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SUMMARY 
 

The presented Ph.D. thesis contains an introduction and four chapters concerning 
herbivory of Cirsium arvense in its native and invasive range. The chapters include two peer-
reviewed papers and two manuscripts prepared for submission. The first chapter focuses on 
the effect of insect herbivory on plant growth and reproduction in field conditions. C. arvense 
in four populations in the Czech Republic were measured in 2005 and 2006 (chapter 1). 
Observational studies in C. arvense were done in the Czech Republic (Europe) and Nebraska 
(USA), native and invasive ranges, in 2006 and 2007. I tested whether plants suffer less 
damage than plants from populations in the native range, as the enemy release hypothesis 
(Keane, Crawley 2002) states (chapter 2). Afterwards I tested for direct and indirect effects of 
non-overlapping herbivore insects on plant growth and reproduction (chapter 3) and 
compared this effect between plants from the native (Spain and the Czech Republic, Europe) 
and invasive range (Nebraska and Illinois, North America). In a common garden experiment 
herbivore insects were added alone and in combinations to C. arvense which were planted in 
the Czech Republic in March 2008 and grew from seeds for two growing seasons (chapter 3). 
One underground insect (Cleonis pigra) and 3 aboveground insect species were used (Cassida 
rubiginosa, Rhinocyllus conicus, Urophora cardui). The last chapter is focused on C. arvense 
growth from the native and invasive range in experimental conditions, the evolution of 
increased competitive ability (EICA) hypothesis was tested.  
The first chapter demonstrates that C. arvense experiences high levels of herbivory, with stem 
damage, flower herbivory and folivory having the strongest effects on plant performance. The 
evidence presented in the second paper confirms that in its native range, C. arvense 
experiences more plant damage and grows less than in the invasive range. Results from the 
third chapter show plants with herbivore addition grew less than plants without herbivores. 
The effect of combined insect was bigger than the single additions, suggesting a combination 
of more insects would be a better solution for biological control of C. arvense. From the 
results of the experimental study presented in the fourth chapter we sum up that plants from 
the invasive range grew more than the ones from the native range. 
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SOUHRN 
 
Vliv Herbivorního hmyzu na růst a reprodukci Cirsium arvense v domácím a invazním areálu 
 
Předkládaná disertační práce se skládá z obecného úvodu a čtyř kapitol, které spojuje téma 
vlivu herbivorního hmyzu na Cirsium arvense v domácím a invazním areálu. Kapitoly se 
skládají ze dvou publikací a dvou rukopisů připravených pro tisk. První kapitola se zaměřuje 
na vliv herbivorie hmyzu na růst a reprodukci rostlin v terenních podmínkách. Ve čtyřech 
populacích v České republice byl měřen růst a míra poškození C. arvense v letech 2005 a 
2006 (1.kapitola). Studie C. arvense byly provedeny v České republice (Evropa) a Nebrasce 
(USA), v domácím a invazním areálu rostliny, v letech 2006 a 2007, čim jsem testovala, zda 
rostliny v invazním areálu rostou více a jsou poškozeny méně než rostliny v populacích v 
areálu domácím, jak prohlašuje enemy release hypothesis states (Keane, Crawley 2002) (2. 
kapitola). Následně jsem experimentálně testovala přímé a nepřímé vlivy nepřekrývajících se 
herbivorních druhů hmyzu na růst a reprodukci rostlin (3. kapitola) - porovnala jsem tento 
vliv mezi rostlinami v domácím (Španělsko a Česká republika, Evropa) a invazním areálu 
(Nebraska a Illinois, Severní Amerika). V zahradním experimentu v letech 2008-2009 byli 
přidáni zástupci herbivorního hmyzu individuálně a v kombinaci s rostlinami C. arvense, 
které byly vysázeny ze semen v České republice v březnu 2008. Byl použit jeden druh 
podzemního hmyzu (Cleonis pigra) a 3 druhy nadzemního hmyzu (Cassida rubiginosa, 
Rhinocyllus conicus a Urophora cardui). Poslední, čtvrtá kapitola je zaměřena na růst a 
reprodukci C. arvense v domácím a invazním areálu v experimentálních podmínkách, byla 
testovata hypotéza EICA (evolution of increased competitive ability). 
 Výsledky první kapitoly ukazují, že C. arvense má vysokou úroveň herbivorie, a 
poškození stonků, herbivorie úboru a folivorie mají nejsilnější vliv na růst rostliny. Důkazy 
předložené v druhé kapitole potvrzují, že v domácím areálu je druh C. arvense poškozen více 
a je menší, než v invazním areálu. Třetí kapitola ukazuje, že rostliny s přidaným herbivorním 
hmyzem rostly méně, než rostliny bez hmyzu. Pokud byli zástupci hmyzu přidáni do pokusu 
společně, měli na rostlinu větší vliv, než když byly jednotlivé druhy přidávány zvlášť. Tím 
poukazujeme na to, že kombinace více druhů herbivorního hmyzu, by byla pro kontrolu 
C.arvense lepší. Z výsledků experimentální studie prezentované ve čtvrté kapitole shrnujeme, 
že rostliny z invazního areálu rostly více, než rostliny z domácího areálu.  
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GENERAL INTRODUCTION 
 
Understanding the impact of natural enemies on plant performance is one of the key 

issues when attempting to limit spread of invasive species. The aim of this Ph.D. thesis is to 
compare Cirsium arvense insect damage in its native and invasive range to uncover the effect 
of individual or combined insects on this weed. This work remains somewhere between 
insect-plant interactions, weed science, invasion biology and biological control. 

 

Insect - plant interactions 
More than 400 thousand phytophagous insect species live on 300 thousand vascular 

plant species (Schoonhoven et al. 2005). Polyphagous insects (generalist) feed on a wide 
range of plants and oligophagous or monophagous (specialists) feed on plants from the same 
family. Different groups of insects feed on different plant parts and are thus referred to as 
folivores, leaf-miners, gall-formers, stem-borers, root herbivores, flower-seed herbivores and 
fructivors. 

Knowledge of insect-plant interactions goes far beyond the scientific interest because 
insect herbivory is an everlasting problem in agricultural production (Schoonhoven at al. 
1991). The natural enemies of plants are also used as biocontrol agents to control spread of 
invasive species. Proper implementation of biological control, however, requires 
understanding of the effect of the natural enemies on plant performance as well as evaluation 
of the dangers of the escape of these natural enemies on other species (Howarth 1991, 
Simberloff and Stiling, 1996, Pemberton 2000, Louda 2002, 2003, Van Driesche et al. 2010). 

 

Plant invasions from Europe to North America 
With the European colonizations of North America in the 17th century many plants 

were introduced to the new world (Elton 2000). Some plant species got naturalized, and well 
established in crop fields and natural systems from North America. As the tens rule describes 
approximately ten percent of species pass through each transition from being imported to 
becoming casual to becoming established, and finally becoming a weed (Williamson, Brown 
1986). Nowadays there are around 1500 invasive plant species in North America (web 1) and 
biological invasions are in second place as threat to biodiversity  after direct habitat 
transformation (Soulé 1990) directly affecting agriculture and native biodiversity. 
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Herbivore insects as biological control for invasive plants 
Biological control has several advantages over other types of weed control, sometimes 

offering the only solution (in protected areas) against alien plant invasions (Schoonhoven et 
al. 2005) and can be used in natural ecosystems as in crop fields. 

Biological control of weeds has been used since 1881 to control invasive species 
(Delfosse 2000), and it is commonly used in North America, Australia, South Africa, Canada 
and New Zealand (McFadyen 1998).  

It has been successful in cases such as Opuntia stricta management in Australia (Dodd 
1940), and it is continuing to be successful in many examples (Caltagirone, 1981, McFadyden 
1998) but the failure cases (cases when the control agents did not control the invasive weed 
and moreover it got invasive by itself) tells us to be careful (Louda 2002). Nevertheless, from 
1200 cases of biological control worldwide, around 200 have proved completely successful 
(Bellows 2001). 

 

Herbivory common garden experiments vs. herbivory observational 
studies  

Observational studies tell us the insect-plant natural composition in a certain 
population. It has the advantage of giving us the real interaction between plants and insects, 
but abiotic conditions are not very well controlled. These type of studies tell us whether plants 
in the invasive range escaped the insects (enemy release hypothesis), but do not tell us 
whether the difference in the herbivory damage is because the lack of the insects or because 
of the abiotic conditions. Because this type of studies are done in the field, only the effect of 
all insects toghether can be studied, not being able to separate the individual effect of each 
species. 

On the other side, in common garden experiments, we can choose which abiotic 
conditions will the plant-insect system have. We can choose the type of substrate where the 
plants will grow (level of nutrients), the watering, we can control light by using various types 
of meshes on the plant, in greenhouse experiments the temperature can be adjusted. 
Nevertheless, the results of such experiments will be constrained by the conditions we choose. 
These experiments will test the EICA hypothesis, or how the plants perform without taking 
into account the abiotic conditions, and let us manipulate with various combinations of insect 
species. 



Intro 

 

6 

  

Cirsium arvense as an invasive plant 
Cirsium arvense (L.) Scop (also Serratula setosa Willd., Cirsium setosum (Willd.) 

Bess., C. setosum (Willd.) Bieb., Vreea setosa (Willd.) Sojak) is the third most important 
weed in Europe (Schroeder et al. 1993), it is native to the South of Europe and is an 
archeophyte in many parts of Europe. It has however, been accidentally introduced to the new 
world around 1600 in North America and 130 years ago in New Zealand. It was believed to 
have arrived in North America via French settlements in the early 17th century (Dewey 1901) 
and the weed was recognized as a troublesome weed as early as 1795 when Vermont 
established legislation for its control (Moore 1975). Since then it got naturalized in many 
states of USA, Canada and New Zealand, becoming invasive in some, and being a focus for 
biological control in the last years.  

 

 
States in USA where Cirsium arvense has an invasive status (web 1) 

 

Use of Cirsium arvense as a tool for studying herbivory on invasive 
plants 

Cirsium arvense hosts a wide range of herbivores including leaf-feeding, root crown 
and stem-boring, stem gall-forming and flower/seed feeding insects. One of the main insects 
causing leaf damage in C. arvense is Cassida rubiginosa (Mueller, 1776) (Coleoptera: 
Chrysomelidae). The main insect causing stem-boring is Apion onopordi (Kirby, W., 1808) 
(Coleoptera: Apionidae) (Friedli, Bacher 2001), Urophora cardui (Linnaeus, 1758) (Diptera: 
Tephritidae) causes stem galls, insects causing seed-head damage are Larinus planus 
(Fabricius, 1792) (Coleoptera: Curculionidae) and Rhinocyllus conicus. Cleonis pigra is a 
root-feeder. These species can be potentially used as a way of controlling their host plant, 
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even though there is a need to study the plant-insect system for making sure we will not 
introduce one more invasive species when trying to control the plant invasive species. 

 

 
Distribution of Cirsium arvense in the northern hemisphere (Hulte and Fries, 1986). Reproduced with 
permission of Arne Anderberg. 

   

Outline of the thesis 
This thesis presents results of the research on effect of herbivore insects on Cirsium 

arvense in its native and invasive range. It consists of four chapters representing 4 
independent manuscripts, from which two of them are already accepted for publication. The 
main goal of the thesis was to study an invasive plant in more detail, to uncover patterns of 
herbivore behavior on C. arvense (as one of many invasive plants in the new world) to be able 
to contribute with our new findings to improve the weed management in its invasive ranges in 
a more sustainable way. 

Insect herbivory on plants may be approached by observational or experimental 
studies. The first gives us the option of choosing different habitats where a plant grows, so a 
wide range of abiotic conditions can be studied, but this can not be completely controlled. It 
tells us how much is a particular population or plant naturally damaged by a variety of 
herbivores. Observational studies had been addressed in the first chapter, in which Cirsium 
arvense natural occurring plant damage in its native range was studied. The results show 
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folivory, external stem damage and leaf necrosis were most commonly found damages in C. 
arvense were and their occurrence varied between populations and years. Different plant 
damage types tended to be significantly associated with each other. It was therefore difficult 
to separate the effects of individual damage types and to study their interactions. C. arvense 
experiences high levels of herbivory, with stem damage, flower herbivory and folivory having 
the strongest effects on plant performance. Experimental studies need to confirm the results 
from chapter 1, which was performed in chapters 3 and 4. 

 
The view from one Czech site when doing observational studies (Výžerky, drawing by Zita Červenková, 2006) 
 

In the second chapter I compare natural occurring plant damages in plants in populations in 
the native and in the invasive range. I used data from Nebraska and the Czech Republic. The 
results show that plants in the invasive range possess less plant damage than in the native 
range and that C. arvense in the invasive range was higher than in the native range. Over all 
larger plants tend to be more damaged than smaller plants.  

In the third chapter I compare C. arvense plant growth and insect damage from plants 
growing in the invasive and native range. I use representatives of 4 different insect guilds 
including flower head herbivores, folivores, gall-formers and root herbivores. The study 
showed that all the four tested insect species can reduce growth of C. arvense when added 
separately. Effect of the insects was significant only in some years and for some response 
variables. Surprisingly, the leaf feeding C. rubiginosa affected mainly flower head biomass 
and number of flower heads but had no effect on plant height and aboveground biomass. In 
contrast, the flower head feeding R. conicus had effect mainly on plant height and 
aboveground biomass. The gall forming U. cardui affected all the size measures. The root 
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boring C. pigra significantly affected only plant height. All this indicates that the different 
insect species have a differential effect on various measures of plant performance. In addition, 
the different insects had effects in different years, in different substrates and for plants from 
different ranges.The effect of multiple insects on a single plant was generally stronger than 
expected from their simple addition. Then, a combination of multiple herbivores could be a 
better approach for controlling the plant than adding a single insect species as the insects 
seem to be largely complementary. 

In the fourth chapter I move from studying C. arvense in native range natural 
populations to an experimental study with plants from the native and also from the invasive 
range. We do not focus on herbivory in this chapter, but compare plant growth from the native 
and invasive range in two types of substrate. The EICA hypothesis says plants in the invasive 
range grow more cause of being released from natural enemies (Blossey, Notzold 1995), and 
we test this hypothesis in the fourth chapter. The results confirm the EICA hypothesis, by 
finding plants from the invasive range grew more than plants from the native range. And we 
conclude that the differences in growth of plants between the native and the invasive range are 
genetically based. 

 

Conclusion 
The two main questions in my thesis proposal were i) which are the individual and combined 
effects of key insect herbivores to C. arvense plant and population growth in the native and 
invasive ranges and ii) how abiotic conditions as substrate nutrients can affect the interaction 
between the key insect herbivores in C. arvense in its native and invasive range.  
I have answered to these main questions by a) performing plant damage and plant growth 
observational studies in both the native and invasive ranges (chapters 1 and 2) b) doing a 
factorial experiment, in which various types and combinations of insects herbivore that attack 
aboveground plant organs were added (chapter 3), c) performing a second experiment which 
approached the presence / absence of root herbivores alone and in combination with a set of 
aboveground insect herbivores(chapter 3), d) The third experiment compared the growth of 
plants from the native and invasive range grown from seeds under standard conditions(chapter 
4). From observational and experimental studies we suggest growth and damage patterns can 
vary also depending on the level of nutrients in the substrate where plants grow, with the 
effect of insects being bigger in the poor substrate type, and also growing less in the poor 
substrate type. 
I have found how certain insects affect C. arvense in both Europe and North America and in 
plants from those grown from both ranges in a controlled experiment in Europe. Because I 
found C. arvense experienced various plant damages and they tended to occur together in 
natural conditions in the native range (chapter 1), experimental studies were performed and by 
using insects alone and in combinations I wanted to answer whether the most effective 
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herbivore hypothesis or the complementary hypothesis is the most suitable for choosing 
control agents for C. arvense. The results indicate that plants suffer more with combinations 
of insects more than individual addition (chapter 3) which support the complementary 
hypothesis, and suggest a combination of more than one insect could be used in biological 
control in C. arvense. We should be aware plant invasions happen in natural conditions and 
therefore study insect-plant and plant growth in the field. My finding suggest invasive plants 
have been released of insect herbivores in the invasive range (chapter 2), and maybe because 
for this reason C. arvense in the and from the invasive range grow better than from the native 
range (chapters 2 and 4). 
I only studied one plant species, therefore the findings when testing the ERH, EICA, most 
effective herbivore and complementary hypothesis can be applied for C. arvense, but can not 
be applied for other plant species. Nevertheless, I suggest to weed science researchers to 
repeat the same way of approaching insect/s-invasive plant system I performed in my work so 
it becomes a rule for studies performed before biological control of weeds are carried out, 
therefore to help to avoid risks caused by non-target insect agents in the invasive range. 
Even though this thesis quite clearly shows the impact that various insects have on C. 
arvense, we appeal that we do not directly recommend to use insect herbivores for the control 
of this weed and invasive plant, and that further studies are needed also in finding a 
combination of biological control and other sustainable agriculture measures. 
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Summary

Understanding the effects of herbivores on weedy plant

performance under different habitat conditions may

provide useful information for limiting the spread of

these plant species in their native and invaded ranges. A

critical drawback to using herbivores to limit the spread

of weedy plant species is the limited knowledge regard-

ing the effects of different natural enemies on plant

performance under natural conditions and in different

habitat types. The aim of this study was to collect

information on the degree and types of damage caused

by natural enemies and their effects on the performance

of the weed species Cirsium arvense, under different

abiotic conditions in its native range in the Czech

Republic. Damage induced by different natural enemies

of C. arvense in four different populations in wet and

dry sites was studied. The most common types of

damage found in C. arvense were folivory (eaten

foliage), external stem damage and leaf necrosis, and

their occurrence varied strongly in space and time.

