block Year Semester Quarter Month 

No. of blocks 16 32 64 192 

Xi 0.4330 0.3519* 0.2011* 0.1658** 

SE 0.3372 0.1655 0.0836 0.0510 

Alpha 2.3095 2.8417 4.9975 6.0314 

Sigma 0.0118** 0.0104** 0.0109** 0.0086** 

SE 0.0034 0.0018 0.0012 0.0005 

Mu 0.0351** 0.0293** 0.0248** 0.0175** 

SE 0.0037 0.0021 0.0015 0.0007 

Table 4 ML estimates of GEVD parameters of the right tail of PX returns. Source: author’s calculations. 
(* and ** denote estimates significant at 5% and 1% level, respectively) 
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To check the fit of GEVD to underlying data, two plots of residuals, a scatter plot and a 

QQ-plot using the exponential distribution as the reference distribution, may be used. If 

the estimated model is correct, crude residuals, defined as  

 
( )

1

ˆˆ1 ,
ˆ

i

n
i

M
W

ξµ
ξ

σ

−
 −

= +  
 

 (2.15) 

will be IID unit exponentially distributed random variables (Zivot and Wang 2006). In 

such case, the scatter plot will not reveal any significant non-modelled trend in the data 

and the QQ-plot will follow linear pattern. 

Figure 13 through Figure 16 show QQ-plots and scatter plots of the residuals of fitted 

GEVDs in Table 3 and Table 4. QQ-plots of the left tail look better than their right tail 

counterparts which exhibit substantial departures from the linear trend at some points. 

The scatter plots then do not reveal any clear-cut evidence of non-modelled pattern but 

to say they are evenly distributed would be an over-statement. 

2.2.2 THE PEAKS OVER THRESHOLD METHOD 

In contrast with the Block Maxima method, the Peaks over Threshold (POT) method 

makes a better use of chronically limited empirical material on extreme events. While 

the Block Maxima method neglects, regardless of their magnitude, all observations in a 

block other than the maximal one, the POT method gathers information from all 

observations surpassing certain predetermined high threshold in the entire sample, an 

approach shared with semi-parametric estimators which will be introduced later. 

The theoretical background underpinning this method is an extension of the Fisher-

Tippett Theorem elaborated by Pickands (1975) and Balkema and de Haan (1974). Just 

like the mean statistic converges in distribution to the normal distribution and the 

maximum statistic converges in distribution to one of the extreme value distributions, 

the exceedances converge in distribution to the Generalized Pareto Distribution (GPD), 

provided the threshold is set high enough. This is formalized in the following theorem, 

also known as the Second Theorem in Extreme Value Theory. 
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Figure 13 The QQ-plots of residuals of GEVD fitted to yearly (upper left), semesterly (upper right), quarterly (lower 

left) and monthly (lower right) maxima of negative daily PX returns (left tail). Source: author’s calculations. 
 

 
Figure 14 The QQ-plots of residuals of GEVD fitted to yearly (upper left), semesterly (upper right), quarterly (lower 

left) and monthly (lower right) maxima of daily PX returns (right tail). Source: author’s calculations. 
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Figure 15 The scatter plots of residuals of GEVD fitted to yearly (upper left), semesterly (upper right), quarterly 

(lower left) and monthly (lower right) maxima of negative daily PX returns (left tail). Source: author’s calculations. 
 

 
Figure 16 The scatter plots of residuals of GEVD fitted to yearly (upper left), semesterly (upper right), quarterly 

(lower left) and monthly (lower right) maxima of daily PX returns (right tail). Source: author’s calculations. 
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Pickands, Balkema and de Haan Theorem: Let 1 2 3, , ,...X X X  be a sequence of IID 

random variables drawn from an unknown distribution F  and let u  be a 

predetermined threshold. Let uF  denote the conditional distribution function of the 

exceedance Y X u= −  given that X  exceeds u  

 ( ) ( ) ( ) ( )
( )

Pr .
1u

F y u F u
F y X u y X u

F u

+ −
= − ≤ > =

−
 (2.16) 

For the class of underlying distribution functions F  such that the CDF of the 

standardized values of nM  converges to a GEVD and for u  large enough there exists a 

positive function uβ  such that the excess distribution ( )uF y  is well approximated by the 

generalized Pareto distribution ( ), u
G yξ β  where 

 ( )

1

,

1 1 , 0

1 exp , 0

u

u

u

y if

G y

y
if

ξ

ξ β

ξ
ξ

β

ξ
β

−
  − + ≠   = 

  
− − =  

 

 (2.17) 

for ( )0,y x u∈ −    if 0ξ ≥  and 0, uy
β
ξ

 
∈ − 
 

 if 0ξ < , where x ≤ +∞  denotes the 

rightmost point of the distribution function F . 

 

The GPD is determined by two parameters: ξ  is a shape parameter and uβ  is a scaling 

parameter. The GPD is generalized in the sense that it subsumes three types of 

distributions under a common parametric form. For 0ξ > , GPD is a re-parameterized 

version of the ordinary Pareto distribution. For 0ξ < , GPD becomes the Lomax 

distribution, also known as the Pareto Type II distribution. And finally, setting 0ξ =  

yields exponential distribution. Figure 17 and Figure 18 show examples of CDFs and 

PDFs of the three types of GPD. 

As is apparent from the theorem, the limiting GEVD for block maxima and the limiting 

GPD for threshold exceedances are intimately inter-connected. For a given value of u , 

the parameters ξ , µ  and σ  of the GEVD determine the parameters ξ  and β  of GPD. 

In particular, the shape parameter ξ  of the GEVD is identical to the shape parameter ξ  

in the GPD. Consequently, if 0ξ <  then F  belongs to MDA of the Weibull 
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distribution and ,Gξ β  is the Lomax distribution, also called Pareto Type II distribution; 

if 0ξ >  then F  belongs to MDA of the Fréchet distribution and ,Gξ β  is the Pareto 

distribution; and finally in the limiting case where 0ξ =  F  belongs to MDA of the 

Gumbel distribution and ,Gξ β  is the exponential distribution. 

Regarding the variation of ξ  and uβ  with respect to u , it has been already mentioned 

in the preceding subsection that the shape parameter ξ  is intrinsic to the underlying 

process and therefore independent of u . In case of uβ , consider a limiting GPD with 

scale parameter 
0uβ  for an excess distribution 

0uF  with threshold 0u . For an arbitrary 

threshold 1 0u u> , the excess distribution 
1uF  has a limiting GPD with scale parameter 

( )
1 0 1 0u u u uβ β ξ= + −  (Zivot and Wang 2006). 

The Pickands, Balkema and de Haan Theorem can be simplified into a statement that 

for a large class of underlying distributions, a function uβ  can be found such that 

 ( ) ( ),
0

lim sup 0.
uu

u x y x u

F y G yξ β→ ≤ < −
− =  (2.18) 

In words, it says that for a certain threshold u , the excess distribution may be thought 

of as to be exactly GPD with certain values of ξ  and β . The only problem is to find the 

proper threshold. In principle, there has to be a compromise in choosing a threshold 

which will be, on one hand, sufficiently high so that the asymptotic theorem can be 

considered essentially valid and, on the other hand, sufficiently low so that there is 

enough data left for the estimation. 

One possible way of finding optimal threshold is to exploit the mean excess function of 

the GPD which has a very convenient form of a straight line with positive slope 

 ( ) ,
1

u
e u

σ ξ
ξ

+
=

−
 (2.19) 

where 0uσ ξ+ >  (Schirmacher et al. 2005). Hence, when plotted as a function of 

threshold u , the empirical mean excesses should follow an upward sloping linear trend 

down to a point where the GPD ceases to be a suitable model. 
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Figure 17 CDFs G(ξ, β) of the three types of the GPD. Source: Zivot and Wang (2006, p. 161). 

 
 

 
Figure 18 PDFs g(ξ, β) of the three types of the GPD. Source: Zivot and Wang (2006, p. 161). 
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Figure 19 shows the enlarged areas of interest from the mean excess plots shown in 

Figure 4 and Figure 5. In case of the left tail, there are several relatively mild kinks but 

in general the pattern is linear and any threshold between 0.0175 and 0.03 seems to be 

reasonable. The right tail proves more challenging as the upward trend is broken down 

at approximately 0.05 and the pattern seems to be slightly concave. Nevertheless, a 

region of similar threshold values to that of the left tail can be considered plausible but 

we cannot expect the fit of GPD to be perfect. 

 
Figure 19 The mean excess plot of the left (upper plot) and the right tail (lower plot) of PX returns. Source: author’s 

calculations. 

An alternative way of finding the ideal number of order statistics is to plot the estimates 

of the shape parameter ξ  as a function of number of observations exceeding u  and 

then look for a region where these estimates are stable. Figure 20 and Figure 21 indicate 

the estimates of ξ  are particularly stable in the region between 0.017 and 0.02 for either 

tail. Let us arbitrarily choose 0.019, corresponding to 274 and 265 observations from 

the left and the right tail, respectively. 
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Figure 20 The ML estimates of shape parameter ξ of the left tail of PX returns based on fitting the GPD as a function 

of a number of exceedances. Source: author’s calculations. 
 

 

 
Figure 21 The ML estimates of shape parameter ξ of the right tail of PX returns based on fitting the GPD as a 

function of a number of exceedances. Source: author’s calculations. 

400 373 347 321 295 268 242 216 190 164 137 111 85 59 33

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

0.0149 0.0169 0.0183 0.0200 0.0223 0.0249 0.0311 0.0421

Exceedances

S
h
a
p
e
 (
x
i)
 (
C
I,
 p
 =
 0
.9
5
)

Threshold

400 373 347 321 295 268 242 216 190 164 137 111 85 59 33

-0
.5

0
.0

0
.5

1
.0

0.0151 0.0169 0.0182 0.0197 0.0214 0.0246 0.0279 0.0365

Exceedances

S
h
a
p
e
 (
x
i)
 (
C
I,
 p
 =
 0
.9
5
)

Threshold



38 
 

Once the optimal threshold u  is determined, the GPD parameters can be estimated. 

