Title: Study of H₃⁺ recombination in selected quantum states **Author**: Jozef Varju **Department**: Department of Surface and Plasma Science **Supervisor of the doctoral thesis**: Prof. RNDr. Juraj Glosík, DrSc., Department of Surface and Plasma Science ## **Abstract**: In this work measurement of the effective recombination rate coefficient of H_3^+ dominated and recombination governed afterglow plasma at 77 K and 145 K are presented. Population of para- H_3^+ in the studied plasma has been varied by using para enriched H_2 as a precursor along with normal H_2 . Time resolved NIR-CRDS was used to in-situ measure the number density evolution of the two lowest rotational states of H_3^+ . Measurements at different para to ortho H_3^+ ratios, at otherwise identical conditions, allowed for extrapolation of the effective recombination rate coefficient of pure para- H_3^+ and ortho- H_3^+ . From measured dependences on the buffer gas densities the values of the recombination rate coefficients for the binary and ternary channel are determined of para- H_3^+ and ortho- H_3^+ . **Keyword**s: recombination, spectroscopy, H_3^+ , para H_2