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If we had the chance to look at the night sky through X-ray-sensitive eyes, from the ground we

would not be able to see anything, since the atmosphere absorbs X-rays already at high altitudes.

In that way, besides other things, it protects the life that has developed under its coat over the

past milliards of years. We would have to fly higher than the birds, up above the clouds and

mountains, as high as the orbit - then we could see the sky spangled by X-ray stars. But it would

be an altogether different view to the one we are used to. The optically brightest stars would shine

only a little and those we normally do not even see would glare as bright lighthouses. We would

recognize different constellations and the north would no longer be pointed by the North Star. We

would see hundreds of bright sources in the haze of the Milky Way. Most of them would just

whisper, but some of them would play a fifth.
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PREFACE

In many active galactic nuclei as well as in cataclysmic variables and X-ray binaries,
there are observed rapid temporal changes of the flux and of individual spectral features.
These sources contain a compact object surrounded by an accretion flow in the form of
a disc or a torus. The strong gravity near these objects introduces distinctive deviations
from Newtonian physics including bending of light rays, gravitational redshift and exis-
tence of the inner-most stable circular orbit. All these effects alter profiles of observed
light curves and have impact on power spectra, which may be in principle used to test
predictions of general relativity.

Low-mass X-ray binaries show variability in X-ray flux on a wide range of time scales.
The most prominent phenomenon of the last decade is the discovery of aperiodic changes
in flux, known as high-frequency quasi-periodic oscillations (HFQPOs). They are observed
both in neutron-star and black-hole sources and feature two related peaks in the power
spectrum (therefore they are also known as twin-peak QPOs). These oscillations are
extensively studied, because their characteristic periods are close to dynamical time-scales
for any motion under the influence of gravity within a few gravitational radii off a compact
object.

This thesis concentrates on the phenomenon of high-frequency quasi-periodic oscilla-
tions from two perspectives: how are the frequencies of the two HFQPO peaks related to
each other and what can be deduced from the correlation; and is it possible to modulate
the outgoing radiation by effects of strong gravity only, or do intrinsic local variations of
the accreting medium play a major role?

In Chapter 1, the twin-peak quasi-periodic oscillations are first introduced and their
properties are summarised separately for neutron-star and black-hole sources, including
the new evidence for an inverse-mass scaling of their frequencies. Then the focus is kept on
neutron stars, where the observed frequencies vary in time. It is found that the frequencies
are approximately linearly correlated and implications of this fact are discussed. Chapter 2
concentrates on the epicyclic resonance model of HFQPOs and compares its predictions for
the angular momentum of the Galactic microquasar GRO J1655−40 with a recent estimate
made by fitting of the X-ray continuum. It is shown that none of the present resonance
models is consistent with the measured value of the spin. Instead, a resonance between the
vertical epicyclic and the precession frequency is proposed as an alternative to satisfy the
current observational evidence. In Chapter 3, the attention moves to black-hole QPOs. A
simple model of a luminous torus filled with an optically thin gas is constructed in order



to explore possible strong gravity effects on a modulation of an emergent flux. Finally
in Chapter 4 it is shown, by using a numerical ray-tracing, how basic global oscillation
modes of a gaseous torus affect the outgoing radiation received by a distant observer and
how the flux modulation depends on the geometry and various other parameters of the
torus. The results of the model are then compared with outputs from a three-dimensional
magneto-hydrodynamical simulation of an accretion flow.

Results of Chapter 1 are published in Abramowicz, Bulik, Bursa & Kluźniak (2003),
Abramowicz et al. (2005a,b) and in a paper in preparation (Abramowicz et al. 2006). Ideas
of Chapter 2 will be published in Bursa (2006). The construction of the oscillating torus
model and the three-dimensional ray-tracing code have been described in Bursa (2004).
Results of Chapter 5 are presented briefly in Bursa et al. (2004) and in an extended version
in Bursa (2005).

I am thankful to Marek Abramowicz and W lodek Kluźniak, who suggested the idea of
torus oscillations to me; to Jǐŕı Horák, with whom I discussed a lot of details; to Ladislav
Šubr, who helped me to improve the text; and my greatest thanks belong to Vladimı́r
Karas, who supervised all my work and who gave me a lot of useful advice and incentive
comments. I am also thankful to an innominate reader for his last-minute remarks upon the
text layout. During years, my work was supported by the Czech Science Foundation grant
205/03/H144, by grant 299/2004 of the Charles University and by grant IAA 300030510
of the Academy of Sciences.
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CHAPTER 1

High-frequency quasi-periodic
oscillations

Instead of expected clearly periodic pulsations similar to those seen in Her X−1 (Alpar
et al. 1982), a new unique kind of X-ray signal modulation – so called quasi-periodic
oscillations, QPOs – was detected in 1980s by the EXOSAT satellite during observations
of X-ray emissions from several low-mass X-ray binary sources (van der Klis & Jansen
1985; van der Klis et al. 1985). Fourier analysis of detected lightcurves revealed broad
peaks in the power density spectrum at different frequencies in the 1− 50 Hz range (the
sensitivity of EXOSAT was below 200 Hz).

During the time different types of QPOs were found in many sources in the Galactic
bulge. They are characterised by a specific shape and frequency range (see Table 2.2 in
van der Klis 2005 for the classification). In some cases we already know what causes
their excitation, but others are still puzzling. The most striking, the most interesting
and undoubtedly the most mysterious type of QPOs are so-called high-frequency quasi-
periodic oscillations (HFQPOs), which appear in the range of frequencies that Keplerian
orbits very close to compact stars would have.

In the first three sections of this Chapter we briefly review current observational evi-
dence for the high-frequency quasi-periodic oscillation seen in neutron-star and black-hole
sources, including the evidence and theoretical suggestions for an inverse-mass scaling of
frequencies of these oscillations. In following sections we focus on neutron-star sources
and discover a rather exciting global correlation between the two kHz QPO frequencies;
we look at the properties of this correlation in individual objects and make linear fits to
the data, which we find to have anti-correlated parameters of the slope and the intercept.
The anti-correlation will point out a possible connection of the neutron-star and black-
hole HFQPOs. This Chapter is based on work published in Abramowicz, Bulik, Bursa &
Kluźniak (2003), Abramowicz et al. (2005a) and Abramowicz et al. (2005b).



1. HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS

1.1 HFQPOs in neutron-star sources

In 1996, the initial observation by the newly launched RXTE mission showed two new
simultaneous QPOs at frequencies in the kilohertz range. Sco X−1 and 4U 1728−34 were
the first sources to display these oscillations and nowadays, after a decade of observations,
we know by up to three tens of neutron star sources with kHz QPOs (see reviews in van
der Klis 1997a, van der Klis 2000, Swank 2004 and van der Klis 2005).

The two peaks usually come in a pair, but sometimes one of them may become unde-
tectable, especially at high count rates. The frequencies νU observed for the upper peak
range from approximately 300 Hz to 1200 Hz, in some sources they can occasionally exceed
1300 Hz. Lower peak frequencies νL are observed between 150 and 1000 Hz. In LMXBs,
regimes with essentially identical QPO frequency and energy spectrum can exist at very
different fluxes or mass accretion rates.

The positions of the peaks are not strictly fixed in time. As the count rate varies,
the centroid frequencies change significantly compared to the widths of the peaks. It is
common that the difference between the lowest and highest observed frequency is several
hundred of Hertz (see e.g. van der Klis 2000, Belloni et al. 2005 for a list of frequency ranges
in individual sources). The correlation between the peak position and the count rate forms
a series of parallel tracks (Zhang et al. 1998; Méndez et al. 1999). On timescales of hours,
the QPO frequency is typically well correlated with luminosity, but on longer timescales
of days or weeks the correlation is lost and apparently different levels of luminosity can
give the same frequency. When the frequency is the same, the rms amplitude is nearly
the same too (Méndez et al. 2001). This suggests that there is an extra source of X-ray
luminosity, which does not participate in the oscillations and is variable on day to week
timescales (van der Klis 2001). Because no sudden and discontinuous jump has ever been

Figure 1.1: Twin kHz QPOs in left: 4U 1608−52 (Mendez et al. 1998); and right: the accreting
pulsar SAX J1808.4−3658 (Wijnands et al. 2003) with the 401 Hz pulsar spike. (Adopted from
van der Klis 2005.)
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1.1 HFQPOs in neutron-star sources

observed in the QPO frequency as the count rate decreases, the mechanism is probably
such that at some point the kHz QPOs cease, being unobservable for some time, and then
become observable again at a some higher frequency (Zhang et al. 1998). Variations of
the kHz QPO frequencies are observed also on sub-second timescales. In Z sources (see
a definition below) occurs a ∼6 Hz QPO with amplitude of 1− 3 % rms in the normal
branch of the Z track. In Sco X−1 amplitudes and frequencies of the kHz QPO were
observed to systematically vary in phase with this 6 Hz oscillation (Yu et al. 2001).

The distance between the peaks changes as well. They get closer to each other by
several tens of Hertz when they move from low to high frequencies within their range.
The separation frequency ∆ν ≡ νU − νL is approximately commensurate with the spin
frequency νspin of the neutron star or half of that. In the eight sources, where both
the spin and the separation frequency were measured, ∆ν was 0.7 − 1.3 times the spin
frequency for slow rotators (νspin < 400 Hz), and 0.36− 0.57 times the spin frequency for
fast rotators (νspin > 400 Hz; van der Klis 2005). The spin frequency of neutron stars can
be measured either directly if the source is an X-ray pulsar, or induced from the frequency
of burst oscillations (Strohmayer et al. 1997), which likely occur very near νspin, as verified
in the case of millisecond pulsars SAX J1808.4−3658 and XTE J1807−294 (in’t Zand et al.
2001; Linares et al. 2005). In these two pulsars, where pulsations, burst oscillations and
kHz QPOs are observed simultaneously, the ratios are 0.49 (SAX J1808; νspin = 401 Hz)
and 0.99 (XTE J1807; νspin =191 Hz).

The measurements of delays between photons of different energy bands brought initially
surprising results. In the case of the black hole Cyg X−1, hard photons are delayed behind
soft photons, which has been understood in terms of a coronal model, where low energy
photons from the disc are Compton-scattered in the hot corona (Crary et al. 1998; Nowak
et al. 1999). However, the sign of time lags for the QPOs in several sources is the opposite
(Vaughan et al. 1997; Lee et al. 2001), i.e. the hard photons arrive ahead of the soft ones.
The delay corresponds to the distance of ∼20 km, which is consistent with emission from
the neutron star surface and from the inner edge of the disc. Indeed, Gilfanov et al.
(2003) has shown that the millisecond X-ray flux modulations originate on the surface of
the neutron star, although they may still be driven by the the disc or by the disc–star
interaction.

Low-mass X-ray binaries containing weakly magnetised neutron stars may be divided
into two classes, Z and atoll sources, based upon correlations between their spectral colours
and Fourier timing properties at X-ray wavelengths (Hasinger & van der Klis 1989). Plots
of a ‘hard’ colour against a ‘soft’ colour from Z sources usually form a Z shape track that
is traced on time scales of hours to days. Plots from atoll sources often resemble a band of
points at constant hard colour, and ‘islands’ appearing on time scales of weeks and months.
Power spectra from both types of sources may be described with similar broad-band noise
components, but Z sources exhibit strong (up to 10% rms) low-frequency QPOs in the
range 1− 60 Hz, while atoll sources do not. The exact cause of the spectral and timing
variability is still unknown, but it is thought that the differences between the two classes
result from a higher rate of mass transfer in Z sources than atoll sources (but see Muno
et al. 2002 for a possible unification scheme).
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1. HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS

1.2 HFQPOs in black-hole sources

QPOs are also observed in black-hole sources. There are at present seven known Galactic
black hole candidates that exhibit HFQPOs in the hectohertz range (40− 450 Hz), and
for four of them there is an evidence that the HFQPO peaks occur in pairs with central
frequencies in the 3 : 2 ratio (see a comprehensive review by McClintock & Remillard
2005).

HFQPOs in black-hole sources are much more transient and weaker phenomenon than
the kHz QPOs in neutron stars. They occur occasionally, during outbursts and only when
the source is in the steep power law (SPL) or in a hard–SPL intermediate spectral state.
They have never been seen in the pure hard or in the thermal dominant state1 (see e.g.
Remillard 2005 for definitions of black-hole spectral states). In the SPL state, the energy
spectrum is characterised by the presence of some black-body component and a very steep,
dominant power-law component with index Γ > 2.4 and no apparent cut-off in energies
(Grove et al. 1998). The state is thought to be associated with a compact non-thermal
corona with some presence of the disc.

Oscillations are much more subtle than the ones observed from neutron stars. Their
rms amplitudes are typically only ∼1% (0.5 % < rms < 5 %) of the mean count rate, which
pushes the detections to the instrumentational limits. Sometimes several observations with
similar spectral and timing characteristics have to be grouped together in order to get a
statistically significant evidence.

1That does not necessarily mean that in the hard or thermal state HFQPOs are not produced. They
may be too faint to be detected.

Figure 1.2: Examples of high-frequency QPOs (40-450 Hz) seen in black-hole binary systems.
Sometimes both oscillations of the 3 : 2 pair are detected, but more often only one peak can be
seen. (Adopted from Remillard 2005.)
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1.3 Inverse mass scaling

Microquasar νU [Hz] νL [Hz] discrepancy mass [M�]

XTE 1550−564 276± 3 184± 5 0.0 % 8.4−10.8

GRO 1655−40 450± 3 300± 5 0.0 % 6.0−6.6

GRS 1915+105 168± 3 113± 5 0.9 % 10.0−18.0

H 1743−322 240± 3 160± 8 0.0 % —

Table 1.1: The list of all microquasars, where twin HFQPOs have so far been detected. Mass
estimates from optical measurements are listed as well. The discrepancy indicates how much the
ratio of the two frequencies differs from the exact value of 1.5.

Frequencies of the two peaks are quite stable, reproducible and form the 3 : 2 ratio with
accuracy better than 1 % (Table 1.1). There are two observations, with a faint detections
however, which violate the exact ratio by ∼15 %. It is plausible that the peaks change
their positions similarly to the kHz neutron-star QPOs, but the variations are very little
and so far have been reported from one source only (Miller et al. 2001), where the νL

frequency varied by ∼5 % clearly correlated with the total count rate.

Both peaks can sometimes be detectable at the same time, but more often only one
can be seen. The selection depends on the ratio of the thermal disc flux to the power-
law flux. When it is high, a very coherent νU oscillation appears, while a broader νL

oscillation can be seen if disc does not contribute significantly. The rms amplitudes of
oscillations are anti-correlated with the disc to total X-ray flux ratio. There is a clear
trend, in which the lower νL oscillation is seen when the source has high overall X-ray
luminosity, while the higher νU oscillation is seen at lower luminosities. Likewise the νL

peak is broader and is seen mainly in the low energy band (6−30 keV), while the νU peak
is narrower and likes high energies (10− 30 keV and probably even higher, but the range
is limited by low count rates).