Similarly to the Block Maxima method, the Maximum Likelihood estimation method 

can be applied. Let 1,..., nx x  be an IID sample of returns with unknown CDF F  and let 

( ) ( )1 ,...,
n

x x  be the re-ordered sample in a way that ( ) ( ) ( )1 2 ...
n

x x x≥ ≥ ≥ . Let k n<  be a 

number of observations exceeding threshold u , i.e., ( ) ( )1k k
x u x +≥ > , and let ( )i i

y x u= −  

be the excesses over the threshold for 1,...,i k= . The results of the Pickands, Balkema 

and de Haan Theorem imply that if u  is large enough, then { }1,..., ky y  may be thought 

of as a random sample drawn from GPD with unknown parameters ξ  and uβ . For 

0ξ ≠ , the log-likelihood function based on Equation (2.17) is  

 ( )
1

1
, ln 1 ln 1 ,

k
i

u u

i u

y
l k

ξ
ξ β β

ξ β=

  
= − − + +  

   
∑  (2.20) 

provided 0iy ≥  when 0ξ > , and 0 u
iy

β
ξ

≤ ≤ −  when 0ξ < . For 0ξ = , the log-

likelihood function is 

 ( ) ( )
1

1
ln .

k

u u i

iu

l k yβ β
β =

= − − ∑  (2.21) 

For details, see Zivot and Wang (2006) and references therein. 

Table 5 and Table 6 the ML estimates of the GPD parameters for the left and the right 

tail, respectively. Fixed fractions of data as well as the exceedances over the optimal 

threshold found earlier were used. Again, the estimates of ξ  based on the lowest 

numbers of observations are not statistically significant. As the amount of data available 

increases, estimates tend to be more reliable but their values decline as the observations 

in the extreme tail regions lose their sway in favour of moderate observations from 

more central regions of the distribution. 

For the optimal threshold, the POT method yields realistic estimates of the tail index of 

3.59 for the left and 3.69 for the right tail. The significance of these estimates is 

highlighted by the fact that their t-statistics are the highest from all reported subsamples. 
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Number of 

observations 

10% 5% 2.5% 1% 6.85% 

399 199 99 39 274 

xi 0.1657** 0.2764** 0.2042 0.3604 0.2784** 

SE 0.0528 0.0942 0.1224 0.2548 0.0792 

alpha 6.0350 3.6179 4.8972 2.7747 3.5920 

beta 0.0095** 0.0093** 0.0124** 0.0124** 0.0084** 

SE 0.0007 0.0011 0.0019 0.0037 0.0008 

Table 5 ML estimates of GPD parameters of the left tail of PX returns. Source: author’s calculations. 
(* and ** denote estimates significant at 5% and 1% level, respectively) 

Number of 

observations 

10% 5% 2.5% 1% 6.63% 

399 199 99 39 265 

xi 0.1595** 0.2882** 0.3817** 0.6059 0.2709** 

SE 0.0489 0.0842 0.1357 0.3259 0.0726 

alpha 6.2696 3.4698 2.6199 1.6504 3.6914 

beta 0.0081** 0.0074** 0.0081** 0.0091** 0.0071** 

SE 0.0006 0.0008 0.0013 0.0032 0.0007 

Table 6 ML estimates of GPD parameters of the right tail of PX returns. Source: author’s calculations. 
(* and ** denote estimates significant at 5% and 1% level, respectively) 

In a fashion similar to the Block Maxima method, the fit of the GPD to the underlying 

data can be assessed with a scatter plot and a QQ-plot of residuals. Figure 22 contains 

the respective plots for both tails. Residuals in both scatter plots are distributed 

relatively evenly. The QQ-plots suggest that the fit of the left tail is markedly better 

than the fit of the right one; this comes as no surprise given the shape of the mean 

excess function of the right tail. 

2.3 SEMI-PARAMETRIC ESTIMATORS 

Compared to the parametric methods of tail estimation, the family of semi-parametric 

estimators represents more modern developments in the field of statistics of extremes. 

However, the semi-parametric estimators are also grounded in the theoretical 

background of the Extreme Value Theory, since they are built on the elementary 

assumption that ( )MF D Hξ∈ , i.e., that the underlying distribution function F  belongs 

to the Maximum Domain of Attraction of an Extreme Value Distribution Hξ . 
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Figure 22 The scatter plot and the QQ-plot of residuals of GPD fitted to the left tail (upper plots) and the right tail 

(lower plots) of PX returns above the optimal threshold of 0.019. Source: author’s calculations. 
 

Naturally, estimates of shape parameter ξ , now called the Extreme Value Index (EVI),6 

are the most important but semi-parametric estimators of location and scale parameters 

were developed as well. The combined results may be used then to estimate complex 

distributional characteristics such as extreme quantiles, return periods etc. (see Gomes 

et al. 2008). 

The intuition behind semi-parametric estimators of ξ , as presented by Kearns and 

Pagan (1997), is very simple. Let 1,..., nx x  be the realizations of an underlying random 

variable X  with Paretian tail behaviour. For , 0cα > , the tail can be approximated by 

 ( )Pr .X x cx as xα−> ≈ →∞  (2.22) 

Taking logs yields 

 ( )log Pr  log logX x c xα> = −  (2.23) 

 ( )log log Pr  ,x C X xξ= − >  (2.24) 

                                                 
6 The Extreme Value Index is usually denoted by the Greek letter γ, but in order to keep the notation as 
simple as possible and consistent with the preceding sections we stick to the letter ξ. 
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where logC cξ=  and 1ξ α −=  is the EVI. Now, let ( ) ( )1 ,...,
n

x x  be the sample re-ordered 

in a way that ( ) ( ) ( )1 2 ...
n

x x x≥ ≥ ≥ . Selecting a certain threshold u , ( )( )Pr
j

X x>  in 

Equation (2.23) can be replaced by the empirical survivor function 

 ( )( )Pr ,
j

j
X x

n
> ≈  (2.25) 

where j  denotes the number of ( )ix ’s such that ( ) ( )i j
x x> . Substituting into Equation 

(2.24) yields linear relationship in ( )log ; log
j

j x 
   space with slope coefficient ξ  

 ( ) ( )log log log .
j

x C n jξ= + −  (2.26) 

In general, two points are necessary and sufficient to pin the slope of a line down. A 

natural candidate is ( )1x , the largest tail observation. But how far into the centre of the 

distribution one should go to select the other point is unclear. Venturing too far will 

cause the linear approximation to lose it accuracy as the chosen observation will not 

come from the tail region. But reluctance to go far enough can distort the slope by 

resultant shortage of observations available for estimation. This problem will be 

thoroughly discussed a little later; for now, let us denote this point ( )k
x . An obvious 

estimator of the slope is then 

 ( ) ( ) ( ) ( )1 1log log log log
ˆ .

log log1 log
k k

deHaan Resnick

x x x x

k k
ξ −

− −
= =

−
 (2.27) 

This indeed is an estimator derived by de Haan and Resnick (1980) for IID random 

variables with distribution function F  in the MDA of an extreme value distribution 

with tail index 10 2α ξ −< = < . Unfortunately, this restriction on values of the tail index 

α  makes this estimator inadequate for financial time series which typically exhibit tails 

thinner than that. 

Pickands (1975) proposed a very general estimator 

 ( ) ( )( ) ( ) ( )( )/ 4 /2 /2

1ˆ log log
log 2Pickands k k k k

x x x xξ  = − − −
 

 (2.28) 

which is weakly consistent under the first order condition in Equation (2.6) for any 

value ξ ∈ℝ  and for k  intermediate, i.e., / 0k n →  as n → ∞  (Gomes et al. 2008). The 

universality of this estimator is, to a great extent, outweighed by its rather large 

asymptotic variance (Beirlant et al. 2004). Dekkers and de Haan (1989) show that 
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 ( ) 2ˆ (0, ),d

Pickands Pk Nξ ξ σ− →  (2.29) 

where ( ) ( )
2

2 2 2 12 1 2log 2 2 1P

ξ ξσ ξ
−

+  = + −  . The distance between the respective order 

statistics ( /4)kx  and ( )kx  is troublesome as well. Unless a vast number of observations is 

available, k  has to be fairly large to allow for reliable estimates but in that case ( )kx  

possesses information about the distribution well away from the tails. 

Apart from their individual downsides, the de Haan-Resnick and the Pickands 

estimators share one more weakness in that they gather information about the tails from 

only two and four order statistics, respectively. Statistical intuition suggests that an 

estimator based on more information, i.e., more order statistics, will be more reliable. 

Furthermore, as our results in the preceding subsections and literature survey indicate, 

we can restrict our attention to distributions in the MDA of the Fréchet Extreme Value 

Distribution, i.e., to distributions with 0ξ > . 

An estimator exploiting both these aspects was developed, as a conditional maximum 

likelihood estimator, by Hill (1975) 

 ( ) ( )( )
1

1

1ˆ log log .
1

k

Hill i k
i

x x
k

ξ
−

=

= −
− ∑  (2.30) 

The Hill estimator is well-established in financial applications, not least because for 

distributions with 0ξ >  it is more efficient than the Pickands estimator (Longin 1996). 

Under the same conditions as the Pickands estimator, the Hill estimator is weakly 

consistent and asymptotically normal  

  ( ) ( )2ˆ 0,d

Hillk Nξ ξ ξ− →
 

(2.31)
 

(see de Haan and Resnick (1998) and references therein). 

