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fenylacetylenových komplex̊u
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Preface

This study is mainly focused on the theoretical investigation of the hydrogen-

bonded complexes of phenylacetylene with various solvent molecules.

The work is based on experimental data of Patwari et al.1–3 For this reason,

a part of this thesis is focused on explanation of the foundations of the experi-

mental study, such as spectroscopy. My intention was to introduce the reader

to the basic ideas, which were followed in the Patwari‘s experimental study.

My principal goal was to make a connection between experimental and

theoretical results. This includes employing theoretical tools in address-

ing the given questions, which often emerge from experimental work, which

would eventually lead to better understanding of the observed phenomena.
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Chapter 1

Introduction

Phenylacetylene (PHA) belongs to the group of molecules, which are particu-

larly useful for model studies of non-covalent interactions. The PHA molecule

is small enough for such studies, yet simultaneously it contains acetylene C–H

group, two π-electron densities located on benzene ring, and acetylene C≡C

triple bond Figure (1.1), which are crucial for the study of non-covalent in-

teractions. Two latter moieties can act as hydrogen bond acceptors during

a formation of hydrogen bonds, while the acidic hydrogen atom of the C–H

group in acetylene moiety can act as a hydrogen bond donor. These prop-

erties make phenylacetylene an excellent choice for studies of competitive

hydrogen bonding.

Figure 1.1: π-electron densities of phenylacetylene

One of the major challenges that need to be addressed in hydrogen bonding

is to apriori know, how the individual functional groups in multifunctional

molecules will behave upon the interactions with suitable hydrogen bonding
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Figure 1.2: phenylacetylene-water complex

partners. In complex molecules the existing hydrogen-bonding pattern is

the result of a competition between various possible scenarios.4

The experimental study of hydrogen-bonded complexes of PHA with several

molecules was already made by Patwari and coworkers.1–3 Patwari investi-

gated complexes of PHA with different solvent molecules: water, methanol,

ammonia, methylamine, borane-trimethylamine and several other alcohols

and amines. Patwari et al. have shown that phenylacetylene domain binds

with reaction partners using several different structural motifs, which are

provided through several different interactions.1–3

For instance, PHA forms a quasi-planar cyclic complex with water incorpo-

rating O–H · · · π and C–H · · · O hydrogen bonds1,2 Figure (1.2). In this case,

one of the O–H groups of a water molecule interacts with the π-electron den-

sity of the C≡C bond, while the C–H group of the benzene ring in the ortho

position forms a hydrogen bond with the oxygen atom of a water molecule.

Thus, the structure of the phenylacetylene-water complex is different from

both the benzene-water and the acetylene-water complexes,5–11 even though

the PHA molecule contains the moieties of both benzene and acetylene.

Moreover, the phenylacetylene-methanol complex is characterised by the pres-

ence of a single O–H· · · π hydrogen bond, wherein the O–H group of methanol

interacts with the π-electron density of the benzene ring, similar to benzene-

methanol complex2 Figure (1.3).
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Figure 1.3: phenylacetylene-methanol complex

PHA forms a linear C–H · · · N “σ” hydrogen-bonded complex with ammo-

nia3 Figure (1.4), which is similar to acetylene-ammonia complex.12 Phenyl-

acetylene-methylamine complex is characterised by the presence

of N–H · · · π hydrogen bond. In this complex the N–H group of methylamine

interacts with the π electron density of the benzene ring3 Figure (1.5).

Figure 1.4: phenylacetylene-ammonia complex

These data indicate that the methylation of an interacting partner is likely

to cause a dramatic change in the structure of the moiety under investiga-

tion. Such structural change can be named “hydrogen bond switching”.4 One

of the main goals of the present study is to address the question concerning

the nature of the structural changes of the moiety, which can be induced by

very minor (e.g. methylation) structural changes of the interacting partner.
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Figure 1.5: phenylacetylene-methylamine complex

Another aim of this study is to address the importance and nature

of C–H · · · π interactions, which were investigated for the complexes of pheny-

lacetylene with borane-trimethylamine. Such interactions are very commonly

occurring in model systems Figure (1.3), as well as among the biomolecules.