1.3 Inverse mass scaling

The HFQPO frequencies in black hole candidates appear to be uniquely prescribed by
nature for each individual source. They always stay fixed and in the 3 : 2 ratio, but differ
from source to source. This suggests that they reflect some very fundamental property of
the system. According to the ‘no-hair’ theorem, every black hole is entirely characterised
by three externally observable parameters: mass, angular momentum and electrical charge.
Ignoring charge2, there are two parameters only to describe a black hole, the mass and the
spin, which completely determine the structure of the surrounding spacetime and drive
the particle motion in the gravitational field.

2 All matter we observe in the universe appears to be on average electrically neutral, therefore black
holes formed from such matter are believed to have no or a very small charge.
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Figure 1.3a: The frequency–mass scaling for XTE J1550−564, GRO J1655−40, and
GRS 1915+105. The upper frequencies of 3 : 2 pairs are plotted vs. measured masses. The
dashed line shows the best fit relation, νU = 2.8 kHz (M/M�)−1. (Adopted from McClintock &
Remillard 2005.)

Figure 1.3b: The global frequency–mass scaling across the range of masses. This illustration
shows the microquasar ‘best fit’ relation (1.1), dashed line, extended to the range of masses going
from 1 up to 107 M�. Colour bars represent different classes of objects and thick black lines show
some individual objects including the neutron star Sco X−1, the microquasar GRS 1915+105,
the speculative intermediate-mass black hole M 82 X−1 and the Galactic super-massive black
hole Sgr A*. The line lengths indicate the uncertainties in the mass and/or frequency estimates
for the objects. (Idea from Török 2005a.)

In strong gravity, the typical length-scale is the gravitational radius, rg ∼ M , and the
typical velocity is the speed of light, c = 1. Thus, the typical frequency is ν ∼ c/rg ∼ 1/M

and scales inversely proportional with mass. This is also the case for the Keplerian orbital
frequency and for all other frequencies of a test particle motion in a gravitational field
(Appendix A). If HFQPOs originate in the fluid motion in the accretion flow, their
frequencies should also scale as 1/M , assuming that they stay around a same place.

Indeed, initially Remillard et al. (2002) and later McClintock & Remillard (2005)
reported that for three microquasars showing the 3 : 2 QPO frequency pairs, where the
mass is known independently from optical measurements, the relationship between the
HFQPO frequencies and BH masses scale as 1/M (Figure 1.3a) and can be well fitted by
a formula

νU = 2.8 kHz
(

M

M�

)−1

. (1.1)

It is a very interesting finding, because there is an ambiguity in the angular momentum
of black holes, which affects orbital frequencies and can destroy the 1/M scaling. Hence,
the fact that within uncertainties in mass measurements the formula (1.1) can fit all
three sources suggests that they all may have a similar spin and moreover that QPOs are
produced by the same type of mechanism in every source.
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1.4 The Bursa line

A confirmation of the scaling law has the crucial importance for possible explanations
of HFQPOs. It strongly supports models that identify the oscillations with some type of
orbital motion in the accretion disc. If the origin of oscillations is the same in neutron
stars and black holes, it should be possible (with respect to differences in spin, spacetime
structure and magnetic fields) to roughly rescale the basic QPO properties between the
two classes of sources.

1/M scaling across the range of masses

It is interesting to find out that this inverse-mass-scaling law can be extended over a
wide range of masses (Figure 1.3b). Having stellar-mass black holes at one end of the
spectrum of masses, we can apply the Mirabel & Rodriguez (1998) general analogy between
microquasars and quasars to the properties of accretion disc oscillations as well and we
expect frequencies in the millihertz–microhertz range in the case of active galactic nuclei
at the opposite end of the mass spectrum. If ultra-luminous X-ray sources contained
intermediate-mass black holes, which is still a speculation (e.g. King et al. 2001), they
would lie in between, in the decihertz–millihertz range.

Sgr A* is the closest super massive black hole, sitting right in the centre of our Galaxy.
From the analysis of orbits of proximate stars within 10−1000 light hours off Sgr A*,
the current best estimate of the central mass is (3.7±0.2)×106 (R∗/8 kpc)3 M� (Ghez et
al. 2005), where the uncertainty in the Galactic centre distance adds an additional 19%
error. This gives the mass of the black hole in Sgr A* most likely to be in the interval
2.8− 4.6×106 M�. Genzel et al. (2003) measured a 17-minute (1020 s) quasi-periodic
variability in an infrared emission originating from within several tens of Schwarzschild
radii from the black hole during flaring events. More recently, Aschenbach et al. (2004)
have reported three other QPO periods, 700 s, 1150 s, 2250 s, in the two brightest X-ray
flares from the Galactic centre. Although the quality of the used light curves is very
low and the resuts have not been so far independently confirmed, the ratio of reported
periodicities is 3.21 : 1.96 : 1, i.e. the possible ‘Keplerian’ frequencies found in Sgr A* are
close to form a commensurable sequence 3 : 2 : 1 (Aschenbach 2004).

Mucciarelli et al. (2005) have recently published an observation of a variable QPO at
frequencies from 50 to 166 mHz in the ULX source M 82 X−1, which appears to be an
analog of the type-C low frequency QPO (see McClintock & Remillard 2005) known from
microquasars. Although this QPO is not a part of a HFQPO pair, if the inverse-mass-
scaling law is applied to its observed frequency range, one gets a black hole mass anywhere
in the interval few tens to 1000 M�. Then the expected frequency for the detection of
HFQPO in this source would be between 3 and 90 Hz.

1.4 The Bursa line

Immediately after the discovery of kHz QPOs in neutron-star sources it was realised that
flux variations at frequencies in this range could arise from the orbital motion of accreting
matter very near the compact object or from a beat between the orbital motion and the
spin of the neutron star (van der Klis et al. 1996; Strohmayer et al. 1996c).
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1.4 The Bursa line

Figure 1.3: The Bursa plot. The figure shows HFQPO observations from all Galactic
microquasars, where both QPO peaks have been detected, as well as a large subset of
HFQPO detections from neutron-star sources published between 1996−2002. It sum-
marizes all relevant features and prominent properties of the high-frequency QPO phe-
nomenon like the frequency−frequency correlation, the frequency ratio distribution and
the mass scaling.

Black-hole sources: Each microquasar is represented by exactly one point (red), as their
frequencies are fixed and do not change in time. The ratio between the upper and lower
QPO frequency is always sharply 3 : 2. Thus, the four sources lie narrowly on one line
with the slope 3/2 (red line). McClintock & Remillard (2005) noted that the observed
frequencies scale inversely with mass. The black horizontal bars show the mass esti-
mates for the central black holes inferred from optical measurements of radial curves.
The masses can be read against the mass axis see the description bellow.

Neutron-star sources: The twin QPO frequencies are known to wander significantly in
NS sources. Therefore, there are numerous frequency pairs for each source in the plot.
Individual HFQPO observations of four neutron stars (4U 0614+09, Sco X−1, GX 5−1,
GX 340+0) are indicated by colour-coded points. Other sources, where less data points
were available, are jointly ploted with black points. It is clearly visible that all points
cluster along a single line (the so called ‘Bursa line’), although they come from observa-
tions of different sources with different properties. This universality together with the
mass scaling suggest that the origin of QPOs may be connected to strong gravity (see
text). The Bursa line intersects the 3/2 line of black holes at about [600, 900] Hz.

Histogram: The inset histogram shows the combined distribution of the HFQPO
frequency ratios for sources: 4U 0614+09, 4U 1908−52, 4U 1636−53, 4U 1702−43,
4U 1705−34, 4U 1728−34, 4U 1735−44, 4U 1820−30, 4U 1915−05, Cyg X−2,
GX 17+2, GX 340+0, GX 349+2, KS 1731−26 and XTE J2123−058. The distribu-
tion clusters prominently around the ratio 3 : 2 (Abramowicz, Bulik, Bursa & Kluźniak
2003; see also Section 1.6), which however may not reflect the true distribution of fre-
quency ratios, as data were not collected from observation intervals of an equal duration.
The clustering was confirmed by a detailed study of Belloni et al. (2005), though.

Mass axis: The secondary x-axis on the top of the figure gives expected masses of
objects with given frequencies. The masses are calculated in the framework of the res-
onance model under the assumption that the two HFQPO frequencies correspond to
the frequencies of the vertical and radial epicyclic motion of a test particle orbiting at
a particular radius, where these frequencies are in the exact 3 : 2 ratio (the parametric
resonance; see Chapter 2 for a discussion of the resonance models). Therefore it works
only for points lying on the red 3/2 line. The axis has two sets of values: one for the spin
parameter a=0, which gives lower masses and applies to neutron-star sources; second
for spin parameter a=0.96, which gives higher masses and is appropriate to black-hole
sources.
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1. HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS

Two main competing interpretations existed, which made explicit predictions for the
separation frequency ∆ν. The relativistic precession model (Stella & Vietri 1998, 1999;
Stella et al. 1999) assumed eccentric orbits of test particles around a compact object and
identified the upper kHz QPO with the Keplerian orbital frequency in the inner disc and
the lower QPO with the periastron precession of the orbit. The model predicted that the
distance between QPO peaks should decrease both when the kHz QPO frequencies increase
and when they sufficiently decrease. In the concurrent sonic-point beat frequency model
(Miller, Lamb & Psaltis 1998), the production of the upper QPO peak was identified with
the orbital motion of a gaseous clump at the inner edge of the disc and the beat between
this clump and the neutron star spin frequency produced the lower QPO peak. Here,
∆ν was in principle expected to be equal to the neutron star spin, but should decrease
when the upper QPO frequency increases due to the radial inward motion of the clump.
Therefore, a strong observational effort was devoted to measure the peak separation in
order to test predictions of the two models.

From early observations it seemed that the distance of the the two peaks in HFQPOs
was constant (Strohmayer et al. 1996a,b) while the peaks changed their frequency. In
the source 4U 1728−34 the separation frequency was in addition consistent with the spin
frequency of the neutron star inferred from simultaneous observations of burst oscillations
(Strohmayer et al. 1997). This fact was originally the main motivation for the beat-
frequency model. But it was soon recognised that the distance of the peaks varies (van
der Klis et al. 1997; Méndez et al. 1997). In Sco X−1 the peaks were observed to move
closer together by ∼80 Hz, while they both moved up in frequencies by ∼200 Hz. Similar
behaviour was at the same time reported from the atoll source 4U 1608−52 (Méndez et
al. 1998) and later also from other sources. In a few cases a positive correlation between
the position and distance of the peaks was observed at the lowest detectable frequencies.

Psaltis et al. (1998) tested the possibility that the peak separation was varying in all
sources in a similar way as it had been seen in Sco X−1. They found available data for
other sources insufficient when used individually, but they showed that the frequencies of
the lower and upper kHz QPOs in the combined data set of nine sources are correlated and
fairly closely follow a power-law fit for Sco X−1 data, νU∝ν0.53

L . Based on this correlation
they concluded that the peak separation may be varying in all sources in a similar way.

While concentrating on the relationship of ∆ν to other frequencies, the fact that the two
frequencies are remarkably tightly correlated among sources did not get much publicity.
Later, after available observational data published until February 2002 had been collected
for as many sources as possible, this correlation was reproduced and an important fact
was pointed out (Bursa 2002, unpublished) that the frequency correlations of individual
sources can be well described by linear functions, parameters of which slightly differ from
source to source (examples are given in Figure 1.4; see also Appendix D).

The strong linear correlation between the two kHz QPO frequencies (shown and com-
mented in Figure 1.3) spans a wide range of frequencies from 150 to 950 Hz in νL and
covers all NS sources. It can be fitted by a linear relation (the ‘Bursa line’)

νU = A0 νL + B0 , (1.2)
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Figure 1.4: The linear correlation between the two HFQPO frequencies in 4U 0614+09 (top,
left) and 4U 1728−34 (top, right), Sco X−1 (bottom, left) and GX 5−1 (bottom, right). Points
represent individual detections of the HFQPO pairs.

with coefficients A0 = 0.90± 0.01 and B0 = 371± 8 Hz. Despite that different NS sources
can have different properties and conditions, the fact that HFQPO frequencies cluster
along a common line has a special importance. It suggests that the mechanism of kHz
QPOs is the same in every source and moreover that it is driven by parameters, which
do not largely differ among sources. The line itself crosses the 3/2 line, which brings to a
relevance high-frequency QPOs in black holes. We will see in Section 1.6, how it may be
related to the mass scaling.

1.5 Linear fits to the frequency–frequency correlation

The correlation between the upper and the lower kHz QPO frequencies across different
sources or for a particular source can be well fitted by a power law function, as it was
initially shown by Psaltis et al. (1998), as well as by a linear function (Bursa; see also
Belloni et al. 2005). Using the non-linear least-squares method we compare these two
functional relations together with some other possibilities.
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1. HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS

The production mechanism of kHz QPOs is still an open issue and numerous models
have been proposed to explain the observational evidence. The key issue is to reproduce
the correlation between the two frequencies and explain the relation to the spin frequency
of the neutron star. We use the following six functions to fit the frequency–frequency
correlation and we will test goodness of each of them by the non-linear least-squares
method. The functions we consider are:

LIN : νU = A νL + B , (1.3a)

PWL : νU = A
( νL

600 Hz

)B
, (1.3b)

SQR : νU = A ν2
L + B , (1.3c)

SQR+L : νU = A ν2
L + B νL + C , (1.3d)

SQRT : νU = A
√

νL + B , (1.3e)

SQRT-0 : νU = A
√

νL . (1.3f)

The selection is based on conjectures of the frequency relation given by proposed mod-
els of QPOs. Several of the models (e.g. the epicyclic resonance model, ...) predict a
linear correlation of frequencies in the first order approximation, but higher orders give
additional non-linear terms. Other models (e.g. relativistic precession model, ...) predict
a rather complicated behaviour with fractional powers of νL. Alfvén wave model gives
approximately a square-root relation νU(νL). Therefore, we consider a linear fit (LIN), a
power law (PWL), quadratic fits with or without a linear term (SQRT+L, SQRT), and
fits with the square root of νL (SQRT, SQRT-0). The last two options are also sustained
by the fact that the power-law best fits give values of the exponent typically close to 0.5
for most sources.

For the least-squares analysis we use the frequency data extracted from the literature
published between 1996 – 2002. From this set, four atoll and four Z sources are selected for
which at least 10 frequency pairs are available. The sources and references to the literature
are listed in Table 1.2. For each function 1.3a – 1.3f we make the best fits to the QPO
frequency pairs of the selected sources. Unfortunately, errors of frequency measurements
cannot be determined from all references, therefore we consider all points with an equal
weight. Typical errors are, however, a few Hertz. From the best fits we compute the sum
of squared residuals reduced to the number of degrees of freedom (RSSR). The resulting
sums for individual sources as well as total sums over all eight sources are summarized in
Table 1.2.