A little more intricate semi-parametric estimator was developed by Dekkers et al. 

(1989). It is called the Moment estimator and has the functional form 
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For 1j = , Equation (2.33) is equivalent to the Hill estimator. Like the Pickands 

estimator, the Moment estimator is weakly consistent and asymptotically normal for all 

ξ ∈ℝ  

 ( ) ( )2ˆ 0, ,d

Moment Mk Nξ ξ σ− →  (2.34) 

where 
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 (2.35) 

For formal completeness, in the semi-parametric framework, apart from the first order 

condition in Equation (2.6), we have to include a second order condition, specifying the 

rate of convergence in Equation (2.6). It is common to assume the existence of a 

function *A , not changing in sign and approaching zero as t →∞ , such that 

 

( ) ( )
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 (2.36) 

for all 0x >  where 0ρ∗ ≤  is a second order parameter controlling the speed of 

convergence of maximum values, linearly normalized, towards the limit law in Fisher-

Tippett Theorem. Then 

 
( )
( )

*
*

*
lim
t

A tx
x

A t

ρ

→∞
=  (2.37) 

for every 0x > . 

For heavy tails, the convention is to assume that the rate of convergence towards zero of 

( ) ( )ln ln lnU tx U t xξ− −  as t →∞  is known. The second order condition then 

simplifies to 

 
( ) ( )

( )
ln ln ln 1

lim ,
t

U tx U t x x

A t

ρξ
ρ→∞

− − −
=  (2.38) 

where 0ρ ≤  and ( ) 0A t →  as t →∞ . For details see Gomes et al. (2008). 

In Table 7 and Table 8 we report the estimates of extreme value index ξ  (and tail index 

α ) using the four presented estimators. To calculate the estimates, constant fractions of 

tail observations were used. It has to be noted that the ambition behind these tables is to 
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illustrate the general patterns of behaviour of the individual estimators, rather than to 

provide accurate estimates of the tail index. 

The performance of the individual estimators is fairly distinctive. The de Haan-Resnick 

estimator gives a consistent set of estimates for both tails. There are no wild swings in 

the values but there is nothing to be said about their reliability as the asymptotic 

properties are unknown. The tail index estimates between 2.51 and 3.01 for both tails 

seem to be plausible. 

The Pickands estimator fails completely. Apart from reaching negative values in several 

cases, the estimates show wild swings in values across subsamples. Reasonable 

estimates are achieved only for 5% subsamples in both tails but standard errors are 

relatively large. 

The Hill estimator yields fairly consistent and statistically significant tail index 

estimates. Across all values of k , the estimates range from 2.07 to 3.11 for the left tail 

and from 2.37 to 3.11 for the right one. What catches the eye is their counter-intuitive 

tendency to increase with decreasing number of underlying observations, suggesting 

relatively less probability mass in the tails in more extreme regions. 

The performance of the Moment estimator is patchy. The 10% tail index estimates for 

both tails are unreasonably high while those based on smaller subsamples struggle to be 

significant. In contrast with the Hill estimates, the tail index estimates tend to decrease 

with decreasing size of subsample. They reach values between 3.35 and 5.12 for the left 

tail and 2.70 and 5.87 for the right one. For the left tail, the estimates are higher on 

average than in case of the Hill and the de Haan-Resnick estimators, but standard errors 

are relatively high. 

All in all, the Hill estimator seems to be best suited for the purposes of inference on tails 

of financial time-series. The de Haan-Resnick estimator is ruled out by the absence of 

asymptotic properties, the Pickands estimator is wildly inconsistent and the Moment 

estimator is held back by high standard errors. For a more thorough comparison of the 

Hill, the Pickands and the Moment estimators see de Haan and Peng (1998), who 

explicitly define conditions which favour the particular estimators. 
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Number of tail observations 
10% 5% 2.5% 1% 

399 199 99 39 

de Haan and Resnick 

xi 0.3984 0.3784 0.3745 0.3727 

SE N/A N/A N/A N/A 

alpha 2.5103 2.6429 2.6703 2.6829 

Pickands 

xi 0.0345 0.5033** -0.0975 -0.6171* 

SE 0.0906 0.1381 0.1793 0.2786 

alpha 28.9656 1.9870 -10.2569 -1.6206 

Hill  

xi 0.4820** 0.3830** 0.3681** 0.3220** 

SE 0.0241 0.0272 0.0370 0.0516 

alpha 2.0746 2.6108 2.7164 3.1053 

Moment 

xi 0.1955** 0.2983** 0.2277* 0.2977 

SE 0.0510 0.0740 0.1031 0.1671 

alpha 5.1155 3.3519 4.3918 3.3591 

Table 7 The extreme value index estimates (with asymptotic std. errors) of the left tail of PX returns based on 
respective fractions of tail observations. Source: author’s calculations. 

(* and ** denote estimates significant at 5% and 1% level, respectively) 
 
 
 

Number of tail observations 
10% 5% 2.5% 1% 

399 199 99 39 

de Haan and Resnick 

xi 0.3505 0.3336 0.3327 0.3408 

SE N/A N/A N/A N/A 

alpha 2.8529 2.9980 3.0057 2.9339 

Pickands 

xi -0.0865 0.1885 0.0352 0.9454** 

SE 0.0894 0.1310 0.1819 0.3422 

alpha -11.5613 5.3046 28.3984 1.0578 

Hill 

xi 0.4216** 0.3367** 0.3216** 0.3473** 

SE 0.0211 0.0239 0.0323 0.0556 

alpha 2.3716 2.9700 3.1095 2.8795 

Moment 

xi 0.1704** 0.3020** 0.3608** 0.3697* 

SE 0.0508 0.0741 0.1068 0.1707 

alpha 5.8669 3.3116 2.7714 2.7049 

Table 8 The extreme value index estimates (with asymptotic std. errors) of the right tail of PX returns based on 
respective fractions of tail observations. Source: author’s calculations. 

(* and ** denote estimates significant at 5% and 1% level, respectively) 
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Actually, the Pickands, the Hill and the Moment estimators belong to a broader family 

of classical semi-parametric estimators which share a set of common properties. Apart 

from being weakly consistent and asymptotically normal under the same condition, the 

empirical patterns of all three estimators exhibit two trends: 

• They have high variance for high thresholds ( )k
x , i.e., for small values of k ; 

• They have high bias for low thresholds ( )k
x , i.e., for large values of k . 

Following Gomes et al. (2008), two other common features, which relate to the problem 

of selection of optimal value of k , can be added: 

• There is only a narrow region of stability, when the estimates are plotted as a 

function of k , making the adaptive choice of the threshold on the basis of a 

sample path stability criterion difficult; 

• The mean-squared error function is of a very peaked nature, making the choice 

of 0k , where MSE attains its minimum, also difficult. 

As a possible remedy to the latter two difficulties with finding the optimal k , the 

modified Hill estimator was proposed by Huisman et al. (1997). Luckily, it eventually 

solves the first two drawbacks as well. 

2.3.1 THE MODIFIED HILL ESTIMATOR 

The modified Hill estimator is based on the conventional Hill estimator which was 

shown to be consistent and asymptotically normal under certain conditions. The 

consistency property holds not only for IID samples but for a wide class of dependent 

stochastic processes as well (see Hsing (1991) and Resnick and Starica (1998)). The 

problems come with smaller samples which are drawn from not exactly Paretian 

distribution (i.e., the underlying CDF F does not belong to the MDA of the Fréchet 

distribution) where the estimator suffers from severe bias and tends to overestimate the 

value of ξ .  

Dacorogna et al. (1995) show that for the class of distributions satisfying Equation (1.3) 

and for a given k  the asymptotic expected value of the Hill estimator is approximated 

by 

 ( )( )
( )

1 b k
E k a

n

β
β α
αβ

ξ
α α α β

−  ≈ −  +  
 (2.39) 

and the asymptotic variance by 
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 ( )( ) 2

1
var .k

k
ξ

α
≈  (2.40) 

These approximations facilitate good understanding of the principal problem of semi-

parametric estimators, namely determining the optimal number of the order statistics k . 

As k  increases, the variance of the estimator decreases and it becomes more efficient 

but at the same time the bias of the estimator worsens. Similar trade-offs related to 

goodness of fit of the underlying theoretical model were observed also in case of the 

Block Maxima and the Peaks over Threshold parametric methods. 

Obviously, k  should rise with the sample size n . Unfortunately, there is no simple rule 

or reliable diagnostic procedure which would hint at the optimal k . Hall (1982) 

provides inconclusive formulas showing the rate at which k  should theoretically 

change with n . DuMouchel (1983) specifically suggests using data outside the 10th and 

90th percentile to let the tails speak for themselves. Loretan and Phillips (1994) state as 

well that in principle k  should not exceed 10% of the underlying sample and add that it 

is advisable to estimate ξ  for a variety of trial values of k . However, they fail to 

clarify how to eventually detect the right value. 

Figure 23 and Figure 24 show the estimates of ξ  for the left and the right tail, 

respectively, of PX returns as a function of number of order statistics for 0.1k n≤ . 

Clearly, the Hill estimates decrease with the decreasing number of order statistics used 

in the estimation but at the same time the 95% confidence interval bands widen. 

Although the trend is broken for small values of k  (particularly in case of the right tail 

where it can be attributed to its extraordinary structure), the confidence interval in this 

region is already so wide that it does not represent serious counter-factual evidence. 

Huisman et al. (1997) further expose this problem through a simulation experiment. 