Different plant damage types tended to be significantly

associated with each other. It was therefore difficult to

separate the effects of individual damage types and to

study their interactions. Overall, the results indicate that

in its native range, C. arvense experiences high levels

of herbivory, with stem damage, flower herbivory and

folivory having the strongest effects on plant perfor-

mance. Experimental studies that would separate the

effect of single herbivores are, however, needed to

confirm this.

Keywords: creeping thistle, Canada thistle, herbivory,

noxious species, plant damage, water, plant growth.

ABELA-HOFBAUEROVÁ I, MÜNZBERGOVÁ Z & SKUHROVEC J (2011). The effect of different natural enemies on the

performance of Cirsium arvense in its native range. Weed Research.

Introduction

Understanding the effects of herbivores on weedy plant

performance under different habitat conditions can

provide useful information for limiting the spread of

these plant species in their native and invasive ranges

(e.g. Delfosse, 2000; Louda & O�Brien, 2002; Coombs

et al., 2004). Interactions between plants and their insect

herbivores have been the subject of many previous

studies (e.g. Rhoades, 1985; Price, 1991; Münzbergová,

2006). Most of these studies, however, only examined a

single insect species or a set of species causing the same

type of damage (e.g. Hatcher et al., 1995; Bacher &

Schwab, 2000; Friedli & Bacher, 2001). Only a few

studies have investigated how damage from multiple

insect species that typically occur in the field under

natural conditions can affect plant growth (e.g.

Hufbauer & Root, 2002).

When studying the effects of herbivores under natural

conditions, it is also important to evaluate the effect of
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environmental conditions on this interaction. Two

different hypotheses have been proposed to explain the

effect of site conditions on plant responses to herbivores.

The Vigour Hypothesis claims that plants from the most

vigorous populations, the most vigorous plants within a

population and ⁄or the most vigorously growing parts

within a plant, suffer higher herbivore damage (Price,

1991). This corresponds to the hypothesis of Cebrián

and Duarte (1994), which asserts that herbivory pressure

increases with increasing plant growth rate. The alter-

native Plant Stress Hypothesis predicts that more

stressed plants will suffer greater damage from herbi-

vores (White, 1974; Rhoades, 1985). These two hypoth-

eses should not be considered mutually exclusive, and

both mechanisms can apply in any single case (Price,

1991). Waring and Cobb (1992) suggested that obser-

vational studies usually support the Plant Stress

Hypothesis, while experimental studies usually support

the Vigour Hypothesis, but exceptions to this pattern

exist (e.g. Cobb et al., 1997).

In this study, we investigated Cirsium arvense (L.)

Scop. (creeping thistle), which is one of the most

problematic weeds in its invasive range in North

America (Moore, 1975) and Australia (Rahman, 1982).

This species is also an important weed in many parts of

Europe, where it is considered to be native (Kasahara,

1982). Cirsium arvense has been the subject of many

studies that have examined the diversity of phytopha-

gous insects (e.g. Story et al., 1985) and the effect of

insects on its performance (e.g. Ang et al., 1994; Friedli

& Bacher, 2001) in its invasive range. In contrast to the

large number of studies performed in the invasive range,

comparatively few studies have examined the effect of

insects on the species in its native range. Most of these

studies are experimental (e.g. Bacher & Schwab, 2000;

Friedli & Bacher, 2001; Skuhrovec et al., 2008), and

the field still lacks observational studies on the effect of

insects on plant growth under natural conditions in

different habitat types.

The specific aim of this study was to collect

information on the degree and types of damage present

on C. arvense under different abiotic conditions and in

different years within its native range in the Czech

Republic. We also assessed the effects of the different

damage types on plant performance in the field within a

single growing season. Specifically, we asked the follow-

ing questions: (i) what types of damage from different

natural enemies can be found on C. arvense? (ii) what

types of damage tend to co-occur on a single plant? (iii)

does the occurrence of different damage types caused by

different natural enemies depend on abiotic conditions

and plant size? (iv) what are the effects of different types

of damage on plant growth? and (v) how do the effects

vary between years and habitat types?

Materials and methods

Study system

The studied species was Cirsium arvense, a plant that is

an herbaceous, perennial member of the Asteraceae

family, with erect stems 0.5–1.0 m tall, prickly leaves

and an extensive creeping rootstock. It is dioecious

and reproduces by clonal growth. In Europe, it grows

in cultivated ground, waste places, pastures and open

woodlands (Tutin et al., 1976). Despite its North

American name, Canada thistle, it is native to Europe,

parts of North Africa and Asia, including Afghanistan,

Iran, Pakistan and China. This species was introduced

to North America and Australia from Europe in the

1600s as a contaminant of grain seeds being transported

by ships (Rahman, 1982).

Natural enemies of C. arvense

Eleven types of damage, caused by a wide range of

natural enemies, were previously reported in C. arvense,

including leaf cocoons, necrosis in leaves, folivory

(foliage eaten), leaf mines, stem galls, other external

stem damage, flowerhead necrosis, flowerhead herbiv-

ory, herbivory of the shoot top, as well as damage

caused by rust fungus and spittle-bugs (Table 1).

Leaf damage can lead to leaf necrosis, causing greater

leaf damage than that caused directly by the feeding

insects. Cocoons on leaves are built in C. arvense by a

wide range of spiders and lead to another type of leaf

damage and the reduction of the photosynthetically

active area of the leaf (I Abela Hofbauerová, pers. obs.).

Similar to other leaf damage, presence of leaf mines can

also later lead to leaf necrosis.

Study area

Two different localities in Central Bohemia, Czech

Republic, Europe, were selected in spring 2005. Locality

1 is situated by the village of Kytı́n (460 m a.s.l., N 49�
51¢ 06¢¢, E 14� 12¢ 37¢¢). Locality 2 is situated by the

village of Vyžerky (340 m a.s.l., N 49� 56¢ 56¢¢, E 14� 53¢
95¢¢). At each locality, two sites were selected on a

moisture gradient: one site was next to a stream and the

other was approximately 300 m farther away in a dryer

area. We refer to the two sites within a locality as the wet

and dry sites respectively.

Experimental design

At each site, 300 plants were selected in spring 2005.

Plants in each site were marked within 10 experimental

plots delineated with four sticks surrounded by a string.
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All of the plants in each plot were marked, and there

were from 13 to 70 plants per plot. The plants were

marked with a plastic, visible mark and one metal mark

in the ground, both carrying an identical plant number

(the latter could be used to identify the plant if the

plastic mark were lost). The size of the plots varied

between 1 and 2 m2, depending on plant density. Plots

within these sites were all situated within 100 m among

patches of C. arvense. Originally, we wanted to study the

same plants in both years. Because of extensive clonal

growth, however, the plants appeared at different places

in different years. Therefore, we had to move the labels

in the second spring and could not trace the plants in the

first year to the same plants in the second year. We were

thus not able to tell whether the plants studied 1 year

were the same clones as those observed the next year. In

all of the analyses, we considered the plants from the

different years to be independent of each other. In total,

10 plots · 2 sites (wet and dry) · 2 populations were

measured, with 13–70 plants per plot and two seasons of

measurements. In total, 3092 plants were studied over

the 2 years.

Measurements of plant performance and plant

damage

Each ramet was measured in early, mid and late season.

The early season measurements were made from the end

of April to May in 2005 and 2006. We measured traits

describing plant performance: basal stem diameter

(measured using a digital calliper), number of leaves

and length of the longest leaf.

The mid-season measurements were made in July

2005 and 2006. During this period, we measured plant

performance and plant damage caused by different

natural enemies. The data on plant performance

included the height of each ramet, the number of leaves

and the length of the longest leaf in the vegetative

ramets, the number of flowering branches per plant and

number of flowerheads in every third flowering branch

in the flowering ramets.

To quantify the damage, we recorded the presence of

cocoons and spittle-bug spit on each plant, approximate

% of plant folivory, approximate % of leaf mines,

number of stem galls per plant (and their length and

width) and flowerhead damage (estimated as the pro-

portion of flowerheads in the inflorescence with external

evidence of herbivory and necrosis). Separately, we

recorded herbivory of the upper parts of the inflores-

cence, i.e. one or more terminal flowers, referred to as

herbivory of the shoot top. We also recorded the

approximate % of rust per plant, % stem damage and

% necrosis in the leaves. Damage caused by spittle-bugs

and rust (Puccinia punctiformis) can be very easily

Table 1 Identity of insect herbivores likely to cause types of plant

damage to Cirsium arvense. There are 38 listed phytophagous

insects for C. arvense and 83 associated fungi in Europe [FITTER,

PEAT (1994) The Ecological Flora Database, Journal of Ecology

82, 415–425, http://www.ecoflora.co.uk]

Stem damage

Monophagous insects

Hemiptera: Aphididae Uroleucon cirsii (Linnaeus,

1758)

Diptera: Tephritidae Urophora cardui (Linnaeus,

1758)

Lepidoptera: Tortricidae Aethes cnicana (Westwood,

1854)

Epiblema scutulana (Denis,

Schiffermüller, 1775)

Oligophagous insects

Hemiptera: Aphididae Aphis fabae Scopoli 1763,

Brachycaudus cardui

(Linnaeus, 1758)

Dysaphis lappae (Koch, 1854)

Uroleucon aeneus (Hille Ris

Lambers, 1939)

Hemiptera: Cercopoidea Spittle-bugs

Coleoptera: Apionidae Ceratapion carduorum

(W. Kirby, 1808)

Coleoptera: Curculionidae Cleonus pigra (Scopoli, 1763)

Diptera: Agromyzidae Melanagromyza aeneoventris

(Fallén, 1823)

Leaf damage

Monophagous insects

Hemiptera: Aphididae Uroleucon cirsii (Linnaeus,

1758)

Lepidoptera: Crambidae Anania perlucidalis (Hübner,

1809)

Oligophagous insects

Hemiptera: Aphididae Capitophorus elaeagni

(Del Guercio, 1894)

Uroleucon aeneus (Hille Ris

Lambers, 1939)

Hemiptera: Cicadellidae Eupteryx notata (Curtis, 1837)

Coleoptera:

Chyrsomelidae

Cassida rubiginosa Müller,

1776

Coleoptera:

Curculionidae

Hadroplontus litura

(Fabricius, 1775)

Diptera: Agromyzidae Phytomyza autumnalis

Hering, 1957

Lepidoptera:

Coleophoridae

Coleophora paripennella

Zeller, 1838

Lepidoptera:

Depressariidae

Agonopterix arenella (Denis,

Schiffermüller, 1775)

Lepidoptera:

Gelechiidae

Scrobipalpa acuminatella

(Sircom, 1850)

Leaf mines

Diptera: Agromyzidae Phytomyza autumnalis

Hering, 1957 (pers. obs.)

Seed-head damage

Coleoptera:

Curculionidae

Larinus planus

(Fabricius, 1792)

Rhinocyllus conicus

(Frölich, 1792)

Rust

Fungi: Pucciniales Puccinia punctiformis

[(F. Strauss) Röhl., 1813]
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determined. All of the other damage types are described

without specific reference to the insect causing the

damage. The possible agents causing these different

damage types will be discussed in the following sections.

The end season, measurements were made in Sep-

tember 2005 and 2006. At this time, we measured the

basal stem diameter for the second time in the season.

We calculated growth, determined as changes in basal

stem diameter between spring and autumn.

Data analyses

Plant damage was quantified by estimating the propor-

tion of the plant that had suffered damage. Originally,

we assumed that we would find a gradient of plant

damage, from plants with little damage to plants with

severe damage. In our data set, however, plant damage

showed a bimodal distribution, as the plants were

generally not damaged at all or damaged. For the

analyses, percentages were therefore converted to the

presence ⁄ absence of plant damage.

To test whether the different plant damage types tend

to be associated with each other within single plants, we

performed a pairwise analysis using pivot tables and a

chi-square test, combining data from both years

together.

Factors determining the occurrence of individual

plant damage caused by natural enemies were studied

using logistic regression in S-PLUS (2000). Specifically,

we tested the effect of year, number of leaves per plant

in the spring (a measure of plant size), locality and site

conditions (wet, dry) for the two seasons on the

occurrence of individual natural enemies.

To study the effects of different natural enemies on

plant growth, we first performed a logistic regression in

which we used one type of damage, year, locality, abiotic

conditions (dry ⁄wet) and their interactions as indepen-

dent variables. Then, we used stepwise linear regression

with all plant damage types, year, locality, abiotic

conditions (dry ⁄wet) and their interactions as indepen-

dent variables. Significant plant damage types were

selected using both directional stepwise selections. We

also wanted to elucidate the effect of interactions

between single plant damage types. Occurrence of

different damage types was, however, so strongly corre-

lated that this test was not possible. Afterwards, we

tested the effects of the number of different damage

types per plant, year, locality, abiotic conditions

(dry ⁄wet) and their interactions as independent vari-

ables. The dependent variables in all cases were either

basal stem diameter in the autumn or the number of

flowerheads per plant. Basal stem diameter in the spring

was used as a covariate in both cases to take into

account plant size differences at the beginning of the

field season. For these analyses, we used a generalised

linear model with gamma distribution. Owing to over-

dispersion of the data, we used F test for the test

statistics.

For all statistical tests, we considered each measured

plant as an independent replicate. Strictly speaking,

however, we had only two replicates (localities) for

testing the effects of habitat conditions. This low

number of replicates prevented us from identifying any

patterns. Our two localities and 2 years therefore aided

us by covering all possible spatial and temporal varia-

tions in the area and were not considered as tested units.

Results

Basal stem diameter, number of leaves per plant and

number of flowerheads per plant were not significantly

different between plants from the two habitat types or

between years (P > 0.1 in all cases). This indicates that

the possible differences in plant–herbivore interactions

between habitat types and years are not because of

differences in plant size.

Occurrence of damage

The three most common plant damage types in C. ar-

vense were folivory (52% of plants), stem damage (36%)

and leaf necrosis (33%) (Table 2). These were followed

by mines, flowerhead herbivory, rust fungus, flowerhead

necrosis and herbivory of the shoot top. Stem galls,

cocoons on leaves and spittle-bug spit at the base of the

stem were rare (Table 2). In pairwise analyses of

co-occurrence, there were many significant correlations

between different pairs of damages (Table 3).

Factors determining occurrence of individual damage

types

Leaf necrosis observed in summer was more common in

plants with fewer leaves in the spring (Fig. 1A). On the

other hand, folivory, stem damage, herbivory of the

shoot top and flowerhead herbivory observed in summer

were more common in plants with more leaves in the

spring (Table 4, Fig. 1B,C). The occurrence of other

types of damage was independent of plant size in the

spring (Table 4). Leaf necrosis, folivory and stem

damage were more common in locality 1, and mines,

galls and flowerhead herbivory were more common in

locality 2 (Table 4).

Flowerhead herbivory was more common in wet

sites. The occurrence of other damage types was

independent of abiotic conditions at the site (Table 4).

The occurrence of all damage types, except for rust,

depended on the year. All of the damage types, except

4 I Abela-Hofbauerová et al.

� 2011 The Authors

Weed Research � 2011 European Weed Research Society Weed Research



for leaf necrosis, galls and flowerhead herbivory, were

more common in the second year (Tables 1 and 3).

Effect of natural enemies on growth of C. arvense

When analysing the effects of individual damage types

on plant growth (measured as basal stem diameter in

autumn after using the effect of plant size in spring as a

covariate), leaf necrosis, folivory, stemdamage, herbivory

of the shoot top, rust and mines had significant negative

effects on plant growth (in the column �Single� in basal

stem diameter, Table 5). There was also a significant

interaction between year and the effect of damage for leaf

necrosis, herbivory of the shoot top and mines (in the

column �Single� in basal stem diameter, Table 5). The

interactions between the effects of damage and abiotic

conditionswere significant for leaf necrosis, folivory, stem

damage, herbivory of the shoot top, rust and mines.

Growth of plants with stem damage (Fig. 2A), leaf

necrosis, mines and rust (data not shown) was more

notably suppressed in wet than in dry sites. In contrast,

growth of plants with folivory (Fig. 2B) and damage of

the shoot top (data not shown) was more suppressed in

dry sites. When all damage types were included in the

model, only stem damage, which reduced plant growth

by 11.8%, measured by basal stem diameter, was

significant (in the column �Step� in basal stem diameter,

Table 5).

When analysing the effects of individual damage

types on the number of flowerheads in the summer, after

removing the effect of plant size in the spring, leaf

necrosis, folivory, stem damage, flowerhead herbivory,

rust and mines had significant negative effects on plant

growth (in the column �Single� in No. of flowerheads,

Table 5). Abiotic conditions and year were also signif-

icant. The number of flowerheads in plants with leaf

necrosis, rust or mines was higher in the first year (in

the column �Single� in No. of flowerheads, Table 5, row

damage · year). It was also higher in plants with

folivory in dry sites (in the column �Single� in No. of

Table 3 Pairwise co-occurrence of the different damage types in marked plants of Cirsium arvense for the first and second seasons, analysed

using the chi-square test

Pairwise combination of plant damage types

Folivory Mines Rust

Stem

damage

Leaf

necrosis

Flowerhead

herbivory

Herbivory of

shoot top

Top

necrosis Cocoons

Folivory + n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Mines + + + + n.s. + n.s. +

Rust n.s. + ) + n.s. + + +

Stem damage n.s. + ) ) + + + +

Leaf necrosis n.s. + + ) n.s. + n.s. +

Flowerhead herbivory n.s. n.s. n.s. + n.s. + + +

Herbivory of shoot top n.s. + + + + + + +

Top necrosis n.s. n.s. + + n.s. + + +

Cocoons n.s. + + + + + + +

The direction of the relationship is given for significant co-occurrences (P £ 0.05). n.s. indicates non-significant relationships with P > 0.05.