By eye-inspection of the frequency–frequency correlations, we see that the relation
between frequencies is close to linear, with some small deviations. It is then not surprising
that it can be best fitted (i.e. with the minimal value of RSSR) by the most general
quadratic function with a linear and a constant term. However, this function has three
free parameters, one more than other functions, and it is thereby expected to give the best
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∑
(residuals)2/d.o.f.

Source type LIN PWL SQR SQR+L SQRT SQRT-0 References

4U 0614+09 A 614 734 1179 626 831 1139 [9,10,11]

4U 1608−52 A 281 200 1269 176 195 287 [5,9,12]

4U 1636−53 A 127 134 3152 145 134 130 [5,6,9]

4U 1728−34 A 730 760 1079 767 779 1350 [1,5,11]

GX 5−1 Z 717 442 3867 402 461 770 [4,7]

GX 17+2 Z 288 221 638 152 207 487 [3]

GX 340+0 Z 991 713 3539 645 737 936 [4,9]

Sco X−1 Z 26 16 984 12 16 22 [8]

Atoll 1752 1828 6679 1714 1939 2906

Z 2022 1392 9028 1211 1421 2215

TOTAL 3774 3220 15707 2925 3360 5121

Table 1.2: Goodness of different functional fits to the frequency data of selected atoll and Z
sources. The table lists sums of squared residuals per degrees of freedom from the best fits given
by different functions. The last row gives the total sum of residuals over all eight sources and
partial sums over atoll and Z classes are given on the two precedent lines.
References: [1] Di Salvo et al. (2001), [3] Homan et al. (2002), [4] Jonker et al. (2000a), [5] Jonker
et al. (2000b), [6] Jonker et al. (2002a), [7] Jonker et al. (2002b), [8] van der Klis et al. (1997),
[9] van der Klis (2000), [10] van Straaten et al. (2000), [11] van Straaten et al. (2002), [12] van
Straaten et al. (2003).

results. Giving a 100% goodness mark to SQR+L model, PWL and LIN fits follow with
91% and 77% of goodness, respectively. Surprisingly good fits, 87%, can by obtained by
SQRT. SQRT-0 (57%) and SQR (19%) functions do not fit the data sufficiently well.

Figures 1.5 – 1.10 show the νU–νL and the ∆ν–νL relations for the eight sources with
their best LIN, PWL and SQRT fits. In Figures 1.11 – 1.12 these three fits are plotted
together for a comparison. We can see from these plots and also from Table 1.2 that Z
sources clearly diverge from the simple linear trend, although the deviations are very small
and a linear function can still make a good fit. Atoll sources, on the other hand, are much
better fitted by straight lines than by power laws and not even quadratic fits (SQR+L)
can improve significantly over the linear ones. That reflects the known fact that atoll and
Z sources are different (Hasinger & van der Klis 1989; van der Klis 2000), showing certain
distinctions in their spectra and time variability.

Conclusions can be made that linear fits to the frequency–frequency correlations are
sufficiently good to reflect the basic characteristics of the relation. In Z sources, where
there are small deviations from the linear trend, they still describe the correlations with
an accuracy better than ∼5%. In atoll sources, linear fits are equally good to fit the data
as are PWL or SQRT models.
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Figure 1.5: Correlations between the individual observations of the νU and νL frequencies in
selected neutron-star sources. Measured pairs of HFQPO frequencies (black dots), the best LIN
fit through the data (solid black line), its coefficients and the residuals (gray dots) are indicated.
Also ploted is the 3/2 black-hole line (dashed line). Error bars are not shown, as they are not
known for all data points, otherwise they are typically a few Hertz.
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Figure 1.6: Correlation between νU − νL and νL in selected neutron-star sources. Measured
pairs of HFQPO frequencies (black dots) and the curve predicted by the best LIN fit through
the data (solid line) are indicated. If available, also ploted is the spin frequency of the neutron
star or half of it (dashed line).

— 29 —



1. HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS

700

800

900

1000

1100
ν

U
[H

z]

500 600 700 800 900
νL [Hz]

Sco X−1

νU = 905 Hz

(

νL

600 Hz

)0.52

−1

0

1

2

3

4

5

re
si
d
u
a
ls

[×
1
0
0

H
z]

300

400

500

600

700

800

900

ν
U

[H
z]

100 300 500 700
νL [Hz]

GX 5−1

νU = 869 Hz

(

νL

600 Hz

)0.43

−1

0

1

2

3

4

5

re
si
d
u
a
ls

[×
1
0
0

H
z]

600

700

800

900

1000

1100

ν
U

[H
z]

400 500 600 700 800 900
νL [Hz]

GX 17+2

νU = 881 Hz

(

νL

600 Hz

)0.61

−1

0

1

2

3

4

5

re
si
d
u
a
ls

[×
1
0
0

H
z]

400

500

600

700

800

900

ν
U

[H
z]

100 200 300 400 500 600
νL [Hz]

GX 340+0

νU = 882 Hz

(

νL

600 Hz

)0.44

−1

0

1

2

3

4

5

re
si
d
u
a
ls

[×
1
0
0

H
z]

400

600

800

1000

1200

ν
U

[H
z]

100 300 500 700 900
νL [Hz]

4U 0614+09

νU = 928 Hz

(

νL

600 Hz

)0.57

−1

0

1

2

3

4

5

re
si
d
u
a
ls

[×
1
0
0

H
z]

600

700

800

900

1000

1100

ν
U

[H
z]

400 500 600 700 800 900
νL [Hz]

4U 1608−52

νU = 906 Hz

(

νL

600 Hz

)

0.55

−1

0

1

2

3

4

5

re
si
d
u
a
ls

[×
1
0
0

H
z]

800

900

1000

1100

1200

ν
U

[H
z]

600 700 800 900 1000
νL [Hz]

4U 1636−53

νU = 946 Hz

(

νL

600 Hz

)0.47

−1

0

1

2

3

4

5

re
si
d
u
a
ls

[×
1
0
0

H
z]

700

800

900

1000

1100

1200

ν
U

[H
z]

500 600 700 800 900
νL [Hz]

4U 1728−34

νU = 916 Hz

(

νL

600 Hz

)0.64

−1

0

1

2

3

4

5

re
si
d
u
a
ls

[×
1
0
0

H
z]

Figure 1.7: Correlations between the individual observations of the νU and νL frequencies in
selected neutron-star sources. Measured pairs of HFQPO frequencies (black dots), the best PWL
fit through the data (solid black line), its coefficients and the residuals (gray dots) are indicated.
Also ploted is the 3/2 black-hole line (dashed line). Error bars are not shown, as they are not
known for all data points, otherwise they are typically a few Hertz.
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Figure 1.8: Correlation between νU − νL and νL in selected neutron-star sources. Measured
pairs of HFQPO frequencies (black dots) and the curve predicted by the best PWL fit through
the data (solid line) are indicated. If available, also ploted is the spin frequency of the neutron
star or half of it (dashed line).
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Figure 1.9: Correlations between the individual observations of the νU and νL frequencies
in selected neutron-star sources. Measured pairs of HFQPO frequencies (black dots), the best
SQRT fit through the data (solid black line), its coefficients and the residuals (gray dots) are
indicated. Also ploted is the 3/2 black-hole line (dashed line). Error bars are not shown, as they
are not known for all data points, otherwise they are typically a few Hertz.
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Figure 1.10: Correlation between νU − νL and νL in selected neutron-star sources. Measured
pairs of HFQPO frequencies (black dots) and the curve predicted by the best SQRT fit through
the data (solid line) are indicated. If available, also ploted is the spin frequency of the neutron
star or half of it (dashed line).
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Figure 1.11: Correlations between the individual observations of the νU and νL frequencies in
selected neutron-star sources. Measured pairs of HFQPO frequencies (black dots), the best LIN
(solid line), PWL (dotted line) and SQRT (dash-dotted line) fits through the data are indicated.
Also ploted is the 3/2 black-hole line (dashed line). Error bars are not shown, as they are not
known for all data points, otherwise they are typically a few Hertz.
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Figure 1.12: Correlation between νU − νL and νL in selected neutron-star sources. Measured
pairs of HFQPO frequencies (black dots) and the curves predicted by the best LIN (solid line),
PWL (dotted line) and SQRT (dash-dotted line) fits through the data are indicated. If available,
also ploted is the spin frequency of the neutron star or half of it (dashed line).
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1.6 Anti-correlation between the slope and shift

Double peak kHz QPO frequencies in neutron star sources vary in time by a factor of
hundreds Hertz, while in microquasar sources the frequencies are fixed and located at the
line νU = 1.5 νL in the frequency–frequency plot. The crucial question in the theory of
twin HFQPOs is whether or not those observed in neutron-star systems are essentially
different from those observed in black holes. In black-hole systems the twin HFQPOs are
known to be in the 3 : 2 ratio for each source. At first sight, this seems not to be the
case for neutron stars. For each individual neutron star, the upper and lower kHz QPO
frequencies, νU and νL, are with high accuracy linearly correlated, νU = A νL + B, with
the slope A < 1.5 (see Figure 1.3), i.e. the frequencies are definitely not in the 1.5 ratio.

It has been already noted in Section 1.4 that the global frequency–frequency correlation
(the ‘Bursa line’) is in fact formed by a number of individual lines, i.e. that the coefficients
A, B of the linear relation

νU = A νL + B , (1.4)

are slightly different for each individual source. In this section, we examine the frequency–
frequency correlations separately for eleven neutron star sources (seven atoll + four Z
sources; listed in Table 1.3) by fitting each of them with the linear formula (1.4), where
the coefficients A and B are hereafter referred to as the slope and the shift, respectively.

Two different sets of frequency data are used for the analysis. One is the set that has al-
ready been used in the previous section, which contains collected frequency pairs obtained
using different methods and published in the literature by various authors in 1996 – 2002
(hereafter data set 1). This set contains six atoll sources: 4U 0614+09, 4U 1608−52,
4U 1636−53, 4U 1702−43, 4U 1728−34, 4U 1735−44; and four Z sources: GX 5−1,
GX 17+2, GX 340+0, Sco X−1. The second set, kindly provided by D. Barret, was
extracted directly from all science event files available in the RXTE archives up to the
end of 2004 (hereafter data set 2). The raw event files were consistently analysed using a
method, which is described in Appendix D, and therefore frequency pairs obtained in this
way represent a very coherent set of data. The set contains six atoll sources: 4U 0614+09,
4U 1608−52, 4U 1636−53, 4U 1728−34, 4U 1735−44 and 4U 1820−30.

The results of the linear regression analysis of the frequency data, including values
of the slope and shift and of the corresponding errors for each source, are summarized
in Table 1.3 and plotted in Figure 1.13 showing the slope–shift plane. The dependence
A=A(B) strongly suggests that the two quantities are anti-correlated and obey a general
relation

A = α− β B . (1.5)

The best linear fits for the anti-correlation give

α = (1.44± 0.09), β = (1.49± 0.20)×10−3 Hz−1 (data set 1), (1.6a)

α = (1.46± 0.10), β = (1.48± 0.20)×10−3 Hz−1 (data set 2). (1.6b)
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The anti-correlation law that we have just discovered is very robust. Sources fairly
closely follow the anti-correlation line with the typical value of the reduced χ2 being
about 0.77 for both data sets. That means that intersections of their individual frequency–
frequency linear fits (individual ‘Bursa lines’) cluster near a single point, [NL, NU ], whose
coordinates may be determined from the coefficients α, β of the anti-correlation (1.5),

NL =
1
β

= (976± 203) Hz , (1.7a)

NU =
α

β
= (673± 93) Hz . (1.7b)

The existence of the common intersection point and its position immediately bring into
relevance the idea that there is a similar mechanism for HFQPOs at work in both neutron
stars and black holes. That is, the ratio NU/NL equals to 1.5 with the accuracy of 3%
and the intersection point lies almost on the black-hole 3/2 line (Figure 1.3; red line).
This suggest that the 3 : 2 ratio known from microquasars may also be relevant for the
neutron-star kHz QPOs. Indeed, Abramowicz, Bulik, Bursa & Kluźniak (2003) showed
that the distribution of frequency ratios has a significant excess near the value 1.5 in
neutron stars. Their findings were later challenged by Belloni et al. (2005), who obtained
similar results and in addition found that the distribution is in fact multi-peaked with 1.5
being the dominant ratio.

If the connection between the neutron-star and black-hole QPOs is real, as we will
hereafter assume to be so, then the intersection point should lie exactly on the 3/2 line
and the anti-correlation law (1.5) should be rephrased to the form

A =
3
2
− 1

ν◦L
B , (1.8)

where ν◦L represents here the lower ‘eigenfrequency’ of the source, i.e. the point, where the
source line crosses the 3/2 line in the Bursa plot. The best fit to the data gives

ν◦L = (628± 47) Hz (data set 1), (1.9a)

ν◦L = (629± 17) Hz (data set 2). (1.9b)

Similarly to black holes, we may expect that ν◦L is related to the mass of the source and
that the black-hole inverse mass scaling law (Section 1.3) is also applicable to neutron stars.
The fact that the individual positions of sources in the A–B plane do not strictly follow
the anti-correlation line (1.6a,b) can then be attributed to small diversities in neutron-star
masses. If we consider two sources with slightly different masses, in the slope–shift plane
they would lie at proximate lines with a common vertex at [0, 1.5], although their exact
positions on these lines could be arbitrary. Neutron stars are expected to have masses in
a narrow range ∼1.5−3 M�, hence the mass lines would be rather close to one another in
the A–B plane, as well as the crossings of source lines with the 3/2 black-hole line in the
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Source type νL range [Hz] A ∆A B [Hz] ∆B [Hz] references

4U 0614+09 A 150− 830 0.99 0.03 330 17 [9,10,11]

4U 1608−52 A 440− 870 0.81 0.04 415 26 [5,9,12]

4U 1636−53 A 640− 950 0.65 0.04 563 30 [5,6,9]

4U 1702−43 A 650− 770 0.74 0.05 521 38 [9]

4U 1728−34 A 510− 880 0.94 0.05 350 38 [1,5,11]

4U 1735−44 A 630− 900 0.64 0.05 569 32 [2,9]

GX 5−1 Z 150− 630 0.83 0.04 386 14 [4,7]

GX 17+2 Z 470− 830 0.86 0.04 364 28 [3]

GX 340+0 Z 190− 570 0.84 0.07 391 26 [4,9]

Sco X−1 Z 560− 850 0.73 0.01 470 7 [8]

BEST FIT A = (1.44± 0.09)− (1.49± 0.20)×10−3 Hz−1 (χ2/d.o.f. = 0.767)

4U 0614+09 A 570− 780 1.02 0.03 302 23 [13]

4U 1608−52 A 560− 920 0.75 0.03 459 17 [13]

4U 1636−53 A 550− 940 0.72 0.01 503 8 [13]

4U 1728−34 A 660− 850 1.00 0.05 352 40 [13]

4U 1735−44 A 710− 840 0.90 0.07 372 56 [13]

4U 1820−30 A 680− 820 0.93 0.05 323 36 [13]

BEST FIT A = (1.46± 0.10)− (1.48± 0.20)×10−3 Hz−1 (χ2/d.o.f. = 0.763)

Table 1.3: Characterictics of νU–νL frequency correlations of individual sources (atoll and Z)
and coefficients of their linear fits. Top part lists data collected from various papers published
in the period 1996–2002 (data set 1; see references below). Bottom part lists a coherent set of
data provided by D. Barret (data set 2). The best linear fits A(B) corresponding to the two sets
are also indicated.
References: [1] Di Salvo et al. (2001), [2] Ford et al. (1998), [3] Homan et al. (2002), [4] Jonker et
al. (2000a), [5] Jonker et al. (2000b), [6] Jonker et al. (2002a), [7] Jonker et al. (2002b), [8] van
der Klis et al. (1997), [9] van der Klis (2000), [10] van Straaten et al. (2000), [11] van Straaten
et al. (2002), [12] van Straaten et al. (2003), [13] data by D. Barret to appear in Abramowicz et
al. (2006).
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Figure 1.13: The anticorrelation between the slope and shift in neutron-star sources. The
results of analysis of the two different sets of data, are presented respectively in the top (data
set 1) and bottom (data set 2) pair of panels. Atoll sources are ploted in red, Z sources are ploted
in blue. The shift A and the slope B correspond to the best linear fit of the νU−νL correlation for
each source. Clearly, A and B are anticorrelated among the sources with the best fits indicated
by the solid line in each panel. The fits cross the vertical slope axis very close to 1.5, which
points to the connection with the black-hole HFQPOs.
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Figure 1.14a: Intersection points of the frequency correlations in individual neutron-star
sources with the black-hole 3/2 line. All source lines intersect the 3/2 line near the point
[942, ν◦L=628], but Z sources prefer somewhat lower and atoll sources somewhat higher values of
ν◦L. This suggests that Z sources may have larger masses than atoll sources by a factor of ∼10%.