They report average Hill estimates as a function of k  from 1,500 simulated samples 

with 250n =  drawn from Student-t distributions with 1 to 5 degrees of freedom. The 

conclusions are straightforward: for small values of k  the average Hill estimate ( )ˆ kξ  

is almost equal to the true value but its variance is sky-high. The variance declines for 

intermediate values of k , but the bias increases. As k  approaches n
7 the bias explodes 

and, by implication, so does variance. Two conclusions are drawn from this exercise: 

                                                 
7 They use absolute values of observations to better utilize the limited information in such a small sample. 
The symmetry of the Student-t distribution allows this. 
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firstly, high values of k  are necessarily sub-optimal, and secondly, there is a bias for 

any k  exceeding zero. 

In fact, literature offers a plethora of possible solutions to the problem of finding an 

optimal value of k  for small samples. The most trivial one is to increase the number of 

observations. High-frequency data are often used for inference on behaviour of tails but 

in some areas they are not available or do not suit the purpose of inference. 

Then there is a couple of more sophisticated methods. Jansen and de Vries (1991) used 

a Monte Carlo simulation, where n  innovations are drawn from a known distribution 

(with a known tail index) and the value of k  is then determined by minimizing MSE of 

the Hill estimates. The results, however, depend on the underlying unknown distribution 

and have to be interpreted carefully. Another, and rather complex, method was offered 

by Beirlant et al. (1996). It includes a weighted least squares algorithm to obtain the 

slope at the upper right tail of a Pareto quantile plot. But as their optimal k  exceeds 

zero, some bias is still present, although their procedure is heavily weighted towards 

minimizing the bias. Moreover, the small-sample properties of this estimator remain 

unknown. 

A completely different approach was proposed by Huisman et al. (1997) who observed 

that for values of k  lower than some threshold κ , the Hill estimates of ξ  seem to 

increase virtually linearly in k , implying that the exponent /β α  in Equation (2.39) is 

very close to one. Figure 25 and Figure 26 confirm the validity of this observation for 

extended regions of both tails of PX returns. 

After replacing the bias term with ( )f k , Equation (2.39) becomes 

 ( ) ( ) ( )0k f k kξ β ε= + +  (2.41) 

and using the linear function approximation8 for k κ≤  yields 

 ( ) ( )0 1 .k k kξ β β ε= + +  (2.42) 

Having estimates of ( )kξ  for 1,...,k κ=  at disposal, one can estimate Equation (2.42) 

for 0k →  in order to get an optimal unbiased estimate of ξ  in the form of intercept 0β . 

The trick is that instead of searching for optimal k , this approach exploits the 

information embodied in a whole range of Hill estimates and smartly avoids the bias-

variance trade-off. 

                                                 
8 According to Huisman et al. (1997), results of non-linear regression models proved to be worse than 
those obtained by the linear specification. 
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Figure 23 The Hill estimates of ξ of the left tail of PX returns with 95% confidence interval as a function of k. 

Source: author’s calculations. 
 
 

 
Figure 24 The Hill estimates of ξ of the right tail of PX returns with 95% confidence interval as a function of k. 

Source: author’s calculations. 
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Figure 25 The Hill estimates of ξ of the left tail of PX returns as a function of k. Source: author's calculations. 

 
 

 
Figure 26 The Hill estimates of ξ of the right tail of PX returns as a function of k. Source: author's calculations. 
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While the way in which this method is constructed ensures solid robustness with regard 

to the value of κ , the trouble arises at the other end of the tail. As can be seen in Figure 

23 and Figure 24, the behaviour of the Hill estimator for very small values of k  tends to 

be rather erratic, leading to the problem of setting reasonable lower threshold value of 

k . Theoretically, the Hill estimate can be computed already for 2k = , but based on 

Figure 23 and Figure 24 using 1% and 10% of the data as the lower and the upper 

threshold, respectively, looks sensible. 

However, there is one technical caveat – Equation (2.42) cannot be estimated by the 

Ordinary Least Squares (OLS) method. Firstly, the variance of the Hill estimates is not 

constant over different values of k , as Equation (2.40) shows, and therefore the 

assumption of homoscedasticity is breached. This can be corrected for by using 

Weighted Lest Squares (WLS) method instead. And secondly, as the estimates of ( )kξ  

are cumulatively computed from the same underlying observations, they are likely to be 

auto-correlated. As a consequence, standard error computations for both OLS and WLS 

methods are not suitable. This problem can be possibly overcome by using re-sampling 

methods as jack-knife or bootstrap. 

In Table 9 the modified Hill estimates for both tails are reported. We used the OLS as 

well as the WLS regression methods but the results do not differ very much. Regarding 

the standard errors, both re-sampling methods gave very similar results. The main 

conclusion is that in contrast with classical semi-parametric estimators, the modified 

Hill estimator provides possibly unbiased EVI estimates with much reduced uncertainty. 

 

 Method xi Bootstrap SE Jackknife SE alpha 

Left Tail 
OLS 0.3170 0.0025 0.0025 3.1546 

WLS 0.3183 0.0025 0.0024 3.1417 

Right Tail 
OLS 0.2864 0.0022 0.0022 3.4916 

WLS 0.2785 0.0022 0.0023 3.5907 

Table 9 The modified Hill estimates based on OLS and WLS method for the left and the right tail of PX returns. 
Source: author’s calculations. 

2.4 LITERATURE SURVEY 

To put our results into a broader perspective, let us review some of the empirical results 

provided in literature. We restrict our attention to works related to stock market tail 

behaviour. 
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In their study of covariance stationarity of heavy-tailed time series, Loretan and Phillips 

(1994) estimated the tail index of two series of US stock market returns. They report the 

conventional Hill estimates for several values of 0.1k n< . For monthly returns on a 

broad index of US stocks from January 1834 to December 1987, the estimates range 

from 2.95 to 3.55 for the left tail and from 2.46 to 2.95 for the right tail. For daily 

returns on the S&P 500 stock market index from July 1962 to December 1987, the 

estimates range from 3.44 to 3.80 for the left tail and 3.08 to 3.86 for the right tail. 

An index of the most traded stocks on the New York Stock Exchange covering period 

1885-1990 was investigated by Longin (1996). The workhorse in this case is the 

parametric Block Maxima method with block sizes ranging from one month to two 

years. The tail index estimates range from 2.268 to 3.509 for the left tail and from 2.786 

to 3.610 for the right one. As a point of reference, the Pickands and Hill semi-

parametric estimates based on specific values of k  found by simulations for each 

estimator separately are reported. The Pickands estimator gives the tail index estimates 

of 2.410 for the left and 2.632 for the right tail and the corresponding Hill estimates are 

2.770 and 3.030, respectively. 

Huisman et al. (1997) report the conventional and the modified Hill estimates of 

monthly returns on the S&P Composite Price Index, covering period from January 1965 

to December 1987. The optimal number of tail observations included for the 

conventional Hill estimator is determined by a Monte Carlo simulation. For the left tail, 

the conventional Hill estimator yields 2.994 and the modified Hill estimator 3.509 

(OLS) and 4.219 (WLS). For the right tail, the respective estimates are 2.519 by the 

conventional estimator and 3.745 (OLS) and 4.000 (WLS) by the modified estimator. 

Gilli and Këllezi (2006) use the two parametric methods to estimate the tail shape 

parameters of daily returns on stock indices of six major markets: European (ES50), 

British (FTSE100), Chinese (HS), Japanese (Nikkei), Swiss (SMI) and American 

(S&P500).  Despite having the same end date in August 2004, the length of period 

covered differs for each of the series with the longest one, S&P500 (starting in January 

1960), containing almost three times as many observations as the shortest one, SMI 

(starting in July 1988).  

The Block Maxima estimates are based on yearly maxima and the only results worth 

reproducing here, due to lack of date in the other cases, are those of S&P500 and 

Nikkei: the former one yielding tail index estimates of 1.887 for the left and 10.000 for 

the right tail and the latter one of 3.984 and 10.417, respectively. 
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With regard to Peaks over Threshold method, with the exception of ES50, the estimates 

of the tail index range from 2.577 to 5.525 for the left tail and from 5.405 to 10.753 for 

the right one. ES50 estimates exhibit strange behaviour (in particular the left tail 

estimate of 22.222 is far-fetched). The optimal thresholds were determined by the mean 

excess plot. 

Jondeau and Rockinger (2003) used a Datastream database of daily stock market returns 

for 20 countries to estimate parameters of GEVD. In general, their estimates of the 

shape parameter range from 2.874 to 7.576 for the left tail and from 2.421 to 5.495 for 

the right tail. Moreover, they divide their sample to four geographical areas: for Eastern 

Europe, the range of estimates is from 2.421 to 4.785 for the left tail and from 2.874 to 

5.181 for the right tail; for mature markets, the estimates range from 3.425 to 5.495 and 

from 3.030 to 7.576, respectively; for Asia, they range from 2.457 to 5.000 and from 

3.401 to 7.299, respectively; and finally, for Latin America, they range from 3.571 to 

4.444 and from 4.167 to 5.587. 

LeBaron and Samanta (2004) set out to find answers to questions such as whether 

market booms are more or less likely than market crashes and whether crashes in 

emerging countries are more frequent than in developed countries. Their dataset 

comprises of standardized daily returns on the Morgan Stanley Capitalization 

International (MSCI) country price indices of 8 emerging countries from Asia and 

South America and 12 developed countries and covers period from January 1, 1993 to 

May 1, 2003. 

Although they report Pickands, conventional Hill and Dekkers, de Haan point estimates 

as well, the modified Hill estimator is central to their analysis. In case of emerging 

countries, the modified Hill estimator, based on 10% of order statistics and using WLS, 

yields tail index estimates ranging from 2.81 to 7.80 for the left and from 2.44 to 7.91 

for the right tail. In case of the developed countries, the estimates range from 2.84 to 

6.39 for the left tail and from 3.82 to 6.34 for the right one. 

Regarding the Pickands, conventional Hill and Dekkers, de Haan estimates, they report 

results for a set of three values of k . The only point worth taking from them is that the 

Pickands estimates exhibit similarly volatile patterns as our results reported in Table 7 

and Table 8. 

