
Univerzita Karlova v Praze
Filozofická fakulta

Ústav informačních studií a knihovnictví

Informační věda

Roman Chýla

Automated methods of textual content analysis and
description of text structures

Automatizované metody popisu struktury odborného textu a vztah některých prvků ke
kvalitě textu

Rok podání: 2011

Vedoucí práce: Doc. PhDr. Vladimír Smetáček, CSc

Prohlašuji, že jsem dizertační práci napsal samostatně a s využitím pouze uvedených a
řádně citovaných pramenů a literatury a že práce nebyla využita v rámci jiného
vysokoškolského studia či k získání jiného nebo stejného titulu.

Ženeva, 9. srpna 2011

Abstract
Universal Semantic Language (USL) is a semi-formalized approach for the description
of knowledge (a knowledge representation tool). The idea of USL was introduced by
Vladimir Smetacek in the system called SEMAN which was used for keyword
extraction tasks in the former Information centre of the Czechoslovak Republic.
However due to the dissolution of the centre in early 90's, the system has been lost.

This thesis reintroduces the idea of USL in a new context of quantitative content
analysis. First we introduce the historical background and the problems of semantics
and knowledge representation, semes, semantic fields, semantic primes and universals.
The basic methodology of content analysis studies is illustrated on the example of three
content analysis tools and we describe the architecture of a new system. The application
was built specifically for USL discovery but it can work also in the context of classical
content analysis. It contains Natural Language Processing (NLP) components and
employs the algorithm for collocation discovery adapted for the case of cooccurences
search between semantic annotations.

The software is evaluated by comparing its pattern matching mechanism against another
existing and established extractor. The semantic translation mechanism is evaluated in
the task of automated document classification with special attention to the problem of
semantic ambiguity and correct translation. Finally we evaluate the ability of the system
to discover statistically significant semantic relationships from textual corpora.

Abstrakt
Univerzální sémantický jazyk (USJ) je semi-formalizovaný způsob zápisu znalostí
(systém pro reprezentaci znalostí). Myšlenka USJ byla rozvinuta Vladimírem
Smetáčkem v 80. letech při pracech na systému SÉMAN (Universální semantický
analyzátor). Tento systém byl využíván pro automatizovanou extrakci klíčových slov v
tehdejším informačním centru ČSSR. Avšak se zánikem centra v 90. letech byl systém
SEMAN ztracen.

Tato dizertace oživuje myšlenku USJ v novém kontextu automatizované obsahové
analýzy. Nejdříve prezentujeme historický kontext a problémy spojené s reprezentací
znalostí, sémů, sémantických polí, sémantických primitivů a univerzálií. Dále je
představena metodika kvantitativní obsahové analýzy na příkladu tří klasických
aplikací. Podrobně popíšeme architekturu nové aplikace, která byla vyvinuta speciálně
pro potřeby evaluace USJ. Program může fungovat jako nástroj pro klasickou
obsahovou analýzu, avšak obsahuje i nástroje pro zpracování přirozeného jazyka (NLP)
a využívá algoritmů pro vyhledávání kolokací. Tyto byly upraveny pro potřeby
vyhledávání vazeb mezi sémantickými anotacemi.

Jednotlivé součásti programu jsou podrobeny praktickým testům. Subsystém pro
vyhledávní vzorů v textech je porovnán s existujícím extraktorem klíčových slov.
Mechanismus pro překlad do sémantických kódů je otestován na příkladu automatické
klasifikace dokumentů a speciální pozornost věnujeme problémům mnohoznačného
překladu. Poslední část evaluace se zabývá schopnostmi systému objevit významné
vazby mezi sémantickými anotacemi v textu.

Acknowledgements

First of all, I want to thank my supervisor Vladimir Smetacek, who helped me to see
many things differently. He patiently bore all my doubts and valantly fought off all
attacks in the long discussions we had with a mischievous smile, saying; “Maybe it is
all useless and we'll have to junk it in the end. But who knows for sure before trying?”
For this and for much more I owe him sincere gratitude.

A great thanks goes to friends who helped me with questions, helped me review the text,
who did the proofreading or simply listened and discussed with me various problems. In
no particular order they were Claire Palmiste, Hugo Day, Linda Skolkova, Semiray
Girgis, Ilknur Hos, Piotr Praczyk, Kvetoslav Minarik, Ariane Koek. Thank you. Thank
you!

And of course to my parents! How could I ever finish this work without my mom's
gentle pressure and my father's kind benevolence? If I was able to complete the task, it
is thanks to what they thought me and what they helped to shape in me. This thesis is a
product of a long time which was made longer by my stay in different countries. But I
dare say it was also a lot more interesting that way. I learnt a lot. And in the end it will
be all put to a good use.

Table of Contents
I. INTRODUCTION.................................1
I.1 Motivation ..2

I.2 Research questions................................ 3

I.3 Contributions..4

I.4 Thesis outline... 4

II. SEMANTICS AND KNOWLEDGE
REPRESENTATION..................................7
II.1 USL and Formal Concept Analysis. .10

II.2 Existential-conjunctive logic.............12

II.3 Semantics..14
II.3.1 What is meaning?..................................14
II.3.2 Semantic fields......................................16
II.3.3 Semantic primes and universals............19

II.4 USL and Lexical semantics...............23
II.4.1 Words as lexical items...........................24
II.4.2 But what is a word? And how do we
define its meaning?...25
II.4.3 Words and grammatical categories........26
II.4.4 Problematic areas of the thesaurus........27
II.4.4.1 Homonyms... 27
II.4.4.2 Polysemy..27
II.4.4.3 Synonymy.. 28
II.4.4.4 Antonymy...28
II.4.4.5 Hyponymy/hypernymy..........................29
II.4.4.6 Meronymy..29
II.4.4.7 Difference between names and types.....29
II.4.5 Word sense disambiguation...................30

II.5 Concluding remarks on USL............31

III. CONTENT ANALYSIS......................35
III.1 Main types of content analysis........39

III.2 The components of content analysis. . .
40
III.2.1 Coding and categories..........................41
III.2.1.1 Reliability and validity.........................43

Validity...45
III.2.2 Data ... 46

Sampling units.....................................47
Recording units.................................... 47
Units of analysis...................................47
Contextual units................................... 47

IV. SOFTWARE FOR CONTENT ANALYSIS. 49
IV.1 General inquirer...............................53
IV.1.1 Disambiguation rules............................55
IV.1.2 Dictionary...56

IV.2 TABARI...60
IV.2.1 What TABARI does..............................61
IV.2.2 How TABARI works............................62

1. Word classification........................... 65
2. Processing local grammatical
structures..65
3. Event coding....................................65
4. Information output...........................66

IV.2.3 Pattern matching...................................68
IV.2.4 Dictionary...71
IV.2.5 Concluding remarks.............................72

IV.3 Yoshikoder... 73
IV.3.1 What Yoshikoder does..........................74
IV.3.2 How Yoshikoder works........................76
IV.3.3 Concluding remarks.............................78

IV.4 SEMAN..78
IV.4.1 NLP pre-processing..............................79
IV.4.2 Translation into semantic codes...........83
IV.4.3 Storage and analysis............................. 89
IV.4.4 Search for statistically significant
cooccurences... 92
IV.4.4.1 Types of cooccurences..........................94
IV.4.4.2 Extracting cooccurences from text96
IV.4.4.3 Association measures..........................102
IV.4.5 Dictionary creation and maintenance.106
IV.4.6 SEMAN GUI and scripting control. . .109

IV.5 Comparison.....................................112

V. EVALUATION OF SEMAN............115
V.1 The pattern matching mechanism...115
V.1.1 BibClassify...115
V.1.2 Comparison..119

V.2 Semantic ambiguity..........................124
V.2.1 Feature selection and scaling...............127
V.2.2 The comparison...................................129
V.2.2.1 HEP corpus ..134
V.2.2.2 The 20 newsgroups corpus...................137
V.2.3 Search for significant combinations....142
V.2.3.1 Results.. 144
V.2.3.2 Discussion..147

VI. CONCLUSIONS...........................151

VII. BIBLIOGRAPHY.........................155

VIII. APPENDICES...........................162
VIII.1 Illustration Index.........................162

VIII.2 Bibliography on SEMAN............163

VIII.3 Installation instructions..............165

I. INTRODUCTION

I. INTRODUCTION

“Vague, but exciting.” Such was the handwritten note of a reviewer on a proposal by Tim
Berners-Lee for a system that later became known as World Wide Web; the biggest
network people have ever built and also the biggest source of information for and about
people. It was designed for researchers at European Organization for Nuclear Research
(CERN), but exceedingly elegant and beautiful in its simplicity, it was adopted later by
people outside the research community. They built on top of it and created more than just a
sum of the individual parts. And as with everything in human history, this tool was put to
use for all possible zeals – it virtually saves lives, and literally takes them away as well.

But I do not mention the beginnings of WWW to draw any sort of a far fetched and
arrogant parallel between the big invention called Web and the small research task that I am
going to present here. No, not at all. I have other reasons. I owe much to the Web and to
“IT” at CERN. A strange twist of luck or chance brought me to CERN and these lines are
written only a few meters away from the shabby and dark corridor where Tim Berners-Lee
and Robert Cailliau once sat in front of the first web browser. It is a dark passage down
there, but visitors must notice the golden plaquette on the wall – the only source of light in
the dark alley. When I came closer to it another handwritten note came to my mind. It was
attached to an old computer in the CERN museum and read; “This machine is a server. DO
NOT POWER DOWN!!!”1

As you can imagine, the beginnings must have been difficult and not always smooth. The
idea of the global information system must have been exciting, perhaps the more vague, the
more exciting. But the initial rush was probably soon replaced by a realization that things
must be implemented. Not “somehow” or “anyhow”, but well enough. To do more than
necessary is as wrong as to do less than necessary. And there it is where the parallel story
for me starts. It was in classes and during discussions with my supervisor at Charles
University. Discussions about a computer system that could “do something useful” -
something that could extract, filter out, provide useful information, make sense of the
information avalanche in which we are submerged. It was during these discussions about
history, religion, all the biological, ethical, rational or irrational decisions that people make,
that the idea of a computer system called SEMAN was introduced to me. And the more
vague, the more exciting it was!

What if we were able to “read” the texts written by people and indirectly deduce from these
texts what and how people think? What if we use the information now widely available on
the Web to analyse ourselves? What if we could help the computer to make some sense of
the bits that are floating around? Dreams, for sure, vague but exciting dreams, I dare say.

1 http://en.wikipedia.org/wiki/File:First_Web_Server.jpg

1

I. INTRODUCTION

My supervisor started a work on such a project nearly 35 years ago, in the times when
mainframes (and especially mainframe computers in the then communist block) had very
limited memory. Software and hardware constraints were considerable. Yet it was still
possible to implement the idea of a computer code which translated the natural language
texts into a semi-formalized form that got analyzed later. Vladimir Smetacek called this
form “Universal Semantic Language” (USL) and it allowed him and his collaborators to
look at the features of texts. USL was effectively a knowledge representation system which
encoded our knowledge of the world into formalized categories (that stood for concepts).
Words were used as pointers towards concepts. In the semantic triangle we had the word on
one edge, semantic codes on the other edge, and indirect link of a meaning between the
two.

The system used to work in the centre of information industry of the Czechoslovak
Republic. It extracted keywords from the abstracts of scientific papers, but with the
dissolution of the centre in the post-communist times, the information system as well all
the products of the centre were lost. A few attempts were made to revive the idea, but as far
as I know, all were unsuccessful which brings us to the beginning of this thesis.

I.1 MOTIVATION
The main motivation of this research was to build a system that would implement the USL
and will test its capabilities. It also wanted to verify assumptions we had had about its
ability to extract interesting data.

A concrete application of such an idea is perhaps not useless. In offices and reading rooms,
thousands of researchers and analysts every day grapple with the textual data and ask
questions about them. We have at our disposal extraordinary amounts of text, but our
ability to process them is limited. Perhaps if we were able to find what people wrote about
the reality, then one day we could deduce from these facts what was indeed happening in
reality. For example, if there was a high degree of violence in society, then the products of
society (such as texts) could testify about this higher degree of violence.

Ideally, the computer programs should be able to “read and understand” these texts in the
same ways as people do. But we know quite well this is just a dream and what seems so
easy for people is still too difficult for any intelligent computer system. The reality is much
more profane and really not that exciting as science fiction or sensational newspapers
purport. There has been huge progress in many fields of artificial intelligence, robotics,
language processing and computer science in general. Nevertheless we are still far away
from the expectations that our ancestors had from computers just only 40, 30 or even 20
years ago (Shapiro, Tackett, Dawson, and Markoff 1998; Cuilenberg, Kleinnijenhuis, and
de Ridder 1998; Krippendorf 2004a) But the progress came slowly in small, incremental
changes and contributions such as this thesis might be perhaps useful as well.

2

I. INTRODUCTION

I.2 RESEARCH QUESTIONS

I was facing the task of reviving the idea of a system that used to work in a different
context. There was a body of published literature about the system, and the idea seemed
appealing – but it was still a vague idea. The published literature was not new, the software
did not exist anymore. But Dr. Smetacek hopefully remembered every detail. Nevertheless
I had to recreate SEMAN myself as I understood it. We spent long afternoons in
discussions and disputes whether something is a good idea or not, but usually the final
answer to my doubts was: “we shall test it and see”.

So, there were many doubts that I had at the beginning of this work, today, arguably I know
much more, but it is good to remember them.

Firstly, there were questions about the USL itself. As a tool for knowledge organization –
where can the idea be traced from? Are we using something similar as people were/will be
using after us? And there was this 'unpleasant' feeling of anarchy. The way the USL is
described is somewhat 'messy' and it does not require nor impose strict rules. By design it
refuses to have organizational principles (ideology). This was very disconcerting at the
beginning. I was expecting some organization principle, certain philosophy and patterns of
construction of the language. Because rule(s) are needed...? (Or are they?)

But the most important questions were about the application. Is it possible to translate the
text written in the natural language into this flat structure of USL? Can we enhance the text
with semantic tags around words? Can we do it despite all the problems of semantic
ambiguity associated with the translation? Can we extract useful information from such
processed texts? Will it all work?

In a more orderly fashion, the questions and tasks were as following:

1. Is the idea of the universal semantic language (USL) translatable to the form of a
working application in a different domain?

2. Can we translate the texts from their natural form into the language of USL and
actually avoid the problems of increasing entropy?

3. Can the process of extraction of facts work?

4. Is the current form of knowledge representation management sustainable? And
what tools and methods one needs to develop to improve them?

5. Is it possible to have one, universal definition of a meaning?

These were the main questions for which the work on a new application with the old name
(SEMAN) was started.

3

I. INTRODUCTION

I.3 CONTRIBUTIONS

The thesis makes the following research contributions:

1. We have developed a new research tool

2. We have reviewed the theory behind the USL and summarized its application into
the context of content analysis

3. We have evaluated the ability of the system to code texts and retrieve semantic
relationships

Besides working on the application of USL, SEMAN was conceived also as a generic tool
for content analysis. It is comparable in functionality to some existing tools and this is
another contribution of the thesis.

I.4 THESIS OUTLINE

Chapter II. starts with the introduction to the problem of knowledge representation. We
continue with the history of semantic primes and universals including the examples from
philosophy and recent lexicography. The idea of USL is compared with the theory of
Universal Characteristic, semantic fields, semantic primes and universals, and we describe
the features of the USL representation discussing the data structures used for
representation. The whole chapter II.3 is dedicated to a discussion on semantics and
whether we could find one unique meaning/definition of concepts. The chapter concludes
with personal remarks based on the experience with the maintenance of the USL dictionary.
Remarks about its potential and shortcomings I was able to perceive.

The following chapters III. and IV. concentrate on content analysis. First we review the
basic methodology of content analysis and the problems of “definition of meaning”. This
chapter is followed by review of tools for content analysis; representative tools for so
called “classical content analysis studies”. Right after this section comes the detailed
description of SEMAN, the architecture of the software, components, storage mechanism
and algorithms for translation and analysis. SEMAN is compared against the previous tools
at the end of the chapter.

The last chapter V. represents the most important part of the thesis. We evaluate the
performance of SEMAN. Firstly, the internal matching mechanisms which is a crucial
component for the extraction of information. Next we conduct an experiment with
document classification. The goal of this procedure is to find out whether SEMAN can deal
with the semantic ambiguity in the process of translation from the natural language form
into USL semantic codes. The final part of the evaluation consists of two experiments. We

4

I. INTRODUCTION

want to find out whether SEMAN can recognize and extract significant cooccurences of
semantic codes from the translated corpus and what proportion of significant pairs may be
missed.

5

I. INTRODUCTION

6

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

II. SEMANTICS AND KNOWLEDGE
REPRESENTATION

This chapter represents a short discourse on history of semantic fields and semantic
primitives, the main building blocks of USL. We will also discuss various problems
associated with the representation of knowledge, touching upon technical aspects of the
primitives and their representation in computer memory in later chapters. But before we
delve into semantics, we can look at the world of ideas and their representations in the
philosophy. We will start with Aristotle and his endeavour to organize the knowledge of a
physical world. Aristotle was in many fields the first, he compiled an unprecedented body
of facts. And what is more, Aristotle devised a system of their categorisation. Being
opposed to the world of ideas of his teacher Plato, he saw the origin of things in the
physical world and the idee as a reflection of it; he connected the physical world with the
static, spiritual heaven and made of it a dynamic, organized encyclopaedia of facts.

Aristotle was the first to establish terminology for logic, physics, biology, linguistics and
many other fields. Out of the invented terms, the categories, quantity, quality, genus,
species, noun, verb, subject, predicate are the most important for the subject of our study.
Also Aristotle's fundamentals of syllogisms and deductive logic are of no lesser
importance, such as:
All humans are mortal.
Socrates is human.
Therefore Socrates is mortal.

Much later, the four main syllogistic patterns together with the fifteen derived patterns
were studied by Christian scholastics in the many centuries that followed the dissolution of
the Western Roman empire. They served as a basis for logical operations and evolved into
rich set of tools and theories ranging from the binary, two-typed predicate logic into fuzzy
and higher-order logics, mathematical logic of the 20th century and also in the formal
semantics of the Montague grammar. We will dedicate more time to this topic when
discussing properties of the universal semantic language but let us first address the
problem of knowledge representation.

The first graphical notation of knowledge appeared very early, in the third century A.D., as
a commentary on Aristotle's Categories by the philosopher Porphyry and is up to now
called Tree of Porphyry.

7

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

Substance, for instance, is the single highest genus of substances, for no other genus
can be found that is prior to substance. Human is a mere species, for after it come the
individuals, the particular humans. The genera that come after substance, but before
the mere species human, those that are found between substance and human, are
species of the genera prior to them, but are genera of what comes after them. (Sowa
2000, 4)

Up to current times, the features that distinguish the different species of the same genus are
used in the construction of dictionaries, for definition of new categories inside Artificial
Intelligence (AI) systems, as well as for object-oriented design and programming. The tree
shows the important property of inheritance, which in other words means there is a path
from the current element towards its ancestors.

This is the principle of composition and specialization that we seem to find in nature
around us, and that we, together with Aristotle, project onto the models of the world as we
understand it.

While science flourished on the Arab peninsula and Indian continent, the European
scholastics were living in the Dark Ages. In our short historical sketch, we will leave them
there and jump fourteen centuries forward to the work of the German philosopher, diplomat
and mathematician Georg Wilhelm Leibniz who, amongst many other things, developed
Universal Characteristic. A tool for knowledge description and knowledge representation1.
Leibniz used combinatorics of prime numbers to define complex concepts. First he defined
a few primitive concepts:

substance = 2
material = 3
animate = 7
sensitive = 13
rational = 19

immaterial = 5
inanimate = 11
insensitive = 17
irrational = 23

1 We shall not forget Leibniz was also a librarian.

8

Illustration 1: Tree of Porphyry

SUBSTANCE

BODY

LIVING

ANIMAL

HUMAN

material

animate

sensitive

rational

immaterial

inanimate

insensitive

irrational

SPIRIT

MINERAL

PLANT

BEAST

Socrates etc.
Plato Aristotle

Supreme genus:

Differentiae:

Subordinate genera:

Differentiae:

Subordinate genera:

Differentiae:

Proximate genera:

Differentiae:

Species:

Individuals:

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

Complex concepts were then represented by a product of primitives. In Leibniz's theory, for
instance, “body” is material substance. The characteristics of the concept body
are therefore represented by the product of 2 and 3, similarly the number for mineral is
2x3x11, or 66; and the number for human is 2x3x7x13x19, or 10.374.

The number represents all the composite characteristics of the concept and Leibniz defined
operations for reasoning about them. To test whether human has body, the number 10.374
must be exactly divisible by 6. And if human is insensitive the number 10374 must
be exactly divisible by 17, and it is not. Therefore no human is insensitive, at least
for this definition of the concept.

Despite the development of mechanical calculators in the seventeenth century, no practical
application of Universal Characteristic was possible due to large prime numbers.2 It was
only centuries later that a similar approach would not present insuperable problems.
Nevertheless the principle was established. And it keeps returning in many knowledge
representation systems, be they lattices, USL or decimal classification systems, for
example:

Another representation, which is isomorphic to Leibniz's products of primes,
represents each concept type by a string of bits. If n is the number of defining
features, each product of primes is mapped to a string of bits of length n. A feature
represented by the i-th prime number is mapped to a string with 1 in the i-th position
and all other bits 0. Each concept type is represented by the logical OR of all the bit
strings for each of its defining attributes. Concept type A is a subtype of B (A<B) if
each position that has a 1 bit for b has a 1 bit for a. The lattice operators are defined
as follows:
A ∩ B is the logical AND of the bit strings for a and b;
A ∪ B is the logical OR of the bit strings for a and b. (Rajman 2007, 240)

Leibniz Combinatorics were also very important for the study of semantics and meaning,
of which the detailed history is given in (Wierzbicka 1996). “Leibniz even began a program
of lexical investigation with a view to discovering the primitive notions and rules of
composition from which all complex notions were composed... his ars combinatoria or
'universal characteristic', is a direct ancestor of the present work [on semantic primes and
universal].” (Goddard 1994, 9)

2 Interestingly, Leibniz is quoted as saying: "It is unworthy of excellent men to lose hours like slaves in the
labour of calculation which could safely be relegated to anyone else if machines were
used."[WIKI#History of computing hardware, quoting Smith, David Eugene (1929), A Source Book in
Mathematics, New York: McGraw-Hill, pp. 180–18]

9

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

II.1 USL AND FORMAL CONCEPT ANALYSIS

The symmetric hierarchies generated by Leibniz's method are called lattices and they are
an important method for knowledge organization in Artificial Intelligence. Another method
with similar purpose called Formal Concept Analysis was invented by Rudolf Wille in
1984 (FCA).3 The difference is that Universal Characteristic was designed to describe in a
compact way the properties of objects, while FCA approaches the same problem from the
opposite direction. Its aim is to discover the underlying structure inside the set of known
properties.

FCA is used for tasks such as automatic concept clustering and automated ontology
construction. It is based on the Aristotelian duality of intension and extension – as in the
classical logic, where intension defines the features (differetiae) that characterize objects,
and extension is the set of all objects that belong to the given group.

For example, the concept type “Dog” applies to fewer entities in the real world than
its supertype “Animal”, but more attributes are required to describe it. Concept are
described as a natural way of grouping things by means of relationships between
objects and attributes. The world (called context) is characterized by the three
dimensions <O, A, H> where

– O is a set of objects;

– A is a set of features;

– H is the relationship between objects and attributes: (o ,a)∈H means that the
object o has the attribute a..

This method is effective since it bypasses the combinatorial explosion induced by
Leibniz's method. Leibniz's method generates lattices containing all possible
combinations of features, but most of these combinations never actually occur in
practice...The FCA lattices, however, contain only known concept types and likely
generalizations...An FCA lattice can also be refined. For instance, new concepts can
be created by adding supplementary features to the existing ones. Concept refinement
corresponds to the application of the lattice operator ∩ . For instance, “Beer”
would be "sparkling"∩"alcoholic"∩"madeFromFrain" . (Rajman 2007, 240)

In this sense, USL can be viewed as informal application of FCA to lexical items, objects
are represented by the entries in the lexicon and the semantic features are substituted by
semantic codes. The relation H is denoted by the sign of equality and we can generate set
of objects and their attributes.

3 Interestingly, the USL works with the same set of objects and attributes as FCA.

10

Illustration 2: Visualisation of the High-Energy physics taxonomy written in the USL. Some components are not attached to any word (like 0003w) and the FCA discovered two
places where the entries miss connections (the empty boxes).

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

II.2 EXISTENTIAL-CONJUNCTIVE LOGIC

The subset of logic with only ∃ and ∧ is called existential-conjunctive or EC
logic. It is a common subset for translating, relating, and analyzing the specialized
notations of many different fields. It is also the subset used to represent all the
information stored in commercial database systems, both relational and object-
oriented. EC logic is therefore an extremely important subset, but it has one serious
limitation: it cannot represent any generalization, negations, implications, or
alternatives. For that, the operators ∀ , ~ ,→and∨ are necessary. (Sowa 2000, 17)

From the perspective of logic, USL can be classified as existential-conjunctive logic. As an
example, the transliteration of the concept father in the USL into the notation of EC
logic would be following:

∃ x
1
human x

1
∧male x

1
∧parenting x

1

This formula says that there exists an x that has the qualities denoted as human, male and
parenting. If we were to include a more sophisticated version, we could specify arguments
of a preposition.

∃ x
1
humanx

1
∧male x

1
∧parenting x

1,
y

2

This small subset of logic is sufficient to represent all the things that exist in the
universe, their properties, and their relationships to every other thing. It forms the
common logical core of every software system that stores and retrieves data of any
kind. (Sowa 2000, 163)

USL is just a particular application of the EC logic and therefore shares the power of the
EC logic. However, all those systems of knowledge representation have serious limitations.
It was already mentioned when discussing the Leibniz's Ars Combinatorics. Multiplication
can only represent conjunction, it cannot represent negation, disjunction, or implication.
Even if Leibniz later replaced his single numbers with a pair of positive and negative
numbers for each concept, he never found a way to represent all the logical operators and
rules of inference.

Because of this limitation, we must draw a clear line between the power of a knowledge
representation system that is based on the EC logic and the ontologies based on the higher
order logics. Researchers in AI made this experience in early 80' when it became clear that
knowledge representation systems needed to have two different parts – so called T-box and
A-box (Schmolze, Beranek, and Inc 1985; Weida 1991). The terminological reasoner (T-
box) has got task definitions of the terms (knowledge), while the assertional reasoner (A-

12

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

box) is responsible for drawing inferences, making assertions about those terms. Leibniz
universals serve as a T-box system. It is a hierarchy of concepts with multiple inheritance.
It holds characteristics of different various supertypes and has the power of EC logic.
However, it is not the task of the T-box to encode every possible property of the world. It is
the A-box, which uses this knowledge representation for automatic reasoning and
inference-drawing operations. Either by employing specially crafted inference rules, logical
constraints, machine learning methods or any other mechanism.

As we have previously
mentioned, the EC logic can
represent everything stored in a
database, but it cannot represent
negations, disjunctions,
implications, or universal
quantifiers. Thus USL cannot be
charged with such functionality.
Another external system must
be developed. The application
of the USL is limited and can
only provide input for the
second (A-box) system.

Predicate logic (or any other
logic) is a simple language with
only limited number of basic
symbols and operations, but the level of details depends on the choice of predicates, which
at the end do not belong to the system itself. They represent an ontology of all relevant
objects in the domain and finally they also have something to say about what kind of
operations, what limitations and what constraints are applied. Thus some researchers will
represent the knowledge from the perspective of logic and will try to define possible
operations and conversions a priori. Others may see the problem from a different
perspective. Rather than top-down, they will build the knowledge system from the bottom.
This time it will not be achieved by theoretical conceptual analysis, but by a laborious
process of concept-usage discovery. That is the case of bottom-up ontologies and also the
case of SEMAN, as a particular application of the USL. With many iterations, the
knowledge of the world that we have, is being slowly encoded and clarified inside the
lexicon. This process is slow and laborious, and many difficulties are initially hidden. As
Kant once mentioned: “If we were conscious of all that we know, we would have to be
astonished at the great multitude of our cognitions.” (Kant 1992, 569)

13

Illustration 3: A-box visually, using the input from
the T-box, notation of existential graphs by C.S.
Peirce

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

II.3 SEMANTICS

The crucial component of the search for components in the knowledge representation
system is the question of meaning. What is meaning? While intuitively, this problem may
seem trivial, it is so only for very careless observers. To anyone who has to deal with
meaning, its definition, analysis, and representation, the answer to the question is crucial.
Very soon it has too many facets to be grasped, and constraints to remember. In this section
we will place the USL into the context of the current theories of meaning and discuss the
most important problems that the system using USL faces. In later chapters, problems
specific to lexical semantics will be discussed.

II.3.1 What is meaning?
Researchers elaborated whole theories to provide an answer to such a “simple” question.
Differences were partly due to different goals of various disciplines (especially remarkable
if we compare fields of content analysis and linguistics) but the fact remains that there
exists no simple and universal answer to the question “what is meaning?”. To make
discussion easier, we can limit observations to the field of semiotics and its subparts.

Semantics, the second of the branches of semiotics, is often described as a discipline
concerned with study of common “in language present” meaning. Whilst pragmatics is
seen as a discipline which studies meaning in use. How people use signs to convey a
message, how they interpret the message. The line between two fields is often blurred, and
in modern approaches to cognitive linguistics the division into syntax, semantics and
pragmatics is often seen as something arbitrary or artificial. Meaning is not conceivable as
something abstract, something that can exist without the subject, without the person who
“understands” it. Yet for our purposes it might still be beneficial to distinguish semantics as
an area of study of meaning which is abstracted away from users. And pragmatics, on the
other hand, as study of meaning with the extra component of relation to speakers and
hearers.

There exist two mainstream approaches to meaning in semantics, one denotational and
the other representational. The denotational approach studies meaning as if it was
something autonomous. Meaning there corresponds to the real-world objective reality and
it can be found, objectively, in a text (for example). The denotational approaches are
represented by the formal model theory of meaning and by formal logic. Most often by the
Montague grammar.4 They represent and study meaning through the formal apparatus of
logic.

Denotational approaches, if successful, have another advantage: they escape the
problem of circularity...if we interpret English in terms of a metalanguage, another
set of symbols, then we have just translated from one language to another. This
second language then needs a semantics, and so on. As we shall see, formal
semanticists do translate a natural language like English into a second, local

4 The Montague grammar treats natural languages as a form of a formalized language, with all
consequences of the formal logic approach.

14

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

language, but this translation is only part of the semantic analysis. This logical
language is then semantically grounded by tying it to real-world situations. The aim
of a denotational approach is not just to convert between representations: it seeks to
connect language to the world. (Saeed 2009, 307)

In the other of approaches, meaning is not studied through the real world and its in-word
description. But it is seen as a kind of a mental construct.

...for semanticists [of this sort] semantic analysis involves discovering the conceptual
structure which underlines language. For such linguists the search for meaning is the
search for mental representations. Formal semanticists on the other hand come at
meaning from an another angle: for them a primary function of language is that it
allows us to talk about the world around us... From this perspective, understanding
the meaning of an utterances is being able to match it with the situation it describes.
Hence the search for meaning, from the denotational perspective, is the search for
how the symbols of language relate to reality. (Saeed 2009, 305-306)

This remains a problem together with the fact that the representational approach cannot
take advantage of the elaborate system of logical reasoning. First and foremost, there is a
profound philosophical opposition between the two approaches. The denotational branch is
closer to linguistic structuralism and denies all psychological features. It accepts to study
meaning only through relationships between lexical items. Meaning is considered to be an
autonomous system, something that can be isolated and described. The representational
approach, on the other hand, is prevalent in cognitive semantics and does take into account
the extra-linguistic features and processes inside the person. There is a strong
psychological dimension. The representational theories strive to construct mental models of
the conceptual world and test such models using language data. Cognitive semantics is thus
a part of cognitive linguistics and is characterized by its encyclopedic nature. The dense net
of relations that outnumber relations in language itself. It maintains that linguistic meaning
cannot be isolated and studied as a world on its own.

Any content or semantic analysis using the USL will inevitably struggle with this aspect of
knowledge representation. Based on personal preferences, a researcher may find one or the
other of the approaches more plausible and decide to use the USL system in a particular
way. Yet, Smetacek expressed certain preferences during our discussions and this allows
me to guess which of the two branches of semantics are closer in his views to USL. First of
all, Smetacek does assume that the lexicon will sooner or later include encyclopedic
knowledge.5 This alone is a strong indicator pointing towards the representational approach
of cognitive semantics. Secondly, throughout the discussions with Smetacek, it became
clear that SEMAN should be a system for content analysis. With automated ways of
analysis of textual data, we disclose indicators of what is happening in the reality – the
analyst provides a certain mental model, knowledge representation through the language of
USL, and based on this model harvests data about texts. Through such data, one can
indirectly deduce what is happening in the real world – but only indirectly. Because the
texts are not mirrors of the psychological or objective reality. They mirror what people
think about the reality.

5 Even if we may question its feasibility.

15

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

On its own, components of meaning can be obtained by semantic features analysis – object
are characterized by their features. Yet there is no definite prescription on how to select
features. Classic theories in semantics (in the tradition of Alfred Tarski and Donald
Davidson) would tend to speak about necessary and sufficient conditions, and propositional
functions. This highly analytical approach takes advantage of the apparatus developed for
logic, but its binary nature (false, or true) is limiting. It ignores the very presence of a
person and assumes there exists one universal truth to which everybody can subscribe; or
against which sentences may be evaluated. Meanwhile cognitive semantic theories are
typically built on the argument that lexical meaning is conceptual. That is to say, meaning
is not necessarily a reference to an entity or relation in some real or possible world. Instead,
meaning corresponds with a concept held in the mind of an individual understanding. And
as such, it is described as best as the individual can describe it – at the given moment. Later
on it changes.

Smetacek is very close to this view and perhaps opposed to classical truth theories of
meaning. “Meaning in model-theoretic semantics is a mathematical construct, not a mental
object, and is completely independent of use and of speakers...model-theoretic semantics is
utterly indifferent to questions of psychological realism, and is not interested in speakers'
actual processes of lingustic understanding and production. Furthermore, meaning
constructed in this fashion is totally objective: the truth conditions with which it is
identified are objective characteristics of the world which do not depend in any way on our
recognition of them or even on the existence of a mind to think them.” (Violi 2001, 41)

Yet cognitive semantics will pay attention to processes inside the speaker. Even if not by
using means of introspection, but by analysis of usage. The evidence comes from the
language use, the utterances are external signs of internal structures. The theoretists
construct theory of meaning, and can verify the concept on the actual utterances. Seman is
thus a tool that may serve in this endeavour, it helps to analyse patterns in language use.
“Once it is accepted that a theory of understanding is not only part of semantics, but
actually coincides with semantic description, given that to explain how we understand is to
explain how we mean, there are a number of important methodological consequences.”
(Violi 2001, 29)

II.3.2 Semantic fields
The concept of semantic fields can be traced back to Humboldt (1836) who is first credited
with the linguistic relativity theory, i.e. with the understanding that different languages
encode linguistic and cognitive categories differently. They influence the way people think
about reality. The language is therefore no more a passive tool and more attention is given
to study of relationships between concepts and how they are expressed. This is then the
direct predecessor of the theory of semantic fields by Jost Trier. He showed development
and various modifications of a conceptual field in medieval German over the course of
time. (Harden 1983, 46)

16

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

Trier applied his analysis to lexical transformations of the medieval German in the
“knowledge” domain – he discovered that around 1200 AD the word Kunst was used in
the context of chivalry and gallantry. The word List was used for skills needed outside
the court. And the word Weisheit was used as a hypernym that encompassed both
domains. But looking at the usage one hundred years later. Trier discovered the semantic
change. Weisheit was no longer used as a hypernym of Kunst and List, but
possessed meaning of religious and mystical experience. Kunst attained modern meaning
of “artistic knowledge” and a new word Wissen appeared. It denoted more general usage
of “knowing something” - having knowledge. The word List was not used any longer so
frequently and usage of other related terms started to reflect the new lexical configuration –
and new organisation of the real world. Meaning which was associated with different terms
got gradually shifted towards another term and the original word started to be used in a
different context, with different meaning. While the lexical form may remain constant,
meaning associated with it may in fact change constantly over time.

Trier defined semantic fields as sets of all lexemes connected at syntagmatic and
paradigmatic levels (or in only one of them). Thus it is nothing else than a structured subset
of the lexicon.6 Syntagmatic relations have to do with rules of discourse, ordering of
linguistic elements, and on the syntagmatic plane the term acquires value in relation to
what precedes or follows it. Outside of this syntagmatic system we have to deal with
paradigmatic (associative) relations. They are not linear but substitutive (therefore
associative). While syntagmatic relations are manifested in language, paradigmatic
relations are “virtual”. They exist in heads of speakers, and if we want to speak about them,
we must choose filters. These relations almost presuppose conceptual and mental
structures. By assuming this methodology, the theory of semantic fields effectively re-
introduces the psychological dimension of the language system. Something, which is in
direct opposition to denotational linguistics we discussed previously.

6 The distinction between syntagmatic and paradigmatic relations dates back to Ferdinand de Saussure, and
corresponds to a dichotomy of linguistic and cognitive domains. One being directly observable through
the language and its rules, the other intuitively felt present, but not manifested through rules of grammar.

17

Illustration 4: The change of the INTELLECTUAL field's structure in German at around
1200 AD (left) and at around 1300 AD (right). Originally appeared in Strapparava, p. 15

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

Another classic example of semantic fields are colours. Colour terms have a precise
counterpart in the reality, measurable with the wave length. Terms can be compared across
different languages. For those reasons colour terms have been widely favoured for
hypothesis testing about conceptualization of reality in different languages. But the
situation is very different if semantic fields become more abstract and their meaning must
be determined within a given culture and objective verification is often impossible. In such
situations it is not clear how to define a semantic field. Frequent criticism of semantic
fields then stems from this fact, from their vagueness – it is not possible to clearly and
unambiguously define what a particular semantic field means (intention) and what
members belong to it (extension). “How can we say that different lexical fields “map” the
same conceptual field, that they represent the same conceptual content? What proof is there
that the conceptual field is really the same? And what is the nature of this conceptual field?
Clearly, it cannot be linguistic, since the terms which describe it differ, but what non-
lingustic instruments are there for circumscribing a conceptual area? Definition of the
lexical and the conceptual thus seems to run the risk of circularity.” (Violi 2001, 25)

Some authors (Gliozzo and Strapparava 2009) would argue that the linguistic features are
sufficient for 'circumscribing' semantic fields as shown in their research. Semantic fields
were identified by an algorithm for word clustering, by automated machine-learning
procedures. While this approach might be efficient (and eliminates subjectivity), its
limitations lay in the fact that it eliminates subjectivity – lexical units are clustered
automatically by their closeness and occurrence, but there exist many other ways to group
words (because there are so many relations between concepts). Whatever strategy is then
chosen, it will always be specific and of limited coverage. From the very definition of
semantic fields and their syntagmatic and paradigmatic features it is impossible to ever
reach precise definitions in all cases.7 There exist too many ways of in partitioning the
linguistic and extra-linguistic domain. So it seems unrealistic to ever define everything and
once for all.

Semantic fields organize the lexicon internally into defined sets, but these sets will almost
always overlap. Boundaries are not be clear-cut and clashes occur. The lexicon is not
simply a list but a multi-dimensionally structured set of thematically connected subsets. “In
other words, the overall semantic universe of a language can be conceived as a set of
interconnected, reciprocally activated semantic microuniverses. This idea has been
confirmed in terms of the mental organization of the lexicon by a great many
psycholinguistic tests, and it is at the basis of many cognitively inspired semantic theories,
including Fillmore's frame semantics.” (Violi 2001, 27)

Semantic fields are thus not representatives of a complete semantic theory of meaning.
They are more akin to a discovery tool. One can decide to turn attention to deep conceptual
structures (the Greimasian ones, for instance, if one believes in existence of such
structures) or one can decide to include only cultural and domain specific features – that is
what content analysts do when they prepare coding schemes and select relevant keywords.
Semantic fields thus represent not a theory of meaning, but 'only' an important
methodological approach. USL and semantic fields are alike, but they should not be
confounded with theory of meaning. In fact, particular theory of meaning, vision of the

7 And it might be interesting to note, that whilst the first version of the semantic field was based on the
automatic word clustering, the most recent version of the Domain WordNet has been prepared manually.
I.e. the lexical terms were clustered into domain by humans, using extra-linguistic knowledge. This
approach is the same as SEMAN does.

18

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

world, or any innate assumptions might be encoded using USL – the formal treatment will
be the same, but there is no guarantee of objectivity in the formal treatment of any
subjective belief.

II.3.3 Semantic primes and universals
Some people believe that basic universal components of thinking exist and that they are
similar (if not identical) across different natural languages. The most famous proponent of
this ida is Anna Wierzbicka who started research into semantic primes and universals in the
early seventies and which continues until now. (Goddard 1994; Wierzbicka 1996)

The development of the idea of semantic primes is in many aspects similar to that of the
Smetacek's semes – he devised a list of 300 basic semes which were meant to define 'all'
other complex concepts. From the initial proposed set of primitives, during iterative clean
up, redefinition and (re)discovery of new concepts, research gradually identified new
candidates for primitives, so that after 30 years, the list of core semes contained close to
2 000 items. This is a very similar development to Wierzbicka's primes. And it is
instructive to picture semes against semantic primes research, even if careful comparison
reveals also a lot of differences.

Wierzbicka started her research in 1972 with the first tentative set of 14 primitives – such
as: want, do not want, something, someone, I, you, world and a few
others. Unlike USL, the primitives were combined using a syntax of a natural language,
even if a limited one. Here is an example of a (more recent) definition of a concept lie:
X lied to Y =
X said something to Y
X knew it was not true
X said it because X wanted Y to think it was true
[people would say: if someone does this, it is bad]

And here another example comparing sad and distressed:
Sad (e.g. X feels sad)
X feels something
sometimes a person thinks something like this:
 something bad happened
 if I didn't know that it happened
 I would say: I do not want it to happen
 I do not say this now
 because I know: I can't do anything
because of this, this person feels something bad
X feels something like this
Distressed
X feels something
sometimes a person thinks something like this:
 something bad is happening to me now
 I do not want this
 because of this, I want to do something
 I do not know what I can do
 I want someone to do something

19

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

because of this, this person feels something
X feels something like this

The search for primitives grew also into the search for universal syntactic patterns
(universally valid combinations of primitives) and later on into a pursuit for a fully scaled
natural semantic metalanguage. The theory became more pronounced and a range of
domains, where the theory was applied, was growing as well. Wierzbicka and her
collaborators analysed more than 30 world languages and collected an impressive amount
of data.8

Semantic primes are defined by their 'un-breakable' meaning:

The elements which can be used to define the meaning of words (or any other
meanings) cannot be defined themselves; rather, they must be accepted as
“indefinibilia”, that is, as semantic primes, in terms of which all complex meanings
can be coherently represented. (Wierzbicka 1996, 10)

In this definition we meet the philosophical tradition of ancient Greece with the ideas of
enlightenment, particularly that of Descartes and Leibniz. But on the opposite side stand
the genius of Ludwig Wittgenstein and the dominant figure of modern linguistics Noam
Chomsky. Both of whom refuted the notion of any universals in meaning.9 Ideas of basic
semantic concepts were embraced and refuted throughout history, and sometimes by the
very same people who advanced them. As was the case of the young Wittgenstein, a
fervour advocate of formal logic of a language before rejecting it in favour of family
resemblances and language games.