Figure 1.14b: The anti-correlation and the effect of the inverse mass scaling law. The slopes
and shifts of the frequency correlations are such that they all fall in a narrow triangle in the
A−B plane with the vertex at [0, 1.5]. The opening angle of the triangle corresponds to the ratio
of masses between the lightest and the heaviest neutron star.

frequency–frequency plot. By scaling the ν◦L parameter of equation (1.8), we find that the
A(B) relation is steeper or softer for more massive or less massive sources, respectively.
This is demonstrated in Figure 1.14b. The range in eigenfrequencies among the examined
sources is about 200 Hz, which offers a suggestion that their masses do not differ more
than by 20%. If we know the mass of some source with a reasonably small error, we will
be able to precisely determine also masses of the others, but for the moment only relative
comparisons can be made.

There is a certain trend for Z sources to have a slightly lower values of A than atoll
sources for the same values of B (see Figure 1.13). It is even more evident if we calculate
positions of the intersection points for each source. Figure 1.14a shows, where the source
lines of six atoll and four Z sources cross the 3/2 black-hole line. Clearly, Z sources have
lower eigenfrequencies than atoll sources by ∼ 10% and should therefore be (on average)
by a similar factor more massive than atolls.

In the above considerations we have, nevertheless, disrespected the presence of mag-
netic fields around neutron stars, which is probably one of the differences between the Z
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and atoll sources. Accreting low-mass X-ray binaries are believed to have magnetic field
generally . 1010 Gauss, because stronger field would destroy the accretion disc far from
the star, but the actual proportions in the field strengths of the two types of sources is
unknown. It was thought that atoll sources had weaker field than Z sources by a factor
of ten. This claim was supported by the presence of low-frequency HBO oscillations in
Z sources (Alpar & Shaham 1985; Shibazaki & Lamb 1987) and by a paradigm about the
mutual exclusion between pulsations and type I X-ray bursts, which exclusively occur in
atoll sources (e.g. Lewin et al. 1993). Since the discovery of millisecond pulsations in the
thermonuclear burster SAX J1808.4−3658 (Wijnands & van der Klis 1998), this supposi-
tion is no longer true, because apparently atoll sources can have relatively strong magnetic
field and be pulsars, too.
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CHAPTER 2

Constraints on resonance models of
QPOs from black-hole spin estimates

The spectral and timing X-ray observations of Galactic black-hole binary systems provide
us with information about physical processes that occur in accretion discs near black hole
event horizons. One of the main goals of these studies is to obtain constraints on black
hole masses and spins using predictions of general relativity in the regime of strong gravity.

The masses of about 20 accreting black holes located in X-ray binary sources have been
determined by measurements of radial velocities from the Doppler shift of absorption lines
in optical spectra of the secondary components (McClintock & Remillard 2005; Casares
et al. 2004; Orosz et al. 2004). However, the number of reliable measurements of black-
hole spins is significantly lower (e.g. Miniutti et al. 2004; Davis et al. 2005). There are
three different approaches used to measure the spin of an accreting black hole: by fitting
relativistically broadened iron K-alpha lines, by fitting spectral continua, and by searching
for high-frequency quasi-periodic oscillations. The last method would be clean and the
most accurate, if we knew what exactly excites the oscillations. Because we do not yet,
we may by then put to use the other two methods to find out what actually does oscillate.

The first section of this Chapter reviews the idea of high-frequency QPOs as a non-
linear resonance phenomenon and lists a class of models that have been proposed as a pos-
sible resonance modes, which excite the QPOs in the Galactic black-hole and neutron-star
sources. The next section summarises predictions for the spins of three microquasars given
by each of the resonance models. In the third Section, the spin predictions given by these
models are compared with the recent angular momentum estimate for GRO J1655−40. It
is found that none of the present resonance models is consistent with the value of the spin
obtained by spectral fits of the X-ray continuum. Instead, observational constraints seem
to favour another, so far not considered resonance, which is described in the last section.
This Chapter is based on a paper in preparation (Bursa 2006).



2. CONSTRAINTS ON RESONANCE MODELS OF QPOS

2.1 High-frequency QPOs as a non-linear resonance

Observations of the twin HFQPOs are now well established in both neutron-star and black-
hole binary sources. They have revealed to our attention many similarities as well as plenty
of differences in these two types of objects. In neutron stars, HFQPO frequencies wander
in time by tens of Hertz, but their ratio clusters mainly around 3/2. The frequencies follow
a single special line in detections collected from all sources, while the slope and shift of
the linear correlation is slightly different for each source. There exists an anti-correlation
between the slope and the shift, which picks up the 3/2 value with an astonishing precision.
In black holes, the frequencies stay fixed or vary only a little. They always occur in the
3 : 2 ratio and they seem to scale inversely with mass.

All this and other previously discussed evidence offer a strong encouragement for seek-
ing interpretations of HFQPOs in fundamental features of strong gravity, namely in the
orbital and epicyclic motion of fluid elements in accretion discs. The rational ratios of the
frequencies originally lead Kluźniak & Abramowicz (2001) to a formulation of a resonance
model for HFQPOs. In this model (see a recent review in Abramowicz & Kluźniak 2004b
and a collection of review articles, edited by Abramowicz 2005b, that describe the model),
a non-linear coupling in the motion of accreting fluid is made responsible for the twin
QPOs. At particular radii in the disc, commensurabilities between certain combinations
of epicyclic and orbital frequencies can lead to an excitement of a parametric-like or a
forced-like resonance between the particular types of motion. In this way, general rela-
tivity itself picks up certain frequencies from the disc regardless of the properties of the
source.

Unlike Newtonian 1/r gravity, general relativity predicts independent frequencies for
different types of periodic motion in the strong gravitational field of a rotating compact
object (Nowak & Lehr 1998; Merloni et al. 1999). The condition νK > νz > νr is always
satisfied for the Keplerian orbital, vertical epicyclic and radial epicyclic frequencies, re-
spectively. The radial epicyclic frequency νr reaches a maximum at a particular radius
and goes to zero at the marginally stable circular orbit. This allows for two of the three
frequencies (or a combination) to be in a ratio of small natural numbers somewhere in the
disc.

A whole class of relativistic resonance models has been be constructed with different
combinations of frequencies (see e.g. Abramowicz & Kluźniak (2004b); Abramowicz et al.
(2004) for a detailed description of possible models). The most natural is the parametric
resonance between the vertical and radial epicyclic frequency: νU =νz, νL =νr, 2νz =3νr

(3:2 resonance). Another possibility is a forced resonance between the epicyclic modes,
which gives two solutions: νU =νz, νL =νz−νr, νz =3νr (3:1 resonance) and νU =νz +νr,
νL =νz, νz =2νr (2:1 resonance). Finally, models with coupling between the orbital Keple-
rian motion and the radial epicyclic motion can be considered: νU =νK, νL =νr, 2νK =3νr

(Keplerian 3:2 resonance); νU =νK, νL =νK−νr, νK =3νr (Keplerian 3:1 resonance) and
νU =νK +νr, νL =νK, νK =2νr (Keplerian 2:1 resonance).

A parametric-like resonance occurs in a multi-component system, where one part of the
system parametrically excites another part (e.g. Tondl et al. 2000). The primary system
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oscillates due to external or parametric excitations or due to self-excitation, and excites
the other subsystems. If certain conditions are met, one of these subsystems may in turn
further excite the primary system. The classical example of auto-parametric resonance
is that of the elastic pendulum consisting of a spring fixed at one end. A parametric
resonance in a system, whose eigenfrequency ω1 is itself perturbed at a frequency ω2

commensurate with ω1, leads to the Mathieu type of equation

δẍ + ω2
1 [1 + h cos(ω2 t)] δx = 0 , (2.1)

where h cos(ω2 t) term acts as an ‘energy’ source and is said to parametrically excite
the system. Resonances occur when ω1/ω2 = 2/n, n = 1, 2, 3, . . . and the strongest one
has the smallest possible value of n. In thin discs, random fluctuations have generally
greater radial than vertical amplitudes and therefore the radial epicyclic frequency plays
the role of the perturbing frequency to the vertical epicyclic frequency. Because in strong
gravity νr < νz, the smallest possible value of n for a resonance is n=3, which means that
νz : νr = 3 : 2. The radius, where the two epicyclic frequencies of freely moving particles
are in the 3 : 2 ratio, is 10.8 rg for a non-rotating black hole and gets as close as to 4 rg

with an increasing spin.

A forced resonance occurs in a system, which is perturbed by a periodic external force,

δẍ + ω2
1 δx + damping = h cos(ω2 t) . (2.2)

In a damped harmonic oscillator, amplitudes gradually decay to zero. When it is driven
by a periodic force, one oscillation survives and the system oscillates not with its eigenfre-

Figure 2.1: Left: Locations of the three resonances: the 3:2 parametric, and 2:1 and 3:1 forced
for Schwarzschild case of a non-rotating 10 M� black hole. Right: These locations depending on
the black hole spin. Also shown is the radius (dotted line), at which the standard relativistic
Shakura-Sunyaev disc emits locally the maximal flux, and the radius (dashed line) corresponding
to the pressure centre of the maximally thick torus, i.e. the torus with constant angular momen-
tum equal to the Keplerian value at marginally bound orbit. (Adopted from Abramowicz et al.
2004.)
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Resonance XTE 1550−564 GRO J1655−40 GRS 1915+105

[νz, νr] : 3 : 2 +0.89 — +0.99 +0.96 — +0.99 +0.69 — +0.99

2 : 1 +0.12 — +0.42 +0.31 — +0.42 −0.41 — +0.44

3 : 1 +0.32 — +0.59 +0.50 — +0.59 −0.15 — +0.61

[νK, νr] : 3 : 2 — — +0.79 — +1.0

2 : 1 +0.12 — +0.43 +0.31 — +0.42 −0.41 — +0.44

3 : 1 +0.29 — +0.54 +0.45 — +0.53 −0.13 — +0.55

Table 2.1: Summary of angular momentum estimates as they are predicted by different res-
onance models for the three microquasars with known masses. The uncertainty in the spin
estimates is due to uncertainties in the black-hole mass measurements. (Adopted from Török
2005b.)

quency ω1 but with the frequency ω2 of the periodic force. The amplitude of oscillations
depends on the driving frequency. It has its maximum when the driving frequency matches
the eigenfrequency and a resonance occur. In that case ω1 =n ω2 as observed. Obviously,
there is not any integer value n such that ω1, ω2 could be in the 3 : 2 ratio. However,
combination frequencies νz +νr and νz−νr can be in resonance with the radial epicyclic
frequency in the disc if n=2 or n=3.

Non-linear effects in the two types of oscillators are important. Both the dependency of
the eigenfrequency of the non-linear oscillator on the amplitude and the non-harmonicity
of the oscillation lead to a behaviour that evoke parallels with the behaviour of the high-
frequency QPOs in neutron stars and black holes.

2.2 Black hole spin predictions

For each resonance model Török et al. (2005) have made fits to the observational data
for the three microquasars with known masses (XTE 1550−564, GRO J1655−40 and
GRS 1915+105) in order to predict values of their spins. They compare the observed
upper HFQPO frequency of each source with frequencies predicted by individual models
at particular resonant radii. Based on the knowledge of mass of the sources they calculate
the range for the black hole angular momentum required by each model to work. Their
results are summarised in Table 2.1.

The observational data already excludes the Keplerian 3:2 resonance in the case of two
sources, as it requires spins a > 1. If it is assumed that the HFQPOs are produced by
the same type of resonance in all black-hole sources, then this model can be ruled out
as incompatible with observations. Other models discussed by Török et al. are so far
consistent with measured masses, but as they note, future observations or developments
in accretion theory can narrow down the choice. In this context, direct measurements of
black-hole spins may be especially useful to limit the number of possibilities further.
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2.3 The spin of GRO J1655−40 and implications for reso-

nance models

Shafee et al. (2005) have recently published an analysis of X-ray spectral data from ASCA

and RXTE of the two black hole candidates, GRO J1655−40 and 4U 1543−47, where they
estimate the angular momenta of these sources. Here, GRO J1655−40 (hereafter J1655)
is of a high interest, because it also shows the twin HFQPOs.

Their analysis is based on fitting the X-ray thermal continuum spectra using a fully
relativistic model of a thin accretion disc around a Kerr black hole (Li et al. 2005). The
model includes all relativistic effects as well as self-irradiation of the disc, limb-darkening
effects and the spectral hardening factor. It, however, strongly relies on the assumed value
of the spectral hardening factor, which cannot be obtained from the data and must be
estimated independently. The state-of-the-art non-LTE disc atmosphere model of Davis
et al. (2005) is used to estimate the factor.