The number of studied plants (N) = 3092.

Table 2 Percentage of plants with a given damage type in the first and second years, in both wet and dry sites at the two studied localities

Damage types % damaged plants in 1st year % damaged plants in 2nd year

Abiotic conditions Wet Dry Wet Dry

Locality 1 2 1 2 1 2 1 2

Folivory 6.4 83.8 66.2 20.9 83.1 34.5 40.9 81.0

Stem damage 0.0 63.6 41.9 16.4 61.9 3.4 30.8 69.3

Leaf necrosis 0.0 75.7 14.9 12.7 16.1 83.9 4.4 54.6

Mines 0.0 37.1 0.0 0.0 1.4 5.1 5.4 4.5

Flowerhead herbivory 0.0 26.8 29.7 1.5 0.8 23.2 6.3 2.5

Rust 0.0 12.5 0.0 0.4 23.7 26.2 12.6 13.5

Flowerhead necrosis 0.0 12.5 0.0 0.4 23.7 26.2 12.6 13.5

Herbivory of shoot top 0.7 14.0 13.5 4.5 0.0 1.5 1.4 1.5

Galls 0.0 1.5 1.4 1.5 6.8 14.3 1.3 6.1

Cocoons 0.0 2.9 2.7 1.1 12.7 11.9 2.5 5.5

Spittle-bugs 0.0 0.0 0.0 0.0 5.1 12.5 0.6 4.9
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flowerheads, Table 5, row damage · abiotic conditions).

When we included all damage types in the model, we

found that folivory, stem damage and herbivory of the

shoot top affected the number of flowerheads per plant

in the summer (in the column �Step� in No. of flower-

heads, Table 5). The number of flowerheads was

reduced 74.4% by folivory, 65.3% by stem damage

and 81.1% by herbivory of the shoot top.

The number of damage events per plant did not have

any significant effect on plant growth, as measured by

changes in basal stem diameter (P = 0.085). There was,

however, a significant interaction between the number of

damage events and the year (P < 0.001), indicating that

the negative effects of the number of plant damage events

were stronger in the first than in the second year (Fig. 3A).

The number of damage events per plant also did not have

a significant effect on plant growth, measured as the

number of flowerheads in the summer (after taking into

account basal stem diameter in the spring, P = 0.099).

There was, however, a significant interaction between the

number of damage events and abiotic conditions (P <

0.001), indicating that the negative effects of the number

of plant damage events were stronger in wet than in dry

sites (P = 0.036, Fig. 3B).

Discussion

Different types of plant damage often co-occur within

a single plant, making it quite difficult to separate the

effects of individual types of damages and to study the

interactions between them. Stem damage significantly

affected plant growth, measured as the change in basal

stem diameter. Stem damage, folivory and herbivory of

the shoot top had significant negative effects on plant

reproduction, measured as the number of flowerheads

per plant. The damaged plants had 11.8% smaller basal

stem diameter and up to 80% fewer flowerheads than

the undamaged plants, suggesting that the presence of

natural enemies can have strong long-term consequences

on plant performance.

One of the most common types of damage observed

in our study was stem damage. Frequent occurrence of

stem damage was also observed in a study by Freese

(1993), supporting the observation that insects that

cause stem damage are common herbivores of

C. arvense. In our studied sites, external stem damage

was probably caused by gall-forming insects, such as

Urophora cardui, because stem galls and external stem

damage often co-occurred on single plants. Additional

stem damage can be attributed to Cleonus pigra

(Scopoli, 1763) (Coleoptera: Curculionidae), which

commonly occurs at the studied localities. Another

common damage type recorded in our study was

folivory, probably caused by Cassida rubiginosa

Fig. 1 Occurrence of (A) leaf necrosis, (B) stem damage and

(C) flowerhead herbivory in the summer, relative to the number

of leaves on the plant in the spring.
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(Table 1), and leaf necrosis, probably a result of

previous leaf damage.

Rust fungus Puccinia punctiformis occurred in our

study significantly more often in plants damaged by

folivores, such as C. rubiginosa. This observation con-

curs with the results of Kluth et al. (2001), who found

that aphids and other beetles preferred plants infected

by P. punctiformis, even though miners and other

oligophagous insects (including C. rubiginosa) preferred

uninfected C. arvense. Tipping (1993) found that her-

bivory by C. rubiginosa was similar between healthy

ramets and those infected with rust fungus.

The observed co-occurrence of necrosis at the top of

the ramets and flowerhead herbivory probably resulted

from damage caused by the same insect species, such

as Larinus planus and Rhinocyllus conicus (Table 1). The

importance of these insects for flowerhead damage in

C. arvense corresponds with the results of Nakamura

and Nakamura (2004), who found that three Larinus

species and three tephritid flies species were the main

insects in the flowerheads of C. arvense.

Factors determining the occurrence of individual

damage types

Plant sizes were estimated in the spring, prior to any

herbivore damage, and can thus be considered the cause

and not the consequence of the damage. The data

indicate that different types of damages tend to occur on

plants of different size. These results are in agreement

with those of Freese (1993), who suggested that different

herbivores tend to select plants in different life stages

and different sizes. We can therefore only offer very

limited support for the hypothesis from Cebrián and

Duarte (1994), i.e. that herbivores prefer larger plants.

The results also did not confirm the Vigour Hypothesis

(Price, 1991). This is because we demonstrated that

C. arvense plants experience the same herbivore damage

in wet sites and dry sites. Some damage types have

stronger effects in wet sites, while others have stronger

effects in dry sites, lending only very weak support for

the prediction that more stressed plants should suffer

greater herbivore damage.

Occurrence of the different damages was affected by

year, indicating strong variability in herbivore occurrence

between years. Similarly, in a study by Eber and Brandl

(2003), Urophora cardui was observed on C. arvense over

5 years and the infestation rate varied strongly among

years. Strong variation in the occurrence of damage was

also found among the studied localities. This corresponds

to a study from Tipping (1993), who found that the

densities of Cassida rubiginosa varied among different

C. arvense populations.

In our study, 84% of C. arvense plants were damaged

by herbivores. This attack rate was therefore higher than

the attack rate (68%) measured for C. arvense in

Germany (Freese, 1993). However, our value corre-

sponds with the observed attack rate for other Cirsium

species reported by Freese (1993) and to the results from

Skuhrovec et al. (2008), who reported over 90% damage

on various species of the Carduoideae subfamily. This

suggests that the intensity of herbivore damage found

in our study is comparable with previous findings for

this species.

Effect of natural enemies on the growth of C. arvense

Plants with folivory, stem damage, leaf necrosis and

herbivory of the shoot top grew less than those lacking

this damage. The first three damage types were also the

Table 4 Factors determining the occurrence of individual types of plant damage caused by natural enemies and assessed using logistic

regression

Leaf

necrosis Folivory

Stem

damage

Herbivory of

shoot top Rust Mines Cocoons Galls

Flowerhead

herbivory

Top

necrosis

No. leaves 0.118 ) 0.084 + 0.091 + 0.14 + n.s. n.s. n.s. n.s. 0.095 + n.s.

Locality 0.153 + 0.031 + 0.05 + 0.010 n.s. 0.049 ) n.s. 0.023 ) 0.068 ) n.s.

Abiotic cond. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.078 ) n.s.

Year 0.035 ) 0.141 + 0.158 + 0.049 + n.s. 0.159 + 0.078 + 0.052 ) 0.078 ) 0.187 +

No leaves · Locality n.s. n.s. n.s. 0.084 ) n.s. n.s. n.s. n.s. n.s. n.s.

Abiotic cond. · No.

leaves

n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Abiotic cond. · Locality n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Abiotic cond. · Year n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Locality · Year n.s. n.s. n.s. n.s. 0.030 n.s. n.s. n.s. 0.008 n.s.

No. leaves · Year n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

The values are R2 values for significant relationships (P £ 0.05). No. leaves = the number of leaves per plant in spring. Abiotic

cond. = abiotic conditions of the site (wet ⁄ dry). The signs show the directions of the significant relationships (+ in No. leaves means more

leaves in the spring; + in locality means locality 1, ) means locality 2; + in abiotic cond. means wet site, + in year means first year). n.s.

indicates non-significant relationships, with P > 0.05. Df Error = 3080.
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most common in our study. We can thus assert that the

most common plant damage types also had the largest

effects on plant growth. When the effects of all damage

types were co-analysed, stem damage significantly

reduced plant growth, measured as change in basal stem

diameter. One cause for this outcome could be that

we measured plant growth as changes in the basal stem

diameter, and stem damage is thus likely to correlate

with this measure of plant growth. For the number of

flowerheads, stem damage, folivory and herbivory of

the shoot top had significant negative effects on plant

reproduction. Despite the fact that the effect of herbi-

vores on plant growth is crucial for understanding their

long-term consequences on plant performance, most

studies on plant insect herbivores record plant status at

only one time point. They can therefore say that plants

attacked by a given herbivore are smaller than plants

that escaped the attack; however, it is not possible to

separate the effects of insects attacking smaller plants,

as discussed previously, from the negative effects from

insects on plant growth (e.g. Tipping, 1993; Kluth et al.,

2001; Eber & Brandl, 2003). Studies that compare

C. arvense plant size on multiple occasions over a field

season include a study from Bacher and Schwab (2000),

which demonstrated a negative effect from folivory by

C. rubiginosa on plant growth. A negative effect from

flowerhead insect guilds on C. arvense reproduction was

Fig. 2 Effects of (A) stem damage and (B) folivory in different

seasons and abiotic conditions of the locality (dry or wet) on plant

growth. Plants with or without damage (x-axis). The y-axis

represents the ratio between basal stem diameter in the autumn

and the spring.

Table 5 Effect of natural enemies on basal stem diameter

in the autumn and number of flowerheads of Cirsium arvense,

using the basal stem diameter in the spring as a covariate

Damage

Basal stem

diameter

No. of

flowerheads

Single Step Single Step

Leaf necrosis 0.009 ) n.s. 0.097 ) n.s.

Folivory 0.008 ) n.s. 0.166 ) 0.156 )
Stem damage 0.008 ) 0.005 ) 0.192 ) 0.025 )
Herbivory of shoot top 0.008 ) n.s. n.s. n.s.

Flowerhead herbivory n.s. n.s. 0.13 ) 0.008 )
Rust 0.009 ) n.s. 0.097 ) n.s.

Mines 0.009 ) n.s. 0.092 ) n.s.

Leaf necrosis · Year 0.001 0.001 0.022 n.s.

Folivory · Year n.s. n.s. n.s. n.s.

Stem damage · Year n.s. n.s. n.s. n.s.

Herbivory of shoot

top · Year

0.003 0.003 n.s. n.s.

Flowerhead

herbivory · Year

n.s. n.s. n.s. n.s.

Rust · Year n.s. n.s. 0.009 n.s.

Mines · Year 0.0001 n.s. 0.011 n.s.

Leaf necrosis ·
Abiotic c.

0.004 n.s. n.s. n.s.

Folivory · Abiotic c. 0.005 n.s. 0.025 n.s.

Stem damage · Abiotic c. 0.005 n.s. n.s. n.s.

Herbivory of shoot

top · Abiotic c.

0.004 n.s. n.s. n.s.

Flowerhead herbivory ·
Abiotic c.

n.s. n.s. n.s. n.s.

Rust · Abiotic c. 0.006 n.s. n.s. n.s.

Mines · Abiotic c. 0.003 n.s. n.s. n.s.

Abiotic conditions n.s. n.s.

Locality n.s. 0.016 )
Year 0.018 ) 0.023 )

�Step� means stepwise regression, including all of the plant damage

types in a single model, and �single� is a separate regression for each

plant damage type. For a detailed description of the models, see

Materials and methods. The values are R2 values for significant

tests (P £ 0.05). The signs show the direction of the relationship,

with + meaning positive effect of that damage type, first year,

locality 1 and dry site. Df Error = 3085 for single tests and 3067

for stepwise tests.
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observed by Louda and Potvin (1995) and Skuhrovec

et al. (2008).

We performed analyses on the effects of single plant

damage types on plant growth and reproduction, as this

is usually carried out in other studies. However, we also

did a stepwise analysis on the effect of all of the plant

damage types on plant growth and reproduction. In this

way, results from our study can be compared with both

one-insect studies and studies that include multiple

insects, and we encourage future studies to adopt this

method of presenting results.

When multiple herbivores interact with a single plant

individual, it is useful to determine whether the effect of

the herbivores is additive or complementary (e.g. James

et al., 1992; Mcevoy et al., 1993). However, identifica-

tion of the possible interactions between herbivores and

the plants in our study was not possible, because the

occurrence of some herbivores was strongly correlated.

We did not observe plants suffering damage from only a

single herbivore or from that herbivore in combination

with each of the other damage types. Such data would

require additional experimental manipulations.
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Summary 

The enemy release hypothesis (ERH) says that plant species in their invasive range will perform better 

than in their native range due to the release from natural enemies. To test this hypothesis it is appropriate to 

study a single species in both the native and the introduced range. Cirsium arvense observational studies had 

been done in the native range in the Czech Republic (Europe) and in the invasive range in Nebraska (North 

America) in natural populations assessing degree of plant damage by insect herbivores.  

The results show that C. arvense plants are more damaged by a wide range of natural enemies in the 

native range than in the invasive range. An exception was flower head necrosis, which was not significantly 

different between ranges. The plants in the invasive range were higher than in the native range and larger plants 

tended to be more damaged. Higher intensity of damaged was significant in plants from the native range even 

when taking into account the differences in plant size. The results confirm that in spite of being larger, the plants 

in the invasive range suffer from less herbivore damage supporting the enemy release hypothesis.  

 

Keywords: Herbivory, Cirsium arvense, Nebraska, Czech Republic, native and invasive 

range, plant damage, plant growth, plant reproduction, enemy release hypothesis..  
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Introduction 

Insect-plant interactions had been lately a focus of many studies and the rapidly 

growing interest is shown by increasing scientific papers in the last three decades 

(Schoonhoven et al.2005).With the rising problem of invasive plants, herbivore insects have 

been studied for use as control agents (Coombs et al. 2004). Many observational studies of 

plant growth and damage, herbivory experiments and weed control strategy studies have been 

done on invasive species in its invasive or native range. An example are herbivory 

experiments (Hinz, Müller-Schärer 2000, Cripps et al. 2010) and weed control strategy studies 

(Müller-Schärer et al. 2004, Pywell et al. 2010) on Cirsium arvense and other species in New 

Zealand, Great Britain, Austria or Canada. There is still, however, a need for comparison of 

observational data in both ranges. 

The main idea of biological control is that plants in the invasive range escaped their 
natural enemies and they thus suffer lower herbivore damage. This has been described as the 
enemy release hypothesis (Keane, Crawley 2002), which has been many times cited but there 
are not as many plant damage comparative studies which test this hypothesis. Even thou the 
success of biological control has been used as support for ERH, this evidence does not 
directly test it (Keane, Crawley 2002).The enemy release hypothesis also states that invasive 
potential of some non-indigenous species may be enhanced by absence of natural enemies, 
such as specialist herbivores, in the introduced range (Kolar, Lodge 2001, Keane, Crawley 
2002). 

Many herbivore insects of Cirsium arvense have been studied in an effort to control it, 
for example the leaf- and bud-feeding beetles [Altica carduorum Guerin- Meneville, Lema 
cyanella (L.), and Cassida rubiginosa Muller, Coleoptera: Chrysomelidae], stem-boring 
beetles (Ceutorhynchus litura (F.), Coleoptera: Curculionidae), seed-feeding beetles 
(Rhinocyllus conicus (F.), Coleoptera: Curculionidae), stem-galling flies (Urophora spp., 
Diptera: Tephritidae)(Michels et al. 2008) and other insects (Rees 1991; Julien, Griffiths 
1998; Campobasso et al. 1999; Gassmann 2005). Even though many studies on insect 
presence in invasive plants have been done, not many studies look on the level of damage 
caused by these insects; few data quantify the degree to which naturalized plants are released 
from natural enemies relative to their native range (Mitchell, Power 2003). 

During periods of range expansion, weedy plants may evolve rapidly in adapting to 

new habitats (Müller-Schärer 2004). Due to the absence of natural enemies, the plants in the 

invasive range can invest more resources into growth. This was described as the EICA 

hypothesis (Blossey, Notzold, 1995) which says that plants in the invasive range may grow 



Chapter 2 

 

3 

bigger than plants in the native range. The differences in size can in fact also be one of the 

factors explaining differences in the degree of damage of the plants.  

The aim of this study was to observe naturally occurring plant insect damage of the 

invasive species Cirsium arvense in its native range in the Czech Republic (Europe) and in its 

invasive range in Nebraska (North America). We wanted to answer the following questions i) 

What is the intensity of different types of damage on plants from the native and invasive 

range? ii) Can the differences in the degree of damage be explained by differences in plant 

size? 
 