The issue of semantic primes is indeed controversial one and so far nobody succeeded in
finding the list of truly universal primes:

If at this point, we had to evaluate the work on primitives as developed in the
dictionary semantics, we would have to conclude that it has been a failure. There are
two major problems. Firstly, no one has been able to convincingly determine an
exhaustive list of primitive terms; the attempts often differ considerably, a sign there
is no intuitive agreement about how many and what kind of terms there should be. In
short, there does not seem to be any correct set of primitive terms... a satisfactory list
has not yet been found, and above all that all other lexical meanings cannot be
derived from them. This, in fact, is the second and more serious problem, which
appears insurmountable. However vast the group of selected primitives, it can never
thoroughly account for the meanings of the terms not derivable from it. The semantic
system cannot be reduced in this way, and primitives do not have an adequate
descriptive-explanatory capacity. The result is that primitives are neither really finite,
nor comprehensive and exhaustive, nor ultimate atoms... nor do they always avoid
circularity. (Violi 2001, 77-78)

8 Though for reasons that will be discussed later, semantic primes are not a widely accepted theory in the
linguistic domains; “Since 1970s, general enthusiasm for semantic primitives has subsided” (Goddard
1994, 10)

9 Even if Chomsky is the most prominent figure of universalism in the grammar and the universal deep
structures (mentalist hypothesis) he was opposed to universalism in semantics.

20

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

But proponents of the theory argue that it is a known fact that dictionary entries contain
limited set of words.10 That translation into foreign languages is possible. And therefore,
there must exist identical concepts across cultures. They will point to the very necessity of
having basic, structural items of meaning:

“It is clear that there are words which cannot be defined; and if nature hadn't
provided for this by giving all people the same idea all our expressions would be
obscure; but in fact we can use those words with the same confidence and certainty
as if they had been explained in the clearest possible way; because nature itself has
given us, without additional words, an understanding of them better than what our art
could give through our explanations.” (Wierzbicka 1996, 12)11

Wierzbicka continues that for Pascal and Leibniz there was never a question of “choosing”
some arbitrary set of primitives. What mattered was the choice of concepts that were clear
on their own and which could be used to explain other concepts. There is a certain
expectation in this claim. That it is possible to arrive at a limited set of semantic primes.
Our life-long experience or the fact that we are able to understand different languages
points to the idea that fundamental human concepts are somehow innate, being part of the
way we relate to and think about the world. Knowledge which is perhaps not conditioned
by culture, race, education and social status.

If we look at the main principles of the semantic primes theory, we can recognize
similarities between USL and semantic primes. In fact the only main differences are in the
chosen representational system – natural language syntax in case of semantic primes12 –
and in the strong emphasis on lexicalisation. But in principle, USL complies with the first 5
points of the Wierzbicka's programme, as adapted from from (Goddard 1994, 8-14)

1. Semiotic principle: A sign cannot be reduced to or analysed into any combination of
things which are not themselves signs.

2. Principle of Discrete and Exhaustive Analysis. Any complex meanings can be
decomposed into a combination of discrete other meanings, without circularity and
without residue.

3. Semantic Primitives Principle. There exists a finite set of undecomposable
meanings with the elementary syntax and form of 'simple propositions'

10 Oxford Advanced Learner dictionary (2003) for instance lists three thousand basic terms, only those
words are used in definitions of an entry to explain a meaning. And quite often, the definition of the basic
entry will reveal some sort of circularity such as when a person is defined as living being, being is
defined as creature, and creature contains two definitions, one of which says it is a person.

11 Citing: Pascal, Blaise. De l'esprit géométrique et de l'art de persuader. In Oeuvres complètes. Ed.
Chevalier. Paris: Gallimard, 575-604.

12 This difference is profound, of course. While Wierzbicka is expressing higher-order logical constructs,
USL can define only propositions of existential-conjunctive logic. In Wierzbicka case, the representation
is not formalized. “In fact, meanings are very complex structures, built not directly from simple elements
such as 'someone', 'want', or 'this', but from structured components such as 'I want something', 'this is
good', or 'you did something bad'...”Concrete” nouns (i.e. names of natural or cultural kinds) will usually
exhibit a more static semantic structure, but here too, many different components are usually involved,
and these components refer not only to certain inherent features of the referents, but also to the “external
frames”-such as habitat, behaviour or typical interaction with people in the case of animals, or the typical
situation of use in the case of artefacts.” (Wierzbicka 1996, 171)

21

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

4. Natural Language Principle. Semantic primitives and their elementary syntax exist
as a minimal subset of ordinary natural language.

5. Expressive Equivalence of NSMs. Any simple proposition expressed in language
L1 will be expressible in a NSM based on other language L2 etc.

6. Isomorphism of NSM. The simple propositions expressed in L1, L2 etc will be
fundamentally isomorphic (resembling each other)

7. Strong Lexicalisation Hypothesis. Every semantically primitive meaning can be
expressed through a distinct word, morpheme or fixed phrase in every language.

Speaking pragmatically, almost every automated system that deals with knowledge
representation is working with something that is operatively defined as a prime or in other
words, primitives or primitive terms. In fact, Wierzbicka embodies the extreme case of the
definition-based approach to the lexical semantics. Speaking metaphorically, the enemy
camp is laid just on the other side of the river bank. It is the theory of Rosch, inspired by
Wittgenstein family resemblances. (Wittgenstein 1998, 67-77) As Kecskés explains,
linguists are divided into invisible and controversial groups, one semiologic, which looks at
words in their isolation and the way their meaning is manipulated, the other,
onomasiologic, which focuses on concepts and from there on the multiple expressions that
embody them. (Kecskés 2003, 30)

USL represents the latter approach, because the main governing principle is the meaning
but not the word or its neighbours. But we shall also not forget the limitations of the lexical
semantics. The approach of Wierzbicka, and to some extent of Smetacek, goes one step
further and presupposes existence of universal primitives – common to every language (in
the first case), or to human race (in the case of the latter). While for Wierzbicka, this is the
tenet of her theory, for Smetacek such a claim is a theoretical possibility – something, that
should be refuted or studied and bears influence on the way the thesaurus is constructed.
But in essence this is not different from the attitude of knowledge engineers who accept
some primitives because they are useful for the job. Usability and applicability are then the
final criteria for construction (or discovery) of primitives.

“Leibniz also saw clearly the dilemma stemming from the mutual dependence
between our knowledge of simple concepts and our understanding of complex ones:
to understand complex concepts we have to decompose them into what we assume
are simples concepts; but to discover which concepts can be reasonably regarded as
the simple ones we have to experiment with many different candidates, checking
their power to “generate” complex concepts.” (Wierzbicka 1996, 213)

22

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

II.4 USL AND LEXICAL SEMANTICS

USL was conceived as a language for a description of the meaning – more precisely, for
definition of features that are the most important for the analysis (notwithstanding the fact
that they may or may not constitute all necessary and sufficient conditions to characterize
the concept). This approach to the problem is that of lexical semantics, and we shall discuss
and delimit areas of interest that are solvable in this context.

The central point to the USL is the lexicon – a store of lexical items with explicitly
expressed/encoded semantics and very often also encyclopeadic knowledge. The semantic
lexicon was perceived as an open system and Smetacek insists that it is never fixed and
never finished. In the same way as the mental lexicon of a speaker whose knowledge store
is not static and who is continuously learns and keeps forgetting words. Perhaps this is the
main reason why Smetacek did not see advantages in a complex computational
representation of the lexicon. And insisted that the representation remaines very simple and
trivial. So that also the changes and updates to the lexicon are propagated in a trivial and
instantaneous manner.13

USL is a tool for lexical semantics and certain assumptions accompany such a view. Firstly,
lexical semantics is concerned with the meaning of words and word groups which is in
quite sharp contrast to the meaning of sentences. Sentence semantics is often described as
compositional. I.e. the meaning is extracted from the sentence as being a composite of the
individual words' meanings, but of course it is more complex than that. With the USL and
lexical semantics we are able to study only words and words groups without taking into
account their context. From this view USL is not concerned with the grammar and on its
own cannot take advantage of the rules. Words are seen in isolation without the linguistic
knowledge.14 Thus the computer system is not capable of operations that involve fine-
grained, but sometimes also very simple distinctions. To give a simple example:

Mary saw a saw.

There is no way for the system to distinguish between saw as an act of seeing (in the past)
and the saw as an object for cutting without the extra linguistic knowledge or without a
statistical model of a language (which says what meaning is most likely present at the
given position, based on the context). It is clear that from the word alone it is not possible
to disambiguate the meaning and the system must be prepared for such variants. In the
worst case scenario the lexicon would contain several ambiguous entries:
saw = object instrument cutting
saw = seeing

13 Note, this is not the issue of computational complexity or available technologies. In fact, the lexicon is
stored in a relational database, with foreign keys constraints and possibly triggers that update contents
automatically. Yet the problem of technical implementation was always seen as secondary. The key
principal issue is the relative simplicity of the knowledge representation. Thus also the dictionary, viewed
from the human perspective has a very simple structure. It can be argued that this is not the easiest and the
most effective representation, as my experience showed, but in many occasions is proved to be sufficient.
The power of the simple representation was very often realized months after one already worked with the
system. A more complex and more powerful mechanism would also prove as more time- and energy-
consuming.

14 In Machine Learning literature, this is the prominent approach, very often denoted as 'bag of words'.

23

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

The system would identify twice the same word and assigned to it two different meanings.

This problem can be mitigated by several ways. Firstly, the construction of the dictionary
makes it possible to see tokens in context of other words. With the increasing number of
tokens their ambiguity decreases (but does their frequency). But that is not everything, the
system can employ a number of NLP procedures in the pre-processing stages and
translation happens only after specialized linguistic operations were completed. Thus the
system can be tailored to be either very fast and produce rather 'noisy' results, or be very
careful. Complexity and processing times increase exponentially for certain problems and
in some cases this extra work is justified, in other cases, it is not needed.

II.4.1 Words as lexical items
The construction of the semantic dictionary follows the design of the original SEMAN
system and we will discuss a few peculiarities in this place.

In the classical linguistic traditions words of the lexicon are listed in their basic entry form,
lemma. In many computer dictionaries the notion of lemma is taken further to stem, i.e. the
basic inflexive form of the word – its non-linguistic root. In the USL words are listed in the
form of quasi-roots which are basically word stems. However in cases of ambiguous
readings, the longest non-ambiguous wording is preferred, often being the full form of the
word. For example words waiter and waiting, though being both nouns, will have the
same stem 'wait' in the lexicon. They could be both represented with the forms 'wait' that
results in ambiguous definitions being retrieved when one of the form is encountered in the
text. But if the lexicon contains a more complete version of the word, for example 'waiter',
then most ambiguous parses are resolved.

This behaviour is due to the combinatory principle of the algorithm15 which constructs all
possible inflectional and derivational variants of words.16 In the present embodiment the
algorithm is able to retrieve combinations of prefixes, word stems and affixes that match
the form found in the text, and the form with the longest stem is in majority of cases the
correct, unambiguous parse of the word. If more than one parse of the word is identified,
the system allows for a detailed disambiguation procedures to be put in place which will
select the correct lexical form. Empirically, this form of parsing is very fast and accuracy
depends on the quality of the lexicon. It is thus relatively easy to improve accuracy with
diagnostic information. And the system assists users in finding them.

15 For details of the algorithm, see V.1 The pattern matching mechanism, p. 115

16 Derivational affixes are used to create (derive) new words from the stems, very often they do have
meaningful interpretation (open-ness). This is in contrast to inflectional affixes which express the
grammatical categories such as aspect, case, modality, number, person, tense, voice.

24

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

It is up to dictionary maintainers to decide whether derivational suffixes should have an
impact on the meaning of identified words in later stages of analysis. For example, whether
the difference between 'was waiting' and 'waited' is an important feature and translated
meanings of the two contain different semantic codes. Or, if it is not the case, they shall be
assigned the same code and differences considered as irrelevant. The system must allow for
a very flexible mechanism that can deal with similar tasks. It will not be possible to define
conditions in the form of a dictionary and for those reasons SEMAN contains a simple, but
powerful mechanism for definition of conditional workflow routines. Each set of problems
can thus be analysed and resolved by separate modules.17

II.4.2 But what is a word? And how do we define
its meaning?
It is a known fact that different languages package meaning into different words,
constructs, and syntactical categories. It is quite impossible to say that words and phrases
have one, or on contrary do not have one meaning (when is meaning expressed by one
word and when by several?). Smetacek approaches this problem pragmatically. It is noted
that external forms of words are rather irrelevant, what is central here is meaning – if
meaning of a word or group of words is considered equal, for the given application, it
should receive the same definition. Trivial as this might seem, it is important to note that
the semantic dictionary (in its original form) contains no meaningful labels at place of

17 For details, see: IV.4.6 SEMAN GUI and scripting control, p. 109

25

Illustration 5: Example document analysis, showing details of how the document was
parsed - with the absolute frequencies of tokens and more details (down the page; not
visible).

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

definitions. Instead, one can just see a group of codes. This decision was intentional
because it was believed that human readable codes in place of definitions would influence
the way the dictionary is built. People would tend to focus on meaning of the individual
codes (seen as words), instead of seeking the definition of meaning in its combinatory
form.18

The way the SEMAN dictionary is built forces people to consider meaning first rather than
focus on words. The problem is not seen from the lexical side – i.e. we do not concentrate
on the form of words in the dictionary. The crucial direction is from meaning towards the
form of a word (to the index of meaning). This criterion is applied universally throughout
the whole semantic dictionary. If meaning is considered equal (for the given purpose), the
definition contains the same number of semantic codes, no less no more. The lexical entry
can then be anything. For example:
ping fluffy rabbit = id89
Rabbit = id89

The word 'Rabbit' is a lexical form assigned same meaning as the first entry. The person
who creates the dictionary is responsible to limit grey areas and clean up idiosyncrasies.
When she finds that too many tokens are clustered under same meaning, the lexicon allows
for a swift and instantaneous changes of definitions.

The reason is that we are not and should not be talking about universal definitions.
Definitions are ad-hoc but made consistent, but definitely not acceptable by all. It is a leap
of faith, an assumption made to move forward as the whole history of the semantic
primitives shows. Some can argue that languages clearly exhibit empirically observable
regularities, words tend to occur together, there exist lexical fields and by analogy we can
find semantic relations. Groups of lexemes belong to a particular activity or area of
knowledge. Lexemes exhibit evidence of a network of relations, strongest between
members of the lexical field and these are the best candidates for inclusion into the lexicon.
But due to number of paradigmatic relations, it will always be possible to see very distant
words to share meaning which is crucial to the researched problem.

II.4.3 Words and grammatical categories
In the previous versions of SEMAN, no capability to accommodate different linguistic
categories of entries existed. But nouns, adjectives, verbs (open-ended words) need to be
given special treatment. For these reasons a special mode signals special meaning and
problem-specific logic. Thus we can encode word categories or define our groups. For
illustration, we first define categories:
e = entities (proper names)- ex. Bill Clinton
q = common noun - ex. dog, woman, house
i = pronouns (immutables) – ex. I, you, we, them
l = logical words – ex. not, and, or, any

The form of the entry then distinguishes adjectives from nouns:
esq explosive = artifact substance explosion

18 Classification systems such as Dewey Decimal Classification or Universal Decimal Classification have
similar approach. Yet they tend to focus on the hierarchical organisation and have very strict rules. For a
lay person, unfamiliar codes and combinatory rules make their usage even more difficult.

26

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

esa explosive = attribute explosion

Then, in the phase of translation the system is instructed to use only a certain subset of
entries for lookup; or in post-processing stages only some definitions are retained based on
the known linguistic and extra-linguistic features. For example, token bill is recognized
as a noun, verb and possibly also a proper noun, all of those categories are retrieved for
translation. But in the post-processing stage the verb and the proper noun definitions are
discarded because part of speech tag will be 'noun' and not 'verb' nor 'proper noun'. For this
procedure, it is of course necessary that the grammatical categories are encoded together
with the tokens and the part of speech tagging used. For simpler applications such
functionality may not be needed and dictionary entries remain simple.

II.4.4 Problematic areas of the thesaurus

II.4.4.1 Homonyms

Homonyms are unrelated senses of the same phonological word. In the context of this
work, we are not interested in senses of a spoken word therefore we may ignore
homophones. Of importance are only homographs, lexemes that are written in the same
form but with disparate meanings. Homonyms can be present in the same grammatical
category or outside it, the first case poses considerably more difficulties as we cannot rely
on the part of speech information to decide which of the senses is more appropriate. On the
other hand, for the second case which covers homonyms outside the grammatical
categories, we may rely on the POS taggers that achieved precision of more than 96%.19

II.4.4.2 Polysemy

When senses of the word are related, lexicographers call this situation polysemy rather than
homonymy. Polysemous senses are listed under the same lexicographic entries in
dictionaries, but quite often the criteria for senses to be included or excluded rely on
intuition or purpose for which the lexicon was created.
school • noun 1a an institution for educating children. 1b any
institution at which instruction is given in a particular
discipline. 2 a department or faculty of a university. 3 a group
of artists, philosophers, etc. sharing similar ideas, methods, or
style.
school • verb 1 formal or N. Amer. send to school; educate. 2
train in a particular skill or activity. 3 Riding train (a horse)
on the flat or over fences.

19 Accuracies of close to 96-97% are typically achieved in English for taggers that were trained on a corpus
of at least 10^6 words. (Dale, Moisl, and Somers 2000, 408) Of course POS taggers produce different
results based on the quality of the training corpus (if the POS tagger is statistical), therefore there may
exist huge discrepancies in the accuracy of the POS and thus the accuracy of the homonym identification.
But in general, the inter-category synonymy will be a much more complex problem.

27

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

Distinctions are not always clear (and one could argue if they ever could be). The approach
of Smetacek to the problem has always been consistent with traditions of lexicographers if
possible. Yet definition are constructed with respect to needs of the analysis. Therefore,
some entries are superfluous and may be discarded, other entries may be grouped (joined),
yet other entries will be given a prominent position and serve as main senses of the
dictionary.

II.4.4.3 Synonymy

Synonyms are different phonological words which have the same or very similar meanings.
Unfortunately, the true (exact) synonyms are very rare and most often we will face words
whose meanings overlap, but not completely. It is again an informed decision of analysts
who will allow or deny the same semantic definition to be present for different words. But
the form of the dictionary makes this problem almost a non-issue and synonyms are not
causing problems.

II.4.4.4 Antonymy

Given the representation of meaning by USL and the absence of the A-box, the current
system is not able to deal with antonymy, at least in the sense of the logical negation. This
is also a direct result of the expressive power of the existentional logic on which SEMAN
is constructed. To recall: “EC [existential-conjunctive] logic can represent everything
stored in a database, but it cannot represent negations, disjunctions, implications, or
universal quantifies.” (Sowa 2000, 163)

Ability to deal with antonyms must be part of the inference engine, which, as was
discussed previously is built on top of the basic ontology representation. It requires rules of
inference and reasoning in one way or another. Thus it is not a part of the current work.
This is true about simple antonyms (dead/alive), but also about gradable antonyms like: hot
– warm – tepid – cool – cold. It is true also about words representing reversed relations
such as here/there, ascend/descend, up/down as well as for converse terms like
employer/employee, above/below.

Even if some or possibly all those relations might be described with combinations of
categories, meaning is not encoded in their combination, but in interpretation. For instance,
if employee/employer are defined as:
employee = person in-work subordinate
employer = person in-work superior

The inference mechanism is not contained in the definition but has to be added by external
interpretation. Therefore meaning of subordinate/superior link needs to be interpreted by
given logical rules. And that is outside the scope of the current USL.

28

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

II.4.4.5 Hyponymy/hypernymy

Hyponymy is a relation of inclusion and includes meaning of a more general word, e.g.
dog and cat are hyponyms of animal. The more general term is hypernym and this
relation is responsible for most of the links inside the semantic network. USL is particularly
well suited to represent the hyponymy/hypernymy relations. If certain entries contain the
same elements, we can conclude that they are all coming from the same taxonomic level
(sometimes called 'taxonomic sisters'). If codes of certain entries are fully present in the
definition of some other entries, then we can know that a term is a hyponym of another
term and it is in the hierarchy lower in the tree (or seen from a different angle, the parent
hypernym term has all the features of its children).

II.4.4.6 Meronymy

Meronymy is used for a part-whole relationship between lexical items. Meronymy is
different from hyponymy in the aspect of transitivity, we can for instance say that a hand
has a finger and finger has a hand, but not that a button has a hole and hole
has a button. Hole is a meronymy of a button, it makes its part, but is not its necessary
condition. This problem is inheritently a question of external-world knowledge, “it is
conceptually possible to segment an item in countless ways, but only some divisions are
coded in the vocabulary of a language.” (Saeed 2009, 70)

Thus it is recommended not to use the meronymy relationships in the lexicon, unless they
are needed for the analyzed problem. The same recommendation would be valid if we deal
with relations of a type member-collection (ship-fleet) or portion-mass (drop of
water).

II.4.4.7 Difference between names and types

Proper nouns are important parts of the language processing, any system that is dealing
with content analysis must be able to distinguish them from the general, common nouns. In
terms of logic, the proper names denote particular individuals, and common nouns denote
types or predicates. Proper nouns are always having a unique element even if they share
features with other individuals or with other common nouns. For instance:
esq small = a1
esq four-legged = a2
esq domestic = a3
esq animal = a4
esq cat = a1 a2 a3 a4
esq proper name = a5
ese Elsie = a1 a2 a3 a4 a5
ese Elza = a1 a2 a3 a4 a5

There are two things we shall notice here: firstly, the mode of the entry for Elsie and Elza is
different, “ese” stands for “english semantic entity” and is different from the common
nouns/types, denoted by “esq” (this difference is driven by the application and was
introduced while solving problems of how to identify and extract entities effectively).

29

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

What is interesting here is that Smetacek proposed to encode even individuals as
composites of types, either because it followed naturally, or perhaps because it was planned
that way. It might seem unimportant at first but it is not, because here we deal with a
metalanguage. First-order logic that operates in the domain of non-linguistic objects is
facing problems when the meta-level is introduced. Such as:
Elsie is a cat.
Cat is a species.
Therefore, Elsie is a species.

The problem here is that we are mixing two levels. The proper name denotes the individual
and the common noun cat is a type. The way how this issue is solved in first-order logic is
that a type predicate is used (effectively a second-order type, that relates the type of cat
with the individual Elsie). Therefore, some individual of a type cat does correctly
belong to species. The species is effectively a second-order relation whose instances
are individuals like Elsie.

∃ x species x , cat

Smetacek must have been aware of logical relations and distinctions in first- and higher-
order logical operations, and recommended use of the predicates inside the definition of
entities. Thus Elsie is not only a cat, but she has a sem a5 which says Elsie is proper
name. Reasoning engine, if implemented, can then operate with the external world
knowledge and conclude that if Elsie contains the type of a proper name (or any similar),
Elsie is an individual and apply rules associated with individuals. The code “ehe” on
itself would not be enough.

Though we shall note the notational ambiguity of the current system. There is no way to
distinguish first-order from the second-order types – everything is grouped together and the
reasoning engine would have to have a knowledge base that marks “individual” as a first
order type, and the other predicates as modifiers (higher-order relations). What is of direct
importance though, is the recommendation to follow the compositional principle of the
USL and put higher-order relations in place of semes, not in place of modifiers.

II.4.5 Word sense disambiguation
Even if lexical semantics limits itself to the level of words and their meanings many
difficult tasks remain to be solved. One of the crucial is the identification of a correct sense
in case the dictionary contains more definitions for the given token. Let us stop for a while
between semantics and pragmatics. As was noted before, semantics is concerned with
relations of words to objects they denote, and pragmatics is (roughly speaking) about 'how
people use signs to convey meaning'. A sentence like 'The deal is broken.' may have a wide
range of meanings depending on context, speaker intentions and recipients' interpretation.
In the completely neutral sense, we only know that there was some kind of a contract,
presumably a spoken one, between the contractor and the contractee. Based on the change
of a state, the contract is no longer deemed valid – we do not know whether by one or by
all parties. So far, this interpretation can be obtained only from the possible 'common sense'
of meaning for the word 'deal'. As well as what it usually means that 'a deal is broken
(ended, prematurely)'. But depending on the context, the very same sentence may have a

30

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

very diverse meaning. If in the context, more salient meaning of the 'deal' is 'community,
gang' than we can see different meaning if the speaker is a policeman or a member of a
rival gang. Or, as given in the nice example by Anderson (as reported by (Saeed 2009, 200-
201)), subjects of an experiment were asked to read the story below, and then answer
questions about it:
A Prisoner Plans His Escape
Rocky slowly got up from the mat, planning his escape. He
hesitated a moment and thought. Things were not going well. What
bothered him was being held, especially since the charge against
him had been weak. He considered his present situation. The lock
that held him was strong, but he thought he could break it.

It was generally agreed that 'Rocky was alone and that he had been arrested by police, and
is in prison'. When the very same text, but with a different title was presented, people
generally agreed on 'wrestler is held by some kind of a wrestling hold and plans to get out
of it'.
A Wrestler in a Tight Corner
Rocky slowly got up from the mat, planning his escape. He
hesitated a moment and thought. Things were not going well. What
bothered him was being held, especially since the charge against
him had been weak. He considered his present situation. The lock
that held him was strong, but he thought he could break it.

This example, amongst many others, shows that listeners add their own inferences, their
interpretation based on the provided context. And this depends on knowledge provided by
the discourse topic – thus, it was found that inside a discourse, even ambiguous words tend
to have one meaning (sometimes called as 'one topic per discourse hypothesis').

From the practical viewpoint, it is often necessary to construct a dictionary that is specific
for the given domain and the given topic. We may intuitively assume, that even if
individual words carry many diverse meanings, the prevalent meaning is consistent with
the discourse topic. Thus, the dictionary can deal with ambiguity, with precision of up to
70% as shown by (Yarowsky 1992) or even much higher when the disambiguated words
were coming from limited number of domains - for a review see: (Christoper D. Manning
and Schuetze 1999, Chpt. 7; Navigli 2009). For the more complex context, more
sophisticated methods of word sense disambiguation are sought after. This is nevertheless
an AI complete problem and general solutions were not found yet. We will discuss relevant
details in the chapter V.2. Semantic ambiguity, p. 124.

II.5 CONCLUDING REMARKS ON USL
In this section, I would like to discuss difficulties and possible shortcomings of the USL,
starting perhaps non-conventionally with a personal account of my experiences. I
remember that at the first encounter with USL and its ideas, I was very much confused by

31

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

the ambiguity, vagueness, lack of rules and certain methodological carelessness. The
ambiguity and vagueness stemmed from the very properties of the language, but USL does
make them stand out. It does not give us the feeling that once a term is analysed and
defined, it is fixed and may be used in other definitions. On contrary, the basic principle of
the USL is the flexibility. Smetacek also came to the conclusion that every definition leaks
and therefore the system must be open for changes. So, on one hand, the system is
ambiguous and vague, on the other hand it is also very flexible – it allows for rapid
changes.20

But the lack of rules was confusing. I would have thought that basic principles of the
knowledge representation should be stated and rules set out (pragmatically, humans will
deviate from rules, but at least there is something, some sort of a fall-back mechanism that
is able to resolve problems). But the approach of the USL was again different. It did not
offer the pleasant security of the theoretical ground, instead, it invited researchers to go
ahead, define as many concepts as were necessary and revise them only when
inconsistencies were spotted. This approach was radically different from most of the
theoretical recommendations but I have to admit that there were arguments in favour of
both. In the case of USL, very little time and energy is dedicated to painstaking
clarifications of rules and principles, something that philosophers would consider as
complete madness. But on the other hand, it is also little 'crazy' that they spent centuries in
disputes about the basic principles of knowledge, epistemology and ontology. USL is here
on the other bank and I would characterize its approach as a pragmatic resignation. It is
assumed that the current definitions are wrong, but it is “the best we currently have, so let's
see how well they do in the real application”. USL urges researchers to define concepts in
the best-possible way, but what really matters is the internal consistency. If there are errors
(and they are there), they should be coded consistently – to err systematically is thus one
of the basic principles of USL.

This might mean that content analysis and the knowledge representation should be
prepared only by one individual because that person will not be able to spot its conceptual
deficiencies in his or her views of the world. Nevertheless, by following the systematic
procedures, all of the deficiencies are (hopefully) encoded systematically and when
spotted, also rectified systematically. However, by including more people in the process,
we introduce different views of the world and if several persons are responsible for
construction of the ontology, their differences will be intermixed. Then it will be
impossible to discern them – they might err systematically, but if several people err
systematically, it will mean complete chaos.

This was a source of many long discussions with Vladimir Smetacek, in which I argued
that the person effectively encoded his or her vision of the world in the dictionary and that
it is very difficult to align ontologies that were created by different people, not mentioning
different domains. And the answer to my doubts were variations of previous arguments –
one person is not able to construct the encyclopedic ontology, be it Aristotle or Dewey, they
all left it unfinished. But there exist many ontologies, in a different stage of completeness,
like UDC or patent classifications, and it is the best we can get. And pragmatically,
something is better than nothing. Smetacek believes21 that in ontological chaos, there is an
order, that people at the end employ their mental capacities in a very similar manner. That

20 Flexibility is after all, also an important feature of any natural language.

21 Together with many others, including Wierzbicka, Goddard, Jackendoff and finally also Plato

32

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

they are able to understand each other, relate to external cultures using some fundamental
mechanism of meaning. And this principle will be discernible through the law of big
numbers and that we shall try, at least, to detect it. Our theory might be wrong and we do
not know if it works, but we also do not know if it does not, until we try.

But to be precise and make justice to clarity, I will have to admit again that a theory of
reference, in other words semantics is very vaguely defined in the case of USL. This
vagueness may be the ultimate reason for failure. As results bring nothing very special and
extensions to the knowledge representation in a form of some logical reasoning machine
are necessary. I tried to dispel some of the concerns by showing that USL represents the
EC-logic. Nevertheless people are free to implement ontologies as they want and for
instance the difference between first-order and second-order predicates may not be
respected; in the way how un-ruleful and flexible USL is, it is possibly the case. Also, we
do not have a theory of truth and in fact, USL is there just to help discover links between
certain facts without defining what they mean. If, in the future, extensions are built, they
will have to bring in the missing parts, together with rules of inference, richer vocabulary
and more elaborate syntax. In case of USL those parts were not built yet.

33

II. SEMANTICS AND KNOWLEDGE REPRESENTATION

34

III. CONTENT ANALYSIS

III. CONTENT ANALYSIS

Perhaps the most cited definition says that content analysis is interested in finding, "Who
says what, in which channel, to whom, and with what effect." (Berelson and Lazarsfeld
1948) It was coined by Berelson, one of the most influential figures of content analysis in
the 2nd half of the 20th century, and whilst being short, intuitive and captivating, it is also
very broad. Application of such an approach is anything but straightforward – it
encompasses domains of linguistics, as well as psychology and cognitive sciences. And
even though Berelson was strong proponent of empirical methods in research, his views on
content analysis as a method for making valid inferences from the text towards the impact
in the future are not universally shared by all – for reviews see (Krippendorf 2004a;
Neuendorf 2001)

There are many views on definitions of content analysis, and researchers bring them
together with different backgrounds and traditions of their own base domains. Content
analysis is thus often viewed from diverse phenomenological standpoints – and this
problem is not purely philosophical, as it may seem. As researchers subscribe to varying
conceptualization(s) of the world, their views of content analysis are significantly different
and that influences their execution of the research. For example, in history of content
analysis the first studies of mass communication were purely descriptive, but often with the
goal of demonstrating the decline of society or changes in manners. The development of
content analysis was initially influenced by tight links to the domain of journalism. The
first, widely recognized quantitative content analysis appeared in 1893 and was focused on
newspapers bearing the title “Do newspapers now give the news?”. It compared the
contents of the newspapers of the state New York with special attention to news worthy of
attention – it is not surprising, that the criteria of what is 'informative' or moral would vary.

The tight links to the domain of newspapers were not coincidental. The fourth power was
gaining in strength and in parallel with that, it was becoming more and more important to
know and influence public opinion. To study ways how to measure and even control it in
the dynamics of mass communication. The first nation wide content analysis of all the
German newspapaers was proposed by Max Weber in 1910, just 4 years before the
outbreak of the Great War, and even though the research was not carried out, war
propaganda of the following years brought a fascinating subject of study which produced
numerous analyses (for review of history see: Krippendorf 2004b; Neuendorf 2001). And
with the Great Depression in the 30's, the importance of content analysis as a tool even
increased because at the time it was argued that mass media was aggravating the impact of
the crisis with alarming stories.1 Increasing number of studies analysed the power and

1 Not dissimilar to the call of US Department of State, that the leak and subsequent publication of secret
diplomatic cables puts life of Americans and their collaborators in danger

35

III. CONTENT ANALYSIS

impact of newspapers on general public opinion, and later on, when new media such as
radio and television were introduced, content analysis extended its coverage from text to
domains of sound and moving pictures.

Propaganda, a weapon employed massively by the major powers during war times,
attracted much attention – content analysis was used during the war, in particular by the
Allies to analyse the German news and radio broadcasts in order to gauge the morale of the
enemy population, the development of new weapons or even the geographic locations of
the future war operations (George 1959). Such development naturally lead to the
establishment of methodology, and a shift of attention from the purely descriptive content
analysis studies to 'predictive assessment'. It was necessary to carefully isolate and measure
the importance of certain factors, something which was extremely difficult in the
amorphous reality of social sciences and with conflicting signals at hand.

The impact of experiences of the World War II and new impulses from the study of
personal traits and subjects' inner worlds as carried out in psychology had shown that
content analysis could supply important information, even if in many cases only as
supplementary proofs. In fact, it was never used as the only method of inquiry.2 Empirical
research lead to the gradual purification of the theory. The first conference on content
analysis was held in 1941 in Chicago and the first methodical publication of Berelson and
Lazarsfeld, compiling the basics of the method, was published in 1948.3 Content analysis
was accepted by the research community as a full-grown method of inquiry into social
reality.

Given its noninvasive nature, and also thanks to its relatively low cost, it became popular in
other fields such as anthropology, history or linguistics. But as is often the case with the
pendular movements, the massive adoption lead not only to the greater popularity of the
method, but also to the loosening of the scientific rigour. Content analysis became so
popular, that it seemed to be everywhere, and everything was considered to be a kind of
content analysis. (Krippendorf 2004b, 10) Berelson cautioned against such exaggerated
views, warning that it has never been comparable to techniques of intelligence and as a
research method it could supply only additional, auxiliary evidence. That information was
to be used in conjunction with other resources. Nevertheless, despite many warnings,
content analysis, especially quantitative ones, were considered by many to be somewhat
magical – perhaps because it employed statistical methods and the numbers gave
impression of hard facts.

With time, such attitudes normalized, and the method is not considered to be magical. It is
not trusted to be absolutely right, but it is trusted enough to be the sole method of inquiry –
if the used methodology is correct. It is often the main and only method of inquiry in many

(http://en.wikipedia.org/wiki/Wikileaks). There always exist power groups with hidden political
programme or interests.

2 As for example described in Peter Conradi, Hitler's Piano Player: The Rise and Fall of Ernst Hanfstaengl:
Confidant of Hitler, Ally of FDR (Da Capo Press, 2006). The American army used the services of the
deserted Hitler's confident in order to interpret certain personal traits and wartime operations. Hanfstaengl
reports were read by president Wilson, nevertheless, Americans never considered such information to be
on pair with intelligence information. This is testified by many other resources.

3 Later published in a revised version in 1952 as 'Content analysis in Communication research'. (Titscher,
Jenner, and Meyer n.d., 56)

36

III. CONTENT ANALYSIS

studies, but of course the situation has changed considerably in the past 20 years4. Firstly,
never in the past had researchers access to such abundant sources of information as now.
Secondly, mankind is developing tools to process huge amounts of textual and non-textual
data alike – what was only envisaged a few decades ago is now slowly becoming a reality.
People communicate over the web, without even being aware that their actions are
recorded, stored, accessed and analysed simultaneously.

Developments in hardware and networking are mirrored in the fields of natural language
processing, information retrieval and artificial intelligence. These areas are already beyond
their infancy and bear useful fruits, the disciplines had moved past the unrealistic
expectations that computers will 'soon' be able to understand and interpret natural
language. The modern generation of researchers see computer systems as very effective
tools, nevertheless they are also aware of their limitations. They do not expect computers to
suddenly start interpreting the meaning of communicated messages, especially not in the
same ways as human brains do – especially because we do not even know how human
cognitive facilities work (Bickle, Mandik, and Landreth n.d.; West 2001) However, it is
possible to build tools that are able to provide useful insights, no matter if the extracted
data is simple in its nature.

Similarly to the domain of computer linguistics and machine translation, content analysis
was subject to some exaggerated claims and aspirations. Computers were expected to
replace human trained coders (“Assessment and Development of New Methods for the
Analysis of Media Content” n.d.; Cuilenberg, Kleinnijenhuis, and de Ridder 1998;
Krippendorf 2004b) with the ultimate goal of replacing human intelligence altogether.
People hoped it would be possible to design tools that automatically process huge
quantities of text with results comparable to human processing. Whilst it is already true and
was demonstrated that computers outperform trained human coders in certain tasks (King
and Lowe 2003), we are still at the beginning. The tasks in which computers outperform
people are simple ones - of recognizing concept, selecting important pieces of information,
processing immense quantities of data fast. Though the evolution continues, as seen in the
areas of machine learning, in many aspects we are still at the beginning:

Computational linguistics, with its current concern for parsing sentences and
disambiguating words and phrases, has made only marginal contributions to
computational theories of meaning, largely because it theorizes what is general to
language, not what is specific to particular nonlinguistic contexts. Content analysis,
in contrast, needs to answer specific questions that have not previously been
answered about extratextual phenomena of analysts' concerns... Despite remarkable
progress, content analysts can hardly claim to have met the challenges of this new
era. The imagined analytical potential is far ahead of what can be done today, fuelling
the work of many developers of new analytical tools.(Krippendorf 2004b, 309)

It is clear there is great potential here. Even simple solutions may provide very interesting
results, especially when the networking effect is exploited, such as crowd-sourcing.5 Yet
most authorities in content analysis field still maintain, that the method itself can describe

4 For a substantial list of studies in the past, see: (Berelson 1972a) and for the more recent studies
(Neuendorf 2001)

5 Perhaps one significant example for all is the study of Twitter messages which predicts the value of
commercial products such as films and is proven to be more accurate than expensive consultants (B. A.
Huberman, Romero, and Wu 2009; Szabo and Bernardo A. Huberman 2010)

37

III. CONTENT ANALYSIS

only message characteristics or relationships between these message characteristics –
therefore the scope of conclusions drawn from such data is often limited. It is true, that
such information can and should be used in scientific endeavours – science seeks to
describe, explain, predict and interpret the reality around us – but it is recognized that there
is no direct relationship between the source of the message and the intended effect on the
audience without a sound theory of how the human mind works.

But such a stance is not extreme, there clearly are relationships and it is important to study
them. In the past, behaviourists ignored everything which could not be directly observed,
counted, measured, or weighed 'objectively' – and yet the paradigm has changed and was
dismissed. It is not necessary to move from one extreme towards another one again. Whilst
content analysis still strives to be scientific, certain characteristics of texts (messages in
general) are already acceptable for the community. Krippendorff lists a few features of
texts that are important for content analysis, and they seem to support such reading of
literature (Krippendorf 2004b, 24):

● Text has no meaning without a reader (but its characteristic features can be
measured)

● Text does not have "one" precisely definable meaning, but there exists a plethora of
possible perspectives and interpretations

● Subject is at each moment aware only of a few of the meanings, the rest are ignored

● The meaning "speaks" to subjects – affects them, carries some potential and has
effect on the conglomerate of psychological variables in the background (intellect,
emotions, experience etc.)

● Those subjective variables of individuals are probably generalizable, but so far
there exists no generally accepted theory of 'human cognition'

● Text has certain meaning in the given context – thus it is possible to delimit one or
few interpretations from the sea of other possible readings. "The analyst must, in
effect, construct a world in which the texts make sense and can answer the analyst's
research questions."

● Content analysis of text creates a specific reading of a text - "inferences" are
possible from the text towards the context for which the interpretation was
constructed

From the points listed above it is apparent, that the analyst is recognized as an important
component of the environment - the research questions and the design of experiments
inevitably bear traces of the analysts' personalities. The problems are not only in the way in
which they interpret results, but also in the way “how” and “what” questions they ask or do
not ask. And since content analysts aspire to create a repeatable and fair measurement, they
must limit themselves to manifest content. Krippendorf says, content analysis is only “a
research technique for making replicable and valid inferences from texts (or other
meaningful matter) to the contexts of their use”.(Krippendorf 2004b, 18)

38

III. CONTENT ANALYSIS

III.1 MAIN TYPES OF CONTENT ANALYSIS

Neuendorf lists four main types of textual content analysis.

1. Descriptive content analysis – In this type of analysis, only the characteristics of the
message are taken into account. Researchers are careful not to draw inferences
about the studied phenomenon outside the studied domain. The analysis describes
only characteristics of the content matter – it can be viewed as a summarization or
re-statement of existing content matter. Clearly, this type of analysis can serve as
input for other interpretations, but as far as content analysis study is concerned, this
is not the goal. Examples include description of the TV series, characteristics of
shows aired at certain countries, frequencies of keywords, topics, certain rhetorical
expressions.

2. Inferential content analysis – There is great interest for those wanting to go beyond
the description of data, most often in studies of mass-communication. Researchers
are naturally keen to discover what is happening in reality, but because reality can
only be studied indirectly using products of human communication, it is tempting to
draw certain conclusions from these signals. The prevalent view of the
communication in the form: source → message → channel → receiver seems to
support the idea that after characteristics of the message were discovered, one can
indirectly infer facts about the source or recipients of the message. I.e. what was
the motivation of the source to communicate in that way, what effects such a
message had on recipients, how to change the message so that desired results are
obtained next time. Quite clearly, if such an interpretation is not backed by data
from other sources (validated) researchers are in danger of creating wild guesses or
unsustainable theories.

3. Psychometric content analysis – This type of content analysis is applied in
psychology. The method seeks (a) to provide a clinical diagnosis for an individual
through analysis of messages generated by that individual or (b) to measure a
psychological trait or state of the individual using the messages. Though this
method seems to go beyond the characteristics of the manifest content, it involves a
careful process of validation in which the analysis is linked with other diagnostic
methods. (For review and bibliography see Gottschalk 1997; “PCAD 2000” n.d.)

4. Predictive content analysis – This type of content analysis has as its primary goal
the prediction of some outcome or effect of the message. Researchers aims to
predict receiver or audience responses, for example (Phillips 1979, 1983) has
examined the incidence of suicides after newspaper reports of suicides, and the
occurrence of deaths due to car accidents following soap opera suicides. Although
this type of research is criticized because causal links are hard to prove, especially
in behavioural and social sciences, strong correlation can sometimes be shown.

