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ABSTRACT: Despite a continuous development in computer sciences and related disciplines, 

speaker identification remains one of the most challenging tasks in forensic phonetics. The 

reason for this is the fact that our knowledge of how identity is reflected in the acoustic signal 

is still limited. The present study aims to contribute to the search of speaker-specific cues by 

examining spectral properties of the source signal. Specifically, it examines to what extent 

three short-term measures of spectral tilt, namely H1-H2, H1-A1 and H1-A3, can discriminate 

16 Czech female speakers. It also addresses the influence of vowel quality, syllable status 

with respect to stress and position of stress group in the utterance on the values of these 

measures. The results show that these parameters do have some discriminative power, though 

the contribution of individual parameters differs. The study indicates that discrimination of 

speakers is the most successful in stressed syllables and argues that individual vowels could 

differ in their usefulness for speaker identification. The results of LDA based on these short-

term measures of spectral tilt were complemented with long-term measures, namely alpha 

index, Kitzing index and Hammarberg index which quantify the slope of the LTAS. The 

present study suggests that phonatory modifications convey some speaker-specific 

information and could enhance speaker identification.  

Key words: voice, long-term average spectrum, spectral slope, speaker identity, forensic 
phonetics 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

  

ABSTRAKT : Identifikace mluvčího zůstává i přes neustálý vývoj počítačových technologií 

jedním z nejsložitějších úkolů forenzní fonetiky. Důvodem je skutečnost, že naše znalosti 

akustické reprezentace identity mluvčího jsou omezené. Tato studie se zabývá spektrálními 

vlastnostmi zdrojového signálu a její snahou je zjistit, zda spektrální doména skýtá nějaké 

informace, které by mohli k identifikaci přispět. Těžištěm této studie jsou tři parametry 

vyjadřující krátkodobý spektrální sklon,  H1-H2, H1-A1 and H1-A3 a to, jak jsou schopny 

rozlišit 16 českých ženských mluvčí. V souvislosti s tím je zkoumán vliv vokalické kvality, 

přízvučnosti slabiky a pozice taktu v promluvě na diskriminační schopnosti těchto parametrů. 

Výsledky ukázaly, že mluvčí vykazující statisticky významné odlišnosti v hodnotách těchto 

parametrů, i když užitečnost jednotlivých parametrů se liší. Ukázal se také vliv přízvučnosti 

slabiky; mluvčí jsou nejlépe rozpoznány v přízvučných slabikách. Studie poukazuje na 

možnost, že jednotlivé vokály jsou užitečnější pro identifikaci mluvčího, než vokály jiné. 

Výsledky diskriminační analýzy založené na krátkodobém spektrálním sklonu byly doplněny 

a srovnány s údaji o dlouhodobém spektrálním sklonu vyjádřeném alpha indexem, 

Kitzingovým indexem a Hammarbergové indexem, která kvantifikují dlouhodobé spektrum. 

Tato studie naznačuje, že spektrální vlastnosti zdrojového signálu by mohly přispět 

k identifikaci mluvčího.   

Klíčová slova: hlas, dlouhodobé spektrum, spektrální sklon, identita mluvčího, forenzní 
fonetika 
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1 INTRODUCTION  

Speech undoubtedly carries some information about its producer. Thus on hearing a 

person speaking, we receive not only some message, i.e. what is said, but also some indication 

about the identity of the speaker, such as his or her sex, age, social and regional background, 

education, physical and psychological state, etc., i.e. how it is said. Speaker identification, 

however, remains one of the most challenging tasks that a forensic phonetician faces, which is 

caused to a great extent by the fact that our knowledge of how identity is manifested in the 

acoustic signal is still limited.  

Some researchers have searched for speaker-specific cues in the information 

contained in segments (e.g., Nolan, 1983; Amino & Arai, 2009), others on the suprasegmental 

level - in temporal structuring of speech (van Dommelen, 1987) or its melodic patterns (Lindh 

& Eriksson, 2007). Recently, a claim has been made to include another prosodic domain, 

namely phonatory modifications or voice quality. It has been shown to be exploited for 

paralinguistic purposes as fundamental frequency is, but independently of it (Campbell & 

Mokhtari, 2003). The applicability of voice quality for forensic purposes has not been, 

however, thoroughly examined.   

The most reliable tool for quantifying voice quality appears to be the long-term 

average spectrum (LTAS) (Harmegnies & Landercy, 1988; Tanner et al., 2004; Master et al., 

2006). The LTAS reflects the distribution of energy across different frequencies averaged 

over a longer period of time, thus providing some information on the contribution of both the 

source signal and the vocal tract to voice quality. Several parameters, which can be 

automatically computed from the LTAS, have been claimed to reflect differences in voice 

quality by quantifying the spectral tilt, namely alpha index (Frøkjær-Jensen & Prytz, 1976 ), 

Hammarberg index (Hammarberg et al., 1980) and Kitzing index (Kitzing, 1986). Long-term 

parameters are considered one of the most powerful indicators of individual voice quality 

(Hollien, 1990, pp. 239-240) precisely because of the fact that they factor out the contribution 

of individual sounds and yield an overall value for a speaker that is independent of the 

contribution of individual sounds to the parameters (Rose, 2002, p. 59). Consequently, they 

are important for forensic purposes.  

Another set of parameters which has been claimed to reflect differences in voice 

quality was suggested by Hanson (1997). These parameters, namely H1-H2, H1-A1 and H1-
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A3, likewise quantify spectral tilt, but in this case a short-term one and can be derived directly 

from the acoustic spectra of vowels.  

The present study aims to examine to what degree can spectral information, as 

quantified by the above-mentioned parameters, offer speaker-specific cues of Czech female 

speakers. Specifically, it will observe the robustness of the three parameters suggested by 

Hanson (1997) to discriminate 16 Czech female speakers. It will also examine the possible 

influence of individual vowels, stress and stress group position in the utterance on the 

discriminative power of the parameters. This information will be supplemented with data 

obtained by the LTAS.  

The present paper would like to contribute to the study of speaker-specific cues by 

focusing on parameters reflecting phonatory modulations or voice quality.  

The theoretical introduction to the study will discuss two main areas related to the 

present research, namely forensic phonetics and voice quality. The first part will present 

forensic phonetics as a discipline and its history; specifically, how did this branch of 

phonetics come into existence. Afterwards, it will discuss the fields that can be distinguished 

within forensic phonetics in order to specify the position of speaker identification which is 

central to the present paper. It will also cover some comments on how individuality is 

reflected in a voice, what kinds of variability are present and what we mean by speaker space. 

The approaches used in speaker identification and the complications that a forensic 

phonetician faces when undertaking a speaker identification task will be the topic of the next 

section. It will be terminated by a summary of what previous research has discovered when 

searching for speaker-specific cues. The second part will focus on voice quality as another 

possible domain which could convey some information about speaker identity. Specifically, it 

will provide a definition of what is meant by voice quality and briefly mention subjective 

methods which have been used to describe it. The theoretical introduction will be finished by 

discussing objective methods which are used to complement the subjective evaluations. The 

focus will be on measures of both long-term and short-term spectral tilt (derived from the 

LTAS and the spectra of vowels, respectively), but other methods which relate to voice 

quality, such as jitter, shimmer and harmonics-to-noise ratio (HNR) will likewise be 

mentioned.  
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2 FORENSIC PHONETICS  

Forensic phonetics is an applied discipline which uses the knowledge, theories and 

methods of general phonetics to solve practical tasks in police investigations or in court. 

Some tasks which arise out of these contexts require, in addition, strong ties to other 

disciplines, specifically speech technology and general acoustics (Jessen, 2008).  

It is a relatively young discipline; the term ‘forensic phonetics’ has arguably received 

its official status at the foundation of the ‘International Association for Forensic Phonetics’ 

(IAFP) 1 in York, United Kingdom in 1991 (Jessen, 2008), and a specialist academic and 

professional journal for the field, Forensic Linguistics: the International Journal of Speech, 

Language and the Law, was established as recently as 1994 (Foulkes & French, 2001). In this 

journal, many contributions and conference reports from annual meetings of IAFP are 

published (Jessen, 2008). In 2004, by adding ‘acoustics’ to its name IAFP changed to IAFPA 

in order to acknowledge the contributions by specialists in acoustic signal analysis and speech 

technology to this field (Jessen, 2008).  

One can likewise encounter an alternative term to ‘Forensic Phonetics and Acoustics’, 

namely ‘Forensic Speech and Audio Analysis’. While the two terms denote the same in 

practice, the latter one is less specific regarding the expected education of its practitioners. 

Thus in some countries, forensic speaker identification or related tasks are considered more 

technical domains which can be undertaken by police officers or engineers trained in the use 

of a particular hardware or software. Knowledge of phonetics and some background in 

linguistics is, however, essential (Jessen, 2008).  

2.1. History2 

The use of phonetics as a forensic tool has developed mainly over the last two 

decades, being speeded up by the advancement of computers and the increased need of 

specialist analyses of speech samples in criminal trials. However, various kinds of speaker 

identification have been going on for thousands of years.  

Even before spoken language was well organized, simple forms of signal processing 

were used, evidence of which comes with the development of a system of writing. First 

interpretable and valuable references date back to ancient Greece and Rome. One of the 

                                                           
1 International Association for Forensic Phonetics and Acoustics, http://www.iafpa.net/ (Last accessed: October 
5, 2011). 
2 Unless indicated otherwise, the introductory part dealing with forensic phonetics is based on Hollien, H. (2002) 
Forensic Voice Identification. San Diego: Academic Press, Chapter 2. 
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pioneers of speaker identification was the Roman philosopher Quintilian, claiming “The voice 

of the speaker is as easily distinguished by the ear as the face is by the eye” (Quintilian, 1899, 

in Hollien, 2002, p. 18). 

Nevertheless, though scarce references appear earlier as, for instance, in the case of 

William Hulet in 1660 in Great Britain, more numerous references to speaker identification 

are documented only from the nineteenth century onwards. A curious case which happened in 

New York involves a dog being accused of killing sheep as their owner recognized its unusual 

bark. This accusation was accepted on the basis that “some people have such peculiar voices 

that they can be identified by acquaintances who hear them talk without seeing them” (Wilbur 

vs. Hubbard, 1861, cited in McGehee, 1937, in Hollien, 2002, p. 19). The nineteenth century 

also saw first discussions whether or not voices could be recognized over the telephone. At 

that time, though, it was not considered possible.  

The turn of the century brought another important case in the history of speaker 

identification in Florida. The defendant, not having been seen by the victim during the crime 

of rape, was identified by the victim solely on the basis of his voice. Her testimony was 

accepted by the judge who believed that being in such a state of terror and alarm, all senses 

and faculties are at their most receptive and under such circumstances the voice can 

photograph itself indelibly and vividly in one’s memory; thus enabling future recognition.  

  It was only a few decades later, when first modern experiments on aural-perceptual 

speaker identification were undertaken. A psychologist called Frances McGehee investigated 

what can be expected of a lay witness and what happens to his or her identification rates over 

time. The significance of her work lays in the fact that hers were one of the first insights into 

the nature of aural-perceptual speaker identification, and contemporary research still supports 

many of her conclusions. 

The number of important speaker identification cases rose significantly when World 

War II began. One of them followed an assassination attempt on Adolf Hitler. A group of 

university phoneticians and engineers in Indiana was confronted with the task to determine 

whether the person making speeches after the assassination attempt was Hitler himself, or if a 

double had taken his place. To do so, they asked both phoneticians and panels of auditors to 

do aural-perceptual analysis, which they complemented by using every processing system and 

device available. This case was one of the first cohesive and multivector efforts in speaker 

identification.  

Other important attempts at speaker identification were taking place at Bell Telephone 

Laboratories in New Jersey where a sonagraph, a machine which was supposed to make 
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speech visible, was developed. It was an advanced development for that time and can still be 

of use today. However, the use of its output, a sonagram, or ‘voiceprint’ as it was called, was 

misunderstood by some scientists. Thus while the post-war years of 1950s and 1960s saw 

little research in Europe as it was recovering from war, in the USA the excitement of 

voiceprint was spreading. Lawrence Kersta, an engineer in Bell Laboratories, believed that a 

reliable speaker identification system can be provided by sonagraph. He tried to find 

idiosyncratic patterns on sonagrams on basis of which it would be possible to identify 

individual speakers. The voiceprint method, the name being a desired analogy on fingerprint, 

is thus based on a mere comparison of sonagrams and, depending on the degree of their 

match, the decision is made whether the two samples come from the same speaker or from 

different ones. Though Kersta claimed that his method was highly accurate and many people 

believed this false impression, his studies lacked transparency and further research discredited 

this methodology. Despite that, some people working in speaker identification still use this 

method nowadays (Hollien, 2002, p. 64).  

Another trend of the 1950s and 1960s was the excessive use of speaker identification 

methods by police without any reasonable guidelines and relevant research. An example 

thereof is the increased use of earwitness line-ups, i.e. identifying the culprit from a set of 

recorded voices (Foulkes & French, 2001), erroneously believed to be as effective as visual 

identification.  

The development of modern approaches towards speaker identification started after 

World War II and is connected mainly to three countries: the United States, the United 

Kingdom and Germany. Though the ‘voiceprint period’ in the USA slowed down the progress 

for some time, it also encouraged additional research and, consequently, many early 

investigations were undertaken in the United States, for instance, at the Bell Laboratories, 

MIT, and the University of Florida. German research in this field matured later than the other 

two, which brought the advantage of avoiding many early errors from previous research. Due 

to their different conception of phonetics in general, the United Kingdom and the United 

States differed in their philosophies toward speaker identification; the former favouring 

segmental approaches while the latter favoured suprasegmental ones. In mid 1980s, the focus 

of research seems to have shifted from speaker identification to speaker verification (Hollien, 

2002, pp. 70, 74). 

An advancement of forensic phonetics was speeded up by the development of 

computers and relevant disciplines as well as further findings in phonetics and related 

disciplines, which brought new possibilities of speaker identification and verification. Even 
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though automatic speaker identification remains an elusive goal even in the 21st century, this 

method, mostly based on Gaussian mixture modelling, has been successfully used in speaker 

verification (Broaders, 2001). For some more comments on the development of methods in 

speaker identification, see Section 2.4. 

In order to understand the more detailed discussion related to speaker identification, it 

is first important to give a preliminary overview of the fields which can be distinguished 

within forensic phonetics and to delimit the position of speaker identification among them.    

2.2. Fields 

Forensic phonetics encompasses several areas involving analysis of the recorded 

human voice. Authors differ in their classification depending on the criteria employed and 

perspective taken. As a guideline, Butcher’s (2002) classification will be used for its 

comprehensiveness and complemented by other approaches.  

According to the author, the four most frequent areas in which a forensic phonetician 

might be asked to prepare reports are speaker identification, disputed utterances, tape 

authentication and voice line-ups. Some authors single out another category, that of speaker 

profiling (Nolan, 1999; Foulkes & French, 2001; Rose, 2002, p. 18). In contrast, Baldwin and 

French distinguish only two main categories, i.e. “evidential” and “investigative” (Baldwin & 

French, 1990, p. 64), differing in whether a potential group of suspects has been already 

delimited or preliminary investigations are carried out without no particular suspects in mind, 

respectively. These two categories subsume the above mentioned areas nonetheless. A 

comprehensive approach is used by Jessen (2008), who focuses on speaker identification as 

the most central aspect of forensic phonetics subsuming voice comparison, voice profiling 

and speaker classification, and speaker identification by victims and witnesses.  

Since most cases in forensic phonetics involve speaker identification and it is at the 

same time the most relevant field to the topic of this paper, it will be discussed as the last one 

in the list, and in more detail than the remaining fields. 

2.2.1. Disputed utterances 

 Analysing the content of speech samples in which intelligibility is reduced constitutes 

a significant application of phonetic skills in forensics (Nolan, 1999; Jessen, 2008). Foulkes 

and French (2001) include it under a broader category of ‘difficult recordings’. The content of 

recordings, which can provide useful information to law enforcers, can be difficult to decipher 

for technical, e.g. due to the presence of noise, or behavioural reasons, e.g. nonstandard 
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patterns of pronunciation. In case of the presence of noise, bearing in mind their potential 

negative consequences, selective filtering or other signal processing methods developed by 

speech engineers might prove helpful to enhance the audibility of the speech signal and 

determine what was actually said. Phonetic and linguistic skills are necessary especially if the 

unwanted noise masks the crucial frequencies or if an unusual accent is concerned (Jessen, 

2008).   

One famous example of a disputed utterances case is Hirson and Howard (1994) (in 

Foulkes & French, 2001) who analysed the content of a black box flight recording recovered 

from a wreck of an aircraft lost in mid-flight in 1987. As the tape spent more than a year 

under water, it was highly degraded. Nevertheless, phonetic analysis enabled to transcribe 

most of its content and this case triggered improvement in the structure and positioning of 

flight recorders (Foulkes & French, 2001).  

The term disputed utterances sometimes refers only to those instances of problematic 

interpretation that are more localized. Such a case usually involves a single word, hence 

called ‘disputed word’ that is compared with undisputed examples of words in the speech of 

the respective talker, which the particular disputed word can represent (Foulkes & French, 

2001). Examples of such analyses can be found in Baldwin and French (1990). As disputed 

utterances provide a defendant with the possibility to challenge the prosecution’s version of 

what was said in the course of the recording, specialists’ opinion should be sought (Butcher, 

2002). 

2.2.2. Tape authentication  

 A forensic phonetician might be consulted to examine the authenticity of a speech 

recording. Artificial changes to a speech sample are no longer as financially and technically 

demanding as Baldwin and French (1990) describe in their work; on the contrary, current 

software enables almost seamless editing of a signal. Therefore, as digital editing and signal 

manipulation becomes more widespread and physical cues of some tampering more elusive, 

the only kind of evidence of editing left might be of linguistic nature in the form of, for 

instance, unnatural changes in rhythm, intonation or tempo (Baldwin & French, 1990; Nolan, 

1999; Butcher, 2002). 

2.2.3. Voice line-ups 

A forensic phonetician might also be asked to construct a ‘voice line-up’ or ‘voice 

parade’, or to analyse its contents. A voice line-up is used in those cases of speaker 
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identification where no permanent record of the voice involved in a crime exists, but the voice 

of a perpetrator has been heard by the victim or a lay witness. The earwitness then has to 

prove a recall of the voice, which is most often tested by means of a voice line-up (Foulkes & 

French, 2001). 

A voice line-up is a procedure analogous to a visual line-up with the difference of the 

line-up being auditory instead of visual, and submitted sequentially rather than 

simultaneously. It consists of a set of recorded voices of people who are unrelated to the 

crime, so-called ‘foils’, and that of the suspect (Jessen, 2008). There are several criteria which 

need to be observed during the construction of a line-up to ensure that there is no feature of 

any of the voices or the recording which would stand out unfairly in relation to the others, for 

instance, a markedly different accent or recording fidelity (Foulkes & French, 2001; Butcher, 

2002). Several guidelines for constructing voice line-ups exist; the most specific of which has 

been published by Broaders and van Amelsvoort (1999; in Jessen, 2008) and is followed by 

many forensic laboratories in Europe.  

 Due to the fact that the memory for voice identities decays rapidly3, it is essential for 

the earwitness to be interviewed as soon as possible after the incident in order to elicit any 

characteristics of the voice of the offender that the witness can remember. These can help in 

finding the suspect and selecting foils with similar voice characteristics. When suitable foils 

have been selected, recordings are made of all speakers. The most important criterion is for all 

recordings to be technically and stylistically similar to that of the suspect. A voice line-up is 

correctly constructed once it is proved that every voice has an equal chance of being selected 

(Jessen, 2008).  

This recording is then played to the witness who is asked to identify the voice of the 

perpetrator (Butcher, 2002). After hearing each voice, the witness has to make a decision 

whether this is the voice from the crime or not. Though each voice can be played several 

times, it is not possible to go back to previously played voices. In addition, it is advisable to 

record the process on a video or make observations as the witness might also react 

nonverbally (Jessen, 2008). Though selection of the suspect does not solely suffice as a proof 

that he or she is a criminal, it is powerful evidence for investigational or trial purposes 

(Hollien, 2002, p. 12).  

                                                           
3 The first systematic research on voice memory was undertaken by Frances McGehee, as was already outlined 
in section 2.1. The results of her experiment show how quickly recognition level drops. Later studies elaborated 
on her research and discovered that it does not drop only as a function of time but a number of interacting factors 
is involved (Jessen, 2008). Cf. Section 2.3.1. 
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2.2.4. Speaker profiling 

In cases where a recording of the voice of a culprit is the only clue to his or her 

identity, phonetic and sociolinguistic knowledge can help to define a target population and 

thereby narrow the search for the culprit (Foulkes & French, 2001). In such situations, when 

there is nothing to compare an unknown sample with, a forensic expert is requested to deliver 

a voice profile (Jessen, 2008).  

 Establishing a speaker profile is, therefore, regularly requested in the early stages of 

investigation of, for instance, telephone threats or kidnappings. A specialist can provide 

various kinds of information about the speaker’s identity such as the speaker’s sex, age, 

regional and social background and possible idiosyncratic features (Foulkes & French, 2001).  

Furthermore, the sample might contain other aspects which catch one’s attention, such as an 

unusually fast speech, pausing, etc. This fact is precisely what distinguishes voice profiling 

from speaker classification, which is used, for instance, for constructing voice line-ups. While 

the main purpose of the former is to provide any information about a speaker which might be 

important for finding a suspect, the latter is defined in more theoretical terms; it tries to infer 

from the patterns of a speech recording classes or categories, such as age, social and regional 

background (Jessen, 2008).  

 Nevertheless, the strength of the conclusions that one can make in speaker profiling is 

highly variable. It is dependent on some aspects of the recording; for instance, its length, 

quality and the extent of voice disguise, but also on the dialectological and sociolinguistic 

information available (Foulkes & French, 2001). Due to the high demands which speaker 

profiling poses on a forensic expert, cooperation of specialists in different areas is often 

necessary (Jessen, 2008). A more detailed account of speaker profiling with numerous 

examples of cases can be found in Baldwin and French (1990).  

2.2.5. Speaker identification  

Up to 90 per cent of forensic cases involve speaker identification, i.e. identifying, by 

means of comparative phonetic testing, a person speaking in a criminal recording (Foulkes & 

French, 2001; Butcher, 2002). For this reason and the fact that aim of this study is to 

investigate certain speaker-specific cues, it will be discussed in more detail. Firstly, a few 

related terms will be addressed as these are often used interchangeably or differently by 

different authors.   
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There are three terms which are closely related to one another, i.e. speaker recognition, 

speaker verification and speaker identification. For these, parallel expressions exist; thus one 

might likewise encounter their respective synonyms where ‘speaker’ is substituted by ‘voice’ 

or ‘verification’ by ‘authentication’ (Hollien, 2002, p. 5). According to Hollien, the relation 

between them is in a way hierarchical; speaker recognition being a more general concept 

which subsumes the other two. Speaker identification and speaker verification then both 

involve identifying a person from their speech but differ in their methodology and motivation 

(Hollien, 2002, p. 5). Yet other authors class forensic speaker recognition tasks as speaker 

identification (Nolan, 1999). In the next paragraphs, the categories of speaker verification and 

speaker identification will be preserved and their similarities and differences pointed out.  

In case of speaker verification, it is not of importance what is being said but rather 

who is talking. Its potential uses abound; they include, for instance, the possibility to access 

secure areas by a ‘voice command’, verification of identity for telephone banking (Hollien, 

2002, p. 5), or for other purposes where the truth of an identity claim has to be assessed 

(Nolan, 1999). In contrast to speaker identification, this task is relatively straightforward since 

the speaker actually wants to be recognized (Hollien, 2002, p. 6). As a consequence, he or she 

is likely to be cooperative and willing to produce or even repeat a chosen utterance for 

comparison. This is ordinarily done automatically by a computer by means of comparing the 

voice in question to a stored reference sample of the speech of the person whose identity is 

being claimed. This sample is usually a rather extensive reference set which can be further 

developed in order to accommodate day-to-day variation in voice (Nolan, 1999). Such a 

variation is a natural and inevitable phenomenon since, for instance, emotions and temporary 

health conditions can modify the signal (Hollien, 2002, p. 8). Another factor which makes the 

task relatively easy is the high quality of equipment used.  

Speaker identification is, according to Hollien (2002), the more difficult one of the 

two fields subsumed under speaker recognition. The usual task is for a forensic phonetician to 

compare the questioned voice in a criminal recording with that of a suspect and assess the 

likelihood of their being the same person (Foulkes & French, 2001) on the basis of both 

acoustic and perceptual properties. However, the circumstances can be, in comparison to 

those in speaker verification, more complicated (Nolan, 1999). 

Most importantly, even if the suspect is cooperative, it is hard to obtain from him or 

her a sample of speech equivalent to the one which occurred during the crime (Nolan, 1999). 

Firstly, as in the case of speaker verification, a person’s voice is subject to day-to-day 

variation. However, in speaker identification, extensive reference sets, with which suspect’s 
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voice could be compared, are less likely to be available. In addition, the criminal sample may 

involve disguise as the suspect is likely to try to mask his or her identity. Secondly, the signal 

can be in some way degraded. This may refer to reduced frequency response when speaking 

on the telephone or due to low quality recording devices or microphones. Moreover, elements 

useful for identification may be masked by presence of noise in the environment. Though 

some kind of filtering can be used, one has to be always cautious as possible idiosyncratic 

features might thus be eliminated. These two causes which might hinder the process of 

speaker identification are referred to as speaker distortion and system distortion, respectively 

(Hollien, 2002, p. 8).   

Another factor which, according to Hollien (2002) distinguishes the process of speaker 

verification from that of speaker identification is whether the respective trials are “closed” or 

“open” (Hollien, 2002, pp. 6-7). Speaker verification, the author claims, always involves 

closed trials; that is, the speaker belongs to some group. This group can be formed, for 

instance, by employees of a company who enter company buildings by a voice command. In 

contrast, speaker identification involves open sets as the unknown speaker must be identified 

within a large population of possibilities (Hollien, 2002, p. 6). However, as Nolan (1999) 

comments, closed sets are rather rare in real legal cases. Usually, two samples are compared; 

one from a known speaker and the other one from an unknown source. A forensic phonetician 

then assesses whether the two are similar enough to belong to the same speaker (Nolan, 

1999).  

Despite the complications which these tasks face, a considerable amount of speaker 

identification is already possible, which is enabled by what is known about the relationship 

between people and their voices. Those relationships which allow identification of an 

individual result from an integration of one’s anatomical features with his or her habitual 

speaking patterns. This will be the topic of the following section.   

2.3. Individuality in voice 

Undoubtedly, speech carries information about its producer. Thus one is often able to 

tell who is speaking without seeing the speaker, e.g. on the telephone or on the radio. 