Methods and materials 

Study species 

Cirsium arvense (L.) Scop. (Creeping thistle, California thistle, Canada thistle) is an 

erect polycarpic perennial herb with horizontal roots, with numerous adventitious non-

flowering and flowering shoots, leaves with frequent short strong spines and it is incompletely 

dioecious (Tiley et al. 2010). It is native to all of Europe, North Africa, Asia Minor, 

Afghanistan, Siberia, China and Japan (Weber 2005) and invasive in North America, South 

Africa (Holm et al. 1977), Australia and New Zealand (Rahman 1982). 

Study area 

Cirsium arvense plant growth and damage were measured in the Czech Republic 

(Europe) and Nebraska (North America). Nebraska has a continental climate, with highly 

variable temperatures (Table 1). The Czech Republic has also a continental climate (Table 1) 

but summers are more moderate than in Nebraska. 

Experimental design 

In the Czech Republic, Europe (representing the native range of the plant), four 

populations were studied in June and July 2006 (Table 1) and in total 646 plants were 

measured. 

Eleven populations in total were selected in Nebraska, United States of America, 

representing the invasive range of Cirsium arvense, in June and July 2007 (Table 1). In total 

332 plants were measured in Nebraska. 
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Due to practical reasons more populations were selected in Nebraska with fewer plants 

and less populations in the Czech Republic with more plants. 

Measurements of plant size and plant damage 

We took measurements of aboveground herbivore insect damage and plant size. Plant 

damage measurements included % mines on all the leaves, % plant folivory, % leaf necrosis, 

number of stem galls per plant, number of cocoons per plant, presence of flower head 

damage, number of flower heads with necrosis per plant and % external stem damage. Plant 

measurements were done only once in each plant, in Nebraska in July 2007 and in the Czech 

Republic in July 2006 (Abela Hofbauerová, Münzbergová 2011). Number of cocoons per 

plant very rare, therefore this plant damage was not included in the analyses. 

 

Data analyses  

To analyze differences in plant damage between the ranges we used general linear 

models. In the analyses, one of the damages (leaf necrosis, folivory, leaf mines, stem galls, 

flowerhead damage, flower head necrosis and stem damage) was used as dependent variable. 

The independent variables were distribution range and population nested within the 

distribution range. When analyzing flower head necrosis we used number of flower heads as a 

covariate to take into account that this measure represents number of flower heads and not its 

proportions. Only flowering plants were included in the dataset when analyzing flower head 

necrosis and flower head damage. 

To see whether the differences in amount of damages per plant could be related to 

plant size, we also repeated all the above analyses and used plant height and number of flower 

heads as covariates in the above models.  

 To see whether the plants differed in size, plant height or number of flower heads were 

used as dependent variables and distribution range and population nested within the 

distribution range were used as covariates.  

GLM with Poisson distribution was used in all, except for the flower head damage 

(presence/absence), where binomial distribution was used. 

 



Chapter 2 

 

5 

Results 

Folivory (Fig. 1), leaf mines, leaf necrosis, stem galls, flower head damage and stem 

damage were more common in C. arvense in the native than in the invasive distribution range. 

(Table 2). 

In all plant damages, except for leaf mines, plant height correlated with plant damages. 

Higher plants were more damaged with folivory, leaf mines, stem galls, flower head damage, 

flower head necrosis and stem damages (Fig. 2, Table 2). In contrary, smaller plants suffered 

higher levels of leaf necrosis (Table 2). The differences in the degree of damage between 

plants of different size were largely similar when using number of flower heads as a measure 

of plant size instead of plant height (Table 2). This is due to close correlation between plant 

height and number of flower heads per plant (r = 0.54).  

There was a significant interaction between plant height and distribution range in leaf 

necrosis, stem galls, flower head damage and flower head necrosis. In the native range the 

relationship between plant height and plant damages was stronger than in the invasive range. 

A significant interaction between number of flower heads per plant and distribution range was 

also in folivory, leaf necrosis and stem damage (Table 2). The relationship between number of 

flower heads and damages was also stronger in the native range. 

Plants in the invasive range were higher (R² = 0.02 ***) but number of flower heads 

did not significantly differ between ranges. Plant height and number of flower heads varied 

between populations (R² = 0.217 *** and 0.191 ***).  

 

Discussion 

Our results are in accordance with the ERH which states that invasive plants are 

released from their natural enemies in the invasive range (Keane, Crawley 2002). Plants were 

more damaged when they were larger (with exception of folivory, flower head necrosis and 

leaf mines). In our previous study in the native range we have shown that larger plants are 

preferred by natural enemies as they are more attractive (Abela Hofbauerová et al. 2011), 

which is the same as states Cebrián and Duarte (1994) or Price (1991), in the vigour 

hypothesis. We thus suggest that the difference in the degree of damage of plants of different 

size is rather the consequence of different size than the cause. Higher attractivity of larger 

plants is seemingly in contrast with the fact that plants in the native range are smaller and 

more damaged. By using plant size as a covariate, we, however, demonstrated that the 
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differences between ranges hold even after taking plant size into account. This suggests that 

higher plants are more attractive for herbivores even when comparing within ranges. In 

addition, there was a significant interaction between plant height and range for several 

damages suggesting that the effect of plant size differs between the ranges.  

C. arvense were higher in the invasive range, which could be caused by their better 

performance thanks to natural enemy release. Non-native plants having a better performance 

is also a statement of the ERH, that has been few times reputed (Colautti et al. 2004), and 

there are also studies in accordance with it (Torchin et al. 2002, Agrawal, Kotanen 2003, 

Mitchell, Power 2003, Carpenter, Cappuccino, 2005). Our results are not, however, 

supporting the ERH in number of flower heads, which is in accordance with Vasquez, Meyer 

(2011), where the ERH was also partially supported (in a field experiment while it was not 

supported in the herbivore exclusion experiment). The differences in plant height between the 

two ranges identified in this study could also be due to different habitat conditions in both 

areas. However, a garden experiment comparing size of C. arvense from both ranges in the 

same environment suggested that the differences in plants size are likely genetically based 

(Abela Hofbauerová, Münzbergová 2011) 

As a conclusion we showed that naturally occurring C. arvense presents less plant 

damage in the native range than in invasive range and plants in the invasive range are larger 

than in the native range. This supports the ERH. Our results could also be explained by rapid 

evolutionary change among populations (Thomson 1998) of C. arvense, since during the last 

five hundred years it is possible the strong genotypes were selected in the invasive range. 
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Tables and Figures: 

 

Table 1. Information of the studied sites in Nebraska, United States of America, and Czech Republic, Europe.  

Population Altitude(m) Latitude 

Avg daily  
max 

temperature 
(°C)   

Avg daily min 
temperature 

(°C) 

Avg annual 
precipipation 

(mm) 

Nebraska           

Seward county 425 N 40.82100  
W 096.96812 17.2 4.4 714 

Jackson west 316 N 41.04391  
W 096.62220 16.9 3.7 778 

UNL challenge 
course 368  N 40.85886 

W 96.81162  17.2 4.2 728 

Jackson 2 312 N 41.04508 W 
96.58577  16.9 3.7 778 

Cass county 
North 338  N 40.90007 

W 96.38703 17 4.1 749 

Platte 853 N 41.09596  
W 100.5882 16.9 1.4 507 

Lincoln county 
south west 928  N 40.81609 

W 101.11462  17.4 1.3 467 

Scottsbluf 1202  N 41,92106 
W 103,04804 17.4 1 387 

Lyon´s site 1139  N 42.09861 
W 102.88511 16.3 0.8 406 

Low grass 1158  N 42.31085 
W 102.86830 16.3 0.8 406 

Sandhills 994 N 42.07976 W 
101.43747  15.8 0.6 580 

Gosper 
County 747  N 40.67243 

W 99.83813 16.8 3.1 571 

Czech 
Republic           

Kytín 460 N 49º 51' 06'' 
E 14º 12' 37'' 12.5 3.4 590 

Výžerky 340 N 49° 56' 56" 
E 14° 53' 95" 13 4.2 590 
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Table 2. Effect of distribution range, plant height and number of flower heads on percentage of plant damages on 

Cirsium arvense. R2 values for significant factors are shown, where *** means p-values < 0.0001, ** means p-

values < 0.001 and * means p-values < 0.05. N means that the plants are more damaged in the native range, I 

means the plants are more damaged in the invasive range. + means the more flower head the plant had or higher 

the plant was, there was more percent of plant damaged in the plant, - means the more flower head the plant had 

or higher the plant was, there was less percent of plant damaged in the plant. 

Plant damage Distribution 
range Plant height Number of 

flower heads 

Plant height x 
Distribution 

range 

Number of 
flower heads x 

Distribution 
range 

Mines 0.110 ***      N n.s. 0.031 ***   + n.s. n.s. 

Folivory 0.175 ***      N 0.002 *      + n.s. n.s. 0.016 *** 

Leaf necrosis 0.059  ***     N 0.020 ***    - 0.028 ***    - 0.003 * 0.054 *** 

Stem galls 0.045  ***     N 0.064 ***    + 0.071 ***   +  0.025 *** n.s. 

Flower head 
damage  0.068 *        N 0.064 ***    + 0.059 ***    + 0.142 *** n.s. 

Flower head 
necrosis n.s. n.s. n.s. 0.021 * n.s. 

Stem damage 0.213 ***     N 0.068 ***    + 0.017 ***   + n.s. 0.006 *** 

 

 Figure 1. Effect of distribution range on Cirsium arvense folivory. For R2 see values in Table 2. 
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Figure 2. Correlation between plant height and plant damage. For R2 see values in Table 2. 

 
 

Figure 3. Correlation between number of flower heads and plant damage. For R2 see values in Table 2. 
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Abstract  

 

Testing the most effective herbivore hypothesis and the complementary herbivore hypothesis on a specific 

insect-plant system can cast light on the mechanisms of herbivory and led to a better choice of biological control 

agents. The aim of this work is to evaluate the effect of specific natural enemy guilds, represented by specific 

herbivorous insects and their combinations on Cirsium arvense plants from both native and invasive ranges, to 

test whether these insects can limit growth and reproduction of the invasive species. To do this we performed a 

common garden experiment in which herbivorous insects were added to C. arvense planted in March 2008 and 

grown from collected seeds from fields in USA (Nebraska, Illinois) and Europe (Spain, Czech Republic). In the 

aboveground treatments were: added leaf herbivores, added stem herbivores, and added floral/seed head 

herbivores, , individually and in combination. In a second experiment we stimulated the augmentation of root 

herbivory. We also manipulated soil resources, by increasing and by reducing soil nutrient availability, in order 

to examine the effect of soil resources on the effect of herbivores on plant performance. 

The expectation, based on the enemy release hypothesis, was that plants from the invasive range would suffer 

less and be bigger than those from the native range. We also predicted that plants growing in poor soil type 

would grow less and respond differently to herbivory than plants from the rich soil type. 

 

 

 

Keywords: Cirsium arvense, Rhinocyllus conicus, Urophora cardui, Cassida rubiginosa, 

Cleonis pigra, native and invasive range. 
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Introduction 

Only a few exotic plant species expand and invade natural communities, but those 

species can pose serious threats to native biodiversity (Myers, Bazely 2003). Understanding 

the processes that allow some exotic species to experience rapid population growth when 

introduced to a new geographic region is a critical step in developing strategies to mitigate 

these species’ impacts. The enemy release hypothesis states that invasive potential of some 

non-indigenous species may be enhanced by absence of natural enemies, such as specialist 

herbivores, in the introduced range (Kolar, Lodge 2001, Keane, Crawley 2002, Torchin et al. 

2002, Mitchell, Power 2003, Colautii et al. 2004, Cappuccino, Carpenter 2005, Vasquez, 

Meyer 2011). Such specialist herbivores may limit the weed’s population growth in its native 

range (Keane, Crawley 2002). The enemy release hypothesis is the theoretical foundation of 

classical biological control (Hong et al. 2006), which is based on suppression of pest 

populations by natural enemies.  

There have been many attempts to use biological control to limit spread and density of 

invasive species (Delfosse 2000) but it is clear that biological control may not only have its 

benefits but also its threats (Louda et al. 1997, Delfosse 2005). Specifically, several insects 

introduced for weed biological control have had non-target effects on native plant species. In 

spite of the extensive existing knowledge on the effects of herbivores on plant population 

dynamics (Louda et al. 2003), there are some issues that still need to be resolved to implement 

successful biological control programs. One unresolved issue in biological control concerns 

whether suppression of weed population growth is maximized using the most important 

herbivore (most effective herbivore hypothesis) (Turnbull, Chant 1961, Kakehashi et al. 1984, 

McEvoy et al. 1993) or whether the combined effect of multiple herbivore species is more 

effective (complementary herbivore hypothesis) (Huffaker, Messenger 1976, Harris 1991, 

James et al. 1992). Multiple herbivores may not lead to greater suppression of the host plant 

if, for example, earlier-feeding herbivores alter the plant’s chemistry, morphology or 

phenology in such a way that impact of later-feeding herbivores is reduced. Further, 

introduction of multiple exotic biocontrol agents, with no increase in efficacy of control, 

elevates the risk of introducing an agent with non-target effect. Even though both hypotheses 

have been proposed, their validity has rarely been tested empirically (but see Juenger, 

Bergelson 1998, Hufbauer, Root 2002).  
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The few empirical studies of individual vs. joint effects of herbivores on host plants produced 

mixed results. Juenger and Bergelson (1998) demonstrated that the evolution of flowering 

phenology in scarlet gilia (Ipomosis aggregata) might be a response to diffuse and pair-wise 

natural selection imposed by multiple herbivores. Hufbauer and Root (2002) found that 

beetles and spittlebugs feeding together on tall goldenrod (Solidago altissima) reduce the 

mass of the apical bud and the foliage more than would be expected from either insect feeding 

alone. These studies clearly suggest that the effect of multiple herbivores cannot be easily 

predicted from the effect of each herbivore separately and further studies on additive and 

interactive effects of natural enemies on invasive plants are thus sorely needed.  Specifically, 

comprehensive tests of the single and combined effects of herbivore guilds on invasive plants 

in their native and invasive range are needed to better understand the interaction between 

natural enemies. Such information may help in designing effective biological control 

programs. Most of the existing studies on plant-herbivore interactions concentrate only on 

aboveground herbivores. It was, however, suggested that root feeders in spite of being less 

diverse than aboveground feeders may have very strong impact on plant population dynamics 

(Rasman, Agrawal, 2008). It is thus important to consider the impact of root herbivores in 

pre-release studies for biological control of invasive plants.  

The aim of this study is to test the two alternative hypotheses for insect herbivore 

interactions using Cirsium arvense as a model species. C. arvense (L.) Scop is one of the most 

problematic exotic weeds in North America (Moore 1975) and a common native weed in 

Europe. By measuring damage from various natural enemies on C. arvense from native and 

introduced ranges and analyzing the interactions between the different natural enemies, we 

tested the most effective herbivore and complementary herbivore hypotheses. We specifically 

tested whether the effect of single herbivore guilds is independent or if the different 

herbivores interact with each other. We also wanted to determine whether the effect of 

herbivores differed between plants from the native and invasive range and between different 

abiotic conditions.  

We asked the following questions: i) Is there any difference in the effect of herbivores 

on plants grown from seed collected in C. arvense’s native vs. invasive range? ii) What are 

the independent and combined effects of herbivore insects on performance of C. arvense and 

do they differ between ranges? 
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Methods 

Study system 

Cirsium arvense (L.) Scop (Carduoideae, Asteraceae) is a herbaceous perennial with 

erect stems 0.5 - 1.0 m tall, with prickly leaves, and an extensive creeping rootstock (Nuzzo 

1997). It is a dioecious plant that also reproduces clonally. It is native to Europe, parts of 

North Africa and Asia, including Afghanistan, Iran, Pakistan and China. This species was 

introduced to North America from Europe in the 1600's as a contaminant of grain seed 

(Jacobs et al. 2006). It is also an invasive species in New Zealand and Australia (Pywell et al. 

2010). In USA there is an attempt to manage its invasion by classical biological control 

(McClay et al. 2001).  

In a previous study where plants were not exposed to insect herbivory but were grown 

in the same common garden as plants for this experiment (Abela, Munzbergova 2011) it was 

found that plants grown from seed collected in the invasive range had greater aboveground 

biomass and flower head biomass, more healthy root biomass and longer roots than plants 

from the native range. Year and type of substrate also affected plant growth, with plants 

producing more aboveground biomass in the second year but having more flower heads and 

flower head biomass in the first year, and with plants in the poor substrate having longer 

roots. 

Insect species 

Four species of herbivore insects were used to represent the C. arvense four main 

feeding guilds: a leaf beetle, a stem galler, a flower head weevil, and a root-feeding weevil. 

 The leaf-feeding beetle, Cassida rubiginosa (Mueller, 1776) (Coleoptera: 

Chrysomelidae) is a generalist that feeds on many species of the Carduoideae tribe. It is one 

of several oligophagous insects on plants of the genera Carduus and Cirsium and is one of the 

most conspicuous natural enemies of C. arvense (Ang et al. 1995). It is native to Central 

Europe., and it was intentionally introduced to North America and New Zealand against 

exotic thistles. 

The stem galler, Urophora cardui (Linnaeus, 1758) (Diptera: Tephritidae), is a 

specialist on C. arvense (Lalonde, Shorthouse 1985). It attacks stems of Canada thistle, boring 

in and causing the plant to form terminal stem galls, retarding successful flowering by that 
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stem. Its native distribution extends from France to near the Crimea and from Sweden to the 

Mediterranean (Rees et al.1996). 

