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Chapter 1

Introduction

Meteor astronomy has been developing from the middle of the 19th century. The first task con­

cerned the relation of meteor streams to comets, namely the origin of streams due to breaks of 

comets as represented by Andromedids and their parent body, the Biela comet. Later also other 

tasks became important, namely those connected with the physical properties of meteoroids form­

ing the streams. To be able to answer those questions the methods enabling determination of 

atmospheric trajectories bad to be applied. These methods originated at the end of 18th century 

when Benzenberg and Brandes observed meteors simultaneously from two observing points sep­

arated by several tens kilometres. After the photography was sufficiently developed, it became 

the method capable of yielding data on physical properties of meteoroids. Since meteoroids are 

subject to drag force during their atmospheric motion it was necessary to determine the meteoroid 

velocity at each points of its trajectory. This was achieved by using rotating shutter. It enabled 

the study of velocity variability and consequently of the physical properties of meteor bodies. The 

photographic studies of meteor event are the most precise from all that are being in use at present. 

They can cover individual event and are able to study it in a great detail. However, they are 

confined to relatively bright meteors.

After the end of the Second World War the photographic observations were completed by radar 

technique. Since that time radars, originally radars of war, have been used to study meteors. The 

radar method has both advantages and drawbacks when comparing it with the photographic one. 

One of its advantage lies in the fact that it can be used in periods when the bad weather prevents 

the photography to be employed. Moreover, it can be used also during a day when a photography 

cannot be used at all. The daytime showers (e.g. 0  Taurids) were discovered namely by means of 

radars. On the other hand, radar can be affected by outer interference due to storms or commercial 

transmitters. The next advantage is that radars are able to register much fainter meteors than 

photography. Furthermore, although radars can provide us with data on individual meteors, their 

precision is lower than of photographic data. The classical meteor radars work at wavelengths from 

about 5 m up to 11 m. This wavelength span is given on the one hand by the demand that the
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radar signal should be sufficiently strong. Since the strength of the signal is directly proportional 
to the 3rd power of the wavelength of used equipment it means that the higher the wavelength the 

greater number of faint meteors could be observed. On the other hand, the greater the wavelength 
the greater possibility that the radar wave could be reflected by ionospheric irregularity. Thus, 

some compromise had to be accepted and this is the interval mentioned above. Besides, number of 
observed meteors can be increased, among others, by using a radar that transmits higher power, 
which is expensive, however. To sum up, the way of development of classical radar astronomy was 

to construct radars transmitting power from approximately 10 kW up to several hundreds kW at 
meter wavelengths. In nineties radars working at much higher frequencies than classical radars, 
formerly used in military service or in studies of upper ionosphere, started to be employed ill so 

for exploration of meteor events. These equipments transmit pulses that are a few MW strong. 

Their field of view is usually wide only a fraction of one degree so that they cannot be used for 
monitoring of activity of meteor showers. They are used for physical studies of processes inside 

the meteor trails, instead.
Obviously, if we are interested in velocities and atmospheric trajectories of individual mete­

oroids together with connected physical quantities such as shape-density coefficient and ablation 
parameter, we need to add other side receivers (at least 2) to the radar. Because in the case of 

the Ondrejov meteor radar we have at our disposal only single-station observation we concentrate 
mainly on observations of activity curves of selected meteor showers and on determination of their 

mass distribution indices and fluxes. However, we were looking for a statistical method that would 
allow us to connect our observations with physical properties of meteoroids. This work describes 

the method like this that enables us to compute several important quantities typical for a partic­
ular meteor shower and also its application to our long-term series of data which we have been 
collecting since 1958. Among others, we have at our disposal range of each individual observed 
echo from the radar. The principle of our method is based on knowledge of range distributions of 

radar echoes. These range distributions mirror the fact that ionized meteor trails associated with 
a particular meteor shower occur inside a restricted height interval. The interval depends on the 

radiant position, on the masses and speeds of meteoroids contributing to the range distribution 
and on the other physical quantities, which we can describe by means of the ablation parameter 
a and the shape-density coefficient K.  Since during the observations of meteor showers we regis­
ter simultaneously a lot of meteors with various masses, their mass distribution described by the 
mass distribution index « together with the shower flux density form the shape of their range 
distribution curve. We have developed the model reflecting all these facts and we have managed 

to applied it to 127 range distributions of seven meteor showers. However the method requires the 
sufficiently quality of delta as discussed in the relevant section so that its practical application has 

some restrictions.

This doctoral thesis consists of 6 chapters. The second and third ones are devoted to the physical 
theory the range distribution model is based on. After that we describe a few basic facts about
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radar observations, namely about the Ondrejov meteor radar and the used data. The derivation of 

the model is given in chapter 5 together with mathematical methods of getting desired parameters. 

Next part deals with our results which we comment and summarize in the last chapter.

We have developed the method in the hope it will be useful in field of meteor astronomy at 

least a bit.
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Chapter 2

Simple physical theory of meteors

This chapter includes the simple physical theory of meteors we need to put to use in our model 

of the range distribution. The theory in question connects instant mass of a meteoroid m and its 

velocity v with initial values of these quantities regarding the fact that the meteoroid (characterized 

by its physical quantities) moves within the Earth’s atmosphere, which puts up resistance to its 

movement. The interaction of a single-body meteoroid with the air is described by means of a few 

fundamental equations underlying the ground of the theory of meteors. In this chapter, we assume 

the meteoroid body to be non-fragmenting and non-rotating. Moreover, we accept the meteoroid 

body as the sphere to simplify our model. Let us denote the initial values (before entering the 

Earth’s atmosphere, at time t  oo) by symbols v«, and τη«,.

Hereafter we often use (mainly in different expressions of mass and velocity of a meteoroid as a 

function of its atmospheric height) the exponential dependence of the air density ρ on the height h 

in the widely used form
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The constants p0 and H  result from the least-square fit of this dependence to the reference atmo­

sphere given by CIRA [17], within the height interval 80-120 km.

We need to use in our computations a following relationship defining a geometric dependence 

of the height of the meteoroid flight h  on time ť .

where z r  is the zenith distance of the radiant. We usually suppose this cos z r  to be independent 

of height h  because variability in values of z r  can prove to be significant only in cases of very long 

bright meteors the trajectory of which extends over the large part of the Earth’s surface. Thus, 

this relation does not take into account the curvature of the Earth’s surface. The length of the 

meteoroid flight I relates to time t by the relation dl = vdt.



2.1 Deceleration and mass-loss equations

The first fundamental equation, the  deceleration equation (e.g. Bronshten [9]), is based on 

the assumption that the momentum mdv lost by a non-rotating meteoroid is proportional to the 

momentum of the oncoming air flow. The air mass impinging upon the cross-sectional area S  of 

the meteoroid at velocity υ during time dt is Sevdt. Thus, we arrive at the deceleration equation

where Γ is the drag coefficient expressing the portion of the momentum of the oncoming air flow 

converted into deceleration of the meteoroid body. Coefficient Γ may be either less than unity 

or greater than unity. The first case corresponds to  an incomplete transfer of momentum to the 

meteoroid (e.g. if some of the impinging molecules flow around it), the second one can occur when 

the reactive momentum of the molecules rebounding from the meteoroid surface or of the molecules 

evaporating from the meteoroid itself become appreciable. Certainly, the value of Γ also depends 

on the shape of the meteoroid body.

The second fundamental equation, called either the m ass-loss equation or the ablation  

equation, deals with the process of ablation. Ablation is defined as any removal of meteoroid 

mass via its passage through the Earth’s atmosphere in the form of gas, droplets or solid fragments. 

The derivation of the equation follows from the assumption that a certain portion A of the kinetic 

energy $Sgv3 of the oncoming stream of molecules is expanded on the ablation (vaporization or 

fusion and spraying) of the meteoroid mass dm  a t the time dt. After denoting Q as latent heat of 

vaporization or fusion of the meteoroid material in units of energy (including the energy that needs 

to be delivered to mass dm in order to heat it up from its initial temperature T0 to its evaporation 

or melting temperature), the mass-loss equation takes the form (e.g. Bronshten [9])

Here Λ is called the heat-transfer coefficient. Since the energy expanded on ablation cannot evi­

dently exceed the total kinetic energy of the oncoming stream of molecules, this coefficient is less or 

equal unity. Apart from the energy used for heating and ablation of the meteoroid mass dm, some 

part of the energy of the impinging molecules is consumed by heating up of the meteoroid itself, 

another part is converted into radiation and ionization of atoms and molecules of both the mete­

oroid and the air and also a significant portion of energy is dissipated by reflected air molecules and 

vapor molecules and atoms. Introducing a  very important parameter σ, known as the ablation  

parameter, by the relation

we can rewrite equation (2.4) into the well-known form
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(with the exception of cometary material of the Giacobini-Zinner type with σ ~  0.21) the 

upper limit of values listed in Ceplecha et al. [15]. We will deal with meteors of showers 

possessing velocities at least 30 km s-1 and lower values of σ  so that we can estimate the 

upper limit of the velocity difference of order of 1 km s-1 for them. The velocity of a meteor 

can substantially drop only at the end of ionization curve. This view is also supported by 

Voloshchuk et al. [60] who have concluded that most of observed meteors do not show any 

observable deceleration. The standard deviations of velocities of known showers are usually 

greater than the above differences published by Kashcheev et al. [26]. It implies that we 

cannot introduce substantial error when assuming constant velocity of meteoroids of showers

KNIHOVNA MAT.-FYZ. FAKULTY 
Knihovna Fr ZaviiKy ityz. odd.) 

Ke Karlovu 3 
121 16 Praha 2

To proceed further, in accordance with generally adopted procedure in the meteor physics, we 

connect the cross-sectional area S  of the meteoroid with its instant mass m in the following way

where δ is bulk density of the meteoroid, and symbol A stands for a  numerical constant, which is 

related to a supposed shape of the meteoroid body. As mentioned, we consider it to be the sphere. 

Thus, in this case

(for example, A =  1.0 for a cube).

To simplify notations, we introduce another familiar parameter, the shape density param­

eter K , bv the definition

Trying to solve the system of two equations (2.3) and (2.5), we usually make use of some 

simplifications. Let us now highlight four interesting cases. We assume coefficients of the meteoroid 

describing its physical features (σ,Κ,6, Λ,Γ) to be constant during the meteoroid’s flight in all 

subsequent cases.

1. Constant velocity o f  m eteoroid

In this special case the meteoroid’s body preserves its velocity during whole flight. Kashcheev 

et al. [26] having investigated question of the deceleration of meteors have arrived at the 

conclusion that from the most severe deceleration suffer meteoroids having low velocity of 

15 km s-1 for which the velocity at the point of maximum ionization drops from the above 

value to 14.2 km s_I. This difference is even lower for faster meteoroids. According to these 

authors the difference between ν,χ and the meteoroid velocity at the point of maximum 

evaporation (coinciding with the point of maximum ionization), vm, can be expressed as
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we will deal with. Moreover, this point is also in accordance with results of simultaneous TV- 

radar observations performed at Ondrejov in 2000 - 2002. Only one of 76 meteors common to 

both techniques had real deceleration (Pecina [42]). Thus, the assumption of constant velocity 

of meteors is fully plausible and will be employed when constructing the radar distribution 

model.

Hence, we write v — Uoo at any time of a  meteoroid passage through the Earth’s atmosphere. 

It is enough to take into consideration only the equation of ablation (2.5). Inserting (2.6) 

into (2.5) regarding the definition K  provide us with

The following three Graphs (2.1), (2.2) and (2.3) show dependencies of height he of the end 

point on moo ■ σ and Voo- Evidently, the lower the velocity of a meteoroid and the smaller value 

of σ  the deeper penetration into the Earth’s atmosphere we can expect. On the contrary, 

the ending height of the penetration of the meteoroid of constant velocity v«, increases due 

to decreasing initial mass m«,. All curves were delineated for zR =  45°, H  =  5.409 km and 

q0 =  56.603 kg m~3.

2. C onstant mass o f m eteoroid

The situation in question happens mainly in the case of micrometeoroids (i. e. particles of

9

While there is time t on the left-hand side of (2.8) as an independent variable, there is height h 

in the same role on the right hand side. It is necessary to unite the independent variables. 

It seems to be the most advantageous to switch from time t to height Λ. Transition can be 

carried out by means of the commonly valid equation (2.2). After rearranging terms we get

FVom this result it is possible to calculate the height, at which the meteoroid’s mass is totally 

ablated. A relevant condition is



Figure 2.1: Height he as a function of m«,. The curve was depicted for mass within the 

interval (1,1000) g and for =  50 km s_1, σ = 0.01 s2 km-2.

Figure 2.2: Height he as a  function of σ. The curve was depicted for the ablation parameter within 

the interval (0.01,1) s2 km-2 and for υ«, =  50 km s_1, moo =  1 g·
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Figuře 2.3: Height ft* as a  function of Voo- The curve was depicted for the initial velocity within 

the interval (11,72) km s_1 and for m«, =  1 g, σ =  0.1 s2 km-2.

micron sizes). They are strongly decelerated so that they cease earlier than they are able to 

begin to lose mass. Hence, it is enough to consider only the equation of deceleration (2.3). 

Similarly to the first case, after switching to height h regarding the formula (2.6) and the 

definition of K,  we can easily perform the integration. It enables us to write

The dependence of height h on time t can be computed after (2.2). In the case of the 

atmospheric profile (2.1) the equation (2.14) takes the simpler form

It is worth noting that in this case the ratio depends only on the shape-density coeffi­

cient K,  not on the ablation parameter σ.

3. Q uasi-m odeling o f ’’slow ly” decelerating m eteoroids

Both cases of non zero deceleration and of constant mass of meteoroid are highly idealistic. 

In practice the meteoroid loses mass as well as velocity during its atmospheric flight. The 

former case is often considered in computations regarding TV meteors since a majority of 

these observed meteors do not significantly change their velocity in a considerable way as we 

have recognized from our simultaneous TV-radar observations (Pecina [43]). On the other 

hand, because meteoroids move in resistant medium of the Earth’s atmosphere they should 

slow down due to the drag force even in case when they do not lose any mass. That was 

analysed in the second case. Now, in our third case, we make a compromise between two 

previous special cases.
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When we try to estimate the value of a velocity loss only due to the drag force according 

to (2.15) for three different masses of meteoroids we get Figure 2.4. The constants used in 

computations were following: K  =  1 cm2 g-2/ř3, z r  = 45°, H= 5.409 km and g0 =  56.803 

kg m-3.

Figure 2.4: The ratio R  =  computed for three different masses of meteoroids: 10~3, 10-2 and 

10-1 g. The relevant curves are marked with the corresponding value of m »·

Evidently, the greater mass of a meteoroid the less progressive change of velocity. Hence, 

let us now assume a very small change in velocity value expressed by the equation (2.14). 

Our subsequent step forward in integrating the equations of a meteoroid motion consists in 

inserting the expression (2.14) into the ablation equation (2.5) together with relation (2.6). 

Replacement of the independent variable t by the height h and subsequent integration results 

in

The dependence (2.16) describes the mass loss very well namely in the case of slowly de­

celerating bodies. This is the most general formula valid under the general dependence 

of Q =  e{h). In the case of the atmospheric profile (2.1) the integral in the argument of 

exponential function yields H g. Then the relevant formula reads
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1 — x. After performing this together with the atmospheric profile (2.1), expressions (2.17) 

and (2.10) coincide. Furthermore, the expression (2.17) can be written by means of (2.15) in 

the form

Now, we can guess from the last expression the meteoroid s velocity at the pomt where its 

mass equals to zero. We get

4. B oth variable velocity and m ass o f  m eteoroid

Let us put once again stress on the fact that the coefficients connected with physical features 

of meteoroids remain constant. On substituting dependence of S on mass m as expressed by 

(2.6) into the equations (2.3) and (2.5) we arrive at the following system

After dividing the second equation by the first one we get the following differential expression:

Granting that σ remains constant or depends on velocity, we immediately get the first integral 

of the system:

The symbol p.v. (principal value) stands for the main value of the integral. When we use an 

inverse function to Ei(x), Ei-1(x), it is possible to rewrite (2.26) in the form



This equation has one solution inside the interval 0 < < 1 provided that the inequal­

ity Voo/Umd > λ/č holds true (e is the Euler’s number). The complete discussion of solution 

of (2.30) can be found in Pedna [44], If we know the geometry of the flight, the profile of 

the Earth’s atmosphere and values of deceleration and velocity at the point of maximum 

deceleration, we are able to estimate the ablation parameter σ. This is one of many ways of 

its determination. The other methods can be listed in Ceplecha [12]. Unfortunately, these 

ways are not applicable for our purposes because all of them are tightly bounded to some 

significant point on the meteoroid’s trajectory. As there is only one point on the ionization 

curve at our disposal in the case of a single-station radar observation, we are not able to 

make use of them.

5. Variable physical param eters o f  m eteors

The fifth case takes into consideration the fact that physical coefficients describing physical 

properties of meteoroids can vary during their flights via Earth’s atmosphere. As we are not 

concerned with this case in our work we can warmly recommend the paper Pecina [41] to 

avid reader.

6. Use o f Levin’s proposition

We will now consider the process of ablation of a meteoroid which begins not at the instant 

when the meteoroid enters the Earth’s atmosphere but at some height hB. It is height 

at which the meteoroid’s body is heated up enough to get started the process of ablation. 