The spin of J1655, according to Shafee et al., is a ' 0.65− 0.75. Facing this estimated
value, none of the predictions of the ‘basic’ six resonance models (3:2, 2:1 3:1; Table 2.1),
neither the models with ‘higher’ resonances 5:1, 5:2, 5:3 (Török et al. 2005) give the
angular momentum of J1655 to be compatible with the spin measurement. They predict
spins either too high (>0.96) or too low (<0.6). The one with the closest approach is the
3:1 forced resonance, which predicts spin in the range 0.50− 0.59. This could mean that
none of these models in their current formulations is able to explain the origin of HFQPOs
in black hole sources. In particular, the parametric resonance νz : νr can be ruled out not
only because it predicts very high spins, but also because it gives wrong masses in the
a = 0 limit. If the QPO mechanism should be the same for both black-hole and neutron-
star sources (Kluźniak & Abramowicz 2003), then it can be seen from Figure 2.2 that this
resonance gives, in the a = 0 limit, mass of the source about 2 M� for QPO frequencies of
J1655, i.e. 300 and 450 Hertz. Neutron stars have frequencies typically two times higher
than that, so their masses would be two times less according to the 1/M scaling – about
1 M�, which is too low for a neutron star.

Possible combinations of mass and spin for the frequencies seen in J1655 are shown
in Figure 2.2. It shows the predictions of the standard resonance models as well as the
prediction of the νz : νK−νr resonance, which is discussed in the next section.

Although the spectral fitting has been done very carefully, it has some weak points.
The assumed value of the spectral hardening factor is one of them. Next, the analysis
assumes that the disc terminates at the marginally stable orbit in the thermal dominant
state and that it has zero torque at the inner edge. Relaxing these conditions leads to
lower spin estimates, as well as considering effects of magnetic fields on the emergent
spectrum. The only effect, which softens the spectrum and gives higher black-hole spins,
is the presence of density inhomogeneities in the inner region of the disc created by MRI
turbulences and by photon bubbles. Shafee et al. also note that a black hole in an X-ray
binary may accrete at most 1 M� during the lifetime of the system, which leads to the
spin .0.35. If so and if measured spin is ∼0.7, the black hole had to be born with some
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Figure 2.2: Possible combinations of mass and angular momentum predicted by individual
resonance models for the HFQPO frequencies observed from GRO J1655−40. Thin lines rep-
resent predictions of the 3:2, 3:1 and 2:1 resonances. The thick red line shows the prediction
of the νz : νK−νr resonance. Shaded regions indicate the likely ranges for the mass of J1655
(inferred from optical measurements of radial curves) and its dimensionless angular momentum
parameter a (inferred from the X-ray spectral data fitting).
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initial amount of angular momentum. It is then questionable, whether its rotational axis
is aligned with the rotational axis of the binary system as it is assumed in the model (see
Maccarone 2002), and it brings an inclination uncertainty to the spectral fitting. Improved
disc atmosphere models will probably change the estimated value of the spin, but probably
not very significantly. Namely, the possibility of having the black hole spun-up to a>0.9
seems to be very unlikely.

It is also important to stress that the spin predictions of resonance models are based
on the formulae of the epicyclic motion of free test particles in a gravitational field. In
general, because of pressure gradient, magnetic and other forces, these frequencies will be
subjects of some corrections (Blaes et al. 2006), which may change the positions of the
resonance lines in the mass–spin plot.

In the light of the previously described effects, it is still possible that some of the
resonances can stay in the game. The closest one is the νK : νK−νr resonance, which may
fit the measured value of the spin, if improved disc atmosphere models indeed lower its
estimate or if frequency corrections move the resonance radius closer to the black hole.

2.4 Resonances in an eccentric torus

If a resonance is about to be a mechanism for producing the QPOs, one may, interest-
ingly, contemplate a new model to satisfy the observational evidence, which has not been
considered so far: the resonance between the vertical epicyclic frequency νz and the pe-
riastron precession frequency νPP = νK−νr. These two frequencies are in the 3:2 ratio
very near the marginally stable orbit (Figure 2.3). For a black hole with spin a = 0.75 it
occurs around r = 4.3 rg, while marginally stable orbit is at rms = 3.16 rg. The occurrence
of HFQPOs may then correspond to a formation of a slightly eccentric fluid torus at the
inner edge of the accretion disc. It will be shown in Chapter 4 that relativistic effects on
light propagation may be responsible for a sufficient modulation of the radiation emerging
from the torus.

There are, however, some issues, which make this type of resonance objectionable. It
is namely the fact that frequencies of the orbital motion and the frequencies of the two
modes of epicyclic motion differ from one another in an axially symmetric spacetime of a
rotating black hole. This imposes a very general restriction on a modulation mechanism
of quasi-periodic oscillations:

If all three modes of a particle motion are involved in a resonance and some linear com-
bination of the three frequencies forms a rational ratio, then a modulation mechanism
must not add any other frequency to the combination, otherwise the observed frequencies
would not be commensurable.

In another words it means that the frequencies in the resonance must be the same fre-
quencies that are observed.
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Figure 2.3: This plot shows, where the frequencies of different modes of orbital motion (or
their combinations) are equal to those observed in GRO J1655−40, i.e. 450 Hz (red lines) and
300 Hz (blue lines). A resonance is possible at every radius, where a red line crosses a blue one.
The gray vertical bar represents the estimated range of spin of the black hole in J1655. The light
gray shading of lines shows the radius uncertainty based on the uncertainty of mass estimate for
the black hole (only for νz and νK−νr) . The only combination of frequencies, which satisfies
observational constraints, is the resonance between νz and νK−νr.
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Measured Measured Predicted
Source mass(a) [M�] spin spin

XTE 1550−564 8.4 — 10.8 — 0.41 — 0.77

GRO 1655−40 6.0 — 6.6 0.65 — 0.75 0.64 — 0.76

GRS 1915+105 10 — 18 — −0.09 — 0.78

Table 2.2: Summary of the predictions of angular momentum as they are given by the νz : νK−νr

resonance for the three microquasars with known masses. The ranges in the spin predictions
correspond to the uncertainties in the black-hole mass measurements.
(a) See Orosz et al. 2002, Greene et al. 2001, Greiner et al. 2001

An eccentric torus, in which fluid elements oscillate radially with frequency νr, makes
a precession of apsides with frequency νPP. The latter one is also the frequency at which
the outgoing flux will be modulated by the Doppler effect. There are two possibilities for
an occurrence of QPOs by the νz : νPP resonance: either radial oscillations are coupled
with νz or νK, but then the observed νPP will not generally form a rational ratio with
νz, or there is a direct resonance between νz and νPP, but in this case it is unclear what
physical mechanism would couple these modes and keep them in the 3:2 ratio.

The relevance of the νz : νPP resonance can be tested by estimating spins of the other
two microquasars with known masses, which show high-frequency QPOs. We have seen
that the model predicts the spin of J1655 to be a = 0.64− 0.76, which is an excellent
match with the estimated value 0.65− 0.75. For the other two microquasars, the model
predicts spins to be in the range 0.41− 0.77 for XTE 1550−564 and −0.09− 0.78 for
GRS 1915+105 (see these result summarised in Table 2.2). Unfortunately, current knowl-
edge of their distances and large errors in mass measurements do not allow to accurately
use the spectral fitting method to constrain the angular momenta of those black holes.
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CHAPTER 3

Oscillating torus as a modulation
mechanism for black-hole HFQPOs

The second important aspect of quasi-periodic oscillations, beside knowing what oscillates,
is a modulation mechanism of the emergent flux. Even if we know what oscillates, there has
to be a mechanism that periodically modulates the outgoing radiation by several percent of
the mean. It has been found out that in neutron-star sources, where QPO oscillations are
strong and it is possible to have a high signal to noise ratio and a sufficiently high count-
rates, the HFQPOs originate in the boundary layer, i.e. the actual luminosity modulation
takes place on the neutron star surface (Gilfanov et al. 2003; Gilfanov & Revnivtsev 2005).
That suggests that the mechanism of QPOs periodically enhances the feed of material onto
the star, which burns when it hits the surface and intensify the radiation production.

Such kind of modulation cannot work in black-hole sources, because most of matter
is disappearing under the horizon. It is likely that the absence of the solid surface is the
reason why QPOs are much weaker in black holes than in neutron stars – we are perhaps
lucky to observe the actual process not outshined by any of its consequent effects.

Observations show that the solely presence of a thin accretion disc is not sufficient to
produce the HFQPO oscillations, because they are exclusively connected to the spectral
state, where the energy spectrum is dominated by a steep power law with some weak
thermal disc component. A model is more appropriate, where an outer cool disc is con-
tinuously transitioned into or sandwiched by a hot, thick, but optically thin flow (Esin et
al. 1998). An optically thin advection–dominated accretion flow (ADAF; see a review by
Narayan et al. 1998) is mostly transparent for photons, and therefore general relativistic
light bending and lensing effects may gain a particular importance. Significant temporal
variations in the observed flux can then be accomplished by global oscillations of such
geometrically thick flow, fluid tori.



3. OSCILLATING TORUS AS A HFQPO MODULATION MECHANISM

In order to explore, whether it is possible to obtain some flux modulation just by effects
of strong gravity, we set up a model of a possible accretion configuration, largely simplified
to a presence of a hot and optically thin luminous torus, optionally surrounded by a cool
opaque disc. The torus is considered in a ‘slender approximation’, i.e. with its size being
smaller as compared to its distance from the gravity centre. Later on, in an astrophysically
realistic model, the optically thin medium can represent a scattering corona or a diluted
advection dominated flow, in which additional processes of local microphysics play a more
complicated role.

The idea of a slender torus was initially invented by Madej & Paczyński (1977) in
their model of an accretion disc of the dwarf nova U Geminorum. They noticed that in
the slender limit and in the Newtonian gravity, the surfaces of constant effective potential
form concentric circles. The same idea of slender torus in a form of a ‘thin isothermal ring’
was then used by Papaloizou & Pringle (1984, 1985) in their remarkable papers about the
stability of non-self-gravitating polytropic tori. The additional symmetry induced by the
Newtonian potential was employed by Blaes (1985), who found a complete set of normal
mode solutions with an analytic description of all eigenfunctions and eigenfrequencies for
the linear perturbations of polytropic tori with constant specific angular momentum.

It has been proved recently both in general Newtonian theory (with a non-spherically
symmetric potential, Blaes et al. 2006) and in Einstein relativity (Abramowicz et al.
2005c) that in an axially symmetric stationary spacetime, a toroidal distribution of a
perfect fluid in equilibrium always admits global epicyclic eigenmodes of oscillations. In
particular they have shown that in the slender limit (which corresponds to the sound speed
cs =0) there exist rigid and axisymmetric (m=0) modes between possible solutions of the
non-relativistic and relativistic versions of the Papaloizu-Pringle equation. These modes
represent the simplest global and always-present oscillations in an accretion flow, axisym-
metric up–down and in–out motion. The oscillations are sinusoidal, with frequencies equal
to the meridional and radial epicyclic frequencies.

In this Chapter we first briefly summarise the basic equations of the theory of geometri-
cally thick accretion discs and review the calculations of epicyclic oscillations of a slender
torus by Blaes (1985) and Abramowicz et al. (2005c). Then we setup a simple model of
a torus filled with an optically thin gas and describe its thermodynamical and radiative
properties. This model serves as a source of radiation for the numerical ray-tracing code,
which is used to transport radiation emitted locally in the torus to an observer at infinity
through the curved spacetime. The last section describes some technical details of numer-
ical ray-tracing and postprocessing of calculated lightcurves. This Chapter is based on
work published in Bursa (2004).
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3.1 Relativistic tori in accretion flows

Thick non-Keplerian accretion discs (tori) are likely to be present in many astrophysical
objects, e.g. quasars and other active galactic nuclei, in X-ray binaries and microquasars,
and likely also in the central engine of gamma-ray bursts. In particular, it is well known
(Abramowicz et al. 1978) that in a system formed by a black hole surrounded by a thick
disc, the gas flows in an effective (gravitational plus centrifugal) potential, whose structure
is comparable with that of a close binary. The pressure gradients balance the gravitational
and centrifugal forces, allowing for the existence of stationary configurations of matter in a
non-geodesic circular motion and contained within closed constant pressure equipotential
surfaces. The Roche torus encompassing the black hole has a cusp-like inner edge located
at the Lagrange point L1, where mass transfer driven by the radial pressure gradient is
possible.

In the following, we derive main equations for standard geometrically thick accre-
tion discs using an elegant Killing-vector notation (see also Fishbone & Moncrief 1976,
Abramowicz et al. 1978, Kozlowski et al. 1978, Kuwahara 1988 and references therein).

Euler equation

The geometry of an exterior spacetime surrounding static a star or black hole of mass M is
in the standard coordinate system (t, r, θ, φ) described by the Schwarzschild line element

ds2 = −
(

1− 2 M

r

)
dt2 +

(
1− 2 M

r

)−1

dr2 + r2 ( dθ2 + sin θ2 dφ2) , (3.1)

where the metric coefficients depend neither on the time coordinate t (stationarity), nor
the azimuthal coordinate φ (axisymmetricity), which means (Misner, Thorne & Wheeler
1973) that the spacetime contains timelike and azimuthal Killing vector fields, ηµ =δµ

t and
ξµ = δµ

φ , along which the geometry does not change. If Xµ, Y µ are two arbitrary Killing
vectors, then following identities are satisfied (Misner, Thorne & Wheeler 1973):

∇µXν +∇νXµ = 0 (Killing equation) , (3.2a)

Xµ∇µYν = Y µ∇µXν , (3.2b)

Xµ∇µYν = −1
2∇µ(XY ) , (3.2c)

where we use the notation XµY νgµν = (XY ). The metric then takes the form,

ds2 = (ηη) dt2 + grr dr2 + gθθ dθ2 + (ξξ) dφ2 . (3.3)

The perfect fluid with four-velocity uµ is described by the usual stress-energy tensor

Tµν = (ε + p) uµ uν + p gµν , (3.4)

where the fluid variables ε, p and n (n will become in use later on) are respectively the
proper energy density, the isotropic pressure and the particle density. The four-velocity
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vector uµ of the fluid rotating purely in the azimuthal direction around the z axis has the
form

uµ =
(
ut, 0, 0, uφ

)
= ut

(
ηµ + Ω ξµ

)
, (3.5)

where we have introduced the angular velocity Ω ≡ uφ/ut.