In Smetacek's view, SEMAN is a tool for predictive analysis. However in my opinion that
is more wishful thinking than reality. The nature of USL does not make it predisposed for
any inferential work, unless there is an A-box built on top of an existing T-box and the
nature of USL makes it best suited for descriptive (classical) content analysis. The idea of
semes might indeed be useful for the discovery of new relations, as we will see later, and it

39

III. CONTENT ANALYSIS

indeed works differently than the classical content analysis tools. However, the novelty in
the approach does not necessarily make the tool more suited for inferential content
analysis. It would be difficult to argue that SEMAN is something more than a new tool for
traditional content analysis.

III.2 THE COMPONENTS OF CONTENT ANALYSIS

Content analysis is a scientific method and thus follows verified and repeatable procedures
which we will summarize in this section with the goal of highlighting certain elements and
problems relevant specifically to the task of the computer assisted content analysis.

As a research method content analysis is consistent with the standards of survey research;
an attempt is made to measure certain variables as they occur in the manifest content – its
accessible representation. The procedure of quantitative content analysis (summarized by
White and Marsh 2006) generally consists of these steps:

1. Establishment of hypothesis or hypotheses

2. Identification of appropriate data (text or other communicative material)

3. Determination of the sampling method and sampling unit

4. Sampling

5. Identification of the data collection unit and units of analysis

6. Establishment of a coding scheme (for hypothesis testing)

7. Coding of data

8. Verification of coding reliability, adjustment of the coding process if necessary

9. Analysis of the coded data, statistical testing

10. Interpretation of results

The process, as outlined above seems linear, but often the contrary is true – especially if the
exploratory analysis is done first, or when researchers subscribe to a certain scientific
school or paradigm, as is the case of grounded theory, the school of thought prevalent in
qualitative content analysis circles6. However, for the purposes of this discussion, the
generalization of the process as outlined above is sufficient.

6 Important concepts of grounded theory are categories, codes and codings. The research principle behind
grounded theory is neither inductive nor deductive, it might be characterized as explorative – this leads to
a research practice where data sampling, data analysis and theory development are not seen as distinct and
disjunct, but as different steps to be repeated until one can describe and explain the phenomenon that is to
be researched. The stopping point is reached when new data does not change the emerging theory
anymore, until that point is reached, the research is iterative.

40

III. CONTENT ANALYSIS

In the case of quantitative content analysis, the hypotheses should be tested and falsified. A
certain theory of communication provides researchers with a view on the cultural or social
phenomena and the task is not the formulation of the explanation of such a movement, but
identification and extraction of indicators that confirm or falsify such a description. It is
still necessary to identify the variables that support or testify for the presence or absence of
an ongoing process, but theory also serves as a starting point. It provides a ready
explanation of a studied phenomena, and content analysis is a method to obtain data.

In the first phase, researchers clarify their research questions. A working hypotheses are
generated. They will serve as a search spotlight for the next steps. Based on the research
questions, researchers must select variables (indicators) of the studied phenomena. But as
there are many ways to look at the definition of meaning, there are also very many ways to
study people when they use, express, and interpret the meaning written in the text. A few of
the points thus deserve separate treatment.

III.2.1 Coding and categories

In quantitative content analysis, a fairly exact and unambiguous definition of seeked
concepts is needed for the coding phase. This is called “operationalisation of concepts”.
For most part, the operationalisation of the concepts has the form of a coding dictionary or
coding scheme (when human encoders are used) and content analysis tools are specifically
built to make the coding reliable, fast, and unambiguous. From our viewpoint, the coding is
the crucial phase and the tools differ in the way they handle it and the dictionary
development.

Indicators from the text are usually grouped under categories – harvested into 'bins' – and
these will represent the extracted data, the raw material for the analysis. It is important how
fairly the coding scheme captures the studied phenomena. Categories must not be too
general, because that would conflate too many signals into one bin, but categories also
must not be too narrow, as each observed feature would, in extreme cases, have its own
category and that is just as unhelpful. Categories should not overlap, as the signals would
be counted several times. Categories must be both unique, and exhaustive, not leaving out
important indicators. And because it is not easy to build such a sufficient coding scheme,
the process can take many iterations.

The development of the coding scheme is the most laborious and expensive operation of
most advanced content analysis studies. It is reported, that such work takes more than 5
person-years of coding (Schrodt 2009, 19) , and the absence of a good coding scheme is
effectively the same problem as the infamous 'knowledge bottleneck' of the knowledge
representation systems.7 Classical content analysis stands and falls with the coding
dictionary, especially in case of traditional automated content analysis.

The proper design of content analysis tool needs to ensure:

7 And the final reason, why the modern systems of information extraction are focused rather on
unsupervised methods, statistical learning and artificial intelligence algorithms. To build a knowledge
representation with human experts is often prohibitively complex and expensive (Sowa 2000; Turmo,
Ageno, and Català 2006)

41

III. CONTENT ANALYSIS

1. consistency of coding

2. consistency of categories throughout the times

Consistency of coding is of paramount importance and therefore it is convenient if content
analysis tool contains procedures for dictionary evaluation and coding scheme performance
measurement.8 Various functions for checking consistency, distribution of gathered signals
across categories with the possibility of splitting certain parts of the coding scheme in an
automated way. And procedures that automatically check integrity of the dictionary.

The second requirement of consistent categories throughout the times is sometimes more a
theoretical than a practical possibility. Most of content analysis studies devise elaborate
coding schemes, but none of them can expect them to be complete – at least not until a
period of prolonged testing is over. If after that the research needs to be replicated, it is
necessary that the coding scheme be fixed – or at least versioned. People will need to
change, evaluate and revise it – if not in later stages, certainly during the development
stage. And small changes will often have profound, unforeseen consequences. Therefore
the systems must provide feedback, evaluate results of the coding schema changes and
measure performance gains or loses.

Generally, it is beneficial if existing coding schemas are reused – it not only allows for a
direct comparison of research results, but also mitigates the knowledge acquisition
problem. There exist numerous dictionaries – for example several coding schemes
developed for the analysis of armed conflicts in political sciences such as WEIS, PANDA,
or datasets with the associated coding schemes such as CIA Factbook. Also the dictionaries
with Osgood differential, and Harrold Lasswell's attitude dictionary. These were designed
specifically for the purposes of content analysis, but more dictionaries usable for analysis
are available from different resources – for example generic, upper ontologies such as
Wordnet9 or CYC, or domain specific ontologies published in the form of SKOS ontologies
such as the dictionary for High Energy Physics. We shall not forget also the more
traditional classification systems, such as the Dewey Decimal Classification or Patent
Classification which are also successfully used for the task of content analysis.10

It is often beneficial to choose existing dictionaries, but very often the development of a
specialized version will be necessary. Content analysis tools usually make it possible to
import different coding schemes and provide tools for dictionary maintenance. It is usually
possible to develop a new dictionary, but also convert existing dictionaries into the data
structure of a particular system. For example SEMAN has such abilities and they were
tested on a semantic network as complex as Wordnet or the HEP taxonomy expressed in

8 Interestingly, when such tools were made available they were parts of the academic coding tools and not
the commercial software suites, as will be apparent later on.

9 WordNet is the most widely used ontology for natural language processing. It was started by George
Miller and his colleagues in 1995 and it contains 155,287 English words classified by concept types called
synsets (synonym sets). They are further split into a hierarchy of types and subtypes with a few other
relations, but with no axioms or formal definitions. Wordnet is thus effectively a semantic network of
concepts expressed in English language. CYC on the other hand, is a real ontology with the inferential
engine suitable for the AI robots. It has the aspiration of becoming a knowledge base for the computer
driven human-like reasoning.

10 The possibilities are numerous, for example De Wever reviewed 'only' 15 coding schemes targetted
specifically at the coding of the computer supported collaborative learning (the collaborative discussion
activities). (De Wever, Schellens, Valcke, and Van Keer 2006)

42

III. CONTENT ANALYSIS

SKOS format. But at this point it is not possible to compare the tools yet. Without
discussing their working mechanisms. Suffice to say that some tools allow us to build a
semantic map, and again some others rely on a simple, flat list of patters. This is an
important detail because the internal knowledge representation of the dictionary in the final
stages limits the capabilities of the tool.

The limited options of some content analysis tools may not always be perceived as a
disadvantage. Because the more complex concepts we try to capture or express, the more
difficult it is to select and maintain consistent coding of patterns. There is an imminent
paradox of what is possible and what is attainable with the resources at hand – it may be
nice to express very complex concepts in a language of USL or any other coding system,
but if the final purpose is the simple recognition of patterns, the advantages do not
outweigh added complexity. And such complexity will have a detrimental effect on the
reliability of the dictionary. Suddenly we are working with a knowledge representation
system and if there are more people expressing their views of the world, they will
inevitably end up mixing different views of the same world into one representation system.

The differing views will be encoded into one. Sometimes it will be necessary, because
simpler coding allow only simple operations – but there lays inevitably a tradeoff between
expressiveness and complexity. If we enforce simplicity, we may lose actual meaning. If
we enforce expressiveness, we may retain meaning but sacrifice consistency. In the end it is
the researcher, who has to take the decision. But the content analysis tool may make such
decisions easier when higher expressive power is needed – even if it means more risks. As
Berelson said: “[w]hat does it matter that we gain reliability if in the process we lose all our
insights?” (Berelson 1972b, 173)

III.2.1.1 Reliability and validity

Reliability means that if different human coders were reading the same text, they should
code the same parts of the text with the same categories – i.e. they interpret meaning of the
symbols in the same way, consider them to be the same thing and consistently assign the
same set of signals to the same category. Results from measurements which are reliable
will not change considerably over time. Even if the procedure is applied to a different
sample of the same kind, it is expected that results will remain constant despite slight
variation. Reliability says that results will not change considerably, that there are no
external factors bearing too much influence on the measurement. But it does not say that if
we gather wrong data reliably, we will be able to discover something – unless of course by
chance.

Krippendorff discusses three types of reliability, together with the accompanying mode of
their testing:

Reliability How to evaluate How is shown Importance

stability test-retest Important difference in the
interpretation of categories

Weak

43

III. CONTENT ANALYSIS

reproducibility test-test As above + discrepancy
with other, external studies

Middle

accuracy test-standard As above + variations
against standard

Strong

Stability means that the process of measurement is not variable through time and that
categories are designed in such a way that coders (or the population that was using such
codes) understand, interpret and handle them in the same way. Therefore, if the analysis is
completed by other researchers, with the same set of tools, they will obtain same results.

Reproducibility is a different facet of the reliability and means, that if the measurement is
conducted by other researchers, but using different tools, the results will be still
comparable.

The last level of reliability of the measurement is a conformance to the standard. The
standard may be hard to obtain in the domain of social sciences. Nevertheless, if available,
the variances from it are understood as errors in the measurement, not as errors in the
standard.

To achieve high levels of reliability is intrinsically difficult. It was shown, that the overlap
even between trained human indexers is on average around 44% (Leininger 2000) which
can be corroborated with values reported in (Medelyan 2009; Medelyan and Witten n.d.)
which span the range of 13-70% for different thesauri. Therefore for computers this task is
very difficult because even people are not sure what is correct.11 The act of coding, when
done by people, is further complicated by external factors such as fatigue, distraction and
cognitive disparities, cultural backgrounds or education.

These reasons ultimately lead to the development of machine coded content analysis, but it
took more time to be accepted. This happened only after research had demonstrated that the
machine can outperform people in certain tasks (King and Lowe 2003) – at least with well
disambiguated dictionaries or routines that make the processing less ambiguous.

As discussed by Schrodt (Schrodt 2009, 66) the reliability of content analysis research
consists of three components:

– stability: the ability of a coder to consistently assign the same code to a given text

– reproducibility: the ability of different coders to assign the same code to a given
text

– accuracy: the ability of a group of coders to conform to a standard, minimum of
omitted (missed out) entries, as well as a minimum of false positives

In the case of machine coded data, the situation is easier in some aspects and more difficult
in others. For a given set of patterns the stability of machine coding is 100% because the
machine will always code the same text in the same manner. This is particularly useful
when a time series is being maintained for a number of years. Because the patterns used in
coding are explicitly specified in the coding dictionaries rather than dependent on coder

11 Similarly, in the tasks of word sense disambiguation, on the words that have few meanings, the inter-coder
agreements oscilated around 95% however for words with many meanings, the agreement between people
was on average 70%. (Christoper D. Manning and Schuetze 1999, 233)

44

III. CONTENT ANALYSIS

training, the same rules can be used 10 years later. Also the machine will be consistent in
making the same mistakes and inter-coder reliability becomes a non-issue, at least as far as
coding is concerned. However, we come across a knowledge representation problem – as
discussed in the previous chapters.

If the dictionary was prepared by several people, it may contain different views of the
world inherently encoded in its structure. The good news is that machines are able to code
reliably, provided care was taken in the preparation of the dictionary.

In our experience, the reproducibility of machine coding seems comparable to the
inter-coder reliability of humans, and a machine is obviously not influenced by the
context of an event or by intrinsic political or cultural biases. (The coding
dictionaries may reflect biases, but these will be explicit and can be examined by
another researcher; the dictionaries are also applied consistently to all actors and in
all contexts.) Furthermore, the machine is not subject to coding errors due to fatigue
or boredom, and, once a coding vocabulary has been developed, it does not require
retraining. (Schrodt and Gerner n.d., 2:66)

The results reported in King are impressive.12 Nevertheless it should be also noted, that
they apply to a limited domain of problems and that coding schemes are carefully crafted.
For example, the language of the source document is simple. There are not many problems
with coreferences, a domain specific rather than domain-universal dictionary is used, the
coding scheme is well tested and was cleared up by many iterations. A lot of precautions
were put in place to fight against pollutants, distortions and biases so that dictionaries are
unambiguous and the machine is able to recognize patterns in the text with a high degree of
accuracy. The task of content analysis tool is therefore to make such customization not only
possible, but also easy.

Validity

Contrary to “reliability”, validity is the name for the “intended concept match”. Data can be
valid only if the tools that are measuring them are capable of such measurements. In the
particular case of content analysis, the tools are not the software packages, but the coding
schemes – these are the real tools of measurement. Validity cannot be estimated by
repeating a survey or experiment with the same tool, or by duplicating the data or by
calculations that dependent on the previously obtained values. Validity can be estimated
only by comparison with other external sources of information obtained independently of
the conducted measurements. Estimates can then say how much information obtained in
the process is a valid indicator for the studied phenomenon.

In the case of textual content analysis, the nature of data is peculiar. Texts themselves can
be considered as indirect representation of reality, but these pictures of the reality are
skewed in many different ways – and they can also be interpreted in different ways. Even if
we assume that there exists one shared, and perhaps objectively describable reality, it is
hard to concede that these 'snapshots' of (one) reality represent it. That the observed change
in the data corresponds to the (unobserved) change in the underlying reality and therefore
the world of 'texts' is parallel to the changes in the other worlds.

12 And can be corroborated by the TABARI project which reports 75-85% accuracy. (Schrodt 2009, 7-8)

45

III. CONTENT ANALYSIS

We could see content analysis in the same light as sociological research and distinguish
between different types of analysis levels:

1. description of the manifest content (descriptive studies)

2. content analysis that supply data about the existence of certain patterns (i.e. theory-
supporting data extraction)

3. content analysis which interprets (therefore somehow 'understands') the meaning,
says how people read and comprehend, how this understanding influences their
behaviour

Especially the last type of analysis cannot be conducted without a firm theory of
communication and the human mind and without a significant input of the humans, thus it
is very difficult to achieve validity from the methodological point of view: (Krippendorf
2004a, 318)

(a) if content analysis serves the purpose of predicting future events and states, it is not
possible to validate the results against results of other measurements

(b) the second, more significant case, is when researchers have the external evidence and
this evidence is used for the design of the current Content Analysis study. Such results may
influence researchers to focus on certain facets and thus the study will be effectively
confirming the previous study. Even though formally external, the study will not be
independent from the first.

Validity is hardly a problem in a simple study, because people can generally agree that
categories measure what they are intended to measure. “In cases where there is high
agreement on the definitions of the relevant categories, there is little difficulty in achieving
validity in content analysis data”. (Neuendorf 2001, 169) But because validity is mainly a
problem of definition, and several definitions can be made of a certain category, it is not
always easy to make sure that the tool is really measuring what it should. Also the relation
between validity and usefulness is contradictory. It is possible to conduct very valid and
accurate research, but also very limited and without any value, without taking any risks. Or
to take the other route, take risks and validate the data against an external source of
information. But content analysis coding tools will not be of any great help here, that is a
project design problem.

III.2.2 Data
Content analysis tools can help mostly with the processing of data. It is the responsibility
of researchers to make sure that information coming from the conceptualization directly
relates to studied questions. The initial decisions in content analysis research have to deal
with the question “which units of analysis are important?” – for the purpose of the
research, a unit may be defined 'freely' based on the purpose it serves. But it is important to
distinguish whether it is (a) a sampling unit or (b) is used as a base for measuring variables,
and whether it (c) serves the purposes of reporting final results. Content analysis tools thus
have to deal with several data units during the analysis, and be flexible enough to allow for
their separation.

46

III. CONTENT ANALYSIS

Sampling units

They denote WHAT will be included in the analysis. Contrary to census or sampling for the
purposes of quality testing, sampling units of content analysis are rarely used as units for
reporting. The sampling units serve as 'containers' or pools, from which data is extracted.
For example, they can be constructed as issues of a journal, random samples or articles
from a given year, all newsgroup messages for the first week of every month (time periods)
etc. Obviously they represent the input for the coding phase and must fairly represent the
population of all the messages. Content analysis tools should be flexible enough to process
various input formats and allow researchers to extract and work with only the important
parts of the message in the next phase. Yet in most cases, the problem of sampling is
external to the tool used, and is internal to the chosen methodology.

Recording units

Also called units of data collection, these represent 'the smallest possible and meaningful
units of the message that contain information about the researched problem'. For example,
in psychological content analysis the verbal clause is often the best unit of data collection,
because it allows one to assess presence or absence of many key markers of a personality.
For purposes of the analysis, the word would be too isolated and sentences or paragraphs
too broad. The decision depends on the problem at hand. Obvious tradeoffs in the economy
of research remain (Berelson 1972b, Chpt 2), but as far as text content analysis systems are
concerned, it should be possible to work with individual words, sentences, paragraphs,
pages or other units. Tools will necessarily vary in their capabilities to recognize and work
with different recording units. But recording units are not what distinguishes one tool from
another – it is ultimately the next data unit and its processing which is the most important
one.

Units of analysis

These units tell different systems apart. In our work we focus on content analysis tools that
use dictionaries, and are specifically suited for frequency analysis of categories –
represented by (groups of) words or more generic patterns. Units of analysis are simply
'things being counted', and while they might be identical with the units of recording, in
most cases they will represent simpler items. For example category WEALTH will count
occurrences of words such as money, dollar, pound, or complex patterns such as
he invested in or company x acquired y. The task of the most content
analysis applications is to assist with the definition of such categories and their content,
find such units, or help to find them, and then produce output that can be analysed. Either
by the tool itself, or more often, using external, specialised statistical software packages.
The units of analysis ultimately correspond to the raw material which will be melted and
recast during analysis inside the (external) packages.

Contextual units

There exists another interesting unit type, while not strictly being a 'data unit', it may be
very important. Contextual units are simply containers for information that describe the
way in which the units of analysis were obtained – simply because for analysts it may be
vitally important to know the context in which recording units were extracted, how they
were extracted, using what procedures. Also, what was the presumed target audience of the
original messages, when the sampling units were selected, how the recording units were
chosen and similar. All this data may help interpretation of extracted information,

47

III. CONTENT ANALYSIS

especially in later stages, when analysts already forgot all the intricate details of the coding.
If content analysis tool can record contextual units (presumably many of them in an
automated way, creating logs of operations), they will serve the same purpose as
workbooks of experiments in the natural sciences.

48

IV. SOFTWARE FOR CONTENT ANALYSIS

IV. SOFTWARE FOR CONTENT
ANALYSIS

Prevalent classification of content analysis software is based on the difference between
qualitative and quantitative content analysis and also on differences between different types
of analysis (as outlined in the previous chapter). The two main groups of software are:
packages for qualitative content analysis, called CAQDAS (Computer Assisted Qualitative
Data Analysis). The other group is composed of quantitative content analysis tools. (For
review and extensive bibliography see Koenig n.d.) While it is true that many qualitative
content analysis programs now offers modules for quantitative content analysis, there are
still many differences in the way in which the research is organized. For example, most of
the tools which are of importance and interest to us, work with specially crafted
dictionaries, provide mapping operations and the results of the analysis are available as
input for more sophisticated processing – usually employing statistical packages such as
SPSS, MatLab or analytical tools in Excel. They usually lack the capabilities and graphic
interfaces of the qualitative tools, unless they are parts of much bigger software suites.

Lejeune observed (Lejeune 2008, 2009) that content analysis tools can be classified into 3
main categories. Those that:

1. generate classification categories automatically

2. leave the construction of the categories completely to the user, but help with the
analysis

3. assist with the analysis using registers

The first group is the subject of research in the fields of artificial intelligence and machine
learning. It encompasses a plethora of algorithms, from the simple extraction of concepts
based on probability metrics, up to the classification of data using neural networks,
statistical learning and similar - for reviews, see (Sebastiani 2002; Dale, Moisl, and Somers
2000; Christoper D. Manning and Schuetze 1999; Sampson 2003)

The second group of tools consist of already mentioned CAQDAS packages (“Assessment
and Development of New Methods for the Analysis of Media Content” n.d.; for reviews
see: MacMillan 2005)The most visible packages include software like NVivo and
MegaPutter.1 While it is no longer true that they 'only' help to organise the content and the
researcher does all the work manually2, it is true they were constructed primarily to assist
humans to organise content matter. The researcher does the work “manually”and it is her

1 NVivo can be found at http://www.qsrinternational.com/products_nvivo.aspx [Accessed: 24-07-2011] and
MegaPutter at: http://www.megaputer.com/ [Accessed: 24-07-2011]

49

IV. SOFTWARE FOR CONTENT ANALYSIS

input that the software helps to manage. This group is the biggest, and usually when the
general public hears about content analysis tools, it is software from this category that is
used.

Finally, the third group of tools is specially constructed around a dictionary (called a
register) and as opposed to the CAQDAS tools, that almost all subscribe to grounded
theory, tools in this category show much wider theoretical and methodological variety.
Here the analysis is not completely in hands of researchers (like in 2) or completely in
'hands' computer (like 1), but we see various degrees of combination. The registers are
often based on the established theory for which dictionaries were built by groups of
researchers. For example the Laswell's dictionary for measuring levels of positive/negative
interest. The fact that often a standard register is employed of course does not preclude the
option of creating a completely new register.

For a comparison, we can cite another example of how content analysis tools are
distributed:

Software for content analysis divides, according to its intended function, into three
major categories. The first set of programs perform dictionary-based content analysis.
They have the ‘basic handful’ of text analysis functions, involving word counting,
sorting, and simple statistical tests. The basic handful are described in the next
section. The second set contains development environments. These programs are
designed to partially automate the construction of dictionaries, grammars, and other
text analysis tools, rather than being analyzers themselves. Development
environments are more similar to high-level text-specific programming languages
than to freestanding content analysis packages. The third category contains
annotation aids. While an annotation aid can often perform some automatic content
analysis, it is intended more as an electronic version of the set of marginal notes,
cross-references and notepad jottings that a researcher will generate when analyzing
a set of texts by hand. (Lowe 2003, 1)

The quote from Lowe succinctly describes the world of content analysis tools. The first
category belongs to the tools of classical content analysis, the second more to the world of
the new algorithmic approaches and, finally, the third speaks about the CAQDAS tools. By
classical content analysis we mean the tradition of examining word frequencies, creating
concordances, and building content dictionaries in order to operationalize interesting
aspects of document meaning. Of course, also other traditions of content analysis exist.
E.g. discourse analysis, cognitive mapping, and collocational clustering, with specialized
software available for application of each method. However, SEMAN belongs to traditional
content analysis and will be described as such. While it might be interesting to compare
SEMAN with CAQDAG tools, as they are amongst the most utilized packages, they were
not subject of our work. Our purpose was to focus on the first and the second category of
programmes – tools that can help to code and provide basic analytical functions.

The main difference of SEMAN against the existing tools, is that we wanted to provide a
solution crafted for USL. But also flexible enough to serve in the more classical paradigm
of content analysis. It is somewhat a mix between the two approaches but details will be
discussed later. First comes a review of content analysis tools features and then a review of
the selected packages. The review may serve as a baseline for comparison with capabilities
of SEMAN.

2 Sometimes described as reflexive, instead of “manual” content analysis.

50

IV. SOFTWARE FOR CONTENT ANALYSIS

As described by Lowe, tools from classical content analysis category, contain certain
functionality. That includes counting frequencies of words and its basic analysis, also
summarization and visualisations of results. Word frequency analysis provides a list of (all)
the words that occur in a text and the number of times they occur, or a normalized form as
a function of word counts and text length. More sophisticated methods split the text into
subparts, e.g. chapters, and create frequency lists for each, taking advantage of the fact that
certain parts of the text such as introduction or conclusions have somewhat higher
information value. The knowledge of the document structure is often used in the parsing
tasks, or during information extraction. (Medelyan 2009)

Lists with frequency information can be compared either visually, or using a statistical test
to see if certain locations contain significantly more mentions of particular words in one
part than another. Another common use of the frequency statistics is to compare treatment
of one subject in different sources – to see how different their treatment of it is on the basis
of the sorts of words they use.

Statistically this procedure can sometimes be reasonable because the counts from one
source are compared with the total counts for all words over all the sources;
significant differences may then track differences of emphasis across sources. Some
packages make use of synonym lists or lemmatize before the analysis in order to
merge word counts. Lemmatization removes the grammatical structure from the
surface form of a word, leaving only the stem; words are then counted as identical
when they share a stem. For example, a lemmatizing frequency count would treat
‘steal’ and ‘stole’ as the same word. Lists of lemma and synonyms are naturally
language specific. (Lowe 2003, 2)

However, the most important functionality is the category frequency analysis. Almost all
tools work with a dictionary that allows mapping of certain words into a predefined subset
of codes. Category counts provide a slightly more sophisticated analysis. The implicit
model of text generation implies the author of the text thought in terms of categories and
natural language is used as a medium of transport when the message is recorded. If the
content analyst can recover or reconstruct the word set used by the author, the dictionary
can be used to decode other texts translating and normalizing their form so that direct
comparison is possible.

This is the main usage of the coding tool in content analysis routine where computers are
appraised for their speed, and reproducibility of errors. And for the mapping operation,
computers outperform humans even for context sensitive problems. (Medelyan 2009;
Schrodt 2009, 66) Errors in the coding are systematic and to a large extend correctable –
while the computer will always make the same error, human coders frequently introduce
bias that is hard to spot and even harder to correct. The two factors, speed and consistency,
are therefore the main factors that drive the introduction of content analysis tools.

The disadvantage of machine coding lies in complexity of the language, computers do not
do the best job in parsing complex and often idiosyncratic expressions that are easy for a
normal human reader. It is also substantially harder to provide a computer system that is
able to infer facts from the signals, especially if the inference spans over larger areas of
texts, as often is the case with texts and their interpretation. Thus content analysis systems
may differ in (parsing) speed and ability to recognize complex or simple structures, which
will influence accuracy of the coding and the ability of the system to extract useful
information. The existence of the dictionary is nevertheless a very important feature of

51

IV. SOFTWARE FOR CONTENT ANALYSIS

almost all tools, because it allows researchers to specify a mental model of the world, even
if simplified one. The dictionary is used as a mapping from the wild and ambiguous
domain of the natural language into a more ordinate form of formal codes with known
properties.

The category of software tools that analyse texts using registers is not small. The sites that
register content analysis tools3 contain an impressive number of packages. But looking
closely, we will discover that almost half of these tools are CAQDAS, such as T-LAB4,
Wordcruncher5 – the other big group of tools specializes in automatic content analysis,
without the underlying conceptualization in the form of a coding scheme, such as:
Concordance6, Crawdad7, Hamlet II8, Leximancer9 and many others. And the packages, that
use coding schemes and are built specifically for classical text analysis are relatively few.
Interestingly, the newest one was created in 2006, while the oldest was created 40 years
ago.10 Incomplete list contains:

– Diction

– General Inquirer

– Intext

– PCAD2000

– PROTAN

– TABARI

– TEXTPACK

– VBPro

– Wordstat

– Yoshikoder

3 The main sites are: http://www.textanalysis.info/,
http://www.restore.ac.uk/lboro/resources/analysis/ca_software.php, http://www.content-
analysis.de/software/quantitative-analysis and
http://academic.csuohio.edu/kneuendorf/content/cpuca/ccap.htm (dated but still widely referenced)

4 http://www.tlab.it/

5 http://www.hlanalysis.com/WordCruncher/WC.aspx

6 http://www.concordancesoftware.co.uk/

7 http://www.crawdadtech.com/ Crawdad uses Centering Resonance Analysis, or CRA, a method that
applies natural language processing to create a network model of text. Word influence is calculated based
on the structural position of the word within the CRA Network.

8 http://apb.newmdsx.com/hamlet2.html – software by Alan Brier counts individual and joint word
frequencies, the resulting similarities matrix can be analysed using different methods (cluster analysis,
MDS).

9 https://www.leximancer.com/ – a text mining tool that automatically identifies key themes, concepts and
ideas from unstructured text.

10 Naturally, it was rewritten several times so that it is compatible with the recent hardware and operating
systems.

52

http://www.textanalysis.info/
https://www.leximancer.com/
http://apb.newmdsx.com/hamlet2.html
http://www.crawdadtech.com/
http://academic.csuohio.edu/kneuendorf/content/cpuca/ccap.htm
http://www.content-analysis.de/software/quantitative-analysis
http://www.content-analysis.de/software/quantitative-analysis
http://www.restore.ac.uk/lboro/resources/analysis/ca_software.php

IV. SOFTWARE FOR CONTENT ANALYSIS

For purposes of illustration and comparison with SEMAN, I will select a few tools that are
similar in functionality: General Inquirer, TABARI, and Yoskikoder. They represent good
approximation of the field. For two of them it is possible to obtain the source code, and for
all of them the documentation is detailed enough to be sure they work in the similar way as
SEMAN. We can leave out many other tools, that are either too small or obsolete, or tools
that are parts of much bigger software bundles consisting of many features, which are not
directly comparable because they do not deal with coding and mapping of codes onto texts.

Also a number of web services can be found, accessible only via pre-paid subscriptions,
but with them it is even harder to see how results were obtained. For this reason we do not
include them in the comparison. Certain, such as VRANET11 are widely known to the
scientific community as they were used for production of large datasets (King 2003) but
their mechanism is hidden behind contractual agreements and available only to
departmental agencies and contractors. Therefore the comparison is very difficult. And I
also omit the general purpose text engineering frameworks such as UIMA or GATE. These
frameworks are used to built almost any kind of text analytical services, but content
analysis components constitute a fraction of them. And SEMAN in itself uses these
frameworks for its internal operation. My goal is not to list all available tools and content
analysis services, rather I would like to describe a few representative tools and compare
their operations with SEMAN.

IV.1 GENERAL INQUIRER

General Inquirer is a general purpose system for content analysis and the predecessor of
almost any content analysis package available today. It was developed by Philip Stone at
the Harvard center of communication and has been used in numerous content analysis
studies in the last 40 years. Because of these reasons, I will reproduce here the somewhat
fascinating history of its life cycle. This will also serve to illustrate how content analysis
evolved together with its computing environment.12

Since its original development in the early 1960’s, the General Inquirer content
analysis software has been adapted again and again to the changing landscape of
computing resources. The earlier stages in this adaptation saga are roughly as
follows:

1) Originally programmed in several languages (COMIT, BALGOL) for the IBM 704-
709-7094 mainframe series, the system was reprogrammed in the more powerful
PL/I that became available with the large IBM 370 mainframes. These mainframe

11 http://vranet.com/ [Accessed: 24-07-2011]

12 There is an interesting parallel with SEMAN, also SEMAN existed in the version for mainframes and was
in initial phases limited by memory space and CPU issues. From there we could trace certain design
choices.

53

IV. SOFTWARE FOR CONTENT ANALYSIS

programs were then supplemented with AUTOCODER programs operating on the
smaller, more accessible and hands-on IBM 1401 computer for searching and
retrieving text stored on magnetic computer tapes.

2) When time-shared resources first became available at MIT’s Project Mac and then
on commercial time-shared systems in the late 1970’s, the PL/I General Inquirer
programs were adapted to supporting real-time content analyses. Time-shared
computing, usually by connecting a teletype or electric typewriter to a mainframe
computer over a phone line, enabled us, for example, to perform content analyses of
TAT stories as soon as they were typed, giving immediate scores for such categories
as “need achievement.”

2) In the 1970’s and 1980’s, the General Inquirer might have been be adapted for the
growingly popular Berkeley UNIX platforms, which at the time ran mainly on DEC
and Data General computers. However, IBM mainframes continued to be available
and offered continuously improving computing capabilities in speed and available
memory size, while the skimpy PL/I versions eventually available on UNIX
machines never did facilitate a straightforward implementation of the General
Inquirer on a UNIX platform.

3) When PC and MAC computers increased their RAM and hard-disk storage
capacities enough by the mid-1990’s to handle the General Inquirer content-
analysis procedures, the Inquirer was reprogrammed for them using the Dartmouth
College “TrueBasic” language with its pioneering capabilities in effectively
handling very long text strings. A “run-time” PC or Mac compilation of the
TrueBasic General Inquirer was distributed that did not require users to have the
TrueBasic language on their computers. General Inquirer users could then complete
an entire content-analysis project on their personal computer, often also enlisting
desktop statistical software packages that also by then had become available on
personal computers, such as SPSS and JMP, to complete their analyses.

4) By the late 1990’s, Java’s widespread distribution on personal computers supported
large Java programs being run on them. The General Inquirer was therefore
reprogrammed in Java for personal computers as well as other platforms. This
adaptation of the General Inquirer was made available without cost to academic
users by downloading a zipped package containing the Inquirer’s Java procedures,
its dictionaries, and its disambiguation rules. In addition, a General Inquirer website
was created to provide detailed information that might be helpful in using the
system.(Stone 2001)

Dr. Stone passed away in 2006 and General Inquirer is now available as a web service
usable only for simple projects, but definitely deserves a place in the current section
because General Inquirer was the first software of its kind that showed it was possible to
conduct content analysis studies using computers and not human coders. Even if in many
cases the research was focused on counting the surface features of a text and those features
were taken for symptoms of psychological features, the principles of General Inquirer are
in use everywhere:

1. It counts features, but also retrieves segments of the text with given characteristics
(selected by user). Researchers can change the dictionary based on the given
feedback. Improve accuracy.

54

IV. SOFTWARE FOR CONTENT ANALYSIS

2. General Inquirer also counts sentences, and displays sentences with given
characteristics – it is not bound only to words, recording units are wider.

3. Provides output with statistics on word and sentences. The output can be imported
to external statistical packages.

4. General Inquirer is distributed with a prepared dictionary, but is not committed to it.
Users can build their own dictionaries.

For the first time, General Inquirer allowed the replacement of the manual coding scheme
with a set of computer rules. This practically eliminated the problem of reliability of
coding. Computers were coding consistently under the same conditions. This also forced
discipline on content analysis researchers as suddenly they were required to formalise
rules, provide very exact and precise operational instructions. Such a development had a
positive impact on the scientific nature of the method, and finally, the boredom of the study
was limited only to the phase of designing the dictionary (which is actually a creative
process).13

IV.1.1 Disambiguation rules
What makes General Inquirer stand out from the crowd is not only being the first, but also
the fact that it was employing extensive routines for the disambiguation of English
homographs. Homograph is the word that is written in a same way but based on the context
takes very different meanings – such as “kind”. It can be an adjective, but also a noun with
many meanings such as 'species', 'type', 'somewhat'.

The disambiguation was accomplished using specially constructed rules, not a general
disambiguation approach per se, but considered to be a useful subset of it. The following
account describes the details: “Our hope was to endow computer with a limited but useful
ability to resolve lexical ambiguity, that is, to discriminate a useful set of senses for some
high frequency words of English, with a reasonable degree of accuracy.” (Shapiro, Tackett,
Dawson, and Markoff 1998, 57)14 The rules, when translated to language, look like this:

To select the appropriate sense of the word “last”:

Consider instances not in root form such as “lasted”, “lasts”, “lastly” and so forth. If
the word ends in “ly”, that is “lastly”, assign the sense FINALLY. Otherwise, if the
ending is is not “ing” (e.g. “lasted”, “lasts”) assign the sense ENDURE, REMAIN. If
it is “ing”, look to see if the following word is tagged as a determiner (such as “a”,
“an”, “the”) or a preposition (e.g. “lasting a”, “lasting the”, “lasting until”). In that
case, assign the sense ENDURE, REMAIN. Otherwise (no determiner or preposition
following) assign ENDURING.

13 For more details, see: http://www.wjh.harvard.edu/~inquirer/kellystone2.htm

14 Wuoting: Edward Kelly and Philip Stone. "Computer Recognition of English Word Senses." North-
Holland Linguistic Series, 1975.

55

IV. SOFTWARE FOR CONTENT ANALYSIS

If the word appears in its root form, that is, simply as “last”, first look to see if the
following word is “time” or “fall”. If so, in case the previous word is not “the”,
assign the sense PREVIOUS (e.g. “last time”, “last fall”). In case the previous word
is “the”, look to see if the word before “the” is a form of the verb “to be” (as in “is
the last time”) in which case assign the sense FINAL.

In all, five different meanings of “last” are identified, and eighteen rules, some of
which are logically dependent on others, are formulated to distinguish them. This
complexity is not at all atypical of the 1.070 dictionary entries for which
disambiguation rules were written by 25 collaborators over a period of 7 years.
(Shapiro, Tackett, Dawson, and Markoff 1998, 57)

The mentioned period of the last 7 years is the period before the publication of the Stone's
book, therefore 1968-1975. In the current state, General Inquirer contains over 13 thousand
word roots and 6,336 disambiguation rules. These rule were engineered by skilled
programmers in the many years since the first version and the last version of the software
from 2006, when the development stopped. The rules were generated from the corpus of
the encoded texts that were available to Stone and his team, using KWIC and manual
inspection of the context, which means if the feature was not present in the corpus, the case
was probably not identified. But as was mentioned earlier, Stone and Kelly aimed only at
disambiguation of the “most frequent words with a reasonable level of accuracy.”

IV.1.2 Dictionary
General Inquirer is basically a mapping tool. It maps each text file onto dictionary-supplied
categories counts. The current version combines the Harvard IV-4 dictionary content-
analysis categories and the Lasswell dictionary content-analysis categories, and five
categories based on the social cognition work of Semin and Fiedler, making for 182
categories in all. The view on the categories might be similar to that of Smetacek's
semantic primes (see Table on page 59).

The General Inquirer categories were developed for social-science content-analysis
research applications, not for text archiving, automatic text routing, automatic text
classification, or other natural-language processing objectives, although they may be
relevant to some of them. Many categories were initially created to represent social-science
concepts of several grand theories that were prominent at the time the system was first
developed, including those of Harold Lasswell, R.F. Bales, Talcott Parsons and Charles
Osgood. It also included categories relevant to "middle-range" theories, such as David
McClelland's theories regarding needs for achievement, power and affiliation. 15

Each category is a list of words and word senses. A category such as "self references" may
contain only a dozen entries, mostly pronouns. Currently, the category "negative" is the
largest category with 2291 entries. Users can also add additional categories. An example of

15 Stone says that normally, each entry in a category is given equal weight. However, this was a choice of the
category developer rather than any inherent limitation of the computer. Earlier versions of some Inquirer
dictionaries included categories with weightings, but were found to be difficult to obtain agreement about
the weights and they added little to the validity counts. Currently, none of the categories employ
weightings.

56

IV. SOFTWARE FOR CONTENT ANALYSIS

the dictionary below shows several meaning for the word CONTENT, we can also notice
comments written after the pipe “|” character, they were probably used by programmers
that constructed the disambiguation rules.

CONTENT#1 Noun Know | 21% noun: Meaning or constituent elements
CONTENT#2 Noun Object Comnobj | 8% noun: "Contents"--that which
is contained
CONTENT#3 Pos Modif EMOT Pstv Psv Pleasur | 58% adj: Satisfied
CONTENT#4 Pos Modif Pstv Pleasur Psv | 13% adv: "Contentedly"--in
a satisfied
 manner
CONTENT#5 IAV Pos SUPV Pstv Psv Pleasur | 0% verb: To satisfy
 6 TOR(K+0,K+0,APLY(4),,LY.
 7 TOR(K+1,K+1,APLY(5),,DEF3.DEF2.
 8 TOR(K+0,K+0,APLY(3),,ED.
 9 TOR(K+0,K+0,APLY(2),,S.
 10 TOR(K+0,K+0,APLY(5),,ING.
 11 TOR(K-1,K-1,APLY(3),,BE.LY.LINK.VB.DEF1.
 12 WOR(K+1,K+1,APLY(3),APLY(1),WITH.TO.

The General Inquirer software includes the sense disambiguating procedures as discussed
above, but they are not part of the dictionary and cannot be edited or extended by a user. A
simplified rules-based POS engine is used to assign the senses and the General Inquirer
also cautiously removes common regular suffixes so that one entry in a category can match
several inflected word forms. A category entry can be an inflected word (for example,
"swimming"), a root word ("swim" would match "swimming", if "swimming" is not a
separate entry) or a word sense (for example, "swim#1") identified by the disambiguation
routines of an inflected or root word form. These English stemming procedures, integrated
with English dictionaries and routines for disambiguating English word senses, limit the
Inquirer system to English text applications.

Text files are grouped for processing into folders. The output is a matrix of "tag counts" for
each category, with separate rows of counts for each file processed. The main output from
the Inquirer is basically raw frequency counts and indexes scaled for document length.
Statistical tests outside the program can then be employed to evaluate whether there are
statistically reliable differences between the texts or groupings of texts being studied.

57

IV. SOFTWARE FOR CONTENT ANALYSIS

58

Illustration 6: An example output from the General Inquirer processing a news from Burma
polls. Categories are in the left column, matched words in the right one.

A H4Lvd
ABANDON H4Lvd Negativ Ngtv Weak
ABANDONMENT H4 Negativ Weak
ABATE H4Lvd Negativ Passive
ABATEMENT Lvd
ABDICATE H4 Negativ Weak Submit Passive
ABHOR H4 Negativ Hostile Passive Arousal
ABIDE H4 Positiv Affil Active
ABILITY H4Lvd Positiv Strong Virtue
ABJECT H4 Negativ Weak Submit Passive Vice
ABLE H4Lvd Positiv Pstv Strong Virtue
ABNORMAL H4Lvd Negativ Ngtv Vice
ABOARD H4Lvd
ABOLISH H4Lvd Negativ Ngtv Hostile Strong Power Active
ABOLITION Lvd
ABOMINABLE H4 Negativ Strong Vice Ovrst
ABORTIVE Lvd
ABOUND H4 Positiv Passive
ABOVE#4 H4Lvd
ABRASIVE H4 Negativ Hostile Strong Vice
ABROAD H4Lvd
ABRUPT H4Lvd Negativ Ngtv
ABSCOND H4 Negativ Hostile Weak Submit Active
ABSENCE H4Lvd Negativ Weak
ABSENT#1 H4Lvd Negativ Weak Passive
ABSENT#2 H4Lvd Passive
ABSENT-MINDED H4 Negativ Weak Passive
ABSENTEE H4 Negativ Hostile Weak Vice
ABSOLUTE#1 H4Lvd Strong Virtue Ovrst
ABSOLUTE#2 H4Lvd Strong Ovrst

Table 1: Example of the dictionary distributed with General Inquirer, the first column contains words with different senses (marked by #), the second column lists the source of the
entry – for example. Lasswell dictionary is marked as Lvd, merged Lasswell and HarvardIV dictionary as H4Lvd. The rest of the columns list the categories into which the matched
token belongs. As will be seen later, the other systems usually assign only one code, however General Inquirer (as well as SEMAN) are built around the idea that the tokens match
several features.