0B denotes the air density corresponding to hB. Generally, qb can be a function of m«,: 

0 b  =  e e ( m oo). For our purpose we will focus only on the non-deceleration case. In accordance 

with Levin [29] we consider not only the initial shape of the meteoroid (sphere in our case)

14

At this stage, we have a relationship v =  v(h) ”in attendance” of the other parameters 

Voo, π ΐ α ο , σ ,  K  and cos z r . We easily obtain the dependence of meteoroid’s mass m on height h 

by substituting (2.28) into (2.24).

The expression (2.26) allows us to derive velocity at the maximum deceleration point. 

Let us now take the atmospheric profile (2.1). We are now able to rewrite (2.20) by means 

of the first integral (2.24) and (2.26) as:
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but also the law governing its variation during ablation. We define this law in terms of the 

parameter μ:

Obviously, if the ablating body remains self-similar, then μ =  2/3. In the case of a cylinder or 

parallelepiped evaporating from its end, μ =  0. For a wedge losing mass from its lateral faces, 

μ = 1/2. In principle, however, μ may also be negative, e.g. if the body is deformed and 

flattened under the pressure of the oncoming flow, so that its midsection increases despite 

the mass loss. Most often (unless otherwise stipulated) it is assumed that μ =  2/3, i.e. the 

body is self-similar. Levin’s parameter μ can partially stand for fragmentation due to the 

cross-sectional change given by (2.32). As we will see later, the usage of μ can improve the 

fitting of theoretical range distribution to the observed one.

We take the deceleration equation in the form (2.3). But there is necessity of modification 

of the mass-loss equation due to μ. This statement we will now prove. Because we take the 

atmosphere profile in the form (2.1), it also.means

By combination of equations (2.2) and (2.33) we get another important relation:

Let us now substitute the cross-section (2.32) and (2.34) into the ablation equation (2.5). 

After making necessary adjustments we arrive at the term

We can see that in the case of Q < Qb  the relation m =  m oo holds true in accord with (2.36) 

but also m φ  0 is valid in compliance with (2.37). These two facts are in diametric contra­

diction! There is only one way how to avoid this discrepancy. We have to take the ablation 

equation (2.5) in the form



where He{x) = 1 for x  > 0 and He(x) =  0 for x < 0 is known as Heaviside function. So, 
the necessity to modify the mass-loss equation is proved. At this stage we can proceed to 
derivation of terms expressing loss of mass of meteoroids during their passage through the 
Earth’s atmosphere. We will concentrate on the non-deceleration case that is employed in 
our model and we will take the equation (2.38) as principal. After its integration regarding 
(2.32), (2.34) and v =  we arrive at the dependencies m  =  m(g) and m =  m(p):

2.2 Light

The luminosity equation belongs to the fundamental equations of the theory of meteors. It is 

derived on the basis of the fact, established by the analysis of meteor spectra, that the major 

contribution to the radiation of the meteor comes from the emission of its atoms evaporating from 

meteoroid surface. Atmospheric lines and bands are usually of secondary significance while the 

luminosity of the meteoroid’s surface itself (i. e. the blackbody radiation) may be neglected. It is 

usually assumed that the radiation intensity I  of the meteor is proportional to the kinetic energy 

of the mass dm evaporated in time dt:

Thus, the general assumption can be included into classical formula (2.41) provided we modify the 

luminosity coefficient in an appropriate way (see e. g. Pedna and Ceplecha [44]). Thus we use the 

original equation (2.41) hereinafter, τ  as a general function of velocity is frequently substituted by 

the relation r  =  τ0νη (e.g. Bronshten [9]).

Provided we are interested in expression of a value of meteor velocity at the point of maximum 

of radiation intensity um/, we have to take derivative of the luminosity equation with respect

16

The symbol r  stands for the luminosity coefficient (often designated also as luminous efficiency). 

It generally depends on the velocity v, mass m and composition of the meteoroid.

It would be possible to assume more generally that I  a  dEk/d t , where dE* is kinetic energy of 

a meteoroid and that both parts of it have their own luminosity coefficients. Then
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to time t. Firstly, we modify the equation (2.41) by substituting for dm/dt from the ablation 

equation (2.21) and then we replace the term m2/3 by means of the equation (2.24):

This expression is called the  light curve and expresses the dependence of I  on height h or time t 

respectively. Secondly, we perform logarithmical derivation of (2.43) with respect to time t. Let’s 

take a notice of function e(h{t)) in the process (see relation (2.2)) and the fact that we take σ as 

independent of v. The result evidently has to equate to zero. We arrive at the following expression 

giving the velocity «„,/ at the maximum light (Ceplecha [11])

regarding the equation (2.29) and the atmospheric profile (2.1). The equation gives us a chance 

to compute the value of σ  provided we know the dependence of r  =  t ( v )  and v m /  (Pecina and 

Ceplecha [44]).

2.3 Meteor ionization

The fact that meteoroids during their passage through the Earth’s atmosphere leave the ionized 

conducting path provides us with possibility of studying them by means of the radar. The formation 

of an ion-electron trail is a consequence of inelastic collisions between the evaporating atoms of a 

meteoroid and air molecules and atoms. The trail is supposed to be a quasi-neutral as a whole. 

One of the most important feature of the trail we work with is the electron line density a t (a 

number of electrons per a unit length). This quantity follows from the ionization equation (e.g. 

Bronshten [9])

where the symbol μα stands for the average mass of a  meteor atom. We usually adopt after Ceplecha 

et al. (1998) the value μ„ =  40 x μ« (μ« =  0.1673534056 x 10_2ekg is the mass of hydrogen). The 

symbol β is called the ionization coefficient or the ionization probability (dimensionless quantity) 

and equals to the average number of free electrons formed during collisions of one evaporated 

meteor atoms with other particles. The notation of the equation expresses the fact that ionization 

comes from meteor atoms but not from the atmosphere particles.

The quantity β depends on meteor velocity in an unknown way. There have been a lot of 

attempts to describe that relationship between meteoroid’s velocity and ionization probability. 

Several of them are listed in Ibble 23 in Bronshten [9]. Although it is possible to use whatever 

ionization theory in our model, we prefer three of them, which seem to be the most plausible. They 

are undermentioned below.

1. Verniani and Hawkins [59] have developed a theory based on observations with



3. Jones W. [23] described the dependence in question in the following way:

model valid for velocities up to 35 km s *.

We get the very important dependence of the electron line density a e on height h, the ioniza­

tion curve, by substituting ^  from the ablation equation (2.21) into (2.45):

This expression expresses obvious fact that ae depends except for height h also on parameters σ 

and K  and initial values m «,,«*. Let us now gradually analyse above mentioned case.

1. Constant velocity o f m eteoroid

We get the desired expression for the ionization curve by substituting (2.10) and (2.1) into

To find the expression of ae at the point of the maximum ionization, we calculate the deriva­

tive of (2.50) by height h and put the result zero. When using the atmosphere profile (2.2) 

we reach the density and the height of the point of the maximum ionization

As a matter of interest we can compare the equations (2.12) and (2.50), i.e. two densities at 

two important points on the meteor path. The meteoroid with constant velocity reaches its 

maximum ionization at the point with three times smaller density of the air then density at 

its end point is. The electron line density am u at the point in question is

We can see very interesting result valid only in the case when a meteoroid has constant 

velocity: there is a direct proportion between a max and m ^. We apply this result in subsec­

tion (4.5.1). The ionization curves depicted for various values of wioo. ν,χ,,σ and K  are drawn
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in Figs. 2.5 - 2.8. All curves were delineated for zr =  45°, H — 5.409 km, g0 — 56.803 kg 
m-3 and μ =  6.69414 x 10-2e kg. The used model of ionization probability β was in accord 

with (2.47).

Figure 2.5: The course of the ionization curve for two values of m«,, 1 and 5 g. The bigger initial 

mass the deeper in atmosphere the ionization curves begin and cease. Obviously, the bigger mass 
the greater value of a max at the maximum ionization point. All curves were computed for v«, =  36 
km s-1 , σ  =  0.01 s2 km-2 and K  =  1 cm2 g-2 3̂.
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2. Constant mass o f  meteoroid
Obviously, there is no sense in derivation of the ionization curve for non-ablating meteoroids.

3. Quasi-modeling o f  "slowly” decelerating meteoroids
To obtain desired expression for ae, we have to substitute (2.15) and (2.17) into (2.49):

4. Both variable velocity and mass o f  meteoroid
Let us to substitute (2.24) into (2.49). Finally, we arrive at very complicated relation

in which v(h) is given by the expression (2.28). The computation of the maximum point of 

the ionization curve is in Pedna and Ceplecha [44].

5. Use o f Levin’s case After substituting (2.40) into (2.45) we arrive at the dependence of



Figure 2.6: The course of the ionization curve for two values of v«,, 36 and 72 km s-1 . The smaller 

initial velocity is the deeper in atmosphere the ionization curves begin and cease. Obviously, the 

greater value of υ<χ> the greater value of a max at the point of maximum ionization. All curves were 

computed for moo = 1 g, σ =  0.01 s2 km-2 and K  = 1 cm2 g-2/3.

The courses of the ionization curve for different values of μ  are drawn in Fig. 2.9. All of 

them were delineated for the following constants and quantities: zr =  45°, H  =  5.409 km, 

βο =  56.803 kg m-3 and μα =  6.69414 x 10-2e kg. The used model of ionization probability β 

was in accord with (2.47) and qb corresponds to 150 km.
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Figure 2.7: The course of the ionization curve for two values of σ, 0.01 and 0.1 s2 m_a. There is 

no change in massiveness of am&x for various values of the ablation coefficient. But the smaller 

value of σ is the deeper in atmosphere the ionization curves is situated. All curves were computed 

for m«, =  1 g. Voo = 36 km s-1 and K  = 1 cm2 g~2/'3.

Figure 2.8: The course of the ionization curve for three values of K,  0.2 m, 2/3 and 0.8 cm2 g~2/3. 

Again, there is no change in massiveness of a max for various values of the shape-density parameter 

and also the smaller value of σ is the deeper in atmosphere the ionization curves are situated. All 

curves were computed for moo =  1 g> «oo =  36 km s-1 and σ = 0.1 s2 km-2 .
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Figuře 2.9: The course of the ionization curve for three values of μ, 0.2, 2/3 and 0.8. The smaller 

value of μ the bigger value of a ma* at the maximum ionization point and the higher the ending 
point of the ionization curve is. The value 2/3 of Levin’s parameter is valid for the classical theory 
(see also (2.50)). All three curves were computed for τη«, =  1 g, ν »  =  36 km s-1 , σ  =  0.1 s2 km-2 
and K  =  1 cm2 g-2 3̂.
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Chapter 3

Radar echo theory

When we study meteors by means of the radar we make use of the fact that after passage of a 

meteoroid through the Earth’s atmosphere a  ionized electrically conducted path is created. Let 

us stress that our work deals only with the back-scatter echo phenomena and we mainly restrict 

ourselves to study the overdense echoes for reasons we will mention in section (5.1).

3.1 Permitivity of meteor train

We need the expression for the echo duration To  as a function of the electron line density a e 

inside the train in our model of the range distribution. To derive that, we firstly have to express 

the permitivity ε  of a meteor train as a function of number density of free electrons Ne. For our 

purpose we are only interested in the electrical part of the electromagnetic wave with frequency ω 

transmitted by the radar. The electric intensity É  depends on time in a harmonic way
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After a passage of a meteoroid, free electrons and ions are created and they move under influence 

of the electromagnetic wave falling on them. The full position vector of a charge, ?/, consists of 

two components. The first one, f eq, gives the equilibrium position of a charge it would possess 

in case if no external electrical field were applied. External periodical field forces the charge to 

fluctuate around its equilibrium position. The deviation from this position is characterized by 

f. As a consequence, the full position vector is f j  — f eq + r. Only variability of r  contributes 

to polarization inside the train. The motion equation of the charged particle with charge q and 

mass m in the external electrical field of intensity Ě  reads

and has the following solution:



In further considerations, subscripts e and i denote electrons and positive ions. Since the ratio of 

mass of an electron to positive ion in the simplest case is ^  <£ 1, the deviation vector rj is much 

smaller than f e . Thus, it is enough to take into account only electrons.

The electric displacement Ď within the meteoric path can be expressed by means of the polar­

ization vector P  (the Gauss system of units) as

We can see that e depends not only on the wavelength of transmitted electromagnetic wave but 
also on distance r  from the meteor axis and time t. The value of permitivity is a matter of prime 

importance when we solve the set of the Maxwell equations of electromagnetic field inside the 

meteor train. The curious reader can find more details e.g. in Landau [28]. Furthermore, according 

to its sign the radar echoes are divided into two basic categories as we will see in section (3.3).

3.2 Number density of electrons
Once the thermalization stage has been finished and the trail of the initial radius r0 has been 

produced (see the section (3.4)), the sufficiently longer stage of balancing of concentrations goes 

after. The gradual decay of number density of electrons Ne is a result mainly of three effects: 
ambipolar diffusion, recombination and attachment of free electrons to neutral particles.

As we will eee, the most important phenomenon of reducing of the echo strength is ambipolar 

diffusion. We do not urge to take the magnetic field into consideration because of its weakness
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P  stands for the dipole moment of volume unit of a  medium. The following relation is generally 

valid:

We remind here our gentle reader, the symbol e designates the absolute value of charge of electron. 
We assume plasma is quasineutral as a whole. It means the relation Ne ~ JV,· between the number 

densities of electrons and the one of positive ions holds true. Let us make a  note that plasma is 

weakly ionized, its degree of ionization is about 10-6 in meteor region and for the critical value of 

electron line density a crit (see section (3.3)). Then the logical implication of the fact |fj| « :  |re| is 

that (3.4) takes the form

To proceed further, we get by means of (3.2) (since for electrons q = — e )  and (3.3) the useful 

expression:

After realizing D = ε É, we arrive at the desired expression for permitivity e:



and due to small velocity of meteore in comparison with speed of light. So, ambipolar diffusion 

should be isotropic. Since the transversal dimension of a  meteor train is much smaller than the 

corresponding lateral one, we can consider the decay of Ne only in a direction perpendicular to 

an axis of a meteoric train. We also assume the whole region of the initial radius r„ is created at 

time t — Os. The Gaussian distribution for the radial density of electrons is adopted throughout 

this work as the most reasonable model. The standard form of the radial diffusion equation is 

fMcKinlev Í35H

where N t (r, t) is the number density of electrons at time t and distance r  from the axis of the trůn  

and D = D(h) is the ambipolar diffusion coefficient ([D]=m2 s-1). The initial condition of (3.8) is

The problem is solvable by means of the integral Hankel transformation (e.g. Bateman [5]). The 

volume density mav then be expressed as

The relation (3.10) means the fact that the ionized cylinder expands due to ambipolar diffusion 

and for this purpose there is a decay of number density of electrons Ne. When we consider a 

meteoric train as a part of ionized medium confined inside the domain with boundary defined as 

the distance at which Ne drops to the value of Ne e-1 , we get an expression for the radius r  of the 

meteor cylinder

The diffusion coefficient D increases with height in the meteor region. It may depend significantly 

on local atmospheric conditions and shows daily and seasonal variations. In regions of occurrence of 

meteor trains it is widely used the following approximation found out from observations (Greenhow 

[18]):

Here p is the atmospheric pressure (the Gauss system of units). The relation (3.12) is not handy 

in practical computations and it is frequently rewritten according to the rules of thermodynamics 
as

Subscripts r mean the values at the reference height. We have chosen Dr =  4.2m2 s-1 valid for 

height of 93 km (e.g. Belkovich [6]). In practice we use (3.13) with (2.1) and CIRA [17]. Our 

gentle reader can get more information about D  e.g. in Chen [16]).

Electrons can also recombine with the positive ions to form neutral molecules or atoms. This 

effect can be expected to contribute to an eventual dissipation of the meteor train. When ion collide 

with electron, they have non-zero probability (mainly in the case of slow relative speed) that they
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will recombine and neutral molecule or atom will be created. We take loss of plasma caused by 

recombination into consideration in (3.8) by a negative source term, which is proportional to the 

product of number densities of positive ions and electrons, N iN e. In our quasineutral plasma 

Ni N e =  N j  holds true. Thus, we modify the differential diffusion equation by adding - a t TV2 to 

the right-hand side of (3.8)

In the case beNm t <£. 1, attachment will not have an important effect on a  behaviour of Ne. 

The quantity Nm is a  function of height (as h falls the number density of neutral molecules rises). 

In the past molecular oxygen was suspected as one of the most probable molecule involved in the 

creation of negative ions (McKinley [35]). The coefficient be was not well determined but one can 

find in literature (Bronshten [9]) that in meteoric heights around 100 km (the heights in question 

in our model) the values of Nm and bc are so small that attachment has not noticeable influence 

upon the decay of Ne. Attachment may assert oneself in heights bellow 75 km. On the other hand, 

Bibarsov [8] has proposed the attachment of electrons to neutral particles of meteor origin, i.e. 

particles ablated from the meteoroid’s surface, happens rather than to oxygen. His view was not 

accepted by scientific community. Recently ozone has been taken into account (e.g. Jones J. et.al. 

[21]). However, because of be ~  10-18 cm3 s ' 1 in that case (Baggaley [4]) and that N m ~  1015 m-3 

at its maximum at 85 km, even ozone cannot play significant role in our observations comprising 

echoes with durations not exceeding 30 s.
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Here ae is the electron recombination coefficient ([ee] =m3 s 1). The approximate solution to (3.14)

where (unlike (3.10)) ae is the electron line density at an initial time t =  t0. Thus, provided the 

value of 4nD  compares with the value of \a eae In recombination would be able to play the 

role of the same importance as ambipolar diffusion. However, according to Bronshten [9] the most 

effective process of recombination, the dissociative one, has a* ~  (2 -ť 4.5) x 10“ 13 m3 s ' 1 and, 

as a consequence, it terminates during 10-4 s after the trail formation. This fact implies that the 

recombination can hardly be a significant factor in comparison with ambipolar diffusion. Hence, in 

order the recombination could play significant role the ae should be greater more than 104 times 

in comparison with its present value.