 Rhinocyllus conicus (Frölich, 1792) (Coleoptera: Curculionidae) is a flower head 

feeding weevil. It is a generalist that feeds on many species of the Carduoideae tribe. It is 

native to southern and central Europe, North Africa, and western Asia. This thistle-head 

weevil was the first insect introduced into North America for the biological control of 

Carduus nutanss, but it is now naturalized and feeding on native thistle species (Louda et al. 

1997); its further distribution in USA as biological agent is restricted (USDA 2003, web 1). 

Cleonis pigra (Scopoli, 1763) (Curculionidae) is a large, root-feeding weevil. It 

attacks numerous species of Carduoideae in Europe (Zwölfer 1965). It is native in Eurasia. It 

was introduced to North America as an agent for biological control of C. arvense (L.) 

(Gassmann et al. 2002), and it now occurs in New York, Pennsylvania, Michigan, Indiana, 

Ontario, and Quebec. 

Seed and insect collection  

C. arvense seeds were collected in June, July and August 2007 in Europe and North 

America, representing the native and invasive ranges of the species (information on sites in 

Table 1). Using this design we sampled geographically diverse regions of both the native and 

invasive range with native populations over 2000 km apart and invasive populations over 

1200 km apart. The same study sites were used as in our previous study which looked at plant 

growth without herbivore presence (Abela Hofbauerová, Münzbergová 2011, Table 1).  

C. rubiginosa larvae, and later also adults, were collected in the field in the Czech 

Republic, within 100 km from the experimental garden, in April/May 2008 and 2009, and 

kept on extra C. arvense plants covered with a net which were not part of the experiment. 

From the insects that reproduced, we obtained larvae for the experiment. Four larvae were 

added to the leaves of each C. arvense plant in the C. rubiginosa experimental treatments at 

the beginning of July 2008 and in June 2009 (see below). Even though R. conicus and U. 

cardui are native to Central Europe we were not able to collect sufficient number of adults of 

these species in the field. We thus ordered insects from a biological control company in 

Montana, USA. Four R. conicus adults (2 males and 2 females) and 4 U. cardui adults per 

plant (2 males and 2 females) were added to the R. conicus and U. cardui experiment 

treatments, both individual or in combination treatments, respectively, at the beginning of 

July 2008 and end of June 2009.We failed to collect C. pigra adults in 2008 but in April 2009 

sufficient number of insects were collected in the field in the Czech Republic. One C. pigra 
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female was added to plants in the C. pigra treatments in our experiment at the beginning of 

May 2009. All insects added to C. arvense remained on the plants under a net until autumn, in 

2008 and in 2009. The densities of insects added to the plants roughly correspond to the 

densities of these insects observed in natural populations of the species in the Czech Republic.  

Garden experiment 

From each distribution range (invasive/native) we used plants from two countries 

(Europe) or states (USA) and 5 maternal plants per country or state with each plant selected 

from plants collected at least 100 m apart to reduce the probability they belonged to the same 

clone. The 5 maternal plants from each country represented replicates in the experiment 

described below. Performance of control plants (without any insect addition) from this 

experiment was published elsewhere (Abela and Münzbergová, 2011) and demonstrated that 

plants from the invasive range are larger that plants from the native range. 

To prepare the seeds to be used in the experiment, we dissected the flower heads 

collected from all natural populations during autumn 2007, and seeds were stored in paper 

bags. At the end of January 2008, seeds were separated by population in small polyamide 

marked sacks and then soaked for 10 minutes in 1:10 000 water solution of potassium 

permanganate to avoid fungal infestation of the growing seedlings. Seeds were placed in pots 

filled with sand and were covered with a metal net with 1 mm mesh size to avoid insects 

feeding on seeds. These pots were buried in the ground in an experimental garden for 

stratification to enhance germination of the seeds in spring. These seeds were extracted from 

the sand and 5 seeds (in March 2008) were planted in 5 cm x 5 cm pots in a greenhouse 

without additional heating to germinate. After 3 weeks, we kept one well established seedling 

in the pot and removed the others. The seedlings were planted in April 2008 in an 

experimental garden within the native range of C. arvense, Czech Republic (N49° 59' 40'' 

E14° 33', 368 m altitude), close to the seed source from the Czech Republic. Plants from the 

Czech Republic were thus grown in their native conditions, while plants from the other 

countries were grown in foreign conditions.  

 C. arvense seedlings were transplanted in large plastic bags, rather than planting 

directly in the ground, which represented a compromise between ensuring that the large root 

systems of C. arvense had enough room to grow, yet fully controlling the soil environment in 

which the plants were growing. Two black 100 cm x 75 cm plastic bags, 2 mm thick, were 

inserted one inside the other. We used two bags to reduce tearing. Bags were filled with 50 l 

of mixture of substrate using a dredging shovel and 0.5 cm x 0.5 cm holes were cut at the 
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bottom in every bag to avoid excessive soil moisture; to assure drainage, the bottom third of 

each bag was filled with gravel (1 cm in diameter). To study the effect of soil conditions on 

plant growth, two types of substrate were used. Half of the plastic bags were filled with soil 

from the garden nearby the common garden experiments (rich substrate), the other half with 

sand from a quarry 100 km away from the experimental site (poor substrate). The nutrient rich 

substrate had significantly higher content of nitrogen, phosphorus, total carbon, carbon in 

carbonates and carbon in organic matter (Table 2). Due to the high volume of substrate, not 

all substrate could be sterilized. To limit growth of weeds in the bags, a 6 cm layer of a 

mixture of 10:1 sterilized sand and perlite was placed on the top of the soil.  

Immediately after planting the seedlings, cylindrical metal scaffolds, 39 cm in 

diameter and 98 cm high, were placed into the bags to cover the plants, and white translucent 

108 cm x 72 cm polyamide sacks 28 g/m² dense were fastened over each metal scaffold to 

exclude natural enemies other than those introduced experimentally attacked the plants. 

Plant growth and plant damage were measured within two days in August at the time 

of full flowering in two years (2008, 2009). Plant measurements included: plant height, 

number of stems, plant sex (when flowering) and number of flower heads. Plant damage 

included percent of leaves damaged by C. rubiginosa, numbers of seeds and of flower heads 

attacked by R. conicus, number of C. pigra larvae in root, length of weevil-damaged roots, 

and the number, weight and dimensions of U. cardui galls. Each year after measurements, all 

aboveground biomass was harvested, dried to a constant weight and weighted. All developed 

seeds per plant were counted in both years. Because the species is dioecious and about half of 

the plants were male, it was not possible to evaluate seed production of all the plants. Number 

of flower heads/plant can be considered as a fitness measure since it strongly positively 

correlates with number of seeds/plant in the female plants (R²= 0.5).  

During May 2010, the whole experiment was harvested. Roots were carefully 

extracted from the soil and rinsed to remove all the substrate. Roots were categorized as 

“healthy,” “damaged” or “dead.” Healthy roots were white. Roots were classified as damaged 

if they were brown or the root had other clear signs of damage. Roots were considered as dead 

when they were dark brown and decomposing. Length of healthy parts of the roots wider than 

1 mm was measured. Healthy, damaged and dead biomass of the roots were weighed before 

and after drying to a constant weight. 

To describe chemical composition of the two soil substrates, 10 samples from each 

substrate type were taken (one sample per bag) in May 2010. Content of nitrogen, total 
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carbon, carbon in carbonates, organic carbon and phosphorus was measured in the laboratory 

of the Institute of Botany, Academy of Sciences of the Czech Republic (Table 1). 

Experimental treatments 

Using the experimental set-up described above we conducted two herbivore addition 

experiments. The first, which addressed individual vs. joined effect of aboveground insects, 

involved 8 treatments. Three treatments contained a single insect species: C. rubiginosa, R. 

conicus or U. cardui. Three treatments contained two aboveground insect herbivore species: 

C. rubiginosa and U. cardui, C. rubiginosa and R. conicus, U. cardui and R. conicus. One 

treatment included all the three aboveground insect species (C. rubiginosa, R. conicus and U. 

cardui) and the last treatment was control without insect addition. The second addressed 

individual vs. joint effects of above- and belowground herbivores. It included 4 treatments. 

Control plants and plants with all the three aboveground insects corresponded to the treatment 

in the first experiment. It further contained plants with all aboveground insects and the 

underground insect C. pigra and one treatment with a single insect species, C. pigra. 

Thus, with plants from two distributional ranges (native, invasive), two countries or 

states within each distributional range (Europe: Spain, Czech Republic; USA: Nebraska, 

Illinois), two soil substrates (loam, sand), and five replicates for each of the 10 insect-addition 

treatments, the total number of experimental plants was 400.  

Data analysis 

We first analyzed the effect of the addition of aboveground insects using generalized 

linear models. As dependent variables we used plant height, aboveground biomass, flower 

head biomass and number of flower heads per plant. Independent variables were type of soil 

substrate, year of measurement (2008, 2009), seed country/state origin nested within the seed 

origin range (Spain, Czech Republic, Nebraska, Illinois), seed range origin (invasive and 

native range of C. arvense) and insect (C. rubiginosa, R. conicus and U. cardui) addition 

treatment. We also included interactions between the independent variables into the model. 

All the dependent variables followed a Gamma distribution. When analyzing flower head 

biomass, we performed additional analyses with aboveground biomass as a size covariate, to 

evaluate the investment of the plants to reproduction.  

 The effect of addition of both aboveground and underground insects on the same 

dependent variables was then calculated, using the same methods as in the previous analyses. 

Independent variables were type of soil substrate, year of measurement, seed country origin, 
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seed range origin and presence of all aboveground insects (C. rubiginosa, R. conicus and U. 

cardui together yes/no) and underground insects (C. pigra). In these analyses, treatment of 

plants with the addition of one or two aboveground insects was not included. All analyses 

were done in SPlus 2000 and Statistica 10. 

Effect of insect addition on root biomass was analyzed for 2009, since we have data on 

root biomass only from the end of the experiment. We analyzed the effect of the addition of 

aboveground and underground insects using generalized linear models. As dependent 

variables we used healthy root biomass, damaged root biomass, dead root biomass, root 

length, root : shoot ratio and total plant biomass. Independent variables were type of soil 

substrate, seed country/state origin nested within the seed origin range (Spain, Czech 

Republic, Nebraska, Illinois), seed range origin (invasive and native range of C. arvense) and 

insect addition treatment (no addition, aboveground insect addition: C. rubiginosa, R. conicus, 

U. cardui, only underground C. pigra addition, above and underground insects addition). 

To analyze whether addition of each herbivore insect alone has effect on plant 

performance, we compared performance of a plant with addition of a single insect species to 

performance of a plant originating from the same mother plant without any insect addition. 

We compared these two groups of plants using Wilcoxon matched pairs test in Statistica 10. 

To express the strength of this effect we calculated the proportional change in size due to 

herbivory h as: 

Ph = (Sc-Sh)/Sc 

where Sc is size of control plant and Sh is size of the corresponding plant with 

herbivore h. Positive value indicates that control plant is larger than plant with the herbivore 

and the herbivore thus reduces plant growth. We did this calculation for each of the 4 

herbivore species. In addition, we did this calculation for all the three aboveground insects 

together (i.e. Sh was size of a plant with all the three aboveground insects together). This 

information was used for comparing with the underground herbivore below.  

To analyze if adding multiple herbivores had higher or lower effect than would be 

expected from addition of each herbivore separately we defined expected effect of herbivores 

h1 and h2 as:  

EPh12 = Ph1 + Ph2 

We compared this expected value with observed effect of herbivores h1 and h2 in 

combination. This was defined as  

 OPh12 = (Sc-Sh12)/Sc 
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The observed and expected values EPh12 and OPh1 were compared using Wilcoxon matched 

pairs test in Statistica 10. 

 To express to what degree the effect of combining multiple insects differs from the 

observed effect we calculated strength of the effect as  

 PCh12 = (OPh12 - EPh12) / EPh12. 

Positive PC (proportional effect of combination) value indicates that combination of multiple 

insects on a single plant has stronger effect than would be expected based on simple additive 

effect. This calculation was done for all pairs of the three aboveground insects as well as for 

combination of all the three aboveground insects together. It was also done for combination of 

the belowground herbivore with the three aboveground insects.  

 

Results 

Individual species addition 

Main effect of none of the insects on any dependent variable was significant. In contrast, there 

were many significant interactions between insect addition and year and insect addition and 

distribution range indicating that the effects of herbivores strongly varies between ranges and 

between years. 

Strong variation between years was visible in the effect of C. rubiginosa on flower head 

biomass per plant (Table 3) and number of flower heads (Fig 1, Table 3). C. rubiginosa had a 

significant negative effect on flower head biomass and number of flower heads in plants from 

the invasive range and in poor substrate in 2008 compared to control plants, but there was no 

significant effect in 2009 (Appendix 2 A ). The effect of C. rubiginosa on flower head 

biomass and number of flower heads was significant in the whole dataset in 2008 but not in 

2009, and was also significant on healthy root biomass in plants from the native range in the 

rich substrate (Appendix 2 L). The effect of C. rubiginosa on plant height and aboveground 

biomass was not significant in any case. 

Similarly to C. rubiginosa also the effect of R. conicus on flower head biomass 

interacted with year and seed source distributional range (Table 3). Plants grown from seed 

collected in the native range with addition of R. conicus had more flower head biomass than 

plants with no R. conicus addition in the first year. However, in the second year, flower head 

biomass dropped dramatically (Fig. 2) and plants from the native range had lower flower head 
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biomass with R. conicus added than did plants from the introduced range. Individual addition 

of R. conicus had a significant negative effect on height in plants from the invasive range and 

poor substrate, in 2008 (Appendix 2 B). In the next year it had a negative effect on plant 

height in both ranges and substrates (all groups, Appendix 2 B). R. conicus had a significant 

negative effect on aboveground biomass in plants from the invasive range and rich substrate, 

in 2008 (Appendix 2 B) and on root:shoot ratio in plants from the native range in poor 

substrate (Appendix 2 M). It had, however, no effect on flower head biomass and number of 

flower heads. 

The effect of U. cardui on flower head biomass strongly varied between years and 

distribution ranges (Table 3). Individual addition of U. cardui in 2008 had a significant 

negative effect on plant height, aboveground biomass, flower head biomass and number of 

flower heads, comparing to control plants except for plants from the native range in the rich 

substrate, where the gall former insect had positive effect on plants (Appendix 2 C). The 

effect was also significantly positive on aboveground biomass in plants from the invasive 

range in the poor substrate and in the native range in the rich substrate in 2008 (Appendix 2 

C). In 2009 the gall former had a negative effect on plant height in the invasive range and 

poor substrate (Appendix 2 C) but effect in other parameters was not significant in any other 

case. U. cardui did not have any effect on any root growth parameter. 

Individual addition of the underground herbivore C. pigra did not have any effect on 

aboveground biomass, plant reproduction, root biomass and root length (Table 5) but it had a 

significant negative effect on plant height in plants from the invasive and native range and 

rich substrate (also in all groups) (Appendix 2 D). 

Multiple species addition 

 In plants with addition of all aboveground insects, aboveground biomass, number of 

flower heads and flower head biomass (Fig.4) were higher (Table 3), but this difference was 

larger in 2008 than in 2009 and larger in the native range than in the invasive. Flower head 

biomass and number of flower heads were not significantly different in combination of all 

aboveground insects than in single insect additions. 

Height was affected by the combination of all three aboveground insects in 2009, 

having plants with all three aboveground insect addition shorter shoots (Fig.5, Table 4). Triple 

combination of the aboveground insects was stronger than expected in 2009 for plant height 

and in 2008 for aboveground biomass (Appendix 2 E). 
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Combination of C. rubiginosa and R. conicus addition in interaction with substrate had 

a negative effect on flower head biomass and number of flower heads (Table 3), decreasing in 

the poor soil substrate in both years. When comparing effect of C. rubiginosa and R. conicus 

added in combination to the expected effect from their individual addition, the combination 

had stronger effect on plant height and aboveground biomass in plants from the invasive 

range in the poor substrate. The effect was significantly weaker than could be expected from 

the single insects in plants from the invasive range in the rich substrate in 2008 (Appendix 2 

H). In the overall tests, C. rubiginosa and R. conicus in combination had stronger effects than 

expected from their separate effect only on plant height in 2009. The effect of addition of this 

insect combination on root growth parameters and total plant biomass did not significantly 

differ from the addition of the two insects added separately. 

The C. rubiginosa and U. cardui combined addition negatively affected plant height 

and aboveground biomass in plants from the invasive range in the poor substrate in 2008 

(Appendix 2 I), the effect on plant height and aboveground biomass was negative in plants 

from the native range in the rich substrate in 2009 (Appendix 2 I). The effect of C. rubiginosa 

and U. cardui in 2009 on healthy root biomass and root:shoot ratio in plants from the native 

range in rich substrate and on root length in plants from the native range in poor substrate was 

stronger than the expected of both insects when added separately (Appendix 2 N) The overall 

effects of their combined addition were, however, never significant in aboveground growth 

parameters, but were significant for healthy root biomass and root length (Appendix 2 N). The 

C. rubiginosa and U. cardui was not significantly different than single addition in flower head 

biomass nor number of flower heads (Appendix 2 I). This indicates that in most cases their 

combined effect corresponds to effect expected from their single addition. 

When adding the combination of R. conicus and U. cardui, flower head biomass 

decreased in comparison with control plants but in the native range in the rich substrate flower 

head biomass increased in plants with this combination of insects (Table 3, Fig.4). Comparing 

with expected values from single insect addition, combined addition of R. conicus and U. 

cardui had stronger effect than expected on aboveground biomass in the invasive range and 

poor substrate in 2008 and in the native range in the rich substrate in 2009 (Appendix 2 J), but 

did not differ from single insect addition in plant height, flower head biomass, number of 

flower heads and none of the root growth parameters. 