It should be emphasised that our understanding of the mechanisms govern-

ing the C–H · · · π interactions is far from being complete. For example,

the monodentate structure of benzene-methane cluster is stabilised via weak

electrostatic interaction.13,14 On the other hand in the case of polycyclic aro-

matic ring the stability of the cluster and the orientation of the methane

molecule is governed mainly by the dispersion forces.13,14 The gas phase

structure of benzene dimer is a consequence of C–H · · · π hydrogen bond-

ing.15 Also, Vondrasek et al. have shown that the stabilisation energy inside

the hydrophobic core of a small protein has substantial contribution of C–H

· · · π interactions involving side chains of aromatic residues.16 Brandl et al.

have also shown that half of all aromatic rings in proteins act as hydrogen

bond acceptors.17 Taken together, these data highlight the importance

of C–H· · · π interaction, hence proper understanding of its nature seems to be

of a crucial importance.18
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Chapter 2

Background

The main experimental tools used by Patwari and his coworkers to study

the phenylacetylene (PHA) and its complexes were IR and UV spectroscopy.

The details of the experimental setup are presented in Ref. 2 and references

therein. The IR spectra of PHA and PHA complexes with water, argon,

methanol, ammonia and methylamine in C–H stretching region were recorded

using IR-UV double resonance spectroscopic method using either fluorescence

or ion detection technique.4 These spectra are showed in Figure 2.1. From

these spectra a valuable information about the perturbation of the structure

of acetylene group, the solvent-solute interactions, which are mediated by

either acetylene moiety or the benzene ring, can be gathered.

The IR spectrum of isolated PHA Figure 2.1 A contains two relatively sym-

metric transitions at 3325 cm−1 and 3343 cm−1. These can be interpreted

as the consequence of Fermi resonance coupling between the acetylene C-H

stretching vibration and a combination bend. This combination bend consists

of one quantum of C≡C stretching and two quanta of C≡C–H out-of-plane

bend.19 Upon the interactions between a solvent molecule and C≡C–H group

through the C≡C π-electron density or the C–H bond, the transitions at 3325

cm−1 and 3343 cm−1 disappear.20 The IR spectrum of the PW complex (Fig-

ure 2.1) clearly shows that the water molecule interacts with C≡C bond.1

There are no transitions at 3325 cm−1 and 3343 cm−1. In the case of PM,

the structure of acetylene group remains unperturbed.
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Figure 2.1: FDIR spectrum of (A) PHA, (B) PHA-Ar, (C) PHA-
water, (D) PHA-methanol, (E) PHA-ammonia and (F) PHA-
methylamine, in the acetylene C-H stretching region.

The shift of the O–H bond for methanol molecule clearly shows that

the O–H bond interacts with π-electron density of the benzene ring2, in a sim-

ilar fashion than in the benzene-methanol complex.2 For the PA complex

the assignment of the structure is much more straightforward. The quasi-

linear C–H· · ·N hydrogen bond is formed.3 The evidence of this formation

emerges from the fact is that C–H stretching region is shifted towards lower

frequencies by 103 cm−1.3 The PMA spectrum shows that acetylene group

does not interact with methylamine. Moreover, the C–H stretching vibration

remains almost the same, compared to the isolated PHA, which indicates no

formation of the C–H· · ·N hydrogen bond.3

This is quite surprising, since the addition of the methyl group to the solvent

molecule increases its basicity. This should cause a formation

of the C–H· · ·N hydrogen bond.4 It should be emphasised here, that the sol-

vent was chosen rationally, in order to include the series of compounds with

proton affinity increasing: water, methanol, ammonia and methylamine.

The analysis of the geometries of the PMA complexes lead to the conclusion
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that the N–H· · · π(benzene) interaction together with methyl C–H· · ·C≡C

bond interaction were present.3

Another striking feature of PMA complexes is related to their unusual hyd-

rogen–bonding properties. It is known that the alkyl amines usually act as

excellent hydrogen bond acceptors. Surprisingly, methylamine acted as a hy-

drogen bond donor.4 Very interesting feature of the PHA complexes is vast

difference between the intermolecular structure of water and methanol com-

plexes, and similarity between the ammonia and methylamine complexes.

These observations can be summarised as methyl group–induced hydrogen-

bond switching. To understand these phenomena, high level ab initio quan-

tum chemical calculations were carried out.4
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Chapter 3

Methodology and calculations

3.1 Methodology

As already mentioned in the ”Background“ section, it is clear that there is

only one experimentally observed structure for each solvent molecule. This

implies that for each type of complex there is a unique structural motif, which

is predominantly formed and may be experimentally observed. However, one

should bear in mind that phenylacetylene (PHA) molecule contains several

binding moieties, which has been mentioned in the Introduction.