Some electrons may attach themselves to neutral molecules to create negative ions. In consid­

ering attachment effects, we subtract a term be Ne Nm from the right-hand side of (3.8) where Nm 

is the number density of neutral molecules capable of forming negative ions and be is the coefficient 

of attachment:



Both last mentioned effects can be expected to contribute to the eventual dissipation of the 

meteor ionization, but the rates at which they operate should be examined to what extent they are 

significant in comparison with ambipolar diffusion and turbulence. We consider only ambipolar 

diffusion in our model due to our detailed analyses of data we have at our disposal. Our careful 

examination of the long-term series of observations of selected meteor showers revealed that the 

activity of the overdense echoes longer than about 30s is mostly on the zero level. For example 

no activity of ζ  Perseids and 0 Taurids in the echo duration category exceeding 10s was observed, 

the corresponding limit for autumn Taurids was 5s. Certainly there are exceptions, e.g. Leonids 

(Perina and Pecinová, [45]) when we have recorded echoes with durations of order of minutes. But 

it is rather rare. For this reason we compute exclusively with the echoes that have durations from 

0.4s up to 30s and we are not compelled to deal with the effects of recombination and attachment. 

Besides, both phenomena should occur at rather lower heights while our echoes originate at grater 

ones.

At the end of this section we would like to stress the fact that ambipolar diffusion occurs 

without affecting the line electron density ae that remains independent of time t. Let us evaluate 

ae to support this statement. Obviously (in the cylindrical coordinates):
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where dS =  r dr άφ. After substituting the relevant solution for N e and performing the integration 

we have the following results.

1. The integration in the case of the pure ambipolar diffusion gives us:

2. When we think of ambipolar diffusion and recombination as effects affecting the dissipation 

of a meteor train the integration provides us with:

3. The surface integral of N e in the case of ambipolar diffusion together with attachment to 

neutral particles has the solution:

To sum up, we confirm the generally widespread claim that only in the case we can neglect the 

other affects except the ambipolar diffusion the electron line density a e remains constant.



3.3 Types of radar echoes
Ab we have mentioned above, in section (3.1), the division of meteor trains from point of radar 

view can be perform due to sign of permitivity ε. This quantity is generally complex and its value 

has an essential influence on the form of a  solution of Maxwell equations inside the meteor train. 

As long as there is e > 0 inside the whole ionized trail, the radio wave penetrates the trail and
scattering occurs at every electron. Then we talk about the underdense (unsaturated) echoes.

appears a zone where the electron concentration Ne exceeds a  certain critical value and the radio 

wave is reflected from the boundary of this zone. Such trails are referred to as the overdense 

(satu rated ) echoes.

The boundary value setting the diving line between two basic kinds of echoes is called the 
critica l linear electron density  Ocrit and we will now derive its expression. We get the necessary 

dependence of ε on the electron line density a  by substituting (3.10) into (3.7) and by using the 

relation ω = 2irc/\ ( λ stands for wavelength of incident wave):

The value of ctcru depends on used radar! This finding is very important. In the case of the 

Ondrejov meteor radar (A — 8m, r0 = lm ), is: a crH — 5.5 x 1013 m-1 . To summarize, when 

a e <ŽC a Crit we work with underdense echoes and when a e »  a CHt is satisfied overdense echoes are 
employed.

The transition from underdense to overdense is not sharply defined. The axial dielectric con­

stant can be highly negative in the overdense train but this does not mean that total reflection

On the contrary provided the condition ε < 0 is satisfied, inside some part of the the trail there

(on the axis, at the initial time t = Os). By means of (3.22) we arrive at the equation

(3.24)

which implies the expression of a crjt

(3.25)

or

(3.26)

28
KNIHOVNA MAT.-FYZ. FAKULTY 
Knihovna Fr. Zavitay (tyz. odd.) 

Ke Karlovu 3 
121 16 Praha 2

The constant re = is the classical radius of electron, r e = 2.81 x 10-16m (me is the mass of 
electron, e absolute value of charge of electron and c is speed of light). We can see that while for 

lower a e permitivity ε  is affirmative (the second term of (3.7) does not play an important role in 

comparison to unity), in the case of higher initial linear concentrations of electrons the values of ε 

fall below zero. Thus, the critical a CHt is given by the condition



necessarily occurs. The wave can still penetrate the narrow underdense column, despite the nega­

tive ε, though with some loss of strength. The important difference between metals and low-density 

ionized gases is that the conductivity (as expressed in the wave equation) is complex for metals 

and real for ionized gases. Thus, the value of atcrit is not a turning point. That was the reason 

for introducing another kind of radar echoes, the transitive ones. They stretch over the rather 

large area, which corresponds to the span of a e roughly about four orders.

3.3.1 Underdense echoes

To repeat the basic facts, the name the underdense echoes originates from validity of inequality 

ε >  0 (or at «  o Crit)· The incident radio wave penetrates the column and is scattered by the 

individual free electrons which oscillate freely in the applied field without colliding with other 

particles to any great extent. Each electron behaves as if no other were present - secondary 

radiative and absorptive effects may be neglected and scattering occurs from electrons throughout 

the trail. These trails are optically thin. Although we do not employ this kind of echoes in our 

model we touch on a few basic things of the underdense echoes in this subsection just for our gentle 

reader’s sake to give him the complete overview.

The relation between received P r  and transmitted power, P t , (under the assumption we have 

the common antenna for transmission and receiving) after backscattering on the underdense train 

is given by the radar equation of the underdense echoes the derivation of which we can find 

in ÍPecina [4011:

I

R  is a range of specular point on meteor train from observational location and Q denotes antenna 

gain.

When we denote A  as the amplitude of received signal we can write A  ~  \/Pr · It immediately 

follows from (3.27) that A  drops with time in accord with

(In Aq there are included all quantities from (3.27) which do not depend on time t.) We define the 

duration Tu of the underdense echoes in a common way as the time constant of the exponential 

drop of the received amplitude A. We get

The term (3.29) expresses one important fact: the duration of the underdense echoes depends 

exclusively on the diffusion coefficient. It means, Tu depends on height h via D (h ). Hence, if we 

knew the height of specular points of underdense echoes it would be possible to determine D(h )  

by measuring their durations during observations. Unfortunately, in the case of the Ondrejov 

meteor radar it is not realizable because observations are only single-station. Moreover, there are
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not any other quantities connected with the real underdense echo such as σ and K  and with the 

parameters of used radar apart from wavelength A in (3.29). After substituting the values A =  8 

m and D r =  4.2 m2 s-1 we get Τυ =  0.17s.

3.3.2 Overdense echoes

As was already mentioned above, when the dielectric constant ε is negative throughout an ap­

preciable volume of the trail, secondary scattering from electron to electron becomes important. 

The electrons are no longer independent scatterers. The ionized cylinder behaves as it would be 

made of metal. The trail is optically thick and scattering occurs mainly from the near side of the 

trail. Although the incident wave does not penetrate the column freely, even in matter of high 

conductivity, there is always a certain ”skin depth” of penetration of the incident wave, defined as 

the depth at which the amplitude of the electric vector has fallen to 1/e of the surface amplitude. 

Let us now derive the crucial expression for duration To of the overdense echoes. The overdense 

echoes are characterized by the negative permitivity on their axes. The duration To then comply 

with the time at which permitivity e(r, t) raises to zero even on the axis. So, we have the condition:

from expressions (3.29) and (3.32) we can see that both Tu and To do not depend on their 

position within the radar pattern. This fact plays very important role in our model as we will see 

in chapter (5.1). It is evident from (3.32) that the duration of the radiowave reflection from an 

overdense meteor trail can be used to determine the electron line density ae, which depends on 

the mass and velocity of the meteoroid. Therefore, when a meteor shower (of a known velocity) 

is observed, or when its velocity can be independently determined in some manner, the mass 

distribution of the meteoroids, i.e., parameter a in the power law of distribution, can be found 

from the distribution of durations of overdense trails. We take the bottom line for TD the value 

of 0.4s in film records from the Ondrejov meteor radar (see 4.4) to ensure that we work with 

overdense echoes.

Nothing remains but to mention the radar equation of the overdense echoes (Kaiser [25]):
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Let us assume the most important process of dissipation of meteor trůn, ambipolar diffusion. 

Hence, (3.22) together with the condition (3-30) gives



3.4 Initial radius of meteor train

Meteor trains typically reach an initial size much greater than the size of the meteoroide which 

created them in a very short period of time. Since the meteoroid has an initial velocity between 

roughly 11 and 72 km e~l , atoms ablated from the meteoroid’s surface will initially have very high 

kinetic energies, and take 15 to 20 collisions (Jones [22]) to slow down to thermal velocities. Meteor 

trails therefore undergo extremely rapid expansion to an initial dimension, at least a meter at 100 

km, then diffuse outward. Establishment of thermodynamic equilibrium between air particles and 

meteoroid’s atoms has two phases. The first one, in which energetic balance is being created, has 

the name thermalization stage. The phenomena connected with the second one, in which con­

centration balance is established, is described in section (3.2). Typical time of thermalization stage 

is 10-4s (Bronshten [9]) and in the case of the Ondrejov meteor radar cannot be recorded because 

of its repetition frequency being 500 Hz (thermalization stage finishes sooner than electromagnetic 

field of transmitted radar wave alters).

There are many models published in scientific literature. For instance (McKinley [35]), (Man­

ning [30]), (Massey and Sida [31]), (Kolmakov [27]) or (Campbel-Brown and Jones [10]). We need 

to choose a particular one to compute with it. According to Bronshten [9] the size of initial radius 

depends generally on the velocity of producing meteoroid and on the height at which it is created. 

The expression describing the dependence on the above mentioned factors reads

where now r00 is the value of initial train radius at some reference height and velocity, having the 

same dimension as r0. Bronshten [9] lists a variety of results many authors have arrived at with 

values of constants they have obtained. In our humble opinion the most reasonable and suitable 

model following from his observations seems to be the Baggaley’s one [3] in which the initial radius 

is expressed in the form of (3.34) with the following constants:
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where C  is a constant which does not have a simple physical dimension. Since it is necessary to 

give the velocity as well as height of the reflection point to be able to compute the initial radius, 

it seems better to rewrite the preceding formula into the form
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where remains constant. The model (3.34) points out that the initial radius

depends on height through density of air and velocity of meteoroids. In other words, the initial 

radius increases as both velocity and height get larger. The attenuation due to the initial radius is 

directly responsible for the well-known height ceiling effect. Let us look closely at the underdense 

radar equation (3.27), at its term exp Since atmospheric density decreases with

height, the initial radius is expected to increase and that term falls into dedine. For a radar at any 

given wavelength there is a height beyond which no underdense echoes can be recorded because 

the received power Pr is under sensitivity level (it is drowned by disturbing noise).



Chapter 4

Radar observations

4.1 Basic terms

Observations of a meteor shower can begin at the moment when a stream of meteoroids crosses 

the Earth’s orbit. Meteor phenomena originate as a consequence of an interaction of meteoroids 

with the atmosphere. By their systematic monitoring of a different kind (visual, photographic, 

spectroscopic, radar, sound, infrasound, seismic or television and video observations) we can get 

complete picture about a shower activity i.e. about an activity period, a profile of an activity 

curve, mass or magnitude distribution and so on. But before we will occupy ourselves with our 

range distribution model we need to define a few basic terms relating to the radar observation.

• Flux 0mo

It is a quantity that quotes a number of meteors crossing the unit surface of the echo plane 

per time unit having masses in excess of m0. Mass m0 is an optional constant selected in 

accordance with the kind of data. Its unit is j

• Echo plane

It is a plane that is perpendicular to the radiant direction and runs through the observational 

site. So, the position of the echo plane is defined by its normal vector that aims at the 

radiant. In other words it is a set of all points at which the specular reflection from meteor 

trails can occur. The definition of the echo plane is bounded up with two another terms. 

The local meridian of the echo plane is the plane defined by the direction to the radiant 

and the direction to the local zenith. This plane intersects the echo plane in a straight line 

called the main straight line of the echo plane (i.e. the line OB in Fig. 4.1) that is 

always perpendicular to the straight line of intersection of the echo plane and the horizon 

(i.e. DE in Fig. 4.1).

• Collecting area

It is a subset of the echo plane. Received power from all its points must exceed the minimal
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power Pmin that the used radar is able to recognize as a signal from a meteor. In the case of 

the Ondrejov meteor radar Pmin =  2.10-13W (see also ü b le  4.1).

Figure 4.1: The echo plane is determined by points BDE, the observational site O is situated at 

the origin of the coordinate system. The basic directions are: the radiant direction OR, the zenith 

direction OZ, the observational direction OC.

Fig 4.1 provides a clear idea about the definitions mentioned above. The origin of the coordinate 

system is set up at the observational site O. Points BDE establish the echo plane, points ZRA give 

the position of its local meridian of the echo plane. The direction OR  points at the radiant, its 

horizontal coordinates are (clr , z r ). The direction O Z  is the zenith direction. We observe in the 

direction OC. Points OB define the main straight line. We need to search for relations that allow 

us to determine horizontal coordinates (a, h) of the specular point C. Let us focus now on the 

spherical triangle BCZ and express sizes of its sides and angles:

By applying the formulae of spherical trigonometry to the triangle BCZ we get relations:
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These relations allow us to determine the desired horizontal coordinates (a, h) of the specular 

point C when the radiant position and the position within the echo plane given by the angle ΰ are 

known.

To summarize, after passage of a meteoroid through the Earth’s atmosphere a ionized electri­

cally conducted path is created. Its ionization curve stretches within some interval of heights. The 

specular point can lie at any place on it. Provided we set up a firm direction of an observation 

within the echo plane (angle ϋ), a mutual relation between linear height hi and range of the spec­

ular point R  from the radar is given by means of the cosine theorem of plane trigonometry (R e  is 

the Earth’s radius):

4.2 Ondrejov Meteor Radar

The meteor radar is located at the Astronomical Institute of Academy of Sciences of the Czech 

Republic and has been under operation since 1958. Originally, it was a german military radar 

("FREYA” ) of Air Defence made in 1942. It was rebuilt into today’s form during rapid boom 

of meteor radioastronomy and then it was situated at Ondrejov. Its mechanical construction has 

been described by Plavcová and Šimek [49]. Fig. 4.2 serves us to get an idea about size of that 

equipment. The size of an antenna mirror is 6 x 13.3m, its mid-point is 7.9m above ground surface. 

The mechanical axis is fixed at the angle of 45° in vertical direction, the cabin of the radar together 

with the antenna is steerable only in azimuth. A rotation is fully controlled via a punched tape. 

The system requires human service. Data are recorded on film (see also Fig. 4.5). The antenna, is 

common for transmission and receiving and is made of six half-wave dipoles aligned in two lines.

And finally we will mention relations we need to know in computations that connect angle v 

defining position within the echo plane with angles ΰ and <p describing three-dimensional antenna 

pattern. The spatial position of the antenna is unambiguously given by two angles: azimuth of the 

antenna axis α ^ .  and elevation of the direction of maximum transmission em.

We can find the derivation of the preceding formulae in Pecina [38].
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Behind these dipoles in distance of >../Bm is located reflecting mirror made of wire cloth. The 

electrical axis lies about 50.5° above the horiwn and coincides with the direction of maximum 

transmission. The gain in this direction equals to 24, i. e. the transmitted power of our radar 

exceeds 24x that of omnidirectional transmitter. Vertical set'tion of the antenna pattern shows 

two lobes from the side one at 17° arises due to interference of direct signal with the signal reflected 

by the hilly ground surrounding the radar. 

Figure 4.2: The Ondřejov meteor radar. 

Tahle 4.1 summarizes in a brief form the technical parameters of the Ondřejov meteor radar. 

This tahle is replenished by two Graphs ( 4.3) and ( 4.4) that represent the vertical and horizontal 

section of the antenna pattern. 

transmítted power PT 10kW 

limited receiving power PR 2.10-13 w 

efficiency 'TJ of antenna as a device 0.95 

repetition frequency 500Hz 

pulse length 10 /-'S 

wavelength .>. 8 m (37.5M Hz) 

maximum antenna gain 24 

Tahle 4.1: The tahle gives a brief report on technical pararneters of the Ondřejov meteor radar 
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Figuře 4.3: The vertical antenna pattern of the Ondřejov meteor radar, normalized to maximum, 

with its two lobes. The main lobe has maximum at 50.5°, the maximum of the side lobe is at 17°. 

The beam width between the half-power points is approximately 52°. The «-axis lies in the local 

horizon.

Figure 4.4: The horizontal antenna pattern of the Ondřejov meteor radar, normalized to maximum, 

has only one lobe. The beam width between the half-power points in the plane orthogonal to that 

of vertical one is 36°.
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4.3 Methods of radar observations

Apparently, tan hr - cot z r  <  1 in order the equation (4.6) could be solved. At this stage we 

distinguish between two cases. We know the motion of the radiant, i.e. z r ,  a «  so that the 

coordinates of the reflecting point are optional.