And finally, Horák and Šmíd (2009) used daily, weekly and monthly returns of 22 

stocks listed on three Central European stock exchanges (Czech, Polish and Hungarian) 

and three major western stock markets (NASDAQ, LSE, XETRA) for their estimations 
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by the conventional Hill and the modified Hill estimators for 3-10% of the observations 

from the left, the right and both tails. The results for daily returns on the eight Czech 

shares are of special interest to us: for the left tail, the conventional Hill estimates range 

from 2.81 to 4.68 and the modified Hill estimates from 1.95 to 5.46; for the right tail, 

the estimates range from 2.77 to 4.79 and from 3.00 to 5.67, respectively; and for both 

tails, the estimates range from 2.91 to 4.60 and from 3.08 to 5.44, respectively. 

It seems that our estimates are in line with the literature in all important aspects: while 

the magnitude of tail index estimates is hardly extraordinary for an emerging market, 

they are on average lower than those of mature markets. At the same time, left tail 

estimates are higher than the right ones. 

2.5 SUMMARY 

To conclude this section, we picked one parametric and one semi-parametric estimator 

to represent the respective approaches and reproduced their results in Table 10. The 

choice between the two parametric methods was straightforward as the performance of 

the Peaks over Threshold method was vastly superior to the data-intensive Block 

Maxima method. Concretely, estimates based on data exceeding the optimal threshold 

found through the mean excess plot are reported. 

The family of semi-parametric estimators is represented by the modified Hill estimator 

which is not strictly semi-parametric in its very nature but is very closely related and 

gives the most reliable estimates. To be precise, the estimates by WLS method with 

bootstrap standard errors are reported. 

 

  
Peaks over Threshold 

(u=0.019) 

Modified Hill 

Estimator (WLS) 

 xi 0.2784 0.3183 

Left Tail SE 0.0792 0.0025 

 alpha 3.5920 3.1417 

 xi 0.2709 0.2785 

Right Tail SE 0.0726 0.0022 

 alpha 3.6914 3.5907 

Table 10 Comparison of the Peaks over Threshold and the Modified Hill estimates. Source: author’s calculations. 

There are not substantial numerical differences in the tail index estimates. Both methods 

give results in the interval from 3 to 4, in line with the conclusion from the 
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Mandelbrot’s method of sample moments. Comparison of standard errors favours the 

Modified Hill estimator but it is misleading given the way the estimator is constructed. 

Nonetheless, even when compared to the classical Hill estimates, the POT estimates 

tend to have higher standard errors. 

What is definitely worth mentioning is the fact that both sets of estimates suggest that 

the left tail is heavier than the right one. To further elaborate on this point, a simple test 

of the hypothesis that the distribution of PX returns is symmetric will be performed. 

Following Horák and Šmíd (2009), let us define the test statistic 

 ˆ ˆ ,L Rξ ξ ξ= −  (2.43) 

where L̂ξ  and R̂ξ  are the conventional Hill estimates of the left and the right tail of the 

distribution. The asymptotic normality of the Hill estimator implies that the statistic 

should be approximately normally distributed with zero mean and variance 2 2
L Rs s+ , 

where Ls  and Rs  stand for asymptotic standard deviations of the respective Hill 

estimates. Notice that the bias of the Hill estimates is of little importance here as it 

simply cancels out. Equivalently, we can write 

 ( )
2 2

ˆ ˆ
0,1 ,L R

L R

N
s s

ξ ξ
ξ

−
= →

+
 (2.44) 

i.e., the standardized test statistic should follow the standard normal distribution. 

Formally, we test the null hypothesis 

 0H : the distribution is symmetric  

against the alternative 

 1H : the left tail is heavier than the right one  

by checking for significantly positive ξ . 

In Table 11 we report the values of the standardized test statistic ξ  for the Hill 

estimates based on different numbers of tail observations. Having in mind that for the 

null hypothesis to be rejected on the 5% significance level the test statistic would have 

to surpass 1.96, we can conclude that there is no statistically significant evidence that 

the distribution of PX returns is asymmetric. 

 



56 
 

Number of 

observations 

10% 5% 2.5% 1% 

399 199 99 39 

Test statistic 1.8833 1.2816 0.9474 -0.3330 

Table 11 Values of the standardized test statistic for Hill estimates based on different numbers of tail observations. 
Source: author’s calculations. 

The final point to be made is the observation that the results imply that one can 

comfortably rule out the possibility of either tail index of PX returns being lower than 

two. Three conclusions follow from this statement. Firstly, the tail index is finite and 

therefore the tails are not Gaussian. Secondly, the variance of the PX returns is finite 

and well defined. And thirdly, it allows us to make a judgement on the nature of the 

Czech stock market behaviour: it supports neither the discontinuous stable Paretian 

hypothesis nor the continuous Gaussian hypothesis. 

These two extremes of market behaviour were discussed by Fama (1963). In a Gaussian 

market, a large price change is likely to be a result of a consequence of very small price 

changes and the path of an asset price is continuous. By contrast, in a stable Paretian 

market a large price change over a long interval is likely to be a result of one or a very 

few huge price changes that occurred during narrow subintervals and the price path 

exhibits discontinuities. As the Gaussian market hypothesis relies on the normal 

distribution, it requires the tail index of returns to be infinite. The stable Paretian 

hypothesis is based on the stable Paretian distribution which is characterised by tail 

index values in the region between 0 and 2. 

The Czech stock market seems to be an intermediate case, since it exhibits more 

extremes and thus more risk for investors than a Gaussian market but fewer extremes 

and thus less risk than a stable Paretian market. Under the estimated values of the tail 

index of returns, market price may or may not exhibit discontinuities, depending on the 

process governing returns (Longin 1996). 
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3. APPLICATIONS TO RISK MANAGEMENT 

The previous section was devoted to modelling the behaviour of extreme financial 

returns. One term, which is commonly associated with extremes, is risk. Jorion (2001) 

defines risk as the volatility of unexpected outcomes. In an ideal world, financial risk 

could be completely diversified away or totally eliminated by a perfect hedge. In the 

real world, however, the best one can do is to strive to manage it. Risk management, 

therefore, seems to be a perfect area where to apply insights offered by the statistics of 

extremes. 

Each and every financial transaction comes with various risks attached. There is the risk 

of unfavourable movements in the level or volatility of market prices (Market Risk); the 

risk that counterparty will be unwilling or unable to fulfil its contractual obligations 

(Credit Risk or Default Risk); the risk that intended transactions will not be able to be 

carried out at prevailing market prices due to the excessive size of the position 

(Liquidity Risk); the risk of human and technical failures like frauds and trading errors 

(Operational Risk); and finally the risk that it will not be possible to legally enforce the 

transaction (Legal Risk).  

Given our underlying dataset of PX returns, the focus in the remainder of this section 

will be exclusively on the market risk. In order to manage any risk, one should be able 

to measure it. Following Dhaene et al. (2003), a one-sided risk measure can be defined 

as a measure of the distance between a risky situation and the corresponding risk-free 

situation when only unfavourable discrepancies contribute to the risk. The opposite is a 

two-sided risk measure which considers also favourable discrepancies. While two-sided 

risk measures are useful in pricing the risk, from risk management point of view, the 

downside risks are dominant and therefore the analysis will be centred on one-sided 

measures. However, as an investor may hold long as well as short position in an asset, 

neither tail will be omitted. 

There have been various attempts at finding the appropriate measure of market risk. For 

example, Roy (1952) proposed to use the maximum probability of a return being at least 

as high as some predetermined minimum tolerable threshold to quantify the risk, while 

Markowitz (1952) assigned this role to the variance of returns. Yet, due to their nature, 

neither of these measures is actually capable of capturing the risk of occurrence of the 

most adverse events. For this purpose, more advanced measures were designed. 
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Value at Risk and Expected Shortfall may be considered the most prominent among the 

present day risk measures. In essence, they are based on modelling the underlying loss 

distribution over some predetermined time horizon. This approach is vindicated by 

several facts. Firstly, losses are central to risk management and thus it is natural to base 

the measurement of the implied risk on their statistical distribution. Secondly, the 

concept of a loss distribution makes sense on all levels of aggregation, from a single 

asset portfolio to overall position of a financial institution. Thirdly, loss distributions are 

capable of accounting for netting and diversification effects. And finally, loss 

distributions are comparable across portfolios, regardless of their composition, given the 

time horizon is identical. 

However, apart from these unquestionable positives, loss distributions have two 

weaknesses. One problem is their reliance on the past data. It is not guaranteed that the 

laws governing financial markets will not suddenly change and if they do, the historical 

data are not suitable for estimating the future risk any more. The other difficulty 

pertains to the complexity of estimating the loss distribution in practice. Even in 

stationary environment, it is very challenging to estimate the loss distribution 

accurately, above all in the tail regions which possess crucial information for risk 

management. McNeil et al. (2005) point out that, as a consequence, many seemingly 

sophisticated risk management systems are based on relatively crude statistical models 

of the loss distribution, incorporating unrealistic assumptions such as normality. 

One more issue is associated with risk forecasting in general. That is whether to use a 

distribution conditioned on current market conditions or an unconditional one. Both 

approaches have their pros and cons which mostly depend on the time horizon, size and 

composition of portfolio at hand. Put simply, the choice between the two approaches is 

up to the user and the purpose of her enquiry. This issue is discussed in more depth, for 

example, by Danielsson and de Vries (2000) and McNeil and Frey (2000). Since our 

inference does not pursue any specific goal, and also for the sake of simplicity, the 

unconditional approach will be used in the remainder of this section. 