All complexes under investigation are non-covalent, which is characterised by

the presence of very weak interactions. Hence, the high-accuracy quantum

chemistry methods, covering the electron correlation, were required for this

study (e.g. Møller-Plesset second order perturbation method (MP2)21 and

Coupled Cluster method covering single, double and triple electron excita-

tions (CCSD(T)).22,23 Hartree-Fock (HF) method does not include electron

correlation and therefore could not been used.24 Both MP2 and CCSD(T),

however, do not provide any information about the character of the inter-

action studied. Thus, the Symmetry Adapted Perturbation Theory25 com-

bined with Density Functional Theory26,27 (DFT-SAPT) calculations were

additionally performed.28

The first task was to find local minima on potential energy surface (PES),
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for each of the complexes studied: PHA with water (W), ammonia (A),

methanol (M) and methylamine (MA). It has been done using MP2 gradi-

ent optimisation at aug-cc-pVDZ level. It was reported that such accuracy

should be appropriate for this kind of complexes.29

Initial structures corresponding to the local minima were based on Patwari‘s

data. The structures were optimised as described above. For the PHA-

BTMA complex the experimental structural data were missing, hence

the guessed structure was used. Such guess was based on the experimental

data for structural motifs, present in other complexes. In the case of PHA-

BTMA complex, the preliminary optimisations were done at MP2/6-31+G(d)

level.30

For each solvent molecule (W, M, A, MA) three structural motifs: S1, S2

and S3 were considered. For BTMA just S1 and S2 structures were taken

into account.

1. The S1 structure can be characterised by the presence of quasi-linear

C–H· · ·X (O, N) hydrogen bond (Figure 1.4).

2. In the S2 structure the specific X (O, N)–H· · · π(benzene ring) interac-

tion is found (Figure 1.3 and 1.5).

3. The S3 structure is the quasi-cyclic complex. This complex has two fea-

tures: (N, O) X–H· · · π(C≡C) interaction and (O, N) X· · ·C–H (acety-

lene) hydrogen bond (Figure 1.2).

For a clarity, the following labels were assigned to each structure. The first

2-3 letters in the label were abbreviation of the names of the cluster com-

pounds, and last two characters specified which PHA binding side interacted

with the solvent molecule. Example: PMS2 = phenylacetylene-methanol

complex, where O–H· · · π(benzene) hydrogen bond is present. PWS3 =



CHAPTER 3. METHODOLOGY AND CALCULATIONS 20

phenylacetylene-water (PW) complex with the quasi cyclic S3 geometry.

Such labelling systems is consistently used throughout the thesis. All opti-

misations were followed by frequency calculation, to assure that investigated

structures corresponded indeed to the local minima (no negative/imaginary

frequencies should be present for the optimized structure).

3.2 Calculations

3.2.1 Single Point calculations

Single point (SP) calculations at different level of theory were then performed

on the most stable geometries. The SP calculations were carried at either

CCSD(T) or MP2 level of theory in combination with aug-cc-pVDZ basis

set31 calculations for interaction energies for all theoretically predicted com-

plexes. The density fitting was used consistently.32,33 It is generally known

that MP2 method overestimates the stabilisation energy (Ref 34), hence

the CCSD(T) single point calculations with aug-cc-pVDZ basis set were em-

ployed, in order to provide more accurate results.

All interaction energies were corrected for basis set superposition error (BSSE)

with use of counterpoise correction (CPC)34 and for zero point energy (ZPE).

Including the ZPE we pass from interaction energy to interaction enthalpy

at 0 K.

Since experiments were realized at non-zero temperatures the entropy should

be included as well. The thermodynamic characteristics (entropy, Gibbs

energy, enthalpy) were calculated using rigid rotor-harmonic oscillator-ideal

gas approximations.

Since the temperature of experiment is not known we calculated the Gibbs

energy at various temperatures, from 10 to 300 K with step of 10 K.
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The change of Gibbs energy was evaluated at MP2/aug-cc-pVDZ level. The in-

teraction energy part was replaced by more accurate interaction energy deter-

mined at the CCSD(T)/aug-cc-pVDZ level (BSSE correction was included).

The deformation energy was expected to be small and was not considered.

In the case of PHA-BTMA complex the CCSD(T)/CBS interaction energies

were calculated. These energies were determined as a sum of MP2/CBS

energies and CCSD(T) correction term Eqn. (3.1).