1. Firstly, we can choose the elevation hr as known quantity. Clearly, (4.6) has a solution 

provided h r  <  z r .  We do it in accord with the antenna pattern so as h r  has the same 

value as the direction of the maximum sensitivity, if possible. We use the set of following 

almucantars: 50°, 48°, 46°, 44°, 42°, 17°. Since in this way we get two solutions of (4.6), we 

usually choose the one with respect to familiarity with the terrain surrounding the meteor 

radar. The method is called the almucantar method. Its advantage lies in the fact that 

we fix the sensitivity into the radar antenna pattern and this provides us with the observation 

with constant sensitivity. The disadvantage is the fact that the suitable almucantar does not 

always exist.

2. Secondly, we can choose the azimuth Or as known quantity, i.e. we set the radar axis of 

maximum radiation at this selected azimuth. Due to the definition of the echo plane the 

difference (or -  a « )  on the left-hand side of the equation (4.6) has to be equal to 180°.
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The general principle of meteor observations by back scattering of radio waves off their trails is easy 

to understand. When a meteor enters the Earth’s atmosphere, its ionized trail may scatter or even 

reflect the radio waves from the transmitter back to the receiver. In the case of the observation 

by means of the Ondrejov meteor radar the transmitter and the receiver are located at the same 

observational position. Because the position of the radiant is a function of time it follows that also 

position of the collecting area of the echo plane from which we can register echoes varies depending 

on time. Thus, it is necessary to choose the relevant setting of the antenna during an observation. 

In principle there are two ways how to reach it that we will now show.

Let us denote rfr as the unit vector in the direction of a reflecting point of a meteor trail and 

tC r  as the unit vector in the direction of the radiant. As usual, we can express both vectors in 

commonly used spherical coordinates:

Symbols correspond to elevation h r  and azimuth Or of the reflecting point and zenith distance z r  

and azimuth ar of the position of the radiant. Obviously, in order to obtain transmitted radio 

waves after reflecting or scattering off a meteor trail, the scalar product ι ζ -  ■ t í r  has to be zero. 

After making a calculation we arrive at the basic observational equation:



Hence it follows the name of the method: the A  +  180° method. The echo plane cuts the 

antenna pattern at any observational time in a symmetric way. By means of (4.6) we get 

the elevation hr of the reflecting point. In this way of observations the sensitivity (gain) 

in the direction of the reflecting point varies much more dramatically than in the previous 

case. Even in some cases we cannot observe due to very high elevation of the radiant (e.g. 

Ouadrantid meteor shower around its culmination) and consequently a low radar sensitivity.

In practice we are usually urged to combine both methods in a suitable way. It is necessary to 

always keep in mind the way of observations because due to the variable mutual position of the 

echo plane and the antenna pattern we would get a different signal power from the same echo.

4.4 Data

In the case of the Ondrejov meteor radar each radar echo is characterized by four quantities we 

have at our disposal. These are:

*  time instant of echo occurrence

*  time behaviour of echo amplitude

*  echo duration of overdense echoes

*  range of reflecting point on meteor trail from radar

The example of the part of a typical film record is shown in Fig. 4.5. The film record consists 

of two parts:

1. Record ” A ” (amplitude record): display of an echo intensity as a function of time, overexposed 

bottom part is a background noise.

2. Record ”D” (range record): display of an echo range as a function of time. Each one of range 

signs is in the form of a horizontal line. These Unes are displayed at a 20-km distance from 

each other. The record grid begins at 60 km and ends up at 600 km. There is a blocking 

gap between 300 and 380 km on the film record. This gap arises from an artificial increasing 

of a range extend from 300 km (given by a radar repetition frequency of 500 Hz) to 600 km 

and was installed to suppress recording of the ground based reflections. As a consequence all 

radar echoes are doubled on the film record, their relevant ranges are read in the part which 

includes their non-doubled image.

There are time marks between parts "A ” and ” D” . A time mark together with following gap means 

one second, every tenth mark is represented in bold. A sign of Local Time in the form hour:minute 

(09:21) is recorded on the film after every one minute from a digital clock. The arrow above the 

time marks points to the direction of increasing time.
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Figure 4.5: The example of a part of a typical film record that includes three underdense and 

four overdense echoes. This film record represents about 18 seconds of the observations of Leonid 

meteor shower at 9:21 LT on 18th of November in 2000. 
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4.5 Mass distribution index

Mass distribution index β is a very important to an inner structure of meteor showers. It ie defined 

by the well-known mass distribution power law expressed by equation

giving number of meteors dN  having masses within the interval (m,m 4- dm) (McKinley [35]), Cn 

is a normalizing factor. Hence, it is obvious that a always has to belong to an restricted range of 

masses with respect to observation, in which it is usually supposed to be constant. Let us compute 

the total (cumulative) number of meteors N e inside the interval from some reference mass moo to

It is obvious that the mass distribution index a has to be always greater than 1. Failing that, the 

integral would diverge.

At this point, we concentrate on possible values of a. As it is very often said, when a condi­

tion s <  2 is fulfilled, a contribution of "fainter meteors” to the total mass of meteor shower is lesser 

than of "brighter” meteors” . Contrary to the previous situation, in the case of a >  2, "fainter 

meteors” determine the total mass rather than "brighter meteors” . A derivation given bellow help 

us to clarify terms "brighter” and "fainter" and the role a plays. To simplify the derivation and 

make all problem easier we work under the assumption that meteoroids do not decelerate and 

relate our quantities to the point of maximum light.

Firstly, we substitute into (2.41) from (2.10) taking (2.1) into consideration:

Secondly, we calculate the maximum of light curve (4.9) as a function of height h, i.e. the point

The height of maximum light occurs at the atmospheric density

coinciding with the density at the height of maximum ionization (2.51), while the maximum light 

itself reads
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We have included into C/ the quantities which are constant for meteoroids of particular shower. 

Thirdly, in the future considerations we rely on the following relation between the light intensity I  

and corresponding magnitude M  (Ceplecha et.al. [15]):

which is valid at any point of the light curve, so that also at its point of maximum.

We know the number of meteors having masses within the interval (moo, moo +  dm«,) from the 

distribution power law (4.7):

and also the total mass dme within the same interval:

Let us transform this distribution power law into magnitudes. By means of previous relations, 

we gradually get

The symbols κ, ζ, 7i and 72 designate the following:

The quantity ζ  is called the population index. The connection between a and ζ  is obvious: a =  

1 +  2.5 log ζ. Both indices are important parameters for studies of meteoroid streams. As the 

indices describe the internal structure of individual streams their values are constant only over a 

limited range of the magnitudes and masses and to a certain degree vary from stream to stream.

On the one hand, mass of a meteor shower in the magnitude range [M ,  Af + 1 ) due to "brighter 

meteors” and their number equal to
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We can see from the preceding results that while the number of "brighter meteors” is always 

less than the number of "fainter ones” (a >  1) their mass contribution is greater if 1 <  β < 2. 

For a >  2 the "fainter meteors" mass contribution and the number are both greater than the ones 

of "brighter meteors” . We will employ the law (4.7) in one of further sections for construction of 

range distribution formula.

4.5.1 Determination of mass distribution index

Mass distribution index a can be determined from radar observations. The method frequently used 

in radioastronomy of meteors is based on a relation we will now derive to be aware of restricted 

conditions under which it is valid. These conditions are two. Firstly, we assume the reflection 

point of a meteor path coincides with the point of maximum ionization (McIntosh and Šimek [33]). 

Secondly, meteoroids do not decelerate during their passage of the Earth’s atmosphere. Hence, we 

can make use of the expression (2.53) for a ^ ,  which we substitute into (3.32) to evaluate the 

duration of a radar echo at the point of maximum ionization. We neglect the second term ^  

of (3.32) due to its small value in comparison to the first one in the process. We also employ
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On the other hand, mass of a meteor shower in the magnitude range (M  +  1, M  +  2) due to 

"fainter meteors” and their number equal to

Since the condition a >  1 is valid, the number Ν Λ  of "fainter meteors” is always greater than the 

number N e\ of "brighter meteors” . Moreover, let us highlight the sense of the population index as 

the ratio between the number of meteors with magnitude within the interval ( M  +  1, M  +  2) and 

(Af, M +1).



All parameters connected with the real meteoroids are included in the constant K ,. Obviously, 

K , depends on but it does not play important role in computation a from the slope of the 

curve (4.23). We take the value of a computed in this way as a starting one in our model (that is 

valid generally at all points of the ionization curve).

Fitting the logTVe vs. log Tm„  curve following (4.23),we can see that it should be Unear. But 

in practice we find this dependence to be curved, so the number of more persistent reflections 

drops more rapidly than it would if it were determined only by the law of mass distribution of the 

meteoric bodies. This phenomenon is observed in both meteor showers and sporadic background. 

A lot of authors have proposed various explanation of this discrepancy, e.g. (McIntosh [34]) or 

(Nicholson and Pool [37]). We maintain the position that was for the first time presented in Pecina 

[39]. The author have demonstrated that non-equal collecting areas for meteors of various durations 

cause a decrease of the computed mass distribution index a and furthermore that the evaluation 

of the mass distribution index a cannot be segregated from that of the flux. We fully identify with 

these statements. Due to unequal collecting areas for meteors with various durations the mass 

distribution index a is usually lower than we expect. It is valid that the longer duration the larger 

collection area so the actual curve has steeper slope and as a consequence greater value.

the relation (3.13). Then the relation between the duration of a radar echo at the point of 

maximum ionization and mass moo is

We express moo from (4.22) and substitute it into (4.8), which is the relation expressing cumulative 

number of meteors N e as a function of mass Calculation the logarithm gives us the desired 

dependence of N e on the duration Tmax at the point of maximum ionization provided the meteoroids 

do not decelerate:
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Chapter 5

Range distribution model

5.1 Definition of range distribution

By means of observations we gain the data the characteristics of which are described in section (4.4). 

When we sort out observed radar echoes into chosen range intervals according to the other char­

acteristics (i.e. an observed time interval, a selected interval of durations), we can get a column 

chart similar to the diagram (5.1). Thus, the range distribution is the dependence of the echo rates 

on ranges from the radar.

Figure 5.1: This example of the typical range distribution was made from radar meteors recorded 

during observations of Geminid meteor shower, between 23 and 3 UT, on the 13th and 14th 

of December, in 2000. The histogram comprises overdense echoes with durations greater than 

0.4 s. The vertical axis shows shower rates in particular 25-km-wide range intervals, which are 

represented by their initial points on the horizontal axis.

The range distribution mirrors the fact that ionized meteor trails associated with a particular 

meteor shower occur inside a restricted height interval. The interval depends on the radiant po-
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sition, on the masses and speeds of meteoroids contributing to the range distribution and on the 

other physical quantities, which we can describe by means of the ablation coefficient σ and the 

shape-density parameter K  (e.g. Ceplecha et.al. [15]). Since during the observations of meteor 

showers we register simultaneously a lot of meteors with various masses, their mass distribution 

described by the mass distribution index a together with the shower flux density have an in­

fluence upon the shape of their range distribution curve. We have developed the model reflecting 

all these facts that allows us to compute several important quantities typical for particular meteor 

showers. Derivation of the range distribution model is included in the next sections.

5.2 Range distribution model: principal formula

In this section we draw our attention to the derivation of the principal formula of our model. As 

a consequence of the fact that the range distribution is a result of the contribution of meteors 

having various masses, our theoretical model has to be based on the generalization of the well- 

known mass distribution power law (4.7) we will modify for our purpose. The law was derived 

from observations over a large part of the sky. Assuming that it is valid inside any element of the 

echo plane and also in any sufficiently short time interval we will alter (4.7) in the following way. 

Apparently, the larger collecting area and the longer time interval the greater number of meteors 

we should observe. That results in a more general mass distribution law in the Belkovich’s form 

(Belkovich [61)

Here dt is the time interval, dS =  RdRdů is the element of the collecting area within the echo 

plane. (Section (4.1) gives a detailed account of coordinates R  and ϋ.)

To specify the normalizing factor c*, we employ the definition of the shower flux density. Let 

us remember that θ„^, is a number of meteors crossing the unit surface of the echo plane per time 

unit having masses in excess of m0. Mass m0 is an optional constant that will be discussed later. 

The definition together with the law (5.1) leads to the following relation connecting the shower 

flux density with the normalizing factor c„:

Eliminating c„ between equations (5.1) and (5.2) yields the important generalized mass distribution 

power law

Obviously, m >  mo has to be valid. Since mass of a meteoroid decreases during its passage through 

the Earth’s atmosphere and the rate of mass loss is different for meteoroids of various sizes, shapes 

and chemical composition, the mass m in (5.3) should represent moo of the meteoroid, i. e. its mass 

before entering the Earth’s atmosphere. Moreover, since the quantity m«*, is not directly observable
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we have to transform it to include only observable one. Generally, we have two possibilities based 

on the data, which are at our disposal from observations (see section 4.4). We can choose either a 

duration of an overdense echo or amplitude of an underdense echo. Both quantities are connected 

with linear electron density ae and therefore with mass moo- There are two reasons for decision to 

exclude underdense echoes from our work. Firstly, their amplitudes connected with ae (physical 

meaning is given by the equation (3.28)) depend on the positions of the specular points within 

the radar pattern. Because our observations belong only to single-station ones, we are not able 

to determine these positions. Secondly, the specular points can be situated at any point of the 

ionization curve in reality. This fact could cause troubles during computation of mass of meteoroids. 

The whole ionization curve of meteoroids with small mass can lie under the critical linear electron 

density. But the ionization curve of meteoroids with bigger mass has two parts, underdense and 

overdense ones and the specular point can be involved in underdense part. Fig. 5.2 includes 

two ionization curves computed from (2.50) for the sake of simplicity. So, we would count this 

radar echo as an underdense one, but in reality it would be an overdense echo. For this reason 

we decided to make use of overdense meteors to avoid just described problem. Their duration are 

handy because it does not depend on the position within the antenna pattern. To make the picture 

complete there is no possibility to use duration Tu of underdense echoes because this quantity is 

not related to physical characteristics of meteors. Eventuality to employ amplitudes of overdense 

echoes is also impracticable because we have no physical theory connecting the linear electron 

densities of overdense echoes with their amplitudes.

Figure 5.2: The course of the ionization curves for two values of m«,, 0.1 g and 0.5 g. In the case of 

smaller mass any point of the ionization curve does not exceed the critical linear electron density. 

On the contrary, the second ionization curve (m,* =  0.5 g) has two parts, the overdense and 

underdense one. Both curves were computed after (2.50) for v«, =  36 km s_ l , σ =  0.01 s2 km-2 

and K  =  1 cm2 g "2/3, zR =  45°, H  =  5.409 km, g0 =  56.803 kg m "3 and μα =  6.69414 x 10“ 26 

kg. The used model of ionization probability β was in accord with (2.47).
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To proceed further, we rewrite (5.3) as

In the above equation cPN stands for an incremental rate with respect to mass. Since it is better 

to deal with cumulative rates due to greater rates in practice, our theoretical range distribution 

model is based on the cumulative quantity. To answer this purpose, we carry out the integration 

in (5.4) with respect to mass from a certain value of πΐχ, to + 00. We obtain

Here dPNe is the cumulative number of meteors having masses in excess of m«, registered during 

the time element dt and within the element of the echo plane dS. (5.5) is our principal formula in 

the differential form. We get its integral form by integration of (5.5) with respect to time t and 

collecting area Soi:

We would like to stress here that m0 does not depend on the position of the train reflecting 

point within the collecting area and is, therefore, constant with respect to the the integration. 

The explicit functional dependence of τη&^3 on the integration variables can be inferred from the 

physical theory outlined in the previous sections. We need to express this quantity as a function of 

observed duration To- When combining together the equations (2.56), (3.13) and (3.32) we arrive

Here the symbols x, a, b, c stand for:

Also c is a constant that depends only on the used equipment via Λ. Furthermore, it is important to 

note that the parameters a and b depend namely on the physical properties of meteoroids. It means 

on the shape-density parameter K, the ablation parameter σ, and on the ionization probability β. 

We suppose both quantities a and b to be the same for all members of a particular shower. We 

can also write by means of (5.9), (5.10) and (5.11) the following useful relations:
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The physical meaning have only two last quantities and, therefore, only resulting values of these 

quantities will be presented instead of a and b in the section dealing with results of our effort. Thus, 

we have the function x =  x(a, b, μ, gB)  that we can insert into (5 6) and perform the integration. 

The unknown parameters we wish to obtain are: ΘΓ>10, s, K  ■ σ, μ, β and qb Because all values 

of Qb tended to aero when applying formula (5.6) to observed range distributions we decided to 

exclude it from computed parameters and put it fixed value of zero. The following four Figures, 5.3 

and 5.4, demonstrate the changes of the range distribution with changing the parameters «, K  σ, μ 

and β it depends on. The dependence on flux 0 rao is linear so that there is no need to draw the 

corresponding picture. All four curves are computed for the radiant of Geminids between 1 and 2 

hours LT, for mass m0 — 10-5 kg, υ«, -  36 km s_ l , D r =  4.2 m2s (height of 93 km), H  =  5.409 

km and Q„ =  56.803 kg m~3

Figure 5.3: The left picture shows theoretical range distribution as a function of mass distribution 

index s. Decreasing β causes increasing echo rates. The position of maximum is preserved. The 

right picture presents theoretical range distribution as a function of product K a. Obviously, the 

higher the value of this product the more distant and less powerful the maximum is. The relevant 

curves are marked with the corresponding value of the product.