IV. SOFTWARE FOR CONTENT ANALYSIS

IV.2 TABARI
During the 90s, the panorama of content analysis changed considerably. Firstly, with the
development of the rapid news reporting, the focus shifted from newspapers towards news
wire services. It was also established by empirical studies that mere machine-assisted
coding16 of news was not more efficient than completely manual coding – thus the energy
and funding was redirected towards the development of completely human-independent
coding. This move was accompanied by changes in the geo-political area, with the
dissolution of one superpower and the end of the Cold War era. The two major enemy
camps ceased to exist and the attention had moved to very specific subjects in limited
areas. After 1989, suddenly there were no superconflicts, but individual, geographically
located threats.17 The amount of information accessible electronically steadily increased
and that made it possible to gather enough 'signals' even for the globally insignificant
issues – in contrast to the previous situation of the major competing superpowers. Even
small incidents generated a wave of responses (signals) and this information was then used
in content analysis. Paradoxically, the wiring of information into the global network made
local analysis possible.

In this environment, the project KEDS (Kansas Event Data System) was born at the
beginning of 1990s. It benefited from NSF grants and from the second wave of revived
interest into the analysis of a large scale data (General Inquirer being a representative of the
first wave). The National Science Foundation grant on “Data Development in International
Relations” in the early 1990s had a more profound impact:

The Global Event Data System (GEDS) at the University of Maryland grew out of
this project, as did the early work on KEDS and several other experimental projects.
The DDIR project marked a transition between the DARPA-style event data research
and contemporary approaches, and the various articles in Merritt, Zinnes and
Muncaster (1993) show a mix of old and new techniques. These methods slowly
diffused into the policy community, and by the end of the decade, event data were
employed in the development of experimental early warning systems at the U.S.
Department of Defense, in the dynamic modeling phase of the State Failures Project,
and in Switzerland by the FAST project. (Schrodt and Gerner n.d., 15)

On the technical side, KEDS was written in the Pascal programming language and worked
only on Apple Macintosh computers. It was used in the years 1995-2001, but gradually
became obsolete and difficult to maintain. It was decided to rewrite it under the name

16 i.e. the coding in which human coders had programmatic tools to preprocess the text, but it was finally
humans that decided about each and every category assignment. Sometimes called as human-assisted
coding.

17 With the global terrorist thread, the situation is changing again – what remains, at least for some areas, is
the need to analyse local signals. Locally, but on a global scale.

60

IV. SOFTWARE FOR CONTENT ANALYSIS

TABARI (Textual Analysis by Augmented Replacement Instructions) in Spring 2000. The
main core of the system is written in the language C++, and TABARI also contains various
utilities for text filtering and pre-processing written in Perl and Java. But TABARI, as a
successor to KEDS, applies the very same principles and operational modes as KEDS.

IV.2.1 What TABARI does
TABARI extracts event data from the stream of text using a pattern recognition techniques.
In this context, event data is a name for a semi-formalized structure with the following four
components:
date source target event

To give a specific example, taken from (Schrodt and Gerner n.d., 1-4), the report:
July 23, 1990: Iraqi newspapers denounced Kuwait's foreign
minister as a U.S. agent Monday

 corresponds to an event which is in the coding scheme defined as
122: "Denounce; denigrate; abuse."

In this event, Iraq is the source of the action and Kuwait is the target. Together, this
information generates the event record
900723 IRQ KUW 122

where 900723 is the date of the event, IRQ is a standard code for Iraq, KUW is the code
for Kuwait, and 122 is the assigned category.

The first item is usually the date of reporting – though TABARI allows this date to be
shifted by the text itself. For example, if the report contained the words week ago, it is
possible to recognize this compound tokens as time shifting event and change the date of
reporting accordingly. This facility, and the presence of dates in general, is important for
time-series analysis.

The most important part of the event record is the group of the last three elements which
could be freely described as actor-act-object triad. The sources as well as the targets are the
political entities, such as states, leaders, political parties and similar. The verb then
corresponds to the event, the relation between the source and the target.

TABARI is specifically designed to process short news summaries, usually only the lead
sentence of such summaries. This detail is not without significance as other similar
systems are designed to work on portions or the whole texts. TABARI, however, employs
shallow parsing procedures which would fail in many other circumstances, but work well
for news wires. Specifically because the journalistic practice dictates that the lead
sentences contain the essence of the whole article, in a condensed, and rather predictable
form – the source data thus follows certain patterns and grammatical complexities are
limited. This allows TABARI to extract event data with a relative high accuracy. The
studies comparing the accuracy of the predecessor of TABARI, KEDS against the human
encoded data (using the same coding scheme) showed on average a correlation of .80 in the
reporting of dyads (source-target elements), and on average .92 correlation in identification
of actors (see Illustration 7 (Schrodt and Gerner n.d., Chpt 2, p. 17)).

61

IV. SOFTWARE FOR CONTENT ANALYSIS

IV.2.2 How TABARI works
TABARI uses a system of syntactical pattern recognition. This mechanism is written in a
configuration using special syntax and several dictionaries play an important role:

• Actors: proper nouns that identify the political actors. The dictionary is used for
naming targets as well. In the new version (since 0.7), there exists also a dictionary
of agents and it lists the possible qualifiers of the actors, such as prime
minister of.

• Verbs: for TABARI the verb is the most important part of a sentence and is used for
identification of the event and assignment of the event code to the final dyad18. The
elaborate system of phrase patterns phrases can be specified inside this dictionary.
Phrases are then used to distinguish different meanings of a verb – for example
PROMISED TO SEND TROOPS has a different meaning than PROMISED TO
CONSIDER PROPOSAL and will be classified using different event codes. The
dictionary of phrases also provides syntactic information on the location of the
source and target within the sentence.

18 By dyad it is meant the couple of involved entities, a source-target relation. The dyad in this sense is
effectively the same as 'predicate' in logic or 'triple' in the parlance of the semantic web.

62

Illustration 7: Correlation between computer and hand coded data, in the case of first
column, the same scheme (WEIS) was used. In the case of the second column, the different
coding schemes are used and therefore there is an additional level of discrepancy.

IV. SOFTWARE FOR CONTENT ANALYSIS

As a general-purpose coding system, TABARI lets users define its operational rules, or at
least change them considerably by simple rewriting of the dictionary – unlike General
Inquirer, where the disambiguation rules cannot be changed. All of TABARI's files are
stored externally as simple ASCII (“text”) files and can be edited using a word processor.
Certain parts of the dictionary, the verbs and actors, as well as their associated codes, can
also be interactively edited using the dialog, command-line interface. The editing routine
also keeps track of the coder who added each phrase to the dictionary and the date the
phrase was added. To illustrate the work of the TABARI system, we can consider this
example from the demo actors dictionary.

AL_GORE [USA] ; pas 26 apr 03 TEXT-02
ALBRIGHT [USAGOV 930206-010114] [---] ;ems 02 Feb 2001
ALBRJGHT [USAGOV <010114] [---] ;ems 02 Feb 2001
ALBRKGHT [USAGOV 930206-010114] [---] ;ems 02 Feb 2001
AMROTH_TANKS [AMRTNK]
ANORIEN [GON]
ARAGORN [RNG]
ARGENTIN [ARG]

And the verbs dictionary:

ABANDON [345] ;pas 15 Jul 2003
- * EFFORT [987] ;pas 15 Jul 2003
ACCORD [---]
- SUGGESTED_+ * DEMAND_{ GENEVA_ | INTERNATIONAL }_CONVENTIONS
[111] ; used to test blank padding of {|}
- SUGGESTED_+ * DEMAND_{ GENEVA_ | INTERNATIONAL }_CONVENTIONS
[222]
- INCHING { CLOSER | NEARER } * [083] ;tony 4/29/91
- IN_* [075] ;pas 2 May 2005; pattern CONNECT-3 7/14/03
- IN_ * [075A] ;pas 2 May 2005; pattern CONNECT-3 7/14/03
- IN * [072] ;pas 2 May 2005; pattern CONNECT-2 7/14/03
- TO * [073]

The dictionary is a plain ASCII file, with patterns and special codes. A standard input
format is used for the dictionaries. Words are entered in upper case; codes for actors and
events are enclosed in square brackets []. If two words must be consecutive, they are
connected by an underscore; if the two words are separated by a space, other words can
intervene. For example, the text “agreed to provide a loan” can be matched by the
pattern AGREE LOAN but not the pattern AGREED_TO_LOAN (we will describe more
details about the special syntax later).

The input to TABARI is a file containing a set of sentences, each prefixed with a date and
other identifying information, and followed by a blank line. The lines should not exceed
255 characters limit, otherwise they will be truncated. Each new record is delimited by a
blank line. The total size of any single text record is limited to a maximum of 2047
characters. TABARI will also apply number of limitations to filter out malformed texts

63

IV. SOFTWARE FOR CONTENT ANALYSIS

(using defaults, which may be changed in the configuration file), such as no coding is done
for sentences with less than 8 tokens, or eliminating words which contain more than 63
consecutive characters. Here is an example input:

980216 REUT-0001-01
Egypt's President Hosni Mubarak warned in an interview published
on Monday that the situation in the Arab world could deteriorate
if the United States attacks Iraq for failing to comply with
weapons inspections.

980216 REUT-0002-01
Iraqi Foreign Minister Mohammed Saeed al-Sahaf said on Monday
that he was going to Paris only to take a message from President
Saddam Hussein to French President Jacques Chirac about Baghdad's
showdown with the United States.

980216 REUT-0003-01

64

Illustration 8: List of types that TABARI recognizes

IV. SOFTWARE FOR CONTENT ANALYSIS

Israeli businessmen, Jordanian officials and foreign bankers
agreed on Monday that the Israeli-Jordanian peace treaty was not
producing economic dividends quickly enough.

These are the lead-sentences extracted from a newswire service reports (TABARI website
provides several utitilies for processing of several formats of the major news providers,
such as Reuters or Factiva). When coding events, TABARI goes through the following
steps: (Adapted from Schrodt and Gerner n.d., Chpt 2)

1. Word classification

The source text is first converted to a standard form. All letters are changed to capitals and
commas are delimited with spaces. TABARI then checks each word in the text to see if it
occurs in the actor, verb, and agent dictionaries. If the word is found, it is assigned the
appropriate type (e.g. actor, verb, pronoun, conjunction etc.); otherwise it is designated as
untyped. TABARI disambiguates verbs that can also be nouns (e.g. ATTACK and FORCE)
by detecting the presence of the articles A, AN, and THE. It also disambiguates proper
names that could be verbs by looking at mid-sentence capitalization. Most of the
subsequent parsing operations deal only with the words that have been classified by type.
See Illustration 8, on page 64 for the list of all recognized types.

2. Processing local grammatical structures

After the elements are tagged, TABARI will process local grammatical structures. This
means that actor identities are assigned to common nouns, also pronoun references are
linked with the nouns, and two actor references are translated to a single actor (e.g.
Israeli Prime Minister Rabin is reduced to a single reference Israel),
compound noun phrases are recognized and subordinate phrases delimited by commas
eliminated. If customized "rules" are used — for example a general rule to deal with the
English-language passive-voice construction — they are applied at this point (we will see
details in the section IV.2.3). Sentences that appear too complex for TABARI to process are
written to a separate file rather than coded.

3. Event coding

The program next attempts to match the patterns associated with each verb in the sentence
to phrases from the .verbs dictionary. As we mentioned earlier, the verb constitutes the
crucial element for identification of the event – and also relative to the position of the verb
the actors and targets of the action are identified. Each phrase is associated with an event
code. Patterns typically distinguish between direct objects, as in the distinction between
promised military aid and promised to veto. If a verb phrase
corresponding to an event is identified, the program finds the source actor and target actor
associated with the verb. The source is usually the first actor in the sentence; the target is
usually the first actor following the verb, provided that actor has a code distinct from the
code of the source. If no such actor is found, the program then looks for an actor prior to
the verb that has a code distinct from the code of the source. If the source or target are
compound phrases, these are expanded into multiple events. Only the first verb

65

IV. SOFTWARE FOR CONTENT ANALYSIS

corresponding to an event is coded, unless the sentence is compound (i.e. contains a
conjunction not associated with a compound actor), in which case each clause of the
compound sentence is checked for an event.

4. Information output

Following the coding phase (and if TABARI is used in the interactive mode) the main
display will show the source text along with its date and identification number, the coded
events and some summary statistics. The main display can also show the parts of speech
assigned to various words (if configured and supported by the terminal): actors are shown
in red, verbs in blue, agents in green, pronouns are replaced with their references and text
eliminated by subordinate phrases or null codes is shown crossed-out. This display is useful
for quick overview of the text results and refinement of the dictionary. This dictionary
development mode is a powerful feature of TABARI because it allows for making
interactive changes in rules of coding with results being immediately visible after recoding
(which is usally very fast). The whole editing is controlled by a keyboard shortcuts, there is
no graphical interface, all operations happen in the terminal window.

In the non-interactive mode the extracted events are simply written to an output file. The
coded output can be formatted in a variety of ways, including tab-delimited formats for use
in database, spreadsheet or statistics programs.

The default event output format is:
<date> \t <source code> \t <target code> \t <event> \t <label>

where \t is the tab character. Additional information can be added by TABARI if configured
to do so. Example output:

040401 ISRSET ISRGOV 220 (FORCE) FORCED
040401 USAGOV ISRGOV 031 (MEET) HOLD MEETINGS 4.4. EVENT FILE 43
040401 ISRGOV USAGOV 031 (MEET) HOLD MEETINGS
040401 JOR SYR 121 (CRITICIZE) SUSPECTS
040401 PALGAZ PAL 094 (CALL FOR) CALLING ON
040401 USAGOV ISR 042 (ENDORSE) ENCOURAGED
040401 BEL NTH 023 (NEUTRAL COMMENT) SAID
040401 SYR USAGOV 171 (UNSPECIF THREAT) STRAINED

66

IV. SOFTWARE FOR CONTENT ANALYSIS

TABARI provides also the statistics on the number of recognized entities from each of the
dictionary, for example the following list shows the entities from the actors dictionary that
were recognized during the coding:

0 ARAGORN
0 ARGENTIN
13 ARNOR
0 ATHENS
0 AXNOR
1 BARAD_DUR

67

Illustration 9: An example coding of the diplomatic communication in the 'Kingdom of
the Ring', TABARI allows for very quick edits and recoding of the whole corpus

IV. SOFTWARE FOR CONTENT ANALYSIS

TABARI does not contain any statistical procedures for evaluation of the data, it only
writes the cummulative category frequencies. This output effectively contains only
nominal-level data (categorical), event series must be aggregated to produce a numerical
(interval) values suitable for import into the standard statistical programs. There is a special
program called KEDS_count used for such purposes. It can produce any CSV separated
values and aggregate them into a given output. This utility is very generic and might be
used by other projects. It is flexible and allows for a range of output scenarios. The
example output is shown in Illustration 10, below.

IV.2.3 Pattern matching
TABARI relies on sparse parsing of sentences – rather than using full syntactical analysis.
It will identify actors (mostly proper nouns and possible compound proper nouns) in the
vicinity of which the verbs are found, and with help of the verb, the direct objects within
the verb phrase are found – or, in the case of passive voice, the entities are swapped at the
position of the direct object with the actor. The source of the event is equal to the subject of
the sentence, event code is equal to the verb, and the object of the verb is the target. In the
old version of KEDS, the success of such a mechanism largely depended on the form of the
sentences available for coding because KEDS concentrated on a traditional (at least for
English) Subject-Verb-Object structure (SVO). This pattern is very common in the lead
sentences and can used reliably, nevertheless authors of the system were still finding a lot
of cases where the default parsing could not deal with a relatively simple, but frequent
cases. Thus a new system of pattern matching was invented.

This mechanism distinguishes TABARI from all other systems, making it a very flexible
and powerful tool. The possibility to provide your own patterns is very important, even if
authors say that the differences in accuracy between the old and new versions are not big
(see Illustration 11, below), certainly thanks to the classical SVO structure of the English
sentences, which also KEDS handled well. Nevertheless, the patterns are a new and
powerful feature that deserves separate discussion.

68

Illustration 10: Example of the aggregation of the categorical scoring scheme (WEIS)
into the numerical values coding Scheme (Goldstein)

IV. SOFTWARE FOR CONTENT ANALYSIS

When identifying phrases, TABARI looks at the clause – usually the parsing stops when a
conjunction or comma is encountered. By default, TABARI checks for standard regular
suffixes (-s, -es, -ed, -en, -ing) and the stemming is also activated, for example the basic
entry of a verb
KILL

Would match also
KILLS
KILLED
KILLING

However the following form would restrict the match only to the basic form:
KILL_

To define a more complex pattern, TABARI uses the following codes:
* substitution character for the lead verb
- wildcard meaning 'any group of tokens'
--- null code tells the system NOT to ignore the event
$ to mark the position of the source
+ to mark position of the actor
% to mark an entity that is both an actor and the target
^ (caret) symbol instructs TABARI to skip some entity (not to
use it)

And the software has also the following possibilities for partial matches (wild-card
endings) and their consecutive placement:

XXXX YYYY XXXX can partially match, YYYY does not
need to follow immediately

XXXX~_YYYY XXXX can partially match, YYYY must follow
immediately

69

Illustration 11: Comparison of KEDS and TABARI system on a
large corpus of Levant Data.

IV. SOFTWARE FOR CONTENT ANALYSIS

XXXX_ YYYY XXXX must match exactly, YYYY does not need
to follow immediately

XXXX_YYYY XXXX must match exactly, YYYY must follow
immediately

{X|Y|Z} X is synonymous with Y and Z

It is a simple but flexible set of patterns for definition of complex rules. Moreover, the
patterns seem minimalistic but it is clear they stem from real world extraction tasks. The
following examples illustrate how the patterns are used.19

BREAK_ [1717]
{BROKE_ BROKEN_}
- * TREATY [161]
_ * BONE [182]

This pattern would match: BREAK A TREATY, BROKE BONES and similar, but it
would NOT match BREAKS TREATY.

Another example:

ATTACK [122]
- * CRITICISM OF [042]
- *_HELICOPTERS [- - -]
...
POUND [223]

- BRITISH_* [- - -]

Will force TABARI to ignore the event where ATTACK HELICOPTERS are used, as well
as BRITISH POUND or BRITISH POUNDS because the category code is empty [---].
At the same time, it will allow for coding of ATTACKED CRITICISM OF as well as
ATTACKED FIERCELY CRITICISM OF because by default, TABARI skips
intermediate consecutive words.

To write:
- * BACK~_POLICY [062]

Means that the form BACK can have a wild-card ending, but it must be followed
immediately by POLICY, such as BACKS POLICY, BACKED POLICY, BACK
POLICY but not BACKED ANOTHER POLICY

Phrases can specify also the location of the source and target by using the tokens $ and +:

ADVISE
- +_WAS_*_BY_$

would recognize the following:

19 Interesting is the fact that the former version, KEDS, also allowed very complex patterns, but using
different rules and syntax. Worth mentioning is the fact that the current system is much simpler.

70

IV. SOFTWARE FOR CONTENT ANALYSIS

Egypt was advised by the United States

In this example, the actor locations are used to reverse the default matching rules for
identification of the source and target when a verb phrase is in passive voice.

The pattern matching mechanism is indeed a powerful way to define complex processing
of the phrases – it is not used strictly to construct formal parsing grammars, perhaps
because TABARI is used mostly by social scientists and they would find it too difficult to
use such tool. But the patterns remain simple and clear, it is tangible that the authors of the
system did not want to burden the work of analysts with too many rules, yet felt the
available subset is sufficient enough for all their needs.20

IV.2.4 Dictionary

The coding system that was used in TABARI by its creators, is derived from the World
Event/Interaction Survey (WEIS) (McClelland 1999) which was one of the prevalent
coding schemes for the political events data, together with another coding scheme
COPDAB (Azar 1980) from the early 1970. WEIS and COPDAB coding schemes are
general and comprehensive, meaning they strive to cover every possible area in the domain
of analysis. But of course more specialized coding schemes exist, often invented by
individual researchers, focusing only on specific correlations or subsets of behaviour and
TABARI was successfully used with them. (For a detailed bibliography of the dictionary
developments, see Schrodt and Gerner n.d., 13)

While the COPDAB coding system was maintained and expanded by the GEDS project
(http://www.bsos.umd.edu/cidcm/geds/), WEIS continued to be the most widely employed
coding scheme, even if often extended to provide greater detail in the coding of domestic
conflict events. The most notable of these WEIS extensions was done by the Protocol for
the Analysis of Nonviolent Direct Action (PANDA) project at Harvard in the mid-1990s
(http://data.fas.harvard.edu/cfia/pnscs/panda.htm), which produced a global, Reuters based
event data set covering 1984 through early 1995. To accommodate domestic events,
PANDA more than doubled the number of WEIS categories, while providing a systematic
table for translating PANDA codes to WEIS codes. More recently, this effort has been
extended to the IDEA coding system, which is designed to be used in the edition of the
World Handbook.21

The TABARI authors followed suit and developed their new coding scheme called
CAMEO -- Conflict and Mediation Event Observations, which borrows from IDEA and
offers several new features compared to WEIS:

• New tertiary sub-categories specific to conflict mediation

20 The TABARI codebook manual contains almost 20 pages of examples of the pattern matching rules.

21 IDEA can be found at: http://www.vranet.com/idea/

71

IV. SOFTWARE FOR CONTENT ANALYSIS

• Substantially expanded the categories for "use of force" which allows for finer
granularity in distinguishing levels of violence

• Number of WEIS categories that, in the experience of TABARI authors, could
not have been reliably differentiated in machine coding were removed

• A new systematic hierarchical coding scheme for substate actors

This development shows how important role the coding scheme plays. For example
datasets produced using the VRA coder are available (King 2003) but not the coding
scheme itself.22 Also in the case of TABARI, the coding scheme is not available for
download – even if the WEIS categories are available on the site. The coding scheme
represent the substantial investment23, as we could guess from the description of the older
KEDS framework:

The KEDS dictionaries we have used to code international events in the Middle East
contain about 650 actors and 3500 verb phrases. The PANDA project used slightly
larger dictionaries: 880 actors, 4300 verb phrases and 200 agents. Earlier work ... on
automated processing of English-language reports of political violence indicated that
dictionaries on the order of 5,000 phrases are necessary for relatively complete
discrimination between political events, so these KEDS-compatible dictionaries are
probably close to having a relatively complete vocabulary. Despite the fact that
PANDA is coding the entire world while the Kansas project codes only the Middle
East, the actor dictionaries are about the same size because a fairly complete list of
actors is required to identify potential targets of events. Dictionaries for coding
internal events are somewhat larger, although the number of additional phrases
required is usually in the tens or hundreds, not the thousands. (Schrodt and Gerner
n.d., 46)

IV.2.5 Concluding remarks
TABARI is one of the systems for the extraction of even data – and perhaps the only open-
source available for more than a decade. While it has been available for many years, it is
interesting to see that it took many years for analysts to adopt the new paradigm of content
analysis. A few reasons are discussed by (Laurance 1990), such as low sensitivity to
detection of certain events, distrust of humans for early automated methods of quantitative
content analysis and also the technical problems together with low level of user friendliness
of the packages.

We find the similar account also in the paper by Schrodt that summarizes the history of
TABARI (Schrodt 2006, 5, emphasis added):

TABARI is generally stable and has been used intensively in a number of projects at
the University of Kansas Center for International Political Analysis over the past five
years. We have periodically added some additional specialized features at the request

22 Albeit online coding manual can be found at:

23 Or in other words: the real “knowledge bottleneck” of knowledge representation systems.

72

IV. SOFTWARE FOR CONTENT ANALYSIS

of external funders, and are slowly eliminating a few remaining quirks, but for the
most part are no longer doing active development. Instead, we are producing data
sets, which was the reason we got into this project in the first place. Fifteen years
ago.

The TABARI system is successful and as the citation shows, the authors do not feel pressed
for addition of new features. For the type of analysis that TABARI does, especially with the
existence of the powerful pattern matching, the system is able to adapt to new
requirements. However, it still remains focused on the limited set of the content matter
(news clippings) and lacks sophisticated features. Schrodt discussed them in several places
(For detailed treatment see: Schrodt and Gerner n.d., Chpt 2, 5), to finally conclude that
TABARI would need considerable redesign to take advantage of the new capabilities such
as assignment of parts-of-speech, resolution of ambiguities, full sentence parsing, and
larger repertoire of sentence forms – all these elements could improve the already high
accuracy of the system, but it would also require a lot of changes. Therefore the system
does not include them now and probably will not have them even in the future either.

IV.3 YOSHIKODER

Yoshikoder is another tool for content analysis. It was developed by Will Lowe for the
Identity project at Harvard university24 and released as open source in 2006. It is written
completely in Java. Therefore it can, unlike the previous tools, run on any major operating
system and is also not limited to the ASCII input. And as it was designed 16 years after
TABARI, it also contains an intuitive graphical user interface.

While at the time when Yoshikoder was developed there already existed many tools for
content analysis (the commercial ones also provided a graphical interfaces and many
advanced functions), it is an interesting fact that Will Lowe, author of the software, felt the
need to develop this new tool. It is even more interesting if we know that Lowe
collaborated on many projects that generated content analysis data (King and Lowe 2003;
Lowe 2003, 2008, n.d.) and he must have known the field very well.

Nevertheless, something was missing. 1) Firstly, data produced by other tools were not
transparent. Before release of Yoshikoder, only TABARI was available as an open-source
software and for the other content analysis tools it was not clear what algorithms they used
and how the data was aggregated. 2) Another reason was economic; Yoshikoder can
provide services comparable to those of commercial tools at much lower costs.

The Yoshikoder is designed to help non-technical social scientists perform classical
content analyses on text in arbitrary languages. Using the Yoshikoder helps support
the replication standard and annoys people who sell similar functionality in
proprietary packages, but it is also part of a larger project to unify, standardize, and
disseminate the theory and technology of content analysis.(Lowe n.d.)

24 http://www.wcfia.harvard.edu/conferences/04_initiative_identity/overview [Accessed: 24-7-2011]

73

IV. SOFTWARE FOR CONTENT ANALYSIS

IV.3.1 What Yoshikoder does
The basic functionality of Yoshikoder is in statistics, simple counts of words – i.e. counts of
tokens that were found in the documents, either in absolute frequencies or proportionally
relative to the document size. More interesting functionality is the reporting of the category
counts of the coding scheme. The basic dictionary report counts dictionary matches in all
the currently selected documents and can display totals for the categories, as well as for
individual matching patterns. In the first column, the name of dictionary entry is shown as
a path. The second tab shows the same information normalized for document length, as a
proportion of words in each documents (see Illustration 12 above).

Yoshikoder also produces concordance reports, that lists all the matched patterns together
with their local context for quick visual debugging of the patterns. And also a specific
report for comparative purposes. Yoshikoder can compare two documents based on the
frequencies of their categories matches by computing the relative risk ratio and also the
confidence interval for the obtained values (the details will be described later).

74

Illustration 12: Dictionary reports for the distribution of categories

IV. SOFTWARE FOR CONTENT ANALYSIS

As is standard with content analysis programs, data can be exported in a variety of formats
and analyzed with more powerful statistical tools.

75

Illustration 14: Unified Frequency Report for two documents

Illustration 13: The interface to Yoshikoder with the visible dictionary tree and the
highlighted matches and the concordance report at the bottom.

IV. SOFTWARE FOR CONTENT ANALYSIS

IV.3.2 How Yoshikoder works
Yoshikoder works with the hierarchical dictionaries, it recognizes the terminal nodes as
patterns and inserts them into categories, the categories are the parental nodes in the
dictionary.

Categories represent concepts and the patterns within them represent their indicators that
can be observed in text. The GUI allows editing the dictionary entries directly from inside
Yoshikoder. Adding category/pattern, removing, dictionary changes are thus very simple
and intuitive. It is immediately visible, whether the new pattern matches portions of texts.
Dictionary entries are displayed as a tree, with patterns nested under the categories that
contain them. It is also possible to rearrange entries just by dragging and dropping them
within the tree. Since categories often have hierarchical structure they can be nested in
other categories.

Pattern matching is simple; the wildcard character '*' allows matching of any sequence of
characters (zero or more than one characters). Behind the scenes, Yoshikoder converts the
pattern into a regular expression pattern and uses it in searches. Pattern entries thus allows

76

Illustration 15: Graphical view of the dictionary inside Yoshikoder and also the xml structure of the data

IV. SOFTWARE FOR CONTENT ANALYSIS

the matching of single words or sequences of words.25 For example: chin matches the
word chin but not the words chinese or cochin, chin* will match chin and
china, but not cochin, and *chin will match chin and cochin but not china. The
wildcard character can be applied in any part of the pattern name, any number of times. For
example, ch*n* will match china, chan and chinese.

Categories may also have a description, and the patterns can have associated scores. For
example if the dictionary contains a category Sexual abuse and inside the category,
there are several patterns such as molest*, rape*, sexual assault*, each of these
patterns may have a different weight associated with them, if say molestation was
being seen as more serious than rape (for the given study) the score of rape* may be
offset accordingly. The scores of the matched patterns will contribute to the overall score of
the parent category.

Assuming that rape has a score of 1.5, and molestation 2 and sexual assault has no score.
Molestation occurs 10 times, rape 3 times, sexual assault 1 time. If sexual assault has not
been assigned a score then the dictionary report will assign the score of 1 (1 x 1) and rape
4.5 (3 x 1.5) and molestation 20 (10 x 2). If, in addition, molestation is assigned the score
-1, the report will assign sexual assault 1 and rape 4.5 as before, and molestation will be
assigned -10 (10 x -1). This method of scoring allows to distinguish between an analysis
where patterns are separately scored, and one where all the patterns in a category are
treated as exchangeable.

As mentioned before, Yoshikoder allows for testing of differences between documents
using the risk ratio.

RR=
p

Exposed

p
NonExposed

For example, if two documents A and B are compared using a dictionary containing a
category positive that represents positive language, then the relative risk for A and B is how
much more (or less) likely it is to see a positive word in A than in B, expressed as a ratio. If
A contains 100 words, 10 of which are positive and B contains 200 words, 15 of which are
positive, then the risk ratio for the category positive is 10/100 = 0.1 (the probability of
seeing a positive word in A), divided by 15/200 = 0.075 (the probability of seeing a
positive word in B). 0.1/0.075 is approximately 1.333, implying that it is about 33 percent
more likely to see a positive word in A than in B.

RR=10 /100

15 /200

Yoshikoder also computes a .95 confidence interval around this estimate. The interval
indicates whether the ratio is significantly different from a ratio of 1 (1 in this case meaning
that there is no true difference in proportions), by applying:

CI=log RR ±SE∗z
alpha

25 In the tested version (0.6.3-preview3) the multi token pattern matching does not work. At least not for
patterns like 'Peop* of Burma' or 'peopl* Burma' or simple 'people of'.

77

IV. SOFTWARE FOR CONTENT ANALYSIS

The standard score which Yoshikoder is using is 1.96, therefore it computes the interval on
the 0.95 significance level. When a category does not appear in one of the documents the
relative risk is reported as plus or minus infinity and no confidence interval is provided. If
the category does not occur in either document then no estimate is provided. If the category
relative frequencies are outside the bounds of the interval, the category count is marked as
statistically significant difference.

IV.3.3 Concluding remarks
Yoshikoder is a simple, but a very intuitive application. It does not contain sophisticated
parsing rules as the software mentioned so far and neither any NLP processing routines, but
it has the infrastructure that allows to plug in different processing resources - for example,
plugins for segmenting text for some non-latin languages, notably Chinese. It contains a
graphical user interface and does not suffer from some limitations that seem very odd in the
current circumstances – for example TABARI can process only ASCII text, lines must have
certain size, otherwise be truncated – Yoshikoder on the other hand can work with texts
written in any encoding and both in the server as well as workstation mode.

Author of the program clearly felt a need to develop such a tool, and as he says, it is also a
way to promote content analysis standards. Lowe also maintains dictionary resources
converted into the xml format suitable for import into the Yoshikoder.26 As an example, it
shows that even a rather simple processing software is still useful to the CA community
and that the certain commercial software packages may be overpriced.

IV.4 SEMAN
SEMAN was created to test the possibilities of the USL, but it is also a tool for content
analysis so we can describe it as such. However, the idea and also the name SEMAN
comes from the previous work of Vladimir Smetacek. There existed a version of the
program which was built and used in 80s for automatic keywording27 of abstracts on the
metallurgic databases in the former centre of information industry of Czechoslovak
republic. This version was programmed for the mainframe computers and is not available
any more, being long forgotten and non-functional. Vladimir Smetacek attempted to revive
the idea of SEMAN several times in the past years, but it was only this reincarnation of the
system that contains the components of a fully functional system.

26 See: http://www.yoshikoder.org/resources.html

27 But as an interesting conincidence, we can compare functionality of SEMAN against a similar tool which
is used at the Centre for High-Energy Physics (CERN) for similar purposes. Based on the dictionary, it
extracts (recommends) keywords that should be used for the bibliographic records.

78

IV. SOFTWARE FOR CONTENT ANALYSIS

SEMAN is written in Python, but certain heavy-duty components are built using Java and
C++. However, all the components are fully controlled from Python28 and can be executed
on any modern operating system. It is run routinely on Windows, Linux and MacOs X.
SEMAN supports unicode and is therefore able to process texts written in any encoding. It
can run both in a graphical user mode, and also on the server in the console mode and was
released as open-source. The motivation is similar to that of Will Lowe, the creator the
Yoshikoder – to make the procedure of content analysis more transparent and also the tools
affordable. The following sections display the internals of the system, and in the following
chapter we will evaluate SEMAN performance and capabilities on several corpora.

For the purposes of description, we will follow a default pipeline of processing set of
documents that consists of 3 steps:

1. NLP pre-processing

2. Translation into the semantic codes

3. Analysis and export of the results

IV.4.1 NLP pre-processing
Certain tasks are better handled by components that are specialised for it, SEMAN was
therefore designed to take maximum advantage of the existing research and to separate the
processing into disparate layers. The delegation of tasks onto other libraries is especially
the case of the NLP processing operations, the topic of the following section.

In the current state, SEMAN is using two NLP frameworks – GATE and NLTK.29 GATE
(Cunningham, Maynard, Bontcheva, and Tablan 2002) is architecture, framework and
development environment for LE (Language Engineering) written in Java. It is a very
robust platform actively developed since the mid-1990s and used in many projects,
especially for text engineering.30 The GATE framework comprises a core library and a set
of reusable LE modules, ranging from the document format conversion, POS tagging,
sentence parsing to machine learning algorithms, neural networks or visual annotation
tools.

28 Communication between the Java and Python components is made possible using the standard Java
Native Interface (JNI). JCC – an automated code generator – produces a C++ object interface wrapping
of Java libraries via Java Native Interface (JNI) that conform to Python C type system, which means that
Java processes are directly available to the Python interpreter. When generating Python wrappers, JCC
produces a complete Python extension module. SEMAN thus retains the ease of use of the Python
language and its fast prototyping and friendliness of the dynamically compiled scripting language, but
JCC allows us to offer very powerful and complex processing of the native NLP and information retrieval
toolkits without sacrificing quality.

29 Though it is possible to include another NLP framework – UIMA, indirectly through GATE.

30 GATE version 1 was written in the mid-1990s; in 2000 completely rewritten in Java; at the time of this
writing in version 6.5.

79

IV. SOFTWARE FOR CONTENT ANALYSIS

The framework implements the architecture and provides (amongst other things) facilities
for processing and visualising resources, including representation, import and export of
data. The components can be freely combined into processing workflows. SEMAN is able
to execute any non-visual GATE workflow and to my knowledge, it is the only system that
allows this kind of operation from inside Python. This flexibility is used by SEMAN itself
as any type of non-visual31 workflow can be prepared in GATE and executed by SEMAN.

Of a special importance is a component called ANNIE (A Nearly-New Information
Extraction System) which was for the information extraction tasks. Information extraction
is a subfield of computational linguistics concerned with a constrained form of natural
language understanding - only prespecified information is acquired from textual data.32 In
the extraction, the machine attempts to discover what is relevant inside the document.
(Cunningham 2005; King and Lowe 2003)

ANNIE consists of the following main processing resources: tokeniser, sentence
splitter, POS tagger, gazetteer, finite state transducer (based on GATE’s built-in
regular expressions over annotations language ...), orthomatcher and coreference
resolver. The resources communicate via GATE’s annotation API, which is a directed
graph of arcs bearing arbitrary feature/value data, and nodes rooting this data into
document content (in this case text).(Cunningham, Maynard, Bontcheva, and Tablan
2002)

In the default workflow, the usual processing of a document follows these steps:

31 I.e. workflow that does not use GATE's display components.

32 For a review of IE field, see (Turmo, Ageno, and Català 2006)

80

Illustration 16: General overview of GATE, the red area indicates the area of components which
can be currently used by by SEMAN.

IV. SOFTWARE FOR CONTENT ANALYSIS

1. Document is converted from its original format (pdf, doc, html...) into a xml
representation (GATE, as shown in Fig. 16 above)

2. Resulting GATE document is processed by ANNIE (based on the configuration, the
default workflow will be described below)

3. Results are exported as XML with inline annotations

4. SEMAN reads in the xml produced by GATE and creates a collection of tokens

5. This collection is translated by SEMAN (depending on the currently configured
workflow – will be described later)

6. Results are then summarized and exported/saved

The following chart illustrates the first pre-processing stage. GATE converts a document
from its original format into an internal data structure.

The tokeniser splits text into simple tokens, such as numbers, punctuation, symbols, and
words of different types (e.g. with an initial capital, all upper case, etc.). The aim is to limit
the work of the tokeniser to maximise efficiency, and enable greater flexibility by placing
the burden of analysis on the grammars. This means that the tokeniser does not need to be
modified for different applications or text types.

The sentence splitter is a cascade of finite state transducers which segments the text into
sentences. This module is required for the tagger. Both the splitter and tagger are domain
and application independent.

81

Illustration 17: Components of the ANNIE subsystem and the flow of a document.

IV. SOFTWARE FOR CONTENT ANALYSIS

The tagger produces a part-of-speech tag as an annotation on each word or symbol.
Neither the splitter nor the tagger are a mandatory part of the NE system, but the
annotations they produce can be used by the grammar (described below), in order to
increase its power and coverage.

The gazetteer consists of lists such as cities, organisations, days of the week, etc and it
enriches the tokens. It not only consists of entities, but also of names of useful indicators,
such as typical company designators (e.g. ‘Ltd.’), titles, etc. The gazetteer lists are
compiled into finite state machines, which can match text tokens.

The semantic tagger consists of handcrafted rules written in the JAPE (Java Annotations
Pattern Engine) language which describe patterns to match and annotations to be created as
a result. JAPE is a version of CPSL (Common Pattern Specification Language) which
provides finite state transduction over annotations based on regular expressions. A JAPE
grammar consists of a set of phases, each of which consists of a set of pattern/action rules,
and which run sequentially. Patterns can be specified by describing a specific text string, or
annotations previously created by modules such as the tokeniser, gazetteer, or document
format analysis. Rule prioritisation (if activated) prevents multiple assignment of
annotations to the same text string.33

An example of such a rule for matching $20, $20 USD, CZK 30.5 is:
Rule:

MoneyCurrencyUnit
 (
 (AMOUNT_NUMBER)
 ({Lookup.majorType == currency_unit})
)
:number -->
 :number.Money = {kind = "number", rule = "MoneyCurrencyUnit"}

Rule:

MoneySymbolUnit
(
 ({Token.symbolkind == currency}|
 {Lookup.majorType == currency_unit})
 (AMOUNT_NUMBER)
 (
 {Lookup.majorType == currency_unit}
)?
)
:number
 -->
 :number.Money = {kind = "number", rule = "MoneySymbolUnit"}

The orthomatcher is another optional module for the IE system. Its primary objective is to
perform co-reference, or entity tracking, by recognising relations between entities. It also
has a secondary role in improving named entity recognition by assigning annotations to
previously unclassified names, based on relations with existing entities.

The GATE document is finally converted to XML with inline annotations and passed to
SEMAN. All tokens and annotations (or their subsets) are converted into the Python data
structure and made available for further processing that will be described later.

33 Detailed documentation of the rules is available at: http://gate.ac.uk/sale/tao/splitch8.html

82

IV. SOFTWARE FOR CONTENT ANALYSIS

As was said earlier, the user has a lot of flexibility in the configuration of the previous
steps. For SEMAN, this pre-processing stage is completely optional, it is also possible to
use Python Natural Language Processing Toolkit, or ignore any advanced NLP processing
altogether. If there is no dedicated layer, SEMAN input capabilities will be roughly
equivalent to the capabilities of the already mentioned content-analysis tools. With the
dedicated layer, SEMAN is superior in many aspects. Such superiority is however paid
with the number of resources needed, and we will explore different scenarios in the
following chapters – using dedicated NLP processing, only certain parts, different NLP
engine or no NLP processing at all.

IV.4.2 Translation into semantic codes
The core task of SEMAN is to find indicators in the text, translate them into the correct
USL codes, store such codes and analyse and export them for further processing. This
chapter will describe the matching algorithm, the following sections will explain more
about dictionary maintenance and document storage facilities.

As discussed previously, there are three main components of the dictionary entries:

1. prefixes

2. radixes

3. suffixes

The algorithm used for matching tokens is a simplified version of a morphological
analysis. Simplified, because we can use the results of the NLP pre-processing and for the
cases where the languages exhibit more complex problems than this algorithm can handle,
we can first parse lexemes using the appropriate morphological tagger for the given
language (if available, either in GATE, UIMA or NLTK), and obtain the basic lemmas
together with POS information.

When identifying the pattern, SEMAN first constructs the possible prefix-radix-suffix
combinations for the given token, and from these candidates selects the one which is
considered best – the default functionality simply selects the longest matching radix. The
matching with longest radix can be made sufficiently unambiguous if the dictionary is
constructed properly, as results of the experiments show, see V.1 The pattern matching
mechanism, p. 115. But in most cases the default behaviour is sufficient and it is easy to
rectify parsing exceptions by changing the dictionary, for example by listing the full form
of words, or selecting the correct translation based on the contextual information (for
example using appropriate POS tag).