 In the combination of all the aboveground insects with the underground C. pigra, the 

effect was stronger than expected only for plant height in 2009 (Fig. 5, Appendix 2 G). When 

tested for each treatment separately, the effect was stronger than expected for plant height in 
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rich substrate for native plants in 2009 and for aboveground biomass for invasive plants in 

poor substrate in 2009 (Fig. 5, Appendix 2 G).  

Addition of all aboveground insects in interaction with type of substrate had a positive 

effect on root:shoot ratio (Table 5), with plants growing from seeds from the invasive range 

and in poor substrate having higher healthy root biomass. Addition of all aboveground insects 

had an overall negative effect for plant height. This combination had also a more significant 

negative effect than expected on healthy root biomass, damaged root biomass and root length 

in plants from the invasive range in poor substrate type and in all groups, except for healthy 

root biomass (Appendix 2 K); also had a more negative effect on root:shoot ratio in native 

range and poor substrate plants than expected and in all groups(Appendix 2K). 

Total plant biomass was negatively affected by all aboveground insect addition (Table 

5), insect addition reducing total plant biomass. Total plant biomass was also affected by 

distribution range, substrate, country, and country in interaction with C. pigra addition (Table 

5) having plants in the invasive range and in rich substrate more total biomass. Combination 

of all the aboveground insects + C. pigra did not have any effect on any root growth 

parameter nor total plant biomass. In contrary, the overall effects of the combined all 

aboveground insect addition were more negative than the expected.  

 

Discussion  

Effects individual herbivores 

The insects used in this study have been promoted as biocontrol agents based on 

encouraging results in earlier experimental situations. For example, U. cardui caused stunted 

growth and reduced flowering of thistle C. arvense (Peschken, Harris 1975, Forsyth, Watson 

1985). Also, R. conicus attacks on musk thistle (Carduus nutans L.) appear to be successful in 

reducing weed infestations in many locations (Gassmann, Kok 2002), but not necessarily 

(Louda 1998). 

Bacher (2000) found that C. rubiginosa has a negative effect on shoot growth in native 

C. arvense. In our study, we surprisingly found a negative effect of folivore C. rubiginosa on 

flower head biomass and number of flower heads in plants from both ranges in 2008 but not 

on total biomass and plant height. Our results on negative effect of the folivor on root biomass 

contrast with those from another experimental study in the invasive range (Cripps et al. 2010) 
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where C. rubiginosa folivory had a positive effect on C. arvense root biomass, but no effect 

on other growth parameters.  

It has been demonstrated in many studies under controlled conditions that the gallfly 

U. cardui has profound negative effects on life history traits of its host C. arvense (Sole 

2007). Therefore, it is not surprising the result in this study that U. cardui reduced C. arvense 

growth and reproduction, even though there was no impact on root growth. It is contrasting, 

though, with results in the invasive range (Reet et al. 2006) where U. cardui did not have any 

impact on plant height and flower head number, declaring effect of this insect on C. arvense 

growth in the invasive range as not so important. 

There are many studies on effect of R. conicus on native North American thistles (Arnett, 

Louda 2002) or European Carduus nutans (Jongejans 2006), however, not so much is studied 

about the effect of R. conicus on C. arvense in its native range. Even it is reported R. conicus 

did not reduce North American C. arvense growth (Arnett, Louda 2002), significant negative 

effect on plant growth of the flower head weevil was found in our study, confirming the result 

of non-impact in invasive range also in its native range. 

Our results on C. pigra effect contrast to those of Forsyth (1983 and references within), where 

C. arvense with C. pigra had higher aboveground biomass in the invasive range that the 

control plants. We did not find a positive effect of C. pigra on aboveground biomass but 

rather a negative effect on plant height in plants grown from invasive and native seeds in the 

native range. Addition of C. pigra did not, however, reduce or increase root biomass nor root 

length. This is consistent with the result of Ang et al. (1995) suggesting that no root feeders 

can cause substantial damage to C. arvense biomass. Even Schadler (2004) found C. pigra 

damage in C. arvense roots in Germany but the effect on root growth was not analyzed. 

Andrzejewska et al. (2006) found in Poland C. pigra negatively impacts Silybum marianum 

crop yield, but this difference in results is probably caused by C. arvense big clonal growth 

and root system. 

Most effective herbivore hypothesis vs. the complementary herbivore 
hypothesis 

James et al. (1992), Hufbauer and Root (2002) and Juenger and Bergelson (1998) supported 

the complementary herbivore hypothesis by showing that combined effects of paired insects 

reduce growth of Senecio jacobea, Solidago altissima and Ipomopsis agg. more than when 

added separately. In this present study, paired combinations C. rubiginosa + R. conicus, C. 

rubiginosa+U. cardui and R. conicus+U. cardui have been tested on C. arvense and larger 
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effect on the plant was found for double insect addition than would be expected based on the 

single insect addition. This was, however, true only for some treatments in some years.  

Although above and underground plant organs are interconnected, most research studying 

plant-insect interactions focused either on root herbivory or on shoot herbivory in isolation 

(Bezemet et al. 2003). Root herbivory has been reported to reduce foliar feeding insect 

performance (Gange 2001). In our study we used both a root herbivore and representatives of 

the aboveground herbivore guilds (foliar leaf beetle, floral flower head weevil, gall forming 

stem-feeder). Therefore, in addition to quantifying the effect of foliar, floral and stem 

herbivory, we found that the above and belowground insects combined reduced plant height 

(native range) and aboveground biomass (invasive range) in certain years and substrates, but 

did not reduce root biomass (with the exception of C. rubiginosa and U. cardui combination, 

which reduced some root parameters in the native range), showing that C. arvense clonal root 

growth can not be easily controlled. So, even it is thought that root feeders can have a large 

impact on plant roots (Rasman, Agrawal 2008) we did not find any effect on root growth. 

The results in this study partially support the complementary herbivore hypothesis since effect 

of addition of insects was bigger than when added separately. The effect was, however, not 

always significant suggesting that the insects are complementary under some circumstances 

but not under other.  

 

Conclusion 

The study showed that all the four tested insect species can reduce growth of C. arvense when 

added separately. Effect of the insects was significant only in some years and for some 

response variables. Surprisingly, the leaf feeding C. rubiginosa affected mainly flower head 

biomass and number of flower heads but had no effect on plant height and aboveground 

biomass. In contrast, the flower head feeding R. conicus had effect mainly on plant height and 

aboveground biomass. The gall forming U. cardui affected all the size measures. The root 

boring C. pigra significantly affected only plant height. All this indicates that the different 

insect species have a differential effect on various measures of plant performance. In addition, 

the different insects had effects in different years, in different substrates and for plants from 

different ranges. All this suggests that a combination of multiple herbivores could be a better 

approach for controlling the plant than adding a single insect species as the insects seem to be 

largely complementary. This complementarity between the insects was observed for all the 
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combinations. The effect of multiple insects on a single plant was generally stronger than 

expected from their simple addition. This effect was, however, significant only in some years, 

for some response variables, for some substrates and some plant origins. In a few cases, 

combination of the insects had significantly weaker effect than expected. 

All the studied insects had been used as biological control on C. arvense but never had strong 

large scale impact on reducing populations in North America and New Zealand (Jacobs 2006, 

Cripps et al. 2011). Even though we found negative effect of insect addition on C. arvense 

growth and reproduction in some substrate types and distribution ranges, we suggest being 

cautious on release of C. rubigonosa, U. cardui, R. conicus and suggest that C. pigra will not 

be a successful control agent. 
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Figures and Tables 

Figure 1. Effect of C. rubiginosa addition, distribution range and year of measurement on number of flower 

heads per plant. 

 

 

 

Figure 2. Effect of R. conicus addition, distribution range and year of measurement on flower head biomass. 
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Figure 3. Effect of U. cardui addition, distribution range and year of measurement on flower head biomass. 

 

Figure 4. Effect of all insect addition treatments, distribution range and year of measurement on number of 

flower heads. 
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Figure 5. Effect of all aboveground insect addition, underground insect addition and aboveground+underground 

treatments, distribution range and year of measurement on aboveground biomass. 
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Table 1. Location and climate information from sample sites, where seeds for the herbivory experiment were 

collected. 

Distribution 
range Population Altitude Latitude 

(m.) Climate 

Spain  N 41º 29' 40''           
E 1º 19' 27'' 703 

Short moderate winters, long, 
hot and dry summers, 

mediterranean continental 
climate 

Native 

Czech 
Republic  

N 49º 51' 06''           
E 14º 12' 37'' 460 

Long, cold winters, short 
summers, continental 

climate.  

Nebraska N 40 º 54' 00''         
W 96 º 23' 13'' N  338 

Cold winters, long, hot 
summers, humid continental 

climate.  

Invasive 

Illinois  N 41° 19' 16.10"      
W 89° 55' 58.99" 237 

Cold winters, long, hot 
summers, humid continental 

climate 

 

Table 2. Chemical composition of the two substrates used in the experiment. The values are mean values from 

10 samples (p < 0.001 for all tests), standard errors are shown. 

Substrate g. kg-1 
Nitrogen 

 g. kg-1 
Total soil 
Carbon 

  g. kg-1 
Soil carbon 

in 
Carbonates 

 g. kg-1 
Soil 

organic 
Carbon 

Phosphorus 
(mg/1000g) 

Poor 
0.72               

Mean +- SE 
0.003 

1.21               
Mean +- SE 

16.473 

0.04               
Mean +- SE 

0.003 

1.14                
Mean +- SE 

16.474 

62.14            
Mean +- SE 

< 0.001 

Rich 
0.88               

Mean +- SE 
0.003 

8.42               
Mean +- SE 

0.022 

1.11               
Mean +- SE 

0.007 

7.31               
Mean +- SE 

0.023 

2.46               
Mean +- SE 

2.722 
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Table 3. Effect of individual species (C. rubiginosa, R. conicus, U. cardui), and combinations of these 

aboveground herbivore species in the insect addition experiment, with  year of measurement, type of soil 

substrate and distribution range source of seed origin on C. arvense aboveground growth and reproduction. R2 

values for significant factors are shown, where *** means p-values < 0.0001, ** means p-values < 0.001 and * 

means p-values < 0.05. 

  Height Aboveground 
biomass 

Flower 
head 

biomass 

Flower 
head 

biomass 

Number of 
flowers 
heads 

Covariate       Aboveground 
biomass    

Cassida rubiginosa addition n.s. n.s. n.s. n.s. n.s. 

Rhynocillus conicus addition n.s. n.s. n.s. n.s. n.s. 

Urophora cardui addition n.s. n.s. n.s. n.s. n.s. 

Year * C. rubiginosa addition  n.s. n.s. 0.008 **   0.008 ** 0.012 *** 

Range * Year * R. conicus 
addition n.s. n.s. < 0.0001 * 0.003 * n.s. 

Range * Year * U. cardui  
addition n.s. n.s. 0.003 * 0.003 * n.s. 

Range * Substrate * C. 
rubiginosa  * R. conicus * U. 

cardui  
n.s. n.s. 0.015 ***  0.015 ** 0.007 ** 

Range * Substrate * Year *          
C. rubiginosa  * R. conicus *      

U. cardui  
0.002 * n.s. n.s. n.s. n.s. 

Range * Year  * C. rubiginosa  * 
R. conicus * U. cardui  n.s. 0.001 * 0.013 ***  n.s. 0.004 * 

Range * C. rubiginosa  * R. 
conicus * U. cardui  n.s. n.s. n.s. n.s. 0.007* 

Year  * C. rubiginosa  * R. 
conicus * U. cardui  n.s. n.s. n.s. n.s. 0.004 * 

Range * C. rubiginosa  * R. 
conicus  n.s. n.s. n.s. n.s. n.s. 

Substrate * C. rubiginosa  * R. 
conicus  n.s. n.s. 0.003 * 0.003 * 0.004 * 

Range * Substrate * R. conicus 
* U. cardui  n.s. n.s. 0.003 * n.s. n.s. 
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Table 4. Effect of combined aboveground (C. rubiginosa, R. conicus, U. cardui) and underground (C. pigra) 

insect addition, year of measurement, type of substrate and seed range of distribution origin on C. arvense 

aboveground growth and reproduction. R2 values for significant factors are shown, where *** means p-values < 

0.0001, ** means p-values < 0.001 and * means p-values < 0.05  

  Height Aboveground 
biomass 

Flower 
head 

biomass 

Flower 
head 

biomass 

Number of 
flower 
heads 

Covariate       Aboveground 
biomass    

Aboveground insect addition 0,009 * n.s. n.s. n.s. n.s. 

Underground insect addition n.s. n.s. n.s. n.s. n.s. 
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Table 5.Effect of combined aboveground (C. rubiginosa, R. conicus, U. cardui) and underground (C. pigra) insect addition, year of measurement, type of substrate and seed 

range of distribution origin on C. arvense root growth and total plant biomass. R2 values for significant factors are shown, where *** means p-values < 0.0001, ** means p-

values < 0.001 and * means p-values < 0.05  

  Df Healthy root 
biomass 

Damaged root 
biomass 

Dead root 
biomass Root length Root:shoot 

ratio 
Total plant 
biomass 

Covariate     Healthy + damaged 
root biomass 

Healthy + damaged 
+ dead root 

biomass 
      

Aboveground insect addition 1 n.s. n.s. 0.018 * n.s. n.s. 0.020 * 

Underground insect addition 1 n.s. n.s. n.s. n.s. n.s. n.s. 

 Distribution range : Aboveground insect addition 1 n.s. n.s. n.s. n.s. n.s. n.s. 

Substrate : Aboveground insect addition 1 n.s. n.s. 0.015 * n.s. 0.019 * n.s. 

 Distribution range : Underground insect addition 1 n.s. n.s. n.s. n.s. n.s. n.s. 

Substrate : Underground insect addition 1 n.s. n.s. n.s. n.s. n.s. n.s. 

Aboveground insect addition : Underground insect addition 1 n.s. n.s. n.s. n.s. n.s. n.s. 

Country of origin : Aboveground insect addition  2 n.s. n.s. n.s. n.s. n.s. n.s. 
Distribution range : Substrate : Aboveground insect 

addition  1 n.s. n.s. n.s. n.s. n.s. n.s. 

Country of origin : Underground insect addition 2 n.s. 0.015 * n.s. n.s. n.s. 0.019 * 

Substrate : Aboveground insect addition : Underground 
insect addition  1 n.s. n.s. n.s. n.s. n.s. n.s. 

Country of origin : Substrate : Aboveground insect addition  2 n.s. 0.035 *** n.s. n.s. 0.027 * n.s. 

Country of origin : Aboveground insect addition  : 
Underground insect addition  2 n.s. 0.019 * n.s. n.s. n.s. n.s. 

Distribution range : Substrate : Aboveground insect 
addition  : Underground insect addition  1 n.s. n.s. n.s. n.s. n.s. n.s. 

Country of origin:Distribution range : Substrate : 
Aboveground insect addition  : Underground insect 

addition  
2 n.s. n.s. n.s. n.s. 0.025 * n.s. 
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Appendices: 

Appendix 1. Number of insects added per plant. 

Year of addition 2008 2009 
Insects Larvae Adults Larvae Adults 

Cassida rubiginosa 4  4  
Rhinocyllus conicus   4 (♂/♀)   4 (♂/♀) 

Urophora cardui   4 (♂/♀)   4 (♂/♀) 
Cleonis pigra       1 (♀) 

 
Appendix 2. Effect of insect addition on plant height, aboveground biomass, flower head biomass, number of 

flower heads comparing with control plants in native and invasive range, poor and rich type of substrate, in 2008 

and 2009 and in both ranges and substrates toghether (All groups). Only those parameters which resulted 

significant are shown in the table (but all growth and reproduction parameters were analysed in all insect 

treatments). Significant negative effect of the treatment on the parametr is shown by a “+” sign and significant 

positive effect of the treatment on the parametr is shown by a “-“sign. 