∆ECBS
CCSD(T ) = ∆ECBS

MP2 +
(
∆ECCSD(T ) −∆EMP2

)
mediumbasisset

(3.1)

The method takes advantage of the fact that both the CCSD(T) and MP2

methods exhibit approximately the same basis set dependence.35 MP2 corre-

lation energies have been extrapolated using aug-cc-pVDZ and aug-cc-pVTZ

basis sets. We used Kim and coworkers extrapolation.36 The Kim extrap-

olation assumes that curves of interaction energies corrected as well as un-

corrected for the basis set superposition meet each other in the CBS limit.

The CCSD(T) correction term was determined at the aug-cc-pVDZ basis set

level.

3.2.2 Symmetry Adapted Perturbation Theory

Symmetry adapted perturbation theory25 using density functional theory26,27

(DFT-SAPT)28 calculations were carried out for all complexes of PHA and

also for nucleic acid base pair taken from DNA crystal geometry. The study

of nucleic acid base pair is attached in appendix.

The interaction energy is given by as a sum of various energies (Eqn. 3.2):

EDFT−SAPT
int = E

(1)
Pol +E

(1)
Ex +E

(2)
Ind +E

(2)
Ex−Ind +E

(2)
Disp +E

(2)
Ex−Disp +δHF (3.2)

where:

E
(1)
Pol is electrostatic term,
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E
(1)
Ex, E

(2)
Ex−Ind, E

(2)
Ex−Disp are exchange-repulsion terms,

E
(2)
Ind is induction term,

E
(2)
Disp is dispersion term,

δHF is Hartree-Fock correction term,

DFT-SAPT decomposition was calculated with aug-cc-pVDZ basis set in com-

bination with PBE0AC exchange-correlation functional with density fitting

approximation.37 The PBE0AC functional in combination with aug-cc-pVDZ

basis set was shown to give accurate first-order terms as well as induction

and exchange terms,37 while dispersion contribution is underestimated ap-

proximately by 10-20 %.38 We implemented gradient-controlled shift proce-

dure which needs a difference shift between the vertical ionisation potential

(IP) and the highest occupied molecular orbital (HOMO) energy of the DFT

method used as an input.37 The IPs were calculated at the PBE0/TZVP

level, while the HOMO values were taken from the calculation with aug-cc-

pVDZ basis set.

All calculations were carried out with Gaussian 0320 and Molpro 0639 pack-

ages. The CCSD(T) calculations for the CCSD(T) correction term were

performed at the CHINOOK supercomputer (USA)40.
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Chapter 4

Results and discussions

4.1 Complexes of phenylacetylene with wa-

ter, methanol, ammonia and methylamine

4.1.1 Comparison of various methods

The experimental results based on the spectroscopic measurements (see Back-

ground section) indicated the formation of PWS3, PMS2, PAS1, and PMAS2

structures. These experimental results have been supplemented by MP2/aug-

cc-pVDZ stabilisation energies corrected for ZPE and BSSE,1–3 performed

on geometries optimised at MP2/aug-cc-pVDZ level.

In Table (4.1) stabilisation energies corrected for BSSE and ZPE are showed.

For methanol (PMS2) and ammonia (PAS1) complexes we have found that

the experimentally observed structures are the most stable ones. Contrary,

in the case of water (PWS3) and methylamine (PMAS2) complexes, the ex-

perimental structures corresponded to the higher energy minima.4

The CCSD(T) stabilisation energies corrected for ZPE, taken from MP2/aug-

cc-pVDZ calculation, are also showed in Table 4.1. For CCSD(T) approach,

the experimentally observed PWS3, PMS2, and PAS1 structures represented

respective global minima. However, PMAS2 experimental structure was rep-

resented only by a local minimum with higher energy.4
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Structure EMP2 ECCSD(T ) ∆G10K

PWS1 -6.4 -6.2 -5.6
PWS2 -8.1 -6.5 -6.2
PWS3 -7.6 -7.1 -6.7
PMS1 -9.8 -9.1 -8.2
PMS2 -13.6 -9.6 -8.5
PMS3 -13.1 -9.5 -7.8
PAS1 -8.7 -8.2 -7.2
PAS2 -5.4 -3.2 -2.7
PAS3 -6.7 -5.9 -5.4
PMAS1 -12.4 -11.3 -9.9
PMAS2 -10.6 -6.4 -5.4
PMAS3 -12.1 -9.4 -8.4

Table 4.1: ZPE and BSSE corrected stabilisation energies (kJ/mol) of var-
ious PHA complexes calculated using aug−cc−pVDZ basis set and ∆G for
the formation of various complexes at 10 K.