Translation of the individual token uses the following algorithm:

try to match directly
direct_lookup_indexes = get_indexes(language)
for index in direct_lookup_indexes:
 if index.has(token_value)
 and callback_check_lookup(token, index.get(token_value)):
 update_token(token, features to save...)
 return True

83

IV. SOFTWARE FOR CONTENT ANALYSIS

no matches found using lookup methods of the indexes implementations
prefixes = self.getPrefixes(language)
suffixes = self.getSuffixes(language)

try to find prefix-radix-combinations
suffix_candidates = find_matching_suffixes(token_value, suffixes)
prefix_candidates = find_matching_prefixes(token_value, suffixes)

if len(suffix_candidates) > 0 or len(prefix_candidates) > 0:
 possible_matches = []

 radixes = self.getRadixes(language)

 if len(suffix_candidates):
 #we start with suffixes
 for (suffix_candidate, suffix_entry) in suffix_candidates:
 slength = len(suffix_candidate)
 word = token_value[0:-slength] #strip-off suffix
 for (prefix_candidate, prefix_entry) in prefix_candidates:
 plength = len(prefix_candidate)
 root = word[plength:] #strip-off prefix
 #and see if the resulting quasi-lemma is in our dictionary
 if root in radixes:
 possible_matches.append(prefix_candidate,
 root,
 suffix_candidate,
 sem=[prefix_entry, radixes[root], suffix_entry])
 else: # if we do not have prefix
 #we search in dict of radixes
 if word in radixes:
 possible_matches.append(
 prefix_candidate,
 root,
 suffix_candidate,
 sem=[None, radixes[root], suffix_entry])
 else: # no suffixes
 for (prefix_candidate, prefix_entry) in prefix_candidates:
 plength = len(prefix_candidate)
 w = token_value[plength:] #strip-off prefix
 if w in radixes:
 possible_matches.append(
 prefix_candidate,
 root,
 suffix_candidate,
 sem=[prefix_entry, radixes[root], None])

 if len(possible_matches) == 0:
 record_failure(token)
 else:
 features_to_save = select_the_best_match(token, possible_matches)
 update_token(token, features_to_save)

As an example, given the following dictionary entries:
esq revol = abc dde
esq french revol = abc dde fra

and this set of suffixes and prefixes:
ess ution = 0
ess utionary = 0
esp pre = 0
esp contra = xui

The following patterns will be recognized (codes assigned):
revolution = abc dde 0
revolutionary = abc dde 0

84

IV. SOFTWARE FOR CONTENT ANALYSIS

prerevolutionary = 0 abc dde
contrarevolution = xui abc dde

However, because the dictionary is very simple, these tokens will not be recognised:
revolutions, contra-revolution, contra-revolutions,...

In order to match these tokens, the dictionary must be enhanced by additional suffixes – or
list the full patterns in the dictionary. But listing the full form of the token(s) is
cumbersome and recommended only for exception handling. For example we would like to
count tokens pressure, that stand at the position of a noun, but we do not want to use the
POS tokenizer because it slows down the processing or because we are processing a corpus
of documents from a very limited domain where the ambiguity is limited. If for the purpose
of our application, these requirements are sufficient, we can use the following entries:
hsq pressur = code1 code2 code3
hsq pressures = XXX #entry will be ignored

Application of this rule on the corpus of HEP papers (full details available in the next
chapter) yield correct results, the first entry matches the following word forms: pressure
(1049), Pressure (18), pressurized (3), pressures (61),
PRESSURE (2) – while the second entry filters out the considerable number of matches
of the form: Pressures (1), PRESSURES (2), pressures (61). As to the
rest, such a simple mechanism of negative exceptions is used for TABARI and authors
report that it is responsible for dealing with the most frequent cases of ambiguity, roughly
75% of the ambiguous cases (Schrodt 2009, 7-8) However in the case of SEMAN this
strategy would not be as successful if we work with individual words only.

SEMAN is of course able to recognize not only individual tokens, but also groups of
tokens, provided they follow in sequence or dedicated post-processing is activated. For
example, this dictionary entry:

hsq cosmol model = 00mrl
hss ogy = 000
hss ogical = 000
hss s = 000

Will indentify:

cosmological model, cosmological models, cosmology model

But will not match:

models of cosmology, cosmologic model, cosmological modelling

Yet because SEMAN identifies the basic elements of these patterns, it is also possible to
match the groups of tokens (lookbehind for matches that appeared before the entry,
lookahead for matches after the entry, or both-directional lookup) - up to certain distance or
until a boundary is reached. Such an extension is a part of the SEMAN standard toolkit.
SEMAN can find the groups of tokens, in or out of order. Taking for illustration again the
High-Energy physics thesaurus, we can find following entries there:

charmonium: mass: calculated

85

IV. SOFTWARE FOR CONTENT ANALYSIS

charmonium: decay constant: calculated

These are composite keywords that signal occurrence of a certain concept. In order to
identify their presence (and we could do it inside one sentence, or a paragraph) each of the
components needs to be listed as a single pattern, I.e.

hsq deca constant = ...
hsI charmonium = …
hsI mass = ...
hsq charmonium: deca constant = ...
hsI charmonium: decay constant: calculated = ...
hsI charmonium: decay constant: measured = ...
hsI charmonium: decay modes = ...

Given this definition, and if we set the distance of the tokens to w=5, the following
sentences would produce the match:

The charmonium decay constant was calculated...
Calculation of the decay constant of charmonium was...

Because internally, SEMAN does not work with words, but USL codes, the group of words
that read decay constant is identical to group of words with a different reading, such
as decayed constant(!), decay constants, or deca constants(!). Of
course, if the dictionary is designed carefully this feature can be used for the benefit of
better matching. Because semantic codes act as unique identifiers, we can change freely
the wording (the left-hand side part of the entry). While the pattern matching words will
change, the combinations remain the same. In fact, the semantic codes are for SEMAN
more important than the reading of the words – this reverses the standard view of the most
matching schemes, where people think of the concepts in terms of words. In SEMAN we
think of concepts in terms of concepts. If we added a new definition:

hsq constant: deca = ...

Provided the right side of the entry remains the same, the following two entries will be for
SEMAN identical: decay constant, decay is constant. Nothing needs to be
changed also in the definition of the group of composite tokens and following sentence
would identify charmonium: decay constant: calculated:

The constant of the decay of charmonium was calculated using...

But SEMAN matches elements in or out of order and it is only possible to limit the
distance of tokens between each match and the mechanism has its limitations, consider the
following:

Charmonium and charmed meson decay constants were used in
calculation of..

86

IV. SOFTWARE FOR CONTENT ANALYSIS

This sentence would produce the same match, but semantically the charmonium
constant is not calculated, something else was calculated. Therefore this is clearly not
what we wanted to extract. The simplistic matching of tokens is clearly not capable of
distinguishing such situations.

For the purposes of content analysis, this was not considered as a main problem as we were
not interested in interpreting individual sentences correctly. Instead signals are sought in a
(possibly very large) corpora, therefore certain amount of errors is expected and tolerated.
However it would be possible to solve also this situation – and in several ways: we could
change the pattern in the dictionary to further limit the forms of the matched entries, or we
can use the part-of-speech tagger and ignore matches that are composed of transitive
passive verbs, but probably the most accurate approach would be to fully parse the
sentence and identify individual clauses and function of each word. With a high accuracy,
we could remove the false positive matches.

While SEMAN does not use the sentence parsing by default, it certainly has this capability,
however such processing would increase the time needed for analysis so it was not used in
the experiments. But we did not mention another available mechanism of code callbacks.
They provide an interesting alternative of how to increase the accuracy of the parsing
mechanism maintaining the high-speed processing.

SEMAN internally works with the stream of tokens (to the engine they constitute acyclic
graph34) and the token object usually corresponds to a word, but it can contain anything
from a compound word to a sentence. It holds the features, which can be set and retrieved.
The specificity of the token object is that every token has access to all the other tokens in
the collection, as they appeared in the text. So that the context can be explored. It is
possible to write special routines (in Python) and register them as callbacks inside
SEMAN. For example, for each translation, we can test whether the tokens around the
translated token have approprite POS tag. These callbacks normally receive only the
currently processed token, but because the token has access to all of its neighbours – the
callback can freely change the whole collection.

In the current version of the SEMAN translation, the following callbacks can be registered:

1. Callbacks that prepare tokens (pre-processing, work mostly with the lexemes):

• tokenize_input: this is a general tokenizer point, it receives a text and should return
a collection of tokens that will be processed

• check_token: checks individual token and decides if it should be processed or
ignored

• prepare_token: cleans up the token and prepares it for translation

• find_next_part: when identifying multi-word tokens, this callback receives the
currently processed token (already translated and only if it was translated), and
should return the correct next key from the dictionary of multiwords. By applying

34 If we were processing arabic languages or Jewish, the processing is no different than latin or other
languages with left-to-right scripts. The only difference would be in the construction of the dictionary.
Because the simplified-morphological matching is symmetrical, for right-to-left languages we would have
to put prefixes at the place of suffixes and vice versa.

87

IV. SOFTWARE FOR CONTENT ANALYSIS

special function, we can effectively match words that are separated by other tokens.
For example the series of tokens: Primakoff found the effect... can
be identified as containing one token: Primakoff effect

• token_merged: callback called when SEMAN identifies a multi-word token, for
example originally there were two tokens: 1.) constant, 2.) decay, but after this
call, these tokens were removed from the collection and replaced with one token:
constant decay

2. Callbacks that are concerned with the process of parsing the lexemes and their
translation:

• token_transl_success: called when translation is finished and token was found in
the dictionary, this callback can approve or disapprove of the translation, it also
returns attributes to be cached, or nothing to prevent its caching

• token_transl_failure: called when NO translation was found for the given token,
this callback can activate a special processing, change the token values and call the
translation again. If something is returned, that value will be cached as in the
success callback - and success will be reported

• translation_problem: general method called when the token does not have one
code, but several codes and translation cannot decide which semantic code should
be chosen

• morphoanalysis_ambiguity: we have identified several possible combinations of
prefix-radix-suffix that correspond to the current token. And we were unable to
decide which of them should be selected. This method can go through the list of
candidates and select the right one

• emit_multiple_definitions: used usually in debugging stages, called when the
translation identified several unique codes, but could not decide which of them to
choose

• disambiguate_multiple_definitions - this is the same case as above, with the
difference that the callback should choose one definition.

• veto_direct_lookup: the exact match of the token was found in the dictionary, the
normal behaviour is to stop any translation attempts and continue with the
translation of the next token. This callback can veto such an operation and order
SEMAN to continue with trying to find other translations. This callback can also
select the desired translation from the list of possible translations, if there are
multiple matching entries in the dictionary for this token.

• longest_radix_ambiguity: when the parsing algorithm finds several possible
parses of the word, all of them with the corresponding entry in the dictionary, this
callback can decide which one should be used.

• before_translation: callback activated before the whole collection of tokens is
translated, it can be used for filtering the tokens or any similar operation

• after_translation: callback activated after the whole collection of tokens was
translated, this is the callback where composite matches are identified or when the
translation is checked and spurious cases resolved

88

IV. SOFTWARE FOR CONTENT ANALYSIS

3. Operational callbacks that influence the results of the translation:

• prepare_dict_value: this callback is used when we need a special attributes of the
dictionary, for example the POS information (if that is necessary in further steps) or
it can automatically create a stemmed version of the dictionary entries and similar.
What this method returns will be used as a translation result (usually it is a string -
eg. 'code1 code2 code3', but it can be also a complex object with attributes –
usually used in cases when we want to disambiguate words and look at the context
of the previously translated tokens)

• token_get_keys: returns a value of the token that will be processed and also a key
identifying this token in the cache of other tokens – if found, then the translation is
not repeated. Cachekey is key under which results is found/saved into cache for
faster lookups. If None is returned, cache is effectively deactivated

The callbacks can be registered and re-registered freely when needed. Clearly, this option is
reserved for the programmable usage of SEMAN, but it offers a interesting alternative to
the more powerful, but slower NLP processing. This is also the main point of the
mechanism. It can provide for fast-enough and robust solution of many usual cases, but in
situations when we need to process more complex patters, it allows us to use a very
specific processing logic. The level of complexity depends on the data that are available to
us and also on the purpose of the application. If we face the difficult texts, we can first pre-
process the input text with a more powerful NLP tools and then ask SEMAN to do the
translation. The modular design allows for a wide variety of choices.

IV.4.3 Storage and analysis
Out of the three tools already mentioned, only TABARI keeps the record of the already
processed results (in plain text format). The other two work with documents without
storing results of the previous phases. SEMAN can work in such a way also, but it also
provides a mechanism for incremental processing, actually two mechanisms:

1. RDBMS storage

2. Lucene index storage

The RDBMS storage keeps documents translated into USL codes, the tokens are saved into
the database in the following format

89

IV. SOFTWARE FOR CONTENT ANALYSIS

Internally, the SQLAlchemy (“SQLAlchemy - The Database Toolkit for Python” n.d.)
toolkit is responsible for the database layer management, the data and the model are
decoupled so that SEMAN is free to disregard differences in the implementation of the
underlying database engine. The data abstraction layer also allows for construction and
manipulation of SQL expressions in a platform agnostic way, and offers easy to use and
fast result objects, as well as table creation and schema reflection utilities. If there was a
need to implement a storage not in the RDBMS system, but on a file system or a
distributed filesystem, nothing would change inside SEMAN. The changes would happen
at the level of the database abstraction layer.

The performance depends on the underlying RDBMS engine. In the basic settings,
SEMAN is using the sqlite implemenation, which is both portable and relatively fast, but it
does not scale well for big collection of documents. In such cases, more powerful solutions
such as MySQL, Postgresql, or Oracle should be used. However, such a requirement would
complicate the life of most users, so a second search-engine index-based mechanism was

90

Illustration 18: Database schema of the document storage; built around tokens and their translation.

IV. SOFTWARE FOR CONTENT ANALYSIS

implemented. It is built on top of the Lucene information retrieval library35 – this
implementation can handle relatively very large volumes of data and provides a special
mode of analysis not available with the RDBMS implementation.

After the documents are translated, number of features are stored in separate field (indexes)
– later on, they can be retrieved and exported for analysis. This mechanism makes it
possible to store any feature associated with the word/token, however a special treatment is
given to the USL semantic codes. They are stored and indexed together with the original
text at the same position as the original text. The situation is similar to adding new
dimensions to words, for example the sentence:

The ATLAS detector was stopped.

Will be first parsed by GATE, then by SEMAN, the text split into tokens, then analysed and
translated. ATLAS for example is recognized as a known concept (a composite of:
instrument + experiment + particles + high energy physics + CERN experiments). In the
language of semes denoted as:

0005s 0009d 450is 23ioi 8sdet

The complete sentence then has a form similar to:
1. The
2. ATLAS detector, 0005s, 0009d, 450is, 23ioi, 8sdet
3. was
4. stopped

We process this structure in a special way inserting all the semantic codes at the same
position as the original text. Lucene will build the index where several tokens are at the
same position:

token position

ATLAS 0
detector 1
0005s 0
0009d 0
450is 0
23ioi 0
8sdet 0
was 2
stopped 3

The first position 0 holds 6 tokens, namely: particle, 0005s, 0009d, 450is,
23ioi, 8sdet. The word detector is placed at position 1, because of the limitations of
the PhraseQuery of the Lucene engine – if we wanted to search for phrases, the words need
to be adjacent, and not at the same position. So the phrase query “ATLAS detector”
matches only if the tokens' positions are different. The other parts of the sentence were not
recognized by SEMAN, and therefore not enriched with the semantic features.

35 http://lucene.apache.org/java/docs/index.html [Accessed: 24-7-2011]

91

IV. SOFTWARE FOR CONTENT ANALYSIS

While the features can be stored independently in separate indexes, the method described
above allows us to search for surface word forms and at the same time look and work with
relations between semantic codes, ignoring the natural form altogether. Semantic features
influence search results (sort order) in many ways:

– recognized concepts can be boosted during indexing (ie. some words become
more important)

– we can translate query and boost recognized concepts during search

– we can search for synonymous concepts (i.e. "0005s AND 0009d AND
450is AND 23ioi AND 8sdet" at position X)

– we can search for similar concepts (i.e. any of '0005s 0009d 450is
23ioi 8sdet' IF they occur together up to a certain distance)36

This storage mechanism is then utilized during the analysis of statistical significance when
searching for combinations of semes.

IV.4.4 Search for statistically significant
cooccurences
This section will provide an overview of the theory behind our search for semantically
related components. How we use the methodology of the lexical semantics for the
application on the semantic features, what statistical tests and tools are used in the search
for semantically related and statistically significant combinations of semes.

English linguist J.R. Firth acquired fame for his approach to linguistic analysis based on
the view that language patterns cannot be accounted for in terms of a single system of
analytic principles and categories, but that language is a system that can be described by a
group of different subsystems at different places within a given level of description. One of
Firth's phrases, describing the search for nature of words, is particularly known nowadays :
“You shall know the word by the company it keeps!” (Firth 1957, 11) And if we replace
'word' with 'concept' in the very same phrase, we will look at a very similar topic but from
a new perspective. For this to work, let me first describe what the lexical linguistics and
natural language processing understand under the two key concepts of cooccurences and
collocations.

The term collocation was first used in 1930s to point at characteristic, “habitual” word
combinations. As Evert (Evert 2005, 15) describes, different definitions of the term were
introduced over the past fifty years, and lexicographers often disagreed about border cases.
Nevertheless there was always a clear consensus that words are not combined randomly.
And rules of grammar and syntax on their own can only explain part of the story, perhaps
the smaller part of the whole story because these combinations are an important source of
information not only about the language itself but also about the world we live in and what

36 Note: the last two examples don't describe a Boolean query, we are not searching for: "0005s OR 0009d
OR 450is OR 23ioi OR 8sdet" in the whole text, we will search only for groups of codes that MUST
occur together up to certain chosen distance.

92

IV. SOFTWARE FOR CONTENT ANALYSIS

and how we think. The linguistically motivated search into the ways people combine
concepts (and not words) was also one of the main motivations for Vladimir Smetacek to
start work on SEMAN in the first place.

Over the past fifty years different methods of the study of collocates evolved, according to
Evert we could distinguish two main branches to the study of collocations: a distributional
and an intensional school. The distributional approach is the direct successor to Firth's
ideas and evolved in the UK. This approach is often referred to as Neo-Firthian and is
based on the premise that collocations are recurrent word combinations in a particular
text, that these combinations are directly observable and no linguistic pre-processing (or
very little pre-processing) is needed for their identification. Taken to the extreme, the
corpus is the only and definitive authority in what can be found and no linguistically
motivated pre-processing should tamper with the data. The most notable figure of this
school is the british linguist M.A.K. Halliday, for an overview of the school itself see
(Williams 2003)

On the other hand, the intensionally motivated search for collocations is different.
Collocations are not viewed as purely recurrent word combinations, as if they were
automatically extracted from the source documents, they also have to belong to certain
linguistically motivated types or classes of words. Linguists will define rules of what is
considered to be a valid collocations. This approach is naturally more inclined towards
dispute and argumentations over the linguistic theories, but usually collocations are placed
somewhere in the grey area between fixed idioms ('kick the bucket') and free
combinations ('outstanding achievement'). In a narrower sense, they are understood as
semi-compositional word pairs, with one “free” element (the base) and the other element
that is lexically determined (the collocate). While the free element retains its independent
meaning in the combination, the collocate often contributes a meaning component that the
collocation cannot have on its own. And the resulting combination of the elements creates a
new concept, something that is more than a mere sum of its parts.

The intensional approach is then characterized by varying and much more elaborate
requirements on conditions of collocations; more extra textual linguistic knowledge is often
required for the analysis. If the search is done in an automated manner, parts of speech of
the individual words, as well as their function inside the sentence are identified, and
obviously words are parsed and interpreted using whatever linguistically motivated theory
was behind the tools – and this is also an important argument in favour as well as against
the intensional approach. The pre-processing transforms the source data and researchers
might ask questions that are not stemming from data, but from their own beliefs of the
language.37 For an overview of the theoretical approaches of this school, see (Bartsch 2004,
27-64).

Evert, which is an excellent source for evaluation of the statistical measures used for the
collocation search, summarizes his understanding of the differences between the schools in
the following way:

In order to make a clear distinction between the two approaches to collocations, I
refer to the distributional notion as cooccurences, which encompasses both the
observable (cooccurrence) frequency information and its interpretation as an
indicator of statistical association. This description seems fully adequate for the Neo-

37 A striking parallel with the same problem of content analysis, as described in III.2.1.1 Reliability and
validity

93

IV. SOFTWARE FOR CONTENT ANALYSIS

Firthian understanding of a collocation as a recurrent word combination, cf. the
definition “collocation is the occurrence of two or more words within a short space of
each other in a text” (Sinclair 1991, 170). By contrast, I reserve the term collocation
for an intensionally defined concept that does not depend on corpus frequency
information.” (Evert 2005, 17)

He further continues to propose the Manning and Schütze's definition of the collocation as
“word combination whose semantic and/or syntactic properties cannot be fully predicted
from those of its components, and which therefore has to be listed in a lexicon”,
collocations “correspond to some conventional way of saying things” (Christoper D.
Manning and Schuetze 1999, 151). As for the cooccurences, Evert defines them as
“observable evidence that can be distilled from a corpus by fully automatic means. After
statistical generalisation, this information can be used to predict which word combinations
are most likely to appear in another corpus.” (Evert 2005, 23)

Collocation is therefore a generic term that attains a very specific meaning based on the
requirements of a particular research question or application. The distinction between the
two different approaches is then highly relevant for us and the study of semantic features
because we can draw the direct parallel between collocations and the combination of
semantic features. And also the two, somewhat distinct, ways of processing will be applied
to them later – I can refer to the purely frequency based combinations of the semantic
features as sem cooccurences, and reoccurence of specific categories of semantic features
as sem collocates – for the latter, we need to introduce and operate with extratextual
information that cannot be found or seen in the corpus and the token positions itself.
Perhaps we will be required to find these criterias ourselves.

IV.4.4.1 Types of cooccurences
In the search for sem cooccurences and collocates we will need to use statistical
tests of significance. The corpus is used as a source of information about elements
and their combinations, and thanks to random sampling and the law of big num-
bers, we try to establish whether the combinations that we discovered are due to
chance and can therefore be disregarded, or whether there is indeed some import-
ant link between the elements and we have discovered sem cooccurence or sem
collocation. For any of the two approaches, we will work with frequencies of the
elements and their pairs.

However the cooccurence of semes can be defined at different levels: as a proxim-
ity, looking at the semes and their immediate neighbours – ie. searching a window
of certain size. Or as occurences of semes within the same linguistic or structural
unit (sentence, paragraph, chapter, article etc) or as a functionally specific (usually
syntactic) relationship between words and their semes – in this case, we limit our
search to the semantic features that belong to a certain POS classes, and only cer-
tain combinations of them are allowed. Such an approach amounts to a filtering of
the semantic pairs before the measurement.

Historically the positional search is older – words (in our case semes) are con-
sidered to form a pair if they appear within a certain distance of each other, this
distance is usually measured by the number of intervening words, in the case of
semes, by the number of intervening words or semantic compounds. In the literat-

94

IV. SOFTWARE FOR CONTENT ANALYSIS

ure, such a group is often referred as collocation span, so we could speak about se-
mantic collocation span. The advantage of this approach is that data is directly
observable and no special pre-processing is necessary to discover pairs.

However, this approach is not without problems. If we consider only the combina-
tions of semantic tokens based purely on their distance, we are potentially creating
too many pairs, but there is a more serious problem than this. It can be illustrated
by an example. It was shown by Justeson, that extraction accuracy can be consider-
ably improved by using a simple POS filter which accepted only certain types of
relations, such as AJ+N, V+N etc. (Justeson and Katz 1995) Combining the fre-
quency information with a small amount of linguistic knowledge the algorithm
achieved 80% accuracy, which is a considerable increase. There is a number of oth-
er studies that confirm the same view that linguistic information when taken into
account during the filtering of collocaiton candidates, considerably improves the
accuracy and removes false negatives. (Evert 2005; Smadja 1993)

Such findings show that inside the corpus there exist many different kinds of rela-
tions and various types of relations follow substantially different frequency
distributions. Statistical methods based on 'simple' frequency counts effectively
mix these various distributions into one distribution, but arguably the obtained
results could be considerably improved if the statistical tests were applied to a
single “homogeneous” frequency distributions rather than to such a mixture. This
is where the historically newer approach to the collocation search comes in place. It
is centered around the idea that occurences can be found using linguistic interpreta-
tion of corpus data. Therefore only certain distributions are generated and
included in analysis. Typical examples contain dependency relations and subtrees
in a phrase-structure analysis or relations based on the POS, and syntactic relations
that are considered valid for English38: (i) verb + noun (direct object),e.g. commit
suicide; (ii) adjective + noun, e.g. reckless abandon; (iii) adverb + verb, e.g. tacitly
agree; (iv) verb + predicative adjective, e.g. keep sth handy; (v) verb-particle con-
structions, e.g. bring sth up; and (vi) verb + prepositional phrase, e.g. set in
motion. For knowledge extraction tasks, there is usually a strong emphasis on verb
+ noun relations. (Evert 2005, 19)

Such operation requires automatic linguistic pre-processing, and critics point out
this makes the unbiased analysis of the observable facts impossible, because pre-
conceived notions of a particular linguistic theory are inserted in the data.
However, the advantages might overweight the risks, as the simple example above
shows. While the processing is technically more complex, the final extracted data
are actually more elegant and easily interpretable. And this usually means that we
can get meaningful results. The explanation being, that in natural language words
are not combined randomly into phrases and sentences so we cannot build a mod-
el of the language based on pure combinations39 (for example certain related words
may be very far in terms of position in a sentence). By focusing on the position, we
are probably mixing the different distributions into one search space. And by mix-
ing them, the Neo-Firthian approach is actually complicating the search. Whilst by

38 This type of analysis is dependent on the knowledge and interpratation of the language units, therefore it
is not applicable universally, across languages.

39 Even if this approach of 'bag of tokens' is used successfully in many areas of NLP and yields significant
results, therefore the advantages of the 'cleaner' distributions may not be always helpful.

95

IV. SOFTWARE FOR CONTENT ANALYSIS

separating the distributions, we can remove a lot of noise.

IV.4.4.2 Extracting cooccurences from text
The following part explains how the extracted cooccurences are evaluated and
what methods are applied inside SEMAN. While many treatements of the subject
can be found, for example (Dale, Moisl, and Somers 2000, Chpt 21; Christoper D.
Manning and Schuetze 1999, Chpt 5) I have adapted the reference presented in the
Evert's evaluation of the association metrics because he created a unified system
and notation for it. Evert's main interest was the evaluation of association meas-
ures for the relational data, however the following section applies both to
positional as well as relationally related searches.

First we have to gather data about pairs of tokens. Cooccurrence frequency data is
analysed separately for each pair (u,v). If we do the analysis in the relational
paradigm, only certain types of tokens are considered – such as the aforemen-
tioned groups adj.+noun, verb + noun etc. In the positional paradigm, on the other
hand, all adjacent tokens up to the length of window w is considered. The in-
stances are considered to be valid pairs if their frequency is higher or equal to 1 (f
≥ 1).

Evert shows that reliable statistical inference is impossible in principle for the
hapax and dis legomena (f = 1, 2). “In this frequency range, quantisation effects
and the characteristic highly skewed distribution of the cooccurrence probabilities
of pair types (roughly following Zipf’s law) dominate over the random variation
that statistical inference normally takes into account. As a result, probability estim-
ates are entirely unreliable unless the precise shape of the population is known.
This rather negative result provides theoretical support for the application of a fre-
quency threshold, which should at least exclude the hapax and dis legomena (f >=
3). Quantisation and the shape of the population no longer play a role for f >= 5.”
(Evert 2005, 166)

Usually a filter is applied that removes sparse pairs and thus only pairs with f ≥ 3
are retained. Given a pair (u,v), the extracted pair tokens are classified into the four
cells of a contingency table, depending on whether the first component of the
token belongs to type u and whether the second component belongs to type v.
These conditions are written U = u and V = v in the contingency table shown be-
low.

96

IV. SOFTWARE FOR CONTENT ANALYSIS

The very same treatment is reserved for the positional data. In this table, u and v
stand for the occurrences of the adjacent tokens in the corpus (up to the distance
w), and the other cells mark the frequencies of the non-occurrence data. The cell
counts O11, ..., O22 of the contingency table are called the observed frequencies of
the pair (u,v). For example, the cell O11 contains the number of tokens that are of
type AN (adjective-noun) from the corpus, O12 will hold the number of pairs
where the type A is present, but the second component is made of every other type
but N freq u ,¬u , similarly the cell O21 holds data about the pairs in which
there N is present, but the second element is not of type A. Finally, the cell O22
holds the number of all the rest of the pairs from the corpus.

The cell frequencies add up to the total number of pair tokens, called the sample
size N. As an example, the contingency table below shows the observed frequen-
cies of the adjective-noun pair type (black,box) in the British National Corpus.

The row totals R
1,

R
2

 and column totals C
1,

C
2

 often play an important role in
the analysis of frequency data. They are referred to as marginal frequencies and
are written in the margins of the table. R1

 is the marginal frequency of u, i.e. the

number of pair tokens whose first component belongs to type u. Similarly, C
1

 is

the marginal frequency of v. O11
, the number of cooccurrences, is also called the

joint frequency of the pair (u,v).

97

IV. SOFTWARE FOR CONTENT ANALYSIS

Continuing with the example, we can see that the joint frequency of the pair is
f =O11=123 . The marginal frequencies are f 1=R1=13,291 (13,291 pair tokens

of the form (black,*)) and f
2
=C

1
=1,933 (1,933 pair tokens of the form (*,box)).

The full sample consists of N = 4,966,984 adjective-noun pair tokens extracted from
the British National Corpus.

The quantitative study of the frequencies requires a statistical model of the frequencies to
draw conclusions about the observed values. The model assumes that the observed pair of
tokens are drawn randomly from an infinite population (so that the much simpler
equations for sampling with replacement can be used). Such an infinite population can be
described as a set of (pair) types and their relative frequencies in the population, which are
the parameters of the model. The random selection of a single pair token is modelled by
two random variables U and V that represent the component types of the selected token. A
sample of N pair tokens is modelled by N independent pairs of random variables Um and

Vm, whose distributions are identical to those of the prototypes U and V. Just as with the

observed corpus data, the frequency information for a given pair type (u,v) is collected in a
contingency table of random variables X11, ..., X22:

98

IV. SOFTWARE FOR CONTENT ANALYSIS

X11 is the number of m for which Um = u and Vm = v etc. The marginal frequencies

are also random variables, written as XR1, XR2, XC1, and XC2. This contingency

table contains all relevant information that a random sample can provide about the
pair (u,v).

The sampling distribution is determined by the probability parameters τ11, ..., τ22
of (u,v), which can be defined in terms of the prototype variables U and V.

P U=u∧V=v=τ11 P U=u∧V≠v =τ 12

P U ≠u∧V=v =τ 21 P U≠u∧V≠v =τ22

Only three of the four probability parameters, which must add up to one (τ11 + τ12
+ τ21 + τ22 = 1) are free parameters. Therefore, it is more common to use an equival-

ent set of three parameters, given by the equations below. π is the probability that a
randomly selected pair token belongs to the pair type (u,v), π1 is the probability

that its first component type is u, and π2 that of v being the second component

type.

π=P U=u∧V =v=t11

π1=P U=u=τ11τ12

π 2=P V=v=τ11τ 21

The contingency table of random variables represents a potential outcome of the
sample. The probability of a particular outcome, i.e. a contingency table with cell
values k11, ..., k22, is given by the multinomial distribution of (u,v):

P X=k | N = N !
k 11!k12!k 21!k 22!

⋅τ 11
k11⋅ τ12

k 12⋅τ 21
k 21⋅τ 22

k 22

99

IV. SOFTWARE FOR CONTENT ANALYSIS

Each random variable Xij has a binomial distribution by itself, so the probability of

an outcome with Xij = k (regardless of the other cell values) is:

P X ij=k | N =N
k ⋅τ ij

k⋅1−τ ij
N−k

The statistical association between the components u and v of a pair type is a
property of its probability parameters (i.e. a population property of the statistical
model). Consequently, a main goal of the statistical analysis of cooccurrence data is
to make inferences about the population parameters from the observed data. The
tables below schematise this comparison between probability parameters and ob-
served frequencies.

The simplest form of inference are direct ("point") estimates for the probability
parameters, which are known as maximum-likelihood estimates (MLE). MLEs for
π, π1, and π2 are given by the relative joint and marginal frequencies p, p1, and p2 as

shown below.

Unfortunately, the difference between the estimate (sample) and the true value in
the population can be very high (sampling error, especially when the observed
frequencies are small) so this method is not applicable. We need to test whether the
differences between the observed and the estimated values are due to the chance
or if there is indeed some statistically significant relation. Assessing if we face the

100

IV. SOFTWARE FOR CONTENT ANALYSIS

chance event, the test of the null hypothesis is applied.

The null hypothesis of independence basically states that there is complete absence
of association: statistical independence.When a pair type (u,v) has no association,
the events {U = u} and {V = v} must be independent, which leads to the null hypo-
thesis of independence H0 below.

H
0
:π=π

1
⋅π

2
≈ p

1
⋅p

2

The null hypothesis of independence stipulates a relation between the probability
parameters (namely, π = π1 π2), but the parameter values are not completely fixed,

and neither is the sampling distribution. The mathematical analysis is greatly sim-
plified (and often made possible in the first place) when H0 is reduced to a point

hypothesis by inserting maximum-likelihood estimates for the probability para-
meters π1 and π2. Most statistical independence tests for contingency tables are

based on this point hypothesis.

The expectations Eij = E[Xij] of the contingency table cells under the point null hy-

pothesis of independence can easily be computed from the observed row and
column totals. Values E11, ..., E22 are referred to as expected frequencies and hy-

pothesis tests that are based on the point null hypothesis can be understood as a
comparison of the contingency tables of expected and observed frequencies, as
schematised below.

When the observed data are 'unlikely' in a sense of being outside the range of val-
ues predicted by the probability distribution function built from the expected
frequencies, the null hypothesis is rejected. This procedure is called a statistical hy-
pothesis test. The same approach can also be used to obtain confidence interval
estimates for the true values of population parameters.

101

IV. SOFTWARE FOR CONTENT ANALYSIS

IV.4.4.3 Association measures

An association measure is a formula that computes an association score from the
frequency information in a pair type's contingency table. This score is intended as an
indicator of how strong the association between the pair's components is, correcting
for random effects. (Evert 2005, 75)

The cornestone of the cooccurence search is statistical analysis using association measures.
In computational linguistics, various association measures were suggested and evaluated
over the course of years (for an excellent overview of the past research, see (Evert 2005)
Two groups of association measures exist, those that measure:

a) significance of association

b) degree of association

The first group tests the existence of a link between the constituent elements. This test is
conducted using statistical tests against a null hypothesis of indepdence and the final results
show whether there is enough evidence for rejecting the null hypothesis of independence
(no statistically significant relationship). This estimate can be expressed in the form of a p-
value40 and this value can be used to compare the results of the association measures inside
the category.

The significance of association tells us whether the cooccurences can be explained as
random events, brought about by a pure chance, or whether there is certain, statistically
significant link between the elements. The association measures exist in two variants: one-
sided and two-sided depending on whether they distinguish between positive and negative
association41. In general terms, the negative score means that cooccurences are present less
often than predicted by the null hypothesis, the positive score means the cooccurences are
present more often than if they were independent.

For one-sided association measures, high scores indicate strong positive association. Low
scores (including negative scores) indicate that there is no evidence for a positive
association (which could mean either that the components are independent or that there is
negative association). For two-sided association measures, high scores indicate near-
independence, regardless of their sign. A two-sided measure whose scores are always non-
negative can easily be converted into a one-sided measure: for any pair type with negative
association by multiplying the association score by -1. Thus, positive score indicate
positive association and negative scores indicate negative association. The absolute value
of the score depends on the association strength, with values close to 0 indicating near-
independence. But as (Evert 2005, 76) found, for small absolute values, the distinction
between positive and negative association is unreliable because of random effects. Such
cooccurences should be interpreted as “roughly independent”, with no clear evidence for
either positive or negative association.

40 Statistical hypothesis tests compute the total probability of all possible outcomes that are similar to or
more "extreme" than the observed contingency table. This total probability is called a p-value. When it
falls below a certain threshold, the sample is said to provide significant evidence against the null
hypothesis, which is then rejected. Thus, the p-value provides a measure of the amount of evidence
against H0.

41 The terms one-sided and two-sided are parallel to the one-side and two-sided tests from the statistical
theory.

102

IV. SOFTWARE FOR CONTENT ANALYSIS

The second group of measures is concerned more with the degree of association than with
the amount of evidence supporting it. They are usually used for sorting the candidates into
the list of the strongest pairs and selecting the first n-best cooccurences.

Evert conducted a detailed review of the different association measures, taking as a base
line Fisher's exact test. “After decades of controversy, most experts seem to agree now that
Fisher's test produces the most meaningful p-values (cf. Yates 1984). We can thus take the
Fisher association measure as a reference point for the significance of association group.”
(Evert 2005, 110)

Fisher= ∑
k=O11

min{ R1, C1 } C1

k ⋅ C
2

R
1
−k

 N
R1

The Fisher's exact test is however computationally expensive and it is advisable to use a
different alternative. Mathematicians already computed how well various tests approximate
the exact Fisher's test value, however Evert repeated their tests using the corpus that has the
type of distribution found in natural language – ie. large sample size but highly skewed
contingency tables where O11 is very small and O22 is extremely large.

From the comparison, the best results were obtained using the Poisson test:

Poisson=∑
k=O11

∞

e−E11⋅
E11

k !
k !

Using this test also has several advantages, besides being computationally more efficient. It
does not assume that the underlying data comes from the standard distribution. Poisson
distribution is used for any elements (even rare) in which we predict a standard rate of data
points appearance.

This test is therefore selected for SEMAN to serve as a filter that distinguishes statistically
significant data from insignificant noise. But it is not yet enough, because in the corpus of
documents we will find evidence of many relations. In order to focus the attention on the
most important, we have to somehow sort and select only the best cooccurences.

“With the wide range of association measures available, some guidance is needed for
choosing an appropriate measure to be used in an application of cooccurrence data. While
the theoretical discussion of Chapter 3 has helped to narrow down the number of options
by grouping similar measures together, it cannot provide a definitive answer. The
significance of association is a meaningful and well-defined concept, and Fisher’s exact
test is now widely accepted in mathematical statistics as the most appropriate quantitative
measurement of this significance. The log-likelihood association measure gives an
excellent approximation to the p-values of Fisher’s test and has convenient mathematical
and numerical properties. Consequently, it has recently become a de facto standard in the
field of computational linguistics for the purpose of measuring the statistical association
between words or similar entities.”(Evert 2005, 137)

103

IV. SOFTWARE FOR CONTENT ANALYSIS

Following this advice, the log-likelihood association measure was selected as the default
measure for ordering cooccurence pairs. It has the form:

log−likelihood=2∑
ij

Oij log
Oij

Eij

In the Everts formula, the logarithm is undefined when there are empty cells (with
O ij=0). For such cells, the entire term evaluates to zero (because 0⋅log 0=0 by

continuous extension) and can simply be omitted from the summation.

The Evert's version is in effect identical to the log-likelihood as invented by the original
author Dunning:

104

Illustration 19: Comparison of p-values for measures from the significance of association group, using Fisher as a
reference point (labels on the axes refer to −log10 pv). Source: Evert, 2005, p. 111. G2 is the log-likelihood and “t” is
the Students t-test. These graphs show that X2 statistic favorized rare events, while the t-test gave undesired advantage
to frequent events. The other two tests results were much closer to the Fisher's p-value.

IV. SOFTWARE FOR CONTENT ANALYSIS

log−likelihood Dunning=−2log
L O11,C1, r⋅L O12,C2, r
L O11, c1, r1⋅L O12,C2, r2

L k ,n , r =rk 1−rn−k

r=
R1

N
, r1=

O11

C1,

r2=
O12

C 2

The effectiveness of the log-likelihood association measure stems from the attention it
gives to all the elements of the contingency table. The ranking is derived from the sampling
distribution, the smaller the probability of the a sample outcome under the null hypothesis,
the bigger is the “surprise” and therefore the probability that the difference is not due to a
chance.

And because the log-likelihood statistic has an asymptotic χ 2 (chi-squared) distribution,
we can directly compare its results with the χ 2 test statistics with one degree of freedom
(because the 2x2 contingency table and one free parameter, Oij). The log-likelihood
measure is two-sided but it can also be converted into a one-sided measure by changing the
sign of the test statistic when O

11
<E

11 , indicating negative association. The test
statistics formula is:

log−likelihood ratio=−2log
max P X=O | N∧π=π1⋅π 2

max P X=O | N

When we search for the significant changes, we compare data coming from two collections
of documents – we call them corpus 1, and corpus 2 C1, C2 using the following
algorithm:

retrieve set of used semantic codes
sem_components = get_sem_components(opened_index)

find all possible collocations of terms, considering their index position
existing_collocations = get_collocations(field, distance_w)

test statistical significance of collocation occuring/change/missing
for collocation in existing_collocations:
 token_a = collocation.get_term()
 token_b = collocation.get_incidental_term()
 signif_collocation = set()
 if token_a in sem_components and token_b in sem_components:
 for part_a in token_a:
 tf_a = get_term_freq(part_a)
 for part_b in token_b:
 tf_b = get_term_freq(part_b)
 signif_score = test_significance(part_a,
 part_b,
 tf_a, tf_b,
 tf_ab,
 alpha_level)
 if signif_score:
 signif_collocation.add((comp_a, comp_b, signif_score))

 if signif_collocation > 0:
 store.append(signif_collocation)

105

IV. SOFTWARE FOR CONTENT ANALYSIS

Following the procedure describe above, we can search for both relational and positional
pairs of cooccurences. The evaluation of this procedure will be given in the chapter V.2.3
Search for significant combinations, p. 142

IV.4.5 Dictionary creation and maintenance
One of the most difficult and time consuming operations for any content analysis research
is the creation, and maintenance of the coding dictionary. This is probably the most
expensive operation and the existence or absence of a 'good' coding scheme bears a lot of
influence. Because the dictionary is so important, even the best algorithm or methodology
cannot relinquish mistakes and ambiguities that were introduced in the representation of
the knowledge. Systems that rely on the human created/supplied knowledge representation
thus face the real problem of knowledge acquisition – the knowledge bottleneck. (Turmo,
Ageno, and Català 2006)

When reviewing the existing approaches to knowledge representation tools, I have found
many systems built specifically for the ontology maintenance.42 But most of them work
with a different conceptualization of the dictionary and are not appealing for the nature of
the USL.43 Especially because there are many links inside the semantic network, and many
of the tools are either too complex or built for the maintenance of the hierarchical systems
where the graphs are acyclic. But an entry in the USL may have many parents and exhibit a
sort of cyclic relationships – either because of the mistakes, or simply by the complex
nature of the world of knowledge representation.44

Also the two content analysis tools presented provide some help with the dictionary build.
In many other cases, we can find a sophisticated graphical user interfaces with greater
control and much advanced functions. However, the experience of V. Smetacek spoke in
favour of keeping it simple and lean. That advanced GUI tools often stand in the way of
effective and fast dictionary administration. After all, the TABARI system itself is a good
example of the same approach. The dictionary in TABARI is edited via set of commands,
very quickly and efficiently once analysts are familiarized with the keyboard shortcuts.