3.1 VALUE AT RISK 

Consider a portfolio of assets and let F  be the distribution function of its returns. The 

task is to find a statistic based on F  which would characterize the risk of holding the 

portfolio over a time period t . The most straightforward candidate could be the 
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maximum loss. However, it falls short of its purpose on at least two grounds. Firstly, it 

is common in finance to work with distributions with unbounded support, i.e., the 

maximum is infinity. And secondly, it ignores the valuable information about the 

behaviour of returns incorporated in F . 

Taking into account these remarks and adjusting the previous reasoning accordingly, a 

much better candidate for a risk measure is the maximum loss which is not exceeded 

with a given probability. That exactly is the Value at Risk (VaR) metric, a dominant 

market risk measure of today. It made its way into the first pillar of Basel II accord as a 

tool for determining regulatory capital requirements. 

Formally, for a given time horizon t  and confidence level p , VaR is defined as the loss 

in market value that is exceeded with probability 1 p−  over the time horizon t . In 

probabilistic terms, VaR is simply the ( )1 -thp− quantile of the underlying distribution 

of returns. 

Setting values of t  and p  is a matter of judgement and largely depends on the purpose 

of its use. Duffie and Pan (1997) report that the Derivatives Policy Group proposed two-

week time horizon and 99% confidence level for over-the-counter derivatives broker-

dealer reports to the Securities and Exchange Commission; the Bank for International 

Settlements set p  to 99% and t  to 10 days for purposes of measuring the adequacy of 

bank capital; JP Morgan discloses its daily VaR at 95% confidence level; and Bankers 

Trust prefers daily VaR at 99% confidence level. In general, the most widely used 

confidence intervals are 95% and 99% with time horizons between 1 and 10 trading 

days. 

Despite its popularity, VaR suffers from relatively severe deficiencies for which it was 

frequently criticised. One stream of criticism was directed at the fact that VaR is not a 

coherent risk measure. The concept of coherent risk measures was introduced by 

Artzner et al. (1999) in the form of four properties required from a risk measure. Let 

( )Wρ  be a risk measure viewed as a function of the distribution of portfolio value W , 

then it should satisfy: 

• Monotonicity: ( ) ( )1 2 1 2W W W Wρ ρ≤ ⇒ ≥ , i.e., portfolio with lower returns in 

all possible states of world has to be riskier; 

• Translation invariance: ( ) ( )W k W kρ ρ+ = − , i.e., cash injection k  into the 

portfolio reduces the risk accordingly; 
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• Homogeneity: ( ) ( )aW a Wρ ρ= , i.e.,  scaling the portfolio up or down 

increases or decreases its riskiness in the same proportionately; 

• Sub-additivity: ( ) ( ) ( )1 2 1 2W W W Wρ ρ ρ+ ≤ + , i.e., merging two portfolios does 

not increase the overall riskiness. 

It is the fourth point on which VaR fails and thus counters intuition that there should be 

a diversification benefit associated with merging portfolios. Practically, it also means 

that one cannot be sure that aggregating VaR values of different portfolios or business 

units will result in a bound for the overall risk of the enterprise. 

However, this argument was weakened by Danielsson et al. (2011) who proved that 

VaR is sub-additive in the relevant tail region if asset returns are multivariate regularly 

varying, for both independent and cross-sectionally dependent returns, provided the 

mean is finite. Yet, this asymptotic result may not hold in practice due to the tail 

coarseness problem which arises when only a handful of observations are used in the 

empirical estimation and the location of a specific quantile is greatly uncertain. 

The other criticised problem with VaR is that it reveals nothing about the severity of 

possible losses when the confidence level is breached, what is implied by its very 

construction. Its suitability for setting regulatory capital requirements is therefore 

questionable. 

To estimate VaR two types of methods were developed: parametric and non-parametric. 

Non-parametric estimation draws on the historical distribution of returns. Empirical 

VaR is equivalent to the corresponding percentile of the underlying distribution. It has 

three obvious weaknesses. Firstly, to obtain accurate estimates a large sample of 

observations is required. Secondly, using empirical distribution does not allow for 

conditionality of the parameters over time. And thirdly, empirical estimates depend on 

the chose quantile and thus do not allow for conversion of parameters. 

To overcome these flaws, a parametric approach is often preferred. Since the 

distribution is approximated by a parametric distribution, parameters can be allowed to 

change over time. Also conversion of VaR values with respect to its parameters is 

possible, enabling comparisons of VaR estimates across various institutions. 

Nonetheless, parametric conversion is meaningful only if the parametric approach 

accurately reflects the underlying distribution at all quantiles in the tail. The choice of 

parametric distribution is therefore crucial. 
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The simplest parametric approach assumes that the expected returns are normally 

distributed with the mean and variance derived from the past data. Suppose that the 

return distribution F  is normal with mean µ  and variance 2σ . Then for ( )0,1p∈  

 ( )1VaR 1 ,p pµ σ −= + Φ −  (3.1) 

where Φ  denotes the standard normal CDF and ( )1 1 p−Φ −  is the ( )1 -thp−  quantile of 

Φ . The normal distribution is a popular choice for VaR calculations since it allows for 

easy conversions across confidence intervals and time horizons. For example, for 

conversion of 1-day 0.95VaR  to 10-days 0.99VaR , the following formula holds 

 
( )
( )

1
10 1
0.99 0.95 1

0.01
VaR VaR 10 .

0.05
days day

−
− −

−

Φ
=

Φ
 (3.2) 

Nevertheless, normal distribution does not describe the distribution of returns very well, 

especially in tail regions, and there might be relatively large discrepancies between the 

tails of the theoretical and actual distribution, leading to flawed and unreliable VaR 

estimates. Thus, a fat-tailed distribution ought to be a better alternative. 

Huisman et al. (1998) proposed to use Student-t distribution and designated the 

improved approach as VaR-x. As Student-t comes from the same family of distributions 

as the normal distribution, the procedure of estimating VaR is very similar with the 

proviso that a standard Student-t distribution has variance defined as ( )/ 2α α −  where 

2α >  denotes degrees of freedom. As noted in subsection 2.1, α  is equal to the tail 

index. Suppose that returns are distributed such that standardized returns 

( ) /X X µ σ= −ɶ  follow standard Student-t distribution with α  degrees of freedom, then 

 ( )12
VaR 1 ,p t pν

α
µ σ

α
−−

= + −  (3.3) 

where tν  denotes the CDF of standard Student-t. 

Although Student-t distribution is likely to capture the thickness of tails better than 

normal distribution, more precise models are available. Tail index estimation in section 

2.2.2 was more or less based on modelling the tail behaviour of returns by the specific 

distributional form of Generalized Pareto Distribution (GPD). Recall that the 

conditional distribution of observations exceeding a predetermined high threshold u  is 

defined as 

 ( ) { }uF y P X u y X u= − ≤ >  (3.4) 
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for 0 y x u≤ < − , where x ≤ +∞  is the right endpoint of F . In words, the excess 

distribution expresses the likelihood that when the threshold is exceeded, it is not 

exceeded by an amount larger than y . It can be re-written in terms of the underlying F  

as 

 ( ) ( ) ( )
( )

.
1u

F y u F u
F y

F u

+ −
=

−
 (3.5) 

Let x u y= +  and recall the result of the Pickands, Balkema and de Haan theorem that 

for certain u , the excess distribution above this threshold may be approximated by 

GPD for some ξ  and β  

 ( ) ( ), .uF y G yξ β=  (3.6) 

Combining Equation (3.5) and Equation (3.6) yields 

 ( ) ( )( ) ( ) ( ),1F x F u G x u F uξ β= − − +  (3.7) 

for x u> . This formula provides an explicit distributional form of the tail of the 

underlying distribution ( )F x  for x u> . 

The only unknown quantity is ( )F u . For this purpose, a simple empirical estimator 

( ) /n k n− , where n  denotes the size of the sample and k  denotes the number of 

observations exceeding u , is suitable and adds an element of historical simulation to 

this concept. Replacing ( )F u  with the empirical estimator and the ,Gξ β  with its 

functional form with ML estimates of the parameters results in 

 ( )
ˆ1/

ˆˆ 1 1 ,
ˆ

k x u
F x

n

ξ

ξ
β

−
 −

= − + 
 

 (3.8) 

where ξ̂  and β̂  are ML estimates of the respective parameters and x u> . This 

estimator may be looked upon as a historical simulation estimator augmented by the 

Extreme Value Theory. McNeil (1999) notes that such estimator can be constructed 

whenever there is reason to believe that the data come from a common distribution but 

its statistical properties are best understood in situations where they can also be assumed 

to be independent or only weakly dependent. 

Finally, the VaR estimate for a given probability ( )p F u>  is obtained by inverting the 

tail estimation formula in Equation (3.8) 
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 � ( )
ˆˆ

VaR 1 1 .
ˆp

n
u p

k

ξ
β
ξ

−   = + − −    
 (3.9) 

In Table 12 we report 1-day VaR estimates on confidence levels 95% and 99% for both 

tails, based on non-parametric empirical method and parametric methods using normal, 

Student-t and GPD. In calculations of Student-t and GPD, the results from preceding 

sections were used. Concretely, the modified Hill estimates were used for determining 

the number of DF of Student-t distribution and GPD was fitted to observations 

exceeding threshold 0.019u = . 

The first look at the results reveals striking similarity between empirical and GPD 

estimates, especially on 95% confidence level. The reasons are simple. Firstly, the 

underlying sample is quite large and therefore contains enough extreme observations for 

the empirical method to be fairly accurate. And secondly, the fit of GPD to the extreme 

observations is very good and therefore the empirical and theoretical distributions are 

close to each other. 

The performance of the other two parametric estimates based on the normal and 

Student-t distributions reflects the fact that these two distributions provide only very 

crude approximations of the underlying distribution. The normal estimates on 95% 

confidence level are the largest, and thus overestimate risk, while on 99% confidence 

level they are the lowest, and thus underestimate risk. 