The formula (5.6) expresses the fact that we collect meteors crossing the collecting area of the 

echo plane Scoi during the time interval (<i, <2)· In other words, we integrate over time interval 

during which the observation was carried out and over the surface from where the radar is able to 

register radar echoes. We can see that the number of meteors within the range interval (H i , R 2 ) 

depends on mass distribution index β and is directly proportional to 0 TO(1 

The limits of the integration are the following:

tt, íq are time limits of observational interval (optional),

f í , , i?2 are limits of particular range interval (optional),
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Figure 5.4: The left picture shows theoretical range distribution as a function of Levin's μ. Range 

extension of the distribution depends on the value of μ. The higher this value the wider extent 

of the distribution. The relevant curves are marked with the corresponding value of μ. The right 

picture presents theoretical range distribution as a function of β. Obviously, the lower this value 

the less strong the maximum is.

t?i, ú? are bounds of angular interval within the collecting area Scoi depending on the range

from radar and on the radiant position as we shall immediately see.

To visualize the dependence of (5.6) on time via cos zR we have generated a few theoretical range 

distributions computed for various radiant positions. These distributions have been computed for 

Geminid radiant and are depicted in the Figure 5.5. It is clear that the higher radiant elevation the 

greater rates of echoes. Moreover, it can be seen that the maximum of the range distribution moves 

to the more distant ranges with increasing radiant elevation. The Geminid radiant culminates 

around 2.5h LT.

We have to establish the way how to get the angular limits. The angles can be computed with 

the assistance of the radar equation valid for echoes of overdense trails (3.33) and relations (3.32), 

(3.13), (3.35). The conditions for their computation follows from the fact that receiving power P r  

has to be greater or equal than limiting power Pmm.

The dependence of (5.14) on height h are included in two members, in the air density g{h) and 

in the term cj v (h )2a ρ(Λ)ι-2β. The second member is usually very small in comparison to To so 

that it does not play an important role in computation. In spite of this we take it into account. 

The boundaries t?i, Ů? are limiting values of the region inside which P r  > Pmm (in the case of the 

Ondrejov meteor radar Pm(n =  2 · 10~13 W). The relation between height h, ϋ and R is given by a 

formula (4.5).

The computation is based on the least - square fit of the theoretical rates computed according 

to (5.6) to an observed range distributions. The mathematical method is described in the next
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Figuře 5.5: The left picture shows theoretical range distribution as a function of time. All four 

curves are marked with relevant limits of time interval t\ and t% in LT and were computed for 
mass m0 =  10-Ä kg, νχ  =  36 km s_ l , K - σ =  0.01 s2 km-2 , a — 1.5, μ =  2/3, 0 =  0.100, 

Dr =  4.2 m2 s (height of 93 km), H =  5.409 km and q„ =  56.803 kg m-3 . We present on the right 

picture just for comparison the time course of the elevation of the Geminid radiant.

section.

5.3 Mathematical methods of getting parameters

We get the parameters 0 mo,s,a,i>,/i and on from the least - square fit of the theoretical rates 

computed according to our principal formula (5.6) to an observed range distribution:

N ?  is a number of meteors observed in a particular range interval and N f  (θ„^,, 8 , α{Κ, σ), b(K, σ )) 

is a computed theoretical number of echoes. The symbol n stands for a total number of range 
intervals. Since N f  depends on all parameters except 0 mo in a nonlinear way we have to search 

for them iteratively. In computations like these, methods that take advantage of partial derivatives 
of N f  with respect to wanted parameters prove useful. Let us give some indication of the iterative 

process. If we have to solve a task to look for unknown parameters p; from the condition

with Wi as weights, y, measured quantities and fiipj) their mathematical model that depend 
on pj in a nonlinear way. We approximate the function Q{pj) by its Taylor expansion around the 
parameters found in fc-iteration:
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where m is a number of parameters the model depends on. At minimum of (5.17) the condition

should be satisfied. After taking derivative of (5.17) we get the equation:

(5.18)

It is obvious that 9aQ/9p<ôpa are elements of the square matrix having dimension m. After

multiplication of (5.18) by a matrix inverse to d*Q/dpidpa we get the iterative recipe of the 
Gauss-Newton method (e. g. Meloun and Militký [36]):

The good initial estimate of searched parameters are necessary in order the Gauss-Newton method 
could work. This fact causes generally troubles when inverting the matrix Ayg =  &*Q/dpydpg.

inversion of the new matrix and the parameter λlm controls the length of an iteration step. The 
larger this parameter the shorter the step. This idea inspired Pecina [42] in further extension of 
this method. The length of iteration step should depend on quantitative expression of the fitting 
process. This is given by the magnitude of Q according to (5-16). The greater Q the shorter should 
be the iteration length. This leads to proposition to replace Ayg by Ayg +  XpQ  diagA^. Inserting 

this matrix into (5.19) and considering (5.16) a function of Pj represented by the right hand side 
of (5.19) the one dimensional minimization of Q  with respect to Xp yields the desired expression 

for A p. This is rather ponderous and will be given somewhat later when expressing the derivatives 
of Q as a function of derivatives of f(p j) from (5.16).

From (5.16) follows that

worse iteration behaviour during computations namely when the set of parameters is far from their 
values giving minimum of (5.16). In order to simplify further expressions we define the vectors Pj,  

Gk and Mi together with matrix Sjk by putting

(5.19)

To overcome these troubles Levenberg and Marquardt [51] proposed to replace the matrix Ayg by 

another matrix Ayg +  Xĺm diagA^, where diagA^ is a diagonal matrix with elements coinciding 

with those of original Ayg and Xlm is a parameter the authors recommend to chose in a rather 
artificial way. The sense of this proposition lies in the fact that the addition allows performing the

and

The second term in the middle part of the previous line is usually neglected because it causes the
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where iy  stands for the Kronecker symbol. When comparing the definition of P j and S jk  with 

partial derivatives of Q we can see that

Inserting for these derivatives into (5.19) we already get the recipe for computation of pji

This is explicit expression for the Gauss-Newton method. The corresponding formula of modified 

Levenberg-Marquardt method due to Pecina [42] can be written as

We have used this recipe in all further computations. These begin with chosen initial estimate. 
The subsequent values of parameters are computed using (5.22). The computations are carried 

out until the subsequent sets of parameters differ by more than the prescribed constant.
To complete this chapter we have to add explicit expressions for N f  from (5.15). This is given 

by (5.6). When substituting there for miiV3 =  x from (5.7) we receive the desired expression

The derivative of N f  with respect to 0 ^  is easy to write:

Also the derivative with respect to s can easily be performed. The results reads

The derivatives with respect to remaining parameters can be written as

where p  stands for one of the parameters a, b, μ, q b - The particular derivatives can be evaluated 

from (5.7) when defining the auxiliary quantity ξ  =  b [ρ — ρ β  -  Qb  In ( β / ρ β ) ]  /  cos z r :

53



Chapter 6

Results

6.1 Input data

Before moving on to the results we have gained we will devote this section to the input data. 

In the section (4.4) there are the data overview we have at our disposal from observations. As was 

mentioned above, the Ondrejov meteor radar has been under operation since 1958 and observations 

have mainly concentrated on four meteor showers. They are: Quadrantids, Perseids, Leonids 

and Geminids. From that time the unique four long-term series of data have been managed to 

accumulate. At this moment the Perseid series includes 31 years, the Leonid one 26 years, the 

Quadrantid one 46 years and the Geminid one 38 years of observations. We have tried to use 

the method of range distribution to every year of each series. Besides, we have also applied our 

method to two daytime showers that belong to the Taurid complex, ζ  Perseids and β Taurids. Their 

observations were performed from 2003 to 2005 during the study of the Taurid complex. This study 

was supported by grant GA ČR 205/03/1405. The first results related to an application of the 

simplified method in the case of these two daily showers have already been published in Pednová 

and Pecina [48]. We have applied our method also to 7  Draconids meteor shower observed during 

its last increased activity in 1998.

Despite the huge volume of data it was not easy at all to choose the suitable range distribution 

for computations belonging to the particular year. To make the previous statement clearer we have 

to mention a few fact about data processing. Because our observations are only single-station ones 

the methods of observations do not permit to determine the direction in which a meteoroid plunges 

into the Earth’s atmosphere. Hence, we do not know whether it belongs to the observed shower 

or to the background. To determine the shower activity we have to map the level of background 

activity. For that reason an activity before and after shower activity has to be observed and 

after that we are able to construct a shower activity curve. Obviously, the data serve mainly for 

statistics. When we have looked for a range distribution suitable for computations by our method 

we have met a lot of obstacles. We can divide them into two categories. First one relates to the
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technical problems such as interruptions of observations due to power failure, very high noise level, 
human errors, problems with equipment and so on. Because of these technical faults it was not 

possible to determine the shower activity level and consequently to construct the relevant range 

distribution. Even in some years observations were not performed at all due to reparations of the 
radar, its modernization or the other technical problems. The second category includes problems 
with echo rates. It is clear that we need rather stronger activity in order the range distribution 

could be well-defined and the range distribution method could be applied. But, there were very low 
or zero shower activity in some years, e.g. Quadrantids 1963, Perseids 1972. Thus, the majority of 
range distributions we have used were obtained during the maximum shower activity and during 

the larger time intervals, e.g. 2 hours. Furthermore, it was mentioned above that the Ondrejov 
meteor radar is able to observe unambiguously from 100 km to 600 km with the blocking gap 

between 300 and 380 km. Rich experience with observations and proceeding data indicates that 
absolute majority of echoes occur within the interval < 100,300 > km. The shower rates in greater 

distances (< 380,600 > km) from the radar vary from one shower to another and does not exceed 
approximately 10%. This fact relates to the radar equation for overdense echoes (3.33) because the 

strength of signal decreases with the third power of range from the radar. For that reason we have 
restricted themselves to range limits from 100 to 300 km. Moreover, the position of maximum of 
the range distribution changes with time due to time dependence of the shower radiant position as 

we have shown in Fig. 5.5. In view of this fact at some position of the shower radiant the maximum 

of the range distribution overstepped the range limits < 100,300 > km and was so bad determined 
that again we were not able to get anything. It was the case of faster meteor showers such as 

Leonids. But on the other hand, we have managed to construct two or more range distributions 
in one year under the favorite conditions.

To sum up, searching for the well-defined range distributions of overdense echoes was sometimes 
like looking for a needle in a haystack. We have proceeded as follows. Firstly, we have usually 

divided shower rates into 20-km-wide or 25-km-wide intervals from 100 km to 300 km and then we 
interpolated them to get rates into 5-km-wide intervals with the assistance of the interpolating pro­
cedure SINOD (single interpolation in one dimension) published by Steffen [54]. The distributions 
gained in this way have served as an input to our computations.

The process of computation is the following. Primarily, we have defined normalized rates as 
observed rates within particular range group divided by the rate at the maximum range. Then 

these rates do not depend on 0 mo as it can easily be recognized from (5.6). They are functions 
of β, Κ.σ, μ, β  and pe- Numerical computations have revealed that the normalized rates depend 

mainly on s and K  - σ. They depend in somewhat weaker way on μ and β. Therefore, the process 
of computation was divided into several substeps. During the first one only 8 and K  ■ σ were com­
puted while the remaining ones were kept constant. The starting value of the mass distribution 

index a we take to be around the value computed from the log N  vs. log Tp fit. The starting value 
of K  ■ σ  was 0.01 corresponding to K  =  1 and σ  =  0.01. The starting value of μ was set to 2/3
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and the corresponding value of β  was set to the value of this quantity following from the formula 
of Kashcheev et al. [26]. After getting the β and K  ■ σ  values the next parameter from the above 
mentioned set is added and so on. Eventually all these parameters are evaluated. In the second 

(and last) stage the is calculated from (5.23) where the original (not normalized) rates are 
used. The relevant mathematical method for getting parameters is described in section (5.3).

Constants and starting values of computation common to all of five showers are the following:

• the average mass of meteoroid atoms: μα =  40 x μμ where μπ =  0.1673534056 x 10-2e kg 

is the mass of the hydrogen atom (e. g. Ceplecha et al. [15]),

• the constants p0 and H  result from the least-square fit of dependence (2.1) to the real 

atmosphere represented by CIRA [17],

• Dr =  4.2 m2 s-1 at the height of 93 km (e. g. Belkovich [6]),

• the mass distribution index a we take to be around the value computed from the log N  vs.

log 77, fit (4.23),

• the possible value of duration of underdense radar echo was examined in the subsection 
(3.3.1). It is clear from this calculation that at hights higher than 93 km the value 0.17 
s cannot be reached. At the lower heights the value of ambipolar diffusion coefficient can 

drop to about one half of the value adopted in the subsection (3.3.1) so that the duration of 
underdense echo can be as high as 0.34 s. To be on the safe side we have adopted the lowest 
value of the overdense echo duration to be 0.4 s.

• the limiting mass m0 =  10-5 kg was chosen in the following way. The highest electron 

density occurs at the maximum of the ionization curve. The relation between the maximum 

electron line density and the corresponding mass is given by (2.53). The lowest possible mass 
results for cos zr =  1. Thus, m«, =  9μαΗα,ηαχ/4β. The higher the mass of a meteoroid the 
higher the electron line density and vice versa. Moreover, the reflection at other point than 

at that of maximum ionization requires higher value of meteoroid producing mass to yield the 

same signal strength as at the maximum ionization. The electron line density of overdense 
trail relates to the duration of echo, To via (3.32) which yields for the limiting mass the 
formula m0 =  9ττ2μαΗΟΤ0 /βΧ2τκ where we have neglected the term r„/4D . The lowest 

possible mass results for the highest ionization probability which corresponds to Leonids 
having highest shower velocity known so far. While formula of Kashcheev et al. [26] yields β  =  

0.3815 the corresponding formula of Verniani and Hawkins [59] provides us with β  =  0.2541. 

It is clear that we have to use the former value. Hence, m„ =  0.8 x 10-6kg at the height of 
93 km. This value holds true at the point of maximum ionization. At other points which 
do not coincide with the maximum one the mass must be even higher. Since the reflection
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just at the point of maximum ionization is rather exceptional we can relate the limiting mass 
to m„ ~  1 x 10-6 kg without introducing substantial error into our considerations. If we

want to estimate the corresponding magnitude we have to find the maximum light intensity 

of the light curve. The atmospheric density at the light maximum is given by (2.51). When 

introducing (2.37) into (2.41) for m we obtain the light curve with Levin’s μ. On substituting 

there (2.51) we get the maximum intensity Imax in the form

The absolute magnitude corresponds to c o s z r  =  1. Eventually we use (4.12) and the desired

Obviously, the absolute magnitude value depends on luminous efficiency r. The interested 
reader can get its value e.g. in Ceplecha [13] and compute the absolute magnitude for various 

masses m«, and velocities Voo·

• the ranges of observed meteors are reduced with the precision of 2 km.

• The physical theory employed so far considered μ =  2/3 as standard. As we have mentioned 
in the subsection entitled Use of Levin’s proposition the case of variable μ different from the 

above assumption can partially allow for effects such as fragmentation and can substantially 
improve the ability of our model to fit observed range distribution. This is clearly visible 

from Figure 6.1 where are shown the observed distribution together with result of the 1st step 
(μ =  2/3) and the 2nd one i. e. variable μ. A look at this picture justifies our decision to 
include variable μ into our model.

• We usually observe an activity of a particular shower during a few days (symmetrically 

around its expected maximum) so that we do not need to take into account the daily motion 

of its radiant due to wide antenna beam. On the other hand during observations of a shower 
background the particular shower radiant is corrected for its daily motion. It is necessary to 
say that we neglect the daily motion of radiants in our computations. The radiant positions 

listed in further text are the same we used in observations as well as in computations.

6.2 Obtained results

To summarize, we have tried to compute five unknown parameters: K -σ, μ, andß. The com­
putation is based on the least-squares fit of the theoretical rates computed according to (5.6) to 
an observed range distributions. The mathematical method of computations is described in the 

section (5.3). Unfortunately it is impossible in our model to split K  from σ  and we can compute 

only their product. However, the multiplication restricts the extend of their possible values. Since

relation is:
(6.1)
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Figuře 6.1: The example showing the difference between the observed range distribution (red) and 
the ones following from the application of the method of this work. The green distribution has 
resulted from the computation under the assumption μ - 2/3, while the blue one has resulted from 

computation when μ has been variable. The left picture presents case of Leonids 1998, November 17 

with μ =  1.80 while the right picture presents range distribution of Quadrantids 1987, January 4 
with μ =  1.82. See also the tables relevant for particular shower in the further course of the work.
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the shape density parameter depends on density of a meteoroid we try to estimate the value of 
σ  for various kind of meteoroid substance provided a spherical shape of a meteoroid body in the 
process. The results corresponding to each meteor shower are placed into relevant next subsections. 

We have also calculated the weighted means of obtained parameters but we need to always keep in 
mind that ö mo and β are quantities dependent on solar longitude and on year of an observation. 

Their means can only serve for getting the whole picture namely in the case of Leonids.