The differences in the stabilisation energies of all three isomers were quite

marginal in the case of water and methanol 0.9 kJ/mol and 0.5 kJ/mol, re-

spectively. The picture was quite different for ammonia and methylamine

complexes. In case of A complexes, the energy difference between two most

stable structures was 2.3 kJ/mol. However, for MA complexes the exper-

imentally observed PMAS2 structure was less stable by 4.9 kJ/mol than

the global minimum (PMAS1).4

4.1.2 DFT-SAPT vs. CCSD(T) results

The DFT-SAPT decomposition of interaction energy was done with aug-cc-

pVDZ basis set for all twelve complexes. Results are showed in Table 4.2.

The last column in the table represents DFT-SAPT stabilisation energies

corrected for ZPE, taken from MP2/aug-cc-pVDZ calculations.
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Structure E(1)
el E(2)

I E(2)
D E(1)

Ex δHF ESAPT ESAPT
ZPE

PWS1 -17.0 -2.6 -6.4 17.4 -2.0 -10.6 -6.3
PWS2 -11.9 -2.7 -13.1 18.2 -1.5 -11.0 -7.3
PWS3 -25.5 -4.8 -13.6 32.2 -3.5 -15.2 -9.0
PMS1 -20.9 -3.1 -10.2 24.8 -2.8 -12.2 -9.0
PMS2 -17.4 -3.2 -26.1 36.2 -3.0 -13.5 -10.2
PMS3 -20.2 -3.2 -25.6 37.7 -3.2 -14.6 -10.7
PAS1 -24.9 -4.1 -8.4 27.0 -3.8 -14.2 -8.8
PAS2 -9.3 -1.4 -14.4 19.1 -1.4 -7.4 -3.9
PAS3 -22.4 -3.5 -13.8 29.8 -2.9 -12.8 -7.8
PMAS1 -29.2 -4.7 -12.7 35.9 -5.2 -16.0 -11.8
PMAS2 -15.4 -1.5 -26.3 35.2 -2.6 -10.6 -7.1
PMAS3 -25.5 -3.3 -23.1 41.1 -3.6 -14.4 -10.8

Table 4.2: DFT−SAPT interaction energy decomposition (kJ/mol) for vari-
ous complexes of PHA calculated using aug−cc−pVDZ basis set.

In the case of experimentally observed PWS3 structure, electrostatics along

with dispersion interactions were the most important interactions in terms

of stabilising the complex (Table 4.2). The induction and δHF terms were

marginal. For the PWS1 structure with the ‘classic‘ hydrogen bond, the elec-

trostatics was clearly the main stabilising factor, followed by the dispersion

and the induction term. Stabilising contribution emerging from δHF term

was again the smallest one. PWS2 isomer had a very different energy decom-

position in comparison with PWS1 isomer. Therein, mainly dispersion was

responsible for the attraction between the cluster compounds. Electrostatics

was almost as strong as dispersion interaction, however. Yet again induc-

tion and δHF contributions were the smallest ones. The energy differences

between the local minima structures of water complexes were in the case

of DFT-SAPT calculations larger than obtained by CCSD(T). It is worth

to mention that the order of the complex stability remained the same.

The energy decomposition for PMS2 structure clearly indicated that the dis-



CHAPTER 4. RESULTS AND DISCUSSIONS 26

persion interaction assisted by electrostatics are the main contributors

to the stabilisation of the complex. Energetically the most stable PMS3 iso-

mer had the largest stabilisation contribution coming from dispersion,

-25.6 kJ/mol, -20.2 kJ/mol came from the electrostatic term, and -3.2 kJ/mol

originated from the induction and δHF. Less stable S1 structure was sta-

bilised mainly by the electrostatic interaction, which was a typical feature

for all four S1 isomers.

In the case of methanol complexes the order in stability of the minima calcu-

lated with DFT-SAPT changed compares to the CCSD(T) results. The en-

ergy gap between the most stable structure and the rest increased from

0.5 kJ/mol for CCSD(T) approach to 1.7 kJ/mol for DFT-SAPT calcula-

tions.

The electrostatics was the dominant attractive interaction also in the case

of experimentally observed PAS1 structure. The second biggest attractive

interaction was the dispersion one. This was twice as attractive as the in-

duction and δHF terms, which were comparable with each other. The PAS3

isomer had similar energy decomposition pattern to already mentioned PAS1.