Researchers have been trying to discover how a speech signal encodes information about its 

producer, i.e. which are the cues which enable us to make a judgement, and how reliably these 

can be recovered (Nolan, 1999). There are two main problems which complicate this process; 

firstly, a person’s voice is by no means constant, and secondly, it is not known whether every 

single person’s voice unique is to him or her and different from those of all other people, i.e. 
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“whether intraspeaker variability is always smaller than interspeaker variability in all 

situations and under all conditions” (Hollien, 2002, p. 7).  Arguably, however, adding 

dimensions for discriminating speakers could result in the fact that speakers’ ranges of 

variation cease overlapping (Rose, 2002, p. 31). 

2.3.1. Sources of variability 

Traditionally, interspeaker variability is divided into two categories, i.e. ‘organic’ and 

‘learned’, though this division seems to be simplistic. Organic variability subsumes all kinds 

of variation which can be explained by differences in one’s physique; for instance, resonance 

frequencies and the rate of vocal folds vibration are dependent on the dimensions of a vocal 

tract. Learned variability, on the other hand, is a product of one’s linguistic environment; in 

other words, by living in a certain environment, people acquire some regional and social 

variety. A very simple model of the information contained in a voice would thus be that it 

consists of two parts, namely individual and linguistic. The point to stress is that this division 

is not absolute but these two phenomena combine together in a single manifestation (Nolan, 

1999). To give an example, the range of an individual’s fundamental frequency reflects both 

the organic aspect, i.e. the structure of the larynx, and the learned aspect, i.e. features of the 

particular language (Nolan, 1999). The individual and linguistic aspects are thus convolved in 

its acoustic representation, which is an important fact for speaker identification as it is 

necessary to understand how this happens in order to interpret the variation inherent in speech 

(Rose, 2002, p. 60).   

Incidentally, this interplay of organic and learned features in one’s voice provides an 

explanation why the once acknowledged parallel between fingerprinting and speaker 

identification is invalid. While a fingerprint reflects an organic (and invariable) difference 

only, in a recording of speech, the organic aspect (which is variable) is combined with the 

effects resulting from one’s linguistic environment together with the choices made at the 

given moment (Nolan, 1999). 

The source of this variability is the high ‘plasticity’ of the mechanism producing 

speech. Though a speaker’s physique poses some limits on, for instance, the range of 

fundamental frequency, within these limits speakers dispose of wide scope for controlled 

variation. This plasticity can serve linguistic purposes, e.g. realizing elements of phonology, 

paralinguistic purposes to convey anger or affection, or can be exploited for non-linguistic 

purposes, such as voice disguise. In addition, apart from volitional uses of the plasticity, there 

are other factors as a result of which one’s speech varies. These include temporary conditions 
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such as cold or other states of ill health which affect vocal organs, stress, fatigue or 

intoxication (Nolan, 1999).  Moreover, different voices can be affected in different ways; for 

instance, when talking on the telephone, most people, but not all, speak more loudly, which 

results in a rise of average fundamental frequency (Foulkes & French, 2001). Some 

indications of how anatomy is reflected in one’s voice will be discussed below.  

2.3.2.  “Speech as anatomy made audible”4 

In order to illustrate how anatomy is manifested in the acoustic signal, it is useful to 

adopt the source-filter model of speech production (Fant, 1960); that is, larynx being the 

source of acoustic energy that is shaped in the supralaryngeal vocal tract, which thus 

functions as a filter (Nolan, 1999).  

As for the ‘source’, the relation between anatomy and acoustics can be demonstrated 

on the vocal folds. Their length and mass determines the range of frequencies at which they 

can vibrate, which is reflected in the shape of the glottal source wave. Possible anatomical 

irregularities, such as uneven cycles, are manifested in the acoustic signal, too. The vocal tract 

‘filter’ likewise differs in size and shape, which is reflected in formant frequencies. 

Importantly, the source and the filter interact. To give one example, the impression of a high 

voice can be caused by high fundamental frequency due to small vocal folds as well as high 

formant frequencies as a result of a small vocal tract (Nolan, 1999).  

The vibration of vocal folds is not the only source of acoustic energy in speech; it can 

also be generated by air turbulence. Some claims have therefore been made for the usefulness 

of fricatives as speaker-specific cues since their precise acoustic properties depend on the 

shape and size of the relevant place of articulation (Künzel, 1987, pp. 93-4, in Nolan, 1999). 

However, even the articulation of fricatives is susceptible to volitional changes (Nolan, 1999). 

This fact led some researchers to focus on nasal sounds as the best manifestations of anatomic 

individuality since the shape of the nasal cavity varies among individuals and is not 

volitionally changeable. Nevertheless, there are two main reasons why even nasals have to be 

approached with caution; firstly, nasal resonance is not available in isolation but rather 

combined with other resonances of the vocal tract and secondly, as was already mentioned, it 

varies as a result of temporary health conditions, such as cold (Nolan, 1999).  

                                                           
4 Quoted from Nolan, F. (1999). Speaker Recognition and Forensic Phonetics. In: William, J. and Laver J. (Eds.) 
The Handbook of Phonetic Sciences. Hardcastle: Blackwell Publishing, Blackwell Reference Online. 28 
December 2007. Available online from: 
http://www.blackwellreference.com/subscriber/tocnode?id=g9780631214786_chunk_g978063121478625. 
(Last accessed: December 18, 2011)   
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Though considerable research on finding speaker-specific cues has been undertaken 

(see Section 2.5 for a more detailed account of areas to which the search of speaker-specific 

cues has led), our knowledge of how identity is encoded in the acoustic signal is limited.  

Apart from anatomy, speech conveys information also about a given communicative 

situation. The following section will briefly examine what is meant by ‘learned’ variability.  

2.3.3. Speech as a tool 

Speech is not only a physical event, but it is also shaped by the environment. As a 

consequence, every fully competent speaker of a given community has a mastery of several 

registers which he or she uses as situation requires by exploiting the potential of a language 

on all its levels (Nolan, 1999). The fact that speakers do not have an invariant accent has 

consequences for forensic phonetic comparisons as sociolinguistic factors have to be 

accounted for (Rose, 2002, p. 62). 

In addition, between organically determined and learned variability, there seems to be 

a space for potential individuality. By combining all these resources, that is, social, economic, 

geographical and educational factors but also sex, intelligence, etc. (Hollien, 2002, pp. 9-10), 

people create for themselves “a linguistic phonetic system” (Nolan, 1999, p. 3)  which marks 

them as members of a subgroup of population which might, in extreme cases, consist of a 

single individual (Nolan, 1999). Thus sometimes it can be the use of idiosyncratic phrases 

which makes one recognize the speaker (Hollien, 2002, p. 2); the use of lexis and grammar is 

also one of the parameters used in casework (Foulkes & French, 2001).  However, the focus 

here will be on phonetic parameters. Much research tries to determine which phonetic 

parameters of a voice are the most useful in identifying an individual speaker (Foulkes & 

French, 2001) (see Section 2.5 for a more detailed discussion of speaker-specific cues). 

According to Hollien (2002), there seem to be two main “schools of thought” (p. 13) in 

speaker identification, namely segmental and suprasegmental. While the former favours the 

segmental level, the latter stresses the importance of the suprasegmental one as it is 

considered more stable and speaker specific than phonemes themselves (Hollien, 2002, p. 14).  

 Though there seems to be no single feature of a person’s voice which would allow 

him or her to be differentiated from all other people, a combination of several robust 

parameters provides a reasonable characterization of an individual (Hollien, 2002, p. 10). 

Research shows that despite the inherent variability of a voice, some elements of a person’s 

voice are idiosyncratic enough for the purposes of speaker identification provided that the 

approach taken is well structured and robust techniques are employed (Hollien, 2002). The 
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following subchapter and its sections will discuss the development of approaches towards 

characterizing an individual speaker.   

2.4. Development of approaches 

As mentioned in Section 2.1, all speaker identification which had occurred until the 

twentieth century was done by human beings only. By listening to a voice, people carried out 

some kind of aural-perceptual analysis and stored relevant features of the heard voice in their 

memory. On hearing a voice, they attempted to link it to a particular individual; that is, one 

whose speech they have already heard and for whom they had stored some set of features. It 

should be pointed out that the process of voice perception and recognition differs substantially 

for familiar and unfamiliar voices. According to Kreiman & Sidtis (2011), recognizing a 

familiar voice resembles pattern recognition where “top down” processes dominate over 

“bottom up” processes and the process of voice recognition is very fast. In contrast, 

recognition of unfamiliar voices relies much more on featural comparison and is thus 

primarily driven by “bottom up” processes (p. 187). Kreiman & Sidtis (2011) call it “Fox and 

Hedgehog” model of voice perception (p. 187-8), thus referring to the Greek poet Archilochus 

who wrote that “the fox knows many things but the hedgehog one big thing” (Kreiman & 

Sidtis, 2011, p. 188).  As Kreiman & Sidtis comment, 

For voices, the little things, or features, are utilized more successfully in unfamiliar voice 

perception, whereas the familiar voice is one big thing, in which “features” appear in 

idiosyncratic combinations cohering and/or “emergent” to yield a complex, integrated pattern. 

Kreiman & Sidtis (2011, p. 188) 

It was only recently that these features have been formalized and two more organized 

approaches supplemented the previous unstructured one, i.e. earwitness identification and 

analysis undertaken by professionals who are specifically trained for this purpose (Hollien, 

2002, p. 11). An advancement in speaker identification by experts occurred in the first half of 

the last century when the tape recorder and sound spectrograph made it possible to capture, 

replay and visually represent speech (Broaders, 2001). With a further technological 

advancement and the invention of a computer, an auditory method was supplemented with an 

acoustic one. Nowadays, speaker identification tasks include both an auditory and an acoustic 

analysis, though there has been a debate on the relative merits of the two approaches (Foulkes 

& French, 2001) (see Section 2.4.2).  
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Thanks to a continuous advancement in the development of computers and related 

disciplines, such as audio engineering but also acoustics, etc., new, automatic techniques of 

speaker recognition became possible.  However, speaker identification remains a challenging 

field even in the 21st century and the promise held by technological advances remains largely 

unfulfilled. Automatic methods, mostly using Gaussian mixture modelling, remain to be 

limited to relatively low-risk applications in the area of speaker verification.  

In speaker identification, the most successful system of this kind seems to be SAUSI, 

i.e., a semiautomatic system of speaker identification, which has been developed over the last 

several decades by Hollien and his colleagues of various professions, e.g. phoneticians and 

forensic phonetician, audio-engineers, computer scientists, psychologists and linguists. 

Already ten years ago, SAUSI presented a well-developed and successful system of speaker 

identification as it has been reflecting new findings in phonetics and related disciplines.  

There are several reasons why fully automatic methods cannot be used for speaker 

identification. Firstly, there is a considerable possibility for two speakers to be, in some 

respect, identical as there seems to be no feature of the voice which would be unique to every 

speaker. Secondly, it is not known whether there are some features of the voice which cannot 

be consciously changed by the speaker (or some other conditions, such as cold in case of 

nasals). Another fact which complicates the process is that there is not enough data to 

quantify the chances for two speakers to be similar or even identical with respect to a certain 

features. In addition, acoustic parameters vary as a consequence of different recording 

conditions or differences in the voice itself and automatic techniques are not yet able to 

separate these two sources of variation (Butcher, 2002).    

The focus here will be on auditory and acoustic approaches towards speaker 

identification. The following section will discuss some general aspects of auditory 

approaches. After that, the focus will shift to the analysis by professionals both auditory 

(Section 2.4.2) and acoustic (Section 2.4.3). 

2.4.1. General aspects in speaker identification 

There are some factors which can influence the accuracy of speaker identification. 

They will be divided into three groups, namely those relating to the listener, the sample and 

the speaker.  

As mentioned in Section 2.2.3, an important variable in auditory approaches is voice 

memory. Frances McGehee’s experiment on this topic was important not only because it 

showed the degree of decay over time, but it also opened a discussion as to other possible 
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factors which can play a role in the process of speaker identification, such as the relevance of 

gender, foreign dialect and voice disguise (Hollien, 2002, pp. 28-9), which will be addressed 

later in this chapter. Moreover, it provided some insights into the process of auditory speaker 

identification itself and contemporary research still supports some of McGehee’s views. 

Nevertheless, our knowledge of voice memory is still sketchy; it is not yet possible to specify 

exactly the shape of a decay curve or what can be expected of any particular individual in 

speaker identification tasks as there are many variables which can affect it (Hollien, pp. 30-1).    

Non-contemporary speech, i.e. samples separated by some period of time, had been 

claimed to pose as difficult a challenge to speaker identification as voice memory decay 

(Rothman, 1977, in Hollien, 2002, pp. 31-2). Rothman reports a drop to 42% of accuracy 

when non-contemporary samples are included, which would be detrimental to auditory 

approaches (Hollien, 2002, pp. 31-2). However, he included in his research so-called ‘sound-

alikes’, e.g. brothers, father and son, etc. (Hollien, 2002, p. 35), which strongly affected his 

results. Later research by Schwartz (1995) (in Hollien, 2002, pp. 32-4), has shown that 

judgements become unstable only after a period of 20 years. Thus using non-contemporary 

samples has just little effect on speaker identification unless a very long period has passed 

(Hollien, 2002, pp. 32-4).      

  To explain McGehee’s results in more detail, a set of experiments was undertaken to 

study the possible effects of gender and training. Though McGehee also reported the 

performance of her male listeners to be better than that of females, recent studies do not show 

any effect of gender either for the speaker5 or for the listener. However, the effect of training 

is apparent. Trained phoneticians perform generally better in speaker identification tasks than 

people without similar background and experience. This effect is even more apparent when 

conditions are unfavourable, that is, the sample is short or a speaker unknown, etc. (Hollien, 

2002, p. 34). Additional training in forensics and well-structured systematic approaches result 

in yet better performance in speaker identification tasks (Hollien, 2002, p. 39).  

Another factor which influences the speaker identification process is familiarity with 

the speaker. In general, familiar speakers are easier to recognize than unfamiliar ones (e.g., 

Nolan, 1999, pp. 677-681; Hollien, 2002, pp. 43-6). In his research, Hollien sought to assess 

how familiarity with the speaker affects judgement accuracy. The results show that if the 

listener is very familiar with the speaker, he or she can be recognized even when conditions 

                                                           
5 This task is usually an easy one since by listening to speaker’s fundamental frequency or vowel formants, 
identification of the speaker’s gender tends to be straightforward. However, problems might occur if the values 
of his or her fundamental frequency lie between those for men and women. Yet there is evidence that judgements 
of gender can by likewise made by listening to speaker’s consonants (Hollien, 2002, p. 37). 
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are unfavourable; in this case stress and voice disguise. However, lack of familiarity, even 

after some training in recognition, results in the decrease in accuracy, especially under 

difficult conditions (Hollien, 2002, pp. 44-5).  

Factors relating to a speech sample, particularly its size or duration and acoustic 

quality, can also influence the performance of a listener, be it an earwitness or a professional, 

in speaker identification.  

As for the size, researchers differ in what they consider a sufficient sample (Hollien, 

2002, pp. 39-40). Künzel (in Hollien, 2002, p. 40), for instance, claims that the German 

Bundeskriminalamt, i.e. Federal Criminal Police Office of Germany, requires at least a 30-

second sample. Hollien, on the other hand, argues that shorter samples can be sufficient 

(Hollien, 2002, p. 41), depending on what is the subject of investigation. This topic will be 

further examined in relation to LTAS in Section 3.1. Unfavourable acoustic conditions, 

especially noise and limited bandwidth, present a further complication to speaker 

identification as they mask or distort the speech signal. A noise can be broad band or narrow 

band; steady or intermittent. Furthermore, it does not have to be aperiodic in nature. A term 

which is often encountered in forensic context is ‘forensic noise’ (Hollien, 2002, p. 41). It 

subsumes all competing signals which interfere with the speaker identification process, such 

as music, other speakers, etc. The most troublesome kind of noise is a loud, broad band, 

steady noise. Nevertheless, various filtering and other methods exist to mitigate these effects 

(Hollien, 2002, p. 41). The speech signal can be further degraded by limited bandwidth, the 

most common cause of which is the telephone. Though some more complicated remedy 

methods exist, reasonable speaker identification can be carried out even on a speech sample 

obtained over the telephone (Hollien, 2002, p. 41).    

Lastly, there is a group of factors originating with the speaker, such as disguise, 

presence of stress or emotion, or the language being spoken (Hollien, 2002, p. 46), which can 

all hinder speaker identification tasks. However, before discussing them, two other important 

factors which make speaker identification problematic will be mentioned. First of these is the 

size of population. As a general rule, selecting a speaker out of a smaller number of 

possibilities is faster and easier than from a larger one. Nevertheless, the problem one faces in 

real cases is that the number of possibilities cannot be controlled (Hollien, 2002, p. 46). The 

second complicating factor involves uniqueness of a speaker’s voice; that is, a voice that has 

few distinctive features will be harder to recognize than a voice which exhibits more 

idiosyncratic features (Hollien, 2002, pp. 46-7). Similarly, Nolan claims that speakers who are 

the most distinctive lie outside the ‘normal’ range (Nolan, 1999, p. 6). According to him, 
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these are, for instance, speakers with different kinds of speech pathologies and impediments, 

or non-native speakers of a particular language. Though speech phenomena which lie outside 

the normal range are very valuable for speaker identification purposes due to their rarity, it is 

important not to overemphasize their significance (Nolan, 1999). One example which 

illustrates this is a so-called 'Brother-My-Brother' case (Hollien, 2002, pp. 47-48).  

Disguise is another important factor in speaker identification because, if a speaker is 

good at it, its effects can be detrimental. However, any attempt at voice disguise poses 

problems for speaker identification. One of the most challenging types of disguise is whisper 

as all information about fundamental frequency and heard pitch is reduced or eliminated. 

Similarly, it affects information about vocal intensity, voice quality, but also prosody and 

speech timing (Hollien, 2002, p. 49); that is, most features or parameters important for 

recognizing a voice. Only little research has been done on how to detect and counteract voice 

disguise (e.g., Perrot et al., 2007). The first step, according to Hollien, is always to determine 

whether the speaker is attempting voice disguise or not. The fact that it is very difficult to 

consistently disguise one’s voice makes this decision easier (Hollien, 2002, p. 50). However, 

in real cases, one often has to work with only limited samples. Yet effective speaker 

identification is sometimes possible even if voice disguise is involved (Perrot et al., 2009). 

Stress and emotions likewise present obstacles to speaker identification tasks. There 

has been substantial research on the effects of psychological stress, such as anxiety, fear, 

anger or fatigue (Hollien, 2002, p. 53) on a voice, and some general trends have been 

discovered; for instance, a rise in fundamental frequency, a less marked increase in vocal 

intensity and speaking rate, etc. There are thus some predictable patterns which a voice under 

stress tends to follow and knowing them allows one to compensate for these effects. Evidence 

shows, however, that a small number of people under stress do not show these characteristics; 

they might even reverse them (Hollien, 2002, pp. 51-3). Nevertheless, though research has 

been done on the effects of stress and, recently, also emotions, little is known about how they 

affect speaker identification process (Hollien, 2002, p. 51).  Notwithstanding, a forensic 

phonetician must be able to identify these factors and should be able to counteract them 

(Hollien, 2002, p. 52).  

Lastly, effects of dialects, accents or foreign languages will be briefly mentioned. 

Identifying dialects of different speech samples to be the same is often of only limited 

importance unless the number of speakers of such a dialect is very small. In contrast, 

identifying two dialects as distinct is rather significant as it suggests that the speakers 

involved are two different people, unless a different accent is adopted with the view of 
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concealing one’s identity (Baldwin & French, 1990, pp. 66-9). As for foreign languages, some 

researchers report that identifying a speaker of a different language than their own 

complicates the process. Though Hollien believes that the knowledge and methods a forensic 

phonetician has at his or her disposal can counteract the possible effects (Hollien, 2002, pp. 

54-5), it should be stressed that speaker identity is signalled differently in different languages 

and a forensic phonetician must, therefore, have a specialist knowledge of the language under 

investigation (French, 1994, p. 174, in Rose, 2002, p. 47). 

Before getting to analyses by professionals, features of voice which people use when 

recognizing voices will be mentioned. These include heard pitch, articulation, voice quality, 

i.e. the signal produced by the vocal folds and modified by the resonances of the 

supralaryngeal vocal tract, prosody, i.e. temporal patterning of speech and melody, vocal 

intensity and possible idiosyncrasies.  To recognize a speaker, a listener may use all or only 

some of these features and relationships discussed above (Hollien, 2002, pp. 59-61).   

Professionals, who are prevailingly phoneticians with some background in linguistics 

and computer or audio-engineering (Hollien, 2002, p. 12), employ these elements when doing 

analyses, too. They combine them into an appropriate system after which they examine the 

samples acoustically, extracting relevant parameters and thus performing a composite speaker 

identification task (Hollien, 2002, p. 62). This combined approach is, however, only one of 

three different philosophies held among forensic phoneticians. Some researchers argue that 

auditory approach is relevant on its own (e.g., Baldwin and French, 1990, p. 9), while others 

claim the opposite; that is, the auditory analysis is not necessary as the acoustic one can 

provide sufficient data. Today both auditory and acoustic analyses are generally recognized as 

indispensable and of equal importance; thus the combined approach is used by most forensic 

phoneticians (Rose, 2002, pp. 48-9).  

The auditory analysis will be discussed in the following section and the acoustic 

analysis in the subsequent one. 

2.4.2. Auditory analysis 

As has been just mentioned, professionals in the area of speaker identification are 

prevailingly phoneticians, though there is a considerable degree of heterogeneity of people 

working in this field regarding their background, training, talent but also opinions about 

speaker identification in general (Hollien, 2002, p. 63).  

There is an array of people ranging from private detectives through linguists to 

forensic phoneticians. The first group is very numerous and involves also some members of 
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an official organization called International Association of Identification (see 

http://www.theiai.org/), who still use some form of voiceprint method. The second group 

includes specialists of various related disciplines, such as speech pathologists or audio 

engineers, who lack background in other fields necessary for speaker identification tasks. 

Many engineers work in speaker verification, which seems better suited for their skills and 

knowledge. Importantly, progress in both domains is supported by their cooperation. The core 

group working in speaker identification is formed by forensic phoneticians. The essential 

areas in which one has to be skilled include acoustics, physiological and perceptual phonetics, 

psychoacoustics, linguistics and statistics. Furthermore, computer skills, grounding in 

behavioural sciences, electrical engineering and forensic sciences as well as understanding of 

how the legal system works are likewise desirable (Hollien, 2002, pp. 63-6). A list of 

requirements which are supposed to assess the capabilities of a forensic phonetician are 

included in Hollien (2002, p. 69). 

An auditory analysis compares voices as to their auditory features, that is, how voices 

and speech sounds sound. It logically precedes an acoustic analysis as it is necessary first to 

listen to a sample to assess whether its quality enables a further analysis and to identify 

parameters which could be used to compare the samples. It should provide an overview of 

both similarities and differences between the speech samples compared (Rose, 2002, pp. 48-

50).   

As mentioned in Section 2.2, two main approaches towards characterizing an 

individual speaker are segmental and suprasegmental.  

A segmental approach has been subjected to criticism for various reasons. Some 

people argue that relevant segmental elements for speaker identification have not been 

identified and tested in different conditions. Furthermore, they have not been organized into 

any model tested for its effectiveness. An exception to this seems to be Nolan’s well-

structured model based on the Framework of British pronunciation (Hollien, 2002, pp. 71-3). 

Another source of criticism derives from the fact that segmental approaches usually require a 

large amount of data and the system of transcription, namely narrow phonetic transcription 

using International Phonetic Alphabet, is too complex. However, this complex system is at the 

same time its advantage as it allows a phonetician to describe any sound they hear by means 

of an established system. Other phoneticians can thus easily check and verify the assessment. 

(Rose, 2002, p. 51). Despite the mentioned weaknesses, a segmental approach can be very 

useful in, for instance, assessing regional dialects. Its strength is further enhanced when 

combined with suprasegmental or acoustic approaches (Hollien, 2002, pp. 73-4).  
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Other approaches have derived their procedures rather from experimental phonetics 

than traditional one, and use parameters on the suprasegmental level (Hollien, 2002, pp. 74-

5). In casework, these two are usually combined. Descriptive and classificatory frameworks 

exist also for these aspects of voice. For voice quality, for instance, a thorough guideline is 

provided in Laver (1980) The Phonetic Description of Voice Quality (Rose, 2002, pp. 51-2). 

Hollien argues that if an aural-perceptual approach is well structured, it can be 

sufficient on its own6, though effectiveness is increased by complementing it with an acoustic 

analysis (Hollien, 2002, p. 70), and provides an example of a highly structured approach 

based on the assessment of up to twenty scaled comparisons. These features involve 

information about pitch, voice quality, intensity variation, dialect, segments, prosody and 

possible disorders.  To assess them, it is recommended to construct a so-called ‘pairs tape’ 

(Hollien, 2002, p. 78) which allows better comparisons of the known and unknown speaker. 

Then, using a 10-point scale, which expresses the confidence level as to match or non-match, 

the parameters are considered one at a time, listening as many times as necessary to permit 

judgement about a single relationship. Only then, the next parameter is considered. The entire 

set of judgements must be completed in one sitting and repeated a number of times, preferably 

on different days. Then, individual means for each parameter are obtained. Sometimes it is 

necessary to ‘weight’ the values, that is, to check relative importance of the features. For 

instance, as has been already noted, a match in dialect is rather insignificant if it is spoken by 

a large number of people. A resulting polarized score should be likewise approached with 

caution if it is caused by differences in the situation or the environment. Therefore, for this 

approach to be a robust one, it requires some rigor in its administration (Hollien, 2002, pp. 78-

85).  

Hollien’s structured approach is thus designed in such a way so that it could be used as 

a stand-alone procedure. However, an auditory analysis is usually complemented with an 

acoustic one. An auditory analysis in general thus involves careful and repeated listening by a 

specialist during which he or she assesses relevant features of voice by means of agreed 

frameworks that enable analysing fine differences and a comparison between subjects and 

studies. According to Butcher (2002), features of voice which are subject to an auditory 

analysis and may convey information about the identity of a speaker fall into four main 

categories.  

                                                           
6 This view was already held by Baldwin and French: “… there is a certain amount of disagreement in the 
academic world at the present time as to which method should be employed in forensics, and I will summarize 
my position on that matter by saying that I have found the auditory approach to be fully adequate for the task” 
(Baldwin and French, 1990, p. 9). 
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Firstly, the expert has to ascertain voice quality7 , that is, the sound created by the 

vibration of vocal folds, regardless the contribution of resonances created in supralaryngeal 

cavities. There are several description frameworks which allow its quantification. These 

include terms such as ‘strain’, ‘breathy’, ‘creaky’ (Butcher, 2002), which are supposed to 

describe auditory impressions of a listener as accurately and objectively as possible.  