The relativistic Euler equation of motion for the perfect fluid is contained in the con-
tinuity equation of the stress-energy tensor,

∇µTµ
ν = 0 , (3.6)

which gives the expression for the 4-acceleration aµ of the flow,

aµ = − ∇µp

p + ε
. (3.7)

In addition to the energy conservation law (3.6), the divergence of Tµν projected along a
Killing vector field Xν ,

∇µ (Tµ
νX

ν) = Xν (∇µTµ
ν) + Tµν (∇µXν) = 0 , (3.8)

is also identically zero because of anti-symmetricity of ∇µXν (3.2a). Substituting (3.4)
into (3.8), we obtain

uµ∇µ
(p + ε) (uνXν)

n
= 0 , (3.9)

where we have used to advantage the conservation law of the baryonic number, ∇µ(n uµ) =
0. Hence, there are two quantities, constants of motion along the fluid lines, corresponding
to two Killing vectors, namely the energy

E = −p + ε

n
uµ ηµ = −p + ε

n
ut (3.10)

and the angular momentum

L =
p + ε

n
uµ ξµ =

p + ε

n
uφ (3.11)

per baryon (Bardeen 1973; Kozlowski et al. 1978). These two quantities then define the
specific angular momentum (angular momentum per unit mass)

` ≡ L

E
= − (uξ)

(uη)
= −

uφ

ut
, (3.12)

which together with angular velocity Ω can be used to describe the fluid motion. Ω and `

are related by relation

Ω = −`
(ηη)
(ξξ)

. (3.13)
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Now we return back to the Euler equation of motion (3.7) and calculate the aµ. By
definition of 4-acceleration, it is

aµ ≡ uν∇νuµ = A2
[
ην + Ω ξν

]
∇ν

[
ηµ + Ω ξµ

]
. (3.14)

The value of A = ut can be found from the normalization of 4-velocity, uµ uµ = −1, and
with the help of identities (3.2) we get

aµ = −1
2
∇µ (ηη) + Ω2∇µ (ξξ)

(ηη) + Ω2 (ξξ)
. (3.15)

A Keplerian, i.e. geodesic, motion has aµ =0 and in the spherically symmetric spacetime
is planar, satisfying the condition

dgtt

dr
+ Ω2 dgφφ

dr
= 0 , (3.16)

which integrated gives the well-known third Kepler’s law

Ω2 =
G M

r3
. (3.17)

Equation (3.15) can be rearranged to the form

aµ = −1
2
∇µ ln

[
(ηη) + Ω2 (ξξ)

]
+

1
2

(ξξ)∇µΩ2

(ηη) + Ω2 (ξξ)
. (3.18)

The standard definition of the effective potential in a spherically symmetric gravitational
filed is

U = −1
2

ln
(
gtt + `2gφφ

)
. (3.19)

The metric components that appear in the formula (3.19) may be invariantly defined in
terms of the Killing vectors ηµ and ξµ (Abramowicz & Kluźniak 2004a),

gtt = e−2Φ ≡ 1
(ηη)

, (3.20)

gφφ = − 1
r̃2

e−2Φ ≡ 1
(ξξ)

, (3.21)

where Φ is the gravitational potential and r̃ is the circumferential radius. Then we can
substitute (3.19) into (3.18) and write the Euler equation (3.7) in terms of the effective
potential U , angular velocity Ω and specific angular momentum `,

− ∇µp

p + ε
= ∇µ U −

Ω∇µ`

1− Ω `
. (3.22)
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0
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1010 2020

Figure 3.1: A relativistic torus surrounding a black hole. Equipotential contours, given by
equation (3.26) are separated by a constant step in the effective potential.

Equipotential structure of a barotropic fluid

For a barotropic fluid, i.e. the fluid described by a one-parametric equation of state p=p(ε),
the surfaces of constant pressure and constant total energy density coincide and it is
possible to find a potential W such that ∇W = −∇p/(p+ ε), which simplifies the problem
enormously. If the left-hand side of the equation can be expressed as a gradient, it follows
that the right-hand side has to be expressed as a gradient as well. It therefore implies
that there exists an invariant function – a rotation law

Ω=Ω(`) , (3.23)

which characterizes the rotation of the fluid. If we define a potential Ψ as

Ψ = −
∫ `

`0

Ω d`

1− Ω `
, (3.24)

then the solution of Euler equation (3.22) can be compactly written in the form

W = U + Ψ + const . (3.25)

The shape of the ‘equipotential’ surfaces W (r, θ) = const is then given by specification
of the rotation law (3.23) and of the gravitational field. The equipotential surfaces can
be closed or open. The closed ones determine stationary equilibrium configurations – the
fluid can fill any of these. Moreover, there is a special self-crossing surface (with a cusp
located in the equatorial plane), where accretion onto the black hole is possible due to the
Paczyński (1987) mechanism.

Of particular interest is a point, where the actual radial distribution of angular mo-
mentum crosses the Keplerian distribution. It represents the centre of the torus r0, where
the pressure p has zero gradient (also density has zero gradient here). At this point,
gravitational and centrifugal force are just balanced and the fluid moves freely with the
rotational velocity Ω and the specific angular momentum ` having their Keplerian values
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ΩK(r0) and `K(r0). Inside the central ring radius, the angular momentum distribution
is super-Keplerian, ` > `K(r0), so that the pressure gradient forces must be directed in-
wards to balance the surplus centrifugal force. Outside r0 the situation is just opposite –
pressure compensates the deficient of the centrifugal source in the flow with sub-Keplerian
distribution of `.

The problem is usually further simplified by the assumption of constant specific angu-
lar momentum. It is known that all characteristic properties of the equipotential surfaces
for a general rotation law are reflected by the equipotential surfaces of the simplest config-
urations with constant ` (Jaroszyński et al. 1980). Moreover, such a configuration is very
important astrophysically, being marginally stable (Seguin 1975). Under the condition
`=const, the rotational potential Ψ is zero and a simple relation follows from (3.25),

W (r, θ) ≡ ln(−ut) =
1
2

ln
[
− gtt gφφ

gφφ + `2 gtt

]
, (3.26)

in which the shape of equipotentials is given by the value of ` and by metric coefficients
only. The profile of the equipotential surfaces for a non-self-gravitating torus with constant
specific angular momentum is illustrated in Figure 3.1.

3.2 Slender approximation

We will assume that the accreting gas filling the torus is in an adiabatic equilibrium and
can be described by a polytropic equation of state of the form (Tooper 1965)

p = K ργ (3.27)

with the energy density given as

ε = ρ +
p

γ − 1
. (3.28)

Here, γ is the adiabatic index, which has a value of 5/3 for a mono-atomic (completely ion-
ized) gas, and K is the polytropic constant determining the specific adiabatic process. The
polytropic constant implicitly contains the temperature of the gas and may be determined
by finding the pressure and density at a given point, e.g. the torus centre.

Polytropes represent a special subclass of barotropic fluid configurations, which enables
us to integrate the right-hand side of the equation (3.22) to find the potential W (the
enthalpy of the gas) in terms of thermodynamical quantities.

W =−
∫

dp

p + ε
= −

∫
dp

γ
γ−1 p +

( p
K

)1/γ
=

− ln
[
1 +

K γ

γ − 1
ργ−1

]
= − ln

[
1 +

γ

γ − 1
p

ρ

]
.

(3.29)

The integration constant has been conveniently chosen by the condition W (ρ=0) = 0 so
that the zero level of W is on the surface of the torus, where the density is zero too. When
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the local sound speed c2
s ≡ dp/ dρ ∝ p/ρ is small compared to the speed of light c2 = 1,

the above expression can be approximated by

W ' − γ

γ − 1
p

ρ
. (3.30)

It is convenient to introduce the Lane-Emden function f(r, z) (Chandrasekhar 1960) by

ρ = ρ0 fn and p = p0 fn+1 , (3.31)

where n = (γ − 1)−1 is called the polytropic index. The function f is equal to unity at
the central pressure maximum and is zero on the torus surface. Substituting into (3.25)
we obtain the Bernoulli equation in the form

U + Ψ + (n + 1)
p0

ρ0
f = const , (3.32)

where the integration constant can be determined by evaluating the equation at the central
point. For a constant specific angular momentum fluid, which is hereafter assumed, and
according to the definition (3.24) of the potential Ψ we find

f = 1− ρ0

p0 (n + 1)

(
U − U0

)
. (3.33)

We are interested in how the function f behaves in the vicinity of the torus centre. For that
purpose we introduce spherical coordinates (t, r, θ, φ) and define expansion variables x̄, z̄

by dx̄ =
√

grr dr/r0, dz̄ =
√

gθθ dθ/r0 with the condition x̄= z̄ =0 at the torus centre r0,
where also the metric coefficients are evaluated. For the difference of the effective potential
between the centre and its vicinage we have

U − U0 =
r2
0

2

[
1

grr

(
∂2U
∂x2

)
0

δx̄2 +
1

gθθ

(
∂2U
∂x2

)
0

δz̄2

]
. (3.34)

The first derivatives of U miss because the central point corresponds to the minimum
of the potential and the mixed second derivatives vanish due to the reflection symmetry
around the equatorial plane. The second derivatives of the effective potential with respect
to x̄ and z̄ give radial and vertical epicyclic frequencies ω

(l)
r and ω

(l)
z in the centre of the

torus as measured by a local co-moving observer (Abramowicz & Kluźniak 2004a, c.f.).

Following the notation of Blaes (1985), we define a parameter β determining the thick-
ness of the torus,

β2 ≡ 2(n + 1) p0 g2
tt(r0)

ρ0 Ω2
0 r2

0

=
2 n c2

s 0 g2
tt(r0)

Ω2
0 r2

0

. (3.35)

If we rewrite equation (3.34) and substitute derivatives of U by dimensionless epicyclic
frequencies ω̄r ≡ ωr/Ω0 and ω̄z ≡ ωz/Ω0, we obtain

f = 1− 1
β2

(
ω̄2

r x̄2 + ω̄2
z z̄2

)
. (3.36)
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3.3 Perturbed equilibrium and epicyclic modes

The torus is slender if β � 1, i.e. when the rotation flow is highly supersonic. The torus
in this limit is geometrically thin and the surfaces of constant pressure and density have
elliptic shapes with semiaxes in the ratio of the epicyclic frequencies. Moreover, in the
Newtonian gravitational field, Φ ∝ 1/r, indeed the ellipses become circles and the torus is
circular in cross-section with the radius R0 = β r0.

3.3 Perturbed equilibrium and epicyclic modes

Now, we consider small perturbations around the equilibrium of the stationary and axially
symmetric torus in the form

X(r, θ, φ, t) = δX∗(r, θ) ei(mφ−ωt) . (3.37)

These perturbations are, in terms of a single quantity W, governed by the Papaloizou-
Pringle equation. This equation was originally derived (Papaloizou & Pringle 1984) in
Newtonian theory and only recently it was generalized to be valid in Einstein gravity too
(Abramowicz et al. 2005c).

The general relativistic form of the quantity W is

W =
δp

ut ρ (mΩ− ω)
. (3.38)

For barotropic `=const tori, Abramowicz et al. derived a covariant version of the
Papaloizou-Pringle equation, which in the slender limit (β → 0) reads

f
∂2W
∂r2

+ n
∂f

∂r

∂W
∂r

+ f
∂2W
∂z2

+ n
∂f

∂z

∂W
∂z

+
2n

β2

(
m− ω

Ω0

)
= 0 . (3.39)

It is identical in form with the non-relativistic Papaloizou-Pringle equation for oscillations
of the constant angular momentum slender tori, so it also has the same solutions. In
the spherically symmetric Newtonian potential (ωr =ωz), this equation was fully solved in
exact analytic form by Blaes (1985), who gave a complete set of its eigenmodes, with a
complete analytic description of all eigenfunctions and all eigenfrequencies. More recently,
Blaes et al. (2006) found that in general Newtonian case (ωr 6=ωz), there are two particular
solutions of the equation,

Wr = Cr r ei(mφ−ωrt), Wz = Cz z ei(mφ−ωzt) , (3.40)

with Cr, Cz being two arbitrary constants. The solution (3.40) is consistent with epicyclic
oscillation modes. The fluid velocity is spatially constant on the torus cross-sections,
entirely radial in the case of the radial epicyclic mode Wr and entirely vertical in the
case of the vertical epicyclic mode Wz. The radial and vertical oscillations are sinusoidal,
with frequencies equal to the epicyclic frequencies ωr and ωz. Moreover these modes are
axisymmetrical and therefore stable against the Papaloizou-Pringle instability.
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2 5 10 15 20
radius [GM/c2]

r0

R0

Slender model

Real torus

Figure 3.2: An illustration of the equipotential structure of a real relativistic torus (lower part)
and of our circular slender torus model (upper part) surrounding a black hole. The equipotential
contours are separated by equal steps in the potential W .

3.4 Model of a slender torus

We will use the previous results to construct a simple model of an slender torus filled
with an polytropic hot and optically thin gas. We setup its equipotential structure and
prescribe the emissivity.

Thermodynamical properties

When the torus is in the hydrodynamic equilibrium, pressure gradients specified by
the enthalpy W are just compensated by gradients of the effective potential U so that
W = U + const. In the case of a constant specific angular momentum torus, this relation
explicitly gives W in terms of the metric functions (equation 3.26).

From the thermodynamical point of view, the enthalpy (plus the equation of state)
specifies the pressure, density and temperature structure. In a polytropic torus, the rela-
tion is given by equation (3.29), from which we can extract a formula for the density on
the torus cross-section,

ρ($) =
[
γ − 1
K γ

(
eW ($) − 1

)] 1
γ−1

. (3.41)

Here, we have introduced the cross-sectional radius $, which measures the radial distance
from the torus centre (see Figure 4.10 on p. 81). Assuming the gas is ideal and satisfies
p V =N kB T , we also get a formula for the temperature,

T ($) =
mu µ

kB

p

ρ
=

mu µ

kB

γ − 1
γ

(
eW ($) − 1

)
, (3.42)

where µ, kB and mu and the molecular weight, the Boltzmann constant and the atomic
mass unit, respectively.
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Figure 3.3: The density (left) and temperature (right) profiles of a polytropic gas forming
an accretion torus with the centre at r0 =10.8 M . Solid lines represent the slender model with
radius R0 =2 M and dashed lines represent the real torus filling the potential well of the same
depth.

Equipotential structure

We have seen in Section 3.2 that in the slender limit cross-sections of the torus have an
elliptical shape. For our torus model, we make even stronger simplification and construct
a torus with circular cross-sections as it is in the Newtonian limit. We make an expansion
of (3.26) at the central point r=r0 in the z-direction to obtain the profile of the enthalpy
in the form

W ($) =
R2

0 −$2

2 r2
0 (r0/rg − 3)

. (3.43)

Again, the integration constant is set such that the enthalpy is equal to zero on the torus
surface, W (R0)=0.

By combining (3.43) with (3.41) and (3.42) we obtain the density and temperature
profiles in the torus body. The equipotential structures of a relativistic torus, determined
by Eq. 3.26, and of our model are illustrated in Figure 3.2 and the corresponding profiles
of the density and temperature are shown in Figure 3.3.