The big difference between PAS3 and PAS1 isomers was due to the impor-

tance of the dispersion contribution in the PAS3 structure. The PAS2 isomer

was the only structure, where the largest attractive contribution was a dis-

persive one.

Experimentally observed PMAS2 isomer was once again the only struc-

ture from MA complexes where the dispersion played the major stabilising

role. This trend was observable for all S2 complexes with different solvent

molecules. The most stable PMAS1 isomer had its electrostatic term more

than twice as large as a dispersive one. In the case of the PMAS3 structure

both electrostatic and dispersive terms were almost equally large.

For A and MA complexes, both theoretical approaches provided the same

order in the stability of local minima structures. Also, the energy difference

between the most and the least stable structures were almost the same.

For all twelve complexes, there was a strong correlation between the Eind and

δHF term, which is in agreement with already published data.41
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4.1.3 Entropy influence

Considering the fact that the temperature during the cluster formation is not

equal zero but its value is not known, there is a need to include the influence

of entropy into the calculations. Therefore we have calculated Gibbs energy

for complex formation for various temperatures ranging from 10 to 300 K

in steps of 10 K. The results (in the form of plots) are presented in Figures

4.1, 4.2, 4.3, 4.4 and 4.7. The ∆G values at 10 K are showed in Table 4.1.

The plots suggest that the complexes are probably formed below 100 K.

This is in agreement with the fact that experimental temperature in the case

of PHA expansion to vacuum is approximately 4 K.42

The Gibbs energy of cluster formation reached negative values somewhere

below 80 K for W complexes Figure 4.1. Below this temperature the PWS3

structure was the most stable one, what is supported by experimental re-

sults1. See also column ∆G in Table 4.1.

Figure 4.1: ∆G of PW complexes at various temperatures

In the case of M complexes (Figure 4.2) the S2 structure at 10 K was more

stable than S1 and S3 structures by -0.3 kJ/mol and -0.7 kJ/mol, respec-
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tively. The S1 and S3 are almost isoenergetic. Based on this difference,

the population of S1 and S3 structures should be about 2 % compare to S2.4

Figure 4.2: ∆G of PM complexes at various temperatures

Experimentally observed PAS1 isomer was the most preferred over a full

range of temperatures (Figure 4.3) and at 10 K, it was more stable than

PAS3 and PAS2 isomers by 1.8 kJ/mol and 4.5 kJ/mol, respectively.

However the populations of PHA complexes with MA were in disagreement

with experimental results. Experimentally observed PMAS2 was less pre-

ferred in the whole range of temperatures (Figure 4.4). At the lowest temper-

ature 10 K, the PMAS2 isomer was less stable by 3.0 kJ/mol and 4.5 kJ/mol,

respectively, as compared to the PMAS3 and PMAS1 isomers.

4.1.4 Structure probability and kinetic trapping

It is clear that there must be other factors playing important role in these

interactions. In particular, for M and MA complexes which were not covered

by calculations. The disagreement between the theoretical and experimental

data for M and MA complexes could be explained as follows:
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Figure 4.3: ∆G of PA complexes at various temperatures

Figure 4.4: ∆G of PMA complexes at various temperatures

When the clusters are formed at the low temperature via a collision be-

tween the PHA and a solvent molecule, there is more likely that the S2
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isomer will be formed, rather than the S1 or S3 isomers. This hypothesis

is based on the fact that the benzene ring provides a bigger cross-section

area for the interaction compared to the remaining two binding sites (C≡C

bond and hydrogen bond).4 This feature cannot be covered be the method

of ∆G used, due to the approximations beneath (i.e. ideal gas-rigid rotor-

harmonic oscillator). This probability aspect along with already mentioned

small (0.4 kJ/mol) energy preference of PMS2 isomer are the most impor-

tant factors which are responsible for the unique formation of the PMS2

structure.4

In the case of MA complexes, an exclusive formation of the S2 structure,

which is not supported by stabilisation energy and ∆G calculations, is sug-

gested to emerge from the cross-section entropy effect and the kinetic trap-

ping.

The kinetic trapping may be described as follows: Upon the S2 structure

formation (as the most probable isomer based on cross-section entropy),

at the low experimental temperature, the probability of crossing the barrier

between S2 structure and another one, is low. This idea is based on the con-

cept that S2 local minimum structure is surrounded with high energy barriers

on a given potential energy surface (PES).4 It should be mentioned that this

explanation is not supported by any kind of calculations and at this point

has a status of a hypothesis.