Secondly, articulatory settings, i.e. characteristics of a voice which are not produced 

by the larynx, are commented on. In practice, this means evaluating the effects of the long-

term setting of the throat, tongue, lip or nasal resonances. As in the case of voice quality, 

established descriptive frameworks are available for articulatory settings, too. They rate the 

speech as to, for instance, ‘hypernasality’, ‘pharyngalisation’ and ‘labialisation’ (Butcher, 

2002).  

Thirdly, a set of parameters is used to describe articulation patterns which could 

provide clues to speaker’s geographical and social background (Butcher, 2002). In assessing 

these features, therefore, cooperation with a dialectologist is advisable (Nolan, 1999). 

Nevertheless, the usefulness of this approach depends on a particular linguistic community. 

While some languages exhibit an array of sociolinguistic and regional variation, others do not.  

Lastly, the expert undertaking an auditory analysis listens for a possible presence of 

idiosyncratic features of any kind. These might concern the articulation of consonants, 

stuttering, various kinds of dysfluency, etc. (Butcher, 2002). 

Though some authors argue the sufficiency of sole auditory analysis for characterizing 

an individual speaker (e.g., Baldwin & French, 1990, p. 9; Hollien, 2002, 70), nowadays an 

approach that combines an auditory and acoustic analysis is required because both analyses, 

when applied on their own, exhibit significant shortcomings. An auditory approach is not 

sufficient on its own as, due to how our perceptual mechanism works, two voices can sound 

similar despite their significant differences in the acoustics. An acoustic approach lacks 

adequacy when used on its own for the same reason, i.e. two speakers may not be effectively 

distinguishable acoustically and yet differences can be spotted by the trained ear. Moreover, 

only an auditory analysis enables identification of linguistically relevant data. A previous 

auditory analysis is necessary to indicate what is comparable and to select appropriate 

parameters for both auditory and acoustic analyses (Rose, 2002, pp. 49-50). The following 

chapter will discuss acoustic techniques.  

                                                           
7 For a more detailed discussion of voice quality, see Chapter 3.  



30 

 

2.4.3. Acoustic analysis 

An acoustic analysis allows for speaker-related aspects of speech assessed in an 

auditory analysis to be quantified. Furthermore, it reveals information which our auditory 

system may obscure due to its being engaged with extracting linguistic information. The 

reliability of results gained by an acoustic analysis for speaker identification tasks has, 

however, likewise been questioned, mainly due to our lack of understanding of ‘speaker 

space’ (Nolan, 1999, p. 2). If one imagines a multidimensional space comprised of all 

parameters along which speakers are differentiated; for instance, mean fundamental frequency 

or mean second-formant frequency, then each speaker occupies a region in this space, hence 

speaker space, which covers the variability of his or her speech (Nolan, 1999). The problem 

with finding acoustic cues which would be reliable indicators of one’s identity is, as was 

already stated, that we do not know whether intraspeaker variability is always smaller than 

interspeaker variability. Thus a considerable amount of research focuses on finding the most 

useful phonetic parameters for identifying an individual speaker as well as determining the 

degree of variability along various phonetic and sociolinguistic dimensions (Foulkes & 

French, 2001).  

Ideally, the acoustic parameters should exhibit large interspeaker variability and low 

intraspeaker variability and should be extractable even from short samples, i.e. they should 

have a high frequency of occurrence. They should also be easy to extract, accurately 

measurable, and resistant to disguise and other kinds of distortion (Nolan, 1983, p. 11, in 

Rose, 2002, pp. 65-6). There seems to be no single parameter that would satisfy all criteria. In 

addition, parameters employed should be independent of one another (Rose, 2002, p. 66). 

According to Hollien, the most robust parameters for expressing individuality should be based 

on ‘natural’ speech features which are ordinarily used by humans in everyday processes of 

identifying people from their voices, such as “the pitch level of voice, pitch patterns and 

variability, vocal intensity patterns, dialect, voice and speech quality, prosody (the timing 

and/or melody of speech), articulation, and so on” (Hollien, 2002, p. 10).  There is a wide 

array of different parameters which allow comparison of speech samples for forensic purposes 

and their choice should be determined by “a linguistically informed analysis” (Rose, 2002, p. 

67) of the speech material. Thus, although there are some preferred parameters which should 

be compared if possible, there is no predetermined set of parameters to use. The choice 

always depends on the specific case and is partly language-dependent as intraspeaker 
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variation and interspeaker variation is reflected in different features in different languages 

(Rose, 2002, p. 47).  

The following chapter will provide an overview of the results of the search for 

acoustic cues characterizing individual speakers, which will be subsumed under four 

categories: segmental information, temporal structuring, melodic parameters and phonatory 

modulations. 

2.5. Parameters relevant for characterizing an individual speaker 

This section will consist of four parts, each dealing with one domain which is 

considered to provide, to some extent, some indication of speaker’s individuality. The 

discussion will start on the segmental level and will move to assessing three domains on the 

suprasegmental level with an emphasis on the last parameter, namely phonatory modulations 

or voice quality.   

2.5.1. Segmental information 

The first area to which the search for speaker-specific cues has led is the information 

contained in segments. As previous research has shown, speaker individuality interacts with 

phonological information in the speech signal and researchers have been thus trying to find 

segments which would allow reliable discrimination of speakers. If acoustical correlates of 

one’s individuality contained in speech sounds were found, they would allow not only more 

efficient speaker identification by focusing on those sounds but would also contribute to 

automatic speaker recognition. After several decades of research in this area, it has been 

shown that both consonantal and vocalic characteristics can provide some information about a 

speaker.  

Firstly, consonantal cues will be discussed. Traditionally, nasals have been considered 

robust indicators of one’s identity. The search for speaker-specific cues in this direction was 

motivated by the fact that nasal sounds appear to be reliable manifestations of one’s anatomy 

as the shape and volume of nasal cavity is not volitionally changeable and varies among 

individuals (Nolan, 1999). Their contribution to the process of speaker identification was 

shown already several decades ago (see, e.g., Glenn and Kleiner, 1968; Wolf, 1972, in Nolan, 

1983, pp. 75-6), though the earlier research on nasals studied them either in isolation or in a 

single environment (Nolan, 1983, p. 76). Su et al. (1974) (in Nolan, 1983, pp. 76-7) carried 

the investigation of nasal parameters further by considering the phonetic environment of the 

nasals, too. Their results show that speakers can be characterized by the extent of their 
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coarticulation, and they claim nasal coarticulation to be even a better clue to one’s identity 

than spectra alone. Amino & Arai (2009) examined interspeaker and intraspeaker differences 

of nasals as opposed to non-nasal sounds by means of the parameter of energy transitions 

which appear to capture both abrupt temporal changes (in this case, the timing of velar closure 

in nasal-vowel sequence) and articulatory idiosyncrasies. Their results confirm previous 

findings and show that energy contours of nasals are speaker-dependent and differ 

significantly among individuals8 (Amino & Arai, 2009). Since nasals exhibit low intraspeaker 

and high interspeaker variation and the shape of nasal cavity is not changeable at will, they 

are considered indicators of one’s identity. However, it is important to be aware of the factors 

which can influence acoustic properties of nasals and as a result of which intraspeaker 

variability can be increased (see Section 2.3.2), 

Lateral and rhotic consonants appear to be further indicators of one’s identity. Nolan 

examined the spectral properties of /l/ and /r/ in English (Nolan, 1983, p. 77). /l/ was 

chosen on the grounds of its acoustic similarities with nasals, such as the interaction of 

antiresonances with formant structure and undergoing articulatory changes depending on its 

phonemic environment; /r/ by its virtue of being likewise a liquid, and having a range of 

possible secondary articulations which can be exploited by speakers. Moreover, /l/ and 

/r/ meet several criteria for a robust parameter; for instance, frequent occurrence and 

robustness in transmission (concentration of spectral energy lies within the telephone band, 

i.e. 300 – 3500 Hz, which makes them better candidates for speaker-specific cues than, for 

instance, fricatives). His results show that both /l/ and /r/ 9  convey speaker-specific 

information and are useful for speaker identification purposes, though of lower value than 

nasals (Nolan, 1983, p. 115).   

Other researchers have argued for the robustness of fricatives (Künzel, 1987, in Nolan, 

1999) as speaker-specific cues. Nolan (1999) gives an example of the sound [s], the acoustic 

properties of which depend on the size and shape of person’s teeth and which should be 

preserved even in whispered speech. If that were confirmed, it would be a powerful tool for 

forensic purposes since whisper presents one of the most serious ways of speech signal 

degradation as most information is lost or eliminated. Amino & Arai (2009) likewise studied 
                                                           
8 Their perceptual speaker identification points to coronal nasal sounds as the most effective in perceptual 
speaker identification. In addition, their results show interaction of other factors, such as the phonetic 
environment (Amino & Arai, 2009). 
9 F2 and F3 of both consonants show marked variation between speakers. As for the influence of the following 
vowel, /l/ exhibits a higher degree of coarticulation than /r/ as a consequence of which it is better suited to cases 
where a reference corpus covering more vowel environments is available (Nolan, 1983, p. 115). 
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the acoustic properties of fricatives, particularly [s], [z] and [	], as they scored high in 

perceptual speaker identification. Though their energy contours showed speaker-dependent 

shapes, the interspeaker variation was not significant.  

As for vocalic cues, vowel formants have been studied for their values and dynamic 

properties within the course of vocalic articulation (see, e.g., Goldstein, 1976; McDougall, 

2006). Since previous research on vowel formants has shown that elements residing within 

provide cues to speaker identity, Hollien included the information about vowel formant 

frequencies into one of the four vectors in his semi-automatic speaker identification system 

(SAUSI). The vowel formant tracking vector, the parameters of which derive from vowel 

formant frequency distribution in voiced speech – specifically, both the centre frequencies of 

the first three formants and their ratios F1/F2 and F2/F3 (Hollien, 1990, p. 242) - is one of the 

most powerful ones as it is very sensitive to speaker-specific differences and resistant to all 

kinds of distortion (Hollien, 2002, p. 169). Other researchers mention the F2/F1 ratio for 

particular vowels to be, to a certain extent, speaker-specific (e.g., Skarnitzl, 2012, in print). 

Vowel formant ratios are considered to convey speaker-specific information since the ratios 

are probably not changeable at will.  

2.5.2. Temporal structuring 

Speech timing appears to be another important cue to one’s identity (van Dommelen, 

1987; Hollien, 2002, p. 167), yet research focusing on temporal parameters is scarce. Two 

parameters expressing speech timing are speech rate (SR) and articulation rate (AR), differing 

in what is included in the calculations. While articulation rate measures the rate of speaking 

with all pauses being excluded from the calculation; speech rate takes both the contribution of 

the rate of articulation and the contribution of pausing and other fluency interruptions into 

account (Jessen, 2007). Henze (1953) for German and Goldman-Eisler (1968) for English 

(both in Jessen, 2007) consider AR to have more speaker-discriminating power than SR 

because it has considerably lower intraspeaker variation than SR does. This finding was later 

confirmed by Künzel (1997) (in Jessen, 2007) who studied both AR and SR together with 

several pausing parameters in German for forensic application. Butcher’s study (1981, p. 148) 

(in Rose, 2002, p. 180), on the other hand, has shown that AR differs significantly between 

spoken and read speech; in other words, it exhibits high intraspeaker variation. The reliability 

and validity of AR for forensic purposes thus still needs to be investigated from the Bayesian 

point of view (Rose, 2002, p. 180). The most promising parameter in terms of conveying 

speaker-specific information seems to be local articulation rate (Jessen, 2007). 
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Hollien (2002, p. 167) includes information about temporal structuring in one of the 

four vectors in his SAUSI system, namely time-energy distribution vector, though it is not 

considered as robust as other vectors. The importance of temporal patterning in speech has 

also been claimed for automatic speaker recognition. Instead of traditionally used mel-

frequency cepstral coefficients (MFCCs), Bocklet et al. (2007) used temporal patterns 

analysing different frequency bands over a longer period of time, which increased recognition 

rate by 12%. Other researchers suggested measuring speech rhythm by durational 

characteristics of consonantal (∆C) and vocalic (%V) intervals as they appear to exhibit low 

intraspeaker and high interspeaker variation, though their validity as carriers of speaker-

specific information has been questioned (Dellwo & Koreman, 2008).  

2.5.3. Melodic parameters 

Another suprasegmental parameter which is considered an indicator of speaker’s 

identity is fundamental frequency (F0) contour.  Fundamental frequency, being the acoustic 

representation of the rate of vocal fold vibration, is an important measure for forensic 

purposes since considerable information is available about its distribution amongst the adult 

population at large (Butcher, 2002). All speakers have a range of fundamental frequency 

which they habitually use and within which they feel most comfortable. F0 does not, 

however, reflect only anatomical differences but is also exploited for linguistic purposes 

(Rose, 2002, pp. 53-5), which results in constant fluctuations of its values. To avoid 

influences of local, short-term factors, researchers have frequently focused on a long-term 

mean fundamental frequency, also referred to as speaking fundamental frequency (SFF) 

(Hollien, 1990, p. 240), which appears to be a better representation of individual 

characteristics (Rose, 1991, in Rose, 2002, p. 59). Hollien (2002) likewise considers SFF a 

reliable indicator of speaker identity, and employs it together with other related parameters, 

such as F0 geometric mean, standard deviation or phonation-time ratio in his SAUSI system 

(Hollien, 2002, p. 165).   

Even though the extraction of F0 tends to be reliable under optimal conditions, the 

frequency of extraction errors increases in real life conditions, such as different speaking 

styles or recording quality. Researchers have been trying to make the value of SFF less 

susceptible to extraction errors (see, e.g., Lindh & Eriksson, 2007). The measure proposed by 

Lindh and Eriksson (2007), alternative fundamental frequency baseline, seems to be one of 

the most promising achievements in this area as it appears to be more robust to different 

sources of variation, such as channel distortion or an emotional attitude of a speaker, than 
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traditionally used mean, median, or standard deviation of F0. It thus offers a more reliable 

representation of the neutral10 fundamental frequency of a given speaker (Lindh & Eriksson, 

2007).  

2.5.4. Phonatory modulations 

Apart from the three prosodic parameters, i.e. temporal, melodic and dynamic 

modulations, claims have been made to include a fourth one, namely phonatory modulations 

or voice quality. Evidence shows that it is exploited for paralinguistic purposes11  as 

fundamental frequency is, but independently of it (Campbell & Mokhtari, 2003). It can signal, 

for instance, emotional states (Gobl & Ní Chasaide, 2003), reflect attitude towards the content 

of the message or the interlocutor (Campbell & Mokhtari, 2003), but it also reflects personal 

idiosyncrasy (Rose, 2002, p. 59). The following paragraph will give an overview of different 

approaches towards studying voice quality, and since it is the central topic of this paper, a 

more detailed account of voice quality and its acoustical correlates will be presented in the 

chapter to follow.  

Several methods and acoustical analyses have been proposed to quantify voice quality, 

the most reliable of which, at least for forensic purposes, seems to be the long-term average 

spectrum (LTAS) (Harmegnies & Landercy, 1988; Hollien, 2002, p. 164). Investigators have 

been attempting to find spectral moments or relations which would reflect differences in voice 

quality the best. Previous research has pointed to several parameters which relate to the 

overall slope of the spectrum (e.g., Frøkjær-Jensen & Prytz, 1976; Hammarberg at al., 1980; 

Kitzing, 1986; Sundberg & Nordenberg, 2006) (see Section 3.2.1). Other researchers focused 

on acoustic spectra of vowels, comparing the amplitude of the fundamental with another 

spectral peak (Hanson, 1997) (see Section 3.2.2). Yet others studied the acoustic properties of 

the source signal by parameters reflecting the stability of phonation, namely jitter, shimmer 

and harmonics-to-noise ratio (HNR) (e.g., Schoentgen & de Guchteneere, 1995; Qi & 

Hillman, 1997; Kreiman & Jody, 2003; Brockmann et al., 2008) (see Sections 3.2.3 and 

3.2.4).  

 

 
                                                           
10 Lindh and Eriksson consider vocal fold vibration to function in a similar way as human gestures or 
movements, that is, there is “a point of departure, a resting position or baseline… resulting in a neutral mode and 
frequency of vibration to which they return after prosodic or other types of excursions in frequency” (Lindh & 
Eriksson, 2007). 
11 It can also have a phonological function as, for instance, in Northern Vietnamese (Rose, 2002, p. 59).   
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3 VOICE QUALITY  

Voice quality is of interest not only in the field of phonetics itself but plays an 

important part in numerous disciplines. It is in fact one of the primary means by which 

speakers project their identity to the world; that is, their “physical, psychological, and social 

characteristics” (Laver, 1980, p. 2, in Kreiman & Sidtis, 2011, p. 1) or their “auditory face” 

(Belin, Fecteau & Bedard, 2004, in Kreiman & Sidtis, 2011, p. 1). This is reflected in the 

many definitions of voice quality which one can encounter, each approaching it from a 

perspective which is the most central for a given purpose (Kreiman, Vanlancker-Sidtis & 

Garrett, 2003). For the purposes of phonetics, it is relevant to investigate its physiological, 

perceptual and acoustic aspects. 

3.1. Voice quality: definitions 

In physiological terms, the approach to voice quality has traditionally been twofold; 

some investigators define it in its narrow sense (e.g., Gobl & Ní Chasaide, 1992; Campbell & 

Mokhtari, 2003), i.e. “the sound produced by the vibration of the vocal folds” (Kreiman, 

Vanlancker-Sidtis, & Garrett, 2003, p. 115), while others include the long-term effects of 

vocal tract settings, too (Master et al., 2006). Perceptually, voice quality reflects how a voice 

sounds. Depending on the stance taken, voice quality may thus refer to the perceptual 

impression created by the vocal fold vibration only or by the contribution of both the glottal 

source and vocal tract resonances (Kreiman, Vanlancker-Sidtis & Garrett, 2003), described by 

means of frameworks established for this purpose (see, e.g., Laver, 1980). However, 

perceptual judgements are necessarily subjective as they reflect socioeconomic and cultural 

aspects as well as individual preferences (Master et al., 2006). This resulted in the search for 

relevant acoustic methods which would supplement subjective evaluations by objective data 

(Hammarberg et al., 1980), and would thus allow better comparison between subjects and 

studies.  

3.2. Voice quality: measurements 

As has been mentioned above, one way of evaluating voice quality is to describe it by 

means of descriptive labels which reflect the perceptual impression of a listener. However, as 

there is no unified approach for doing so, a highly variable number of different terms is in 

use. Hammarberg et al. (1980), for instance, mention a study which revealed that for 

describing voice quality and pitch, logopedists and students of logopedy used 88 different 
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terms. To solve this problem, some attempts have been made to find interrelationships 

between these features in order to reduce them into a limited number of clusters or “factors” 

(p. 441). Though factor analysis reduces the redundancies, it is still subjective. Another 

method of assessing voice quality is called “functional” or “creative listening” (Kitzing, 1986, 

p. 478). In functional/creative listening, a person who assesses voice quality imitates the voice 

sample in question and thus experiences the voice function by one’s own apparatus, which 

should enhance its description. However, this method is likewise subjective as it is dependent 

on a personal evaluation of the vocal function, and appears to be suited rather for clinical 

purposes.  

Therefore, investigators have been trying to find an acoustic method which would 

reflect and quantify differences in voice quality of both subjects with organic and functional 

disorders as well as subjects without any disorder. The most reliable tool – at least for 

forensic purposes - appears to be the long-term average spectrum (LTAS) (e.g., Harmegnies 

& Landercy, 1988; Tanner et al., 2004). The following sections will provide an overview of 

methods which are used for an objective assessment of voice quality. Section 3.2.1 will 

examine LTAS and some common ways of its quantification. Section 3.2.2 will focus on 

parameters derived from acoustic spectra of vowels, which arguably reflect individual 

differences in glottal characteristics and voice quality. Both LTAS and the vowel spectra 

parameters will be mentioned in more detail since these methods will be also employed in our 

study as those indicators of voice quality which convey speaker-specific information. Section 

3.2.3 will comment on jitter and shimmer, two parameters reflecting fluctuations in glottal 

cycles, and, lastly, Section 3.2.4 will discuss a parameter expressing the ratio between 

harmonic and noise components in voice, namely harmonics-to-noise ratio (HNR). 

3.2.1. Long-term average spectrum 

The LTAS is an acoustic analysis (fast Fourier transform-generated power spectrum) 

which “provides information on the spectral distribution of the speech signal over a period of 

time” (Löfqvist, 1986, p. 471). As the speech signal is the product of the sound source and the 

transfer function of the vocal tract which varies for different segments, using a longer sample 

allows the short-term variations due to phonetic structure to be averaged out (Löfqvist, 1986). 

The resulting spectrum is thus not influenced by the differences in speech samples but is 

considered to reflect the contribution of both the glottal source and the vocal tract to voice 

quality (Nordenberg & Sundberg, 2003; Master et al., 2006).  
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The LTAS has proved sensitive to different voice qualities and has thus frequently 

been used as an objective tool for complementing a perceptual analysis of voice quality. 

Moreover, it has a considerable advantage of not requiring a periodic or quasiperiodic signal 

to provide a reliable analysis (Tanner et al., 2005). Firstly, it was used primarily for clinical 

purposes in case of both organical and functional voice disorders (see, e.g., Hammarberg et 

al., 1980; Kitzing, 1986, respectively). Later, it was used to study acoustic differences 

between normal and pathological voices (e.g., Löfqvist, 1986). So far, it has been reported to 

reflect differences between gender (e.g. Mendoza et al., 1996; White, 2001; Nordenberg & 

Sundberg, 2003), age (Linville, 2002, in Master et al., 2006; da Silva et al., 2010), to be able 

to discriminate professional voices from untrained ones (Leino, 1993, in Master et al., 2006), 

to assess various features of dysphonic voices (Hammarberg et al., 1980) and reflect voice 

improvement after therapy (Kitzing & Åkerlund, 1993; Tanner et al., 2005). As for the use for 

forensic purposes, long-term spectra vector forms a part of Hollien’s SAUSI system (2002) 

and is considered sensitive to speaker identity even under unfavourable conditions, such as 

noise, limited passband or speaker stress (Hollien, 2002, p. 162). 

Previous research has suggested several parameters which allow quantification of the 

LTAS. These indicate the overall slope of the spectral envelope since spectral tilt has been 

directly related to voice quality (e.g., Hammarberg et al., 1986; Leino, 1993, in Master et al., 

2006) by comparing particular spectral peaks or by the ratio of the amount of energy in 

certain frequency bands as discussed in the following paragraph.    

From a psychoacoustic point of view, a sonorous voice as opposed to a dull or husky 

voice should be reflected in the LTAS in higher energy in the harmonics, that is, less steep 

spectral tilt (Löfqvist, 1986). This is what numerous studies indeed show. Hammarberg et al. 

(1980), for instance, found a significant correlation between voices perceived as breathy and 

the slope of LTAS; more precisely, a steep decrease of spectral level between bands 0-2 kHz 

and 2-5 kHz. The so-called Hammarberg index which expresses the difference between the 

maximum energy in the 0-2 kHz region and the 2-5 kHz region has been claimed to 

distinguish not only different voice qualities (Hammarberg et al., 1980) but also different 

speech styles (Monzo et al., 2007). A lower concentration of energy above the first-formant 

region and a higher concentration of energy above 5 kHz has also been claimed to relate to 

breathy voice quality or a hypofunctional voice by other studies (Soyama 2005, in Master et 

al., 2006).   

Many researchers have been since trying to find relations of peaks or regions in the 

spectral tilt which would allow quantification of perceived voice quality. One of the most 
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commonly employed ones is alpha index (α) suggested by Frøkjær-Jensen & Prytz (1976), 

which is defined as the ratio of intensity above and below 1000 Hz (1-5 kHz/ 0-1 kHz). Alpha 

index is claimed to be a potent criterion for distinguishing voice quality by numerous 

researchers (see, e.g., Löfqvist, 1986; Sundberg & Nordenberg, 2006; Leino, 2008). Kitzing 

(1986) used α as a basis for a new parameter, which we therefore call Kitzing index. Firstly, 

he found inverted α, i.e. ratio of intensity below and above 1000 Hz, likewise a reliable tool 

for differentiating of voice qualities. However, since not all voice qualities were discriminated 

(arguably due to the non-systematic variations of energy in the 3-4 kHz range of the spectra 

influenced by the resonances of the vocal tract rather than the source signal), Kitzing index 

expresses the ratio of energy in the 1-2 kHz frequency range of spectra as opposed to the 0-1 

kHz range (0-1 kHz/ 1-2 kHz). Apart from these, several other measures of spectral slope are 

in use, such as the ratio of 0-1 kHz/1-6.5 kHz which accounts for data of all voice-source 

characteristics but excludes possible higher frequency effects of, for instance, plosives or 

fricatives, and the ratio of 0-1 kHz/1-20 kHz which includes all auditory data that a listener 

would be likely to hear (Sergeant & Welch, 2008). 

Measuring the difference between the f0 and the first-formant amplitude, referred to as 

L1-L0, has been likewise shown to provide information about the phonation mode (Sundberg, 

1987, in Master et al., 2006; Kitzing, 1986). L0 stronger than L1 indicates a breathy or weak 

intensity voice, while a more tense, strong intensity voice is reflected in L1 being stronger 

than L0 (Master et al., 2006).  

As has been mentioned above, not only the ratio of the amount of energy in certain 

frequency bands or of particular peaks, but also individual peaks have been related to 

perceived voice quality. For instance, Sundberg (1987) (in Master et al., 2006) identified a 

peak between 2.8 – 3.4 kHz when studying voices of lyric singers by the LTAS, hence 

“singer’s formant”. This peak forms by grouping of F3, F4 and F5 and is related to the 

perception of projected voices. This finding has been later confirmed also by, for instance, 

Leino (1993) (in Master et al., 2006) who studied voices of male actors and identified a 

“speaker’s/ actor’s formant”.  

Ternström (2008) used the LTAS to investigate the distribution of spectral energy in 

the regions above 5 kHz, which has traditionally been the threshold in speech research as it is 

in this region that most energy is concentrated. However, though disregarding spectral energy 

in frequencies above 5 kHz does not impair intelligibility of speech, this range is audible and 

important for perception. Ternström’s data reveal that the LTAS contour (after removing 

voiceless sounds) is “quite personal” (Ternström, 2008, p. 3) even in the frequency range 5-20 
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kHz. Lu & Dang (2008) likewise report speaker discriminative information in higher 

frequencies and have employed it for enhancing speaker recognition. A better understanding 

of distribution of energy in higher frequencies could also, for instance, enhance naturalness of 

synthetic speech (Ternström, 2008).  