A) 

Treatment Parameter Distribution 
range 

Poor 
2008 

Rich 
2008 

Poor 
2009 

Rich 
2009 

All 
groups 
2008 

All 
groups 
2009 

Cassida 
rubiginosa 

Flower head 
biomass Invasive  + 0 0 0 

Cassida 
rubiginosa 

Flower head 
biomass Native 0 0 0 0 

+ 0 

Cassida 
rubiginosa 

Number of 
flower heads Invasive  + 0 0 0 

Cassida 
rubiginosa 

Number of 
flower heads Native 0 0 0 0 

+ 0 

 
B) 

Treatment Parameter Distribution 
range 

Poor 
2008 

Rich 
2008 

Poor 
2009 

Rich 
2009 

All 
groups 
2008 

All 
groups 
2009 

Rhynocillus 
conicus Plant height Invasive  + 0 + + 

Rhynocillus 
conicus Plant height Native 0 0 + + 

+ + 

Rhynocillus 
conicus 

Aboveground 
biomass Invasive  0 + 0 0 

Rhynocillus 
conicus 

Aboveground 
biomass Native 0 0 0 0 

0 0 
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C) 

Treatment Parameter Distribution 
range 

Poor 
2008 

Rich 
2008 

Poor 
2009 

Rich 
2009 

All 
groups 
2008 

All 
groups 
2009 

Urophora cardui Plant height Invasive  + + + 0 

Urophora cardui Plant height Native + - 0 0 
+ 0 

Urophora cardui Aboveground 
biomass Invasive  - + 0 0 

Urophora cardui Aboveground 
biomass Native + - 0 0 

+ 0 

Urophora cardui Flower head 
biomass Invasive  + + 0 0 

Urophora cardui Flower head 
biomass Native + - 0 0 

+ 0 

Urophora cardui Number of 
flower heads Invasive  + + 0 0 

Urophora cardui Number of 
flower heads Native + - 0 0 

+ 0 

 
D) 

Treatment Parameter Distribution 
range 

Poor 
2009 

Rich 
2009 

All 
groups 
2009 

Cleonis pigra Plant height Invasive  0 + 

Cleonis pigra Plant height Native 0 + 
+ 
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E) 

Treatment Parameter Distribution 
range 

Poor 
2008 

Rich 
2008 

Poor 
2009 

Rich 
2009 

All 
groups 
2008 

All 
groups 
2009 

C.rubiginosa + 
R.conicus + 

U.cardui 
Plant height Invasive  0 + 0 + 

C.rubiginosa + 
R.conicus + 

U.cardui 
Plant height Native 0 0 0 0 

0 + 

C.rubiginosa + 
R.conicus + 

U.cardui 

Aboveground 
biomass Invasive  0 + 0 0 

C.rubiginosa + 
R.conicus + 

U.cardui 

Aboveground 
biomass Native 0 0 0 - 

+ 0 

 

F) 

Treatment Parameter Distribution 
range 

Poor 
2008 

Rich 
2008 

Poor 
2009 

Rich 
2009 

All 
groups 
2008 

All 
groups 
2009 

Aboveground 
insects Plant height Invasive  0 0 0 0 

Aboveground 
insects Plant height Native 0 - 0 0 

0 0 

Aboveground 
insects 

Aboveground 
biomass Invasive  0 0 0 0 

Aboveground 
insects 

Aboveground 
biomass Native 0 0 0 0 

0 + 

 
G) 

Treatment Parameter Distribution 
range 

Poor 
2009 

Rich 
2009 

All 
groups 
2009 

Aboveground 
insects + C.pigra  Plant height Invasive  0 0 

Aboveground 
insects + C.pigra  Plant height Native 0 + 

+ 

Aboveground 
insects + C.pigra  

Aboveground 
biomass Invasive  + 0 

Aboveground 
insects + C.pigra  

Aboveground 
biomass Native 0 0 

0 
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H) 

Treatment Parameter Distribution 
range 

Poor 
2008 

Rich 
2008 

Poor 
2009 

Rich 
2009 

All 
groups 
2008 

All 
groups 
2009 

C.rubiginosa + 
R.conicus Plant height Invasive  + - + + 

C.rubiginosa + 
R.conicus Plant height Native 0 0 - + 

0 + 

C.rubiginosa + 
R.conicus 

Aboveground 
biomass Invasive  + 0 0 0 

C.rubiginosa + 
R.conicus 

Aboveground 
biomass Native 0 0 0 + 

0 0 

 

I) 

Treatment Parameter Distribution 
range 

Poor 
2008 

Rich 
2008 

Poor 
2009 

Rich 
2009 

All 
groups 
2008 

All 
groups 
2009 

C.rubiginosa + 
U.cardui  Plant height Invasive  + 0 0 0 

C.rubiginosa + 
U.cardui  Plant height Native 0 0 0 + 

0 0 

C.rubiginosa + 
U.cardui  

Aboveground 
biomass Invasive  + 0 0 0 

C.rubiginosa + 
U.cardui  

Aboveground 
biomass Native 0 0 0 + 

0 0 

 

J) 

Treatment Parameter Distribution 
range 

Poor 
2008 

Rich 
2008 

Poor 
2009 

Rich 
2009 

All 
groups 
2008 

All 
groups 
2009 

R.conicus + 
U.cardui 

Aboveground 
biomass Invasive  + 0 0 0 

R.conicus + 
U.cardui 

Aboveground 
biomass Native 0 0 0 + 

0 0 
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K) Effect of aboveground insect, Cassida r., R.conicus,C. rubiginosa+R. conicus, C. rubiginosa+U. cardui R. 

conicus+U. cardui addition on healthy root biomass, damaged root biomass, root lenght, root:shoot ratio and 

total plant biomass comparing with control plants in native and invasive range, poor and rich type of substrate, in 

2009 and in both ranges and substrates toghether (All groups). Only those parameters which resulted significant 

are shown in the table (but all growth and reproduction parameters were analysed in all insect treatments). 

Significant negative effect of the treatment on the parametr is shown by a “+” sign and significant positive effect 

of the treatment on the parametr is shown by a “-“sign. 

 

Treatment Parameter Distribution 
range 

Poor 
2009 

Rich 
2009 

All 
groups 
2009 

C.rubiginosa + 
R.conicus + 

U.cardui 

Healthy root 
biomass Invasive  + 0 

C.rubiginosa + 
R.conicus + 

U.cardui 

Healthy root 
biomass Native 0 0 

0 

C.rubiginosa + 
R.conicus + 

U.cardui 

Damaged 
root biomass Invasive  + 0 

C.rubiginosa + 
R.conicus + 

U.cardui 

Damaged 
root biomass Native 0 0 

+ 

C.rubiginosa + 
R.conicus + 

U.cardui 
Root lenght Invasive  + 0 

C.rubiginosa + 
R.conicus + 

U.cardui 
Root lenght Native 0 0 

+ 

C.rubiginosa + 
R.conicus + 

U.cardui 

Root:shoot 
ratio Invasive  0 0 

C.rubiginosa + 
R.conicus + 

U.cardui 

Root:shoot 
ratio Native + 0 

+ 

C.rubiginosa + 
R.conicus + 

U.cardui 

Total plant 
biomass Invasive  0 0 

C.rubiginosa + 
R.conicus + 

U.cardui 

Total plant 
biomass Native 0 0 

+ 
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L) 

Treatment Parameter Distribution 
range 

Poor 
2009 

Rich 
2009 

All 
groups 
2009 

Healthy root 
biomass Invasive  0 0 

Cassida 
rubiginosa Healthy root 

biomass Native 0 + 
0 

 
M) 

Treatment Parameter Distribution 
range 

Poor 
2009 

Rich 
2009 

All 
groups 
2009 

Root:shoot 
ratio Invasive  0 0 

Rhynocillus 
conicus Root:shoot 

ratio Native + 0 
0 

 
N) 

Treatment Parameter Distribution 
range 

Poor 
2009 

Rich 
2009 

All 
groups 
2009 

C.rubiginosa + 
U.cardui  

Healthy root 
biomass Invasive  0 0 

C.rubiginosa + 
U.cardui  

Healthy root 
biomass Native 0 + 

+ 

C.rubiginosa + 
U.cardui  Root lenght Invasive  0 0 

C.rubiginosa + 
U.cardui  Root lenght Native + 0 

+ 

C.rubiginosa + 
U.cardui  

Root:shoot 
ratio Invasive  0 0 

C.rubiginosa + 
U.cardui  

Root:shoot 
ratio Native 0 + 

0 

C.rubiginosa + 
U.cardui  

Total plant 
biomass Invasive  0 0 

C.rubiginosa + 
U.cardui  

Total plant 
biomass Native 0 0 

0 
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Abstract 
The Evolution of Increased Competitive Ability hypothesis (EICA) suggests that 

plants from the invasive range should perform better than plants of the same species from 
the native range. To properly test this, we need to compare growth of plants from the two 
ranges in a common environment. Ideally, all the natural enemies should be excluded, to 
make sure that the differences are not due to different response of plants from the two 
ranges to the natural enemies. We used the above design to examine the difference in 
growth and reproduction in Cirsium arvense plants from the invasive (North America) 
and native range (Europe). To account for possible differences within the ranges, we used 
plants from two regions, separated by at least 1000 km, in each range. Because the higher 
performance of species from the invasive range can be caused by their higher ability to 
acquire resources we compared growth of the plants in two different nutrient levels. The 
results indicate that plants from the invasive range are larger in most size parameters as 
well as parameters more closely related to fitness. For aboveground biomass, the 
response of plants from the invasive range to nutrient addition was weaker than that of 
plants from the native range and the difference between the ranges was stronger in the 
nutrient poor substrate. The results are in agreement with the EICA hypothesis and 
suggest that plants from the invasive range have higher ability to use resources and are 
thus able to perform well also in nutrient poor conditions.  
© 2011 Elsevier GmbH 
Keywords: Canada thistle, noxious weeds, Europe, North America, clonal growth, EICA hypothesis. 

 

Introduction 
Plant invasion is an important problem for natural and agronomic systems, and a 

major threat to global biodiversity (Vitousek, 1990; Wilcove et al. 1998). There is a wide 
range of hypotheses on the possible mechanisms of plant invasiveness (Catford et al. 
2009). To understand these mechanisms, comparative studies including invasive species 
are needed (Williams et al. 2009; van Kleunen et al. 2010). The most commonly 
performed types of studies are those comparing plants invasive and native to a given area, 
or non-native, invasive species with non-native, non-invasive species that are naturalized 
(e.g. Jeschke and Strayer 2006; Pysek and Richardson 2007; Garcia-Serrano et al., 2009), 
or populations of the same species from the native and invasive range (e.g. Bossdorf et al 
2005; Zou et al. 2007; Colautti et al. 2009).  

Comparing populations of the same species from the native and invasive range is 
the major type of the study that can be used to test the Evolution of Increased 
Competitive Ability hypothesis (EICA), which predicts that plants in its invasive range 
allocate more to growth than to defense (Blossey and Nötzold, 1995). As a result, 
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populations in the invasive range have improved competitive abilities. The Enemy 
Releases Hypothesis (ERH) originated as an extension of the EICA (Keane and Crawley, 
2002). This hypothesis says that the invasive potential of some non-indigenous species 
may be enhanced due to absence of natural enemies such as specialist herbivores in the 
introduced range (e.g., Keane and Crawley 2002; Torchin and Kuris 2002; Mitchell and 
Power 2003; Colautti et al. 2004; Carpenter and Cappuccino 2005). According to this 
hypothesis, growth of invasive plants in the introduced range will be higher than that in 
the native range due to absence of natural enemies. To identify if the differences between 
the ranges are due to ERH, or if there are additional differences suggested by the EICA, it 
is crucial to grow plants from the two ranges in a common environment. As demonstrated 
by Williams et al. (2008), conclusions on the possible differences between the native and 
invasive range depend on the environment in which the plants are cultivated. It is thus 
important to perform such an experiment in more than one type of environments.  

Despite the fact that herbivores are predicted to be the main agents responsible for 
the differences in performance between the two ranges, most of the experiments were 
carried out in common gardens and plants were thus exposed to native herbivores. 
However, in a strict experimental approach, natural herbivores such as insects and 
mammal herbivores should be excluded (van Kleunen and Schmid 2003; Blair and Wolfe 
2004; Williams et al. 2008).  

In this study, we compared growth of Cirsium arvense from the invasive and 
native range to see if the plants from the invasive range showed signs of increased 
competitive ability. C. arvense has many natural enemies, such as the insect Cassida 
rubiginosa (Kruess, 2002), which attacks leaves, aphids and nematodes (Bezemer et al., 
2004), sap-sucking herbivores, or fungal pathogens (Guske et al., 2004) Aboveground 
natural enemies were excluded in our experiment. However, we did not exclude all the 
soil natural enemies as not all the soil used for the experiment could be sterilized. We 
thus studied performance of the plants in absence of aboveground enemies and with 
reduced amount of belowground enemies.  

Common garden studies are increasingly used to identify differences in 
phenotypic traits between native and introduced genotypes, but they often ignored 
possible differences among populations within each range (Colautti et al., 2009). To take 
this into account, we used plants from two distant countries/states from each range.  

Higher performance in the experiment of plants from the invasive range can be 
caused by their higher ability to acquire resources (Erfmeier and Bruelheide, 2004) and 
the outcome of the experiment may depend on the conditions under which the plants are 
cultivated (Williams et al., 2008). We thus compared growth of the plants under two 
different nutrient levels under controlled conditions.  

Specifically, we addressed the following questions: (i) Do plants of Cirsium 
arvense from the native and invasive range differ in growth and reproduction? (ii) Are 
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there any interactions between plant origin (native and invasive range) and the type of 
substrate? We predict that plants from the invasive range grow better and show overall 
higher fitness, as predicted by EICA. We also predict that plants from the invasive range 
have better ability to use resources even in nutrient poor conditions. Therefore, their 
responses to nutrient addition should be weaker than that of plants from the native range. 
 

Material and methods 
Study system 

Cirsium arvense (L.) Scop. (Asteraceae) is a perennial herb with prickly leaves, 
erect stems 0.5 – 1.0 m tall, and an extensive creeping rootstock (Nuzzo, 1997). It is a 
dioecious species and also reproduces by clonal growth. C. arvense is native to south-
eastern Europe and the eastern Mediterranean (Moore, 1975), possibly also to northern 
Europe, western Asia and northern Africa (Detmers, 1927; Amor and Harris, 1974). At 
least, it is an archeophyte there. This species was introduced to North America in the 
1600's as a contaminant of grain seed (Jacobs et al., 2006). It is also invasive in parts of 
Africa, the Middle East, India, Japan, New Zealand, Australia and South America (Julien 
and Griffiths, 1998). It is one of the most problematic weeds in North America (Moore, 
1975; Pritekel et al., 2010), where there was an attempt to manage its invasion by 
classical biological control (Schroeder, 1980; Peschken, 1984; McClay et al., 2001). The 
species is considered dioecious, but in fact many individuals are hermaphrodite (Kay 
1985). 
 
Sampling sites  

Cirsium arvense seeds were collected in June, July and August 2007 in two 
continents, representing the native and invasive range of the species (more information on 
sites in Table 1). All the four sampling sites were abandoned fields in agricultural 
landscapes. Using this design we covered large parts of both the native and invasive 
range, with populations in the native range being 2000 km apart and populations in the 
invasive range being 1200 km apart. The native and invasive ranges are 7900 km apart. 

<<< Tab. 1 
Garden experiment  

From each distribution range (invasive/native) we used plants from two countries 
as described above and five mother plants per country each selected from different 
populations if possible. Offspring (seeds) of these mother plants were grown in 2 
substrates resulting in 2 distribution ranges x 2 countries x 2 substrates x 5 replicates in 
total. 

During autumn of 2007, the collected flowerheads from all natural populations 
were dissected and seeds stored in paper bags. At the end of January 2008, seeds were 



5 

Chapter 4 

  

soaked in 10 g L-1 KMnO4 solution for 10 min to prevent fungal infestation. Seeds were 
placed in pots filled with sand and covered with a metal net with 1 mm mesh size to 
avoid insect feeding. These pots were buried underground in an experimental garden for 
stratification to enhance seed germination in spring. In March 2008, seeds were extracted 
from the sand and five seeds each were sowed in 5 cm x 5 cm pots in a greenhouse 
without heating. After three weeks, we kept one well established seedling in each pot and 
removed the others. The seedlings were planted in a common garden in April 2008.  

The experimental garden was situated in the Czech Republic (N49° 59' 40'' E14° 
33', 368 m altitude), relatively close to the area from which the Czech populations were 
sampled. Plants from the Czech Republic were thus grown in the conditions which were 
very similar to conditions of the populations from which the seeds were collected, while 
plants from the other countries were grown in conditions which differed from conditions 
from which the seeds were collected. It would be ideal to follow growth of all plants in at 
least one more experimental garden, ideally situated in the invasive range. Although this 
was originally planned, it unfortunately could not be realized. The root system of C. 
arvense is very large. Roots and rhizomes were mixed, these will be defined as “roots” in 
the text. Because we wanted to make sure that each plant had enough space to grow and 
also to fully control the environment in which the plants were grown, we could not plant 
the seedlings directly into the soil in the garden. Instead, we transplanted the seedlings 
into large pots, each made of two plastic bags (100 cm long x 75 cm in diameter, 2 mm 
thick). We used two bags for each pot to make sure that it did not tear easily. These pots 
were filled with 50 L substrate in April 2008. One 0.5 cm x 0.5 cm hole was made at the 
bottom in every bag to avoid excessive soil moisture. To study the effect of soil 
conditions on plant growth, two types of substrates were used. For the nutrient poor 
substrate, the bags were filled with sand from a quarry 100 km away from the 
experimental site. For the nutrient rich substrate, the bags were filled with soil from the 
nearby garden.  

To describe the differences between the two substrates used in the experiment, ten 
samples from each substrate type were taken in May 2010, one from each bag. Content of 
nitrogen, total carbon, carbonate carbon, organic carbon and phosphorus were measured 
in the laboratory of the Institute of Botany, Academy of Sciences of the Czech Republic. 
Content of total N and total C were analyzed following Ehrenberger and Gorbach (1973), 
carbonate content was analyzed according to ISO-Standard (10693) and available P was 
determined using the photometric methods of Olsen et al. (1954) and Olsen and Sommers 
(1982). The differences in soil conditions are described in Table 2.  

<<< Tab. 2 
The lowermost third of each bag was filled with gravel (1 cm in diameter) to 

assure drainage. Due to the high volume of substrate, all of it could not be sterilized. To 
limit germination of seeds of various weedy species from the non-sterile soil, 6 cm layer 
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of a mixture of 10:1 sterilized sand and perlite was placed on the top of the substrate. 
Adding such a layer strongly limits germination of weeds as most of the possible weedy 
species require full light for germination (pers. obs.). 