4.2 Complexes of phenylacetylene with

borane-trimethylamine

4.2.1 Comparison of various methods

The experimental results for PBTMA complexes clearly showed that there

was only one experimentally-observed structure. Analyses of the spectra

and comparison with other hydrogen bonded complexes lead Patwari et al.

to the conclusion that BTMA interacted primarily with the π-electron density
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of the benzene ring.18 The PBTMAS2 isomer was formed. The structures

of local minima of PBTMA complexes are illustrated in the Figures 4.5 and

4.6

Figure 4.5: phenylacetylene-borane-trimethylamineS1 complex

Figure 4.6: phenylacetylene-borane-trimethylamineS2 complex

For PHA complexes, the same calculations were performed with borane-

trimethylamine (BTMA) as with W, M, A, and MA. Further, the CCSD(T)/

CBS calculations were carried out.
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The optimal geometries of local minima structures were found using MP2/aug-

cc-pVDZ level of theory. The stabilisation energies for given geometries,

at different levels of theory, same as before, were performed. Namely,

CCSD(T)/aug-cc-pVDZ, MP2/aug-cc-pVDZ also DFT-SAPT/aug-cc-pVDZ,

and CCSD(T)/CBS. In accordance with the methodology applied previously,

all stabilisation energies have been corrected for BSSE and ZPE (Table 4.3).

Structure EMP2
aug−cc−pV DZ ECCSD(T )

aug−cc−pV DZ EDFT−SAPT
aug−cc−pV DZ ECCSD(T )

CBS

PBTMAS1 -12.4 -11.1 -11.5 -14.1
PBTMAS2 -16.5 -10.9 -11.7 -15.6

Table 4.3: ZPE and BSSE corrected stabilisation energies (kJ/mol) for
the PHA−BTMA complexes calculated at various levels of theory.

The PBTMAS2 structure at the MP2/aug-cc-pVDZ level was more stable

than the PBTMAS1 structure by 4.1 kJ/mol, what was in agreement with

experimental data. We have used CCSD(T)/aug-cc-pVDZ approach for more

accurate comparison of these two systems, because of well known feature

of the MP2 to overestimate dispersion contribution.

The CCSD(T)/aug-cc-pVDZ data provided results where the PBTMAS1 iso-

mer was more stable by 0.2 kJ/mol, as compared to the PBTMAS2. That

contradicts the experimental results. We obtained same energy difference for

S1 and S2 isomers by the DFT-SAPT decomposition. In this case was the

order of statibility of the considered minima in agreement with experimental

results.

The energy difference between PBTMAS1 and PBTMAS2 structures was 0.6

kJ/mol. Thus, we have carried out the most accurate calculations. Namely,

the CCSD(T)/CBS with Kim extrapolation of MP2 energy were performed.36

With this level of theory, the experimentally observed PBTMAS2 isomer was

more stable than the PBTMAS1 isomer by 1.5 kJ/mol.18
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The ∆G calculations were performed in the same way as in previous cases

only with one exception. The MP2/aug-cc-pVDZ stabilisation energy was

substituted by CCSD(T)/CBS stabilisation energy. The ∆G of the complex

formation as a function of temperature is depicted on Figure 4.7. For both

structures, ∆G reached negative values in temperatures below 110 K. The S2

structure was stable for lower temperatures, starting below 90 K.18

The formation of the PBTMAS2 cluster (-15.6 kJ/mol) was preferred over

the formation of the PBTMAS1 cluster (-12.8 kJ/mol) at 10 K (Figure 4.7),42

what is in accordance to the experimental data.18

Figure 4.7: ∆G of PBTMA complexes at various temperatures

4.2.2 DFT-SAPT decompositions

The DFT-SAPT decomposition of stabilisation energies of PBTMA com-

plexes is showed in Table 4.4. For the PBTMAS1 structure the electro-

static term (-20.8 kJ/mol) was more attractive than the dispersion term

(-16.4 kJ/mol). The contributions from the induction and δHF terms were

marginal.18
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Structure E(1)
el E(2)

I E(2)
D E(1)

Ex δHF ESAPT

PBTMAS1 -20.8 -2.6 -16.4 28.5 -2.7 -14.0
PBTMAS2 -21.4 -2.5 -34.3 47.3 -3.7 -14.6

Table 4.4: DFT−SAPT interaction energy decomposition (kJ/mol) for
the PHA−BTMA complexes calculated using aug−cc−pVDZ basis set.