Undeniably, the command line tools may be much faster, but sadly, they can be rather
unfriendly and confusing when they do not provide enough context. In the case of
TABARI, the structure of the dictionary does not exhibit such a multi-relational nature as

42 For a list of some, see: http://semanticweb.org/wiki/Category:Ontology_engineering_tool [Accessed: 24-
7-2011] which lists SMW+(http://semanticweb.org/wiki/SMW%2B), Semantic Turkey
(http://semanticturkey.uniroma2.it/), RDF2GO (http://rdf2go.semweb4j.org/), NeOn Tookit (http://neon-
toolkit.org/wiki/Main_Page), PoolParty (http://poolparty.punkt.at/). But we should also not forget Protégé
(http://protege.stanford.edu/), which was needless to say, the only tool widely spread at the time when the
work on SEMAN started.

43 And in the words of the supervisor of this work: the more and fancy approaches were tried before, but in
the end, the plain old representation of the dictionary is the best. So it was kind of a requirement to keep
the form of the USL untouched.

44 Another requirement, with which I cannot disagree, is to build the dictionary in as simple ways as
possible. But not simplistic.

106

http://rdf2go.semweb4j.org/
http://semanticturkey.uniroma2.it/

IV. SOFTWARE FOR CONTENT ANALYSIS

for USL, and it would be very hard to present it in the console environment. The graphical
interface can provide much more information visually, and provides certain views more
easily.

Analysts need a way to view the whole semantic network, edit not only single records, but
also whole parts of the dictionary or even everything. Change and automatically propagate
changes to the whole network. For those reasons, it was decided to implement a hybrid
approach between a very quick and familiar mode of the text editing software, together
with the advanced characteristics of widget based GUIs. In a sense, it is the mix of the
proven interface of the TABARI system, where analysts control all the operation via
command line shortcuts, and the fully functional graphical interfaces of word processing
editors on the other hand. Because we do not want to miss the advanced features and
services of the graphical interface. Therefore, in the domain of the dictionary, we have
opted for an advanced editor interface rather than advanced graphical interface to
dictionary.

A special editing mode is built inside the programmers editor called Editra. This
component is an open-source text editor, with programmable features, and written in
Python. It gives users control of the dictionary maintenance but also provides complete
control over SEMAN, thus it naturally becomes a working environment not only for the
dictionary maintenance, but also for the analysis and the control of the coding operations,
as will be show later.

As can be seen from the screenshots, the dictionary can be edited as a normal text file.
Each record is listed on a separate line and there is a simple format of:

<code> <pattern> = <categories>

107

Illustration 20: The dictionary editing session, with some special functions activated
(autocompletion of semantic codes)

IV. SOFTWARE FOR CONTENT ANALYSIS

Almost every operation can be executed using only keyboard shortcuts, which makes it
analogous to the TABARI fast editing mode. Users do not need to learn commands and in
most cases they will be already familiar with the concept of a text editors. The editor hides
the complexity of the operations behind the scenes – it can check for duplicates, validate
the entry form, help users to search for codes already used, link to them, autocomplete the
lexical entries, search for other similar entries or provide statistics on the usage. These
operations are in many cases context dependent, and we will not list them here in their
completeness.45

With the additional widgets, it is possible to edit and maintain the dictionary in an effective
manner. Even big dictionaries, consisting of hundreds of thousands of records – as was the
case of the converted version of Wordnet, that was transformed into the form of USL. This
dictionary had more than 60 thousands entries, not strictly hierarchical. If we were to use
the simple 'search and replace' functionality of normal text editors, it would be
cumbersome, for example, to find all items that share a few semantic codes, choose from
them a subset of entries, and replace this subset with a newly defined categories. With
SEMAN, these operations are simple.

Besides the special functions of the editor available in the text editing area, there are also
some special routines for dictionary maintenance, consistency checking, sorting,
comparison with other (older) versions of the dictionary and similar. For example to edit
the dictionary, view only the changed parts and import only the differences between the
versions – or directly apply the new version of the dictionary on the texts.

This is perhaps not important when we need to edit a few categories, such as in the case of
Yoshikoder, but it is very much needed when we do global, bulk updates to the whole parts
of the dictionary, changing hundreds and thousands of records. The experience shows that
the editor must be very flexible and at the same time simple. Because of these reasons, the

45 They can be found in the appendix of (Schrodt 2009)

108

Illustration 21: Another set of commands of the editor, on the right side are visible the
maintenance routines for more complex operations

IV. SOFTWARE FOR CONTENT ANALYSIS

editing mode was tailored to the concept of the programmable editor. And this makes it
possible to write and execute specific scripting routines, perhaps only on part of the
dictionary. A number of the functions were implemented, but the powerful combination of
Python and the scripting components gives the user the option to write her own processing
routines. The Python language is ideal for such operational mode.

IV.4.6 SEMAN GUI and scripting control
The same interface which is used for dictionary maintenance is used also for controlling
the execution of analysis in the interactive mode. In the series of screenshots below, the
panel on the right side contains various processing steps that the user can apply on the

individual document or the collection of documents. These steps were described in the
previous chapters.

Another feature that distinguishes SEMAN from most of content analysis software is the
programmatic interface. While all of content analysis packages contain prepared methods
of processing (which SEMAN also has), none of them give researches tools to write ad-
hoc analytical routines, just to explore the data. But SEMAN provides such functionality.
For example, if the user wants to tests the null hypothesis that there exists no dependence
between word pairs, but instead of the standard log-likelihood or a pearson test, she would
like to apply the risk ratio or information gain test, all that is needed is to write one-purpose
macro without any need to compile or rebuild individual components.

109

Illustration 22: Example debugging session of the document analysis - on the right side a
few processing steps are selected and executed as one. The window at the bottom shows
log messages as the analysis proceeds.

IV. SOFTWARE FOR CONTENT ANALYSIS

In fact, more than a one-purpose tool for content analysis, SEMAN is also a content
analysis environment. Power users, who are comfortable with scripting, do not need to
leave the Editra interface. They can open the interactive console and test their own methods
directly from inside the editor. All the methods and packages of SEMAN are available.
Windows and Macintosh users may carry such environment even on the portable storage
media, having the full functionality including the NLP components.

110

Illustration 23: Example document analysis, showing which tokens were found - with their
absolute frequencies.

IV. SOFTWARE FOR CONTENT ANALYSIS

Yet it would be mistake to conclude that the portable nature is important only in the context
of individual users. Text processing of a large corpus is often executed on the grid or in the
cloud, in heterogenous computer architectures, with different Python versions, or operating
systems, so it is vital that content analysis tool can be used in such scenarios.46

46 At the time of writing, the CERN lxplus network is a cluster of 30 thousand computer nodes made
available (on demand) to the HEP community. Machines are running either Scientifc Linux version 4 or
version 5 operations systems. This distribution is based on the Fedora operating system. SEMAN
routinely runs in this environment as well as on Windows NT, Linux Ubuntu and Macintosh OS X
machines.

111

Illustration 24: Risk Ratio is the statistical method implemented in Yoshikoder. It tests
whether the difference between two documents are significant.

CI=log RR ±SE∗z
alpha

This illustration shows how easy it is to add the same functionality to SEMAN. We can test
different test functions, the shell provides a full environment and is interactive.

IV. SOFTWARE FOR CONTENT ANALYSIS

IV.5 COMPARISON

It might be interesting to look more than one decade back at a review of artificial
intelligence methods and their use in content analysis studies. It was found in 1998 that the
CA tools were well suited for instrumentation type studies – i.e. those in which we are not
interested in obtaining the meaning, where the 'intended' meaning is not a component of the
message that should be extracted. The review identified 4 main problem areas where
content analysis approaches failed: (1) parsing – discovering the syntactic structure of the
sentences; (2) context – deciding the meaning of sentences when this depends upon other,
surrounding text; (3) prior knowledge – assumptions about the world outside the of a
discourse that are essential to its meaning; (4) semantic variability – differences in the
meanings of words and sentences from one speaker to another. (Cuilenberg, Kleinnijenhuis,
and de Ridder 1998) The authors reviewed the chosen approaches, but after a lengthy
discussions, concluded that the analysis at the level of interpretation of complex texts is
still a long way away.

The report was issued in 1998 and in the meantime at least part of the landscape changed.
The most striking example is the development of computer software for application of the
Gottschalk-Bechtel method. This method measures psychological traits and is used in
clinical studies to assert different levels of anxiety, hostility, hope and 9 other psychological
states. The software used for content analysis of the transcripts has to deal with very
complex and incomplete sentences, but it was shown that the reliability is comparable to
human coders and the software is even able to achieve higher levels than 0.8 accuracy.
(Gottschalk and Bechtel 1995)

However, this is still an isolated problem on which a team of researchers worked since
1982 and there exists an extensive theory behind the scale. For other areas of ambiguous
general-domain content analysis, we are still not in the phase where content analysis
software could parse and interpret complex syntactical and semantical structures.

Nevertheless, considerable development has taken place, at least for the problem (1), the
syntactic structure and parsing of sentences we can report that current techniques are able
to achieve close to 90% accuracy (Cer, Marneffe, Jurafsky, and Christopher D. Manning
2010). As for the disambiguation of words (3) the present content analysis tools still rely
more on knowledge representation maps (the dictionaries) than on the methods of
automatic word sense disambiguation47 And the other two remaining areas are mostly
untouched. Interpretation of sentence meaning is a very hard problem (as complex as word
sense disambiguation, AI complete) but its solution is not needed for tasks of the classical
content analysis. What would be more interesting are the developments in the field of
automatic knowledge acquisition, creation of knowledge representations. Yet most tools,
including SEMAN, still rely heavily on manually acquired and curated dictionaries which
is perhaps their biggest weakness. It is fair to say that all these tools belong to the same
paradigm as the knowledge representation systems that were developed until late 1990's
before the statistical learning and automatic knowledge extraction systems took over
(Turmo, Ageno, and Català 2006).

47 The following chapter will contain information about an experiment where we compared results of
classification using automatically disambiguated word senses and heuristic rules. Surprisingly, the
heuristic rules of word sense disambiguation may be enough for many content analysis studies.

112

IV. SOFTWARE FOR CONTENT ANALYSIS

But if we stay in the domain of classical content analysis, we can compare the systems – or
better, we can compare the different approaches that the four systems represent. In the
nature of processing, they are all very similar. There is a dictionary of patterns in the core
of the system – either constructed manually, or derived from the other existing dictionaries
and knowledge organisation databanks. Texts are parsed, coded and recognized entities
analysed or exported for further analysis in external programs.

The main difference of SEMAN from the majority of content analysis tools is the
application of USL – while the other content analysis programs are designed to find and
assign indicators into (single or multiple) categories, in the case of SEMAN, the coding
scheme has the nature of a combinatory classification system. Not exactly hierarchical, but
similar in functionality to the hierarchical classification systems such as DDC or UDC.

Albeit codes can be used as unique identifiers of a category exactly in the same way as
classical content analysis tools, they can also be combined with the aim of finding
relations. For example, the classical tools allow analysis of the distribution of signals
across the categories, SEMAN also answers questions like: What is the proportion of
analysed documents, that belong to the category with features X and Y and Z? Are there
some significant connections between a feature X and Y?

In order to answer these questions, SEMAN is taking advantage of the network of relations
that is encoded inside the dictionary. Operational mode is similar to other tools. First a
conceptualization of the research questions must be encoded in the dictionary of categories.
For that purpose, SEMAN provides its own graphical user interface. Directly as the user
edits the dictionary, SEMAN can analyse texts using the new version of the coding scheme
and provide feedback. The user controls content analysis operations directly from the same
interface which is used for the dictionary maintenance and debugging. Coding operations
can be executed for individual files or whole collections of files. Results are then stored in
the index or database. Or exported in various formats for further analysis.

If we put aside the nature of the USL, the biggest difference is that SEMAN can handle
very complex workflows and can employ a wide range of NLP procedures. It is not simply
a find-and-count tool. In the default configuration SEMAN disambiguates meaning using
POS of the extracted tokens, but it can also work similarly to TABARI – by using a full
sentence parsing with much more powerful options. To that effect, internally SEMAN does
not work with text, but with acyclic graph of tokens. However in the present state, the
TABARI with its pattern matching mechanism is easier to use and allows for more granular
and semantically correct matching. For SEMAN, other possibilities are open but they
require programming skills and are not part of the dictionary definitions.

The third difference comes with the open nature of the application. It contains a standard
set of tools of content analysis, but technically savvy users can modify them and obtain a
very specific results with small changes. SEMAN works as a content analysis tool, but it is
open and offers the previously mentioned workflow engine and many text-analysis
components. Optional modules may be plugged into the workflow(s), some of which were
described - such as word sense disambiguation, format conversions, keyword extraction.
With this apparatus it is possible to prepare specific processing tailored to the nature of
texts, as will be illustrated in the third section of the dissertation.

113

IV. SOFTWARE FOR CONTENT ANALYSIS

Finally, we should mention also the programming language SEMAN is written in. At the
beginning of the project it was not clear what programming language to choose, but with
time it became clearer that Python was a very good choice. There are many strong
arguments for it, mainly its ease of use, rapid prototyping, nature of the scripting language,
weak typing and very clear syntax and readability of the code. The main parts of the
system are thus written in Python, but this does not limit SEMAN only to Python. The
language serves very well as a 'glue' between other components, and where the speed or
extendability is an issue, we can choose to use compiled languages.48 But the Pythonic
nature may have influenced the final form of the system. Now, it can be very useful for
power users to whom it exposes advanced functionality easily. But it is not as usable and
straightforward as Yoshikoder, even if the GUI does make SEMAN more accessible.

48 So SEMAN now incorporates components written in C++ and Java, but from the viewpoint of the user
they are invisible.

114

V. EVALUATION OF SEMAN

V. EVALUATION OF SEMAN

In this section we shall focus on SEMAN; a system that was designed to work with USL. A
few experiments were designed to show capabilities of the application. First part of the
evaluation is concerned with a pattern matching mechanism, then we examine results of
translation it the case of document classification and finally we look at the search for
concept cooccurences. The methodology and corpora will be described in respective
chapters.

V.1 THE PATTERN MATCHING MECHANISM

The pattern matching mechanism present in SEMAN is different from the majority of
content analysis tools. It does not work with regular expression or wildcard expressions.
Instead the search uses sets of possible combinations of prefixes, suffixes and radixes, the
search is deterministic, based on the entries present in the dictionary. However, the nature
of the combinatory principle poses certain challenges (as well as opportunities) and the
mechanism must work well should the system produce useful data. The extraction is
therefore an important stage and the matching mechanism is a crucial component. We will
look at its speed and accuracy in comparison with another tool that does a similar job but
works differently.

V.1.1 BibClassify
BibClassify is an automated keywords extractor developed by CERN. It performs an
extraction of keywords based on the recurrence of specific patterns that are listen in a
controlled vocabulary. The controlled vocabulary is a thesaurus of all the terms that are
relevant in the field of High Energy Physics.

BibClassify accepts thesauri in two formats, either as a simple text of allowed keywords
with one keyword per line, or in a XML format of RDF SKOS. Out of the two, only the
second form is suitable for recording the taxonomic relationships between concepts. This is

115

V. EVALUATION OF SEMAN

a richer and more complex structure to describe concepts.1 In RDF SKOS, every keyword
is marked with a tag concept which encapsulates the full semantics and hierarchical
status of a term - including synonyms, alternative forms, broader concepts, notes and
annotations - rather than just a plain keyword. For example:

<Concept rdf:about="http://cern.ch/thesauri/HEP.rdf#asymmetry">
 <composite rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.yieldasymmetry"/>
 <composite rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.timeasymmetry"/>
 <composite
rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.timereversalasymmetry"/>
 <composite
rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.supernovaasymmetry"/>
 <prefLabel xml:lang="en">asymmetry</prefLabel>
 <hiddenLabel xml:lang="en">/asymmetr\w*/</hiddenLabel>
 <hiddenLabel xml:lang="en">/nonsymmetric\w*/</hiddenLabel>
</Concept>

<Concept rdf:about="http://cern.ch/thesauri/HEP.rdf#asymptoticbehavior">
 <composite
rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.transformationasymptoticbehavior"/>
 <composite
rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.totalcrosssectionasymptoticbehavior
"/>
 <composite rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.space-
timeasymptoticbehavior"/>
 <prefLabel xml:lang="en">asymptotic behavior</prefLabel>
 <altLabel xml:lang="en">asymptotic behaviour</altLabel>
</Concept>

<Concept rdf:about="http://cern.ch/thesauri/HEP.rdf#ATLAS">
 <prefLabel xml:lang="en">ATLAS</prefLabel>
</Concept>

<Concept rdf:about="http://cern.ch/thesauri/HEP.rdf#atmosphere">
 <composite rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.nucleusatmosphere"/>
 <composite
rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.neutrinoatmosphere"/>
 <composite rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.muonatmosphere"/>
 <prefLabel xml:lang="en">atmosphere</prefLabel>
 <hiddenLabel xml:lang="en">/atmospher\w*/</hiddenLabel>
</Concept>

The thesaurus is actively maintained and enriched by subject specialists and BibClassify
exploits the richness of the thesaurus to produce accurate results.

In its basic form, BibClassify selects keywords from a fulltext document based on the
frequency of thesaurus terms in it; by calculating how many times a keyword from the
thesaurus (and its alternative and hidden labels) appeared in the text. Results are ranked
accordingly. This simple term/document frequency ranking makes it easier for us to
compare performance of the pattern matching. However, the systems differ considerably
and BibClassify is not a simplistic token matcher. For example when selecting keywords, it
gives preference to identified groups of tokens and filters out concepts which are not

1 The specification of the SKOS language and various manuals that aid the building of a semantic thesaurus
can be found at the SKOS W3C website. Furthermore, BibClassify can function on top of an extended
version of SKOS, which includes special elements such as keychains, composite keywords and special
annotations.

116

V. EVALUATION OF SEMAN

marked as “core concepts” or which are marked as “no standalone”2. The thesaurus thus
effectively contains simple disambiguating routines that work well for the specific subject
domain.

It differentiates between single and composite concepts. In the majority of cases single
concepts are made of single keywords. Nevertheless the difference is semantic. Humans
tagged certain words or groups of words as single concepts, and these can be present in
combinations with others. For simple concepts, one or more regular expression patterns are
compiled and when compiling the regular expressions around the candidate terms, the basic
rule is:

 (?:[^A-Za-z0-9\+-])(+ candidate term +)(?=[^A-Za-z0-9\+-])

The word separator (in bold) differs from the standard regular expression for non-
whitespace character (\s) as it includes plus and minus signs (that in the case of HEP
thesaurus terms cannot be regarded as whitespace). When compiling the regular
expressions, BibClassify also performs a number of transformations. For instance it creates
multiple patterns that match form variants, for illustration, if a word ends with following
patterns:3
"[^e]ed$"
"ics?$"
"[io]s$"
"ium$"
"less$"
"ous$"

It will not be searched in the case insensitive manner, but only first letter uppercase or
whole expression lowercase will be allowed. So the candidate term electronics is
converted into [Ee]lectronics?$. In the case of other patterns, the search will be case
insensitive. There are also a number of patterns that deal with different word spellings, for
example:

term becomes:

"color" r"colou?rs?"
"colour" r"colou?rs?"
"deflexion" r"defle(x|ct)ions?"
"flavor" r"flavou?rs?"
"flavour" r"flavou?rs?"
"gas" r"gas(s?es)?"
"lens" r"lens(es)?"
"matrix" r"matri(x(es)?|ces)"

Certain invariable forms will be left unchanged if they contain patterns such as: "any",
"big", "chi", "der", "eta", "few", "low", "new", "non",
"off", "one", "out", "phi", "psi", "rho", "tau", "two",
"van", "von", "hard", "weak", "four", "anti", "zero", "sinh"
and many others.

2 I.e. those that must be accompanied by another concept

3 We do not list all the BibClassify patterns here.

117

V. EVALUATION OF SEMAN

Also during the compilation of patterns, BibClassify will check for UPPERCASE
candidate terms, they will be considered acronyms and patterns are always case sensitive.
Similarly if the candidate term contains a digit, the pattern is unchanged – so rho(1980)
will be searched as case insensitive rho(1980) but if there was no digit, the original
pattern would have been changed in number of ways. This exemplifies the complex nature
of the regular expressions automatically derived from the taxonomy.

We should also not forget that the original candidate words may be changed to mimic
stemming, so for example if the word ends with the following patterns, the final pattern
will be changed to contain the expression from the second column:
"ional" "ional(ly)?"
"([ae])n(ce|t)$" "\1n(t|ces?)"
"og(ue)?$" "og(ue)?s?"
"([^aeiouyc])(re|er)$" "\1(er|re)s?"
"([aeiouy])[sz]ation$" "\1[zs]ations?"
"([aeiouy])[sz]ation$" "\1[zs]ations?"
"([^aeiou])(y|ies)$" "\1(y|ies)"
"o$" "o(e?s)?"
"(x|sh|ch|ss)$" "\1(es)?"
"f$" "(f|ves)"
"ung$" "ung(en)?"
"([^aiouy])s$" "\1s?"
"([^o])us$" "\1(i|us(es)?)"
"um$" "(a|ums?)"

All the various adjustments are done to patterns of the single keyword entries but because
also their combinations are matched, BibClassify will sometimes use special regular
patterns or it will explore the immediate context and search for combinations of the
components up to a certain distance around single matches. And only certain patterns are
considered as valid keyword separators, such as: "of", "of a", "of an", "of
the", "of this", "of one", "of two", "of three", "of new",
"of other", "of many", "of both", "of these", "of each",
"is". If different tokens separate keywords, the matches will be rejected.

And finally we should mention that BibClassify will normalize the fulltext before
processing – for example Greek alphabet characters that are used for mathematical
expressions are replaced with their ascii names such as Sigma, or Lambda and dashes in
the end of lines indicating word split will be merged. Citations and references to other
papers will be removed from extraction. Empty spaces normalized and so on. As we can
see, BibClassify contains a number of rules that were discovered with time and that aim at
eliminating false positives and improve precision. It is a careful matching mechanism
represented by the regular expressions automata and against this system the performance of
SEMAN will be compared.

118

V. EVALUATION OF SEMAN

V.1.2 Comparison
The corpora used in this task is made of 2084 fulltext documents randomly selected from
the six physics related fields of the arXiv.org digital library.4

The six groups are:

ID arXiv codename Name
--
0 astro-ph Astrophysics
1 hep-ex High Energy Physics - experimentation
2 hep-lat High Energy Physics - lattices
3 hep-ph High Energy Physics - phenomenology
4 hep-th High Energy Physics - theory
5 math-ph Mathematics - phenomenology

All the papers were drawn from a pool of documents classified by the arXiv section
manager. They were given one main subject and possibly several additional categories.
Such a multi-class corpus better represents the distribution of documents in a real life
situation.5

For purposes of comparison, texts were normalized using routines present in BibClassify.
Both BibClassify and SEMAN will use the same taxonomy with 3244 single and 56161
composite concepts. By composite, we mean a concept that is made of a combination of
simpler keywords. For the 3244 single keywords BibClassify creates 4167 regular

4 The corpus files as well as the code are distributed together with SEMAN so that the measurements can
be repeated.

5 The classification experiments with a corpus of single-category documents showed very high precision.
I.e. the job of classification was too easy. As such a situation is highly improbable in normal
circumstances the corpus was drawn from multiple-class documents.

119

HEP corpus distribution
=================================
 . 0 1 2 3 4 5
=================================
 0 378 0 0 3 3 0
 1 0 365 2 6 1 0
 2 0 2 351 13 10 1
 3 3 6 13 351 3 0
 4 3 1 10 3 334 8
 5 0 0 1 0 8 305
=================================

Table 2: Distribution of files in the HEP corpus categories, the count
in the diagonal shows the total number of documents in the category,
the number outside the diagonal shows number of multi-class
documents. For example there are 378 items in total for
Astrophysics, 3 of them are also HEP phenomenology and 3 are
HEP theory papers

V. EVALUATION OF SEMAN

expressions. The number is higher because many concepts contain additional regular
expressions. For the other composite keywords, there are 339 additional regular expression
patterns – in total, BibClassify is working with 4506 compiled regular expressions which
make for the rest of the 59405 entries.

While BibClassify reads the taxonomy from the RDF file, SEMAN generated it from the
source files.6 The dictionary is generated automatically, without any human intervention.
The entries are stemmed using the Porter stemmer, the original full form, and the stemmed
and lowercased forms are both saved for further reference. The dictionary also contains all
suffixes that were removed during stemming. The total number of entries for each category
is shown below:

Mode Number of values Explanation

hsI 59405 Main keys

hsi 1085 Non-stemmed versions of synonyms

hsq 53082 Stemmed versions of the above

hss 165 Suffixes

total 113737

This shows, that the number of entries in the dictionary of SEMAN more than doubled. If
we look at the number of patterns by their composite type, we will see the following:

single keywords 7699

keywords with 2 components 93584

keywords with 3 components 12438

keywords with 4 components 16

Due to the conversion problems for some documents and the way in which documents
were selected for the run (with the same number of documents in each category for both
BibClassify and SEMAN; we also use only the training part of the corpus, i.e. 80%), the
run included 1682 documents. On the machine with the following specification:

Model Name: MacBook Pro
Memory: 4 GB
Processor Name: Intel Core i7
Processor Speed: 2.66 GHz
Number Of Processors: 1
Total Number Of Cores: 2
L2 Cache (per core): 256 KB

6 In principle, there is no difference in the contents, only that some fields are not exported into the RDF
form. However, these fields are not used by any of the tool, therefore can be ignored. For purposes of our
comparison the dictionary is identical.

120

V. EVALUATION OF SEMAN

L3 Cache: 4 MB
Python: 2.6, 32bit
OS: Mac OS X 10.6

The two programs finished in the following time:

BibClassify SEMAN

Total time 9368.74s 1505.39s

Average time per document 5.57s 0.895s

The matcher such as BibClassify, is using regular expression patterns while searching for
entries in the whole text. It must try all the expressions available. This explains the
difference in speed of the two systems. If we were to increase the size of the dictionary the
time of matching for BibClassify would increase linearly to the number of expressions.
While for SEMAN the increase is sub-linear.

In the case of SEMAN most time is spent in matching the single keywords (which are
groups of tokens of any length). As in this run we were not using any prefixes, the worst
case would be basic words x suffixes combinations, i.e. 165 x 7534 = 1.270.335
combinations. If there were 10 prefixes, this number would increase 10 times, but it is not
uncommon to work with several hundred prefixes. In such cases the number of
combinations is getting close to one billion. So how can we explain the fact that SEMAN is
still more than 6 times faster than the regular expression matching?

The answer lays partly in the algorithm and partly in the regularity of the natural language.
The theoretical number of combinations wildly surpasses any probable number of
combinations of prefix-radix-suffix combinations present in the real language. Because the
pattern matching inside SEMAN follows local constraints, the number of examined
combinations is a fraction of the theoretical combinations.

However we have to see whether the two systems are comparable in terms of precision
before we can conclude anything. Maybe SEMAN matches only a few patterns and thus
spends less time searching and can finish faster. Or the results are not useful. To verify it,
we will see the comparison of the keywords extracted from the corpus by BibClassify and
by SEMAN with three different configurations. BibClassify represents the baseline and
only keywords that were matched by one or the other extractor are counted in the
comparison (to illustrate, the total number of patterns is 59405, but slightly less than 1/5
were present in the testing corpus of 1682 documents).

In the case of SEMAN all tests were run on the corpus that was automatically POS tagged
with ANNIE. R1 represents results extracted by SEMAN using the default automatically
generated and stemmed dictionary. When there was an ambiguous pattern (i.e. token that
several definitions) the first meaning was automatically selected. R2 improves on the
selection of the ambiguous matches using the POS tags, i.e. matches on verbs are
discarded, adjectives are considered in combination with nouns, definitions of verbs are not
used for translation of homograph nouns etc. The R3 set contains results using the same
POS corpus after the SEMAN algorithm was corrected to correspond more closely to the
way BibClassify operates. Because when BibClassify finds a match for a composite
keyword, it will remove the single components of the composite keyword from the final

121

V. EVALUATION OF SEMAN

result set. The comparison shows correlation coefficients when using the default (non-
changed, automatically generated) dictionary, and when the first 50 and 100 most frequent
patterns were manually checked and corrected.

We can see that the correlation between BibClassify and R1 is very low for the default,
automatically generated dictionary. This poor result is mainly due to the automatically
applied stemming. To illustrate this situation, consider the concept of relativity
theory which in the thesaurus had relativity listed as a synonym. The automatically
stemmed entries created by Porter stemmer were:

relativity → rel
relativity theory → rel the

Which resulted in 8950 occurrences extracted, compared to the 90 recognized by
BibClassify. This pattern is clearly wrong and matches erroneous entries:

relations (1909), relator (8), Relic (20), RELIC (4), rel (54),
related (3), relators (12), relation (3167), RELATIONS (2),
relates the (81), Relation (62), relational (2), Relics (2),
Relative (107), RELATION (9), relation the (2), Related (59),
related theories (1), relatives (7), Relativity (175), RELATED
(2), Relating (2), Relating the (2), related theory (3), relics
(43), RELATIVITY (4), RELATIVE (2), Relate the (1), relative
(2158), relic (705), Relations (44), relate the (37), related the
(6), relating the (52), relations the (6), relativity &
relativity theory (- the rest)

After manually checking and fixing the ambiguous, most frequent pattens, results improved
considerably as the table shows. We shall note that fixing the first 50 most ambiguous
entries had considerable effect. The R2 column shows the effect of POS disambiguation,
interestingly the correlation with BibClassify is slightly lower than against the R1/50 run,
however, this could be explained by the fluctuation of patterns. When we changed the
dictionary, for each run the extraction was different. So in the R1 run we had more deviant
patterns in the first 50 entries than in the R2/50 run. And correcting them had more impact.

The R3 results exhibit other interesting behaviour. Firstly, the extraction algorithm was
tweaked to more closely resemble BibClassify7 which resulted in higher correlation
coefficient, in other words SEMAN works more like BibClassify. But results did not
continue to improve after more wrong patterns were corrected – this is a rather puzzling
result at first. It shows that more accurate patterns had an adverse effect on the correlation,

7 As noted before, BibClassify will remove the elements of the composite keyword match from the final
result set.

122

Correlation R1 R2 R3
All patterns 0,666 0,746 0,843

0,770 0,802 0,872
0,813 0,811 0,835

50 most freq kws removed
100 most freq kws removed

V. EVALUATION OF SEMAN

that SEMAN was then picking less keywords, being perhaps less forgiving. But recall that
more than 10 thousand patterns are recognized by both system and the most diverging
patterns are not always top most frequent ones. In fact, if we were able to sort patterns by
the most significant difference between SEMAN and BibClassify, we could achieve 0.90
correlation by fixing the first 64 entries and 0.92 after fixing the first 100 diverging
patterns. But since in the normal cases we do not know which patterns differ most, we must
simply look at the most frequent matches and pick the wrong extractions from the
diagnostic information provided by SEMAN. However, in general SEMAN seems to
recognize roughly the same number of patterns. Of course the precision could be greatly
improved should we spent more time on tweaking the dictionary. After all, BibClassify
contains number of hand-crafted rules that are there to improve the accuracy and filter out
false matches.

On average, for each document SEMAN and BibClassify agree on 79.9% of keywords –
i.e. out of the all keywords that BibClassify found for each file, 79.9% of them were found
in the same file by SEMAN. The missing 20.1% can be attributed to the following:

– BibClassify works with hidden regular expressions, for example D-brane contains
also a regular expression /D[\dp][\s-]branes*/that matches D1-brane,
D2-branes, Dp brane etc. Because SEMANs' dictionary was generated
automatically, these patterns are missing. And this example also shows that for
some cases, the regular expression pattern is more elegant than having the possible
combinations listed in the dictionary; which is often the case for chemical and
physical elements.8

– Both of the tools pick composite keywords differently, SEMAN searches around the
matched keyword, up to certain distance, order is not important. If a composite
keyword is found, its components are not available for further lookups (unless they
make up part of other composite keywords)

– Finally, for BibClassify tokenization is not so important because it works with the
whole plain text, but in the case of SEMAN incorrect tokenization has a big
negative impact. For example, if the pattern K*(892) is split into 4 tokens, SEMAN
must first join them into one token, and certain patterns are simply missed if the
tokenization is not correct.

But for the purposes of comparison, we can conclude that the matching mechanism of
SEMAN compares well to the regular expression engine matching. But built on the
simplified morphological analysis and using the prefix-stem-suffix pattern it is also faster.
The difference in speed will increase with the number of patterns. Because for BibClassify
usually it is impractical or impossible to decide what pattern should be omitted from
matching for a given text.9

In SEMAN the matching is done differently (on nodes of a graph), and as it turns out the
Information Extraction system inside GATE works the same way. Items are presented as a
serialisable stream of tokens which allows for a greater degree of flexibility. Dedicated
extraction workflows can be created for special cases while keeping the level of complexity
relatively low. And the matching speed is superior to the regular expression matching

8 The future version of the system should recognize certain classes of characters and expand them
automatically; probably by generating entries automatically from the dictionary prescription.

9 And in fact, such optimisation would be a part of the regular expression engine.

123

V. EVALUATION OF SEMAN

mechanism. Due to our ability to effectively apply caching. The following graph shows the
impact of such a strategy on the processing of 20 000 documents with more than 1.6
million unique tokens.

The graph shows the percentage of new tokens as they are discovered during the
translation. It is apparent that for the first documents the ratio of new tokens is very high
(100%), but quickly diminishes so that after the first 3000 documents, we have already
seen more than 95% of all valid patterns. Which shows that after the first few thousand
documents, the translation speed can increase considerably.

V.2 SEMANTIC AMBIGUITY

We have seen that the matching mechanism of SEMAN is to a large extent, at least in its
results, comparable to the regular expression engine. Even with the automatically derived
patterns, out of which only the first 100 most frequent were manually corrected, we were
able to arrive at results that correlated closely with much more complete and sophisticated
prescriptions of the BibClassify extractor. SEMAN is much faster, especially if the number
of dictionary entries grows considerably.

124

Illustration 25: Percentage of 'yet-unseen matches' discovered as we continue processing a
corpus of 20.000 documents

V. EVALUATION OF SEMAN

However, more difficult challenges are ahead. Even if we can conclude that the matching
mechanism works well – there is the problem of semantic ambiguity. Because it is one
thing to be able to extract occurrences of certain patterns from the relatively narrow subject
domain corpus, and quite another to select a correct concept out of several possible
alternatives, even if we are not interested in understanding the meaning of sentences. But
for content analysis to be reliable, we need to produce reasonably accurate data, therefore
we have yet to establish how well can SEMAN cope with the problem of ambiguity.

For that purpose, I propose to look at the problem of an automated document classification
where we can compare the performance of various combinations of the features, using
unprocessed data as well as data that SEMAN offers. For this task we will use two corpora.
The previously mentioned corpus of HEP fulltexts for which we possess the subject
taxonomy. It will represent the domain specific collection of documents. And another
corpus, much broader in its scope, a multidisciplinary collection called 20 Newsgroups.

The 20 Newsgroups data set10 is a collection of approximately 20,000 newsgroup
documents, partitioned (nearly) evenly across 20 different newsgroups. The 20 newsgroups
collection has become a popular data set for experiments in text applications of machine
learning techniques, such as text classification and text clustering. Some of the newsgroups
are very closely related to each other (e.g. comp.sys.ibm.pc.hardware /
comp.sys.mac.hardware), while others are highly unrelated (e.g misc.forsale /
soc.religion.christian). Here is a list of the 20 newsgroups, partitioned (more or less)
according to subject matter:

comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x

rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey

sci.crypt
sci.electronics
sci.med
sci.space

misc.forsale
talk.politics.misc
talk.politics.guns
talk.politics.mideast

talk.religion.misc
alt.atheism
soc.religion.christian

In our case, the goal of the classification is, based on the features of a document, to choose
the group to which the document belongs. We use the supervised learning and the state-of-
art classification engine based on support vector machines (SVM). They were shown to
achieve the best results in the text categorization tasks (Hsu, C.-C. Chang, and C.-J. Lin
2003; Joachims 1998; “SVM-perf: Support Vector Machine for Multivariate Performance
Measures” n.d.) but also because SVM will allow us to work with very large number of
features for reasons we will describe later. SVM is a popular technique for classification
tasks that involve training and testing data. Each instance in the testing/training set contains
one target value (class label) and several attributes (features). The goal of SVM is to
produce a model which predicts the target value of the instance after inspection of its
attributes. We will be comparing results of the classification based on plain text features
against results of the classification based on SEMAN translated features.

10 http://people.csail.mit.edu/jrennie/20Newsgroups/

125

V. EVALUATION OF SEMAN

Given a training set of instance label pairs x i , yi , i=1,. .. , l where x
i
∈Rn and

y∈{1,−1}l the SVM require the solution to the following optimization problem:

min w ,b , 1

2
wT wC∑

i=1

l

i

subject to y
i
wT x

i
b≥1−

i
,

i
≥0

The training vectors x
i are mapped into a higher (maybe infinite) dimensional space by

the function . Then SVM finds a maximum margin hyperplane that best separates the
training instances in this higher dimensional space – i.e. (all) the points of the opposite
classes are at the greatest possible distance far away from the separating line. C0 is the
penalty parameter of the error term and SVM works with various kernel functions. These
allow the mapping of the the data points into a much higher- and possibly infinite-
dimensional inner product space in which it is possible to find a better separating
hyperplane. It is thanks to these kernel trick mappings that SVM classification can be used
for non-linear classification problems.

Many kernels exist and new ones are constantly researched, but the traditional ones are:

• linear K x
i
, x

j
=x

i

T

• polynomial: K (x i , x j)=(Υ x i
T x j+r)d ,Υ>0

• radial basis function (RBF): K x
i
, x

j
=exp − || x

i
−x

j
||rd ,0

• sigmoid: K (x i , x j)=tanh (Υ x i
T x j+r)

Where , r , and d are kernel parameters (r is a constant trading off the
influence of higher-order versus lower-order terms in the polynomial and sigmoid and the
other constants)

But for this task, we will use the SVM implementation coming from LIBLINEAR (Fan, K.
W. Chang, Hsieh, Wang, et al. 2008) where the kernel function is replaced with a loss
function called L1-SVM.

max (1− y iw
T x i , 0)2

The particular implementation of LIBLINEAR performs much faster than the traditional
SVM kernel implementations and is specially suitable for the classification of documents
with high number of features. In our case we have to deal with more than 100 thousands of
them.

126

V. EVALUATION OF SEMAN

For both corpora, we use the 1/10 split – ie. first a model is built using the training set of
90% documents and the model is evaluated on testing set of 10% documents. The process
is repeated 10 times, each time with a different testing and training sets. The results are
averaged and we will report the precision, recall and the harmonic measure of the
classification for each group.

Usually, the two metrics of precision and recall use two sets of data, one assigned by a
human and the other assigned by algorithm. The first set is considered to be “correct” and
is often called the “golden standard”. The results of the computation are then compared
against this golden standard, precision (P) expresses the number of matching (positive) hits
as a proportion hits that were retrieved, and recall (R) is the proportion of the correct hits
that exist in the whole collection.

P= number of correct hits

number of retrieved hits

R= number of correct hits

number of relevant hits

The harmonic f-measure we use is then a harmonic mean (sometimes called F1 score)

F=2⋅ precision⋅recall

precision+recall

V.2.1 Feature selection and scaling
As is discussed in literature (Forman 2003, n.d.) the selection of features for classification
may considerably influence the final results. However, as was shown by Forman as well,
these conclusions are not so clear in the area of text categorization. In the experiments
conducted by Forman, the different methods of feature selection bore less significant
impact on the results of classification using SVM classifier. The selection was important
mostly as a way to limit the computational time and memory resources.11 This might stem
from the fact that SVM is designed to pick-up the most significant data points (the support
vectors) that separate the document classes.

This might be both blessing as well as curse in our case. Blessing, because we can use all
the features that we have at our disposal for the classification task without having to select
the most significant ones. So we want to compare two classification results that are based
on two non-directly comparable data sets. It is perhaps apparent that a wrong feature
selection in the case of one dataset could make the results of the second classification seem
unjustly better. From this view it seems more appropriate to conduct no feature selection
rather than introduce more errors into the comparison.

11 The cost of this approach is acceptable, as classification tasks finish quickly, however memory limitations
are still a considerable issue. For the comparison, we were obliged to build a custom framework for
feature selection and scaling, as it was not possible to use a more standard and known tools such as Weka
(http://www.cs.waikato.ac.nz/ml/weka/). While Weka could work with no more than 20 thousand features,
filling up 3GB of RAM, our custom framework had to handle at times more than 200 thousand features
with much lower memory footprint.

127

V. EVALUATION OF SEMAN

However, the curse of the comparison comes from the way in which SVM works. It is not
easy to inspect the SVM model and find out which features had the greatest impact and
why (recall that SVM will pick up the hyperplane that maximizes the distance from the
data points after they were transformed into higher-dimensional space). The SVM trained
model will represent the model trained on many features where only a certain number of
these features is significant, but we do not know exactly which of them or what their
combinations are. We can only compare the final results of the classification. Small
differences will be hard to attribute, but trends and bigger disparities will speak more
clearly.

So for the reasons outlined above it was decided that we will compare the results of the
same classification task but use different features without filtering them. Nevertheless we
still need to prepare them.

An intuitive way of determining document features is by focusing on terms according to
their frequency – those that appear most frequently are perhaps more important. However,
this view is too simple as certain terms appear too often and provide no additional
information. To give more weight to the candidates that are more important, the inverse
document frequency (IDF) scale is employed. IDF weights the term according to its
frequency in the whole corpus, so that the very frequent terms become less important and
the relatively rare terms possess more discriminative value. Then the traditional TF×IDF
statistics combines the two measures into a single term metric. Given a candidate token t in
a document d , TF×IDF computes the following:

TF × IDF= freqt , d
∑i

freqti , d
×−log2

nt

N

where freq(t,d) is the occurrence count of term t in document d, n t is the number of
documents with token t and N is the total number of documents in the corpus. The first
component in this expression is the term frequency, or the normalized frequency of term t
in document d. The second is the negative logarithm of the inverse document frequency,
which is larger for less frequent tokens.

There exist many similarity measures for vectors, such as the Dice or Jaccard coeficient for
binary vectors, however cosine is by far the most popular in information retrieval and also
in many other areas. In order to compute the similarity of the vectors, and because cosine
for normalized vectors is a dot product of the vectors, we normalize the TF×IDF based
vectors. The vector is normalized when its unit length according to the Euclidean norm
equals one.

∣x∣=∑
i=1

n

x i
2=1

As for the normalized vectors, because cosine is the dot product, we can use the Euclidean
distance to measure similarity between the documents in this vector space. (Christoper D.
Manning and Schuetze 1999, 301)

∣x−y∣=∑
i=1

n

xi− y i2

128

V. EVALUATION OF SEMAN

This normalization is also important for the SVM classification. For the purpose of
classification, we will create a document matrix consisting of vectors with values in the
document space – by document space we mean all features that are present in the corpus of
the documents. The resulting matrix will be sparse and each data point is a real number
(n<1). But there is a difference in the dimensionality of the resulting matrix. While for the
classification task that is based on the plain text, we will have potentially as many features
as there are unique tokens in the corpus12, so the resulting matrix can be very big. Also
errors in parsing or neologisms increase the vector space.