6.2.1 Quadrantids

The Quadrantid meteor shower, being active in the beginning of January, belongs together with 

Geminids and Perseids to most prominent showers. This stream has very sharp and narrow maxi­
mum between January 3 - 4  with the maximum activity appearing around Lq ~  283°2 where the 
relating equinox is J2000. The period of activity as deduced from visual observations is 4 - 6 hours 

wide. Our long-term radar observations have revealed that the period of activity of radar meteors 

can be wide several days, usually from January 1 to 6. We cannot observe this shower between 
6 - 1 0  hours of local time because of the proximity of radiant to local zenith and, consequently, 
very low elevations of the reflecting points for which our antenna is insensitive. The Quadrantids 

move in a short-period orbit with a period of revolution of about 5 years. The parent body was 

not known for quite long period. Hasegawa [19] has suggested the comet C/1491 to be likely the 
Quadrantid parent. McIntosh [32] has studied the orbit of 96P/Machholtz and has found an orbital 

similarity between the comet and Quadrantids. At the end of nineties Williams and Collander- 

Brown [63] has discussed a possible connection of the asteroid 5496 (1973 NA) with the stream 
and recently Jenniskens [20] has proposed the asteroid 2003 EH1 to be the parental body. He has 
also concluded that the object is an intermittently active comet. Quite recently Porubčan and 
Kornoš [50] have studied the orbital history of the Quadrantid meteor stream on the basis of the 

updated version of the IAU MDC photographic meteor catalogue. They have found that two of 
filaments of the stream have followed the orbital evolution of 2003 EH1 asteroid. The remaining 

filaments have probably their origin in other bodies mentioned above. As a consequence, it is 
probable that the activity of Quadrantid shower is due to more bodies contributing to the stream 

having thus filamentary structure with particular filaments causing activity in different years. We 
have accepted a =  230°, δ =  +49° and Voo =  43 km s-1 for this shower.

The Quadrantid meteor shower has been studied by the radar for many years. Our series of 
this shower consists of 36 years at present. We have managed to perform computations of 45 range 
distributions across 32 years. The Table 6.1 collect our results on Quadrantids. Since we assume 
the meteoroids contributing to the shower activity in various years are the same with respect to 

their physical properties, our results collected in the Table 6.1 can further be used to get quantities 
representing the shower as a whole. We have used the weighted means of all cases included in 

the Table 6.1 with the weights being inverse of the standard deviations from it. We have got the 

following results: a =  1.77 ±  0.02, K  · σ  =  0.042 ±  0.001, μ =  1.55 ±  0.02 and 0  =  0.107 ±  0.007.
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Now our results can be compared with results of other authors. The IMO calender for 2005 brings 

the population index ζ  =  2.10 for Quadrantids. Using the appropriate relation between ζ  and 

a mentioned above we get the recomputed value β =  1.81 which is quite close to our resulting 

value. The calendar does not bring any other information which could be compared with our 

other quantities. Our result is well comparable with the corresponding one published by Pecina 

[39]. Šimek [55] studied dynamics and evolution of the structure of five meteors streams including 

Quadrantids. He used radar data collected at Ondřejov. His investigation lead to 8 — 1.61 ±  0.03 

which is lower than our result. This is due to the fact that he employed the Kaiser’s formula for the 

calculation of a which does not include the correction for different collecting areas. The value of μ 

greater than 2/3 reflects other than isotropic ablation of Quadrantid meteoroids, probably due to 

fragmentation. Similar result has been reached for Leonids as well as Perseids as we will see in the 

further course of the work. The resulting β is lower than the value following from extrapolation of 

Jones [23] (he has churned his formula being valid only for velocities up to 35 km s-1), and greater 

than values given both by Kashcheev et al. [26] and Vemiani and Hawkins [59].

As was mentioned above, we are not able to split mutually K  and σ in our model. To our 

best knowledge there is not any value of either K  or σ still published. However, the multiplication 

restricts the extent of their possible values. Since the shape-density parameter depends on density 

of a meteoroid (see (2.7)) we have tried to estimate the value of σ for various kind of meteor 

substance. We assumed a spherical shape of a meteoroid particle. The result expressing the range 

of the ablation parameter from most fragile cometary material to material of Geminid type is in 

the Table 6.4.

6.2.2 Perseids

The Perseid shower occurs quite regularly every year in August with its maximum activity around 

Lq ~  140°. Its display comprises several weeks from July 17 up to August 24. This shower belongs 

to well known showers of clearly cometary origin with 109P/Swift-Tuttle as parent body. For this 

shower we have accepted a  =  44°, δ =  +58° and υ »  =  61 km s-1. The Perseid series consists of 

31 years at present but we could work with 13 of them only. The results are in Table 6.5 that lists 

18 range distributions.

Also as in the case of Quadrantids we made use of the data collected in the Table 6.5 to get 

the weighted means of quantities which could represent the shower as a whole. These means read: 

a =  1.45±0.01, K -σ  =  0.044± 0-003, μ =  1.06±0.03 and β =  0.205±0.001. The IMO population 

index is 2.60 which results in the mass distribution index value a =  2.04. This is substantially 

higher than our result. We cannot explain this discrepancy at present. The Šimek [55] result 

reads a =  1.61 ±  0.02. There is clearly visible increase of activity of the shower expressed in 

increase of the flux in the period 1988 - 1993 with the peak at its end which was attributed to the 

activity of a new Perseid filament recognized by Roggemans [52]. Its activity was also studied by 

Šimek and Pecina [56] using Ondřejov radar data Our finding conforms the behaviour reported
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by these authors. Even though μ is much lower than for Quadrantids it is still higher than usually 

assiuned value 2/3. This again implies probable fragmentation process during ablation of Perseid 

meteoroids. The resulting value of 0 lies between the corresponding value following from Veraiani 

and Hawkins formula and the one following from Kashcheev et al. [26] expression.

Also proceeding as in case of Quadrantids provides us with the Table 6.7.

6.2.3 Leonids

The Leonid shower occurs in November every year with maximum activity around L© ~  234°. 

However, this regular display is rather weak. It comprises several days from November 14 up to 

November 21. Also this shower belongs to well known showers of clearly cometary origin with 

55P/Tempel-T\ittle as parent body. In addition to the weak activity, strong storms exist that 

repeat every 33 - 34 years. The occurrence of these storms is due to dense core of meteoric 

material ejected from the comet during its historical approaches to the Sun. Their concentration 

seems to be confined behind the comet. It implies that these storms can occur only after the 

perihelion passage of the comet and not prior to it. This is also actually observed. Last storms in 

the last century occurred in 1965 - 1966 and 1998 - 2002. Their observations revealed an evident 

filamentary structure of the stream. For this shower we have accepted a =  153°, 6 =  +22° and 

Woo =  71 km s-1.

The Leonid series consists of 26 years at present, Table 6.8 lists 11 cases from 7 years including 

the data from the comet return in 1965 and 1966. However, we could have not investigate the data 

from the very activity maximum in 1966 due to a huge amount of meteore recorded at that time 

causing that the film was overexposed and, consequently, the individual meteors could not have 

been mutually distinguished. So we had to use data from periods when the record was readable. 

Investigation of Leonids activity within these years using radar was described by Šimek and Pecina 

[57]. They reported higher activity in 1966 and lower in 1965. We can compare our 0 mo values with 

corresponding ones at mutually similar solar longitudes. In 1965 our =  (4.67 ±  0.32) · 10-12 

m~2 s-1 compares very well with 0 mo ~  4.25 · 10-12 m-2 s-1 of Šimek and Pecina [57]. Also 

our data from 1966, i. e. =  (1.19 ±  0.09) · 10-12 ra~2s_1 and =  (2.05 ±  0.13) · 10-12 

m~2s_1 compare well with 0 m„ ~  1.0· 10~12 m-2 s_1 and ~  2.0· 10~12 m-2 s-1. The above 

authors presented also the mass distribution index β as a function of solar longitude. Comparing 

our resulting s with the ones of Šimek and Pecina [57] brings the fact that ours are lower than those 

of these authors in both years. While our data have provided us with s =  1.21 ±  0.05(1965) and 

a =  1.24 ±0.09, b =  1.12 ±  0.01(1966), those from above mentioned paper are: β — 1.46 (1965) and 

8 =  1.56, a — 1.78. We would like to make a note that while in 1965 our values relate to observed 

maximum, in 1966 both our values were gained prior to observed maximum (L© =  235°182) and 

after it.

We have also made computations with the data from the last return in 1998 - 2002. On the 

whole the activity within these years was much lower than the activity in sixties. The results on
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activity and mass distribution in 1998 and 1999 were published by Šimek and Pecina [58]. Their 

flux in 1998 at the same solar longitude £>© =  234?448 was &mo — 1-0 ' 10~12 m_as~1 while our 
one ©m,, =  (1.10 ±0.03) · 10~12 m-2 s~l . At the longitude L® =  234?531 their value reached 

Qma s; 1.5-10-12 m~2s-1 while our one 0 mo =  (1.67±0.18)·10-12 m~2s_1 and at L© =  234Í699 
0 mo ~  1.5 · 10-12 m-2 s_1 and Bmc =  (2.05 ±  0.15) · 10~12 m-2 s-1 . It can easily be seen that 
our fluxes are in a good agreement with those values of Šimek and Pecina [58]. Also the resultant 

values of the mass distribution indices can be compared. Our values listed in Táble 6.8 are for 
1998 and 1999: a =  1.44 ±  0.04, a =  1.20 ±  0.06, β =  1.26 ±  0.04, a =  1.48 ±  0.09 while the 

respective values of Šimek and Pecina [58] are: a =  1.22 ±  0.01, a =  1.16 ±  0.01, a =  1.27 ±  0.01 
and a — 1.44 ±  0.02. Again, our values are somewhat higher indicating use of Kaiser’s formula 
for getting mass distribution indices by the above mentioned authors. We need to remark the fact 

that our computed values from 1998 related to L© =  234°531 and L© =  234°699 were gained at 
the maximum activity period. Our value from 1999 were gained from the shower activity behind 

its maximum (I>© =  235^285).
The relevant results of observations within the period 2000 - 2002 concerning activity and 

mass distribution have been published by Pecina and Pecinová [45]. We can compare the mass 
distribution indices. Our one describing the activity on November 18, 2000 has value a =  1.31±0.08 

while the corresponding index of Pecina and Pecinová is a =  1.21 ±  0.05, the first one in Table 6.8 

of 2001 is β =  1.30 ±  0.05 and compares with a =  1.19 ±  0.06, the 2nd one a =  1.36 ±  0.13 with 
a =  1.26 ±0.07 and the last one a =  1.28 ±0.05 compares with a =  1.26 ±0.07. It is clearly visible 

that our values from Table 6.8 are generally higher than indices Pecina and Pecinová [45] arrived 
at. This fact can again be ascribed to the difference between Kaiser’s method which does not 
consider various collecting areas for echoes having different durations and method. We would like 

to mention again that our value from 2000 corresponds to one of smaller peak of shower activity. 
In 2001 the first value covers the period just after the primary maximum, the second one can be 

connected to the secondary peak. In 2002 the relevant range distribution comprises a bit broader 
period than only the main maximum (L© =  236?610).

As in the previous cases we made use of the data from Table 6.8 to calculate the weighted 
means of shower representing quantities. We have got: a =  1.26 ±  0.02, K  · σ  =  0.082 ±  0.003, 

μ =  1.55 ±  0.29 and 0  =  0.343 ±  0.002. The IMO value of the population index is 2.5 which leads 
to 8 =  1.99. However, it is not clear from the calendar whether this value relates to the storm 

observed after the last comet return or to the activity observed outside the storms. Comparing 
our numbers with Šimek [55] result a =  1.36 ±  0.03 we can see that our one is lower. We agree 

with him that the mass distribution index of Leonids is lower than of other cometary showers, i.e. 

Quadrantids and Perseids. The possible span of values of the ablation parameter, σ, for Leonid 
meteoroids, is presented in Table 6.9. The interval of σ lies at higher values than at the other 
showers in question implying higher ablation ability of Leonid meteoroids. Spurný at al. [53] 
arrived at the value σ  =  0.1 s2 km-2 on the basis of their observations in 1998 and 1999. Our
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value is close to that mentioned above. Also the high value of μ witnesses of the fragmentation 
of Leonid particles. The resulting ionization probability lies again between the values yielded by 

Vemiani and Hawkins [59] and Kashcheev et al. [26] values.

6.2.4 Geminids

The Geminid shower presents an example of annual shower display with stable activity lasting from 
December 7 to December 17. Its radar activity maximum occurs between 261°.25 < L0 <  262°.15 
depending on the duration category (Pecina and Šimek [46]). No any parent body was known 
for Geminids until the discovery of 3200 Phaeton which is generally accepted at present to be 

associated with the stream (Whipple [62]). We have used the following radiant position and 

velocity for Geminid meteors: a  =  112°, δ =  +32° and t>oo =  36 km s_1.
The Geminid series consists of 38 years at present. In the Table 6.10 there are included 50 

cases from 34 years. Our results were used to get the following shower representing quantities: 

a =  1.55 ±  0.01, K  a =  0.021 ±  0.001, μ =  0.66 ±  0.01 and 0  =  0.081 ±  0.001. As far as the 
mass distribution index is concerned it is lower than the one following from the IMO population 

index 2.60 corresponding to a =  2.04. The cause of the discrepancy is not known at present. 
Pecina and Šimek [46] analyzed the behaviour of the stream during the period 1958 - 1997. Their 

weighted mean value a =  1.48 ±  0.02 is lower than our one resulting from the range distribution 
analysis. Also Šimek’s [55] value a =  1.48 ±0.03 is lower than our one. This is due to the usage of 

Kaiser’s formula for computing mass distribution index by preceding authors. The product K  · σ 
we have arrived at cannot be used for calculation of the possible interval of a since Geminids were 

considered as one possible material type. As far as bulk density of Geminid meteoroids is concerned 
the generally adopted value was not found. For example, Babadzhanov [2] reached <5 =  2.9 ±  0.6 

g cm-3 while Bellot Rubio et al. [7] published δ =  1.94 ±  0.7g cm-3 . Ceplecha and McCrosky 

[14] on the basis of observations of Geminid fireballs arrived at higher value that lies between 3 
and 4 g cm-3 . Adopting 6 =  2.5 g cm-3 for them we obtain σ  =  0.03s2 km-2 . This value is 

smaller than those of the other (cometary) showers indicating the fact that Geminid meteoroid 
properties differ from showers with a comet origin. We have received substantially lower value 

of μ in comparison with corresponding values valid for other showers. This fact can be due to 
lower fragmentation rate involved in ablation process of the Geminid meteoroids we observed. Our 
ionization probability is somewhat lower than that of Jones ending at velocity of 35 km s-1 . On 

the other hand, it is greater than the Vemiani and Hawkins [59] as well as Kashcheev et al. [26] 
values. We would like to compare also our results on 0 mo and a correspond to those of Pecina and 

Šimek [46] but it is practically impossible thanks to the different methods that were used. Values of 

above mentioned authors were computed as a function of solar longitude within small intervals with 

data from all considered years falling into that interval, i. e. some process of smoothing data was 
applied. Also the sporadic background was determined as some mean background from all years 

involved into analysis. As a consequence their shower rates can differ from ours substantially.
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Our present results are based on data from the particular year only and time interval of a few 

hours when the contemporary background was determined. Let us make a note only that our 

values of flux indicate strong variability one year to another from 1.17 xlO~12m-2 s_1 (1994) 

to 7.11 x 10~12 m-2 s-1 (1960) (which is however rather exceptional value). The weighted mean 

is 0 TOo =  (3.49 ±  0.11) x 10_12m-2 s-1. After comparison we can conclude that our fluxes are 

approximately 1.5 times greater than those of preceding authors. We have not found any marked 

trend in our flux data results.

6.2.5 Taurids

We have also investigated the daytime showers ζ  Perseids and β Taurids belonging to the well- 

known Taurid complex stream. We have observed these showers in 2003 as well as in 2004 and 

2005. Nevertheless, the data from 2004 did show any remarkable activity both in case of ζ  Perseid 

and β Taurid showers. For this purpose we could not calculate any range distribution for that 

year. As far as the data from 2005 are concerned they have not been proceeded up to the present 

time. So, we need to focus on 2003 year only. We have used the following radiant position and 

velocity for β Taurid meteors: a =  87°, δ =  +19° and Voo =  32 km s-1. The values of the radiant 

position and velocity for ζ  Perseid meteors are: a  =  62°, δ =  +23° and =  29 km s-1.

The shower rates we registered in 2003 were rather low as one can see from the work by Pecina 

et al. [47]. As a consequence, the range distributions were not very well defined so that we had to 

restrict our computations to only one day in both cases, on which the quality of the data was the 

highest. Moreover, ail radar echoes of both daytime showers were recorded between 100 km and 

300 km and the duration of overdense echoes did not exceed 10 s.

As far as ζ  Perseids are concerned we made use of the data registered on June 8 between 3 and 

7 UT. We have published preliminary results of the range distribution method yet in Pecinová and 

Pecina [48] computed under the assumption of μ =  2/3. They are: 0 mo =  (15.10 ±  0.98)· 10-12 

m~2 s“ 1, a =  2.08 ±  0.22, K  ■ σ  =  (0.92 ±  0.24) 10“ 2 s2 kg"2/3 and β =  0.059 ±  0.008. The 

extension of the approach to the construction of the remge distribution embodied by the method of 

this work leads to the result listed in the Table 6.13. After comparison the quantities the simplified 

(μ =  2/3) method with the one presented in this work we can see that the former method leads to 

rather precisious values. It is understandable because application of our method with changeable 

μ corresponds to the observations in a better way. Under the terms of their errors the quantities 

in question are in accordance with the exception of ionization probability β. Furthermore, we can 

see that the mass distribution index following from the Iogl0 N  vs. Iog10 To At: a =  2.45 ±  0.10 

has almost the same value as the one in láble 6.13.

The possible values of σ, based on data from Table 6.13, computed for various types of meteoroid 

material are presented in Table 6.14.