The Student-t estimates differ for each tail. For the left tail, they tend to underestimate 

risk on both confidence levels. By contrast, for the right tail, they tend to overestimate 

risk on both confidence levels. Surely, Student-t estimates very much depend on 

accuracy of the tail index estimates. 

 

 P Empirical Normal Student-t GPD 

Left tail 
95% 0.0218 0.0236 0.0200 0.0218 

99% 0.0413 0.0335 0.0380 0.0405 

Right tail 
95% 0.0211 0.0240 0.0214 0.0211 

99% 0.0354 0.0339 0.0387 0.0365 

Table 12 1-day VaR estimates with confidence levels 95% and 99% for both tails of PX returns based on different 
methods. Source: author’s calculations. 

To conclude, using simple distributional assumptions does not provide realistic 

estimates of VaR and allows for a considerably large scale of results. The GPD method 

is visibly superior to the other parametric methods and can provide guidance in case of 
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smaller samples, where the empirical estimation is unreliable. Moreover, Danielsson et 

al. (2011) show that GPD-based estimator substantially reduces the likelihood of sub-

additivity failures as it replaces coarse empirical estimates with smooth power law. 

However, if the goal is to face as low regulatory capital requirements as possible, 

approximation by the normal distribution on 99% confidence level seems to be a 

rational choice. 

3.2 EXPECTED SHORTFALL 

Expected Shortfall (ES) was developed as an improved alternative of VaR. Not only 

that it meets all four requirements of a coherent risk measure, it also possesses vital 

information about severity of losses when the confidence level is breached. It is defined 

as the expected value of loss, given that VaR value is exceeded, i.e., 

 ES VaR .p pE X X = >   (3.10) 

It shares with VaR all its advantages. It is universal as it can be applied to any financial 

instrument and to any underlying source of risk. It is complete as it produces a 

comprehensive assessment for portfolios exposed to various sources of risk. And 

finally, it is intuitive and straightforward as it answers a natural and legitimate question 

about the riskiness of the portfolio. 

To estimate ES, methods similar to VaR can be used. The non-parametric empirical 

estimate is simply equivalent to the average value of returns larger than VaR. In case of 

parametric methods, it can be shown (see McNeil et al. 2005) that for normally 

distributed returns 

 
( )( )1 1

,
1p

p
ES

p

φ
µ σ

−Φ −
= ± +

−
 (3.11) 

where φ  is the density of the standard normal distribution. When the standardized 

returns follow Student-t distribution, 

 
( )( ) ( )( )21 11 12

,
1 1p

g t p t p
ES

p

α α ααα
µ σ

α α

− − − + −−  = ± +
 − −
 

 (3.12) 

where tα  denotes the distribution function and gα  the density of standard Student-t. 

Derivation of GPD-based estimator starts from observation that ES is related to VaR by 
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 ES VaR VaR VaR ,p p p pE X X = + − >   (3.13) 

where the expectation term is the mean of the excess distribution ( )VaR p
F y  over the 

threshold VaR p . In subsection 2.2.2 variation of GPD parameters with regard to 

threshold was mentioned. Recall that shape parameter ξ  is invariant and variation of 

scale parameter is governed by ( )
1 0 1 0u u u uβ β ξ= + −  for 1 0u u> . Thus, for VaR p u>  

Equation (3.6) implies 

 ( ) ( ) ( )VaR , VaR
.

p u p u
F y G y

ξ β ξ+ −
=  (3.14) 

Having an explicit distributional description of observations exceeding VaR p  allows for 

investigation of losses beyond VaR p . For 1ξ <  the mean of ,Gξ β  is given as 

 [ ] .
1

E X
β
ξ

=
−

 (3.15) 

Substituting Equations (3.14) and (3.15) into Equation (3.13) yields 

 
( )VaR

ES VaR ,
1

u p

p p

uβ ξ

ξ

+ −
= +

−
 (3.16) 

which can be re-arranged into 

 
( )

ES 1
,

VaR 1 1 VaR
p u

p p

uβ ξ
ξ ξ

−
= +
− −

 (3.17) 

which describes the relation between ES and VaR. Assuming underlying distribution 

with unbounded support, the weight of the second term on the right hand side is reduced 

as probability p  approaches zero and VaR p  becomes large. The ratio is then largely 

determined by the factor ( )1/ 1 ξ− . Intuitively, for thicker tails with larger ξ  the 

probability of an extreme event is higher and therefore the gap between VaR and ES is 

wider. 

The corresponding ES estimator, for a given probability ( )p F u>  has the form 

 �
� ˆ ˆVaR

ES ,
ˆ ˆ1 1

p u
p

uβ ξ
ξ ξ

−
= +

− −
 (3.18) 

where ξ̂  and ˆ
uβ  are ML estimates of GPD parameters for threshold u . 

In Table 13 ES estimates based on different methods are reported. Naturally, these 

estimates are larger than those of VaR but conclusions are almost identical. The 

empirical and the GPD estimates are very close to each other although in case of the 
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right tail, its poorer GPD fit manifests itself once more, causing minor risk 

underestimation. In case of the left tail, the difference is nearly indistinguishable. 

Regarding the other two parametric approximations, the normal estimates underestimate 

risk on both confidence levels. There is again the dichotomy in the Student-t estimates 

when left tail estimates tend to underestimate risk while right tail estimates tend to 

overestimate it. On average, Student-t estimates are clearly much better than their 

normal counterparts. 

 

 P Empirical Normal Student-t GPD 

Left tail 
95% 0.0345 0.0297 0.0324 0.0345 

99% 0.0604 0.0384 0.0576 0.0605 

Right tail 
95% 0.0316 0.0301 0.0331 0.0315 

99% 0.0534 0.0388 0.0556 0.0526 

Table 13 1-day ES estimates with confidence levels 95% and 99% for both tails of PX returns based on different 
methods. Source: author’s calculations. 

Table 12 and Table 13 imply that for estimation of quantile-based market risk measures 

GPD-based approximation of tails is superior to approximations by simple distributions 

such as normal and Student-t. To have an idea about their accuracy, Figure 27 and 

Figure 28 show 99% confidence intervals for VaR and ES GPD-based estimates. The 

left vertical dotted line corresponds to VaR estimate, the right one to ES estimate. The 

horizontal dotted lines determine 95% and 99% confidence intervals at points where 

they intersect with the bended curves. The profile log-likelihood function was used to 

compute these intervals. 

To facilitate understanding of these graphs, let us make an example. Suppose one is 

interested in checking, for instance, 95% confidence interval of the left tail VaR 

estimate. The initial step is to locate the intersection of the left vertical dotted line 

(representing VaR estimate equal to 0.0405) and the upper horizontal dotted line 

(representing 95% confidence intervals). Now, moving along the horizontal line to the 

left, the point where it is vertically crossed by the bended curve specifies the left bound 

(0.0368) of the confidence interval. Mirror-like, one can find the right bound (0.0456). 

The confidence intervals of VaR are logically narrower than those of ES as they do not 

have to deal with the handful of most extreme observations which are spread over a 

very long interval. The very same fact also causes the asymmetry of ES confidence 

intervals (Zivot and Wang 2006). 
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Figure 27 GPD fit to the left tail of PX returns with estimates and confidence intervals of 1-day VaR and ES on 99% 

confidence level. Source: author’s calculations. 
 

 
Figure 28 GPD fit to the right tail of PX returns with estimates and confidence intervals of 1-day VaR and ES on 

99% confidence level. Source: author’s calculations. 

  

0.05 0.10 0.15

0
.0

0
.0
2

0
.0
4

0
.0
6

x

1
-F
(x
)

99

95

99

95

0.02 0.04 0.06 0.08 0.10 0.12 0.14

0
.0

0
.0
2

0
.0
4

0
.0
6

x

1
-F
(x
)

99

95

99

95



68 
 

CONCLUSION 

The main developments in the field of finance, such as the Modern Portfolio Theory of 

Markowitz (1952), the Capital Asset Pricing Model of Sharpe (1964) and Lintner 

(1965), or the option pricing formula of Black and Scholes (1973), rely on the 

hypothesis of normally distributed returns of financial assets. There is ample evidence 

in the literature that this assumption does not reflect reality on several grounds. 

One of the departures from normality is the tail behaviour of returns which exhibits 

more extreme events than would be suggested by the Gaussian distribution. The 

phenomenon of heavy tails has a long history in finance, dating back to Mandelbrot’s 

(1963) paper on the behaviour of cotton prices, but it took several decades, and at least 

as many market crashes, before it was adopted by and incorporated into mainstream 

thinking. 

The first aim of this thesis was to infer on the tail behaviour of the Czech stock market 

index PX which, to our best knowledge, has not been tracked yet. An arsenal of 

methods was used to estimate the all-important measure of tail fatness, the tail index, of 

both tails of PX returns. This included parametric as well as semi-parametric 

techniques. 

Parametric estimation methods rely on distributional assumptions about the behaviour 

of certain extreme events. In case of the Block Maxima method, it is the maximum 

observations from blocks of data which are assumed to follow the Generalized Extreme 

Value Distribution. Unfortunately, this method proved ill-suited for the estimation of 

our relatively short time series, as it demands very large blocks of data for the 

underlying theorem to hold. 

The results of the second parametric method, the Peaks over Threshold method, were 

more satisfactory. This method is more efficient in subtracting information from 

extreme observations as it works with data exceeding some predetermined high 

threshold. The Generalized Pareto Distribution (GPD) is then fitted to the data. The 

caveat is to find the proper threshold. For optimal thresholds detected from mean excess 

plots tail index estimates of 3.5920 and 3.6914 were obtained for the left and the right 

tail, respectively. 