On the other side, the document space of the features that are produced by SEMAN is
limited by the size of the taxonomy. In the case of SEMAN, by the number of core semes
or the compound semes. Thus the vector space is considerably smaller. The question is
whether this reduced space is better, or comparable to the vector space produced from the
plain text features.

V.2.2 The comparison
The table below and its accompanying graph contains an interesting story of the data
processed with the USL. In this case we do not yet look at the final set of results, but we
compare pre-liminary results of classification using certain combination of features to see
how they influence the overall final score and also the differences inside the categories.
This comparison used 0.8/0.2 split, the training set contained 16.000 documents, while the
evaluation set hold the remaining 4 thousand documents from the 20 Newsgroup corpus. A
cross-evaluation was not conducted (yet), but the table can illustrate the range of
challenges.

12 Because we do not group the tokens, even if we potentially could. For example by using latent semantic
analysis. But we do not do so intentionally because the goal is to compare results of the analysis using
plaintext features against SEMAN translated features.

129

V. EVALUATION OF SEMAN

The combination of features in this run is the following (it should be understood that
whenever the term scaled features is used, it is the normalized cosine similarity as
described above):

• C1 plaintext: features are roughly the words of the text

• C2 plaintext lowercase: as above, but we limit the number of features by
disregarding case differences

• C3 plaintext binary: instead of the cosine similarity, the data points are either ones
or zeros (vector length is not equal one)

• C4 No-POS scaled: translation using only semes, automatically selecting the first
concept if several translations are possible

• C5 POS-disambiguated scaled: the disambiguation uses POS information

• C6 POS-disambiguated binary: as previous but data points are simply zeros or ones

• C7 fullsemes + semsplit/ scaled: the features are made of composite semes as well
as individual semes (counting both the aggregate and core terms)

130

Group/test C1 C2 C3 C4 C5 C6 C7 C8

alt.atheism 0.7123 0.6803 0.7162 0.5457 0.6577 0.6839 0.6797 0.7327

comp.graphics 0.7527 0.7590 0.7430 0.5938 0.6242 0.5946 0.6275 0.6843

comp.os.ms-windows.misc 0.8267 0.8069 0.8344 0.6216 0.6776 0.7059 0.7332 0.8202

comp.sys.ibm.pc.hardware 0.7692 0.7874 0.7794 0.5867 0.6513 0.6308 0.6842 0.7727

comp.sys.mac.hardware 0.8522 0.8678 0.8545 0.6479 0.7198 0.7484 0.7929 0.8843

comp.windows.x 0.8412 0.8254 0.8311 0.6918 0.6988 0.6762 0.7123 0.8367

misc.forsale 0.8901 0.8716 0.8954 0.7763 0.7808 0.7940 0.8367 0.8874

rec.autos 0.9200 0.9259 0.9163 0.8489 0.8501 0.8701 0.8780 0.9508

rec.motorcycles 0.9383 0.9140 0.9387 0.8222 0.8757 0.8635 0.8780 0.9284

rec.sport.baseball 0.9562 0.9682 0.9511 0.8300 0.8912 0.8929 0.9574 0.9577

rec.sport.hockey 0.9654 0.9546 0.9546 0.8737 0.8843 0.8914 0.9262 0.9476

sci.crypt 0.8820 0.8808 0.8628 0.8035 0.8224 0.8277 0.8660 0.8856

sci.electronics 0.7815 0.7703 0.7764 0.5976 0.6030 0.6027 0.7039 0.7510

sci.med 0.8835 0.8772 0.8625 0.7870 0.8110 0.8344 0.8710 0.9024

sci.space 0.8950 0.9079 0.8859 0.8179 0.8577 0.8879 0.9139 0.9152

soc.religion.christian 0.8954 0.8808 0.8924 0.8087 0.8515 0.8388 0.8827 0.9103

talk.politics.guns 0.8215 0.8237 0.8182 0.7449 0.7628 0.7861 0.8258 0.8301

talk.politics.mideast 0.9017 0.9017 0.9017 0.8356 0.8277 0.8140 0.8760 0.8960

talk.politics.misc 0.5932 0.5595 0.5870 0.5189 0.5718 0.6138 0.5949 0.6042

talk.religion.misc 0.7115 0.7051 0.7179 0.5364 0.5718 0.6069 0.6477 0.7471

Microaverage

precision 0.84 0.834 0.837 0.715 0.751 0.759 0.795 0.843

recall 0.84 0.834 0.837 0.715 0.751 0.759 0.795 0.843

V. EVALUATION OF SEMAN

• C8 Fullsemes + words / scaled: the features include semes and where seme is not
available, then words

The first three columns of the table show results of the multi-label classification using only
the plaintext features – any token which is present in the document will be used by the
SVM for the classification. The first column displays results of the classification using the
frequency count of the token scaled by the cosine. The second column shows an interesting
variation in the results, when fulltext features were normalized, using only the lowercase
form, the number of features decreased considerably – we do not draw any conclusions
here, because the set was not cross-validated – but it is interesting to note the negative
effect on the accuracy of the final results. It is true that in four categories we achieved best
results using the lowercased normalized form, but the difference did not seem large and
after this initial run, it was decided to use plaintext without normalization. Overall, the first
set fared better by only 0.12%.

The third column represents another interesting variation to the first row-set. This time the
features are not normalized, neither scaled, but the presence of a feature is simply marked.
As we can see, the scaled feature classification is generally more accurate than the binary
features, yet the differences (in this test run) were not dramatic – only 0.07% – thus even if
we decided to use the most accurate method for a comparison with the classification on
semes, it should be noted that the binary features represent the interesting variant which is
computationally easier as no cosine scaling is needed. This finding is in line with the
results reported in (Hopkins and King 2010; King, Knowles, and Melendez 2010) where

131

alt.ath
eism

com
p.g

rap
hics

com
p.os.m

s-w
in d

ow
s.m

isc

com
p.sys.ibm

.pc .h
ardw

a
re

com
p.sys.m

a
c.h a

rdw
are

com
p.w

in
do

w
s.x

m
isc.fo

rsale

re
c.a

uto
s

rec.m
otorcycles

:rec.sp
ort.b

ase
b a

ll

:rec.sp
ort.h

o
ckey

:sci.crypt

:sci.e
le

ctronics

:sci.m
ed

:sci.sp
ace

:so
c.religion.chri stian

:ta
lk.po

litics.g
u

ns

:ta
lk.po

litics.m
ide

ast

:ta
lk.po

litics.m
isc

:ta
lk.re

lig
ion

.m
is c

0,4

0,5

0,6

0,7

0,8

0,9

1,0

plaintext/scaled
plaitext lowercases/scaled
plaintext/binary
No-POS/scaled
POS-disamb/scaled
POS-diamb/binarized
fullsemes+semsplit/scaled
fullsemes+words/scaled

V. EVALUATION OF SEMAN

also the presence or absence of a feature is counted without measuring the relative
importance – the weight of the feature. Though it might seem counterintuitive, the
experimental results repeatedly show good performance.

All the remaining columns then represent results somehow influenced by the process of
translation. The fourth column (C4) shows classification when only semes are used – ie. the
text is processed, the appropriate matching tokens and groups of tokens are identified,
translated into semes and only the semes are used for classification. But we did not attempt
to select the appropriate translation for a pattern that matched the token. Because the
WordNet lists several definitions of the term, and the system is not able to decide on the
most appropriate one, we use all of them. Such an approach results in added ambiguity and
the SVM machine is in fact incapable of finding the most distinctive feature vectors for
classification. Clearly, this method is the simplest and it does produce the worst possible
results. 18 out of 20 groups achieved the lowest accuracy, overall only 71.50%.

However this result is very interesting on its own. We can observe the effect of introducing
more ambiguity into the data (by inclusion of all possible translations). And we can see the
change from 'the-worst procedure', towards improvements when some sort of
disambiguation was employed.

The next column presents the results after the part-of-speech disambiguation. In particular,
we are using only nouns, adjectives and adverbs for the purpose of classification. The
number of definitions (semantic composites used) decreased by more than 20% and with it
also the artificially induced ambiguity. The SVM is able to identify support vectors better
and we have reached the 75% accuracy. As is discussed in (Schrodt 2009; Schrodt and
Gerner n.d.) this level of accuracy is acceptable for certain content analysis applications.
When we think of the fact that no special processing (besides the POS tagging, which
SEMAN incorporates) was needed, this option might seem attractive. Especially if we
recall that only a very limited set of tokens is used for classification, the number of features
is lower by more than 50%. On the other hand, the comparison with the previous column
also shows that without incorporating the NLP technology, the usefulness of SEMAN
decreases rather significantly.

It is interesting to observe that the cosine scaling has an effect on the final accuracy, but at
the same time the simple presence or absence of a sem (feature) is a good indicator and
SVM is able to use it for the purpose of classification. In this case it meant an increase of
overall precision by 0.8%. This is not surprising because the features are selected from the
limited set of pre-defined words. Thus presence or absence of a feature in this narrower
space may be a somewhat stronger indicator of a category than in the case of plain text
features, which are potentially much more numerous than semantic features.

As we can see classification based only on the semantic features obtained the worse results
if no disambiguation was employed, and improved by 9% to almost the magical range of
80% when a more careful sense disambiguation was employed. I was curious whether a
more complete sense disambiguation could improve the results even further. To test this, I
have used the word sense disambiguation (WSD) software by Pedersen (Pedersen and
Kolhatkar 2009). While many variants of the WSD exist and the Pedersen's solution is not
the most accurate, it achieves substantial F-Score of 76.02% over general domain corpus
and the algorithm itself finished as the second best in the SemEval0713 competition.
(Kolhatkar 2009) But while not being state-of-art, still we can reasonably expect that it

13 http://nlp.cs.swarthmore.edu/semeval/tasks/index.php

132

V. EVALUATION OF SEMAN

does a much better job than a simple disambiguation based solely on POS information.
Unfortunately, the cost of running the WSD on a relatively small corpus of 20 thousand
documents is very high. A small cluster of eight machines was working for 32 hours just on
the disambiguation task. So this option is not viable for the real life tasks, but it may
provide interesting comparison.

Microaverage Macroaverage

Precision Recall Precision Recall

Semes 0,8174 0,8174 0,8199 0,8174

Semes* 0,8070 0,8070 0,8070 0,8070

The table above summarizes the results of classification after the WSD method was
employed. We are using only the seme features in the classification and indeed the results
improved by almost 2%. The second row, marked as “Semes*”, shows an interesting
variation to the processing when the last element of the concept definition was removed.
For example the last element from the definition of the concept car as in the example
below :

car = entity
 physical_entity
 object
 whole
 artifact
 instrumentality
 container
 wheeled_vehicle
 self-propelled_vehicle
 motor_vehicle
 car

If we remove the last element (car) the definitions are thus more general, more objects are
clustered together and this results in decreased accuracy. This is valuable observation for
the task of document classification but in the case of content analysis studies, we often
want the details to be suppressed. In this case, we continued using the unabridged
definitions that gave us 2% increase in the accuracy. Yet the cost of this improvement is
indeed high, and the procedure of WSD makes whole procedure too slow. It is obvious we
cannot use it in the real-life application. But it is good to know that there is a space for
improvement in better disambiguation and the direction clearly goes into more precise
assignment of meaning. But it is questionable whether we could achieve bigger gains with
better and smarter disambiguation algorithms. To see why, we have to look more closely at
the corpus we are translating.

Number of files: 19618
Total number of tokens: 5382275
Number of translated tokens: 2050193 (38.1%)
Multi token expressions recognized: 33868
Average number of tokens per doc: 274.35
Number of tokens translated/doc: 104.51

133

V. EVALUATION OF SEMAN

From the statistics above we can see that there are almost 5.4 million tokens but only 38%
of them recognized and translated into the semantic codes. The average number of tokens
per document is also rather low because the corpus is made of newsgroup messages that
tend to be shorter and made of reactions on some previous replies.

So if we use only the semes for classification, it is quite possible that many messages
contain very little information. It is actually surprising that we were able to achieve almost
80% accuracy given such ratio of translation (or 82% with the more elaborate word sense
disambiguated corpus). However, we may be close to the limits of accuracy and further
improvements may not be easy to obtain, certainly not if we do not have enough data for
every document or when the translation rate is low. And that will often be the case with
content analysis studies in which the research is focused on a pre-defined variables
omitting all the rest.

Nevertheless, our test is still valid. The preliminary results show that the accuracy of
classification improves when we employ the POS disambiguation techniques, and as
expected, it improves even further if word sense disambiguation is applied.

Because WSD is prohibitively expensive, we will not use it for cross-evaluation. Instead
our focus is directed towards comparison of results from three datasets. We will compare
the classification that uses scaled plaintext features (a baseline for comparison) against the
classification that is using only semes, and finally the classification that is based on the
combination of semes and plaintext features. And we will report results for both corpora,
the High Energy Physics papers and the 20 Newsgroups. All the numbers reported below
are computed with 1/9 split, cross-validated across the whole corpus. Discussion follows
the results.

V.2.2.1 HEP corpus

Classification that used plain text features only:

==
 class accuracy precision recall fscore
==
 1.0 0.968306010929 0.915851831624 0.896167702274 0.899704228865
 2.0 0.945901639344 0.845513485885 0.832473118280 0.833114882782
 3.0 0.967213114754 0.912607085972 0.905125653782 0.905881037602
 4.0 0.896721311475 0.69195076879 0.637663416285 0.647404952567
 5.0 0.910928961749 0.716733180612 0.730740651799 0.727272378357
 6.0 0.955737704918 0.839964727110 0.911623775564 0.896046606180
==
microaverage:
precision: 0.822404
recall: 0.822404

macroaverage:
precision: 0.820439
recall: 0.818967

confusion matrix:
===
 . 1.0 2.0 3.0 4.0 5.0 6.0
===
 1.0 55.4 0.8 0.0 1.8 3.2 0.6

134

V. EVALUATION OF SEMAN

 2.0 0.6 51.0 0.0 9.2 0.2 0.2
 3.0 0.2 0.8 59.2 2.6 1.6 1.0
 4.0 2.8 7.8 3.6 37.0 6.4 0.4
 5.0 1.6 0.2 2.2 3.2 42.6 8.6
 6.0 0.0 0.0 0.0 0.0 5.4 55.8
===

Classification that used semes only:

==
 class accuracy precision recall fscore
==
 1.0 0.965217391304 0.890801257967 0.907992918985 0.904209667538
 2.0 0.948405797101 0.841617947930 0.862514483169 0.856107023853
 3.0 0.962318840580 0.880873873029 0.911067278798 0.904569552113
 4.0 0.889275362319 0.684631751227 0.569027161662 0.588327339490
 5.0 0.899710144928 0.689191841962 0.673469152597 0.675093119523
 6.0 0.939710144928 0.795411355897 0.863831782196 0.848283214879
==
microaverage:
precision: 0.802319
recall: 0.802319

macroaverage:
precision: 0.797090
recall: 0.797985

confusion matrix:
===
 . 1.0 2.0 3.0 4.0 5.0 6.0
===
 1.0 53.2 0.6 0.0 1.8 1.6 1.4
 2.0 0.8 50.4 0.6 6.0 0.4 0.2
 3.0 0.2 1.0 55.8 2.6 0.6 1.0
 4.0 3.0 8.0 4.4 31.2 7.2 1.0
 5.0 2.2 0.2 2.2 4.0 36.8 9.4
 6.0 0.4 0.0 0.4 0.2 6.8 49.4
===

And finally classification based on semes or plain text features (when semes are not
available):

==
 class accuracy precision recall fscore
==
 1.0 0.972173913043 0.923059185503 0.913805996053 0.915147664359
 2.0 0.949565217391 0.862409998182 0.836738624762 0.839823333183
 3.0 0.966376811594 0.901411032396 0.911590204747 0.908566356542
 4.0 0.901449275362 0.707159307258 0.657353101608 0.666329170249
 5.0 0.915362318841 0.733111473193 0.744959621275 0.741576664152
 6.0 0.957681159420 0.853799936023 0.905574232590 0.893842915910
==
microaverage:
precision: 0.831304
recall: 0.831304

macroaverage:
precision: 0.830160

135

V. EVALUATION OF SEMAN

recall: 0.828339

confusion matrix:
===
 . 1.0 2.0 3.0 4.0 5.0 6.0
===
 1.0 53.2 0.6 0.0 1.4 2.4 0.6
 2.0 0.6 48.6 0.2 8.2 0.2 0.2
 3.0 0.2 1.0 56.0 2.8 0.8 0.6
 4.0 2.4 6.2 3.4 36.0 6.4 0.4
 5.0 1.4 0.2 2.4 2.8 41.2 7.4
 6.0 0.0 0.0 0.2 0.0 5.2 51.8
===

And the aggregate view on the comparison of the three sets using the f-score:

136

Category Text
0.8997 0.9042 0.9151

hep-ex 0.8331 0.8561 0.8425
hep-lat 0.9059 0.9046 0.9099
hep-ph 0.6474 0.5883 0.6701

0.7273 0.6751 0.7489
math-ph 0.8960 0.8483 0.8956

Precision 0.8224 0.8023 0.8342
Recall 0.8224 0.8023 0.8342

Precision 0.8204 0.7971 0.8326
Recall 0.8190 0.7980 0.8310

Sem SemText
astro-ph

hep-th

Microaverage

Macroaverage

Illustration 26: Comparison of the classification results that were based on different datasets

astro-ph hep-ex hep-lat hep-ph hep-th math-ph

0,5000

0,5500

0,6000

0,6500

0,7000

0,7500

0,8000

0,8500

0,9000

0,9500

1,0000

Text
Sem
SemText

V. EVALUATION OF SEMAN

V.2.2.2 The 20 newsgroups corpus

Due to formatting issues, we will present the aggregate views first.

137

Illustration 27: F-measure for the document classification of 20
Newsgroups

Category Text Sem SemText
alt.atheism 0.8759 0.8702 0.9135
comp.graphics 0.8092 0.7774 0.8466
comp.os.ms-windows.misc 0.8299 0.7512 0.8588
comp.sys.ibm.pc.hardwar 0.7975 0.7239 0.8096
comp.sys.mac.hardware 0.8638 0.8005 0.8949
comp.windows.x 0.8837 0.8108 0.9055
misc.forsale 0.8620 0.8367 0.8812
rec.autos 0.9004 0.8834 0.9280
rec.motorcycles 0.9389 0.9166 0.9436
rec.sport.baseball 0.9475 0.9494 0.9733
rec.sport.hockey 0.9581 0.9562 0.9726
sci.crypt 0.9160 0.9395 0.9531
sci.electronics 0.8230 0.7948 0.8604
sci.med 0.9034 0.9061 0.9244
sci.space 0.9178 0.9189 0.9424
soc.religion.christian 0.9092 0.8769 0.9255
talk.politics.guns 0.9061 0.9120 0.9414
talk.politics.mideast 0.9490 0.9404 0.9630
talk.politics.misc 0.8657 0.8576 0.8981
talk.religion.misc 0.8406 0.8428 0.8712

Microaverage
Precision 0.8851 0.8851 0.9105
Recall 0.8851 0.8851 0.9105
F-score 0.8851 0.8851 0.9105

Macroaverage
Precision 0.8868 0.8658 0.9122
Recall 0.8851 0.8633 0.9105
F-score 0.8860 0.8646 0.9114

Illustration 28: Aggregate view on the document classification for 20 Newsgroups corpus

alt
.a

th
eis

m

co
m

p.
gr

ap
hic

s

co
m

p.
os

.m
s-

wind
ow

s.m
isc

co
m

p.
sy

s.i
bm

.p
c.h

ar
dw

ar

co
m

p.
sy

s.m
ac

.h
ar

dw
ar

e

co
m

p.
win

do
ws.x

m
isc

.fo
rs

ale

re
c.a

uto
s

re
c.

m
oto

rc
yc

les

re
c.s

po
rt.

ba
se

ba
ll

re
c.s

po
rt.

ho
ck

ey

sc
i.c

ry
pt

sc
i.e

lec
tro

ni
cs

sc
i.m

ed

sc
i.s

pa
ce

so
c.r

eli
gio

n.
ch

ris
tia

n

ta
lk.

po
liti

cs
.g

un
s

ta
lk.

po
liti

cs
.m

ide
as

t

ta
lk.

po
liti

cs
.m

isc

ta
lk.

re
lig

ion
.m

isc

0,6000

0,6500

0,7000

0,7500

0,8000

0,8500

0,9000

0,9500

1,0000

Text
Sem
SemText

Details by class:
===
 class accuracy precision recall fscore
===
 1 0.988955823293 0.907143805719 0.868646464646 0.875901195562
 2 0.979267068273 0.779618322021 0.81723891981 0.809233712835
 3 0.982630522088 0.824265772538 0.832494949495 0.829899874466
 4 0.979016064257 0.785226103624 0.801414141414 0.797484344986
 5 0.986495983936 0.867195033015 0.863199340342 0.863773402962
 6 0.988855421687 0.894637648971 0.881444444444 0.883744612662
 7 0.98483935743 0.832618362789 0.869864151721 0.862036992037
 8 0.989859437751 0.89746234518 0.901626262626 0.90043989812
 9 0.994779116466 0.960769483975 0.933727272727 0.93893180529
 10 0.99437751004 0.939237436237 0.949808080808 0.947535238122
 11 0.995532128514 0.951751381549 0.959878787879 0.958141683194
 12 0.992520080321 0.938077983863 0.910858585859 0.915968944275
 13 0.982831325301 0.836865064337 0.820464646465 0.823005425113
 14 0.990813253012 0.915764882371 0.900717171717 0.903363536359
 15 0.992570281124 0.936015480691 0.913555555556 0.917819804719
 16 0.988403614458 0.85994008218 0.923563182849 0.909160846994
 17 0.989307228916 0.878568680392 0.913585858586 0.906071614625
 18 0.994979919679 0.951446718494 0.948747474747 0.949029829853
 19 0.98765060241 0.888879275279 0.860414141414 0.865722361043
 20 0.986596385542 0.890991105369 0.831141414141 0.840552102942
===

Classification that used plain text features only:

microaverage:
precision: 0.885141
recall: 0.885141

macroaverage:
precision: 0.886824
recall: 0.885120
confusion matrix:

==
 . 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0
==
 1 86.6 0.6 0.2 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.0 0.2 0.1 0.7 0.6 3.9 0.3 0.7 1.4 3.9
 2 0.2 81.4 4.2 3.1 1.5 3.8 1.3 0.3 0.2 0.2 0.2 0.5 1.0 0.2 0.5 0.0 0.4 0.1 0.3 0.2
 3 0.0 3.2 83.0 5.5 2.2 2.2 0.7 0.1 0.0 0.0 0.1 0.1 1.0 0.1 0.3 0.3 0.3 0.0 0.2 0.4
 4 0.0 3.6 5.1 79.9 3.7 1.0 2.3 0.5 0.1 0.2 0.0 0.2 2.6 0.3 0.1 0.0 0.1 0.0 0.0 0.0
 5 0.2 1.4 2.6 3.2 85.8 0.3 2.6 0.2 0.1 0.2 0.1 0.3 1.7 0.2 0.0 0.1 0.0 0.1 0.1 0.2
 6 0.1 5.4 2.2 1.2 0.3 87.8 0.5 0.0 0.0 0.2 0.0 0.1 0.8 0.3 0.2 0.2 0.1 0.0 0.1 0.1
 7 0.1 0.4 1.0 2.1 1.7 0.1 86.2 2.1 0.7 0.1 0.3 0.3 2.1 0.3 0.5 0.5 0.3 0.0 0.1 0.2
 8 0.0 0.3 0.2 0.7 0.1 0.2 2.0 89.9 1.5 0.3 0.2 0.0 2.3 0.7 0.1 0.2 0.6 0.0 0.4 0.0
 9 0.0 0.3 0.1 0.0 0.1 0.1 1.8 2.1 93.0 0.2 0.0 0.1 0.4 0.3 0.1 0.2 0.2 0.2 0.2 0.2
 10 0.2 0.3 0.0 0.2 0.1 0.3 0.6 0.0 0.0 94.7 2.3 0.0 0.1 0.1 0.0 0.2 0.2 0.0 0.3 0.1
 11 0.1 0.4 0.0 0.1 0.2 0.1 0.2 0.1 0.2 1.7 95.7 0.1 0.1 0.0 0.0 0.0 0.2 0.1 0.2 0.2
 12 0.3 1.6 0.7 0.1 0.2 0.5 0.3 0.1 0.0 0.3 0.2 90.8 1.4 0.3 0.2 0.2 1.4 0.0 0.9 0.2
 13 0.3 1.9 0.6 4.1 2.0 0.4 2.1 2.3 0.1 0.3 0.1 1.4 81.8 0.9 1.0 0.2 0.0 0.0 0.1 0.1
 14 0.4 1.2 0.0 0.6 0.5 0.4 0.5 0.7 0.2 0.7 0.3 0.2 1.2 89.8 1.0 0.2 0.7 0.3 0.7 0.1
 15 0.7 1.2 0.2 0.3 0.2 0.3 1.0 0.1 0.0 0.3 0.2 0.5 0.8 1.3 91.0 0.4 0.4 0.0 0.2 0.5
 16 1.8 0.3 0.2 0.3 0.0 0.2 0.4 0.2 0.0 0.4 0.1 0.0 0.0 0.7 0.4 91.9 0.3 0.6 0.4 1.3
 17 0.2 0.3 0.3 0.1 0.2 0.2 0.3 0.7 0.2 0.4 0.1 0.7 0.3 0.0 0.1 0.0 91.0 0.6 3.2 0.7
 18 0.6 0.2 0.0 0.1 0.2 0.1 0.2 0.3 0.3 0.4 0.1 0.4 0.0 0.2 0.1 0.8 0.2 94.4 0.8 0.1
 19 1.1 0.2 0.1 0.1 0.0 0.0 0.2 0.3 0.1 0.1 0.3 0.9 0.2 1.0 0.5 0.8 5.1 1.5 85.7 1.4
 20 2.6 0.3 0.2 0.2 0.1 0.2 0.2 0.1 0.0 0.1 0.3 0.0 0.2 0.8 0.5 7.3 1.9 0.7 1.1 82.8
==

===
 class accuracy precision recall fscore
===
 1 0.987957852484 0.891908338063 0.865585858586 0.870165673917
 2 0.976869041646 0.763108085306 0.781414141414 0.77735137871
 3 0.973858504767 0.732415428331 0.757121212121 0.751204542144
 4 0.970697441044 0.698504233401 0.731242424242 0.723943206466
 5 0.979277471149 0.788779684158 0.804252525253 0.800545438945
 6 0.981886603111 0.825788471101 0.807599876314 0.810798707844
 7 0.983542398394 0.834713030879 0.837636363636 0.836683554174
 8 0.988058203713 0.879612723121 0.884686868687 0.88341682283
 9 0.992373306573 0.934516742996 0.912707070707 0.916594015773
 10 0.994731560462 0.94566682551 0.950868686869 0.94940923324
 11 0.99633718013 0.974410036225 0.951898989899 0.956172146464
 12 0.994430506774 0.951308976218 0.936797979798 0.939519358921
 13 0.980180632213 0.810708573362 0.791434343434 0.794752904751
 14 0.991419969895 0.925273157198 0.901747474747 0.906090900732
 15 0.992674360261 0.937292041746 0.914606060606 0.918854298535
 16 0.98554942298 0.835876688779 0.888545454545 0.876895252628
 17 0.98986452584 0.884524563169 0.919676767677 0.912004509976
 18 0.994330155544 0.948104707828 0.938848484848 0.940409482414
 19 0.986452584044 0.872599403025 0.854383838384 0.857622208471
 20 0.986151530356 0.881335372379 0.834800659658 0.842798287485
===

Classification that used semes only:

microaverage:
precision: 0.863322
recall: 0.863322

macroaverage:
precision: 0.865823
recall: 0.863293
confusion matrix:

==
 . 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0
==
 1 86.3 0.0 0.0 0.1 0.2 0.0 0.0 0.3 0.0 0.1 0.1 0.3 0.1 0.4 0.4 5.0 0.2 1.2 1.4 3.6
 2 0.1 77.9 5.7 2.2 2.7 5.2 1.0 0.2 0.1 0.5 0.1 0.6 1.7 0.4 0.7 0.2 0.0 0.0 0.1 0.3
 3 0.0 5.3 75.5 7.2 2.7 4.2 0.6 0.3 1.0 0.2 0.0 0.0 1.2 0.2 0.6 0.0 0.1 0.0 0.4 0.2
 4 0.0 2.6 8.4 72.9 6.6 1.2 2.7 0.4 0.0 0.1 0.1 0.3 3.4 0.3 0.1 0.1 0.3 0.0 0.0 0.2
 5 0.0 1.7 1.7 8.1 80.1 1.1 3.5 0.3 0.1 0.0 0.0 0.1 2.2 0.2 0.1 0.0 0.0 0.0 0.3 0.1
 6 0.1 5.8 6.6 1.8 0.7 80.2 0.7 0.0 0.3 0.1 0.1 0.3 1.2 0.2 0.5 0.1 0.1 0.1 0.1 0.3
 7 0.3 0.8 1.5 2.6 2.1 0.3 83.5 2.6 0.7 0.6 0.1 0.3 2.6 0.4 0.5 0.1 0.2 0.1 0.3 0.1
 8 0.0 0.4 0.6 1.0 1.2 0.3 2.1 88.2 1.9 0.4 0.0 0.1 1.5 0.1 0.2 0.2 0.5 0.2 0.5 0.3
 9 0.1 0.1 0.1 0.2 0.4 0.3 1.5 3.2 91.0 0.4 0.1 0.0 0.7 0.4 0.4 0.1 0.5 0.0 0.1 0.1
 10 0.1 0.3 0.1 0.2 0.2 0.3 0.2 0.5 0.1 94.8 1.1 0.0 0.3 0.4 0.0 0.2 0.2 0.0 0.4 0.3
 11 0.1 0.2 0.2 0.3 0.0 0.4 0.5 0.0 0.5 1.5 94.9 0.0 0.1 0.0 0.2 0.0 0.3 0.1 0.3 0.1
 12 0.1 0.7 0.5 0.7 0.2 0.9 0.1 0.0 0.1 0.1 0.0 93.4 1.3 0.1 0.0 0.2 0.7 0.1 0.4 0.1
 13 0.1 2.5 1.1 5.0 2.3 1.1 1.9 2.8 0.2 0.4 0.2 1.1 78.9 0.8 0.4 0.4 0.1 0.1 0.1 0.2
 14 0.5 0.9 0.3 0.6 0.8 0.6 0.3 0.7 0.4 0.6 0.2 0.1 1.1 89.9 0.6 0.3 0.9 0.0 0.8 0.1
 15 0.9 1.6 0.4 0.5 0.5 0.4 0.5 0.1 0.2 0.1 0.0 0.2 0.5 1.1 91.1 0.4 0.2 0.1 0.7 0.1
 16 3.3 0.5 0.2 0.4 0.4 0.2 0.2 0.1 0.3 0.0 0.1 0.1 0.4 0.5 0.0 88.5 0.3 0.6 0.8 2.7
 17 0.4 0.0 0.0 0.1 0.3 0.1 0.2 0.2 0.3 0.1 0.0 0.7 0.1 0.3 0.2 0.2 91.7 0.4 3.9 0.5
 18 1.1 0.2 0.1 0.2 0.2 0.0 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.3 0.2 0.8 0.2 93.6 1.1 0.6
 19 0.9 0.3 0.2 0.2 0.2 0.2 0.4 0.5 0.2 0.1 0.0 0.4 0.0 1.1 0.7 0.9 5.5 1.4 85.1 1.3
 20 2.5 0.4 0.2 0.2 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.0 0.2 0.1 0.3 8.5 1.9 0.8 0.8 83.1
==

===
 class accuracy precision recall fscore
===
 1 0.992222779729 0.934549948872 0.908757575758 0.91350404526
 2 0.982890115404 0.814030571136 0.855575757576 0.846565976643
 3 0.985047666834 0.843254871919 0.863595959596 0.858802407148
 4 0.981083793276 0.813152592256 0.809454545455 0.809588922439
 5 0.989563472153 0.897713835825 0.894646464646 0.894854587424
 6 0.99071751129 0.9097833921 0.904757575758 0.905490173943
 7 0.986803813347 0.853391973073 0.888636363636 0.881173872231
 8 0.992574009032 0.923126281502 0.929747474747 0.928036669699
 9 0.995183140993 0.964022417812 0.938838383838 0.943635635355
 10 0.99708981435 0.967694812191 0.974909090909 0.973329862702
 11 0.997691921726 0.984075931178 0.969898989899 0.972574507215
 12 0.995885599599 0.967591608244 0.949828282828 0.953106817668
 13 0.986051179127 0.861198122052 0.860636363636 0.86043596784
 14 0.993226292022 0.943870785497 0.919797979798 0.924361772091
 15 0.994731560462 0.954137546197 0.939645846217 0.94237404204
 16 0.990416457602 0.882396993256 0.937747474747 0.925460525671
 17 0.993125940793 0.918299773179 0.947676767677 0.941368720087
 18 0.99633718013 0.964973764457 0.962848484848 0.962988940513
 19 0.990868038133 0.923978480887 0.892363636364 0.898091807593
 20 0.989563472153 0.923563213983 0.860840032983 0.87122847588
===

Classification based on semes or plain text features (when semes are not
available):

microaverage:
precision: 0.910537
recall: 0.910537

macroaverage:
precision: 0.912241
recall: 0.910511

confusion matrix:
==
 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0
==
 1 90.6 0.1 0.0 0.1 0.0 0.0 0.3 0.1 0.0 0.0 0.0 0.1 0.1 0.2 0.3 4.0 0.0 0.4 0.6 2.8
 2 0.0 85.3 3.9 2.2 1.2 3.3 1.0 0.0 0.2 0.2 0.1 0.3 0.6 0.4 0.7 0.1 0.0 0.0 0.1 0.1
 3 0.0 3.8 86.1 4.7 1.2 2.0 0.8 0.0 0.0 0.0 0.0 0.0 0.6 0.1 0.2 0.0 0.1 0.0 0.0 0.1
 4 0.0 2.7 6.1 80.7 2.9 1.1 2.4 0.1 0.0 0.1 0.1 0.2 2.7 0.2 0.1 0.1 0.1 0.0 0.0 0.1
 5 0.1 1.7 1.0 2.4 89.2 0.5 2.6 0.1 0.1 0.0 0.0 0.0 1.5 0.1 0.0 0.1 0.1 0.0 0.2 0.0
 6 0.0 4.1 2.4 0.9 0.1 90.2 0.5 0.1 0.2 0.1 0.0 0.0 0.4 0.1 0.2 0.0 0.1 0.1 0.0 0.2
 7 0.1 0.7 0.6 2.5 1.2 0.1 88.5 2.0 0.4 0.2 0.0 0.1 2.1 0.2 0.4 0.1 0.2 0.0 0.0 0.2
 8 0.0 0.2 0.0 0.6 0.2 0.3 1.9 92.7 1.2 0.1 0.2 0.0 1.5 0.1 0.0 0.1 0.2 0.2 0.2 0.0
 9 0.0 0.1 0.1 0.1 0.1 0.2 1.4 2.4 93.6 0.2 0.1 0.1 0.4 0.5 0.1 0.0 0.1 0.1 0.1 0.0
 10 0.0 0.1 0.0 0.1 0.2 0.2 0.3 0.1 0.0 97.2 0.8 0.0 0.2 0.0 0.1 0.2 0.1 0.0 0.0 0.1
 11 0.0 0.3 0.0 0.0 0.1 0.2 0.2 0.1 0.1 1.1 96.7 0.0 0.1 0.2 0.0 0.0 0.2 0.1 0.1 0.2
 12 0.3 0.7 0.6 0.5 0.0 0.4 0.2 0.0 0.1 0.0 0.0 94.7 1.1 0.2 0.0 0.1 0.6 0.0 0.2 0.0
 13 0.1 1.2 0.4 3.8 1.6 0.1 2.2 1.4 0.1 0.3 0.0 1.1 85.8 0.7 0.5 0.2 0.1 0.0 0.0 0.1
 14 0.3 0.9 0.4 0.3 0.5 0.3 0.3 0.5 0.3 0.4 0.2 0.0 1.2 91.7 0.6 0.2 0.6 0.0 0.8 0.2
 15 0.5 1.7 0.2 0.2 0.3 0.1 0.4 0.1 0.0 0.1 0.0 0.1 0.5 0.8 93.5 0.1 0.4 0.0 0.5 0.0
 16 1.6 0.5 0.1 0.1 0.0 0.1 0.2 0.2 0.3 0.0 0.1 0.1 0.2 0.3 0.1 93.4 0.2 0.4 0.7 1.0
 17 0.0 0.1 0.1 0.0 0.1 0.0 0.4 0.0 0.2 0.1 0.0 0.5 0.2 0.1 0.0 0.1 94.4 0.2 2.6 0.5
 18 0.3 0.3 0.1 0.0 0.3 0.0 0.1 0.2 0.1 0.2 0.0 0.3 0.0 0.1 0.1 0.5 0.2 95.9 0.6 0.3
 19 0.9 0.1 0.1 0.1 0.1 0.0 0.0 0.4 0.1 0.1 0.0 0.3 0.2 0.7 0.7 0.4 4.0 1.4 88.8 1.1
 20 2.2 0.4 0.1 0.1 0.2 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.3 0.5 0.4 6.6 1.2 0.7 0.8 85.7
==

V. EVALUATION OF SEMAN

We can notice that, as in the first corpus, results based purely on the semes are less accurate
than the plain text features. What is positive though is that the difference is often only 2%
and we are using only 30% of text features. What is even more positive is the fact that the
combined dataset made of semes and plain text features (when semes are not available)
again outperforms the baseline classification. From this we can conclude that the
translation of words into the semantic codes is relatively accurate even if only POS
information is used. This result cannot be stressed enough. It means that without a
complicated and expensive disambiguation procedures, we can use the standard, state-of-
the-art POS tagging and achieve actually a better performance than the purely text based
classification. This is perhaps not so important in the context of the document
classification, but it means a lot for content analysis application. Based on this results, we
can expect that even in a multi-domain corpus, SEMAN will be able to code the tokens
with a reasonable level of accuracy.

V.2.3 Search for significant combinations
So far we were able to establish that the pattern matching mechanism is faster than the
regular expression matching mechanism but its results comparable. The automated
document classification showed that results depend on the quality of translation and the
disambiguation mechanism. But we were able to obtain for our application acceptable level
of accuracy using relatively simple but available POS disambiguation. This compensated
for the ambiguity of multiple concepts and in fact, the classification that combined the
translation with the plaintext features was always superior to the classification based on
plain text tokens, even if significantly only for the second corpus. Nevertheless, we could
see that the previous stages gave us relatively accurate results and the process of token
translation, if prepared carefully, did not introduce unacceptable levels of noise into source
data.

The last piece of missing information is about our ability (or inability for that matter) to
discover the interesting combination of concepts in the text that was enriched by thousands
of semantic codes. By 'interesting' we mean the combinations of semantic codes that are
significantly different from the values we would expected in normal situations14. We shall
use the collocation discovery mechanism that was described in the previous chapters and
find out whether it also applies to the translated corpora. Recall that the corpus was
considerably changed by the inclusion of multiple concept codes. They are not strictly
linear as the normal text and they alone account for additional millions of combinations in
the case of large collections. Having said that, only a few of the combinations will be
interesting to us so it is indeed a search for a needle in the haystack.

Since it would be difficult to evaluate the collocation search against corpora that are
usually used in the collocation search (and which do not contain semantic information), we
will prepare two synthetic benchmarks – first using a randomly generated corpus, and the

14 And normal, to continue, is in turn anything that we want to use as a basis for finding the 'strange',
'unnormal' distribution.

142

V. EVALUATION OF SEMAN

second one based on a real translated corpus. Both of the tests should look at how well the
collocation discovery mechanism works. We will evaluate the results then using the
standard metrics of precision of recall.

In the case of our tests, first a dictionary of an imaginary language is created (for this task it
had the vocabulary size of 100.000) and the distribution of the language units follows the
Zipf law. Using the dictionary, we are creating a corpus of 20000 documents, each
containing a randomly selected number of sentences with 5 to 20 words per sentence. The
documents are relatively short, spanning the range of 50 to 400 words per message. Words
are selected randomly which results in a relatively very high number of unique collocations
– more than it would have been in the real language corpus where certain combinations just
do not happen.

The taxonomy used for the purpose of translation is also generated automatically. It is built
from 3000 core semes that are randomly combined to build a complete dictionary of 7 000
compound semes; thus our taxonomy contains 10 000 unique concepts. These are assigned
in a completely random fashion to the tokens of the dictionary until the ratio of translated
words is covered. In this experiment we have a dictionary of 100 000 tokens, the taxonomy
contains 10 000 concepts and the ratio of translation is set to 0.5 – this means that 50 000
tokens will get assigned translation, some of them will share the same definition, some of
them will contain only one definition. Thus we also simulate the situation of synonymy
where certain words have the same meaning and certain words have no translation at all
(despite they should have if we were assigning semantic tags to all patterns).

Before the translation starts, we select a number (200) of pairs from the language model.
They are chosen randomly and we do not have control over how many of them also contain
semantic codes (but additional parameter can be used to enforce how big portion of these
tokens must have semantic codes. If no concept definition is present, it is automatically
generated – in our experiment, we set this ratio to be 50%). We thus have the model of our
language, the dictionary and the taxonomy used for translation. We proceed to the
translation of the previously generated corpus of 20 000 documents. We will read the
randomly generated corpus and whenever we encounter a token that belongs to one of the
significant pairs, the other pair will be inserted somewhere around the position of the first
element. This position is randomly selected, in the range of 1 to 5 tokens – i.e. there can be
up to 5 other tokens between the first and the second element of the significant pair.

After the original and the translated corpus were generated, we proceed to the collocation
discovery. The reported results are averaged from the batch of 10 runs, where for each run
the corpus as well as the language model was completely regenerated.

There exist two modes of collocation search that we discussed in the previous chapter
IV.4.4.We can base our search on a better understanding of the collection of documents -
for example we have at our disposal corpora of similar or relevant messages that deal with
the same topics as the corpus in which we are interested. We can thus build a better
approximation (model) of the expected frequencies and their combinations using such data.
Or we may simply want to compare a corpus A against a new corpus B and highlight the
important differences, which is also possible.

In a perhaps more difficult scenario we do not possess prior information and cannot build
the statistical model of the collection and this will be focus of our evaluation. The null
hypothesis (to be tested against the real data) will based on the observed frequencies. It has

143

V. EVALUATION OF SEMAN

the generic form of: f(AB) = f(A) x f(B) – which says that the expected frequency of a
cooccurence is made of a joint frequency of its components, for more details see previous
chapter IV.4.4, p. 92. This assumption is certainly wrong, as language is not random, but at
the same time is used successfully in many linguistic tasks where it was proven satisfactory
(Hopkins and King 2010; Christoper D. Manning and Schuetze 1999, 237). We will have
the opportunity to compare this approach of cooccurence search against both the randomly
generated corpus (for which it should be naturally more suitable) as well as against the
corpus based on the real language.