Though the usefulness of long-term measures dwells in factoring out the contribution 

of individual sounds to acoustic parameters, which results in gaining an overall value for a 

speaker, long-term measures are just like all other measures “never totally inert to real-world 

factors” (Rose, 2002, p. 59). For instance, Nordenberg & Sundberg (2003) in their study 

showed that comparing data which were produced in different degrees of loudness can be 

questioned due to the fact that the frequency response for the same intensity increase is not 

linear. Specifically, an increase of vocal loudness causes a greater gain in higher frequencies 

(1500-3000 Hz) than in lower frequencies. This motivated the authors to study the effects of 

vocal loudness on the LTAS in more detail. Sundberg & Nordenberg (2006) demonstrated 

that an increase of the level can be approximated by certain functions but interindividual 

variation exists. The question of reliability of the LTAS has also been addressed by Löfqvist 

(1986) who points out that intraspeaker variability in the LTAS, which was in his study 

quantified by the ratio of energy between 0-1 kHz and 1-5 kHz, can be considerable. His 

subjects were people using their voice constantly during the day as a result of which the 

spectral tilt of their LTAS was markedly steeper at the end of the day.   

The results obtained by the LTAS in our study will be discussed in Section 6.3.  

3.2.2. Vowel spectra parameters 

Another group of parameters which are considered to reflect individual differences in 

voice quality is derived from the acoustic spectra of vowels. These parameters quantify 

variations in glottal characteristics which lead to different voice qualities. Previous research 

has studied glottal characteristics by inverse filtering (e.g., Gobl & Ní Chasaide, 1992, who 

measured the differences between the fundamental and the first four formants), or by visual 

inspection of vocal folds (Södersten et al., 1991, in Hanson, 1997), which is necessarily 

invasive. Ní Chasaide & Gobl (1993, in Hanson, 1997) extracted glottal parameters both from 

the glottal waveform and vowel spectra. In their study, an increase in glottal adduction has 

been found to result in a steeper spectral slope of the vowel spectrum and in lower formant 

amplitudes (especially F1). A further study by Holmberg et al. (1995, in Hanson, 1997) has 

shown that the relative amplitudes of the first two harmonics (computed from the glottal 
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waveform) relate to adduction quotient and that the relative amplitude of the first and third 

formant peaks tends to reflect the speed of glottal closure.  

Hanson (1997) suggested a set of parameters which take the effect of the vocal tract 

filter into consideration, which allows in addition for examining the effect of the glottal 

source on filter (its bandwidths), thus providing further information about the glottal 

configuration (Hanson, 1997). In contrast to previous research (e.g. Hillebrand & Cleveland, 

1994), the vowels studied are derived from carrier sentences, which offers a more natural data 

than a sustained vowel production (Löfqvist, 1986) .  

In the following paragraphs, the parameters suggested by Hanson (1997) will be 

explained in more detail since this study aims to test them as possible indicators of speaker 

identity.  

These measures are made directly on the acoustic spectra of vowels and thus give 

some indication of the vocal-fold and glottal configuration during a vowel production. The 

parameters compare amplitudes of spectral peaks; the fundamental, that is, the first harmonic 

(referred to as H1), which has been shown to correlate with the vibratory amplitude of the 

glottis (Gauffin & Sundberg, 1980 in Kitzing, 1986), and another spectral moment. These 

include the amplitude of the second harmonic (H2), the amplitude of the first formant (A1), 

and the amplitude of the third formant, (A3) (Hanson, 1997). The comparison of these peaks 

thus yields threes parameters; namely, H1-H2, H1-A1 and H1-A3.   

 

Fig. 1 Spectra of a synthesized vowel /æ/ using different glottal configurations. On the left, the open quotient is 
30%, while on the right, it is 70%. The relative amplitude of the first and the second harmonics (marked H1 and 
H2, respectively) changes as a result of a different glottal configuration, specifically, a different open quotient. 

(Adapted from Hanson, 1997, p. 468). 
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The parameter H1-H2, by comparing the amplitude of the first and the second 

harmonics, has been shown to provide an indication of open quotient (Hanson, 1997). Its 

computation is illustrated on a synthesized vowel /æ/ in English in Figure 1. Both pictures 

show a spectrum of the vowel /æ/ but they differ in the open quotient (OQ). On the left, the 

open quotient is 30% while on the right, it is 70%. We can see that the relative amplitude of 

the first two harmonics changes by about 10 dB. If the differences across vowels are desirable 

to be minimized, corrections of both H1 and H2 can be made (Hanson, 1997). Hanson (1997) 

reports a range of 10 dB for this parameter.  

H1-A1 is considered an indication of the first-formant bandwidth, and can also 

provide some information about the degree to which the glottis fails to close completely 

during the closing phase of the glottal cycle (Hanson, 1997). Formant bandwidths relate to 

acoustic energy losses in the vocal tract coming from several sources, such as the resistance of 

the walls of the vocal tract. When the glottis is open even during the closing phase and air 

flows it, further energy losses are introduced, especially in lower frequencies. Since the 

amplitude should be proportional to the inverse of the bandwidth, that is, a larger bandwidth 

results in a reduced peak, the first-formant peak amplitude relative to that of the first 

harmonic is considered to provide an indication of the first-formant bandwidth and hence the 

degree to which the glottis fails to close completely. Figure 2 shows two spectra of the 

English vowel /æ/ derived from waveforms differing in the first-formant bandwidth. The 

spectrum on the left is derived from a waveform with a narrower first-formant bandwidth; the 

spectrum on the right is derived from a waveform with a wider one.  

 

Fig. 2 Spectra of the English vowel /æ/ derived from waveforms differing in the first-formant bandwidth. The 
spectrum on the left has been derived from a waveform with a narrower bandwidth, while the spectrum on the 
right has been derived from a waveform with a wider first-formant bandwidth. H1 = the amplitude of the first 
harmonic, A1 = the amplitude of the first-formant peak. While a narrower bandwidth is reflected in a more 
prominent A1 (on the left), a more damped first-formant peak (A1) corresponds to a wider bandwidth (on the 
right).   

(Adapted from Hanson, 1997, p. 471) 
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However, since the amplitude of the first formant is compared to that of the first 

harmonic, the value of this parameter will be influenced also by the variation in the amplitude 

of the first harmonic across speakers (Hanson, 1997). Hanson (1997) reports a range of 16 dB 

for this parameter, the lowest value being -11 dB and the highest 5 dB. 

Lastly, the parameter H1-A3 is considered to provide some information on spectral 

tilt. The spectrum at middle and high frequencies is influenced by the abruptness with which 

the flow of air is cut off during the closing phase of a vibration cycle. A more gradual cut off 

due to, for instance, a non-simultaneous vocal fold closure, results in an additional downward 

tilt. This is illustrated in Figure 3. It shows spectra of a synthesized vowel /æ/ with the same 

open quotient (70%) but synthesized using different glottal characteristics as to the abruptness 

of glottal closure. The spectrum on the left shows a more abrupt glottal closure which is 

reflected in the higher amplitude of the third-formant peak (marked as A3) in comparison to 

the spectrum on the right. There are two main causes of this effect. A glottal closing may not 

be simultaneous at all points along the anterior-posterior length of the vocal folds. This kind 

of ‘zipper’ closing leads to a more gradual cut-off, which results in steeper spectral tilt. The 

effect on the spectral tilt in the third-formant region is still higher when the closure is 

incomplete due to, for instance, a glottal chink. Since the amplitude of the third formant is 

dependent on both the location of F1 and F2 and on F3 bandwidth, if the results are to be 

comparable across vowels and speakers, normalization of the values is recommended 

(Hanson, 1997). The maximal value measure by Hanson (1997) is 35 dB and the minimal 8.6 

dB. 

 

Fig. 3 Spectra of a synthesized vowel /æ/ with the same open quotient, i.e. 70%, (OQ = 70) but synthesized using 
different glottal characteristics as to the abruptness of glottal closure. H1 = the amplitude of the first harmonic, 
A3 = the amplitude of the third-formant peak. A less abrupt closure (on the right) introduces additional 
downward spectral tilt (TL = 15 in contrast to the spectra on the left, where TL = 0), which is reflected in a lower 
amplitude of the third-formant peak (A3). 

 (Adapted from Hanson, 1997, p. 468). 
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Some relationship between these parameters can be predicted by theory. For instance, 

if the glottis does not close completely during a vibration cycle, the airflow causes an increase 

in both F1 bandwidth (quantified by H1-A1) and spectral tilt (quantified by H1-A3). Though 

a larger open quotient (quantified by H1-H2) is expected to lead to greater losses (i.e. an 

increase in both H1-A1 and H1-A3), it has not been found to correlate with either of the 

measures (Hanson, 1997) suggesting that open quotient is independent of other glottal 

parameters. Table 1 displays correlations of the three parameters for all the three non-high 

vowels combined, namely /æ,�,/, which Hanson (1997) used in her study. An asterisk 

indicates that the values have been normalized for the effect of vowel quality.  

 

Table 1 Pearson product moment correlation coefficients (r) for the acoustic parameters for the three vowels 
/æ,�,/combined. An asterisk indicates a normalized value. 

(Adapted from Hanson, 1997, p. 478) 

Since a strong correlation is a correlation with (r > 0.70), the correlation between 

H1*-A3* and H1*-A1 can be considered good. Other correlations are weaker and the 

parameters thus seem to be independent of one another. By plotting H1*-A1 and H1*-A3* 

against each other, Hanson (1997) distinguished two groups of speakers, namely those 

supposedly having abrupt glottal closure, which is reflected in lower values of  the two 

parameters, and those having non-simultaneous and/or incomplete glottal closure, which is 

reflected in higher values. Her assumptions were confirmed by direct observations of vocal 

folds. These parameters were thus proposed to reflect individual differences in glottal 

characteristics.  

In the present study, it will be examined to what extent they can be considered 

speaker-specific cues (see Sections 6.1 and 6.2).  

3.2.3. Jitter and shimmer 

As Frøkjær-Jensen & Prytz (1976) commented, since voice quality is an auditory 

property, just as important as the acoustic structure of the speech spectrum are cycle-to-cycle 

variations in pitch. Since the LTAS does not reflect the time domain, other parameters are 

often used to complement it. Two methods which quantify irregular vocal fold vibrations are 
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jitter and shimmer; the former measuring the fluctuations in glottal cycle lengths and the latter 

in its amplitudes (Brockmann et al., 2008). These are typically measured on sustained vowels 

as in connected speech voluntary perturbations are exploited to produce voicing and prosodic 

cues, and their relative contribution to jitter or shimmer cannot be factored out (Schoentgen & 

de Guchteneere, 1995). Jitter and shimmer have been related to perceived voice quality of 

roughness and hoarseness (Yumoto et al., 1982; Dejonckere et al., 1996, in Brockmann et al., 

2008), though their reliabiliy and validity for clinical purposes has been questioned as they 

require periodic or quasiperiodic signal and are measured from sustained vowels which tend 

to be mildly affected in contrast to connected speech (Tanner et al., 2005, who reports a 

perceived change after a therapy to be the best reflected by the LTAS, particularly spectral 

mean and standard deviation). Jitter and shimmer has been studied also in healthy adults (e.g., 

Brockmann et al., 2008) and for its applicability in automatic affect recognition (Fernandez & 

Picard, 2005), but the extent to which jitter and shimmer convey speaker-specific information 

remains relatively unexplored.  

3.2.4. Harmonics-to-Noise Ratio (HNR) 

Apart from the above mentioned measures which relate to the stability of phonation, 

the amount of noise components in voice has likewise proved relevant for the perception of 

voice quality (Kreiman & Garrett, 2003). The amount of noise relative to harmonic 

components is quantified by harmonics-to-noise ratio (HNR) (Qi & Hillman, 1997). Though 

HNR has been claimed to be a sensitive index of vocal aging (Ferrand, 2002) and a useful tool 

for clinical purposes as an acoustical correlate of perceived hoarseness (Yumoto, Sasaki & 

Okamura, 1982), the degree to which it expresses individual differences and its applicability 

for forensic purposes has likewise not been addressed.  

Michaelis et al. (1997) proposed an alternative to HNR, namely glottal-to-noise 

excitation ratio (GNR). This parameter indicates whether a voice signal originates from the 

vibrations of the vocal folds or a turbulent noise; thus being related to the degree pf 

breathiness. Their study which is based on artificial signals suggests that in contrast to HNR, 

GNR is almost independent of jitter and shimmer. Its use, however, also appears to be limited 

to clinical purposes (Michaelis, Gramss & Strube, 1997).    
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4 AIMS OF THE PRESENT STUDY 

Before proceeding from the theoretical to the experimental part, the aims of the 

present study should be repeated. From the above discussion it is apparent that the use of 

voice quality; specifically, the parameters relating to voice quality or phonatory 

modifications, for forensic purposes remains relatively unexplored. These parameters are 

likewise missing in the procedures used in forensic investigations in the Czech Republic 

(personal communication of Mgr. Radek Skarnitzl, Ph.D. with Marie Svobodová, Ph.D). The 

present study therefore aims to examine to what extent spectral properties of the source signal 

can be considered an indication of speaker identity.  This will be done by focusing on short-

term measures of spectral tilt suggested by Hanson (1997) (see Section 3.2.2) which will be 

complemented by long-terms measures, i.e. the LTAS parameters, namely, alpha index, 

Hammarberg index and Kitzing index (see Section 3.2.1). 

The primary aim is to examine how these parameters expresssing spectral tilt 

discriminate 16 Czech female speakers. To do so, we will explore in more detail the 

parameters reflecting short-term spectral tilt suggested by Hanson (1997), as they are claimed 

to reflect individual differences in glottal characteristics. Hanson (for English) included in her 

material only non-high vowels, which were embedded in the phrase “Say bVd again” 

(Hanson, 1997, p. 475); ‘V’ standing for ‘vowel’. The phonemic environment was thus kept 

constant. Her subjects read this utterance fifteen times; that is, five times for each vowel 

quality. Her sample therefore consisted of stressed syllables in an utterance-non-final stress 

group. In addition, the values were normalized to minimize differences across vowels. In the 

present study, we used a continuous text instead of a carrier phrase to obtain for each speaker 

as natural a sample as possible. We also used a more extensive data set (15 instances of each 

vowel quality for each speaker) and took vowel quality, syllable status with respect to stress 

and stress group position in the utterance into account, which enabled us to study their effect 

on the parameters. These results will be at the end complemented by and compared with the 

results of the LTAS, i.e. the long-term measures of spectral tilt.  

The present paper would like to contribute to the ongoing research of speaker-

specific cues by focusing on parameters reflecting phonatory modifications or voice quality.  

Based on the discussion in Section 3.2.2, we can expect vowel quality to have some 

effect on the parameters due to the different location of formants for individual vowels. The 

effect of stress and stress group position in the utterance can likewise be expected due to 

varying vocal effort. Yet this study is designed as exploratory in nature and no specific 
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working hypotheses are going to be tested. A possible null hypothesis would claim that there 

are no differences in the parameter values for individual speakers. If the null hypothesis is 

falsified, the study will attempt to point out relations which could be further examined in a 

future study.  
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5 METHOD 

In this chapter we will first describe the sample which was used for the present 

research (Section 5.1) and then explain how the measures of parameters that we intend to 

study were obtained (Section 5.2).  

5.1. Speakers and speech material 

The material for the analyses was taken from one part of the Prague phonetic corpus 

(Skarnitzl, 2010), which contains 80 short read dialogues constructed to convey specific 

phonetic phenomena, but applicable for various phonetic analyses. These dialogues consist of 

three to five turns read by 25 pairs of speakers with each pair recorded twice so that every 

speaker reads all turns. Before the recording, speakers were asked to read the dialogues in 

order to become acquainted with them. During the second reading, they were asked to “act it 

out”. The speech material was recorded in a sound-treated recording studio. Our subjects were 

also instructed not to change their loudness to avoid its interference with data (Hammarberg et 

al., 1980; Sundberg & Nordenberg, 2006, for effects of vocal loudness variation on the 

LTAS). 

For the present study, 8 pairs reading the same set of dialogues were selected at 

random but with the condition that both speakers are female. This decision was motivated by 

the considerable gender differences in glottal configuration; specifically, the fact that during 

normal phonation, females are more likely to have an incomplete closure of the vocal folds 

than males (e.g., Linville, 1992, in Hanson, 1997).  Extracting data for an analysis from the 

same text for all speakers allowed us to account for an additional variation which would be 

introduced by different phonemic contents. All the sixteen female speakers were in their first 

years of study of linguistic programs at the Faculty of Arts and native speakers of Czech.  

In order to separate the utterances of the two speakers in each pair, the beginning and 

the end of each turn has been labelled using the Praat software (Boersma & Weenink, 2010), 

and cut into individual turns with the help of scripts written for this purpose. Each acquired 

item thus involved one speaker only. Subsequently, by means of the Prague Labeller (Pollák 

et al., 2007), boundaries of all segments were automatically detected using Hidden Markov 

Models (HMMs). The boundaries of target segments necessary for the vowel spectra analysis 

were then adjusted manually following the suggestions presented in Machač & Skarnitzl 

(2009).  
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As for the material for the vowel spectra analysis, the target segments consisted of 75 

vowels for each speaker, i.e. 15 instances of each of the five short vowels in Czech, 

/a, e, �, o, u/. Several criteria had been observed before the final set of 75 vowels 

for each speaker was selected. Firstly, only autosemantic words were considered since 

synsemantic words are more likely to undergo reductions (Johnson, 2004). Since one of the 

objectives was to compare the robustness of the above mentioned parameters for individual 

vowels, quality reductions would hinder such a comparison. Secondly, the phonemic 

environment was considered. Vowels followed by a palatal consonant or a liquid were 

automatically disregarded due to the influence of these consonants on vowel formant 

frequencies; specifically, lowering the frequency of the first formant. Vowels followed by 

/�/ were likewise taken out of consideration as the following glottal fricative could 

introduce additional breathiness which would interfere with the observed data. The last 

criterion was syllable status with respect to stress. The total number of 15 instances of each 

vowel quality was balanced for the position of stress. To give an example, 5 instances of the 

vowel /a/ were in a stressed syllable, other five in a post-stress syllable and the last 5 

instances appeared two or more syllables after stress. This was motivated by the fact that in 

Czech, stress is always on the first syllable of autosemantic words, but certain prosodic 

features are realized on the following, post-stress syllable, such as f0 movement (a decrease 

on the first syllable, an increase on the second). Since all our parameters measure the 

difference of some spectral peak from the fundamental, the two types of unstressed syllables 

were differentiated (Palková & Volín, 2003). In addition, we observed whether the selected 

vowel appears in an utterance-final stress group or not, though it was not possible to balance 

these two groups; the number of vowels in utterance-non-final stress groups is higher (654 

cases) than in utterance-final stress groups (539). The decision of distinguishing the two was 

motivated by the fact that in utterance-final stress groups, vocal tension tends to decrease and 

creaky or breathy phonation is often present, which could interfere with the measurements. 

All 75 vowels, i.e. 15 instances of each of the 5 vowels in Czech, selected for the analysis 

were the same for all 16 speakers.  The complete text of the read dialogues used for the 

present study is enclosed in the Appendix.  

As for the material for the LTAS analysis, it was necessary to create a long enough 

string of utterances for each speaker to yield a mean spectrum which is not greatly affected by 

any differences in the speech material. The frequencies of the first two formants, which 

exhibit a larger variation between the vowels, thus become represented by an average, 
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“evidencing the formants with less variable values - F3, F4 and F5 - that are related to the 

voice quality” (Sundberg, 1987, in Master et al., 2006). 

 Though the duration of samples used in previous studies ranged from mere few 

seconds up to 3 minutes (Sergeant & Welch, 2008), the generally accepted sample length in 

most recent studies seems to be between 20 and 40 seconds (Kitzing, 1986; Löfqvist, 1986; 

White, 2001; Master et al., 2006). A speech sample shorter than 20 seconds has been reported 

to yield a spectrum which is text-dependent (Harmegnies & Landercy, 1988).  

To create this string, as many turns spoken by a single speaker and the same for each 

speaker to further minimize variations due to the phonemic content (cf. Löfqvist, 1986) were 

concatened by Praat so that even the shortest string would be at least 40 seconds long 

(Fritzell, 1974, in Nordenberg & Sundberg, 2003). 16 strings, one for every speaker, ranging 

from 40 to 55 seconds (depending on the speaking rate of individual speakers) were thus 

obtained.  

There has been a debate on whether or not to exclude voiceless sounds from an 

LTAS analysis. Those who recommend excluding them (e.g., Hammarberg et al., 1980; 

Löfqvist, 1986; Kitzing, 1986) claim that voiceless sounds might “corrupt  the averaging of 

data of voiced segments and mask information of the voice source” (Löfqvist & Mandersson, 

1987, in Sergeant & Welch, 2008, p. 660) as the high-frequency noise might be 

undistinguishable from the noise of the voice source (Hammarberg et al., 1980). The opposite 

view is that removal of unvoiced sounds would yield an incomplete analysis (Sergeant & 

Welch, 2008). Undoubtedly, this decision depends on the subject of study. For studying the 

phonation mode for clinical purposes, removal of voiceless sounds appears to be desirable 

(Hammarberg et al., 1980). However, for our present purposes, since the text for all speakers 

was the same (White, 2001) and voiceless sounds seem to increase the LTAS level only above 

about 5000 Hz (Löfqvist, 1986; Tanner et al., 2004; Sundberg & Nordenberg, 2006; 

Ternström, 2008), we decided to include all sounds in the analysis.  

5.2. Measurements 

In the section to follow (Section 5.2.1), the extraction of the above mentioned vowel 

spectra parameters will be described and complemented with illustrative examples, after 

which the LTAS parameters will be considered (Section 5.2.2). All analyses were undertaken 

in Praat. 
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5.2.1. Extracting vowel spectra parameters 

Out of the total number of 1200 vowels (75 vowels, i.e. five instances of each of the 

five Czech short vowels in 3 different conditions, namely in a stressed, post-stress and 

unstressed syllable, multiplied by 16 speakers), 7 had to be eliminated from the sample. The 

total number of vowels for our analysis was thus 1193. The reason for removing the vowels 

from the analysis was either that the vowel was not pronounced (either omitted or a syllabic 

consonant was pronounced instead) or the formants were not discernible from either the 

spectrogram or the spectrum.  

The three acoustic parameters described in Section 3.2.2, that is, H1-H2, H1-A1 and 

H1-A3, were then manually extracted from all vowels chosen for each speaker using Praat 

software. With the help of a script, the middle 20 milliseconds of each vowel were selected to 

obtain stable formant values and from this selection all data obtained. The following 

paragraphs will describe the extraction of values in more detail, for each parameter separately. 

H1-H2 

The parameter H1-H2 expresses the difference between the amplitudes of the first 

and the second harmonics (H1 and H2, respectively; see Section 3.2.2). Its measurement was 

usually rather straightforward since all data were drawn directly from the spectra of the 

middle 20 milliseconds of each vowel as illustrated in Figure 4, where the first peak 

corresponds to the first harmonic and the second peak to the second harmonic. The value of 

this parameter was thus obtained by subtracting the amplitude of the second peak from that of 

the first peak in decibels. 

 

Fig. 4 A spectrum of the vowel /a/ with clearly separated peaks of the first and the second harmonics. The 
first peak of the spectrum corresponds to the amplitude of the first harmonic and the second peak corresponds to 
the amplitude of the second harmonic (the second peak is of a double frequency of the first peak). 
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In a small number of cases, the first two harmonics (or, alternatively, the second and 

the third) created a single peak which was apparent from the fact that what appeared to be the 

second harmonic, that is, the second peak, was of a triple frequency than the first peak. This 

was mostly solved by shifting a boundary of the relevant vowel by a half of the glottal cycle 

which resulted in a separation of the two peaks. In those instances where this correction did 

not help, the difference between the first two discernible peaks was counted. However, since 

this was the case in no more than 5 instances out of the total number of 1200 measurements, 

the possible influence on the results is negligible. 

H1-A1 

The parameter H1-A1 expresses the difference between the amplitude of the first 

harmonic and the first-formant peak (A1). While obtaining the value of the first harmonic was 

straightforward as discussed above, identifying A1 was more complex. Prior to extracting the 

values from the spectra, the spectrogram was always inspected. Firstly, the automatically 

extracted first-formant value from the selection (the middle 20 milliseconds) by Praat was 

checked. If it was in agreement with the perceived vowel quality and the spectrogram, the 

peak of such a harmonic that was the closest in frequency to the automatically extracted F1, 

was taken for A1. To give an example, if an automatically (and correctly) extracted first-

formant frequency was 550 Hz and there were two peaks in the spectra, one around 400 Hz 

and the other one around 600 Hz, the second one, by virtue of its being closer to the measured 

value, was selected as the first-formant peak. To get the value for this parameter, its amplitude 

was then subtracted from the amplitude of the first harmonic.  

In many cases, the first-formant peak, defined in this way, was identical with H2 

since the second harmonic lay the closest in frequency, and seldom even with H1. This 

happened especially in closed vowels since their F1 is the lowest. Hanson (1997) avoided this 

by considering only non-high vowels since “the first formant is well separated from the first 

harmonic, simplifying the acoustic measurements” (p. 475). However, in a considerable 

number of instances, the second harmonic was the closest one to F1 even for the Czech open 

vowel /a/, which is in agreement with the findings of Skarnitzl & Volín (submitted) who 

have shown that nowadays, the values of F1 only seldom reach the ‘expected’ values as 

defined by Palková (1997, p. 174) but rather tend to be lower. Due to this fact, unlike Hanson 

(1997), who used for her measurements “the amplitude of the strongest harmonic of the F1 

peak” (p. 475) because it was well separated from the first harmonic, we took the amplitude 

of the closest harmonic in frequency to the automatically extracted value unless this value was 
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detected in a wrong way. If the detection was faulty, we extracted A1 manually on the basis 

of visual inspection of the spectrogram.  

H1-A3 

 The last parameter, H1-A3, expresses the difference between the amplitude of the first 

harmonic and the third-formant peak (A3). As in the case of obtaining A1 discussed above, 

the value of the third formant was firstly automatically extracted from the given selection 

after which (if the extraction was correct) the closest harmonic was identified in the spectrum, 

its peak measured and the value subtracted from that of the first harmonic.  

 The complications with obtaining the value of A3 were threefold. Firstly, in some 

cases, no F3 was detected by Praat. This was mostly solved by changing the default settings 

of the maximum formant frequency for 3 formants from 3300 Hz to 3500 Hz. If this 

modification did not result in the detection of F3, the third formant value was manually 

extracted on the basis of visual inspection of the spectrogram. Secondly, some automatically 

detected third formant values fell right in between two harmonics in the spectra, that is, both 

harmonics had the same chance of being selected as A3 by their virtue of having the same 

frequency distance from the third formant. If this happened, the selection was slightly 

extended, i.e. to include more than the 20 milliseconds, which resulted in the fact that one of 

the harmonics was a better candidate than the other one.  