In the case of β Taurids we focused on the data recorded on June 25 between 4 and 7 UT. Also 

in this case we have published preliminary results of the range distribution method yet in Pecinová
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and Pecina [48] computed under the assumption of μ =  2/3. They are: θ η , =  (3.53 ±  0.35)10 12 

m“ 2 s "1, a =  2.53 ±  0.55, K  σ =  (0.73 ±  O.llJ lO" 2 s2 kg" 2/3 and β =  0.080 ±  0.011. The more 

sophisticated range distribution method presented in this work leads to the result presented in the 

Table 6.13. Comparison between the quantities gained by the simplified (μ =  2/3) and present 

method supports the contention mentioned above in the case of ζ  Perseids. Moreover, the mass 

distribution index β in both cases has almost the same value that is substantially higher than the 

one following from the log10 N  vs. log, 0 To fit: a =  1.15 ±  0.36.

The possible values of σ computed for various types of meteoroid material are presented in 

Table 6.16.

To conclude, it can easily be seen from Tables 6.16 and 6.14 that for both daytime showers the 

ranges of σ do not differ a lot.

6.2.6 7 Draconids

The 7  Draconid (or Giacobinid) shower activity was at Ondřejov in 1998, too. Since this shower is 

known to be formed by meteoroids having the lowest bulk density from all streams ever observed, 

which is lower than 1 g cm- 3  (e. g. Ceplecha et al. [15], it is interesting also for the application 

of our range distribution method. We have used the following radiant position and velocity for 

7  Draconid meteors: a  =  262°, δ =  +54° and t)w =  23 km s "1. Its activity in 1998 was 

confined on approximately 2 hours interval at 12 UT on October 8 . We were able to construct the 

corresponding range distribution and apply our method on it. The results are listed in Table 6.17. 

We can compare our values of and a with the ones published by Watanabe et al. [61]. Their 

quantities are based on HD TV  observation. They arrived at the population index C =  2.1 dt 0.7 

which corresponds with a =  1.81 ±0.36. This value is in good agreement with our value 1.88±0.17. 

They published =  16 x 10-1 2  m- 2 s-1  while our value is 2.3 x 10- I 2 m- 2 s-1. However, they 

related their value to 7th magnitude whereas our magnitude computed by using (6.1) and μ from 

Table 6.17 is +4.5. Conversion between these two values is not easy to perform due to lack of 

information but we think that they roughly correspond.

With the value of the product i f -σ from Table 6.17 we obtain Table 6.18 including the possible 

values of σ for the shower meteoroids.

We can see that the ablation parameter reaches the highest value in comparison with the others 

we have computed. So, we can conclude that results published in Ceplecha et al. [15] are confirmed 

also by application of our method.
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Table 6.1: Results of application of equation (5.6) to the Quadrantid shower meteors. The first 

column contains the year when the meteors were observed, the second the day of observation, 

the third the beginning hour of observation, bh, while the next the corresponding end hour, eh. 

The column headed by ri contains the range interval inside which the meteors were collected, in 

kilometers. The quantity L© is solar longitude of the centre of observation interval related to the 

equinox of J2000. The flux is expressed in units of 10“ 12 m-2 s-1 for mo =  10~6 kg. The 

remaining quantities were defined in previous sections.

Year Day bh eh ri l q 6m0 a Κ σ μ ß

1961 3 0 2 113- 288 282?931 3.75 
±  0.48

1.80
±0.09

0.024 
±  0.004

1.54
±0.10

0.100
±0.032

1962 3 10 12 113- 288 283?093 2.44 
±  0.20

1.74
±0.09

0.047 
±  0.009

1.43 
±  0.13

0.102 
±  0.043

1964 3 2 6 113- 288 282?270 ' 5.37 
±0.12

1.86
±0.08

0.061
±0.007

1.71
±0.13

0.098 
±  0.033

1965 3 10 12 113- 288 289°331 7.36
±0.29

1.84
±0.09

0.036
±0.004

1.38
±0.12

0.105
±0.042

1966 3 8 10 113- 238 282?983 3.67 
±  0.38

1.91
±0.09

0.058 
±  0.007

1.40 
±  0.20

0.111 
±  0.041

1967 4 10 12 113- 288 283?821 4.10
±0.11

1.88
±0.09

0.047 
±  0.008

1.69
±0.20

0.110
±0.039

1968 4 2 4 113- 288 283Ώ27 6.54
±0.10

1.82
±0-09

0.035 
±  0.007

1.70 
±  0.16

0.100 
±  0.042

1969 3 4 5 113- 288 283?007 4.09 
±  0.13

1.67
±0.11

0.018 
±  0.006

1.40 
±  0.14

0.110
±0.040

1975 4 4 6 113- 288 283°511 2.75
±0.09

1.74
±0.12

0.049 
±  0.004

1.61 
±  0.22

0.100 
±  0.039

1976 4 0 4 113- 288 283*130 1.92 
±  0.08

1.80
±0.10

0.055 
±  0.007

1.33 
±  0.17

0.111 
±  0.043

1977 3 2 6 113- 213 282?953 3.89
±0.25

1.72
±0.14

0.028
±0.005

1.27
±0.12

0.120
±0.052

1978 3 2 4 113- 288 282*?647 4.06 
±  0.26

1.76
±0.18

0.042 
±  0.009

1.62
±0.03

0.098 
±  0.039

1980 4 1 5 113 - 288 283?140 3.61
±0.13

1.61
±0.09

0.055 
±  0.009

1.42 
±  0.18

0.108 
±  0.040

1982 3 1 5 113- 288 282?626 3.53
±0.19

1.87
±0.08

0.061 
±  0.008

1.69 
±  0.29

0.111 
±  0.041

1982 4 1 5 113- 288 283°646 3.76
±0.22

1.76
±0.09

0.038 
±  0.006

1.48 
±  0.16

0.111
±0.039

1983 4 3 5 113- 238 283?422 4.63
±0.16

1.72
±0.09

0.041 
±  0.003

1.76
±0.13

0.100 
±  0.040
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Table 6.2: The first continuation of Table 6.1.

Year Day bh eh ri l q a Κ · σ ß ß

1985 3 9 15 113- 263 283°240 6.90 
±  0.30

1.86
±0.13

0.034 
±  0.006

1.32 
±  0.12

0.107 
±  0.040

1986 3 13 15 113- 288 283Í060 2.90 
±  0.17

1.81
± 0.10

0.047 
±  0.009

1.38 
±  0.21

0.102 
±  0.020

1987 3 12 14 113- 288 282^757 1.73 
±  0.10

1.78 
±  0.10

0.030 
±  0.002

1.75
±0.13

0.110
±0.040

1987 4 4 6 113- 288 283°437 4.11 
±  0.25

1.69
±0.09

0.055 
±  0.006

1.82 
±  0.17

0.105 
±  0.036

1988 4 3 5 113- 288 283°132 4.21 
±  0.16

1.80
±0.09

0.031
±0.004

1.37 
±  0.20

0.110 
±  0.035

1991 4 3 5 113- 238 283°366 5.82 
±  0.16

1.80
±0.09

0.039 
±  0.006

1.56 
±  0.14

0.107 
±  0.036

1992 4 3 5 113- 288 283°110 6.98 
±  0.31

1.81
±0.08

0.039
±0.009

1.40 
±  0.15

0.104 
±  0.042

1992 4 1 5 113- 288 283^067 6.62 
±  0.03

1.71
±0.08

0.051
±0.009

1.50 
±  0.13

0.110 
±  0.040

1994 3 1 5 113- 238 282°545 5.08 
±  0.17

1.75
± 0.11

0.05 
±  0.01

1.377 
±  0.145

0.099 
±  0.041

1994 4 1 5 113- 288 283°564 5.66 
±  0.13

1.79
± 0.10

0.040 
±  0.006

1.57 
±  0.18

0.102 
±  0.040

1995 4 4 6 113- 288 283°390 5.39 
±  0.25

1.66
±0.09

0.035 
±  0.006

1.47 
±  0.11

0.131
±0.045

1995 4 10 12 163- 288 283°645 5.28 
±  0.19

1.70
±0.09

0.043 
±  0.007

1.73 
±  0.10

0.111
±0.042

1996 4 3 5 113- 288 283°083 3.41 
±  0.12

1.77
±0.09

0.040 
±  0.005

1.42 
±  0.12

0.120 
±  0.051

1996 4 1 5 113- 288 283<?041 4.08 
±  0.10

1.68
±0.09

0.047 
±  0.004

1.68 
±  0.17

0.105
±0.040

1997 3 3 5 113- 213 282°820 6.11 
±  0.48

1.73
±0.08

0.064 
±  0.010

1.78
± 0.20

0.113 
±  0.042

1997 3 1 5 113- 213 282T778 9.19 
±  0.82

1.79
± 0.10

0.067 
±  0.009

1.35 
±  0.15

0.108 
±  0.029

1998 3 2 6 112- 289 282°558 23.48 
±  0.19

1.81
±0.09

0.050 
±  0.009

1.35 
±  0.10

0.111
±0.040

1998 3 10 12 163 - 288 282*855 3.45 
db 0.18

1.55
±0.08

0.042 
±  0.007

1.26
± 0.20

0.120 
±  0.040

1999 4 2 6 112- 289 283“311 5.31 
±  0.21

1.72
±0.07

0.032 
±  0.005

1.27 
±  0.18

0.115 
±  0.040
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Table 6.3: The second continuation of Table 6.1.

Year Day bh eh ri Lq Onio β Κ σ ß

1999 4 2 4 112- 289 283?269 3.47
± 0.10

1.87
± 0.10

0.052 
±  0.009

1.10 
±  0.13

0.101 
±  0.035

2000 4 2 4 112- 289 283?012 4.81
±0.18

1.70
±0.08

0.031 
±  0.006

1.52
±0.15

0.109 
±  0.044

2000 4 10 12 112- 289 283?351 4.99
±0.30

1.78
±0.07

0.042 
±  0.009

1.49 
±  0.21

0.105 
±  0.035

2001 3 0 4 112- 214 282?710 2.99
±0.08

1.69
±0.09

0.041 
±  0.007

1.80 
±  0.14

0.102 
±  0.044

2001 3 10 14 187- 289 283°135 3.80
± 0.10

1.82
±0.08

0.036 
±  0.008

1.90
± 0.10

0.110
±0.045

2001 3 10 12 112- 289 283?092 3.59 
±  0.14

1.93
±0.09

0.043 
±  0.005

1.73 
±  0.14

0.103
±0.043

2002 3 12 14 112- 288 282?913 1.17
±0.15

1.91
±0.14

0.058 
±  0.005

1.72 
±  0.15

0.090 
±  0.035

2004 4 1 5 112- 289 282?986 3.01
±0.16

1.73
± 0.10

0.041 
±  0.004

1.52
± 0.20

0.111 
±  0.044

2005 3 10 12 112- 289 282?568 2.39 
±  0.20

1.76
±0.14

0.051 
±  0-007

1.66 
±  0.12

0.107
±0.036

2005 3 10 14 190- 289 283“109 2.87
± 0.11

1.88
±0.09

0.034 
±  0.005

1.89
±0.13

0.111 
±  0.041

Table 6.4: The possible values of the ablation parameter, σ, for various bulk density of the Quad· 
rantid meteoroids.

í  [gem-3] 0.5 1.0 1.5 2.0 2.5 3.0
0.022 0.035 0.045 0.055 0.064 0.072
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Table 6.5: Results of application of equation (5.6) to the Perseid shower meteors. The first column 

contains the year when the meteors were observed, the second the day of observation, the third 
the beginning hour of observation, bh, while the next the corresponding end hour, eh. The column 

headed by ri contains the range interval inside which the meteors were collected, in kilometers. 
The quantity Lq is solar longitude of the centre of observation interval related to the equinox of 

J2000. The flux is expressed in units of 10~l2m- 2s-1 for mo =  10-6 kg. The remaining 

quantities were defined in previous sections.

Year Day bh eh ri L q ©»no a K o ß

1980 12 10 10 110- 291 140“111 2.72 
±  0.30

1.45 
±  0.08

0.054 
±  0.004

1.01 
±  0.22

0.216 
±  0.078

1981 11 22 4 112- 289 139M63 3.34 
±  0.37

1.60
±0.06

0.060 
±  0.007

1.50 
±  0.21

0.197 
±  0.061

1981 12 0 2 112- 289 139“463 4.00 
±  0.24

1.40
± 0.12

0.014 
±  0.004

0.97
± 0.10

0.212
±0.083

1982 12 22 24 112- 289 140*100 3.72 
±  0.15

1.43
±0.18

0.034 
±  0.009

0.99 
±  0.13

0.184 
±  0.069

1982 12 22 4 112- 289 140n80 3.59 
±  0.34

1.52
±0.19

0.067 
±  0.011

1.10 
±  0.19

0.208 
±  0.087

1983 12 22 24 112- 289 139°856 3.79 
±  0.28

1.30
±0.17

0.059 
±  0.009

1.20 
±  0.21

0.202 
±  0.072

1983 13 0 2 112- 289 139*336 3.90 
±  0.19

1.33
± 0.20

0.048 
±  0.010

1.09 
±  0.22

0.209 
±  0.080

1985 13 2 4 112- 289 140°483 3.99 
±  0.18

1.47
± 0.21

0.06 
±  0-010

1.442 
±  0.18

0.202 
±  0.073

1985 13 12 14 112- 289 140°883 3.96 
±  0.21

1.31
± 0.10

0.05 
±  0.008

0.984 
±  0.12

0.208 
±  0.070

1986 13 0 2 112- 189 140·!640 3.39 
±  0.17

1.38
±0.09

0.059 
±  0.007

0.90 
±  0.10

0.212 
±  0.082

1989 12 8 12 112- 289 139°780 3.64 
±  0.13

1.53
±0.14

0.056 
±  0.008

1.00 
±  0.20

0.199 
±  0.089

1991 13 0 2 112- 289 139“890 3.84
±0 .32

1.46
±0.14

0.035
±0.009

0.859 
±  0.203

0.192 
±  0.077

1992 11 22 2 110- 191 139Ϊ599 4.15 
±  0.37

1.56
± 0.12

0.054 
±  0.005

1.24 
±  0.22

0.212 
±  0.072

1993 12 12 16 112- 200 139°913 4.23 
±  0.36

1.41
± 0.10

0.087 
±  0.007

1.13 
±  0.18

0.21
±0.082

1995 14 4 10 112- 289 141“311 3.53 
±  0.41

1.50
±0.06

0.016 
±  0.010

0.82 
±  0.11

0.212 
±  0.074

1996 12 0 6 112- 241 139?695 3.16 
±  0.33

1.47
±0.05

0.015 
±  0.004

1.18 
±  0.22

0.199 
±  0.068
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Table 6.6: The continuation of Table 6.5.

Year Day bh eh ri Lq 0 mo a K  σ ß

2000 12 6 10 112 - 189 139®873 3.25 1.37 0.023 0.99 0.202
±  0.34 ±0.13 ±  0.004 ±0.24 ±  0.077

2000 12 6 10 212 - 289 139°873 3.26 1.41 0.060 1.37 0.212
±0.28 ±0.15 ±  0.020 ±0 .27 ±  0.069

Table 6.7: The possible values of the ablation parameter, σ, for various bulk density of the Perseid 

meteoroids.

δ [g cm 3] 0.5 1.0 1.5 2.0 2.5 3.0
0.023 0.036 0.048 0.058 0.067 0.076
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Table 6.8: Results of application of equation (5.6) to the Leonid shower meteors. The first column 

contains the year when the meteors were observed, the second the day of observation, the third 
the beginning hour of observation, bh, while the next the corresponding end hour, eh. The column 
headed by ri contains the range interval inside which the meteors were collected, in kilometers. 

The quantity Lq is solar longitude of the centre of observation interval related to the equinox of 
J2000. The flux is expressed in units of 10" 12 m-2 s-1 for mo =  10-s  kg. The remaining 

quantities were defined in previous sections.

Year Day bh eh ri L© ©mo a K  σ μ ß

1965 17 4 8 113- 288 235?123 4.67
±0.32

1.21
±0.05

0.121
±0.056

1.51
± 0.21

0.346 
±  0.100

1966 17 0 4 113- 288 234^700 1.19 
±  0.09

1.24
±0.09

0.097 
±  0.009

1.43 
±  0.16

0.347 
±  0.121

1966 17 4 8 113- 203 234°868 2.05
±0.13

1.12
± 0.01

0.082 
±  0.014

1.37 
±  0.30

0.332 
±  0.110

1998 17 0 2 110- 251 234®448 1.10
±0.03

1.44
±0.04

0.095 
±  0.013

1.80 
±  0.19

0.342
±0.113

1998 17 3 4 110- 211 234°531 1.67 
±  0.18

1.20
±0.06

0.05 
±  0.006

1.38 
±  0.15

0.349
± 0.100

1998 17 7 8 110- 291 234°699 2.05
±0 .15

1.26
±0.04

0.079
±0.008

1.88
±0.14

0.332 
±  0.123

1999 18 4 6 170- 291 235?369 5.02 
±  0.37

1.48
±0.09

0.094 
±  0.028

1.70 
±  0.29

0.338 
±  0.099

2000 18 1 3 113- 288 235?988 3.31 
±  0.35

1.31
±0.08

0.084 
±  0.011

1.44 
±  0.10

0.332 
±  0.104

2001 18 12 13 110- 191 236?155 11.19
±0.62

1.30
±0.05

0.098 
±  0.010

1.34
±0.16

0.359 
±  0.118

2001 19 1 4 110- 171 236^786 8.06 
±  0.30

1.36
±0.13

0.079 
±  0.008

1.62 
±  0.03

0.352 
±  0.127

2002 19 1.5 4.5 110- 291 236°526 6.14
±0 .17

1.28
±0.05

0.087
±0.030

1.38 
±  0.44

0.342 
±  0.110

Table 6.9: The possible values of the ablation parameter, σ, for various bulk density of the Leonid 

meteoroids.