As for the corpus based on real language, we use the publicly available version of the well-
known Reuters-21578 "ApteMod" corpus for text categorization. ApteMod is a collection
of 10,788 documents from the Reuters financial newswire service, partitioned into a
training set with 7769 documents and a test set with 3019 documents. The total size of the
corpus is about 43 MB.15

The distribution of categories in the ApteMod corpus is highly skewed, with 36.7% of the
documents in the most common category, and only 0.0185% (2 documents) in each of the
five least common categories. In the ApteMod corpus, each document belongs to one or
more categories. There are 90 categories in the corpus. The average number of categories
per document is 1.235, and the average number of documents per category is about 148, or
1.37% of the corpus.

The procedure for the collocation search is similar with the previous corpus. The selection
of 200 significant pairs is done randomly, but we disregard words that occur too often as
well as words whose occurrence is rare. The limit is applied to the list of words from the
corpus, sorted by frequency and we randomly select significant pairs only from the slice
that covers 1.5%-30% of the list. Doing this, we remove words from the first and the
second order category of the Zipf law, as well as most of the tokens that occur less than 5
times. The search for the significant cooccurences is then conducted in the same way as for
the first corpus, with average pairs recreated each time and results averaged.

V.2.3.1 Results

We will start by presenting the results from the search on the randomly generated corpus
using the observed frequencies null hypothesis. The precision and recall reported here
concerns the list of the first 5000 most significant pairs as selected by the algorithm. The
chart shows results in bins of 100 items each.

15 It is also available for download from http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html,
which includes a more extensive history of the data revisions.

144

V. EVALUATION OF SEMAN

The results above include both pairs made of tokens (words) as well as combinations of
semes (semantic relations). We can filter out all the semantic relations and look only at

word pairs (ie. to see whether there is a difference between the relationships discovered
from the text and those that are based on the enriched semantic information). See

145

Illustration 30: Random corpus looking only at the words,
ignoring the semantic relations

Illustration 29: Results from the processing of the average corpus
using the default null hypothesis

V. EVALUATION OF SEMAN

Illustration 30 above.

The previous chart just shows that the portion of word pairs is a fraction of the significant
pairs, however the token pairs are clustered towards the beginning of the list. As we
continue to retrieve more results, the frequency of word pairs decreases steadily and later
we retrieve mostly the semantic pairs. This is correct, as the semantic pairs are more
numerous, while for the word pairs the precision decreases slowly. In the overall picture
(for all pairs) it decreases sharply and after the first 1000 results it is at 20%, which is
rather low.

The second batch of tests was executed on the Reuters21578 corpus. We can observe a
slightly different situation. The precision starts at 85% and continues to raise as we harvest

more results, to be highest around 1000 pairs. The curve of the recall is almost diagonal
which means we are retrieving very high number of positive hits with every step – even if
the overall recall is 'only' 70%; thus were are not able to get all the 4883 valid and
significant pairs in the list of the 5000 retrieved pairs. Nevertheless, values for both metrics
are relatively very high.

If we look at the same run again, but this time filtering out all the semantic pairs and
leaving only words as they appear in the corpus, we would see the following results. The
recall is very low, about 6% in the first 5000 combinations, which means all the other
relevant combinations retrieved in the previous steps are semantic pairs. The distribution of
the words pairs is also different from the distribution of the semantic pairs.

146

Illustration 31: Precision and recall for the Reuters corpus, in the
search for significant pairs based on the expected values computed
from the source corpus

V. EVALUATION OF SEMAN

V.2.3.2 Discussion

We can observe that on the Reuters corpora the first several hundred pairs contain more
than 85% of the significant pairs and this precision actually increases long after the first
1000 combinations were discovered. This result is probably due to the different distribution
of words that is less random than the first corpus. This is not a bad news for us, but for
certain applications also the 70% precision of the automatic null hypothesis search could be
acceptable and useful.

If the Reuters corpus exhibits less entropy than the randomly generated one and outliers are
easier to detect, the number of pairs that we need to test for statistical significance is also
lower. In the case of the randomly generated corpus, where we searched for the
cooccurences in the distance w=5, the system had to inspect on average 5 million potential
pairs per run. In the case of the Reuters corpus, which contained roughly a similar ratio of
translated tokens, the number of pairs that needed to be inspect was lower - slightly more
than 1 million pairs per run. In the case of the randomly generated corpus, which is about
40% bigger, the difference is a factor of two and will grow in a linear fashion with the size
of the corpus. But in the case of the real language data, it is unlikely that the number of
cooccurences grows linearly because the language is not random and exhibits rather strong
consistency.

147

Illustration 32: Precision and recall statistic if we look only at
words (ie. ignoring the semantic concept relations altogether). The
recall is considerably lower because words make only a small
portion of all significant pairs

V. EVALUATION OF SEMAN

This last part of the search is arguably the slowest of the whole pipeline because SEMAN
takes time in building the indices (and there are two of them if we use the reference
collection) so it has to inspect millions of pairs to select the significant ones. To inspect one
million of them takes 16 minutes on the reference machine16, which may not be optimal for
large collections and by large we mean corpora of several million documents. However, we
could limit the search only to the semes and their combinations. Thus we can process even
large corpora because semes usually account for less than 40% of the text. For a small and
medium sized collections the processing times can be counted in dozens of minutes or
hours. We can also limit the number of inspected pairs by a simple heuristic of frequency.

The time spent in the computation is basically dependent on the parameter f which filters
out combinations based on frequency of the individual components. If we want to cover all
possible combinations we must set f=(0.0,1.0) but this means we will search too many
combinations and most of them too infrequent to be scored as significant. The following
chart shows how precision and recall change. The sweet spot in the Reuters21578 corpus
was in the range of collocations where both elements are present in at least 0.3% of corpus,

which translates to roughly 3 documents. As the table below shows, the f=(0.0003;1) will
limit the number of pairs that have to be inspected to less than one quarter of all possible
pairs. Without impairing recall, we can limit the computation time significantly.

16 See the machine specification in V.1 The pattern matching mechanism, p. 115

148

Illustration 33: Number of pairs retrieved for inspection
based on parameter f (this run does not represent the
averaged f-measure values, but is representative for the ratio
of retrieved pairs and the general trend of the f-measure
curve)

f(x;0.025) F-measure Ratio of pairs # of pairs

0 0.614684 1 4506645

0.0001 0.614684 1 4506645

0.0002 0.614684 0.4180382524 1883950

0.0003 0.614684 0.2188592623 986321

0.0004 0.611973 0.1250011927 563336

0.0005 0.611973 0.1250011927 563336

0.0006 0.605791 0.0753893417 339753

0.0007 0.59363 0.0472322537 212859

0.0008 0.576321 0.0306534018 138144

0.0009 0.576321 0.0306534018 138144

0.001 0.544783 0.0205332348 92536

0.0011 0.499859 0.0140958518 63525

0.0012 0.448236 0.0098669853 44467

0.0013 0.41519 0.0070067645 31577

0.0014 0.41519 0.0070067645 31577

0.0015 0.390745 0.0050731753 22863

0.0016 0.350589 0.0037102989 16721

0.0017 0.308377 0.002731522 12310

0.0018 0.308377 0.002731522 12310

0.0019 0.276041 0.0020332198 9163

0.002 0.243025 0.001456294 6563

0.0021 0.203579 0.0009987474 4501

0.0022 0.203579 0.0009987474 4501

0.0023 0.131999 0.0006252989 2818

0.0024 0.071752 0.0002851345 1285

V. EVALUATION OF SEMAN

But results that were reported for each corpus correspond to f=(0.0005,0.5), in other words
we inspect only pairs that are present in at least 0.05% of documents which in the case of
the random corpus translates to 10 documents and in the case of Reuters21578 corpora to
slightly more than 5 documents. This could partially explain the differences between the
two corpora. In the case of the random corpus where the precision starts at 85% and then
sharply decreases, it is because some of the ambiguous cases were previously filtered out
by the frequency criteria. In the case of the Reuters21578 corpus, we cover more pairs, and
less of them were filtered out by the f parameter. So while using the frequency filter can
improve the precision and decrease the processing time considerably, we will necessarily
loose certain combinations and the recall will inevitably be lower.

Finally the two plots showing the precision and recall of only the words (Illustrations 30
and 32) demonstrate that the system is able to find word pairs but also the semantic
relationships. In fact, words represent only 6% of all possible and valid cooccurences. The
semantic pairs were found as well and the performance of that search did not diminish –
though the distribution and expected values of the semantic codes is very much different
from the distribution of tokens. And this even if certain semantic codes are used in many
thousands of other concept combinations. The translation is not always perfect and we face
also considerable levels of synonymy – which means that the distribution of the semantic
codes is quite a lot different from those of the words. Nevertheless, identification of a great
part of the relevant and statistically significant semantic cooccurence pairs is still feasible.

149

Illustration 34: Plotting the ratio of inspected pairs
against the f-measure

0 0.00
0

3

0.0
0

0
6

0.00
0

9

0.00
1

2

0.0
0

1
5

0.00
1

8

0.0
0

2
1

0.0
0

2
4

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

F-measure
Ratio of pairs

V. EVALUATION OF SEMAN

150

VI. CONCLUSIONS

VI. CONCLUSIONS

The work in this thesis focused on the evaluation of the idea of Universal Semantic
Language (USL) in the context of content analysis. We have demonstrated that it is
possible to transform the concept of USL into a working application and showed that USL
can be used to analyze corpora of textual documents. The real application of this research
lays in the ability of the system to translate texts written in the natural language into the
collection of semantic codes in which we can search for interesting semantic
relationships. Such analysis has practical use in many problems that include processing of
textual data and extraction of new facts from big corpora.

Firstly, we have reviewed the historical background of the USL and compared it with
semantic fields, semantic primitives, and semantic primes and universals of Kant and
Wierzbicka. The concept of the lattice which is often present in a description of meaning is
not a new one. It is used in many applications of semantic analysis and is well understood.
However, the meaning itself is more difficult to formalise. What is possible to do, though,
are operational definitions. They consist of a definition of the meaning that is perhaps not
universally acceptable, but is applicable to a specific domain. This approach is adopted by
researchers in the language processing as well as in content analysis. And the content
analysis studies are the selected field of interest for us. Though we did not exclude the
possibility that researchers may one day embrace the idea of global and universally
acceptable semantic primitives.

Secondly, we have reviewed the basic methodological requirements for the construction of
content analysis studies, with a special focus on the operationalisation of concepts
(knowledge representation). The second chapter described the elements of content analysis
and relation of the theory to the tool we build, but we also saw the practical implications in
the example of three content analysis tools that are widely used by the content analysis
community. These tools served the purpose of comparison with the application we
developed.

We have described the architecture and the components of the new application. It can
operate in similar ways to the classical content analysis tools, but also in a special mode
which takes advantage of the USL processing. This mode, together with the state-of-the-art
natural language processing components, constitute the main difference between SEMAN
and the other classical content analysis tools. But building the system itself was not the
main aspiration of the thesis. We had to evaluate whether it was possible to extract useful
information from the textual corpora with USL.

151

VI. CONCLUSIONS

To achieve this goal, we have evaluated several components. First the pattern matching
mechanism which is different than the usual mechanisms employed in similar software
tools. We have compared SEMAN against a mature keyword extractor system on a corpus
of High Energy Physics documents. In the default configuration our system achieved 0.7
correlation coefficient but after the first 50 and 100 most frequent patterns were manually
checked and fixed, the correlation coefficient rose up to 0.87. SEMAN provided
information about matches and based on it we could correct many of the obvious mistakes.
The correction of the first 100 wrong entries took less than 2 hours and the number of
incorrect matches diminished gradually as we processed the list starting with the most
frequent patterns. It would be possible to achieve even higher correlation, but only with
greater investment of time and energy. The reference system used specialized patterns
designed specifically for the target domain. SEMAN, on the other hand, used the generated
dictionary with the automatically stemmed entries.

The experiment showed it was possible to use the existing external sources of knowledge
representation, such as dictionaries, thesauri, classification systems. The structure of the
USL makes it rather easy to convert the existing sources into the language of USL – as was
also done in the case of WordNet. Yet WordNet transformation also pointed to limitations
of the current form of USL representation. Its strictly linear form (flat data structure of the
SEMAN dictionary) is not the ideal mechanism for storage of acyclic knowledge
representation data. The editor that we developed for dictionary maintenance makes
operations somewhat easier, but the principal problem remained. While it is not impossible
to represent the acyclic relations in the form of linear entires, it is not exactly the best
solution for WordNet (or other more advanced knowledge data represented in USL).

The pattern matching mechanism is an important component of SEMAN but it was not the
only part we tested. Next we have looked at the more serious problem of semantic
ambiguity in the process of translation. We have described the experiment of automated
document classification in which we used the different sets of data. One more uniform
corpus containing longer papers from the domain of High Energy Physics. On this corpus
we used the domain specific thesaurus. The other corpus contained twenty thousands news
postings and for its translation we have used the general-domain WordNet.

The experiment confirmed that a wrong translation has strongly detrimental effect on the
final results of classification. When a certain pattern had several definitions and we used all
of them in the classification, we have observed the worst possible performance of all the
combinations. This confirms the importance of correct disambiguation. We cannot say yet
whether the trend would change, were we to use much bigger document corpora, but it
seems reasonable to expect that the entropy introduced by an incorrect translation is very
dangerous.

We have therefore shown that the results of classification improved with better word sense
disambiguation. Unfortunately, most of the automated word sense disambiguation routines
will be too costly in terms of CPU time. Thus we concentrated on a search for a simpler
disambiguation techniques that use linguistic information. We have seen that
disambiguation based on the POS information did improve results of classification
considerably. The scores of document classification that was based purely on semantic
features were lower than the plain text feature classification, but the f-measure improved in
general from the range of 70% to 90%. In fact, we could see that if we used the semantic

152

VI. CONCLUSIONS

features together with words (when the semantic translation was not available) the
document classification produced the best results. This led us to the conclusion that the
translation did not introduce more entropy into the source data.

We can assert that for certain applications such an operational mode is more than
acceptable. Especially if we process bigger collections of data where we can disregard the
individual errors. The second experiment has shown us two important things. First, that we
can avoid the costly word sense disambiguation. Even without constructing the
complicated dictionary patterns it is possible to achieve levels of accuracy of more than
80%, which is the level of accuracy that was reported satisfactory for at least one of the
content analysis tools that we described (TABARI). Secondly, the amount of information
translated into the semantic codes, even if we used one of the biggest available semantic
networks, accounted for less than 40% of the texts. For these reasons SEMAN allows
researchers store plain text and enhance it with the semantic codes (but it can also store
only the semantic codes: this operational mode might be more suitable for big collections).

The final part of the evaluation focused on our ability to recognize and retrieve the
significant combinations of concepts from the text. For this we constructed two synthetic
benchmarks, one modelled randomly with the Zipf distribution which is characteristic for
natural languages, the other benchmark used real texts. We have seen that in the case of the
random corpus, SEMAN was able to retrieve 70% of significant combinations in the list of
the first few hundred results and the precision slowly decreased. In the case of the real text
corpus, the performance was much better (85%) and even increased for the first 1000
entries up to the level of 95% to again slowly decrease as we harvested more pairs.

This part of the experiment showed us that it was possible to recognize and retrieve the
combinations of semantic codes that are statistically significant – even if we store texts and
the semantic codes together and conflate two distributions. But since the words are related
to their meaning and if the process of disambiguation did not introduce too much
ambiguity into the source data, we could expect the mechanism to work properly. We have
concluded from the exercise that SEMAN can recognize and extract the combinations of
significant semantic codes from corpora of textual messages. But of course, the task of
interpretation of these results is in the hands of humans.

Though we can conclude SEMAN has potential, we shall mention its weak parts. Perhaps
the biggest limitation of this type of applications is the cost associated with the production
of consistent knowledge representation. The cost might be mitigated if we reuse the
existing sources of knowledge, or automatically extract the knowledge from the existing
unstructured and semi-structured information resources such as Wikipedia. But even if we
do so, it should be noted that many modern information extraction systems need not work
with any prescribed knowledge representation. They can extract useful information directly
from the corpus of documents, such as Latent Semantic Analysis (LSA). In this respect the
approach that we worked on and we described belongs to the paradigm that is not
particularly popular in the research. Perhaps one day the pendulum swings back towards
the knowledge representation systems with manually prepared data, but in the current stage
the very existence and necessity of the dictionary represents the biggest stumbling block.

Provided we have means to overcome this knowledge bottleneck, future research can be
focused on the visualisation of the data extracted from the texts. The automated processing
of textual data opens doors to many interesting applications and visualisation of even
simple relationships may prove very insightful. In the current stage, we focused only on the

153

VI. CONCLUSIONS

discovery of combinations of two concepts. However it might be even more interesting to
look at concept trigrams or even much larger groups. And finally, we should definitively try
to analyse whether there exist differences between users of different languages in the way
which knowledge categories they apply. We should test in a rigorous manner the hypothesis
of Anna Wierzbiczka which says that there exists something that we call semantic
universals, and that people are similar in the way they think. Any confirmation or refutation
of such a hypothesis may have far reaching consequences.

154

VII. BIBLIOGRAPHY

VII. BIBLIOGRAPHY

“Assessment and Development of New Methods for the Analysis of Media Content.”
http://www.restore.ac.uk/lboro/index.php (Accessed November 21, 2010).

Azar, Edward E. 1980. “The Conflict and Peace Data Bank (COPDAB) Project.” Journal
of Conflict Resolution 24(1): 143 -152.

Bartsch, Sabine. 2004. Structural and Functional Properties of Collocations in English.
Tübingen.

Berelson, Bernard. 1972a. 2 Content analysis in communication research. New York:
Hafner.

———. 1972b. 2 Content analysis in communication research. New York: Hafner.

Berelson, Bernard, and Paul F. Lazarsfeld. 1948. The Analysis of communication content.
Chicago: University of Chicago Press.

Bickle, John, Peter Mandik, and Anthony Landreth. “The Philosophy of Neuroscience.”
http://plato.stanford.edu/entries/neuroscience/ (Accessed July 23, 2011).

Cer, Daniel, Marie-Catherine de Marneffe, Daniel Jurafsky, and Christopher D. Manning.
2010. “Parsing to Stanford Dependencies: Trade-offs between speed and accuracy.”
In 7th International Conference on Language Resources and Evaluation (LREC
2010), http://nlp.stanford.edu/pubs/lrecstanforddeps_final_final.pdf.

Cuilenberg, Jan J., Jan Kleinnijenhuis, and Jan A. de Ridder. 1998. “Artificial Intelligence
and Content Analysis: Problems of and Strategies for Computer Text Analysis.”
Quality and Quantity 22: 65-97.

Cunningham, H. 2005. “Information Extraction, Automatic.” Encyclopedia of Language
and Linguistics, 2nd Edition.

Cunningham, H., D. Maynard, K. Bontcheva, and V. Tablan. 2002. “GATE: A framework
and graphical development environment for robust NLP tools and applications.” In
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics,.

Dale, Robert, Hermann Moisl, and Harold Somers. 2000. Handbook of Natural Language

155

VII. BIBLIOGRAPHY

Processing. 1st ed. CRC Press.

Evert, Stefan. 2005. “The statistics of word cooccurrences : word pairs and collocations
(Ph.D. thesis).” http://elib.uni-stuttgart.de/opus/volltexte/2005/2371/ (Accessed
March 22, 2011).

Fan, R. E., K. W. Chang, C. J. Hsieh, X. R. Wang, et al. 2008. “LIBLINEAR: A library for
large linear classification.” Journal of Machine Learning Research 9: 1971-1874.

Firth, J.R. 1957. Papers in Linguistics 1934-1951. London: Oxford University Press.

Forman, George. A Pitfall and Solution in Multi-Class Feature Selection for Text
Classification.

———. 2003. “An extensive empirical study of feature selection metrics for text
classification.” J. Mach. Learn. Res. 3: 1289-1305.

George, Alexander L. 1959. Propaganda Analysis: a Study of Inferences Made from Nazi
Propaganda in World War II. Row, Peterson & Co.

Gliozzo, Alfio, and Carlo Strapparava. 2009. Semantic Domains in Computational
Linguistics. Springer.

Goddard, Cliff. 1994. Semantic and lexical universals : theory and empirical findings.
Amsterdam ;;Philadelphia: J. Benjamins.

Gottschalk, Louis A. 1997. “The unobtrusive Measurment of Psychological States and
Traits.” In Text analysis for the social sciences: methods for drawing statistical
inferences from texts and transcripts, Routledge, p. 117-147.

Gottschalk, Louis A., and R. Bechtel. 1995. “Computerized measurement of the content
analysis of natural language for use in biomedical research.” Computer Methods
and Programs in Biomedicine 47: 123-130.

Harden, Theo. 1983. An analysis of the semantic field of the German particles
“überhaupt” and “eigentlich.” Gunter Narr Verlag.

Hopkins, Daniel, and Gary King. 2010. “A Method of Automated Nonparametric Content
Analysis for Social Science.” American Journal of Political Science 54(1): 247,
229.

Hsu, C.-W., C.-C. Chang, and C.-J. Lin. 2003. A practical guide to support vector
classification. Technical report, Department of Computer Science, National Taiwan
University.

Huberman, B. A., D. M. Romero, and F. Wu. 2009. “Crowdsourcing, attention and
productivity.” Journal of Information Science 35(6): 758-765.

Joachims, Thorsten. 1998. “Text Categorization with Support Vector Machines: Learning

156

VII. BIBLIOGRAPHY

with Many Relevant Features.” In Proceedings of the European Conference on
Machine Learning, Springer.

Justeson, John S., and Slava M. Katz. 1995. “Technical terminology: some linguistic
properties and an algorithm for identification in text.” Natural Language
Engineering 1(01).
http://www.journals.cambridge.org/abstract_S1351324900000048 (Accessed July
24, 2011).

Kant, Immanuel. 1992. Lectures on logic Immanuel Kant translated and edited by J.
Michael Young. CUP.

Kecskés, István. 2003. Situation-bound utterances in L1 and L2. Walter de Gruyter.

King, Gary. 2003. “10 Million International Dyadic Events.”
http://hdl.handle.net/1902.1/FYXLAWZRIA.

King, Gary, M. Knowles, and S. Melendez. 2010. “ReadMe: Software for Automated
Content Analysis.” http://gking.harvard.edu/readme.

King, Gary, and Will Lowe. 2003. “An Automated Information Extraction Tool For
International Conflict Data with Performance as Good as Human Coders: A Rare
Events Evaluation Design.” International Organization 57(3): 617-642.

Koenig, Thomas. “CAQDAS Comparison.”
http://www.restore.ac.uk/lboro/research/software/caqdas_comparison.php
(Accessed November 21, 2010).

Kolhatkar, Varada. 2009. “An Extended Analysis of a Method of All Words Sense
Disambiguation.” University of Minnesota.
http://www.d.umn.edu/~tpederse/Pubs/varada-thesis.pdf.

Krippendorf, Klaus. 2004a. 2. Content analysis: An introduction to its methodology.
Thosand Oaks: Sage.

———. 2004b. Content analysis: An introduction to its methodology. Thosand Oaks: Sage.

Laurance, Edward J. 1990. “Events data and policy analysis:” Policy Sciences 23(2): 111-
132.

Leininger, Kurt. 2000. “Interindexer consistency in PsycINFO.” Journal of Librarianship
and Information Science 32(1): 4 -8.

Lejeune, Christophe. 2008. “Au fil de l’interprétation. L’apport des registres aux logiciels
d’analyse qualitative.” Revue Suisse de Sociologie 34(3): 593-603.

———. 2009. “Méthodes qualitatives informatisées.”
http://analyses.ishs.ulg.ac.be/logiciels/index.html (Accessed January 24, 2010).

157

VII. BIBLIOGRAPHY

Lowe, Will. 2003. Content Analysis Software: A Review. Identity Project, Weatherhead
Center for International Affairs, Harvard University.
http://www.wcfia.harvard.edu/misc/initiative/identity.

———. 2008. “Understanding Wordscores.” Political Analysis 16(4): 371, 356.

———. “Yoshikoder: An Open Source Multilingual Content Analysis Tool for Social
Scientists.” http://www.yoshikoder.org/courses/apsa2006/apsa-yk.pdf.

MacMillan, Katie. 2005. “More Than Just Coding? Evaluating CAQDAS in a Discourse
Analysis of News Texts.” Forum: Qualitative social research 6(3). http://nbn-
resolving.de/urn:nbn:de:0114-fqs0503257 (Accessed November 21, 2010).

Manning, Christoper D., and Hinrich Schuetze. 1999. Foundations of Statistical Natural
Language Processing. MIT.

McClelland, Charles. 1999. World Event/Interaction Survey (WEIS) Project, 1966-1978
[Computer file]. Ann Arbor, MI.

Medelyan, Olena. 2009. “Human-competitive automatic topic indexing.” University of
Waikato. http://hdl.handle.net/10289/3513.

Medelyan, Olena, and I. H. Witten. “Measuring inter-indexer consistency using a
thesaurus.” In 6th ACM/IEEE-CS Joint Conf. on Digital Libraries, Chapel Hill, NC,
USA: ACM Press, p. 274-275.

Navigli, Roberto. 2009. “Word sense disambiguation: A survey.” ACM Comput. Surv.
41(2): 1-69.

Neuendorf, Kimberly A. 2001. The Content Analysis Guidebook. 1st ed. Sage Publications,
Inc.

“PCAD 2000.” http://www.gb-software.com/pcad2000.htm (Accessed November 21,
2010).

Pedersen, Ted, and Varada Kolhatkar. 2009. “WordNet::SenseRelate::AllWords - A Broad
Coverage Word Sense Tagger that Maximimizes Semantic Relatedness.” In
Proceedings of the North American Chapter of the Association for Computational
Linguistics, Boulder,CO., p. 17-20.

Phillips, David P. 1979. “Suicide, Motor Vehicle Fatalities, and the Mass Media: Evidence
Toward a Theory of Suggestion.” American Journal of Sociology 84(5): 1150-1174.

———. 1983. “The Impact of Mass Media Violence on U.S. Homicides.” American
Sociological Review 48(4): 560-568.

Rajman, Martin. 2007. Speech and language engineering. 1st ed. Lausanne  ;Boca Raton:
EPFL Press ;;Distributed by CRC Press.

158

VII. BIBLIOGRAPHY

“SQLAlchemy - The Database Toolkit for Python.” http://www.sqlalchemy.org/ (Accessed
November 17, 2010).

“SVM-perf: Support Vector Machine for Multivariate Performance Measures.”
http://www.cs.cornell.edu/People/tj/svm_light/svm_perf.html (Accessed April 25,
2010).

Saeed, John. 2009. Semantics. 3rd ed. Malden Mass.: Wiley-Blackwell.

Sampson, Geoffrey. 2003. “The Oxford Handbook of Computational Linguistics.” In , p.
333-336. http://llc.oxfordjournals.org.

Schmolze, James G, Bolt Beranek, and Newman Inc. 1985. “An overview of the KL-ONE
knowledge representation system.” COGNITIVE SCIENCE 9: 171--216.

Schrodt, Philip A. 2009. “TABARI. Textual Analysis by Augmented Replacement
Instructions Version 0.7.” 9024.
http://web.ku.edu/keds/tabari.dir/tabari.manual.0.7.3b3.pdf (Accessed July 23,
2011).

Schrodt, Philip A. 2006. “Twenty Years of the Kansas Event Data System Project.” The
Political Methodist 14(1): 2-8.

Schrodt, Philip A., and Deborah J. Gerner. Analyzing International Event Data: A
Handbook of Computer-Based Techniques.
http://eventdata.psu.edu/papers.dir/AIED.Preface.pdf.

Sebastiani, Fabrizio. 2002. “Machine Learning in Automated Text Categorization.” ACM
COMPUTING SURVEYS 34: 1--47.

Shapiro, Gilbert, Timothy Tackett, Philip Dawson, and John Markoff. 1998. Revolutionary
demands: a content analysis of the Cahiers de doléances of 1789. Stanford
University Press.

Smadja, Frank. 1993. “Retrieving collocations from text: Xtract.” Computational
linguistics 19: 143-177.

Sowa, John. 2000. Knowledge representation : logical, philosophical, and computational
foundations. Pacific Grove: Brooks/Cole.

Stone, Philip. 2001. “Note Introducing Server Version of General Inquirer -- from inquirer
blog.” http://www.wjh.harvard.edu/~inquirer/server_blognote.html (Accessed
November 21, 2010).

Szabo, Gabor, and Bernardo A. Huberman. 2010. “Predicting the popularity of online
content.” Communications of the ACM 53(8): 80.

Titscher, Stefan, Bryan Jenner, and Michael Meyer. Methods of text and discourse analysis.

159

VII. BIBLIOGRAPHY

Turmo, Jordi, Alicia Ageno, and Neus Català. 2006. “Adaptive information extraction.”
ACM Comput. Surv. 38(2): 4.

Violi, Patrizia. 2001. Meaning and experience. Indiana University Press.

Weida, Robert. 1991. Knowledge Representation and Reasoning with Definitional
Taxonomies. Department of Computer Science Columbia University. Technical
report. http://www.google.ch/url?
sa=t&source=web&cd=4&sqi=2&ved=0CCkQFjAD&url=http%3A%2F
%2Fwww.cs.columbia.edu%2F~library%2FTR-repository%2Freports%2Freports-
1991%2Fcucs-047-91.ps.gz&rct=j&q=%22terminological%20reasoner
%22%20winograd&ei=MhfcTKzhCuKL4gbXycTKCA&usg=AFQjCNHZzTal4so
YucsfIrRb95mwtanihA&sig2=pwG2e_s1Q72wDEkCg3auHA&cad=rja (Accessed
November 11, 2010).

West, Mark D. 2001. Theory, method, and practice in computer content analysis.
Greenwood Publishing Group.

De Wever, B., T. Schellens, M. Valcke, and H. Van Keer. 2006. “Content analysis schemes
to analyze transcripts of online asynchronous discussion groups: a review.”
Comput. Educ. 46(1): 6–28.

White, Marilyn Domas, and Emily E. Marsh. 2006. “Content Analysis: A Flexible
Methodology.” Library Trends 55(1): 22-45.

Wierzbicka, Anna. 1996. Semantics : primes and universals. Oxford [England] ;;New York:
Oxford University Press.

Williams, Geoffrey. 2003. “Les collocations et l’école contextualiste britannique.” In Les
Collocations: analyse et traitement, eds. F. Grossmann and A. Tutin. Amsterdam:
De Werelt, p. 33-44.

Wittgenstein, Ludwig. 1998. Filosofická zkoumání. 2nd ed. Praha: Filosofia.

Yarowsky, David. 1992. “Word-sense disambiguation using statistical models of Roget’s
categories trained on large corpora.” COLING 14: 454-460.

160

VII. BIBLIOGRAPHY

161

VIII. APPENDICES

VIII. APPENDICES

VIII.1 ILLUSTRATION INDEX

Illustration 1: Tree of Porphyry.. 8
Illustration 2: Visualisation of the High-Energy physics taxonomy written in the USL.
Some components are not attached to any word (like 0003w) and the FCA discovered two
places where the entries miss connections (the empty boxes)..11
Illustration 3: A-box visually, using the input from the T-box, notation of existential graphs
by C.S. Peirce... 13
Illustration 4: The change of the INTELLECTUAL field's structure in German at around
1200 AD (left) and at around 1300 AD (right). Originally appeared in Strapparava, p. 15. 17
Illustration 5: Example document analysis, showing details of how the document was
parsed - with the absolute frequencies of tokens and more details (down the page; not
visible).. 25
Illustration 6: An example output from the General Inquirer processing a news from Burma
polls. Categories are in the left column, matched words in the right one.............................58
Illustration 7: Correlation between computer and hand coded data, in the case of first
column, the same scheme (WEIS) was used. In the case of the second column, the different
coding schemes are used and therefore there is an additional level of discrepancy.............62
Illustration 8: List of types that TABARI recognizes... 64
Illustration 9: An example coding of the diplomatic communication in the 'Kingdom of the
Ring', TABARI allows for very quick edits and recoding of the whole corpus...................67
Illustration 10: Example of the aggregation of the categorical scoring scheme (WEIS) into
the numerical values coding Scheme (Goldstein).. 68
Illustration 11: Comparison of KEDS and TABARI system on a large corpus of Levant
Data...69
Illustration 12: Dictionary reports for the distribution of categories....................................74
Illustration 13: The interface to Yoshikoder with the visible dictionary tree and the
highlighted matches and the concordance report at the bottom...75
Illustration 14: Unified Frequency Report for two documents...75
Illustration 15: Graphical view of the dictionary inside Yoshikoder and also the xml
structure of the data.. 76
Illustration 16: General overview of GATE, the red area indicates the area of components
which can be currently used by by SEMAN.. 80
Illustration 17: Components of the ANNIE subsystem and the flow of a document...........81
Illustration 18: Database schema of the document storage; built around tokens and their
translation... 90

162

VIII. APPENDICES

Illustration 19: Comparison of p-values for measures from the significance of association
group, using Fisher as a reference point (labels on the axes refer to −log10 pv). Source:
Evert, 2005, p. 111. G2 is the log-likelihood and “t” is the Students t-test. These graphs
show that X2 statistic favorized rare events, while the t-test gave undesired advantage to
frequent events. The other two tests results were much closer to the Fisher's p-value......104
Illustration 20: The dictionary editing session, with some special functions activated
(autocompletion of semantic codes)... 107
Illustration 21: Another set of commands of the editor, on the right side are visible the
maintenance routines for more complex operations... 108
Illustration 22: Example debugging session of the document analysis - on the right side a
few processing steps are selected and executed as one. The window at the bottom shows
log messages as the analysis proceeds..109
Illustration 23: Example document analysis, showing which tokens were found - with their
absolute frequencies..110
Illustration 24: Risk Ratio is the statistical method implemented in Yoshikoder. It tests
whether the difference between two documents are significant.111
Illustration 25: Percentage of 'yet-unseen matches' discovered as we continue processing a
corpus of 20.000 documents... 124
Illustration 26: Comparison of the classification results that were based on different
datasets..136
Illustration 27: F-measure for the document classification of 20 Newsgroups..................137
Illustration 28: Aggregate view on the document classification for 20 Newsgroups corpus. . .
138
Illustration 29: Results from the processing of the average corpus using the default null
hypothesis... 145
Illustration 30: Random corpus looking only at the words, ignoring the semantic relations.. .
145
Illustration 31: Precision and recall for the Reuters corpus, in the search for significant
pairs based on the expected values computed from the source corpus...............................146
Illustration 32: Precision and recall statistic if we look only at words (ie. ignoring the
semantic concept relations altogether). The recall is considerably lower because words
make only a small portion of all significant pairs...147
Illustration 33: Number of pairs retrieved for inspection based on parameter f (this run does
not represent the averaged f-measure values, but is representative for the ratio of retrieved
pairs and the general trend of the f-measure curve)..148
Illustration 34: Plotting the ratio of inspected pairs against the f-measure........................149

VIII.2 BIBLIOGRAPHY ON SEMAN
1. Smetáček, V. (2008). Systém SEMAN. In Elektronické studijní texty. Dostupné z:
<http://texty.jinonice.cuni.cz>. [cit. 2009-03-12]

163

VIII. APPENDICES

2. Smetáček, V. (1988). Uživatelské chody báze BALEX. Metodický zpravodaj
československé soustavy VTEI, 1988, roč. 16, č. 3, s. 3-52.

3. Uličný, O. (1988). Rozvoj metody SEMAN v rámci výzkumných úkolů VTEI. Knižnice
a vedecké informácie, 1988, roč. 20, s. 59-61.

4. Smetáček, V. (1987). Tezaurus sémů. Automatizovaná báze lexikálních jednotek
BALEX : aktuality a materiály, 1987, č. 7, nestr.

5. Smetáček, V., Mikesková, M. (1987). O báze BALEX a metóde SEMAN. Knižnice a
vedecké informácie, 1987, roč. 19, č. 5, s. 230-232.

6. Uličný, O. (1987). Automatizovaná tvorba tezauru s využitím metody SEMAN.
Československá informatika, 1987, roč. 29, č. 1, s. 16.

7. Smetáček, V. (1986?). Obsahová analýza literárního textu s pomocí sémantického kódu :
(první verze). 1986?, 60 s.+příl. Strojopis.

8. Smetáček, V., Kubešová, M. (1986). Budování a možnosti využití báze lexikálních
jednotek BALEX. In Lingvistické metody a automatizované informační systémy. Praha :
Dům techniky ČSVTS, 1986, s. 96-103.

9. Smetáček, V., Nyklová, A., Uličný, O. (1986). Automatizovaná tvorba tezaurů. In
Lingvistické metody a automatizované informační systémy. Praha : Dům techniky ČSVTS,
1986, s. 103-109.

10. Nyklová, A. (1986). Automatické vytváření slovníku typu tezauru ze souboru
lexikálních jednotek (BALEX-ATEZ) : Provozní dokumentace. Automatizovaná báze
lexikálních jednotek BALEX : aktuality a materiály, 1986, č. 1, 49 s.+příl.

11. Jonák, Z. (1986). Systém lingvistického zabezpečení metodou SÉMAN. In Lingvistické
metody a automatizované informační systémy. Praha : Dům techniky ČSVTS, 1986, s. 118-
125.

12. Smetáček, V. (1985b). Prvky umělé inteligence v lingvistickém zabezpečení bází dat. In
Informatika 90. let. Praha : Dům techniky ČSVTS, 1985, s. 45-50.

13. Smetáček, V. (1985a). Experimentální ověření vlivu hodnot jednotlivých proměnných
na výsledky procedury ATEZ. Automatizovaná báze lexikálních jednotek BALEX :
aktuality a materiály, 1985, č. 9, s. 2-16.

14. Uličný, O., Webr, J. (1985). K problematice automatizované tvorby a aktualizace
tezauru. Automatizovaná báze lexikálních jednotek BALEX : aktuality a materiály, 1985, č.
6, s. 20-37.

15. Čermáková, A., Smetáček, V., Uličný, O. (1985). Automatické vytváření slovníku typu
tezauru ze souboru lexikálních jednotek nebo znaků klasifikací (BALEX-ATEZ) : Návrh
technologie. Automatizovaná báze lexikálních jednotek BALEX : aktuality a materiály,
1985, č. 7, 18 s.+příl.

16. Smetáček, V. (1984b). Automatizovaná tvorba tezauru s pomocí metody sémantického
analyzátoru. In Selekčné jazyky '84 : (zborník zo seminára konaného v dňoch 20.-21. júna
1984 v Bratislave). Bratislava : Slovenská technická knižnica, 1984, s. 60-65.

17. Smetáček, V. (1984a). Sémantický analyzátor : (experimentální ověřování). Olomouc :
Univerzita Palackého, 1984. 296 s.

164

VIII. APPENDICES

18. Uličný, O., Webr, J. (1984). K problematice automatizované tvorby a aktualizace
tezauru. Československá informatika, 1984, roč. 28, č. 6, s. 161-167.

19. Smetáček, V., Webr, J. (1983). Možnost automatického zjišťování stupně obsahové
příbuznosti lexikálních jednotek přirozeného selekčního jazyka. Československá
informatika, 1983, roč. 25, č. 7/8, s. 197-204.

20. Smetáček, V. (1982b). Sémantický analyzátor : základní pojmy a prvky (úvod do
problematiky). Olomouc : Univerzita Palackého, 1982. 189 s.

21. Uličný, O. (1982). Struktura sémantického analyzátoru jako prostředku sémantické
analýzy textu. In Využití lingvistických přístupů v informatice. Městský seminář, Praha,
10.-11. června 1982. Praha : Dům techniky ČSVTS, 1982, s. 81-87.

22. Smetáček, V. (1982a). SEMAN - experimentální automatizovaný nástroj obsahové
analýzy textů v přirozeném jazyce. In Využití lingvistických přístupů v informatice.
Městský seminář, Praha, 10.-11. června 1982. Praha : Dům techniky ČSVTS, 1982, s. 55-
63.

23. Jonák, Z. (1982). Experimentální ověření sémantického analyzátoru při automatickém
indexování. In Využití lingvistických přístupů v informatice. Městský seminář, Praha, 10.-
11. června 1982. Praha : Dům techniky ČSVTS, 1982, s. 64-72.

VIII.3 INSTALLATION INSTRUCTIONS

SEMAN is released as open-source software under the BSD license. The installation
instructions and documentation for SEMAN is available at the following address:
http://code.google.com/p/newseman/

The source code repository contains a branch marked “thesis” with the code and data that
were used for writing the thesis.

165

http://code.google.com/p/newseman/

VIII. APPENDICES

166

VIII. APPENDICES

167

	I. Introduction
	I.1 Motivation
	I.2 Research questions
	I.3 Contributions
	I.4 Thesis outline

	II. Semantics and Knowledge representation
	II.1 USL and Formal Concept Analysis
	II.2 Existential-conjunctive logic
	II.3 Semantics
	II.3.1 What is meaning?
	II.3.2 Semantic fields
	II.3.3 Semantic primes and universals

	II.4 USL and Lexical semantics
	II.4.1 Words as lexical items
	II.4.2 But what is a word? And how do we define its meaning?
	II.4.3 Words and grammatical categories
	II.4.4 Problematic areas of the thesaurus
	II.4.4.1 Homonyms
	II.4.4.2 Polysemy
	II.4.4.3 Synonymy
	II.4.4.4 Antonymy
	II.4.4.5 Hyponymy/hypernymy
	II.4.4.6 Meronymy
	II.4.4.7 Difference between names and types

	II.4.5 Word sense disambiguation

	II.5 Concluding remarks on USL

	III. Content analysis
	III.1 Main types of content analysis
	III.2 The components of content analysis
	III.2.1 Coding and categories
	III.2.1.1 Reliability and validity
	Validity

	III.2.2 Data
	Sampling units
	Recording units
	Units of analysis
	Contextual units

	IV. Software for content analysis
	IV.1 General inquirer
	IV.1.1 Disambiguation rules
	IV.1.2 Dictionary

	IV.2 TABARI
	IV.2.1 What TABARI does
	IV.2.2 How TABARI works
	1. Word classification
	2. Processing local grammatical structures
	3. Event coding
	4. Information output

	IV.2.3 Pattern matching
	IV.2.4 Dictionary
	IV.2.5 Concluding remarks

	IV.3 Yoshikoder
	IV.3.1 What Yoshikoder does
	IV.3.2 How Yoshikoder works
	IV.3.3 Concluding remarks

	IV.4 SEMAN
	IV.4.1 NLP pre-processing
	IV.4.2 Translation into semantic codes
	IV.4.3 Storage and analysis
	IV.4.4 Search for statistically significant cooccurences
	IV.4.4.1 Types of cooccurences
	IV.4.4.2 Extracting cooccurences from text
	IV.4.4.3 Association measures

	IV.4.5 Dictionary creation and maintenance
	IV.4.6 SEMAN GUI and scripting control

	IV.5 Comparison

	V. Evaluation of SEMAN
	V.1 The pattern matching mechanism
	V.1.1 BibClassify
	V.1.2 Comparison

	V.2 Semantic ambiguity
	V.2.1 Feature selection and scaling
	V.2.2 The comparison
	V.2.2.1 HEP corpus
	V.2.2.2 The 20 newsgroups corpus

	V.2.3 Search for significant combinations
	V.2.3.1 Results
	V.2.3.2 Discussion

	VI. Conclusions
	VII. Bibliography
	VIII. Appendices
	VIII.1 Illustration Index
	VIII.2 Bibliography on SEMAN
	VIII.3 Installation instructions