Immediately after planting the seedlings, cylindrical metal constructions, 39 cm in 
diameter and 98 cm high, were placed on the soil on each plant. White translucid 
polyamide sacks were placed over each metal construction and fastened to the outer part 
of the bags. This was done to make sure that no natural enemies were able to attack the 
plants. Radiation under the mesh was measured with a SPh 2020 photometer from 
Optické dílny Turnov, CR. The mesh decreased PAR (photosynthetic active radiation) by 
11.7%. It also changed somewhat temperature and humidity. However, this was given for 
all the studied plants in the same intensity, so that this modification of the environment 
did not affect differently the resulting growth differences of the plants.  

Plant growth was measured in the time of full flowering in August in 2008 and 
2009, respectively. Data of all plants were sampled within two days. Plant measurements 
included plant height, number of stems and number of flowerheads. Each year after the 
measurements all aboveground biomass was harvested, dried to a constant weight, and 
weighed. Because the species is dioecious in principle and, indeed, about half of the 
plants were male, it was not possible to evaluate seed production of all the plants. 
Number of flowerheads per plant can be considered as a fitness measure since it strongly 
positively correlates with number of seeds/plant in the female plants (R²= 0.62).  

During May 2010, the experimental plants were harvested. Roots were carefully 
extracted from the soil and cleaned with water to remove all the substrate. Three 
categories of roots were differentiated: healthy roots, damaged roots, and dead roots. 
Healthy roots were white. Roots were classified as damaged when they had brown color 
or had other clear signs of damage. Roots were considered as dead when they were dark 
brown and decomposing. Whereas above ground plant parts were isolated from 
herbivores with a mesh, soil pathogens could have been cause of the damage because the 
plants were planted in a non-sterile soil. The length of the healthy parts of roots wider 
than 1 mm was measured with a rule. Healthy, damaged and dead roots were weighed 
before and after drying to a constant weight.  
 
Data analysis 

To analyze the effect of plant origin (invasive or native range and country nested 
within range), soil type and year of measurement on plant growth, we used generalized 
linear models in S-Plus (2000). Plant height, aboveground biomass, number of stems and 
flowerhead biomass were taken as dependent variables and distribution range 
(invasive/native), country (nested within distribution range), soil type and year as 
independent variables. In case of flowerhead biomass, total aboveground biomass was 
used as a covariate. In this way, we studied differences in biomass allocation to 
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flowerheads rather than differences in biomass of the flowerheads. The same analysis 
without covariate was also done. Aboveground biomass, flowerhead biomass and plant 
height was analyzed using GLM with Gamma distribution, as their distribution is also 
strongly deviating from normal distribution and is right skewed (Crawley 2002).  

Data on root biomass, root length and root to shoot ratio were available only at the 
end of the experiment (in 2010). The independent variables in the root data analyses were 
distribution range (invasive/native), country (nested within distribution range) and soil 
type. Healthy root biomass, damaged root biomass, dead root biomass, length of healthy 
roots root to shoot ratio (total root biomass/aboveground biomass) and total plant biomass 
(aboveground biomass + root biomass) was analyzed using GLM assuming Gamma 
distribution. We also analyzed the proportion of damaged roots by using biomass of 
damaged roots as dependent variable and biomass of healthy root plus damaged roots as a 
covariate.  
 

Results 
Distribution range had a significant effect on aboveground biomass (Table 3) with 

plants from the invasive range being larger (Fig. 1). Country of origin nested within 
distribution range had a significant effect on aboveground biomass and number of stems 
(Table 3). Aboveground biomass and number of stems of the plants from the Czech 
Republic and Nebraska were relatively larger (after accounting for the main effect of 
distribution range) than those from Spain and Illinois (Table 3). Compared with the plants 
from the nutrient poor soil, the plants grown in the nutrient rich soil were significantly 
larger in all size parameters except for healthy root biomass (Table 3 and 4, Fig. 2). 
Flowerhead biomass (Fig. 3), number of stems and plant height (Fig. 4) were higher in 
2009 than in 2008 (Table 3). 

<<< Tab. 3 
<<< Fig. 1 (~1/4 height of page) 
<<< Fig. 2 (~1/4 height of page) 
<<< Fig. 3 (~1/4 height of page) 
<<< Fig. 4 (~1/4 height of page) 

 Aboveground biomass and number of stems were also significantly affected by 
the interaction between distribution range and soil type (Table 3). For aboveground 
biomass, plants from the native range were significantly smaller than plants from the 
invasive range in nutrient poor soil, but not in the nutrient rich soil (Figure 1). Number of 
stems was significantly different between nutrient poor and rich substrate for plants from 
the native range, but not for plants from the invasive range (Figure 5). In both cases this 
indicates that plants from the native range responded more strongly to nutrient addition 
than plants from the invasive range. 
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 Biomass allocation to flowerheads was affected by soil type and year (Table 3). 
Plants invested more biomass to flowerheads in 2008 than in 2009 and in poor substrate 
than in rich substrate (Fig. 3).  

<<< Tab. 4 
Distribution range and country significantly affected healthy root biomass (Table 

4), and plants from the invasive range had higher healthy root biomass than plants from 
the native range (Fig. 2). Proportion of damaged roots was significantly affected by 
country of origin, soil type and by the country and substrate interaction, but not by 
distribution range (Table 4). Root length was significantly affected only by soil type 
(Table 4), and plants growing in nutrient poor substrate had longer roots than those in 
nutrient rich substrate. Soil type also affected root to shoot ratio (Table 4), and it was 
higher in nutrient poor and nutrient rich substrate. Total plant biomass (aboveground + 
root biomass) was affected by soil type as well (Table 4). Plants growing in rich substrate 
had higher total biomass than those growing in the poor soil type (Fig. 6). 

<<< Fig. 5 (~1/4 height of page) 
<<< Fig. 6 (~1/4 height of page) 

 

Discussion 
Cirsium arvense plants from North America (invasive range) grew larger than 

plants from the native range. Given that our studied plants were protected from the 
majority of herbivores, this result is consistent with the EICA hypothesis (Abilasha and 
Joshi, 2009). Even though the plants were protected from aboveground natural enemies, 
the plants were not fully protected from belowground enemies as they were grown in 
non- sterile soil. Indeed, we could identify this damage as damaged roots. No difference 
in proportion of damaged roots was, however, identified between the two ranges. This 
suggests that the plants from the two ranges did not differ in their ability to defend 
themselves against soil pathogens. As the main natural enemies of C. arvense are active 
aboveground (Fitter and Peat, 1994) as well as the main defense mechanisms are directed 
towards the aboveground natural enemies (Jordon-Thaden and Louda, 2003), this result 
does not exclude the validity of the EICA hypothesis. We thus conclude that the 
differences in growth of plants between the native and the invasive range are genetically 
based (Blossey and Nötzold, 1995).  

Our results are comparable to the results of Erfmeier and Bruelheide (2004) who 
studied native and invasive populations of Rhododendron ponticum and demonstrated 
that plants from the invasive populations are higher and have more leaves and bigger 
stem diameter than plants from the native populations. Abhilasha and Joshi (2009) 
demonstrated that Conyza canadensis produced more reproductive biomass in the 
invasive range. Also Williams et al. (2008) found that growth was higher in the plants 
from the introduced range in the monocarpic perennial Cynoglossum officinale. However, 
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in this case this was true only when the plants were grown in the garden in the native 
range and not in the invasive range. It could thus be argued that if we had performed our 
experiment also in the invasive range, we might have concluded that there are no 
differences in size between plants from the two ranges and would reject the EICA 
hypothesis as an explanation for invasiveness of C. arvense. Williams et al. (2008) did 
not provide a good explanation for the contrasting pattern in their study. We suggest that 
the major difference in their study could be due to presence of different natural enemies 
in the two ranges, as natural enemies were not excluded from their experiment. In our 
experiment, we excluded the majority of natural enemies (except for those present in the 
soil) and cultivated plants in two very different soil conditions. We might thus have had a 
better chance to uncover the genetic differences in size of plants from the two ranges. 
However, also in our study the possibility of a large genotype x environment interaction 
cannot be fully excluded.  

In addition to the large differences in size of the plants from the native and 
invasive range, there were also significant differences between plant growth from the 
different countries. This is due to the large distances between the sampled countries 
within both ranges. Colautti et al. (2008) re-analyzed a range of studies comparing native 
and invasive populations of different species and demonstrated strong variation in 
performance of plants from both native and invasive range along a latitudinal gradient. In 
our study, the latitudinal gradient was too short (only about 9°) and we had worked only 
with four regions in total and we are thus not able to explain the differences in 
performance between our studied countries. Finding significant differences between 
ranges in spite of the large differences between countries within ranges suggests however, 
that the differences between ranges are strong. 

Differences in growth of C. arvense from the native and invasive range were also 
found by Cripps et al. (2010) in a field survey in Europe, North and South New Zealand 
(native/invasive). Specifically, they found higher performance of plants in the South 
Island of New Zealand when compared to Europe. There were, however, no significant 
differences when comparing plants from North Island of New Zealand to Europe. 
Because they compared plants only in the field, without any transplantation, it is hard to 
say if the observed differences are due to real differences between the plants or due to 
different habitat conditions. 
 In our study, we found higher values for plants from the invasive range not only 
for the aboveground biomass but also for the root biomass. This contrasts to the 
conclusions of Zou et al. (2007) – and references therein – who found that Chinese tallow 
tree plants from the native range had more root biomass than plants from the invasive 
range. Ehrenfeld (2003) proposed that lower root to shoot ratio is closely associated with 
the increased size of invasive plants. On the other hand, Barney et al. (2009) 
demonstrated higher root to shoot ratio in Artemisia vulgaris from invasive populations 
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than from native ones. In our study, we did not find any significant differences in root to 
shoot ratio between the two regions, and the amount of roots thus proportionally 
increased with increasing aboveground biomass. Also root length was independent of 
distribution range. In agreement with theoretical expectations, roots grew longer in poor 
nutrient substrate. 
 Our study also supported the expectation that plants from the invasive range have 
a higher ability to acquire resources. As a result the difference between plants from the 
native and invasive range was larger in the nutrient poor soil. This conclusion contrasts 
with the results of Williams et al. (2008) who found larger differences between native and 
invasive plants in the more productive conditions (in the garden in the native range) than 
in the low nutrient conditions (in the garden in the invasive range). It is, however,0 in 
agreement with studies of Drenovsky et al. (2008) and Allred et al. (2010), who 
confirmed better ability to acquire resources in invasive populations. The higher ability to 
acquire resources may be linked to larger belowground biomass of plants from the 
invasive range.  

Rajaniemi and Reynolds (2004) and Drenovsky et al. (2008) demonstrated that 
plants with larger root systems also had higher precision in locating nutrients. Thanks to 
this the invasive plants may be able to capture more resources disproportionate to their 
size in spite of a constant root to shoot ratio. This can potentially promote size-
asymmetric competition belowground and give the invasive plants strong advantage in 
the competition with native plants.  

To sum up, our results demonstrated higher performance of C. arvense from the 
invasive range in aboveground biomass. In this clonal species, ability of clonal growth is 
an important measure of fitness. We found significantly higher amount of roots in the 
plants from the invasive range. Because roots and rhizomes are the organs of clonal 
growth, this indicates that also this measure of fitness is higher in the plants from the 
invasive range. 
 An optimal design of such a comparative experiment as the one presented here 
would be to growth both plants from the native range and from the invasive range in 
common garden conditions in both ranges (van Kleunen et al., 2010). This was 
unfortunately not feasible in our experiment and we grew plants only in the home range. 
Due to possible local adaptation it could be expected that plants would perform better 
when grown in their native range (e.g. Linhart and Grant, 1996, Kawecki and Ebert, 2004 
Raabova et al., 2007). Higher fitness of plants from the invasive range found in our study 
thus suggest that the differences must be really large, as we can expect that plants from 
the invasive range would be even larger when all plants were grown in the invasive 
range.  
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Table 1 Location and climate information of sample sites, wherefrom seeds for the experiment were 
collected. 

Distribution 
range 

Population Latitude/longitude  
Altitude 

(m.) 
Climate 

Spain  
N 41º 29' 40''           
E 1º 19' 27'' 

703 
Short moderate winters, long, hot and 

dry summers, mediterranean 
continental climate Native 

Czech Republic  
N 49º 51' 06''           
E 14º 12' 37'' 

460 
Long, cold winters, short summers, 

continental climate.  

Nebraska 
N 40 º 54' 00''         
W 96 º 23' 13''   

338 
Cold winters, long, hot summers, 

humid continental climate.  
Invasive 

Illinois  
N 41° 19' 16"      
W 89° 55' 59" 

237 
Cold winters, long, hot summers, 

humid continental climate 

 
 
 

Table 2 Chemical composition of the two substrates used in the experiment. The values are mean values 
from 10 samples (p < 0.001 for all tests), standard errors are shown. 

Substrate 
g. kg-1 

Nitrogen 

 g. kg-1 
Total soil 
Carbon 

  g. kg-1 
Soil carbon 

in 
Carbonates 

 g. kg-1 
Soil 

organic 
Carbon 

Phosphorus 
(mg/1000g) 

Poor 
0.72               

Mean +- SE 
0.003 

1.21               
Mean +- SE 

16.473 

0.04               
Mean +- SE 

0.003 

1.14                
Mean +- SE 

16.474 

62.14            
Mean +- SE 

< 0.001 

Rich 
0.88               

Mean +- SE 
0.003 

8.42               
Mean +- SE 

0.022 

1.11               
Mean +- SE 

0.007 

7.31               
Mean +- SE 

0.023 

2.46               
Mean +- SE 

2.722 
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Table 3. Factors determining aboveground growth of Cirsium arvense. R2 values for significant factors are shown. 
*** p < 0.001, **p < 0.01, * p < 0.05, and. n.s. p ≥ 0.05. N = 80. Flowerhead biomass with aboveground biomass as a 
covariate represents biomass allocation to flowerheads.  

Dependent variable  Df  
 Flowerhead 

biomass   

 Flowerhead 
biomass  

(Aboveground 
biomass as 
covariate) 

Aboveground 
biomass   

 No. of stems  Plant height  

Range  1  n.s.    n.s.   0.014 *   n.s.   n.s.  

Country  2  n.s.    n.s.   0.055 ***  0.054 ***   n.s.  

Year  1 0.208 ***  0.226 ***   n.s.   0.423 ***  0.143 *** 

Substrate  1 0.139 ***   0.086 ***  0.507 ***  0.149 *** 0.074 ** 

Range x Substrate  1  n.s.    n.s.   0.056 ***  0.017 *   n.s.  

Country x  Substrate  2  n.s.    n.s.    n.s.   0.018 *   n.s.  

Range x Year  1 0.058 ** 0.057 **  n.s.    n.s.    n.s.  

Substrate x Year  1 0.085 *** 0.072 **  n.s.   0.102 ***   n.s.  

Country x Year  2 0.04 *  n.s.    n.s.    n.s.    n.s.  

Range x Substrate x 
Year  

1  n.s.    n.s.    n.s.    n.s.    n.s.  

Country x Substrate x 
Year  

2  n.s.    n.s.    n.s.    n.s.    n.s.  

 
 
 

Table 4. Factors determining biomass of various parts of Cirsium arvense in 2009. R2 values for significant 
factors are shown. * means p < 0.05, ** means p < 0.01 and *** means p < 0.001. n.s. means p ≥ 0.05. N = 80. 

 
 
See separate file in horizontal format 
 
 



16 

Chapter 4 

  

 

Figure Legends  
 

Figure 1. Effect of distribution range and substrate (poor/rich) on aboveground biomass of Cirsium arvense. For 
the test of significance see Table 3 and 4. The values are mean + SE. 

 

Figure 2. Effect of distribution range and substrate (poor/rich) on healthy root biomass of Cirsium arvense. For the 
test of significance see Table 3 and 4. The values are mean + SE. 

 

Figure 3. Effect of substrate (poor/rich) and year on  biomass allocation to flowerheads  of Cirsium arvense. For 
the test of significance see Table 3 and 4. The values are mean + SE. 

 

Figure 4. Effect of distribution range and year on  plant height of Cirsium arvense. For the test of significance see 
Table 3 and 4. The values are mean + SE. 

 

Figure 5. Effect of distribution range and substrate (poor/rich) on number of stems per plant, of Cirsium arvense. 
For the test of significance see Table 3 and 4. The values are mean + SE. 

 

Figure 6. Effect of distribution range and substrate (poor/rich) on) total plant biomass (aboveground biomass + 
root biomass) of Cirsium arvense. For the test of significance see Table 3 and 4. The values are mean + SE. 
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Figure 6) 

 
 

 
 

 

 
 



 

 

Table 4. Factors determining biomass of various parts of Cirsium arvense in 2009. R2 values for significant factors are shown. * means p < 0.05, ** means p < 0.01 and *** 

means p < 0.001. n.s. means p ≥ 0.05. N = 80. 

Dependent variable  Df  Healthy root 
biomass 

 Damaged root biomass 
(Healthy + damaged root 

biomass as covariate)  

 Dead root biomass  
(Healthy + damaged 
+ dead root biomass 

as covariate) 

Root length Root:shoot ratio Total plant biomass 

Range 1 0.098 **  n.s.   n.s.   n.s.   n.s.   n.s.  

Country 2 0.122 * 0.151 ***  n.s.   n.s.   n.s.  0.133 * 

Substrate 1  n.s.  0.061 * 0.095 ** 0.068 * 0.245 *** 0.104 * 

Range x Substrate 1  n.s.   n.s.   n.s.   n.s.   n.s.   n.s.  

Country x  Substrate 2  n.s.  0.091 *  n.s.   n.s.   n.s.   n.s.  
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