á [gem-3] 0.5 1.0 1.5 2.0 2.5 3.0
0.043 0.068 0.089 0.108 0.125 0.141
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Table 6.10: Results of application of equation (5.6) to the Geminid shower meteors. The first 
column contains the year when the meteors were observed, the second the day of observation, 

the third the beginning hour of observation, bh, while the next the corresponding end hour, eh. 

The column headed by ri contains the range interval inside which the meteors were collected, in 
kilometers. The quantity Lq is solar longitude of the centre of observation interval related to the 

equinox of J2000. The flux 0 m„ is expressed in units of 10“ iam-2 s~1 for mo =  10~5 kg. The 

remaining quantities were defined in previous sections.
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Table 6.11: The first continuation of Table 6.10.

Year Day bh eh ri L q ©mo 8 K  · σ μ ß

1975 13 0 4 113- 288 260?725 4.14 
±  0.17

1.52
±0.06

0.015 
±  0.004

0.70 
±  0.09

0.082 
±  0.029

1975 14 0 4 113- 288 261°741 3.84 
±  0.23

1.61 
±  0.07

0.021 
±  0.003

0.79
± 0.11

0.076 
±  0.023

1976 13 0 4 113- 288 261?477 3.52 
±  0.39

1.55
±0.09

0.019 
±  0.004

0.70
± 0.10

0.082
±0.028

1977 12 0 4 113- 288 260?204 2.49 
±  0.13

1.62
± 0.10

0.021 
±  0.002

0.71 
±  0.09

0.083 
±  0.030

1977 13 0 4 163- 288 261?221 3.06
±0.14

1.40
±0.07

0.026 
±  0.003

0.65
± 0.12

0.088 
±  0.036

1978 12 2 4 113- 288 259<?984 3.60 
±  0.20

1.50
±0.07

0.023 
±  0.002

0.67 
±  0.08

0.081 
±  0.027

1978 14 2 4 113- 288 262Ή17 2.90
±0.19

1.54
±0.07

0.023 
±  0.003

0.66 
±  0.10

0.082 
±  0.028

1980 12 2 4 113- 288 260?484 3.59
±0.15

1.58
±0.08

0.022 
±  0.003

0.64
± 0.12

0.080 
±  0.028

1980 13 2 4 113- 288 261?501 4.05 
±  0.29

1.58
±0.07

0.026 
±  0.003

0.71
±0.09

0.084
±0.031

1981 10 4 6 113- 288 258Í273 4.56
±0.18

1.52
±0.08

0.019 
±  0.003

0.70
± 0.11

0.078 
±  0.022

1981 12 2 4 113- 288 260?222 2.49 
±  0.22

1.60
±0.08

0.022 
±  0.007

0.68
± 0.12

0.082 
±  0.035

1981 14 2 4 113- 288 262?253 3.19 
±  0.22

1.58
±0.08

0.024 
±  0.004

0.70
±0.13

0.087 
±  0.031

1982 13 0 6 113- 288 260°849 3.04
±0.19

1.68
±0.09

0.031 
±  0.004

0.82
± 0.11

0.082 
±  0.025

1982 14 0 6 113- 288 261‘?991 2.33 
±  0.52

1.52
±0.07

0.028 
±  0.004

0.68 
±  0.12

0.083 
±  0.027

1984 10 4 6 113- 288 258<?500 3.96
±0.37

1.52
±0.07

0.020 
±  0.002

0.70 
±  0.09

0.080 
±  0.022

1985 13 0 4 113- 288 261?165 2.60
±0.27

1.56
±0.09

0.017 
±  0.003

0.62 
±  0.09

0.079 
±  0.021

1986 13 0 4 113- 288 260?903 2.55 
±  0.29

1.66
±0.09

0.024 
±  0.008

0.61
± 0.11

0.081 
±  0.028

1986 14 0 2 113- 288 261?878 3.34
± 0.10

1.52
±0.06

0.024 
±  0.004

0.63 
±  0.11

0.086 
±  0.031

1987 15 0 4 113- 288 262°674 4.14
±0.19

1.62
±0.09

0.026 
±  0.004

0.67 
±  0.11

0.083 
±  0.031
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Table 6.12: The second continuation of Table 6.10.

Year Day bh eh ri L q Ohio β Κ · σ μ 0

1989 13 0 4 113- 288 261?139 3.42 
±  0.24

1.69
±0.07

0.027 
±  0.003

0.70 
±  0.11

0.085
±0.031

1989 14 0 4 113- 288 262?155 2.92
±0.23

1.58
±0.07

0.021 
±  0.003

0.64 
±  0.12

0.081 
±  0.031

1990 13 0 4 113- 288 260?876 2.46 
±  0.17

1.43
±0.09

0.019 
±  0.002

0.69 
±  0.15

0.080 
±  0.027

1991 14 0 4 113- 288 261?638 3.72 
±  0.26

1.46
±0.07

0.021 
±  0.003

0.66 
±  0.08

0.085 
±  0.027

1992 12 0 4 113- 288 260°358 1.57
±0.08

1.56
±0.09

0.030 
±  0.004

0.54 
±  0.10

0.084
±0.030

1994 12 1 5 113- 288 259^883 1.17 
±  0.22

1.41
±0.09

0.029 
±  0.004

0.71
± 0.11

0.083 
±  0.032

1995 13 0 4 113- 288 260?589 2.25
±0.24

1.57
± 0.10

0.034
±0.004

0.68 
±  0.10

0.083
±0.033

1995 14 0 4 113- 288 261?606 4.13 
±  0.42

1.67
± 0.10

0.023 
±  0.004

0.78
± 0.12

0.080 
±  0.026

1996 12 2 4 113- 263 260?374 2.41 
±  0.19

1.51
± 0.11

0.024 
±  0.003

0.54
± 0.10

0.082
±0.034

1997 13 0 4 113- 288 261Ϊ085 4.22
±0.13

1.53
±0.08

0.02
±0.003

0.62
± 0.12

0.081 
±  0.026

2000 12 0 4 112- 289 260°303 3.02
±0.48

1.66
±0.08

0.019 
±  0.002

0.71 
±  0.10

0.084 
±  0.026

2000 13 0 4 112- 289 261°320 4.07
±0.36

1.71
±0.15

0.025 
±  0.003

0.68 
±  0.12

0.088 
±  0.033

2000 14 0 4 112- 289 262?336 4.14 
±  0.37

1.62
±0.05

0.023 
±  0.003

0.66 
±  0.10

0.080 
±  0.029

2000 13 1 5 113- 288 261^362 3.05
±0.53

1.43
±0.08

0.020 
±  0.002

0.49 
±  0.15

0.088 
±  0.035

2001 13 1 5 113- 288 261?102 2.40
±0.17

1.54
± 0.12

0.017 
±  0.002

0.57 
±  0.11

0.083
±0.030
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Table 6-13: Results of application of equation (5.6) to the ζ  Perseid shower meteors. The first 
column contains the year when the meteors were observed, the second the day of observation, 
the third the beginning hour of observation, bh, while the next the corresponding end hour, eh. 

The column headed by ri contains the range interval inside which the meteors were collected, in 

kilometers. The quantity Lq is solar longitude of the centre of observation interval related to the 
equinox of J2000. The flux 0 mo is expressed in units of 10-12 m-2 s-1 for mo =  10~5 kg. The 

remaining quantities were defined in previous sections.

Year Day bh eh ri Lq θρΒΟ 8 K  σ ß

2003 8 4 8 110 - 291 76^982 14.73 
±  0.83

2.46
±0.16

0.019 
±  0.003

1.92 
±  0.04

0.047
±0.006

Table 6.14: The possible values of the ablation parameter, σ, for various bulk density of the 

ζ  Perseid meteoroids.

δ [g cm 3] 0.5 1.0 1.5 2.0 2.5 3.0
0.010 0.016 0.021 0.025 0.029 0.033

Table 6.15: Results of application of equation (5.6) to the β  Taurid shower meteors. The first 
column contains the year when the meteors were observed, the second the day of observation, 
the third the beginning hour of observation, bh, while the next the corresponding end hour, eh. 

The column headed by ri contains the range interval inside which the meteors were collected, in 

kilometers. The quantity L q  is solar longitude of the centre of observation interval related to the 
equinox of J2000. The flux 0 m„ is expressed in units of 10-12 m-2 s-1 for mo =  10~5 kg. The 
remaining quantities were defined in previous sections.

Year Day bh eh ri L q ©m,, 8 K  · σ ß

2003 25 5 8 110 - 291 93^233 4.32 
±  0.37

2.38 
±  0.11

0.012
±0.003

1.82 
±  0.02

0.071 
±  0.007

Table 6.16: The possible values of the ablation parameter, a, for various bulk density of the 

β  Taurid meteoroids.

δ [gem-3] 0.5 1.0 1.5 2.0 2.5 3.0
0.007 0.010 0.013 0.016 0.019 0.021

75



Table 6.17: Results of application of equation (5.6) to the 7 Draconid shower meteors. The first 
column contains the year when the meteors were observed, the second the day of observation, 
the third the beginning hour of observation, bh, while the next the corresponding end hour, eh. 
The column headed by ri contains the range interval inside which the meteors were collected, in 

kilometers. The quantity L q  is solar longitude of the centre of observation interval related to the 

equinox of J2000. The flux 0 m„ is expressed in units of 10~12 m- 2s-1 for mo =  10-5 kg. The 

remaining quantities were defined in previous sections.

Year Day bh eh ri Lq ©η*, 8 K  ■ σ 0

1998 8 12 14 160 - 270 195?028 2.30 
±  0.39

1.88
±0.17

0.375 
±  0.052

1.94 
±  0.11

0.029
±0.006

Table 6.18: The possible values of the ablation parameter, σ, for various bulk density of the 

7 Draconid meteoroids. In this case we have tried to estimate σ  even for low value of δ =  0.2gcm-3 .

á [gem 3] 0.2 0.5 1.0 1.5 2.0 2.5 3.0
0.106 0.196 0.311 0.407 0.493 0.572 0.646
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Chapter 7

Summary and Conclusion

We have developed a theory that makes use of the range distributions of shower meteors which 
have observed by the Ondřejov meteor radar. Our approach to the construction of this theory 

ie based on the simple physical theory of meteors with neglection of the deceleration of meteors 

contributing to the range distribution, which is justifiable. This distribution is a function of a few 
very important physical parameters characterizing the meteoroids of a particular shower such as 

the shape-density coefficient, K,  and the ablation parameter, σ. Also the ionization probability, 

0, considered as a function of meteoroid velocity, is one of quantities our theoretical distribution 

depends on. The physical theory we have employed allows only the product K  ■ σ  to enter the 
final formulae. Since observed meteoroids of all showers are known to suffer from fragmentation 

during their atmospheric flights we needed to include this effect in our theory as well. It proved to 
be rather tough proposition because to be able to consider the influence of fragmentation on the 
ionization curve, we have to know at what point of the curve the fragmentation takes place and 
its intensity. However, this is a piece of information which is not at our disposal. Moreover, to 

obtain the ionization curve taking into account fragmentation we would have to sum up the signals 

of the parent body as well as of all fragments which is not possible to carry out in practice. On 
the other hand, it is clear that the influence of fragmentation manifests itself as shorter both light 

and ionization curves with their peaks being higher than the ones of nonfragmenting meteoroids. 

However, very similar effect can be seen from the theory bearing in mind the Levin’s proposition 
about the variation of the meteoroid cross section, which is characterized by new parameter, μ. Its 

classical value is 2/3. We have allowed it to vary within much broader interval, μ > 0. To conclude, 
our theory allows us to compute two parameters related to the structure of meteor showers (and 
depending on solar longitude), 0 mo and a, and three quantities, Κ · σ ,  μ and 0, describing physical 
properties of meteoroids.

Our principal formula of the range distribution (5.6) gives the number of meteors the radar in 
use can register within the collecting area of the echo plane. The older approach of Pecina [38] to 

the determination of the domain of integration was based on the assumption that this is given by
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the point of maximum ionization. We have developed more sophisticated approach in which we 

have abandoned that wrong assumption and our range distribution model relies only on the radar 

equation of overdense echoes.

We have used our theory to study the physical properties of meteoroids of the Quadrantid, 

Perseid, Leonid and Geminid showers we have been observing quite regularly for a long time and 

meteoroids of the ζ  Perseid, β Taurid and 7  Draconid (Giacobinid) that we have been monitoring 

rather irregularly during some campaigns. For that reason the subsection dealing with the daytime 

showers, C Perseids and β Taurids, includes only one year, 2003 and also the data of 7  Draconids 

cover only one year 1998 when the shower activity had increased for about two hours while sections 

devoted to four main showers are much richer. The resulting values of parameters of our interest 

calculated as weighted means with standard deviations as weights, are summarized in the Table 7.1.

Table 7.1: Weighted values of parameters of interest for showers we have used in our analysis. The 

flux 0 mo is in units of 10 “ ' 2 m- 2  s_1 and velocity t>oo in units of km s-1.

Since we cannot split K  from σ we estimate the possible interval of σ assuming various bulk 

density of meteoroids to get value of the ablation parameter. The Table 7.2 list this quantity for 

the showers included into Ifeble 7.1. The possible values of meteoroid densities can be found e.g. 

in Babadzhanov [2] or in Bellot Rubio et al. [7].

In the light of results summarized in the above tables we can conclude the following facts:

• we have managed to apply our model to 127 range distributions of 7 different showers.

• Flux does not vary a lot from one shower to another. In another words, all investigated 

showers possess approximately the same value of flux θ ^ .  It implies that their space density 

has to differ. Let us denote the space density of a shower as n, which relates to the flux, 

θ,,^ , via 0 mo = n v ,  where v is the velocity the shower meteoroids have as if they were not 

captured by the Earth, i. e. their heliocentric velocity. It means that n differs roughly in the 

ratio of velocities of particular shower.
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Table 7.2: The possible values of the ablation parameter, <r, for various bulk density of the mete­
oroids of showers from l&ble 7.1. Geminids are assumed to have the bulk density δ — 2.5gem-3 .

Shower /  Í  [gem-3] 0.2 0.5 1.0 1.5 2.0 2.5 3.0
Quadrantids 0 . 0 2 2 0.035 0.045 0.055 0.064 0.072
Perseids 0.023 0.036 0.048 0.058 0.067 0.076
Giacobinids 0.106 0.196 0.311 0.407 0.493 0.572 0.646
Leonids 0.043 0.068 0.089 0.108 0.125 0.141
Geminids 0.032
0  Taurids 0.007 0 . 0 10 0.013 0.016 0.019 0.021

C Perseids 0 . 0 10 0.016 0.021 0.025 0.029 0.033

• In agreement with values of a the shower with highest percentage of brighter meteors within 

its population is the Leonid one. Contrary to this, the showers with highest percentage of 
fainter meteors are the C Perseids and 0  Täuirids.

• The highest ablation ability is inherent to the 7  Draconid meteoroids. We have thus confirmed 
results known from photographic observations also in the case of radar meteors owing to our 

range distribution method. The value of ablation parameter we have arrived at is in good 
agreement with the value σ  =  0.2 published by Ceplecha et al. [15]. The lowest value we 

have obtained is that of 0  Taurids, ζ  Perseids and Geminids being about twice lower than 
that of other showers of cometary origin with the exception of Leonids and Giacobinids. In 

case of Geminids this indicates different physical properties o f their meteoroids in comparison 
with properties of cometary ones. The higher value of σ  of Leonids as compared with the 

corresponding values of Quadrantids and Perseids indicates probably the younger age of the 

meteoroids of Leonid storms from 1965 - 1966 and 1998 - 2002 in comparison with older age 

of Quadrantids and Perseids. As far as the daytime showers are concerned we have got a 
span of σ  rather low. The small values of σ  may indicate membership of daytime showers 

meteoroids to the asteroidal component of Taurid complex rather than to the cometary one 
as it was proposed by Babadzhanov [1].

• The values of μ much higher than the conventional 2/3 have been found at all cometary 
showers as well as for the daytime ones. The highest value has been found for 7  Draconids 

as we expected. However, rather unexpectable high values of μ have been obtained also for 

both daytime showers. It would point out on the cometary origin of these meteoroids which 
is in stark contrast to small values of σ. At this moment we are not able to interpret this 

fact. The lowest one has been determined for Geminids which is almost conventional. This 

finding indicates again the physical properties of Geminid meteoroids different from the ones 
of cometary showers.
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• We have obtained also the ionization probabilities for 7 various values of meteor velocities 
as represented by the corresponding velocities of studied showers. The result is depicted in 
the Figure 7.1 where also the curves following from the Vemiani and Hawkins [59] formula 

together with the one of Kashcheev et al. [26] and Jones [23] are drawn. We can easily see that 
at low velocities only ζ Perseids and Θ Taurids conform to the Jones formula. Our β value 
of Giacobinids is higher than that of Jones while the corresponding ionization probabilities 

of Geminids and Quadrantids are lower. All showers with Voo <  43km a-1 have provided us 

with 0 higher than that the Kashcheev et al. formula. The values of Perseids and Leonids 
lie between the ones of Vemiani and Hawkins and Kashcheev et al.

Figure 7.1: The ionization probability β as a function of velocity υ »  of the particular shower. The 
curves (1), (2) and (3) are drawn by the Vemiani and Hawkins [59], the Kashcheev et al. [26] and 
the Jones [23] formulae.

The theory we have developed can be used to infer some physical parameters of shower meteors 
based on the radar observations. We hope that the range distribution model will become a handy 
tool enriching meteor astronomy.
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