 

Fig. 5 Spectra of the vowel /u/ showing two harmonics ‘melted’ in a single peak. On the left: a frequency range 
of 0 - 5000 Hz; on the right, the same spectrum but with a smaller frequency range, 1500 – 3500 Hz. The 
amplitude of the harmonic closest in frequency to the measured F3 (marked with an arrow in both pictures) is 
‘melted’ with the next harmonic.  

Lastly, as was already mentioned in relation to the other parameters, sometimes two 

harmonics created a single peak, which is illustrated in Figure 5 and marked with an arrow. 

On the left, we can see a spectrum with a range of 0 – 5000 Hz, where the harmonic closest to 

F3 is in its centre. The picture on the right offers a detailed view of the same peak. Since the 
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harmonic closest to the third formant value (where the arrow points) creates a single peak 

with the following harmonic, the value of the whole peak (corresponding to the amplitude of 

the following amplitude of higher intensity) was considered. The general rule in cases like 

these was that if the amplitude of the sought harmonic is not discernible due to its being 

subsumed under another peak, the other peak is considered and taken for A3. 

5.2.2. LTAS parameters 

The values of the LTAS parameters for individual speakers were obtained from the 

strings of utterances described in more detail in Section 5.1. Firstly, the LTAS for each 

speaker was obtained by Praat and visually inspected for any interesting features, such as an 

unusually high or low amount of energy in some frequency band. Secondly, by means of 

scripts written for this purpose, the three parameters discussed in Section 3.2.1, namely alpha 

index, Hammarberg index and Kitzing index, were computed. For each of the 16 speakers we 

thus obtained three values, one for each parameter.  
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6 RESULTS  

The results of our study will be provided in this section. Our primary aim was to 

examine the robustness of the short-term measures of spectral tilt as speaker-specific cues. 

We did so by first examining the influence of individual independent variables on the 

parameters by means of analysis of variance (ANOVA), and subsequent linear discriminant 

analysis (LDA). Section 6.1 will present the most general results of ANOVA and an overview 

of variables. The following three sections will discuss the influence of the independent 

variables on the parameters. These findings were then used for conducting LDA, the results of 

which will be provided in Section 6.2. Section 6.3 will then compare the results of LDA with 

the results of long-term measures of spectral tilt obtained by LTAS. 

6.1. Short-term measures of spectral tilt 

All our parameters were subjected to the analysis of variance and were found to 

reflect statistically highly significant differences between speakers. A one-way ANOVA for 

the factor SPEAKER has shown its effect on all three parameters, i.e. H1-H2, H1-A1 and H1-

A3 (F (15, 1177) = 11.083; p < 0.001; F (15, 1177) = 13.953; p < 0.001, and F (15, 1177) = 

11.758; p < 0.001), respectively). Since speakers were found to differ in the values of our 

parameters, the influence of individual independent variables and their possible interaction 

was then studied in more detail in order to discover under which conditions the discriminative 

power of these parameters is the strongest.  

To sum up, we had three dependent numerical variables, namely H1-H2, H1-A1 and 

H1-A3, and four independent categorical variables, namely speaker, vowel, syllable status 

with respect to stress and stress group position in the utterance.  As mentioned in Section 5.1, 

there were 16 speakers, 5 vowel qualities (/a, e, �, o, u/), 3 syllable statuses with respect to 

stress (stressed, post-stress, unstressed) and two stress group positions in the utterance (final 

and non-final). Since we were not interested in individual values of the parameters but in their 

robustness as speaker-specific cues, that is, their applicability for discrimination of speakers, 

the individual values will not be mentioned here. 

The following section will discuss the influence of the above mentioned independent 

variables on H1-H2. Section 6.1.2 will examine their influence on the values of H1-A1 and 

Section 6.1.3 on H1-A3; thus providing the results for each parameter separately.  
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6.1.1. H1-H2 (an indication of open/adduction quotient) 

Speakers were found to differ in their values of H1-H2 and these differences proved 

statistically highly significant (F (15, 1177) = 11.083; p < 0.001). The H1-H2 values for 

individual speakers are illustrated in Figure 6.  

 

Fig. 6 H1-H2 values in decibels for individual speakers. (Error bars indicate 95% confidence intervals.) 

We can see that speaker SOBA differs in her H1-H2 values from other speakers the 

most. A subsequent post-hoc test has shown that all these differences are statistically highly 

significant (Tukey HSD post-hoc test: p < 0.001), apart from a comparison with BURA, 

where p < 0.05. There are also other speakers who contribute to this effect; for instance, FISA 

who differs significantly from 8 speakers (p < 0.001 for 5 comparisons, for the remaining 

three p < 0.05) and BURA from 6 speakers (p < 0.001 for two 2 comparisons; p < 0.05 for the 

remaining four).  

We were then interested whether syllable status with respect to stress has some 

influence on the values of H1-H2 for individual speakers; in other words, whether speakers 

differ in stressed, post-stress as well as unstressed syllables. The results of the three analyses 

are presented in Table 2. 
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H1-H2 ANOVA 

stressed F (15, 383) = 5.6644; p < 0.001 

post-stress F (15, 381) = 2.5950; p = 0.001 

unstressed F (15, 381) = 4.5708; p < 0.001 

Table 2 The influence of different syllable statuses with respect to stress on the values of H1-H2 for individual 
speakers. 

As the table shows, the differences between speakers are statistically highly 

significant in stressed, post-stress as well as unstressed syllables; the effect size being the 

largest in stressed syllables and the lowest in unstressed syllables. This may be caused by the 

fact that vocal effort is higher in stressed than in unstressed syllables. The values in stressed 

syllables are thus more stable. In post-stress syllables, additional variability is present.  

Since stressed, post-stress and unstressed syllables were found to behave differently 

in utterance-final and utterance-non-final stress groups (see Figure 7), we likewise examined 

the influence of stress group position in the utterance on H1-H2 values for individual 

speakers. 

 

Fig. 7 The values of H1-H2 in stressed, post-stress and unstressed syllables in both utterance-non-final stress 
groups (utt.-non-f. SG) and utterance-final stress groups (utt.-f. SG). (Error bars indicate 95% confidence 
intervals.) 

The results of ANOVA concerning the values of H1-H2 for individual speakers in 

utterance-final and utterance-non-final stress groups are presented in Table 3. It shows that 

the differences between speakers are statistically highly significant in utterance-non-final as 
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well as utterance-final stress groups; the effect size being larger in utterance-non-final stress 

groups. Since H1-H2 is considered to be an indication of an open or adduction quotient (see 

Section 3.2.2), a possible explanation could be that utterance-final stress groups are more 

susceptible to variability due to a decrease of vocal effort and a more frequent presence of 

breathy or creaky phonation than in utterance-non-final stress groups. 

H1-H2 ANOVA 

utterance-non-final stress group F (15, 638) = 7.5856; p < 0.001 

utterance-final stress group F (15, 523) = 5.0957; p < 0.001 

Table 3 Statistical significance of differences in the values of H1-H2 between speakers in utterance-final and 
utterance-non-final stress groups.  

Individual vowels were also found to differ in H1-H2 values (F (4, 1188) = 2.8065; p 

< 0.05). Specifically, a significant difference has been found between the vowels /u/ and 

/e/ (Tukey HSD post-hoc test: p < 0.05). We were therefore interested whether some vowels 

reflect differences in H1-H2 values between speakers better than others. The results of the 

five analyses of variance are summarized in Table 4.  

H1-H2 ANOVA 

/�/ F (15, 223) = 3.3243; p < 0.001 

/e/ F (15, 191) = 3.6314; p < 0.001 

/a/ F (15, 192) = 2.7612; p < 0.001 

/o/ F (15, 222) = 2.0608; p = 0.01 

/u/ F (15, 221) = 2.1231; p = 0.01 

 

Table 4 The effect of individual vowels on H1-H2 values of individual speakers.  

The table shows that all vowels reflect statistically significant differences between 

speakers in their H1-H2 values, though the degree of their significance varies. The differences 

between speakers are the most significant for the front vowel /e/, followed by the other front 

vowel /�/. The back vowels /o/ and /u/ show a lower degree of significance. 



59 

 

6.1.2. H1-A1 (an indication of first-formant bandwidth) 

Our speakers were also found to exhibit statistically highly significant differences in 

their values of H1-A1 (F (15, 1177) = 13.953; p < 0.001).  The values of H1-A1 for individual 

speakers are illustrated in Figure 8.  

 

Fig. 8 H1-A1 values in decibels for individual speakers. (Error bars indicate 95% confidence intervals.) 

A subsequent post-hoc test revealed that more speakers contribute to this effect than in 

case of H1-H2. Speaker SOBA again significantly differs from all other speakers (Tukey HSD 

post-hoc test: p < 0.001; for all comparisons). Speaker VRNA, who differed significantly in 

her H1-H2 values only from FISA and SOBA, differs in her H1-A1 values from 9 speakers (p 

< 0.001 for 5 comparisons, p < 0.05 for the remaining four). Speaker DAMA, who differed 

significantly only from 2 speakers in her H1-H2 values, differs significantly in her H1-A1 

values from 8 speakers, FISA from 6 speakers; KRUA, KRIA, KUDA, BURA and TOMA 

from 5 speakers.  

 We were interested whether speakers differ in stressed, post-stress as well as 

unstressed syllables. As Table 5 shows, they do and the differences are statistically highly 

significant in all cases. The effect size is again the largest for stressed syllables.  
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H1-A1 ANOVA 

stressed F (15, 383) = 8.5349; p < 0.001 

post-stress F (15, 381) = 4.3430; p < 0.001 

unstressed F (15, 381) = 4.1942; p < 0.001 

Table 5 The influence of different syllable statuses with respect to stress on the values of H1-A1 for individual 
speakers. 

A statistically highly significant difference has also been found between H1-A1 values 

in utterance-final and utterance-non-final stress groups (F (1, 1191) = 21.839; p < 0.001). As 

in the case of H1-H2, we examined whether speakers differ in H1-A1 values in utterance-final 

as well as utterance-non-final stress groups. As Table 6 shows, the differences between 

speakers are statistically highly significant in both cases, though the effect size is again 

slightly larger in utterance-non-final stress groups. 

H1-A1 ANOVA 

utterance-non-final stress group F (15, 638) = 8.6626; p < 0.001 

utterance-final stress group F (15, 523) = 7.3114; p < 0.001 

Table 6 The statistical significance of differences in H1-A1 between speakers in utterance-non-final and 
utterance-final stress groups. 

 Individual vowels were likewise found to differ in their values of H1-A1 (F (4, 1188) 

= 5.5724, p = 0.001). It is caused mainly by the vowel /a/, which differs from all other 

vowels (Tukey post-hoc test: p < 0.001 for /e/; p < 0.05 for /�/ and /u/) apart from 

/o/. As Figure 9 shows, individual vowels also behave differently in stressed, post-stress 

and unstressed syllables (F (8, 1178) = 7.4773; p < 0.001); the differences being the most 

marked in unstressed syllables and the most reduced in stressed syllables. 
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Fig. 9 The H1-A3 values in decibels for individual vowels in stressed, post-stress and unstressed syllables. 
(Error bars indicate 95% confidence intervals.) 

As in the case of H1-H2, we wanted to discover whether speakers differ in their H1-

A1 values more for some vowels than for others. The results of ANOVA are presented in 

Table 7.  

H1-A1 ANOVA 

/�/ F (15, 223) = 5.1383; p < 0.001 
/e/ F (15, 223) = 6.5986; p < 0.001 
/a/ F (15, 224) = 3.8066; p < 0.001 
/o/ F (15, 222) = 1.7304; p < 0.05 

/u/ F (15, 221) = 2.0647; p = 0.01 

Table 7 The influence of individual vowels on H1-A1 values of our speakers. 

 The table shows that all vowels reflect statistically significant differences between 

speakers also in the values of H1-A1. As for the two front vowels /e/ and /�/, and the 

central vowel /a/, these differences are statistically highly significant, while the differences 

between speakers in the back vowels /o/ and /u/ are of lower significance. The vowel 

/e/ exhibits again the largest effect size and /o/ the lowest. 
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6.1.3. H1-A3 (an indication of spectral tilt) 

Lastly, speakers were found to differ also in their values of H1-A3 (F (15, 1177) = 

11.758; p < 0.001). This parameter seems to differentiate the highest number of speakers and, 

in addition, different ones than the previous two. It has a range of about 20 dB (see Figure 

10), indicating a wide variation in spectral tilt between the subjects. H1-A3 values for 

individual speakers are illustrated in Figure 10.   

 

Fig. 10 H1-A3 values in decibels for individual speakers. (Error bars indicate 95% confidence intervals.) 

Speaker STUA differs in her H1-A3 values significantly from all speakers apart from 

three (Tukey HSD post-hoc test: p < 0.001 for 10 comparisons; p < 0.05 for the remaining 

two), which is considerably more than for the other parameters since in case of H1-H2, she 

differed significantly from 2 speakers and in case of H1-A1 from three. Speaker FISA differs 

from 8 speakers (p < 0.001 for 4 comparisons; p < 0.05 for the remaining four) and DAMA 

from seven (p < 0.001 for six comparisons; p < 0.05 for two). SOBA, who was discriminated 

from almost all speakers by H1-H2 and H1-A1, and SMLA differ significantly from 6 

speakers; DAMA, PRIA and TOMA from 5 speakers. 

Again we examined whether speakers differ in stressed, post-stress as well as 

unstressed syllables. As it is apparent from Table 8, in case of H1-A3, the differences between 

speakers in stressed syllables are very similar to those in post-stress and unstressed syllables 

as the effect size for all the three conditions is comparable. 
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H1-A3 ANOVA 

stressed F (15, 383) = 4.2935; p < 0.001 

post-stress F (15, 381) = 4.1913; p < 0.001 

unstressed F (15, 381) = 4.2444; p < 0.001 

Table 8 The influence of different syllable statuses with respect to stress on the values of H1-A3 for individual 
speakers. 

Also H1-A3 values were found to differ in utterance-non-final as opposed to 

utterance-final stress groups (F (1, 1191) = 25.925; p < 0.001). The values in utterance-non-

final stress groups are significantly lower as Figure 11 shows; that is, the spectral tilt is less 

steep than in utterance-final stress groups. 

 

Fig. 11 H1-A3 values in decibels in utterance-final and utterance-non-final stress groups. (Error bars indicate 
95% confidence intervals.) 

We again examined whether speakers exhibit differences in both utterance-final and 

utterance-non-final stress groups. The results of ANOVA are presented in Table 9. As the table 

shows, the differences between speakers are statistically highly significant in both cases 

though the effect size is larger for utterance-non-final stress groups.  

H1-A3 ANOVA 

utterance-non-final stress group F (15, 638) = 9.5087; p < 0.001 

utterance-final stress group F (15, 523) = 4.0697; p < 0.001 

Table 9 The effect of stress group position in the utterance on H1-A3 for individual speakers.  
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Lastly, we were interested whether also in case of H1-A3 speakers differ more in 

their values for some vowels than for others. As Table 10 shows, the differences between 

speakers are statistically highly significant for all vowels and the effect size is again the 

highest for the front vowel /e/ and the lowest for the back vowel /o/.  

H1-A3 ANOVA 

/�/ F (15, 223) = 4.1351; p < 0.001 
/e/ F (15, 223) = 5.7098; p < 0.001 
/a/ F (15, 224) = 4.8101; p < 0.001 
/o/ F (15, 222) = 3.7423; p < 0.001 

/u/ F (15, 221) = 5.4954; p < 0.001 

Table 10 The influence of individual vowels on the differences in H1-A3 between speakers.  
  

6.2. The discriminative power of  H1-H2, H1-A1 and H1-A3  

To assess the robustness of the three parameters for discriminating speakers we used 

linear discriminant analysis (LDA). Meloun, Militký & Hill (2005)  

(in Volín, 2007, p. 276), consider a sample to be large enough when it contains more than 20 

cases for each predictor or each category of a dependent variable, depending on which one is 

more numerous. Since we had 3 predictors, namely H1-H2, H1-A1 and H1-A3, and 16 

categories of a dependent variable, that is, 16 speakers, we needed at least 320 cases (16 times 

20) for our results to be reliable. Though our sample was large enough as it consisted of 1193 

cases (see Section 5.2), we randomly divided our data into a training set and a testing set, as 

Volín recommends. The training set consisted of ⅔ of the sample and the remaining ⅓ formed 

the testing set. The percentage of correctly assigned cases in both sets is presented in Table 

11. Since the classification success rate in both sets is comparable, we joined the two sets 

again and subjected the whole sample to LDA. 

Classification success rate (%) 

Training set Testing set 
17.02 15.34 

Table 11 Classification success rate of linear discriminant analysis in a training and a testing set.   

As the results of ANOVA in previous sections (Sections 6.1.1 - 6.1.3) have shown, 

our speakers exhibit statistically significant differences in the values of H1-H2, H1-A1 and 

H1-A3 for all vowel qualities, in stressed, post-stress as well as unstressed syllables and in 
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both utterance-final and utterance-non-final stress groups. Therefore, we examined the whole 

sample by means of LDA.  

The total classification success rate for the whole sample using the three parameters 

was 15.84%; that is, 15.84% of all cases were correctly assigned to a respective category, i.e. 

speaker, which is more than would be caused by mere chance. Considering the number of 

categories, chance would enable to correctly assign approximately 6% of cases (100 divided 

by 16). A higher classification success rate thus indicates that the combination of the three 

parameters accounts for the differences between speakers and has some discriminative power. 

 As the classification matrix in Table 12 shows (the column ‘% correctly assigned’), 

the contribution of individual speakers to the total classification success rate differs 

considerably. The highest score was reached by SOBA, who was correctly recognized in 

57.33% of cases. Speaker STUA was correctly recognized in almost half of the cases 

(49.33%). Other speakers who scored high are FISA, who has been correctly assigned about a 

third of cases, and DAMA and PRIA one fifth of cases. KRUA, KODA, MIKA and VRNA 

were, on the other hand, correctly recognized in only 1 of 75 cases. 

Rows: 
Observed 

classifications 
Columns: 
Predicted 

classifications 

% 
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KRUA 1.35 1 9 1 3 1 3 3 12 0 6 0 4 5 18 5 3 

DAMA 20.00 0 15 0 5 0 1 1 3 1 2 5 2 10 24 3 3 

KRIA 5.41 0 2 4 7 2 5 3 13 0 1 2 7 8 5 7 8 

FISA 29.73 0 6 1 22 1 0 5 15 1 0 1 3 3 3 6 7 

KODA 1.33 0 3 0 9 1 5 1 18 1 0 1 6 11 11 4 4 

KADA 14.86 0 5 1 6 1 11 0 14 0 3 1 11 2 9 2 8 

KUDA 5.33 0 7 1 10 1 3 4 10 0 0 4 6 6 11 8 4 

STUA 49.33 0 1 0 1 2 5 3 37 0 1 2 4 4 4 1 10 

MIKA 1.33 0 8 0 5 1 2 7 13 1 1 3 7 5 7 8 7 

VRNA 1.33 0 9 1 14 0 1 1 9 0 1 2 5 7 21 4 0 

POKA 4.00 0 14 0 12 0 2 0 8 0 1 3 3 11 6 12 3 

BURA 13.33 0 14 1 2 4 5 2 10 0 0 2 10 6 12 3 4 

PRIA 20.00 0 16 0 5 1 2 5 3 1 0 4 5 15 6 7 5 

SOBA 57.33 0 6 1 1 1 1 0 11 0 1 1 2 5 43 1 1 

SMLA 16.44 0 11 2 5 0 1 3 6 0 1 2 8 13 7 12 2 

TOMA 12.16 0 3 1 2 6 5 5 21 1 0 1 4 12 3 1 9 

Total 15.84 1 129 14 109 22 52 43 203 6 18 34 87 123 190 84 78 

Table 12 Classification matrix for the whole sample; the numbers refer to individual cases. The highlighted 
diagonal line shows the number of correctly assigned cases for each speaker. 
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The classification matrix offers also a more detailed view of our data; the observed 

categories being in rows and the results of classification in columns. The numbers refer to 

individual cases; therefore, their sum in a row is either 74 or 75, depending on the number of 

vowels available for each speaker. The diagonal line shows how many cases were correctly 

assigned to each speaker; the numbers above and below express how many times a respective 

speaker has been mistaken for another one, thus showing how speakers overlap.  

Several things can be commented on. Firstly, we can see that our categories differ 

considerably in how many cases they were assigned. STUA and SOBA are the two most 

numerous categories; they were each assigned about ⅙ of all cases (203 and 190, 

respectively). It was also these two speakers who scored the highest classification success rate 

(see Table 12) and at the same time thus those who were most frequently assigned other 

cases. Other numerous categories are DAMA, FISA and PRIA, who were each assigned about 

one tenth of all cases. A parallel with the total classification success rate can likewise be 

observed (with the exception of PRIA, who scored rather low; cf. Figure 13 which shows that 

the classification success rate of SOBA increases when post-stress and unstressed syllables 

are removed from the analysis). In contrast, there are categories of a very low number, such as 

KRUA (1 case) and MIKA (6 cases).  

Secondly, we can see how many times each speaker has been mistaken for another 

speaker. KRUA, who was correctly recognized only in one case, has been thus assigned to 

SOBA in 18 cases, to STUA in 12 cases, to DAMA in 9 cases, to VRNA in six, to PRIA and 

STUA in five, etc. In contrast, SOBA, who scored the highest classification success rate, has 

been mistaken for STUA in 11 cases, for DAMA in 6 cases, for PRIA in 5 cases and for other 

few speakers in one or two cases. The fact that speaker SOBA is rather distinct on the basis of 

the three parameters has been also shown by its generally high values of squared Mahalanobis 

distances, while the values for KRUA are very low; in other words, while SOBA is easily 

distinguishable from other speakers, the opposite is true for KRUA. The overview of squared 

Mahalanobis distances is presented in Table 13; the highest and the lowest value are in bold.  

It expresses how easily two categories, i.e. speakers, can be distinguished. The higher the 

number, the better can be the two speakers distinguished. The lower the number, the more 

similar they are (on the basis of the variables used in the analysis, that is, H1-H2, H1-A1 and 

H1-A3). The most different speakers in our study are thus SOBA and FISA as their value of 

squared Mahalanobis distances is the highest, i.e. 3.75. The most similar speakers are KRUA 

and BURA together with KODA and KADA as the value is the lowest, i.e. 0.04.  



67 

 

  

K
R

U
A

 

D
A

M
A

 

K
R

IA
 

F
IS

A
 

K
O

D
A

 

K
A

D
A

 

K
U

D
A

 

S
T

U
A

 

M
IK

A
 

V
R

N
A

 

P
O

K
A

 

B
U

R
A

 

P
R

IA
 

S
O

B
A

 

S
M

L
A

 

T
O

M
A

 

KRUA 0.00 0.36 0.40 0.95 0.15 0.19 0.45 1.04 0.21 0.22 0.30 0.04 0.47 1.03 0.61 0.54 

DAMA  0.36 0.00 0.94 1.61 0.86 1.03 0.65 2.53 0.48 0.25 0.39 0.48 0.45 1.15 0.36 1.46 

KRIA 0.40 0.94 0.00 0.24 0.15 0.33 0.09 0.66 0.08 0.72 0.19 0.50 0.32 2.71 0.48 0.12 

FISA 0.95 1.61 0.24 0.00 0.49 0.64 0.37 0.88 0.43 1.01 0.43 1.20 0.95 3.75 1.04 0.44 

KODA 0.15 0.86 0.15 0.49 0.00 0.04 0.35 0.44 0.17 0.51 0.33 0.19 0.55 1.81 0.79 0.15 

KADA  0.19 1.03 0.33 0.64 0.04 0.00 0.61 0.40 0.36 0.53 0.53 0.22 0.87 1.61 1.14 0.26 

KUDA 0.45 0.65 0.09 0.37 0.35 0.61 0.00 1.22 0.05 0.64 0.07 0.60 0.13 2.74 0.18 0.39 

STUA 1.04 2.53 0.66 0.88 0.44 0.40 1.22 0.00 1.03 1.81 1.40 0.99 1.65 3.24 2.15 0.25 

MIKA 0.21 0.48 0.08 0.43 0.17 0.36 0.05 1.03 0.00 0.40 0.05 0.33 0.16 2.10 0.24 0.33 

VRNA 0.22 0.25 0.72 1.01 0.51 0.53 0.64 1.81 0.40 0.00 0.29 0.41 0.77 1.10 0.73 1.13 

POKA 0.30 0.39 0.19 0.43 0.33 0.53 0.07 1.40 0.05 0.29 0.00 0.49 0.23 2.18 0.22 0.57 

BURA 0.04 0.48 0.50 1.20 0.19 0.22 0.60 0.99 0.33 0.41 0.49 0.00 0.54 0.94 0.75 0.55 

PRIA 0.47 0.45 0.32 0.95 0.55 0.87 0.13 1.65 0.16 0.77 0.23 0.54 0.00 2.42 0.05 0.64 

SOBA 1.03 1.15 2.71 3.75 1.81 1.61 2.74 3.24 2.10 1.10 2.18 0.94 2.42 0.00 2.56 2.86 

SMLA 0.61 0.36 0.48 1.04 0.79 1.14 0.18 2.15 0.24 0.73 0.22 0.75 0.05 2.56 0.00 0.96 

TOMA 0.54 1.46 0.12 0.44 0.15 0.26 0.39 0.25 0.33 1.13 0.57 0.55 0.64 2.86 0.96 0.00 

Table 13 Squared Mahalanobis distances for all speakers; the highest and lowest values are in bold. 

Having discovered that the combination of our three parameters has some 

discriminative power, we were interested how individual parameters contribute to the overall 

model; that is, whether some parameter contributes to the discrimination of speakers more 

than others. This can be inferred from the comparison of Wilks’ lambda with the value of 

Wilks’ lambda for the situation when one variable would be removed from the model. Before 

doing so, the terminology will be clarified.  

Wilks’ lambda (λ) expresses the ratio of within-group variance and the total variance 

in the data set, which in turn consists of between-group and within-group variance. 