Bremsstrahlung cooling

The bremsstrahlung emission includes radiation from both electron–ion and electron–
electron collisions (Stepney & Guilbert 1983; Narayan & Yi 1995b),

f = fei + fee . (3.44)
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The contributions of either types are given by

fei = ne n̄ σT c αf me c2 Fei(θe) and (3.45)

fee = n2
e c r2

e αf me c2 Fee(θe) , (3.46)

where ne and n̄ are number densities of electrons and ions, me and re =e2/mec
2 denotes

mass of electron and its classical radius, αf is the fine structure constant, Fee(θe) and
Fei(θe) are radiation rate functions and θe =k Te/me c2 is the dimensionless electron tem-
perature. Fee(θe) and Fei(θe) are about of the same order, so that the ratio of electron–ion
and electron–electron bremsstrahlung is

fei

fee
≈ σT

r2
e

≈ 8.4 (3.47)

and we can neglect the contribution from electron–electron collisions. For the function
Fei(θe) Narayan & Yi (1995b) give the following expression:

Fei(θe) = 4
(

2θe

π3

)1/2 [
1 + 1.781 θ1.34

e

]
, θe < 1 , (3.48)

=
9θe

2π
[ln(1.123 θe + 0.48) + 1.5] , θe > 1 . (3.49)

In case of multi-component plasma, the density n̄ is calculated as a sum over individual
ion species, n̄=

∑
Z2

j nj , where Zj is the charge of j-th species and nj is its number
density. For a hydrogen–helium composition with abundances X :Y the following hold for
the electron, ion and total density:

ne ≡
∑

Zj nj = 1 · nH + 2 · nHe = X+2 Y
X+Y

∑
nj , (3.50)

n̄ ≡
∑

Z2
j nj = 1 · nH + 4 · nHe = X+4 Y

X+Y

∑
nj , (3.51)

ρ ≡
∑

Arj mu nj = mu(1 · nH + 4 · nHe) = mu
X+4 Y
X+Y

∑
nj , (3.52)

where Arj is the relative atomic weight of the j-th species, mu denotes the atomic mass
unit and we define µ ≡ (X + 4Y )/(X + Y ). The emissivity is then

fei = 4.30× 10−25 µ+2
3 µ ρ2 Fei(θe) erg cm−3 s−1 , (3.53)

which for the non-relativistic limit (θe � 1) and Population I abundances (X = 0.7 and
Y = 0.28) gives

fei = 3.93× 1020 ρ2 T
1/2 erg cm−3 s−1 . (3.54)

This formula differs from the one given by Abramowicz et al. (1996, Eq. 65), as they
apparently did not multiply their formula by the abundance factor.
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3.5 Computational method

Most of the results presented in the following Chapter are obtained using a numerical ray-
tracing. The detailed description of the sim4 code, which has been used for calculations, is
given in Appendix B. Here we only briefly review the basic assumptions, the computational
scheme and describe the methods of analysis of the resulting lightcurves.

Spacetime metric

Numerical ray-tracing calculations are mostly performed in the Schwarzschild spherically
symmetric spacetime, described by a metric function (in spherical coordinates)

ds2 = −
(

1− 2 M

r

)
dt2 +

(
1− 2 M

r

)−1

dr2 + r2 ( dθ2 + sin θ2 dφ2) . (3.55)

For comparisons with the flat-spacetime situation without light bending, some calculations
are done using the Minkowski metric,

ds2
mk = −dt2 + dr2 + r2 ( dθ2 + sin θ2 dφ2) . (3.56)

The Schwarzschild metric is the basic choice to start with. It includes all important
general relativistic effects, but is sufficiently simple in the sense that photon trajectories
are planar. This simplicity allows to more easily isolate and recognise the essential effects
of strong gravity on light propagation, as we will see in the next Chapter.

Ray-tracing

The code uses a method of direct ray-tracing outlined by Ftaclas et al. (1986) instead
of the more frequently used transfer-function method (Cunningham 1975, 1976), as it
is more convenient for the numerical calculations of radiative transport in the spatially
extended emitters. The ray-tracing calculations are performed by numerical integrating
the geodesic equation and the equation of geodesic deviation using a fourth-order Runge-
Kutta integrator with an adaptive step-size control. The adaptive stepping in the affine
parameter allows the integration routine to quickly overrun the long path in the relatively
flat spacetime far from the source of gravity and, on the other hand, carefully pass the
strong-curvature region near the black hole while maintaining high accuracy of 10−12. It
is also used to determine intervals at which to record photon’s position and momentum.

A special care is taken to process photon paths near-crossing the coordinate polar axis,
where the gθθ component of the metric is close to zero and the integrator has problems to
pass over this point. When | sin θ | < 10−5, the integration step is repeatedly multiplied
by a value proportional to the inclination and chosen accuracy, which causes the the
integration to overskip the pole and continue with unchanged momentum.
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Figure 3.4: An example lightcurve (left) and the corresponding power spectrum (right) as a
result of numerical ray-tracing.

The lightcurves and images presented in this work have been calculated using the
sets of 300×300 or 500×500 (for lightcurves) and 1000×1000 (for images) rays. For each
ray, from many hundreds up to several thousands of waypoints are recorded during the
ray-tracing. The waypoints are then used to reconstruct the photon’s trajectory when
computing lightcurves, so it is possible for each photon bundle (i.e. a pixel on the image
plane) to follow up its way from and/or through the source to the observer and integrate
the radiation transfer equation.

Since the image is constructed on the observer’s sky plane, all gravitational lensing
effects connected to changing areas of photon-flux tubes are implicitly included by the
calculation method. Regions of high magnification behind the black hole will cover more
pixels of the image, hence they will appear brighter than the non-magnified regions. This
is one of advantages of the direct ray-tracing method. The integration over the source,
instead of over the image, would require a Jacobian transformation between the source
and observer coordinates (see e.g. Dovčiak 2004 for a detailed description and usage of
the transfer-function method).

Fourier analysis of lightcurves

Using the sim4 code numerous lightcurves have been computed for various values of con-
figuration parameters. Each lightcurve covers as many Keplerian periods TK =2 π/ΩK(r0)
as needed for the torus to complete the oscillations movements and return to its initial
position and phase. All lightcurves have been computed with 128 or 256 time bins, so
that the sampling frequency varied with the duration of simulations, but typically about
40 time bins per one Keplerian period were used.

The resulting lightcurves have been fourier-analysed using the standard Fast Fourier
Transform (Press et al. 1986). Oscillation powers have been read by fitting the power
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density spectrum (PDS) with Lorentzian profiles

L(ω) =
LN

4
(

ω − ωc

LW

)2

+ 1
, (3.57)

with the centroid frequency ωc being the frequency of imposed oscillations. The powers,
given as

P (ωc) = 2π LN LW , (3.58)

have been finally converted to the fractional root mean square amplitudes of the total
bolometric luminosity, as described in Appendix C. An example lightcurve from the
numerical ray-tracing and the corresponding power spectrum are shown in Figure 3.4.
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CHAPTER 4

Strong gravity effects on light
modulation from an oscillating
slender torus

Relativistic tori can generally oscillate in a mixture of internal and global modes. Internal
modes invoke pressure and density waves within the torus, while its shape remains nearly
unchanged. The outgoing flux is therefore directly modulated by variations in the profiles
of thermodynamical properties and by the corresponding change of the local emissivity in
the optically thin medium. In this case, lensing or any general relativistic effect on the
radiation transport is not important, which is off our interest here. Global modes, on the
other hand, alter mainly the topological structure and spatial distribution of the material.
Because light rays do not follow straight lines in a curved spacetime, these changes can be
displayed out by effects of gravitational lensing and light bending.

Numerous models have been proposed so far to explain the black-hole QPO’s origin.
The production of QPOs has been examined with models of orbiting blobs and spots
(Stella & Vietri 1999; Schnittman & Bertschinger 2004), a resonance between some modes
of orbital motion (Kluźniak & Abramowicz 2001), extended non-axisymmetric features
(e.g. spiral arms or warps; Kato 2004; Wagoner et al. 2001), thick or non-planar accretion
discs (Rezzolla et al. 2003), magnetic coupling between the black hole and the disc (Wang
et al. 2005), etc.

So far, a certain level of non-axisymmetry has been preferred in proposed models, as it
was thought that a non-axisymmetry is a necessary condition for the X-ray flux modulation
in black-hole QPOs. Here we show that gravitational bending of the photon trajectories
in the vicinity of a black hole suffices to appreciably modulate the flux observed at infinity
even if the source of radiation is axially symmetric.



4. LIGHT MODULATION FROM AN OSCILLATING TORUS

In this final Chapter we show how simple global oscillation modes of a gaseous torus
affect the outgoing flux received by a static distant observer and how the flux modulation
depends on the geometry and various parameters of the torus. We perform a large-scale
three-dimensional ray-tracing in the Schwarzschild spacetime and show that a perfectly
axisymmetric torus oscillating in the radial and vertical directions can in principle cause
a significant modulation of emerging radiation. The modulation at the radial oscillation
frequency is caused by changes of the gas properties in the torus, while only general
relativistic effects of strong gravity (such as light lensing, bending and time delays) are
responsible for modulation at the vertical oscillation frequency. Radiation produced in
any relativistic torus, how complex soever its oscillations can be, will then be subject to
the very same modulation by strong gravity effects.

The first section of this Chapter describes the rigid oscillation modes that we impose
on the stationary and incompressible torus. In the following sections we subsequently
discuss in details the effects of the g-factor, spacetime geometry, observer’s inclination,
torus size and distance, and of the obscuration by an outer optically thick disc. Then we
slightly generalise the initial assumptions and relax the incompressibility condition. The
last section presents some preliminary results of ray-tracing from the 3D MHD simulation
of an optically thin accretion flow.

This Chapter is based on work published in Bursa et al. (2004) and Bursa (2005).
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4.1 Oscillation of a slender torus

We impose on the torus rigid and axisymmetric (m=0) sinusoidal oscillations in the verti-
cal direction, i.e. parallel to its axis, as well as in the perpendicular radial direction. Such
assumption will serve us to model the possible basic global modes found by Abramowicz et
al. (2005c). In our model, the torus is rigidly displaced from its equilibrium (Figure 4.10),
so that the position of the central circle of maximal pressure varies in time as

r(t) = r0+ δr sin(ωrt) , (4.1)

z(t) = δz sin(ωzt) . (4.2)

Here, ωz = ΩK = (M/r3
0)

1
2 is the vertical epicyclic frequency, in Schwarzschild geometry

equal to the Keplerian orbital frequency, and ωr = ΩK(1− 6rg/r0)
1
2 is the radial epicyclic

frequency. The torus is placed at the distance r0 =10.8 M so that the oscillation frequency
ratio ωz : ωr is 3 : 2, but the choice is arbitrary and only serves to mimic the observed
frequency ratio. In the default configuration, the cross-section radius is R0 =2.0 M and
amplitudes of the both vertical and radial motion are set to δz = δr = 0.1 R0.

We initially assume an ‘incompressible’ mode, where the equipotential structure, the
thermodynamical quantities describing the torus and in particular its size are fixed and
do not vary in time as the torus moves. This test case helps us to identify and fully
understand the effects of light bending on observed lightcurves and power spectra. Later
in this Chapter we describe also a ‘compressible’ mode, which is more close to a real
situation, and discuss how changes of the torus properties affect powers in the different
oscillations.

The radial motion of the incompressible torus results in a periodic change of its volume.
Because the optically thin torus is assumed to be filled with a polytropic gas radiating
by bremsstrahlung cooling and we fix the density and temperature profiles, there is a
corresponding change of luminosity L∝

∫
f dV , with a clear periodicity at 2π/ωr. On the

contrary, the vertical motion does not change the properties of the torus or its overall local
luminosity. We find that in spite of this, and although the torus is perfectly axisymmetric,
the flux observed at infinity clearly varies at the oscillation frequency ωz. This is caused
by relativistic effects at the source (lensing, beaming and time delay), and no other cause
need to be invoked to explain in principle the highest-frequency modulation of X-rays in
luminous black-hole binary sources.

4.2 The role of g-factor

The g-factor is one of the prominent relativistic effects, which plays a key-role in changing
observed PDS powers in a modulated flux. It combines effects of the gravitational redshift
and of the Doppler boosting. For a small viewing angles (face-on views), there is only
significant gravitational redshift in the region close to the gravity centre (up to ∼20 rg).
Whereas for large viewing angles (edge-on views), Doppler shift becomes important as the
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Figure 4.1: Left: The azimuthal dependence of g-factor (Doppler+redshift) from a circular
Keplerian orbit at r=10.8 M . The observer’s azimuthal position is φ=0◦.
Right: The azimuthally averaged g-factor from Keplerian orbits at different radii.
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of a steady non-oscillating torus of size R0 =2.0 M placed at r0 =10.8 M . Luminosities are
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Schwarzschild cases are shown.
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relative velocity of the orbiting gas changes. The effect of g-factor in the case of a fluid
torus is illustrated in Figures 4.1–4.3 (see also e.g. Zhang et al. 2003 for maps of g-factor
in the equatorial plane).

The Doppler effect brightens up the part of the accretion flow, where the gas moves
towards the observer, and darkens the receding part,

gDP =
1

γ (1− β cos θ)
. (4.3)

Here, γ is the Lorentz factor due to the total velocity of the gas and β cos θ is the velocity
directed towards the line of sight of a photon. The importance of the Doppler effect grows
with increasing relative difference between radial gas velocities in the approaching and
receding part of the flow; the effect is maximal for inclinations approaching π/2 (Figure 4.1,
left). On average, i.e. azimuthally integrated over a circular orbit, the brightened part wins
over the dimmed part (Figure 4.1) so that the observed emission increases with inclination
(Figure 4.3).

The gravitational redshift component of the g-factor

gRS =
√
−gtt =

√
1− 2 rg

r
, (4.4)

comes as a consequence of the equivalence principle and adds the dependence on the radial
distance from the centre of gravity, which is an important fact to explain the qualitative
differences between radial oscillation powers in the compressible and incompressible mode
(later in this Chapter, Section 4.8). Its effect can be seen in Figure 4.1 (right).

Before we discuss how changes in different parameters of the model affect power of
imposed oscillations, we consider for a moment a steady non-oscillating torus viewed from
different angles. Figure 4.3 shows how the total bolometric luminosity of the torus changes
with inclination of the observer. In Minkowski spacetime and if Doppler effect is omitted
(dashed blue line), we expect the luminosity to be independent on the viewing angle and
to be constant. This is indeed true, although there is some decrease for i > 80◦ caused
by a partial obscuration of the torus by the 2 rg black-hole sphere. If Doppler is switched
on (solid blue line), its effect beams the radiation mainly in the direction of the velocity
of the orbiting fluid. Therefore, the luminosity is lower if viewed face-on and higher for
an edge-on view, as compared with the previous case. The same effect of obscuring the of
the torus slugs the rising trend at high viewing angles. In Schwarzschild spacetime, the
effects of gravitational red-shift and light bending come into play and the situation is very
much different. Without considering the g-factor (dashed orange line), the luminosity has
initially a similar profile as with Minkowski metric, but when the observer is more than
45◦ inclined, it starts to grow thanks to the appearance of the secondary image of the
rare part of the torus below the black hole. If g-factor is included (solid orange line), the
luminosity is generally decreased because of the gravitational red shift of photon energies,
but it rises steeply with inclination pushed up by the appearance of multiple images plus
by the Doppler effect. At edge-on view it reaches almost the same level as the dashed line,
while it is only ∼50 % if looking face-on.
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Figure 4.4: Power spectra of an oscillating torus calculated in the Newtonian limit (left),
Minkowski spacetime (middle) and the Schwarzschild spacetime (right). Viewing angle is 70◦.