The family of semi-parametric estimators was represented by classical estimators 

developed by Hill (1975), Pickands (1975), de Haan and Resnick (1980) and Dekkers et 
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al. (1989). Similarly to the Peaks over Threshold model, these estimators are based on a 

subsample of tail observations whose size has to be determined. Unfortunately, in finite 

samples these estimators share a set of inconvenient properties which make this task if 

not impossible then certainly very difficult. To get round this problem, the modified Hill 

estimator due to Huisman et al. (1997) was embraced. It yielded tail index estimates of 

3.1417 for the left and of 3.5907 for the right tail. 

Brief literature survey put our tail index estimates into a broader perspective. They were 

found to be more or less in line with results obtained for an array of financial assets 

from all around the world. The Czech stock market behaves in a way one would expect 

– the tail index estimates are in general lower than in the developed markets and the left 

tail estimates tend to be lower than the right tail ones. However, after performing a 

simple test based on normality of conventional Hill estimator, we were not able to reject 

the hypothesis that the tails are symmetric and thus support the widely spread notion 

that the left tail of the distribution of returns should be heavier than the right one. 

Risk management is considered to be the area of finance which should benefit the most 

from the insights on tail behaviour. Therefore, the second aim of the thesis was to 

illustrate how the presence of fat tails influences two common market risk measures, 

Value at Risk and Expected Shortfall. 

Value at Risk (VaR) is a prominent quantile-based measure of market risk which made 

its way into the Basel II capital adequacy framework. In its essence, it is nothing more 

than a corresponding quantile of the loss distribution of returns on an asset. The normal 

distribution is often used as a theoretical proxy for the actual distribution of returns in 

computations of VaR. 

To expose the implications of using the normal distribution, two alternative approaches 

were used. In the first, the normal distribution was replaced with a heavy-tailed Student-

t distribution with a number of degrees equal to the estimated tail index of the empirical 

distribution. The other one was based on the approximation of the tails of the empirical 

distribution by GPD. The latter approach came as a clear winner from the comparison 

with estimates very close to their empirical counterparts, followed by the Student-t 

distribution. The normal distribution proved to be inadequate, in particular for higher 

confidence levels. 

VaR has been frequently criticised on two grounds. That it says nothing about the 

severity of losses when it is exceeded and that it is not a coherent risk measure as 

defined by Artzner et al. (1999). To deal with these shortcomings, a quantile-based 
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alternative, Expected Shortfall (ES), was developed. It is defined as the expected value 

of loss, given that VaR is exceeded. 

Similar exercise as in case of VaR was performed in order to compare estimates based 

on the respective distributional assumptions. Unsurprisingly, ES estimates also 

confirmed the superiority of GPD in approximating the tail behaviour. The Student-t 

distribution too delivered reasonable estimates, especially compared to the normal 

distribution which is absolutely unsuitable for estimation of ES. 

Although we made a strong case against the use of normal distribution in financial 

applications in this thesis, it is fair to acknowledge that it still has a role to play in 

finance. As Costa et al. (2005) show, for investors who do not resort to derivatives or 

particularly risky asset management strategies and hold mainly Treasury Bills and a few 

equities it remains a reliable and useful statistical tool for managing financials risks. 

The bottom line is that one should be very cautious when she intends to use the normal 

distribution to approximate the behaviour of returns. It can make her life much easier 

but at the same time it can lead to a serious miscalculation of risks she is faced with. 

Recent financial crisis provides the best warning. 
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APPENDIX A 

 
Figure 29 Correlogram of PX returns. Source: author’s calculations. 

 

  LAG      ACF          PACF         Q-stat. [p-value] 

 

    1   0,0878  ***   0,0878 ***     30,8143  [0,000] 

    2  -0,0264  *    -0,0344 **      33,6047  [0,000] 

    3  -0,0258       -0,0206         36,2664  [0,000] 

    4   0,0356  **    0,0392 **      41,3439  [0,000] 

    5   0,0212        0,0132         43,1411  [0,000] 

    6  -0,0097       -0,0114         43,5150  [0,000] 

    7  -0,0193       -0,0147         45,0008  [0,000] 

    8   0,0112        0,0133         45,5002  [0,000] 

    9  -0,0036       -0,0086         45,5508  [0,000] 

   10   0,0417  ***   0,0435 ***     52,5091  [0,000] 

   11   0,0117        0,0061         53,0628  [0,000] 

   12   0,0390  **    0,0395 **      59,1683  [0,000] 

   13   0,0397  **    0,0355 **      65,4914  [0,000] 

   14   0,0238        0,0172         67,7690  [0,000] 

   15  -0,0086       -0,0101         68,0684  [0,000] 

   16  -0,0025       -0,0003         68,0930  [0,000] 

   17   0,0565  ***   0,0561 ***     80,9331  [0,000] 

   18   0,0193        0,0061         82,4326  [0,000] 

    

 

  LAG      ACF          PACF         Q-stat. [p-value] 

 

   19  -0,0108       -0,0076         82,9057  [0,000] 

   20  -0,0322  **   -0,0279 *       87,0842  [0,000] 

   21   0,0153        0,0168         88,0203  [0,000] 

   22   0,0202        0,0090         89,6556  [0,000] 

   23   0,0081        0,0030         89,9187  [0,000] 

   24  -0,0151       -0,0141         90,8381  [0,000] 

   25   0,0149        0,0153         91,7294  [0,000] 

   26  -0,0043       -0,0119         91,8053  [0,000] 

   27   0,0519  ***   0,0477 ***    102,6699  [0,000] 

   28   0,0052       -0,0027        102,7788  [0,000] 

   29   0,0122        0,0107        103,3786  [0,000] 

   30   0,0443  ***   0,0438 ***    111,2993  [0,000] 

   31  -0,0015       -0,0155        111,3087  [0,000] 

   32  -0,0352  **   -0,0306 *      116,3126  [0,000] 

   33  -0,0460  ***  -0,0390 **     124,8576  [0,000] 

   34  -0,0530  ***  -0,0528 ***    136,1898  [0,000] 

   35  -0,0061       -0,0084        136,3383  [0,000] 

Table 14 Autocorrelation and partial autocorrelation function of PX returns. Source: author’s calculations. 
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Figure 30 Correlogram of squared PX returns. Source: author’s calculations. 

 

  LAG      ACF          PACF         Q-stat. [p-value] 

 

    1   0,3559  ***   0,3559 ***    506,8874  [0,000] 

    2   0,3772  ***   0,2869 ***   1076,3237  [0,000] 

    3   0,2712  ***   0,0915 ***   1370,7134  [0,000] 

    4   0,2506  ***   0,0715 ***   1622,0700  [0,000] 

    5   0,3201  ***   0,1828 ***   2032,4272  [0,000] 

    6   0,1794  ***  -0,0394 **    2161,3948  [0,000] 

    7   0,2328  ***   0,0564 ***   2378,5847  [0,000] 

    8   0,2201  ***   0,0813 ***   2572,7510  [0,000] 

    9   0,2556  ***   0,0973 ***   2834,5729  [0,000] 

   10   0,3527  ***   0,1922 ***   3333,4990  [0,000] 

   11   0,2795  ***   0,0683 ***   3646,9442  [0,000] 

   12   0,2907  ***   0,0398 **    3986,0878  [0,000] 

   13   0,1756  ***  -0,0782 ***   4109,8059  [0,000] 

   14   0,1452  ***  -0,0830 ***   4194,4397  [0,000] 

   15   0,2362  ***   0,0895 ***   4418,4448  [0,000] 

   16   0,1739  ***   0,0227       4539,9504  [0,000] 

   17   0,1760  ***  -0,0165       4664,4419  [0,000] 

   18   0,1565  ***   0,0195       4762,8716  [0,000] 

 

 

  LAG      ACF          PACF         Q-stat. [p-value] 

 

   19   0,1526  ***  -0,0144       4856,4068  [0,000] 

   20   0,1521  ***  -0,0685 ***   4949,3588  [0,000] 

   21   0,1185  ***  -0,0488 ***   5005,8210  [0,000] 

   22   0,1512  ***   0,0204       5097,7230  [0,000] 

   23   0,1270  ***   0,0278 *     5162,6301  [0,000] 

   24   0,1022  ***  -0,0058       5204,6768  [0,000] 

   25   0,1681  ***   0,0817 ***   5318,3806  [0,000] 

   26   0,1001  ***  -0,0336 **    5358,7478  [0,000] 

   27   0,1944  ***   0,0611 ***   5510,9466  [0,000] 

   28   0,1090  ***  -0,0231       5558,8075  [0,000] 

   29   0,1090  ***  -0,0060       5606,6953  [0,000] 

   30   0,0637  ***  -0,0652 ***   5623,0328  [0,000] 

   31   0,0650  ***   0,0091       5640,0734  [0,000] 

   32   0,0670  ***  -0,0160       5658,1811  [0,000] 

   33   0,0496  ***  -0,0086       5668,1148  [0,000] 

   34   0,0616  ***  -0,0135       5683,4447  [0,000] 

   35   0,0427  ***  -0,0307 *     5690,8098  [0,000] 

Table 15 Autocorrelation and partial autocorrelation function of squared PX returns. Source: author’s calculations. 
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APPENDIX B 

 
Figure 31 Cumulative mean of a random sample drawn from Student-t distribution with 3 degrees of freedom. 

Source: author’s calculations. 

 
Figure 32 Cumulative variance of a random sample drawn from Student-t distribution with 3 degrees of freedom. 

Source: author’s calculations. 
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Figure 33 Cumulative skewness of a random sample drawn from Student-t distribution with 3 degrees of freedom. 

Source: author’s calculations. 

 
Figure 34 Cumulative kurtosis of a random sample drawn from Student-t distribution with 3 degrees of freedom. 

Source: author’s calculations. 
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