Consequently, the larger between-group variance is in comparison to within-group variance, 

the lower λ. The limit values of Wilks’ lambda are 0 and 1. If λ = 1, the categories are 

indistinguishable on the basis of the variables used because within-group variance equals 

between-group variance. The lower the value, the higher degree of the total variance is 

explained by the combination of the independent variables; in our case H1-H2, H1-A1 and 

H1-A3. Wilks’ lambda for the situation when one variable would be removed from the model 

informs us how the efficacy of the whole model would change if a respective variable was 

removed from it. A high value in this case therefore signals an importance of the variable for 

the model while a value close to (the total) Wilks’ lambda means that a removal of the 

variable would cause only a minor decrease in the efficacy of the whole model. Let us have a 

look at the values of Wilks’ lambda in our study.  
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Wilks’ lambda (λ) for the overall results is 0.712. Though the value is rather high, it 

says that the groups can be distinguished on the basis of our three parameters (F (45, 3491) = 

9.3858; p < 0.001). We compared Wilks’ lambda with Wilks’ lambda after removing one 

variable from the analysis. The values are as follows: 

for H1-H2 λ = 0.755 

for H1-A1 λ = 0.768 

for H1-A3 λ = 0.808 

The most important parameter for discriminating our speakers is thus H1-A3 since if 

we removed it, Wilks’ lambda for the overall results would increase the most; in other words, 

the largest amount of variation in the data would be left unaccounted for. Removing H1-H2 

from our analysis, on the other hand, would have the smallest impact on the efficacy of our 

model and thus seems to be the least useful parameter. Partial lambda confirmed these results 

from the opposite perspective. Since partial lambda expresses the contribution of a respective 

variable to the efficacy of the model, the higher the value, the less useful the variable is for 

distinguishing the categories. The values of partial lambda for individual independent 

variables are as follows:  

for H1-H2 λ = 0.944 

for H1-A1 λ = 0.928 

for H1-A3 λ = 0.882 

H1-H2 is thus the least useful parameter for discriminating speakers as it accounts 

for the lowest amount of variation in the data, which is reflected in its highest value of partial 

lambda. H1-A3 alone accounts for the highest amount of variation, which is reflected in its 

lowest value, and thus appears to be the most useful parameter. 

We can conclude this section by saying that the three parameters have been found to 

have some discriminative power as they correctly assigned 15.84% of all cases to a respective 

category, which is more than would be cause by chance. As a next step, we were interested 

how classification success rate will change if we remove certain data from the analysis. 
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6.2.1. The influence of syllable status with respect to stress on classification success 
rate 

 Even though the results of ANOVA have shown that differences between speakers are 

statistically highly significant in stressed as well as post-stress and unstressed syllables (see 

Section 6.1.1 for H1-H2, Section 6.1.2 for H1-A1 and Section 6.1.3 for H1-A3), especially in 

case of H1-A1, the effect size for stressed syllables was considerably larger than for the other 

two. The three types of syllable statuses with respect to stress have also been found to behave 

differently in utterance-final and utterance-non-final stress groups, the values being the most 

stable in stressed syllables, as Figure 12 shows.  

 

Fig. 12 H1-A1 values in decibels in stressed, post-stress and unstressed syllables in both utterance-final and 
utterance-non-final stress groups. (Error bars indicate 95% confidence intervals.) 

 We therefore conducted LDA for stressed, post-stress and unstressed syllables 

separately in order to examine whether our speakers are better discriminated in stressed, post-

stress or unstressed syllables. Classification success rates for these three cases are presented in 

Table 14.  

Syllable status with respect to stress Classification success rate (%) 
stressed 19.55 

post-stress 13.10 
unstressed 14.61 

Table 14 Classification success rate in stressed, post-stress and unstressed syllables.  
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As we can see, the classification success rate exceeds the 6% threshold in all three 

cases, but the individual scores differ. The classification success rate increases up to 19.55% 

when post-stress and unstressed syllables are removed from the analysis, i.e. when only 

stressed syllables are considered. In unstressed syllables, the success rate decreases to 14.61% 

and it is the lowest in post-stress syllables (13.10%). The values in stressed syllables thus 

appear the most stable (cf. Figure 12) and therefore the most reliable for discriminating 

speakers, while in post-stress syllables, additional variability is introduced. The values of 

Wilks’ lambda (see Table 15, the column ‘Wilks’ lambda’) likewise show that within-group 

variance is the smallest in stressed syllables, while in the other two cases, additional 

variability is present, which is reflected in the higher values of Wilks’ lambda.  

 As a next step, we wanted to discover whether this applies for all speakers. The 

classification success rates for individual speakers in stressed, post-stress and unstressed 

syllables are presented in Figure 13; the numbers below the graph express the classification 

success rates (in %) for the three cases. Though most speakers are recognized the best in 

stressed syllables, we can see that some speakers reach higher classification success rate in 

post-stress or unstressed syllables; for instance, KRIA and VRNA, respectively. 

 

Fig. 13 Classification success rate in stressed, post-stress and unstressed syllables for individual speakers.  

 We again examined, which of the parameters is the most useful for discriminating 

speakers in the three cases. The values of Wilks’ lambda and Wilks’ lambda after removing 

one variable from the model are presented in Table 15.  

KRUA DAMA KRIA FISA KODA KADA KUDA STUA MIKA VRNA POKA BURA PRI A SOBA SMLA TOMA

Stressed 16 20 0 32 8 4 28 56 0 0 8 12 44 64 16 4

Post-stress 0 24 24 16 4 21 0 44 0 0 8 0 4 36 13 16

Unstressed 0 28 0 25 0 8 0 40 4 24 0 8 24 44 29 0
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Syllable status with respect to stress Wilks' lambda λ for H1-H2 λ for H1-A1 λ for H1-A3 

stressed  0.625 0.669 0.719 0.702 

post-stress 0.672 0.735 0.759 0.800 

unstressed 0.677 0.748 0.730 0.783 

Table 15 The values of Wilks’ lambda in stressed (N = 399), post-stress (N = 397) and unstressed (N = 397) 
syllables (the first column) and the values of Wilks’ lambda after removing one of the variables from the model 
(the second, third and fourth column). The values in bold signal which variable is the most useful in the analysis 
as its removal would decrease the efficacy of the whole model.  

 We can see that removing the variable H1-A3, which was the most useful when the 

whole sample was considered (Section 6.2), would be the most detrimental for discriminating 

our speakers in post-stress and unstressed syllables. However, if only stressed syllables are 

considered, the most important parameter in our study appears to be H1-A1.     

6.2.2. The influence of stress group position in the utterance on classification success 

rate 

Sections 6.1.1, 6.1.2 and 6.1.3 have also shown that speakers exhibit statistically 

highly significant differences in the values of all three parameters in both utterance-final and 

utterance-non-final stress groups, though in all cases the effect size was larger for the latter. 

We were therefore interested how the classification success changes after removing utterance-

final stress groups from the analysis due to possible higher variability of values in utterance-

final stress groups. The results are presented in Table 16, which compares the total 

classification success rate and Wilks’ lambda for the whole sample (‘all’) and for utterance-

non-final stress groups (‘non-final’).  

Stress group position in the utterance 
all  non-final 

Classification success rate (%) 15.84 17.89 

Wilks' lambda 0.712 0.646 

Table 16 Classification success rate and Wilks’ lambda for the whole sample (‘all’; N = 1193) and after 
removing utterance-final stress groups from the analysis (‘non-final’; N = 654).  

We can see that after removing utterance-final stress groups from the analysis, the 

classification success rate increases from 15.84% to 17.89%. The improvement of the model 

is also reflected in the values of Wilks’ lambda: λ = 0.712 for the whole sample and 0.646 in 

utterance-non-final stress groups. The lower value for utterance-non-final stress groups thus 

signals that within-group variance is smaller; that is, speakers exhibit a lower degree of 
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variability. A comparison of classification success rate for the whole sample (‘all’) and after 

removing utterance-final stress groups from the analysis (‘non-final’) for individual speakers 

is presented in Figure 14. 

 

Fig. 14 Classification success rate in the whole sample (‘all’, N = 1193) and in utterance-non-final stress groups 
(‘non-final’, N = 654).  

We can see that the differences in classification success rates for the two cases vary 

among speakers. While for some speakers, the difference is negligible (e.g., FISA, MIKA and 

SOBA), other speakers exhibit a larger difference (e.g., KRIA, STUA and POKA). The latter 

group of speakers can therefore be expected to exhibit a larger variability of values in 

utterance-final stress groups as opposed to utterance-non-final stress groups since it is in 

utterance-non-final stress groups that they are better discriminated. Some speakers, in 

contrast, score a higher classification success rate when the whole data set is considered (e.g., 

DAMA and BURA); in other words, in their case, it is values in utterance-final stress groups 

that exhibit lower variability and are more speaker-specific. 

To conclude, referring back to Table 16, classification success rate in general 

increases after removing utterance-final stress groups from the analysis. Utterance-non-final 

stress groups therefore appear better suited for discrimination of speakers in our study. An 

even higher classification success rate is, predictably, reached when also unstressed and post-

stress syllables are removed from the analysis; that is, when only stressed syllables in 

utterance-non-final stress groups are considered. The success rate reached is 21.97%, though 

KRUA DAMA KRIA FISA KODA KADA KUDA STUA MIKA VRNA POKA BURA PRI A SOBA SMLA TOMA

all 1 20 5 30 1 15 5 49 1 1 4 13 20 57 16 12

non-final 5 12 23 27 2 22 2 63 0 0 17 5 22 56 24 5
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the low number of cases (N = 223) does not yield stable results any more. However, under 

real conditions or even just for different speakers, for instance, male speakers, it may happen 

that vowels in utterance-final stress groups are more speaker-specific (as it has been also 

shown for some of our speakers, see Figure 14). In forensic casework it is not possible to omit 

utterance-final stress groups and to base an analysis on utterance-non-final stress groups only. 

As a result, stressed syllables (in both utterance-final and utterance-non-final stress groups) 

appear to be the most reliable for discrimination of speakers (cf. Table 12).  

6.2.3. The influence of vowel on classification success rate 

Lastly, we conducted LDA for each vowel quality separately since Sections 6.1.1 to 

6.1.3 have shown that some vowels express the differences between speakers better than 

others. LDA has confirmed the findings obtained by ANOVA; specifically, the highest 

classification success rate was scored in the values of /e/ (20.92%) and the lowest in /o/ 

(14.71%). The number of cases (N = 237 to 240) is, however, too low to yield a reliable 

analysis. It can be expected that the classification rate would again increase when all 

unstressed and post-stress /e/ were removed from the analysis, but the amount of data 

available for the present study does not suffice to prove this.  

The following section will shortly comment on the ranges of parameters values 

measured in our study after which the relation between the three parameters will be examined.  

6.2.4. Ranges of parameter values and their relations 

Since all three parameters quantify spectral tilt by comparing different amplitudes in 

the spectra, the lower is the value of a parameter, the less steep is spectral tilt and vice versa.   

H1-H2 has a range of about 16 dB (see Figure 6), the maximum value being 8 dB 

and the minimum value -8 dB; that is, while H1 is more prominent for some speakers than 

H2, for others it is the other way round. H1-A1 has a range of 12 dB (see Figure 8), the 

minimum value being -8 dB and the maximum 4 dB, suggesting that while the first-formant 

peak is quite prominent for some speakers, it is rather damped for others. H1-A3 ranges from 

39 dB to 20 dB (see Figure 10), which indicates a considerable variation in spectral tilt among 

our subjects. Such high values of H1-A3, i.e. arguably steep spectral tilt, could also suggest 

that in case of some subjects the vocal folds do not close simultaneously or completely (or 

both) during the closing phase (see Section 3.2.2).  



74 

 

As has been mentioned in Section 3.2.2, the relationship between these measures can 

be predicted by theory in some cases; especially in situations when the glottis does not close 

completely (for H1-A1 and H1-A3). For the purposes of the present study, a high correlation 

is not desirable since parameters expressing speaker identity should be ideally independent of 

one another. The correlations between the three parameters for all vowels combined are 

provided in Table 17.  

H1-H2 H1-A1 H1-A3 

H1-H2 1 0.68 0.3 

H1-A1 0.68 1 0.28 

H1-A3 0.3 0.28 1 

Table 17 Pearson product moment correlation coefficients (r) for the three parameters for all five vowels 
/a, e, �, o, u/ combined  (N = 1193). 

Considering a correlation with r ≥ 0.70 to be strong, this threshold is almost reached 

by the correlation between H1-H2 and H1-A1; other correlations are low. We inspected the 

scatterplots and present the scatterplot of the correlation between H1-H2 and H1-A1 in Figure 

15. It portrays all vowels spoken by all speakers, i.e. 1193 data points.  

 

Fig. 15 The scatterplot of a correlation between the parameters H1-H2 and H1-A1 (r = 0.68). Each point 
represents one realization of a vowel by one speaker, hence 1193 data points.  

The scatterplot shows regularly arranged data points into a diagonal line. These are 

cases when A1 equals H2. This happened rather often (in 826 cases, which forms ⅔ of the 



75 

 

whole sample); especially in high vowels, where F1 is the lowest and the closest harmonic in 

frequency consequently tended to be the second one or in some cases even the first one, 

which can likewise be seen in the figure. If A1 equals H1, then H1-A1 is zero. The data points 

forming a horizontal line on the level of zero represent these cases. 

Due to the finding that these two parameters overlap to a considerable extent, we 

removed H1-H2 from the analysis because it proved the less useful of the two (see Sections 

6.2.1 and 6.2.2), and conducted LDA again, this time only with two predictors, namely H1-

A1 and H1-A3, and then compared the results. 

6.2.5. LDA with 2 predictors (H1-A1 and H1-A3) 

We again conducted LDA for the whole sample, then for stressed, post-stress and 

unstressed syllables separately and, lastly, for utterance-non-final stress groups only (but for 

stressed, post-stress as well as unstressed syllables as otherwise the number of cases would be 

too low to yield stable results; see Section 6.2.2). As in the previous analysis, the highest 

classification success rate was achieved in stressed syllables. All results, both for individual 

speakers and total, are presented in Table 18.  

  Classification success rate (%) 
  all stressed post-stress unstressed non-final  

KRUA 0.00 16.00 0.00 0.00 9.76 
DAMA 25.33 28.00 16.00 24.00 17.07 
KRIA 2.70 0.00 24.00 0.00 20.00 
FISA 14.86 4.00 0.00 12.50 0.00 

KODA 2.67 8.00 0.00 0.00 0.00 
KADA 16.22 20.00 20.83 8.00 26.83 
KUDA 9.33 24.00 4.00 0.00 2.44 
STUA 40.00 44.00 36.00 40.00 51.22 
MIKA 0.00 0.00 4.00 0.00 2.44 
VRNA 4.00 4.00 4.00 0.00 0.00 
POKA 2.67 20.00 4.00 0.00 12.20 
BURA 0.00 4.00 4.00 8.00 4.88 
PRIA 13.33 40.00 16.00 24.00 7.32 
SOBA 57.33 68.00 40.00 48.00 53.66 
SMLA 24.66 12.00 16.67 25.00 36.59 
TOMA 1.35 8.00 12.00 0.00 0.00 

Total 13.41 18.80 12.59 11.84 15.29 

Table 18 Classification success rate of the LDA with 2 predictors (H1-A1 and H1-A3). ‘All’ = for the whole 
sample (N = 1193), ‘stressed’ = only for stressed syllables (N = 399), ‘post-stress’ = only for post-stress syllables 
(N = 397), ‘unstressed’ = only for unstressed syllables (N = 397) and ‘non-final’ = for utterance non-final stress 
groups (N = 654).   
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This time we will not comment on the results in such a detail as in LDA with 3 

predictors but will only summarize the outcome and use the data for a comparison with the 

previous analysis. The total classification success rate is 13.41%, which is above the chance 

classification rate (6%). Thus even only two predictors have some discriminative power.  

We can again see that individual speakers differ in their contribution, which ranges 

from 0% (KRUA, MIKA and BURA) to 57.33% (STUA). The overall highest classification 

success rate increases in stressed syllables, where also most speakers score the highest, 

though other speakers are the best discriminated in post-stress syllables (the most markedly 

KRIA) or unstressed syllables (SMLA). The total classification success rate again increases 

when utterance-final stress groups are removed from the analysis (‘non-final’), though half of 

the speakers scores in utterance-non-final stress groups lower than in utterance-final ones (cf. 

Figure 14). For these speakers, vowels in utterance-final stress groups appear more speaker-

specific.   

To see which parameter contributes to the discrimination of speakers more, we 

inspected Wilks’ lambda. Its values for LDA with 2 predictors for the whole sample and for 

stressed, post-stress and unstressed syllables are presented in Table 19. The figures in bold 

signal which parameter is the more useful one in the whole model as its removal would have a 

greater impact on its efficacy. 

Syllable status with respect to stress Wilks' lambda λ for H1-A1 λ for H1-A3 

all 0.755 0.870 0.849 

stressed  0.669 0.856 0.750 

post-stress 0.735 0.858 0.854 

unstressed 0.748 0.857 0.858 

Table 19 The values of Wilks’ lambda in the whole sample (‘all’, N = 1193) and in stressed (N = 399), post-
stress (N = 397) and unstressed (N = 397) syllables (the first column) and the values of Wilks’ lambda after 
removing one of the variables from the analysis (the second and third column). The values in bold signal which 
parameter is more useful in the analysis as its removal would decrease the efficacy of the whole model.  

As Table 19 shows, within-group variance is the lowest in stressed syllables, which is 

also where classification success rate is the highest (see Table 18). The more important 

variable of the two is in all cases apart from unstressed syllables, though even there it is very 

close, H1-A1. After removing H1-H2, H1-A1 thus gains on importance. 
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Fig. 16 A comparison of classification success rates for LDA with two (2 par.) and three (3 par.) predictors. The 
success rate is given in percentages. ‘total’ = for the whole sample (N = 1193), ‘stressed’ = only for stressed 
syllables (N = 399), ‘post-stress’ = only for post-stress syllables (N = 397), ‘unstressed’ = only for unstressed 
syllables (N = 397) and ‘non-final’ = for utterance non-final stress groups (N = 654).   

Let us compare the classification success rates of LDA with 2 and 3 predictors, the 

illustration of which is presented in Figure 16. As we can see, classification success rates of 

LDA with 2 predictors are generally lower than LDA with 3 predictors, but the differences are 

not linear. While the removal of H1-H2 has only a minor impact on the efficacy of the model 

in stressed and post-stress syllables, the differences are more marked in unstressed syllables, 

where additional variability seems to be present, for which the combination of the two 

parameters after removing H1-H2 fails to account. 

In stressed syllables, the classification success rate of LDA with 2 predictors thus 

increased up to 18.80%, which is very close to the success rate achieved with all three 

predictors (19.55%). In case of post-stress syllables, the success rate of the two analyses is 

likewise very similar; 12.59% with 2 parameters and 13.10% with 3 parameters. The 

differences are more marked in unstressed syllables; 11.84% with 2 parameters as opposed to 

14.61% with 3 parameters. The total classification success rate again increases by 

approximately 2% when utterance-final stress groups are removed from the analysis.  

Another interesting fact to notice is that in stressed syllables, the classification success 

rate of LDA with only 2 predictors exceeds that of 3 predictors elsewhere (apart from stressed 

syllables). In other words, if only two parameters were used, the classification success rate in 

stressed syllables would be higher than if 3 parameters would be used in post-stress or 

unstressed syllables. Furthermore, as Figure 17 (for stressed syllables only) shows, certain 

all stressed post-stress unstressed non-final

2 par. 13,41 18,8 12,59 11,84 15,29

3 par. 15,84 19,55 13,09 14,61 17,89
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speakers reach a higher classification success rate when only 2 parameters are used; for 

instance, DAMA, KADA or POKA. For these speakers, the parameter H1-H2 does not appear 

to yield speaker-specific values; in contrast, it increases the variance of values. The opposite 

is also true; the inclusion of H1-H2 significantly increases the score of FISA. For other 

speakers (KRUA, KRIA, KODA and MIKA) the results are the same with or without H1-H2.  

 

Fig. 17 Comparison of classification success rate in stressed syllables by LDA with 2 and 3 parameters for 
individual speakers. The numbers below the graph express the classification success rate in %. 

We can therefore conclude that removing the parameter H1-H2 decreases the overall 

classification success rate; specifically, the success rate in unstressed syllables. In stressed 

syllables, the results of LDA with 2 and 3 parameters are comparable. Furthermore, as Figure 

17 has shown, individual speakers differ in classification success rates reached with 2 and 3 

predictors; some speakers score even better when only 2 predictors are considered. 

 As a next step, we used the information about how speakers overlap as it seemed that 

our three parameters could distinguish types of speakers. We therefore tried to match the least 

successful speakers to that speaker to whom they were most frequently assigned by 

classification and expected that this would lead to a higher classification success rate. The 

results are summarized in the following section.  

KRUA DAMA KRIA FISA KODA KADA KUDA STUA MIKA VRNA POKA BURA PRI A SOBA SMLA TOMA

2 par 16 28 0 4 8 20 24 44 0 4 20 4 40 68 12 8

3 par. 16 20 0 32 8 4 28 56 0 0 8 12 44 64 16 4
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6.2.6. “Types of categories/speakers” 

If we have a look back at the classification matrix in Table 12 (p. 66), and as we also 

commented on in Section 6.2, our categories differ in how numerous they are. There are, on 

the one hand, categories of a very small number, for instance, KRUA, MIKA, KRIA and 

VRNA, and, on the other hand, very numerous categories such as STUA, SOBA, FISA and 

PRIA which are - for some reason (on the basis of certain similarities or overlap of values) - 

assigned also other cases apart from their own. We could therefore speak of “types of 

categories” instead of individual categories. Looking at the classification matrix, speaker 

KRUA, for instance, would be “type SOBA” since she has been the most frequently assigned 

to this speaker, and speaker KODA would be “type STUA”. Therefore, on the basis of a 

classification matrix, we tried to manually match speakers with the lowest classification 

success rate to that speaker to whom they were the most frequently assigned by classification 

and subjected such a modified sample to LDA again. Surprisingly, the resulting classification 

success rate was lower than before. Yet we believe that this method, i.e. creating “types of 

categories” on the basis of a classification matrix would be worth examining in more detail in 

a future study as understanding why some speakers are assigned to other speakers could bring 

improvement to the whole model.  

6.2.7. LDA for a limited number of speakers 

Since the above mentioned manual “recategorization” has not brought the expected 

improvement, we decided to remove the least successful speakers from the sample entirely 

and conducted LDA without them. The expectation is again that removal of the least 

successful speakers will lead to an improvement of the model. The basis for the analysis was 

the outcome of the classification in stressed syllables (with all 3 predictors) because 

classification success rate in stressed syllables proved higher than elsewhere (see Section 

6.2.1). The threshold of chance classification success rate (6%) was chosen as the criterion for 

removing speakers. Five speakers were thus removed from the analysis, namely KRIA (0%), 

KADA (4%), MIKA (0%), VRNA (0%) and TOMA (4%). The numbers in brackets indicate 

the classification success rate for individual speakers in LDA for stressed syllables (see 

Figure 13, ‘stressed’).  

The analysis for the remaining 11 speakers was conducted in the whole sample and 

in stressed syllables, for both 2 and 3 predictors because Section 6.2.5 has shown that the 
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difference between the two in stressed syllables in negligible and some speakers are even 

better discriminated when only 2 parameters are used. The whole sample was included both 

for comparison and also for the reason that the number of cases after removing post-stress and 

unstressed syllables dropped considerably; 275 cases were left. Considering the number of 

categories, which is 11, this number should, however, still provide stable results. The general 

results of the analyses are illustrated in Figure 18, which compares the results of LDA for 11 

and all 16 categories for both 2 and 3 predictors in stressed (‘stressed’) syllables and in the 

whole sample (‘all’). The removal of the 5 least successful speakers leads to the increase of 

classification success rate as predicted. 

 

Fig. 18 Comparison of classification success rate of LDA with 11 and 16 categories (after removing 5 least 
successful speakers from the analysis). The figure provides results of LDA with 3 predictors in stressed syllables 
(‘stressed’, N = 275 for 11 speakers, N = 399 for 16 speakers) and in the whole sample (‘all’, N = 821 for 11 
speakers and N = 1193 for 16 speakers) as well as with 2 predictors for the same data.  

 If we have a look at the classification success rate of LDA after removing the 5 

speakers (Figure 18, the upper line), we can see that the discrimination of speakers is again 

the most successful in stressed syllables, when all three predictors are included (28.36%). 

This result needs to be compared to the success rate which would be caused by chance. For 11 

speakers, chance would enable to correctly assign approximately 9% of the cases. The score 

achieved in our study can thus be considered high. 

 Figure 18 shows one more interesting fact, namely the difference in classification 

success rates between LDA with 2 and 3 predictors for the two compared analyses. Both in 
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the LDA with 11 and 16 categories, 3 predictors yield a higher classification rate than 2 

predictors (in stressed syllables as well as in the whole sample). However, the difference is 

more marked in the analysis with 11 categories. The removal of the 5 least successful 

speakers thus leads to a more significant improvement in the analysis with 3 predictors, which 

could mean that those speakers who were removed were those whose variance of H1-H2 

values was the highest. It is also what the values of Wilks’ lambda in Table 20 suggest as the 

decrease of within-speaker variance in LDA with 3 predictors as opposed to 2 predictors is 

more marked in the analysis with 11 speakers than with all 16.    

 The improvement of the model after removing the 5 least successful speakers is thus 

also apparent from the values of Wilks’ lambda, which are summarized and compared with 

the values for all 16 speakers in Table 20.  

11 speakers  16 speakers 
3 predictors 2 predictors  3 predictors 2 predictors 

stressed all stressed all  stressed all stressed All 
0.562 0.674 0.620 0.724  0.625 0.712 0.669 0.755 

Table 20 The values of Wilks’ lambda for LDA with 2 and 3 predictors for stressed syllables (‘stressed’) and the 
whole sample (‘all’) for both 11 and 16 categories. The number of cases is as follows: ‘stressed’, N = 275 for 11 
categories, N = 399 for 16 categories; ‘all’, N = 821 for 11 categories and N = 1193 for 16 categories. 

 The table shows that the removal of the 5 least successful speakers results in lowering 

within-group variance in comparison to the total variance in the data, which is reflected in 

lower values of λ, for all comparisons. Interestingly, the value of Wilks’ lambda in LDA with 

2 predictors and 11 categories in stressed syllables is even slightly lower than in LDA with 3 

predictors and 16 categories in the same data. This is also reflected in Figure 18 which shows 

that classification success rate in LDA with 11 categories is higher with only 2 predictors than 

the success rate in LDA with 16 categories with all 3 predictors.   

Let us have a short look how the removal of the 5 speakers from the analysis affects 

the results of individual speakers. This information is provided in Table 21 on the following 

page. 