The electrostatic term for the PBTMAS2 structure (-21.4 kJ/mol) was simi-

lar to the electrostatic contribution for the PBTMAS1 structure (-20.8 kJ/mol).

This finding is surprising mainly because the stacked structures (the struc-

tures stabilised via dispersion interaction) usually have significantly lower

stabilisation energy, emerging from the electrostatics, compared to the struc-

tures with ‘conventional‘ hydrogen bonds (structures stabilised via electro-

static and induction interactions).41

The main difference in the decomposition of the analysed minima laid within

the dispersion contribution to the total stabilisation. For the S2 cluster

(-34.3 kJ/mol) dispersion played much more important role compared to the S1

cluster18 (-16.4 kJ/mol). Due to the significant exchange-repulsion term

in the decomposition for the S2 cluster the total stabilisation energies for

both clusters S1 and S2 were comparable (see Table 4.4). The picture re-

mained unchanged after including the ZPE correction.18

The stabilisation energies obtained by the DFT-SAPT/aug-cc-pVDZ and

the CCSD(T)/aug-cc-pVDZ methods were underestimated compared

to the CCSD(T)/CBS data. This is in agreement with the results published

by Hesselmann and Jansen.43 The DFT-SAPT analysis strongly indicated

that many of the C–H· · · π hydrogen-bonded PBTMA complexes were sta-

bilised primarily through dispersion interactions with significant contribution

from electrostatics and a very small induction contribution.18
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Chapter 5

Conclusions

The phenylacetylene-water complex, which is characterised by the presence

of quasi-cyclic arrangement with the O–H· · ·O and C–H· · ·O interaction, was

the most stable structure. This statement was verified by the calculations

of stabilisation energies and ∆G of formation for all the three conformers.

The PWS3 structure was more stable by 0.6 kJ/mol and 0.9 kJ/mol than

PWS2 and PWS1, respectively. The ∆G difference between PWS3 and other

structures is even larger.

In the case of the phenylacetylene-methanol complex, the most stable struc-

ture was the PMS2 structure, which was by about 0.1 kJ/mol and 0.4 kJ/mol

respectively more stable than the other two structures. If the ∆G values are

considered, the difference between PMS2 structure and the other two struc-

tures increased further.

The stabilisation energy and ∆G calculations for complex of PHA with am-

monia revealed that the PAS1 structure was the most stable structure among

the PHA ammonia complexes.

The theoretical results of water, ammonia and methanol complexes were

found in good agreement with the experiment. The exception was the PMAS2

structure, which experimental structure was the least stable one. This dis-

crepancy could be caused by either kinetic trapping or entropy effect.

The present results showed that the influence and interplay between thermo-
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dynamic stability and temperature contribution, entropy factors, and kinetic

trapping, are very crucial during the formation of non-covalent complexes

in the gas phase.

The DFT-SAPT calculation showed that electrostatic is the most important

type of interaction, in the case of water and ammonia complexes, whereas

dispersion played the predominant role among all methanol and methylamine

interactions. The DFT-SAPT results indicated that the ratio between elec-

trostatic and dispersion terms had determined the kind of these two interac-

tions, which would be dominant. These results are directly linked to experi-

mentally observed hydrogen bond switching.

According to the results obtained, the S1 and S2 structures of borane-

trimethylamine and PHA complexes were nearly isoenergetic at CCSD(T)/

aug-cc-pVDZ level of theory. Improving the level of calculations to the CBS

limit lead to the energy separation of these two structures, and S2 struc-

ture became more stable. The Gibbs energy calculations clearly showed that

formation of the S2 complex is preferred to the S1 structure. DFT-SAPT

calculations indicated that the dispersion together with electrostatic were

the most important stabilisation factors for the experimentally observed S2

complex.

In the case of the water, methanol and ammonia complexes, the CCSD(T)/

aug-cc-pVDZ results agreed well with the experimental data. The energy dif-

ferences between structures were quite small for the complexes of methanol.

However, the complexes containing water and ammonia had substantial gaps

between the considered minima. The calculated energies of methylamine

complex did not agree with the experimental results, hence it is likely that

the PMAS2 structure may be kinetically trapped.

DFT-SAPT analysis indicated that electrostatic contribution to the stabili-

sation of experimentally observed PHA complexes with water and ammonia

played predominant role. The dispersion played an equally important role

in methanol and methylamine complexes. In borane-trimethylamine com-

plexes the picture was quite different. For experimentally observed complex,

both electrostatic and dispersion were dominant attractive forces.
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