As we can see, nothing changes in the results of the two discriminant analyses with 3 

predictors in stressed syllables apart from the classification rate of KRUA and KODA, whose 

score increased after removing the 5 categories by 4%. 
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  11 speakers 16 speakers (adapted) 
  3 parameters 2 parameters 3 parameters 2 parameters 
  stressed all stressed all stressed all  stressed all 
KRUA 20.00 6.76 20.00 0.00 16.00 1.35 16.00 0.00 
DAMA 20.00 21.33 28.00 26.67 20.00 20.00 28.00 25.33 
FISA 32.00 32.43 4.00 14.86 32.00 29.73 4.00 14.86 

KODA 12.00 1.33 16.00 8.00 8.00 1.33 8.00 2.67 
KUDA 28.00 6.67 24.00 10.67 28.00 5.33 24.00 9.33 
STUA 56.00 61.33 44.00 45.33 56.00 49.33 44.00 40.00 
POKA 8.00 4.00 20.00 2.67 8.00 4.00 20.00 2.67 
BURA 12.00 13.33 4.00 6.67 12.00 13.33 4.00 0.00 
PRIA 44.00 21.33 40.00 14.67 44.00 20.00 40.00 13.33 
SOBA 64.00 57.33 68.00 58.67 64.00 57.33 68.00 57.33 
SMLA 16.00 17.81 12.00 24.66 16.00 16.44 12.00 24.66 
Total 28.36 22.17 25.45 19.37 19.55 15.84 18.80 13.41 

Table 21 The results of LDA with 2 and 3 predictors in stressed syllable and the whole sample for all speakers 
and after removing 5 speakers with the lowest classification success rate. 

 However, if we compare the results of LDA with 3 predictors in the whole sample 

(‘all’), an increase of classification success rate after the removal of 5 speakers can be 

observed in most speakers. Only in case of 4 speakers (KODA, POKA, BURA and SOBA), 

the classification success rate remained the same. The increase of classification success rate 

ranges from 1.33%, i.e. one case/vowel, (e.g., DAMA) to 12% (STUA). From the observed 

fact that the removal of 5 categories does not affect the results of individual speakers in 

stressed syllables but increases them considerably in the whole sample (i.e. stressed, post-

stress as well as unstressed syllables), we can infer that in post-stress and unstressed syllables, 

the 11 speakers were more frequently assigned also to those 5 which we afterwards decided to 

remove. In stressed syllables, in contrast, our 11 speakers do not seem to be assigned to them, 

which is reflected in the fact that their removal does not change the results (apart from KRUA 

and KODA in 3 cases each, i.e. 4%, see above). This is in agreement with the finding, that 

within-speaker variance is smaller in stressed syllables (cf. Table 20).        

 As for LDA with 2 predictors, we can observe a larger improvement in the analysis of 

the whole sample (‘all’), while in stressed syllables the increase of classification success rate 

concerns again only KRUA and KODA as in the LDA with 3 predictors.  

 Some speakers are better recognized when only 2 parameters are used, namely, 

DAMA, KODA, POKA and SOBA, this discrepancy being the most marked for POKA. 

Apart from KODA, these speakers are the same whose score was higher for 2 predictors than 

for 3 predictors also in LDA with 16 categories (cf. Figure 17). The other three speakers who 
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were better recognized when only 2 predictors were used (LDA with 16 categories), namely 

KADA, VRNA and TOMA were included in the five speakers who were removed.    

To terminate our discussion of LDA, we considered a yet smaller number of speakers 

to see how the results change and to better illustrate how parameter values are distributed for 

individual speakers. We chose 6 speakers who scored the highest classification success rate; 

specifically, 20% and more in LDA with all 3 predictors and 16 categories in stressed 

syllables (see Figure 13). Having 6 categories, a chance classification would cause a success 

rate of 16%. LDA for the 6 speakers, namely DAMA, FISA, KUDA, STUA, PRIA and 

SOBA, with 2 predictors reached a classification success rate of 33.41% (λ = 0.633; N = 449) 

and with all 3 predictors yet a little higher, 37.86% (λ = 0.581). An expected increase of 

classification success rate (up to 39.33% and 43.33%, respectively) and decrease of Wilks’ 

lambda (down to 0.510 and 0.488, respectively) was observed in stressed syllables (N = 150) 

for both analyses. The overview of the values for individual speakers as well as their 

comparison with the previous analysis (LDA with 11 categories) is presented in Figure 19. 

 

Fig. 19 The comparison of the classification rate of LDA for 6 and 11 categories with 2 and 3 predictors in 
stressed syllables (N = 150 for 6 speakers and 275 for 11 speakers) and the whole sample (N = 449 for 6 speakers 
and 821 for 11 speakers) both for individual speakers and the total. 

stressed all stressed all stressed all stressed all

3 parameters 2 parameters 3 parameters 2 parameters

6 speakers 11 speakers

DAMA 20,00 25,33 36,00 36,00 20,00 21,33 28,00 26,67

FISA 32,00 32,43 8,00 14,86 32,00 32,43 4,00 14,86

KUDA 32,00 9,33 36,00 12,00 28,00 6,67 24,00 10,67

STUA 60,00 70,67 48,00 52,00 56,00 61,33 44,00 45,33

PRIA 48,00 30,67 40,00 26,67 44,00 21,33 40,00 14,67

SOBA 68,00 58,67 68,00 58,67 64,00 57,33 68,00 58,67

Total 43,33 37,86 39,33 33,41 28,36 22,17 25,45 19,37
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The removal of 5 more speakers leads to a further increase of the overall 

classification success rate as could be expected (‘total’, signalled by a light blue line). As can 

be seen in Figure 19, speakers again differ in what enhances their recognition. For KUDA, 

PRIA and SOBA, it is stressed syllables, which is reflected in the zigzag line rising in stressed 

syllables (‘stressed’) and falling for the whole sample (‘all’), this difference being especially 

marked for KUDA and PRIA. Their values in post-stress and unstressed syllables thus seem 

more variable and less speaker-specific. A reverse of this tendency can be observed in STUA, 

DAMA and FISA who, in contrast, score a higher classification success rate in the whole 

sample. However, the differences are much smaller and for FISA only in LDA for 2 

predictors. Our speakers likewise again differ in success rates reached in LDA with 2 and 3 

predictors. Though the overall trend is for the score in LDA with 3 predictors to be higher (the 

most markedly in FISA), in some cases it is the other way round, i.e. speakers score higher in 

LDA with 2 parameters (see DAMA, cf. Table 21).  

To illustrate the distribution of parameter values for individual speakers in stressed 

syllables (as success rate is generally the highest there), Figures 20, 21 and 22 plot the 

parameters against each other, namely H1-A1/H1-A3, H1-H2/H1-A3 and H1-H2/H1-A1, 

respectively. The data points are differentiated by 6 types of symbols, each belonging to one 

speaker.  

 

Fig. 20 Discrimination of 6 speakers by their H1-A1 and H1-A3 values in stressed syllables (N = 150).  
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Fig. 21 Discrimination of 6 speakers by their H1-A3 and H1-H2 values in stressed syllables (N = 150).  

 

Fig. 22 Discrimination of 6 speakers by their H1-A1 and H1-H2 values in stressed syllables (N = 150).  
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All the figures reveal, though Figure 20 and 21 better than Figure 22 due to the 

overlap of values, that speaker SOBA is the most distinct due to her generally lowest values 

of all three parameters. According to squared Mahalanobis distances, the most different 

speakers are SOBA and FISA (for LDA with 6 categories in stressed syllables as well as for 

all 16 categories, see Table 13, p. 68). As the figures also show, their overlap is indeed 

minimal. They seem to be distinguished the best by the parameters H1-A1 (see Figure 20 

where SOBA has lower values than FISA) and H1-H2 (see Figure 21). Their overlap on the 

horizontal axis of the same figures, i.e. in H1-A3, appears to be slightly larger. In contrast, the 

parameter H1-A3 would help discriminate, for instance, PRIA and STUA better than H1-A1 

or H1-H2 would (see Figure 20 and 21, respectively). It thus appears that different speakers 

are discriminated by different parameters, as might be expected. The figures also reveal that 

speakers who reached the lowest classification success rate, i.e. DAMA, FISA and KUDA 

(Fig. 19) are more difficult to discriminate due to their higher extent of overlap with other 

speakers (DAMA) or larger variance of values (FISA and KUDA).  

6.3. Long-term measures of spectral tilt 

To complement the outcome of LDA which was based on parameters expressing 

short-term spectral tilt, we used the results of the LTAS, namely alpha index, Hammarberg 

index and Kitzing index (see Section 5.1 and 5.2 for a description of how they were obtained), 

which quantify long-term spectral tilt. The results will be first presented and discussed, and 

then compared with the results obtained by LDA, by which we will terminate Chapter 6. 

Before we provide the values of the three indices for individual speakers, it should be 

shortly reminded what they express (for a more detailed discussion, see Section 3.2.1). Alpha 

index is the ratio of energy above 1 kHz as opposed to energy below 1 kHz (1-5 kHz/0-1 

kHz), from which it follows that the higher its value, the less steep spectral tilt. Kitzing index 

is ‘an inverted alpha’ but with a narrower range, i.e. the ratio of energy below 1 kHz as 

opposed to energy above 1 kHz (0-1 kHz/1-2 kHz). In this case, a high value therefore signals 

steeper spectral tilt. Lastly, Hammarberg index expresses the difference between the maximal 

energy in two frequency bands; specifically, 0-2 kHz and 2-5 kHz; a higher value, i.e. a 

higher difference between the two amplitudes, therefore again expresses a steeper slope.  

Based on the mathematical background, the closest relation is between alpha index 

and Kitzing index since both express a ratio of energy below and above 1 kHz. Alpha index 

and Hammarberg index are more distinct since one (alpha index) expresses a ratio and the 

other (Hammarberg index) a difference. However, they both consider the amount of energy up 



87 

 

to 5 kHz. The most distinct two are thus Kitzing index and Hammarberg index; one being a 

ratio (Kitzing index) and the other a difference (Hammarberg index) and differing also in 

which frequency bands they involve. As Table 22 shows, this is reflected in the respective 

correlation strengths: the strongest correlation is between alpha index and Kitzing index (-

0.85) and the weakest between Kitzing index and Hammarberg index (0.54), though this 

correlation is still moderate.   

  alpha Hammarberg Kitzing 

alpha 1.00 -0.60 -0.85 

Hammarberg -0.60 1.00 0.54 

Kitzing -0.85 0.54 1.00 

Table 22 Pearson correlation coefficients (r) for correlations between alpha index, Hammarberg index and 
Kitzing index (N = 16). 

To allow a comparison of the three indices between the subjects, all values were 

converted to a z-score; the data was normalized against the average value of the respective 

index for all speakers. Figure 23 illustrates the z-scores of all indices for individual speakers.   

 

Fig. 23 The values of alpha index, Hammarberg index and Kitzing index for individual speakers converted to z-
score.  
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 We can see that our speakers exhibit considerable differences in the values of the three 

indices. While some speakers do not differ much from the average value of any index 

(KRUA), others exhibit values up to the distance of 2.5 standard deviation (SD) from the 

average (STUA for Kitzing index). We shall limit our discussion to the speakers who differ 

the most from the average value for some index and those who differ the least. After that, 

these results will be compared with the scores of classification success rate reached in LDA.  

 Figure 23 shows that speakers DAMA, FISA and STUA differ from the average the 

most: DAMA in her value of alpha index, FISA in Hammarberg index, and STUA in her 

value of Kitzing index. In all cases, these values exceed the distance of 2 SD from the 

average; that is, only less than 2% of values would be higher.  

 

 

Fig. 24 The LTAS of two speakers showing a frequency range 0-8000 Hz. Speaker DAMA (on the left) has a 
less steep spectral tilt reflected in her highest value of alpha index (see text above). Speaker FISA (on the right) 
has one of the lowest values of alpha index and the highest value of Hammarberg index, hence steep spectral tilt.   
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According to these results, DAMA should have the least steep spectral tilt (since the 

higher alpha, the less steep spectral tilt) and STUA and FISA the steepest (reflected in the 

highest value of Kitzing and Hammarberg index, respectively, as well as one of the lowest 

values of alpha index). Figure 24 (on previous page) illustrates the LTAS of these two 

speakers; DAMA is above and FISA below. The frequency range is 0-8000 Hz. If we 

compare the two LTAS, the smaller amount of energy in the range from 1 to 5 kHz as 

opposed to the range 0-1 kHz in case of FISA is clearly visible. As for the range above 5 kHz, 

the higher amount of energy in case of DAMA might come from aspiration noise. These two 

speakers exhibit significant differences also in the other two indices, which is also apparent 

from Figure 24. 

 As for the speakers who are the closest to the average, these include KRUA, VRNA 

and BURA (see Figure 23), but there are also several other speakers within the distance of 1 

SD from the average for all three parameters, such as KODA, KADA, MIKA and TOMA.  

We were interested whether those speakers who reached the highest classification 

success rate in LDA; in other words, who were discriminated the best on the basis of the 

short-term measures of spectral tilt, also differ the most in their LTAS as quantified by the 

three indices. As a last step, we therefore compared the results of LDA with these long-terms 

measures. For a better comparison, the results of LDA with all three predictors, i.e. H1-H2, 

H1-A1 and H1-A3, for the whole sample are provided again in Table 23, which is adapted 

from Table 12 (p. 66), where the results of LDA for 16 categories and 3 predictors for the 

whole sample were introduced.  

Classification success rate (%) 
SOBA 57.33 TOMA 12.16 
STUA 49.33 KRIA 5.41 
FISA 29.73 KUDA 5.33 

DAMA 20.00 POKA 4.00 
PRIA 20.00 KRUA 1.35 
SMLA 16.44 KODA 1.33 
KADA 14.86 MIKA 1.33 
BURA 13.33 VRNA 1.33 

Table 23 Classification success rate of LDA with 3 predictors and 16 categories for the whole sample, i.e. 1193 
cases.  

 According to Table 23, the 5 most successful speakers in LDA were SOBA, STUA, 

FISA, DAMA and PRIA. The distinctiveness of STUA, FISA and DAMA in their values of 
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the three long-term measures (Figure 23) has been already commented on - it is these three 

speakers who have the most distinct values of the indices, each of a different one. Speaker 

PRIA reached in LDA the same classification success rate as DAMA, 20%, and is also the 

fourth most distinct speaker in her alpha index after the three mentioned. As for SOBA, who 

reached the highest classification success rate in LDA, her long-term measures do not reflect 

her distinctiveness so clearly. 

 In contrast, there are speakers who appear distinct in their values of the long-term 

measures but who scored rather low in LDA (around 5%), such as POKA, KRIA and KUDA, 

who exceed or are very close to the distance of 1.5 SD from the average in their values of 

Hammarberg index. However, if we compare it with the results of LDA after removing 

utterance-final stress groups (Figure 14, p. 73), we can see that in utterance-non-final stress 

groups, KRIA and POKA do score high, 23% and 17%, respectively. Similarly, KUDA scores 

a low overall success rate but in stressed syllables it increases up to 28% (Figure 13, p. 71).  

Let us also have a look at speakers who scored the lowest in LDA (Table 23). There 

are 4 speakers, namely VRNA, MIKA, KODA and KRUA, who were recognized in only one 

case out of 75 (or 74; see Section 6.2), hence classification success rate is around 1.5%. If we 

compare it with the results of the long-term measures (Figure 23), we can see that these 

speakers are also those who scored the most average values in all the three parameters. KRUA 

has not reached even the distance of 0.5 SD from the average for any of the three parameters, 

KODA only for alpha index, VRNA for alpha and Kitzing index and MIKA for all three. A 

slight discrepancy has been found for speaker BURA, who scored one of the most average 

long-term values (especially of Kitzing and Hammarberg index), but in her short-term 

measures was recognized not much worse than KADA and SMLA, who exhibit more distinct 

long-term values. 

Lastly, we wanted to compare whether those speakers who differed the most and 

those who differed the least in short-term measures (as reflected in squared Mahalanobis 

distances for 3 predictors, 16 categories and the whole sample) exhibit comparable differences 

in the long-term measures. Table 24 presents squared Mahalanobis distances again (first 

presented in Table 13, p. 68); the lowest and the highest values are in bold. 
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KRUA 0.00 0.36 0.40 0.95 0.15 0.19 0.45 1.04 0.21 0.22 0.30 0.04 0.47 1.03 0.61 0.54 

DAMA  0.36 0.00 0.94 1.61 0.86 1.03 0.65 2.53 0.48 0.25 0.39 0.48 0.45 1.15 0.36 1.46 

KRIA 0.40 0.94 0.00 0.24 0.15 0.33 0.09 0.66 0.08 0.72 0.19 0.50 0.32 2.71 0.48 0.12 

FISA 0.95 1.61 0.24 0.00 0.49 0.64 0.37 0.88 0.43 1.01 0.43 1.20 0.95 3.75 1.04 0.44 

KODA 0.15 0.86 0.15 0.49 0.00 0.04 0.35 0.44 0.17 0.51 0.33 0.19 0.55 1.81 0.79 0.15 

KADA  0.19 1.03 0.33 0.64 0.04 0.00 0.61 0.40 0.36 0.53 0.53 0.22 0.87 1.61 1.14 0.26 

KUDA 0.45 0.65 0.09 0.37 0.35 0.61 0.00 1.22 0.05 0.64 0.07 0.60 0.13 2.74 0.18 0.39 

STUA 1.04 2.53 0.66 0.88 0.44 0.40 1.22 0.00 1.03 1.81 1.40 0.99 1.65 3.24 2.15 0.25 

MIKA 0.21 0.48 0.08 0.43 0.17 0.36 0.05 1.03 0.00 0.40 0.05 0.33 0.16 2.10 0.24 0.33 

VRNA 0.22 0.25 0.72 1.01 0.51 0.53 0.64 1.81 0.40 0.00 0.29 0.41 0.77 1.10 0.73 1.13 

POKA 0.30 0.39 0.19 0.43 0.33 0.53 0.07 1.40 0.05 0.29 0.00 0.49 0.23 2.18 0.22 0.57 

BURA 0.04 0.48 0.50 1.20 0.19 0.22 0.60 0.99 0.33 0.41 0.49 0.00 0.54 0.94 0.75 0.55 

PRIA 0.47 0.45 0.32 0.95 0.55 0.87 0.13 1.65 0.16 0.77 0.23 0.54 0.00 2.42 0.05 0.64 

SOBA 1.03 1.15 2.71 3.75 1.81 1.61 2.74 3.24 2.10 1.10 2.18 0.94 2.42 0.00 2.56 2.86 

SMLA 0.61 0.36 0.48 1.04 0.79 1.14 0.18 2.15 0.24 0.73 0.22 0.75 0.05 2.56 0.00 0.96 

TOMA 0.54 1.46 0.12 0.44 0.15 0.26 0.39 0.25 0.33 1.13 0.57 0.55 0.64 2.86 0.96 0.00 

Table 24 Squared Mahalanobis distances for all speakers (LDA with 3 predictors and 16 categories, N = 1193); 
the highest and lowest values are in bold. 

Certain parallels can again be observed. One of the two pairs of speakers who are the 

most difficult to distinguish in short-term measures is KODA and KADA (Table 24; the value 

of squared Mahalanobis distances is 0.04). Their long-term values are also very similar 

(Figure 23). In contrast, the two speakers who are distinguished the best in short-term 

measures are SOBA and FISA, whose long-term values are also very different, though not the 

most. The most different speakers in long-term measures appear to be DAMA and FISA or 

DAMA and STUA. If we have a look at Table 24, it is FISA and STUA whose squared 

Mahalanobis distances from DAMA are the largest. 

However, in other cases the short-term and the long-term results differ as, for 

instance, in case of MIKA and KUDA as well as MIKA and POKA whose squared 

Mahalanobis distances are very low (0.05 for both comparisons); that is, these two speakers 

are difficult to distinguish. The long-term measures, however, do appear to reflect the 

differences between them. The opposite is also true. If we have a look at the long-term values 

of, for instance, SOBA and SMLA, their values are very similar. The short-term measures 

(Table 24), however, discriminate the two speakers well.  

As in the case of the short-term measures, we include for illustration a whole picture 

of how the three long-term measures of spectral tilt discriminate our 16 speakers. It is 

provided in Figure 25.  
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Fig. 25 The values of Kitzing index, Hammarberg index and alpha index for all speakers.  

We can see that in a three-dimensional space created by the three indices some 

speakers are discriminated from other speakers very well, though others occupy a similar 

region within. However, it must be pointed out that we had only one value for each index per 

speaker. To be able to assess the long-term measures in more detail, more values for each 

speaker would be necessary.  
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7 DISCUSSION 

7.1. Short-term measures of spectral tilt 

Our speakers have been found to exhibit statistically significant differences in the 

values of all three parameters, i.e. H1-H2, H1-A1 and H1-A3, which were suggested by 

Hanson (1997) as acoustical correlates of glottal characteristics. Since these measures have 

not been examined for their discriminative power before, we shall first compare the values 

obtained in the present study with the values obtained in previous research and after that 

discuss the results of our study and its implications in more detail. Let us therefore have a 

look at how our measured values relate to the values in Hanson’s study (1997) and how the 

results contribute to the aim of the study, i.e. to examine spectral properties of the source 

signal as possible speaker-specific cues.  

7.1.1. Ranges of parameter values  

Gobl & Ní Chasaide (1992), for instance, likewise examined the differences of 

spectral peaks in acoustic spectra vowels, specifically, the peak of the fundamental (L0) and 

the first four formants (L1-L4). However, as mentioned in Section 3.2.2, they did so by 

inverse filtering and these data are therefore not directly comparable. Moreover, the material 

was a single word uttered in different voice qualities to observe how it is reflected in the 

measures. Since Hanson’s (1997) study is the most closely related to ours, we will limit the 

comparison to her data. For convenience’ sake, Table 25 summarizes the ranges obtained by 

Hanson (1997), which were mentioned in Section 3.2.2, and those of our study.   

  Hanson (1997) present study (2012) 

  Min max min max 

H1-H2 -3 dB 7 dB -8 dB 8 dB 

H1-A1 -11 dB 5 dB -8 dB 4 dB 

H1-A3 9 dB 35 dB 20 dB 39 dB 

Table 25 Comparison of  ranges of the three parameters measured in the present study and in the study of 
Hanson (1997). The ranges are expressed by their extreme values, i.e. the minimum (min) and the maximum 
(max).   

If we have a look at the ranges, we can see that some are very similar (H1-A1) but 

others differ to a greater extent (H1-A3). We can hypothesize that the differences come from 
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three sources. Firstly, from the material used, secondly, from a slightly different way of 

measurement and, thirdly, from the differences in glottal configurations for individual 

speakers.  

As for the material, Hanson (1997) inspected only non-high vowels in stressed 

syllables of utterance-non-final stress groups in a carrier sentence with constant phonemic 

environment. In addition, she corrected the values for the effect of vowel quality to minimize 

the differences across vowels (see Section 3.2.2). This decision was motivated by the aim of 

her study – to examine these parameters as acoustic correlates of glottal characteristics. Since 

our aim was their applicability for forensic purposes, we used a continuous text to obtain a 

more natural sample. It also allowed us to take the effects of vowel quality, syllable status 

with respect to stress and stress group position in the utterance into account to observe their 

influence on parameter values. Since the influence of these variables on the parameters has 

been proved by ANOVA (Section 6.1), different ranges can be expected.  

The slight differences in the way of measurement, discussed in more detail in Section 

5.2, were motivated by the differences in material. As has been pointed out (Chapter 4), 

Hanson inspected only non-high vowels since their first-formant peak is well separated from 

the first harmonic. Our study inspected also high vowels, where F1 is lower. Consequently, 

the first-formant peak was not so well separated. Moreover, it was observed that vowels do 

not always reach the expected formant values as Skarnitzl and Volín (submitted) pointed out. 

Due to this fact, unlike Hanson, for whom A1 was the amplitude of the strongest harmonic of 

the F1 peak, for us it was an amplitude of that harmonic, which lay the closest in frequency to 

automatically extracted F1 values (in case the automatic extraction was correct), i.e. not 

necessarily the strongest. Yet the range of H1-A1 in our study and Hanson’s study appears 

surprisingly small. Other factors which may play a role are the differences in H1 across 

speakers or how well is A1 centered on a harmonic.  

Lastly, different ranges arise naturally as a result of different speakers and their 

diverse glottal characteristics. Some differences could have been also introduced by possible 

differences in the segmentation technique.  

The parameter H1-A3 exhibits the largest difference in our and Hanson’s study. As 

has been mentioned in Section 5.2, measuring A3 was more complicated. Sometimes no F3 

was detected by Praat, which tended to be solved by changing the default settings to a higher 

value. If such a change did not result in detecting F3, the value was derived by visual 

inspection of a spectrogram. The generally higher value in our study could also suggest that 

our speakers have considerably steeper spectral tilt than in Hanson’s. This might mean that 
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some of our subjects have non-simultaneous or incomplete (or both) glottal closure. However, 

this does not seem to be the case since the correlation between H1-A1 and H1-A3 in our study 

is low. The correlations between the individual parameters in our study are generally lower 

than in Hanson’s study apart from the correlation between H1-H2 and H1-A1, which has been 

discussed in Section 6.2.4. The comparison of the ranges is given in Table 26. The correlation 

of values in Hanson’s study was introduced in Table 1 (p. 44).  

Hanson (1997) present study (2012) 

 
H1*-H2* H1*-A1  H1*-A3* H1-H2 H1-A1 H1-A3 

H1*-H2* 1 0.53 0.46 H1-H2 1 0.68 0.3 
H1*-A1 0.53 1 0.68 H1-A1 0.68 1 0.28 
H1*-A3*  0.46 0.68 1 H1-A3 0.3 0.28 1 

Table 26 Comparison of correlations as expressed by Pearson correlation coefficient (r) in Hanson (1997) and 

the present study.  

An alternative explanation of this difference could be that a carrier sentence “Say 

bVd again” (Hanson, 1997, p. 475) could result in the fact that speakers gave more emphasis 

on the word in question and could have pronounced it with an increased loudness, which 

would be reflected in lowering spectral tilt. Nordenberg & Sundberg (2003) studied the effect 

of increased vocal loudness on the long-term spectral tilt and found out that the increase of the 

level is larger at 3 kHz (which is the area of the third formant) than 0.5 kHz.  

The comparison of the measured values in our study with other studies is hindered 

for several reasons. Since the purpose of most studies has been the relation of the 

physiological function of the vocal folds and/or the perceived voice quality (Gobl & Ní 

Chasaide, 1992; Holmberg et al., 1995) with the spectra, researchers tend to rule out the 

factors which can interfere, such as the vocal tract filter, which is solved by inverse filtering. 

Another strategy is to preserve constant phonemic environment in the form of sustained 

vowel productions or carrier sentences. Since the purpose of our study was to test the 

applicability of parameters derived from the spectra of vowels for forensic purposes, these 

factors needed to be included and examined. Let us therefore have a look how these factors 

were found to influence the parameter values of individual speakers.  
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7.1.2. The effect of independent variables on parameter values  

Considering syllable status with respect to stress, our speakers have been found to 

exhibit statistically highly significant differences in the values of the three parameters in all 

three cases, i.e. not only in stressed but also in post-stressed and unstressed syllables. The 

effect size for all parameters was the largest for stressed syllables. This could be expected 

since vowels in stressed syllables are the most stable due to the highest vocal effort and, 

therefore, the most speaker-specific. However, the fact that speakers exhibit statistically 

significant differences even in post-stress and unstressed syllables indicates that these 

parameters do convey some speaker-specific information.  

As for stress group position in the utterance, both utterance-final and utterance-non-

final stress groups have been found to reflect statistically highly significant differences 

between speakers; the effect size being larger in the latter for all parameters. This could be 

explained by the fact that in utterance-final stress groups, vocal effort is more likely to 

fluctuate and decrease, as a result of which vowels are less stable and exhibit more variability.  

Lastly, we examined the effect of vowel quality on parameter values of individual 

speakers. As Table 25 summarizes (adapted from Table 4, p. 58, Table 7, p. 61 and Table 10, 

p. 64, where the results for each parameter were first presented), all 5 short vowels have been 

found to reflect statistically siginificant differences between speakers in the three parameters, 

though the effect size for individual vowels differs.  

H1-H2 H1-A1 H1-A3 

[�] F (15, 223) = 3.3243; p < 0.001 F (15, 223) = 5.1383; p < 0.001 F (15, 223) = 4.1351; p < 0.001 

[e] F (15, 191) = 3.6314; p < 0.001 F (15, 223) = 6.5986; p < 0.001 F (15, 223) = 5.7098; p < 0.001 

[a] F (15, 192) = 2.7612; p < 0.001 F (15, 224) = 3.8066; p < 0.001 F (15, 224) = 4.8101; p < 0.001 

[o] F (15, 222) = 2.0608; p < 0.05 F (15, 222) = 1.7304, p < 0.05 F (15, 222) = 3.7423, p < 0.001 

[u] F (15, 221) = 2.1231; p = 0.01 F (15, 221) = 2.0647; p = 0.01 F (15, 221) = 5.4954; p < 0.001 

Table 27 The effect of individual vowels on parameters values of individual speakers.  

As the table shows, for all three parameters, the effect size was the largest for the 

front vowel /e/ and the lowest for the back vowel /o/. The second largest effect size was 

for the other front vowel, /�/, and the second lowest for the other back vowel, /u/. An 

exception is the parameter H1-A3, where the effect of /u/ was the second largest. The results 

of our study therefore suggest that front vowels could be more useful for discriminating 

speakers than back vowels, with the exception of H1-A3. We could hypothesize that this 



97 

 

discrepancy might be caused by a possible interference with the degree roundedness for 

individual speakers. If a vowel is more rounded, it lowers its F2. In relation to H1-A3, Hanson 

comments:  

“The amplitude of the third formant is also influenced by other factors, one being the location of F1 

and F2. Another is that the bandwidth of F3 is affected by the radiation characteristic to a greater 

extent than are the lower formants, and the degree of this influence varies with the configuration of 

the vocal tract for the vowel.”    

Hanson (1997, p. 469) 

It is therefore possible that the larger effect of /u/ for H1-A3 could be caused by 

conveying some information about the degree to which speakers round this back vowel. 

However, this is hypothesis is not supported by /o/ , the effect size of which is the lowest for 

all parameters. To derive any conclusion of the usefulness of individual vowel qualities as 

carriers of speaker-specific information, a more focused study would have to be conducted.    

7.1.3. Linear discriminant analysis 

Since all three parameters were found to reflect statistically significant differences 

between speakers for all vowels in all positions, the whole sample was subjected to LDA, 

which confirmed the results obtained by ANOVA and offered more insight into the 

discriminative power of the parameters.  

The classification success rate based on the combination of the three parameters was 

15.84%, which needs to be compared with classification success rate that would be caused by 

change, i.e. 6%. The combination of the three parameters has just proved to have some 

discriminative power. Out of the three parameters, H1-A3 has been found to contribute to the 

discrimination of speakers in our study the most as its values have been found to yield the 

smallest intraspeaker variance.  

Recognition of speakers proved to improve in stressed syllables (from 15.84% to 

19.55%), which confirmed our expectation that in stressed syllables, vowels are the most 

stable and speaker-specific, and therefore most suitable for discrimination of speakers. 

Unstressed and post-stress syllables scored considerably lower, 14.61% and 13.10%, 

respectively. The lower classification success rate in unstressed syllables can be explained by 

a lower vocal effort which results in higher within-speaker variance. An additional variability 

appears to be present in post-stress syllables, which scored the lowest. This might be related 
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to a varying degree of f0 movement on the second, i.e. post-stress, syllable. Yet for certain 

speakers, it was vowels in post-stress syllables what yielded the most speaker-specific values.   

However, our expectation that utterance-final stress groups are less suitable for 

discrimination of speakers due to decreasing vocal effort and resulting creaky or breathy 

phonation has been proved only partly. The overall results of our study have shown that 

removing utterance-final stress groups from the analysis leads to an improvement of the 

model by about 2%. When inspecting the scores of individual speakers, it has been observed 

that about half of our speakers exhibits higher classification success rate in utterance-final 

stress groups. We consequently cannot exclude the possibility, that for other speakers or in 

real recordings which are used in forensic casework, vowels in utterance-final stress groups 

would be more speaker-specific. Both should be included in the analysis. 

The finding by ANOVA that front vowels could discriminate speakers better than 

back vowels could not be confirmed by LDA since the sample was too small to yield stable 

results. Yet we conducted LDA with these limitations on mind. We believe that the 

considerable difference between the classification success rates of /e/ (20.92%) and /o/ 

(14.71%) holds some promise for enhancing the discriminative power of these parameters. 

Moreover, the classification success rate might be again expected to increase when only 

stressed syllables are considered. For this assumption to be confirmed, a future study would 

need to examine the discriminative power of individual vowels in more detail and their 

possible interaction with other factors. 

Another interesting finding of our study was the fact that the parameters H1-H2 and 

H1-A1 overlap to a great extent, specifically, in ⅔ of the cases. Its removal from the analysis 

proved that the efficacy of the whole model indeed does not change much. The classification 

success rate decreased from 15.48% to 13.41%, which is still well above the chance 

classification success rate. It has also been found that the differences between 2-predictor and 

3-predictor LDA for different data are not linear; the difference being negligible in stressed 

and post-stress syllables and the highest in unstressed syllables. Since we concluded that 

stressed syllables are the most suitable for discrimination of speakers, the usefulness of H1-

H2 appears to be questioned in the present study. This is supported by the fact that some 

speakers were discriminated better by only H1-A1 and H1-A3 than by the combination of all 

three parameters. However, others exhibited considerably better results with all three 

parameters. The parameter H1-H2 could also prove more useful with other speakers, for 

instance, for male speakers. Since f0 of male speakers is approximately a half of f0 of female 

speakers, we could expect that H2 would be better separated from A1 and the parameter H1-
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H2 would contribute to the discrimination of speakers more than in the present study. Yet 

though the discriminative power of both H1-A1 and H1-A3 has been demonstrated, the 

contribution of H1-H2 appears less clear.  

Another interesting finding by our study was the fact that the three parameters appear 

to distinguish types of speakers. A parallel has been found between classification success rate 

of a category and the number of cases it contains. Following the presupposition that if a 

speaker is frequently assigned to another speaker, there has to be something which “makes 

him more alike another speaker” than himself or herself, we manually assigned the least 

successful speakers to those to whom they were most frequently assigned by classification. 

This has surprisingly led to a decrease in the overall success rate. Yet we believe that this 

would be worth examining in more detail by a future study. 

 

Fig. 26 Comparison of classification success rate of LDA with 2 and 3 predictors in stressed syllables and the 
whole sample for 6, 11 and 16  speakers. The success rate below the graph for individual cases is in %. 

The following step was to remove these speakers entirely and observe its effect on 

the results. Since the improvement of LDA with 3 predictors was larger than of LDA with 2 

predictors both in stressed syllables and the whole sample (see Figure 18, p. 80), it appears 

that the five speakers who were removed were those, whose H1-H2 exhibited the most 

variable values or, alternatively, those whose H1-H2 and H1-A1 values overlapped the most. 

Concerning the effect on the success rate of individual speakers, it has been shown that while 

the improvement was only minor in stressed syllables, the increase of classification success 

rate was more marked in the whole sample, i.e. for stressed, post-stress and unstressed 

stressed all stressed all
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syllables together. From that we surmise that while in post-stress and/or unstressed syllables 

the remaining 11 speakers were also assigned to those 5 which we later decided to removed, 

this overlap was not present in stressed syllables. This again supports the view that in stressed 

syllables, the parameter values exhibit smaller within-speaker variance.  

Removing 5 more speakers predictably resulted in a further improvement of the 

model. As Figure 26 shows, the difference between 2-predictor and 3-predictor LDA became 

more leveled, which would again point to a low significance of H1-H2. However, in the LDA 

with 6 categories, H1-H2 proved more important for discrimination of speakers than H1-A1, 

though only in the whole sample. We can therefore conclude that even though H1-A1 and H1-

H2 overlap to a great extent, removal of any would lower the efficiency of the whole model. 

This is also supported by the fact that each parameter distinguishes different speakers. 

Therefore, though they differ in their importance for the whole model, they all contribute to 

its efficacy. One more interesting fact to observe in Figure 26 is that the removal of the 

second five speakers caused a higher improvement than the removal of the first five speakers. 

Since in real casework only two speakers are compared, it could be expected that the efficacy 

of the model would be considerably higher. Yet there would be other factors which would 

hinder the analysis, such as different material, different recording conditions, etc.  

7.2. Long-term measures of spectral tilt 

Since only one value for each long-term measure of spectral tilt has been obtained in 

the present study, these results could be used for complementation and comparison with the 

short-term measures, but not for any conclusion as to their discriminative power. 

 The values converted to z-scores (Figure 23, p. 87) offered us an overview of how 

the values are distributed and suggested that our speakers significantly differ in their long-

term spectral tilt as defined by the three indices. These results indicate considerable 

differences in the contribution of voice source and vocal tract to voice quality in glottal 

configurations for our speakers, though, as has been mentioned, their discriminative power 

could not be assessed. The reason for that is that we had only one value of each index per 

speaker and research suggests that intraspeaker variability of the LTAS can be considerable 

(see Section 3.2.1). However, we tried to enhance comparability by long enough samples to 

factor out the contribution of individual sounds and, in addition, by using the same text for all 

speakers. Our speakers were likewise instructed to keep constant loudness, though its effect 

on the LTAS could not be avoided entirely. Having these limitations in mind, we presented a 

three-dimensional picture of distribution of the values for the three parameters among our 
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speakers (Figure 25, p. 92). Certain speakers thus appear to be well distinguished from others. 

However, if more values for each speaker were available - which would be necessary in real 

casework – it can be expected that the speaker spaces would overlap considerably, though for 

some speakers more than for others.  

When we compared the results of the long-term measures (Figure 23, p. 87) with the 

classification success rate of LDA, parallels have been found. Specifically, speakers who 

reached the highest success rates in LDA based on short-term measures of spectral tilt were 

also those who exhibited the most distinct values of the indices expressing long-term spectral 

tilt. Similarly, speakers who scored low in LDA yield very average values in long-term 

measures. In other cases, these two approaches appear to complement each other. For 

instance, some speakers who were found difficult to distinguish by their short-term measures 

(according to their squared Mahalanobis distances), appeared distinct by their long-term 

measures. Long-term measures could thus complement short-term ones by their virtue of 

factoring out the differences between vowels and providing an average value for a speaker. 

Their usefulness could be expected to increase in real conditions where obtaining comparable 

samples is rather exceptional. However, also in case of long-term measures, comparability 

and the strength of conclusion which can be in a given situation made must be considered.  

Nevertheless, this study demonstrates that spectral tilt as quantified by the three 

short-term measures conveys some speaker-specific information, and that spectral properties 

of the source signal could thus be possible indicators of one’s identity. Yet its applicability for 

speaker identification purposes would have to be addressed directly in a separate study which 

would examine its robustness in real-life conditions which are ordinarily encountered in 

forensic casework.   

7.3. Limitations of the present study and suggestions for future research 

Since this is a pioneering study, it undoubtedly has many limitations and only opened 

some of the questions which need to be addressed in order to assess spectral properties of the 

source signal as speaker-specific cues. 

Already in the measurement section, it has been pointed out that H2 often equals A1. 

The degree of this overlap has been later quantified by correlations which revealed that the 

measures H1-H2 and H1-A1 overlap in about two thirds of cases, especially in high vowels, 

where F1 is the lowest. This presents a considerable drawback to our study and possible 

corrections or alternatives might be hypothesized. One option could be to stick to Hanson’s 

methodology, i.e. that A1 is the amplitude of the strongest harmonic of the first-formant peak. 
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To do so consistently, expected (and extended) frequency ranges would have to be stated in 

advance. Another option would be to test other spectral relations as possible indicators of 

speaker identity. Some researchers suggest that ratios of formant frequencies, such as F1/F2 

and F2/F3 (Hollien, 1990, p. 42; Skarnitzl, 2012, in print) convey some speaker-specific 

information as the ratios are not changeable at will. Since there is some relation between 

frequency and bandwidth as well as bandwidth and amplitude, these findings could thus 

provide a basis for the search of other possible parameters.  

Though this study addressed the influence of vowel quality, syllable status with 

respect to stress and stress group position in the utterance, the conclusion drawn were not 

definite and other studies could examine the influence of these variables on the parameter 

values in more detail. This is suggested by the observation that despite the fact that overall 

success rate was reached in stressed syllables, some speakers scored higher in post-stress or 

even unstressed syllables. Similarly, the overall classification success rate was higher in 

utterance-non-final stress groups but half of our speakers exhibited more speaker-specific 

values in utterance-final ones. The assumption that individual vowel qualities could differ in 

their discriminative power could not be tested due to a low number of instances of individual 

vowels. We consider this possibility worth examining in more detail. Importantly, the 

possibility has not been falsified that front vowels are simply those where H1-H2 and H1-A1 

overlapped the least. This should have been attended to. Other variables which could be 

studied for their effect on parameters and have not been addressed in the present research 

could be, for instance, the position of intonation phrase boundary. 

  The possibility that the three parameters could discriminate types of speakers could 

likewise be addressed in more detail. This is what the classification matrix appeared to 

indicate. Importantly, the fact that these parameters do not discriminate our 16 speakers 

should not diminish their potential. The results need to be seen in context. Since all the three 

parameters quantify the short-term spectral tilt, it could not be expected that they will 

discriminate 16 speakers alone. Its power will be enhanced when combined with other 

parameters or indicators of speaker identity mentioned in the theoretical part, such as formant 

frequencies, temporal structuring, and others. The intra- and interspeaker variability should 

also be examined in more detail to show how these parameters relate to the concept of speaker 

space mentioned in the theoretical part of this study.  

Furthermore, if the parameters were to be used for forensic purposes, their robustness 

in real-life conditions normally encountered in forensic casework, such as the presence of 

speaker distortion or system distortion, would have to be examined. Other limitations likewise 
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need to be considered; for instance, the fact that often the material available for comparison is 

very diverse and many variables cannot be controlled.  

As for the long-term measures, the main drawback was that only one value for each 

index per speaker has been obtained. Having more values of the indices would allow us to 

make a better picture of how the values for our speakers are distributed in a multidimensional 

space created by these parameters. The significant advantage of the long-term measures of 

spectral tilt is that they can be measured automatically. If these indices proved to convey 

some speaker-specific information, its application would also be beneficial for speaker 

verification or speech synthesis.  

Lastly, let us quote Rose (2002) who comments:  

Irrespective of the type of the parameter, the ultimate question remains the same. Given these speech 

samples, what is the probability of observing this difference for this parameter assuming the samples 

come from the same speaker, and what is the probability of observing the difference assuming 

different speakers? 

Rose (2002, p. 65) 

Nevertheless, before its usefulness for forensic purposes can be discussed, these parameters 

need to be examined in both studies that carefully control any undesirable variables, and in 

studies that use more real-life samples. Finally, as has been noted in the theoretical part, 

researchers have to be aware of the limitations of acoustic analysis which should be always 

complemented by auditory one.  
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8 CONCLUSION 

As has been discussed in the theoretical part, speaker identification remains one of 

the most challenging tasks of forensic phonetics due to the fact that our knowledge of how 

individuality is reflected in a voice is still limited. This is complicated by the fact that a 

human voice is far from constant. It is susceptible both to speaker- (volitional as well as non-

volitional) and system distortion. Consequently, it cannot be said with certainty whether 

intraspeaker is always smaller than interspeaker variation, in all situations and under all 

conditions. The conclusions that one can make are therefore always tentative, never absolute. 

The strength of conclusions depends on each individual case and on reference information 

from the field of phonetics, sociolinguistics, and other.  

Finding speaker-specific cues enhances speaker identification because it adds 

dimensions to a space within which each speaker occupies certain space; it makes the space 

more definite. Adding dimensions could arguably result in the fact that speakers stop 

overlapping. The present study aims to add to such a research. 

Apart from the use in speaker identification, finding reliable indicators of speaker’s 

identity would be beneficial also in speaker verification. Nowadays it is possible to access 

personal information, such as a bank account, by voice command. Examining speaker-specific 

cues and their robustness, such as its resistance to voice disguise, can therefore bring an 

improvement into this area, too.  

Previous research has pointed out several domains which hold promise as conveying 

some speaker specific information. These include the acoustical properties of certain 

segments, both consonants and vowels. Other studies focused on the suprasegmental level and 

revealed that temporal structuring or melodic patterns can also offer some clues to speaker’s 

identity. Since recent research in prosody suggests that voice quality or phonatory 

modulations is used for paralinguistic purposes such as fundamental frequency but 

independently of it, it is possible that some personal idiosyncrasies can likewise be discovered 

in phonatory modifications or voice quality. The present study sought to examine this 

possibility.  

The LTAS has been considered the most relevant tool for quantifying voice quality; 

long-term spectral tilt has been directly related to perceived differences in voice quality by 

previous research. The parameters used for its quantification express the ratio of the amount 

of energy in certain frequency bands, such as alpha index and Kitzing index, or the difference 

between two spectral peaks, such as Hammarberg index. Another set of parameters which 
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reflects differences in glottal configuration is derived from the acoustic spectra of vowels and 

quantifies short-term spectral tilt. Our study focused on examining the latter group of 

parameters; specifically, their usefulness for discriminating 16 Czech female speakers. The 

results of the analysis were then compared with the results obtained by the long-term 

measures.  

Our study has shown that speakers exhibit statistically significant differences in the 

values of these parameters for all vowels in stressed, post-stressed as well as unstressed 

syllables of both utterance-final and utterance-non-final stress groups. A subsequent LDA 

allowed us to examine the data in more detail.  

The effect of stress on discrimination of speakers has been confirmed. Classification 

success rate was generally the highest in stressed syllables, though certain speakers exhibited 

more speaker-specific values in post-stress syllables. Similarly, though utterance-non-final 

stress groups in general yield higher recognition rate, a half of the speakers diverges from this 

trend. An interesting fact pointed out by this study is the possibility that certain vowels are 

more suitable for discriminating speakers than others. The results of ANOVA for every 

parameter revealed the largest effect size for /e/ and the lowest for /o/. With the exception 

of the parameter H1-A3, the results appear to indicate that front vowels could be more 

speaker-specific than back vowels. However, this hypothesis could not be confirmed or 

disproved by LDA due to an insufficient sample, and would need to be further tested.   

Another question which this study has opened is whether these parameters would 

distinguish types of speakers. Future research could thus focus on why certain speakers are 

assigned to others. One more interesting finding is the degree of overlap of two parameters, 

namely H1-H2 and H1-A1, and the fact that all parameters contribute to speaker identification 

to a different degree. H1-H2 has been found the least useful, in case of some speakers it even 

caused a decrease in classification success rate. However, it would need to be further tested on 

different material, or under different conditions to make any conclusion about its usefulness.  

Certain parallels have been found between short-term and long-term measures of 

spectral tilt suggesting that these measures do reflect individual differences in glottal 

configuration and voice quality. Though many questioned remained unasked and those asked 

give only tentative answers, this study will meet its purpose if it opens another area where 

speaker-specific cues could be found, and motivates further research in finding them.  
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APPENDIX 

TEXT  

Já ti řeknu, co uděláš. Nejdřív najdeš Hučku a Atamana.  
Dobře. A až je najdu? 
Řekneš jim, co si myslíš.  
To asi budou dost nadávat, co?  
To bych se nebál. 

Začni opatrně. A o další spolupráci bych se nezmiňoval. 
To by mě ani nenapadlo. 
Řekneš jim, co si myslíš? 
Nevím, snad nebudu muset. 
Dobře, nezapomeň, hlavní heslo: opatrnost. 

Nejlepší bude, když zatroubíte a počkáte, až vylezou. 
Hmm, no a potom? 
Řeknete jim, co si myslíte. 
A vy na nás počkáte? 
Jasně, ani se nehneme z místa. 

Možná budou problémy. Promysleli jste si to pořádně? 
Jo, krok za krokem. 
Řeknete jim, co si myslíte? 
Určitě, hnedka zkraje. 
No, připravte se, že budou prskat. 

Takže se posadíš a budeš se usmívat. Žádnou paniku. 
Jasně. A co mám dělat, až přijde ten jejich šéf? 
Zeptáš se, co bude dál.  
To je všechno? Nemám mu říct, že už to víme? 
Ne, nic nevíš. Ani slovo. 

Už se někdo ozval? 
Ne. Všichni to vědí, ale vesele se předstírá, že nic. 
To je teda situace. Zeptáš se, co bude dál? 
Budu muset. Jinak budeme předstírat a předstírat, až už bude pozdě. 
Hmm, to ti nezávidím. 

Když budou chtít napřed vidět peníze, řekněte jim, že jsou na cestě. 
Jasně. A čím máme začít, až nás vezmou dovnitř? 
Zeptáte se, co bude dál. 
Myslíš, že v tom jedou všichni? 
Určitě. Je to jejich priorita. 

Máte nějakou představu, jak to bude probíhat? 
Zhruba. Od nich přijdou taky tři. 
To by mohlo zaskřípat. Zeptáte se, co bude dál? 
Zeptáme, ale ne hned zkraje. Musíme pomalu. 

Až začnou o tom transportu, nastražíš uši. 



 

Vždyť mě znáš. Jen mě trochu nasměruj. O co jde? 
Zjistíš, v kolik to pojede.  
No, to je snad samo sebou. 
Jo, ale potřebujeme to přesně. Hodně přesně. 

Tak, ještě kartáček na zuby a je to. Snad mám všechno. 
Dobře, chceš ještě nějak pomoct? 
Zjistíš, v kolik to pojede? 
No, na ty informace jsem volal, ale pořád bylo obsazeno. 
Na internetu to není? 

Trochu se bojím, že je tím rozčílíte. 
Aha, my asi potřebujeme, aby byli v klidu. O co půjde? 
Zjistíte, v kolik to pojede.  
No jo, ale to je to poslední, co by nám chtěli prozradit. 
Právě proto žádný provokace. Klid. 

Přestaňte se mi tu motat pod nohy. Nevím, co dřív. 
Ale my jsme přišli pomáhat. A na to nádraží taky dojdeme. 
Zjistíte, v kolik to pojede?  
Dobře, něco po poledni, jo? 
Jo. Určitě před druhou. 

Moc se neošívej, ale dělej, že to je pro tebe novinka.  
Proč? Hrozí něco? 
Nemáš ponětí, kdo pojede vzadu.  
Jasně, chápu. 
Hlavně buď bez obav, už jsme zvládli horší věci. 

Hodilo by se trochu víc informací. 
Já už nemám čas na to myslet. 
Nemáš ponětí, kdo pojede vzadu? 
Nevím. Doufám, že ne ten idiot Kukla. 
To by byl kolosální malér. Jen ne Kukla. 

Začíná mě mrazit v zádech. Vy jste v pohodě? 
Jasně. Ty myslíš, že by se to mohlo zvrtnout? 
Nemáte ponětí, kdo pojede vzadu.  
No, to nemáme. Snad ne posily. 
Když tak radši nic nezkoušejte. Ještě bude spousta šancí. 

Kam bych to měl soustředit? Máte nákresy? 
Kousek za půlku. A nebo prostředek. 
Nemáte ponětí, kdo pojede vzadu? 
Krmivo, pomocná síla a sanitka. 
Jo, takže ne moc za půlku. 

A pamatuj: o místě určení ani slovo. 
Takže se nemám zapojovat? 
Nedávej na sobě nic znát. Netušíš, kam to přesouvají. 
Jasně. Mám je k tomu nějak nasměrovat? 
Ne. Až se o tom začnou bavit, tvař se překvapeně. 

Kdo ví, kam až se s tím povlečeme. 



 

A to se to ještě může zkomplikovat kvůli ostraze. 
Netušíš, kam to přesouvají? 
Ne. Ale dělají s tím zbytečně tajnosti. 
Jako by to bylo bůhví co. 

Takže všechno to teď závisí na vás. 
No jo, ale jak se k tomu máme stavět. 
Nesmíte ani mrknout. Netušíte, kam to přesouvají. 
Jo, to se lehce řekne. Nám se klepou ruce už teď, že jo, Frede? 
Klid copak jste začátečníci? 

To je teda náklaďáků. To snad nemá konce. 
Hmm. Na tohle si čas a prostředky najdou. 
Netušíte, kam to přesouvají? 
Někam za Rudnou. Ale tam se teď nikdo nedostane. 
A ze vzduchu nic vidět není? 

Tentokrát nemají šanci. Máš to v kapse. 
Proč myslíš, že jsem ve výhodě? 
Víš, kdy to dostaneš. 
No, to mi pár minut získá. Ale jinak nevíme nic. 
Já ti říkám, že je to v suchu. 

Měl bys mít všechno po ruce. Bude zmatek. 
No jo. Už jsem si to kontroloval nejmíň pětkrát. 
Víš, kdy to dostaneš? 
Hned jak Batulka zavře bránu. 
Teda tam bych se nechtěl přimotat. 

Máte jeden trumf, a na tom se dá vydělat. 
Jak to? 
Víte, kdy to dostanete. 
No jo, to je pravda. 
A právě s tím nikdo nepočítá. 

Jen abyste měli dost peněz, až to přijde. 
Bez obav. S tím se počítá. 
Víte, kdy to dostanete? 
No, někdy po druhý hodině. Až zmizí první směna. 
Musíte hrát hodně opatrně. Nepřehánět sázky. 

 

 

 

 

 

 

 