4.3 Effect of spacetime geometry

In the Newtonian limit and when the speed of light c→∞, the only observable periodicity
is the radial oscillation. There is no sign of any modulation at the ωz frequency in the
lightcurve, although the torus is moving vertically. This is clear and easy to understand,
because the c→∞ limit suppresses the time delay effects and causes photons from all
parts of the torus to reach an observer at the same instant of time, so it is really seen as
rigidly moving up and down giving no reason for modulation at the vertical frequency.

When the condition of the infinite light speed is relaxed, the torus is no longer seen as
a rigid body. The delays between photons, which originate at different parts of the torus
body, significantly alter its image. Those emerging from the front and back at the same
coordinate time will be detected at different instants separated by the interval

∆t ' 2 r0

c
sin i , (4.5)

where i is the viewing angle (i.e. inclination of the observer). It is maximal for an edge-on
view (i=π/2) and compared to the Keplerian orbital period it is

∆t

TK
' (2π2 r0/rg)−1/2 sin i . (4.6)

This makes about 10% at r0 =10.8M . The torus is seen from distance as an elastic ring,
which modulates its brightness also at the vertical oscillation frequency ωz due to the time
delay effect and the seeming volume change.

Curved spacetime adds the effect of light bending. Photons are focused by the central
mass’ gravity, which leads to a magnification of any vertical movement. Black hole is not
a perfect lens, so that parallel rays do not cross in a single point, but rather form a narrow
focal furrow behind it. When the torus trench the furrow (at high viewing angles), its
oscillations are greatly magnified by the lensing effect. This is especially significant in the
case of the vertical oscillation, as the bright centre of the torus periodically passes through
the focal line.
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Figure 4.4 illustrates the geometry effect on three Fourier power density spectra of an
oscillating torus. The spectra are calculated for the same parameters and only the metric
is changed. The appearance of the vertical oscillation peak in the ‘finite light speed’ case
and its power amplification in the relativistic case are clearly visible.

4.4 Effect of inclination

In the previous paragraphs we have found out that both the time delay and the lensing
effects are most pronounced when the viewing angle is high. Now we will show how much
is the observed flux modulated when the torus is seen from different directions.

The effect of inclination is probably the most featured, in spite of it is difficult to be
directly observationally determined. Changing the line of sight affect the power in the
radial/vertical oscillation frequencies, because different effects are important at different
angles. When the torus is viewed face-on (i.e. from the top), we expect the amplitude
of ωr to be dominant, as the radial pulsations of the torus can be nicely seen and light
rays passing through the gas are not yet strongly bent. When viewed almost edge-on, the
Doppler effect reduces the power of ωr, while gravitational lensing amplifies the power in
ωz. Thus we expect the vertical oscillation to overpower the radial one. Figure 4.6 (left)
shows the inclination dependence of oscillation powers in the Minkowski spacetime (top
panel) and in the curved Schwarzschild spacetime (bottom panel).

In the case of flat spacetime, we see that the power of the radial oscillation is even, if
Doppler effect is not considered. It corresponds to the periodic change of volume and lu-
minosity (as measured by an observer orbiting with the fluid), L◦ ∼

∫
f dV ∼ δr sin(ωr t).

When special-relativistic effects are taken into account, they reflect variations in azimuthal
orbital velocity of the fluid in the radially oscillating constant specific angular momentum
torus. The observed variance in the luminosity is modified by the Doppler factor gDP,
L ∼ g4

DPL◦. Looking face-on, gDP contains the transverse Doppler effect term only and is
an increasing function of radius as well as L◦, which in turn amplifies the power of the
radial oscillation above the g≡1 level. The effect of beaming ∼(β sin i)−1 starts to be im-
portant with higher viewing angles, it turns over the radial dependence of gDP and weakens
the radial oscillation power. The transition in the slope of gDP(r) comes at i∼45◦, where
the red curves cross each other. It will be shown in Section 4.8 that whether the power is
decreased or increased with inclination depends on how L◦ depends on r(t). The vertical
oscillation decreases continuously with an increasing angle of view, being independent of
the g-factor. At inclinations i > 75◦ it has, however, a significant excess, which is caused
by the obscuration of part of the torus behind an opaque sphere of radius 2 rg representing
the central black hole.

When gravity effects on light rays propagation are added, the situation for the radial
oscillation is very much similar to the Minkowski case, except that the attenuation of its
power is softer and the transition in g-factor comes at higher inclination ∼70◦ due to the
effect of the gravitational red-shift. The importance of light bending is clearly visible from
the blue line, i.e. the vertical oscillation, progression. It is raising slowly for inclinations
i>45◦, then it shows a steeper increase for i>75◦, reaches its maximum at i=85◦ and
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Figure 4.5: Results of numerical simulations of the oscillating torus in Schwarzschild geometry.
The equilibrium distance of the torus r̃0 = 10.8M , its cross-section radius is R0 = 1.5M . (Top):–
snapshots of an instant image, as viewed by a distant observer, (bottom):–the power spectrum,
for three different viewing angles, i = 45◦ (left), 60◦ (middle) and 80◦ (right).
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Figure 4.6: The inclination dependence of powers in the radial (red) and the vertical (blue)
oscillations. Top panel shows calculations in the flat spacetime, bottom panel shows powers as
computed in the curved Schwarzschild spacetime. Dashed lines represent the same calculations
done with switched-off g-factor (g ≡ 1).
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it finally drops down to zero. At the maximum it overpowers the radial oscillation by a
factor of 40, while it is 20-times weaker if the torus is viewed face-on. The rapid decrease
at the end is caused by the equatorial plane reflection symmetry. If the line of sight is in
the θ=π/2 plane, the situation is the same above and below the plane, thus the periodicity
is 2 ωz. The power in the base frequency drops abruptly and moves to overtones.

4.5 Effect of the torus size

The effect of the size of the torus is very important to study, because it can be directly
tested against observational data. Other free model parameters tend to be fixed for a
given source (like inclination), but the torus size may well vary for a single source as a
response to temporal changes in the accretion rate.

The power in the radial oscillation is correlated with its amplitude, which is set to
δr=0.1 R0 and grows with the torus size. It is therefore evident, that the radial power
will be proportional to R0 squared. If the amplitude was constant or at least independent
of R0, the ωr power would be independent of R0 too. Thus the non-trivial part of the
torus size dependence will be incurred by vertical movements of the torus.

Figure 4.7 (left) shows the PDS power profiles of both the radial and vertical oscillations
for several different inclinations. Indeed, the radial power has a quadratic profile and is
more dominant for lower viewing angles, which follows from the previous paragraph. The
power in the vertical oscillation is at low inclinations also quadratic and similar to the
radial one, but the reason is different. The time delay effect causes apparent deformations
from the circular cross-section as the torus moves up and down, i.e. to and from the
observer in the case of a face-on view. The torus is squeezed along the line of sight at
the turning points and stretched when passing the equatorial plane. Deformations are
proportional to its size, being the reason for the observed profile. At high inclinations the
appearance of strong relativistic images boosts the vertical oscillation power even more.
But, as can be clearly seen from the 85◦ line and partially also from the 80◦ line, there is a
size threshold, beyond which the oscillation power decreases though the torus still grows.
This corresponds to the state, where the torus is so big that the relativistic images are
saturated. Further increase of the torus size only entails an increase of the total luminosity,
while the variability amplitude remains about the same, hence leading to the fractional
rms amplitude downturn.

4.6 Effect of the torus distance

The distance of the torus from the gravity centre also affects the intensity of modulation
in observed lightcurves (Figure 4.8, left). The power in the radial oscillation is either
increasing or decreasing, depending on the inclination. Looking face-on, the g-factor is
dominated by the redshift component and the power in ωr is increasing with the torus
distance being less dumped. When the view is more inclined, the Doppler component
starts to be important and the oscillation looses power with the torus distance. The
critical inclination is about 70◦.
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Figure 4.7: Powers in the radial (top) and vertical (middle) oscillations and their ratio (bottom)
as a function of the torus size. Different viewing angles are plotted.
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Figure 4.9: Powers in the radial (top) and vertical (middle) oscillations and their ratio (bottom)
as a function of the torus distance from the gravity centre. Different viewing angles are plotted.

The power of vertical oscillation generally decreases with the torus distance. It is
made visible mainly by the time delay effect and because with the increasing distance of
the torus the oscillation period also increases, the effect is loosing on importance. An
exception is when the inclination is very high. The large portion of visible relativistic
images causes the vertical power first to increase up to some radius, beyond which it then
decays. Both small and large tori do not have much of visible secondary images, because
they are either too compact or they are too far. The ideal distance is about 11 rg – this is
the radius, where the torus has the largest portion of higher-order images, corresponding
to the maximum of the vertical power.

Generally, the relative power of the vertical oscillation is getting weaker as the torus
is more and more far-away from the gravitating centre. This is most significant for higher
viewing angles, where the drop between 8 rg and 16 rg can be more than one order of
magnitude. On the other hand, for low inclinations the effect is less dramatic and if
viewed face-on the power ratio is nearly independent from the distance of the fluid ring.

4.7 Effect of disc obscuration

So far we have been assuming that there is only the torus around the black hole and that
photons, once emitted, are either captured or can freely escape to infinity. In fact, there is
likely an outer cool disc surrounding the torus, from which the torus is formed, and which
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can as well have a substantial effect on light modulation. The Shakura–Sunyaev disc is
optically thick and blocks propagation of photons crossing the equatorial plane beyond
its terminal radius. Most of the stopped photons has been strongly bent and has carried
information predominantly about the vertical mode, thus the presence or not-presence of
an opaque disc may be important for the power distribution in QPO modes, namely the
vertical one.

The disc is considered as a geometrically thin and non-transparent body. It lies in
the the equatorial plane (at z = 0) and goes from infinity down to some terminal radius
rd, which is a parameter of the model. For the purpose of this example, the torus is
put somewhat closer to the black hole, with its inner edge near the marginally stable
orbit. Its centre is at r0 = 9.4 rg, its size is R0 = 3.0 rg, and oscillation amplitudes are
δr = δz = 0.2 rg. The disc can extend as close as to the torus, but does not penetrate
into it (rd > r0+R0+δr). Figure 4.9 (left) shows how powers in the oscillation modes are
changed if an opaque disc is present.

If the system is viewed from low inclinations (< 45◦), the disc has a little effect on the
oscillation power. Strongly bent photons appear close to the photon orbit inside the main
image of the torus and only a few of them are blocked by the disc, even if it goes close and
touches the torus from outside. At larger inclinations (> 45◦) and when the disc is close to
the torus, power in the radial oscillation starts to decrease. It is because part of the torus
is periodically obscured, which is compensated by the intrinsic luminosity modulation due
to the changing volume in the incompressible mode, though. The power in the vertical
oscillation is first lowered as the disc goes in, but then it is amplified again when the disc
gets very close. The actual value of rd, where the trend is changed, strongly depends on
the inclination, roughly proportional to ∼ R0 tan i. The power starts to decrease when
the disc obscures the bottom outer lensed image of the rear part of the torus. This lensed
image carries a large part of the ωz power (especially at high inclinations), because it is
formed by photons emitted near the optical caustic behind the black hole. Therefore, if
part of this image is obscured, some power of the vertical oscillation is lost. When the
disc gets only a few rg away from the torus and obscures part of its direct image, the ωz

power is increased, because of a periodical change of the visible volume.

We can conclude that the presence of a thin disc is important, if the disc does not
end far from the torus, but rather within a distance of ∼ 5 gravitational radii from it,
and when the viewing angle is moderate to high. Under these conditions the effect of the
torus obscuration by an optically thick medium is capable to substantially change powers
in oscillations, and in particular in the vertical mode.

4.8 Compressible torus

Up to this point the torus has been considered incompressible, which does not intrinsically
respond to the perturbation of the radial distance in any way. Because the thermodynam-
ical properties stay unchanged, the total mass M =

∫
ρ dV contained within the torus is
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not conserved during the radial movements. Now, we relax this constraint and explore a
more general case of an compressible torus.

The radial motion of the torus generally leads to a redistribution of matter within
it and, consequently, in changes of describing thermodynamical quantities. When the
torus moves inward, closer to the central mass, it will compress and heat up, which will
invoke an increase of its luminosity and size. Considering a small deviation from the
equilibrium position r0 we can estimate changes in the density profile, torus dimensions
and the corresponding change in the overall luminosity.

The conditions in the torus centre are described by equations for the density (3.41),
temperature (3.42) and by the polytropic equation of state (3.27), which can be expanded
with respect to the enthalpy W . The expansion is allowed because W given by (3.43) is
a small quantity (∼10−2) in the slender approximation. In the second order, the formula
(3.41) for the density becomes

ρ =
(

γ − 1
K γ

W

) 1
γ−1

[
1 +

1
2 (γ − 1)

W +O
(
W 2

)]
, (4.7)

with a relative error of the order of 10−6. The enthalpy W slightly varies on a cross-section
in response to the periodic changes in the torus position r(t). We denote its equilibrium
value by W0($) ≡ W (r0, $)|R=R0 and the perturbation due to the torus displacement
by δW , so that

W (r, $) = W0($) + δW (r, $) . (4.8)

z

r
r0

R0

R

G E

T

δz

δr

ς$

Figure 4.10: A schematic illustration of the torus displacement and of the describing variables.
The centre T of the torus is shifted radially by δr and vertically by δz from its equilibrium
position E, which is in the equatorial plane at the distance r0 from the centre of gravity G. The
displacement results in a compression or expansion of the fluid and in a corresponding change
in the torus size. Dashed peripheral line marks the cross-section of the unperturbed torus at
radius R0, while the solid line marks the actual cross-section radius R at the new location.
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Substituting to (4.7) and keeping only the first-order terms in δW we obtain

ρ =
(

γ − 1
K γ

W0

) 1
γ−1

[
1 +

1
2 (γ − 1)

W0 +
1

γ − 1
δW

W0
+O

(
δW 2

W 2
0

)]
'

' ρ0

[
1 +

1
(γ − 1)

δW

W0

]
.

(4.9)

The value of enthalpy at the torus centre is linked with the torus size by equation (3.43),

W (r, 0) =
(R0 + δR)2

B2
=

R2
0

B2

(
1 +

δR

R0

)2

, (4.10)

where δR(r) is the perturbation to the equilibrium radius R0 on a cross-section and we
define

B2 ≡ 2 r2
0

(
r0

rg
− 3

)
. (4.11)

From (4.9) and (4.10) we obtain a relation between the density perturbation and the
perturbation of the torus size,

δρ

ρ0

∣∣∣∣
$=0

=
2

γ − 1
δR

R0
+O

(
δR2

R2
0

)
. (4.12)

The above formula has been calculated at the torus centre $=0. It can be, however,
extended to the whole cross-section, because from the definition of W follows that in the
first order in δR

δW (r, 0)
W0(0)

=
δW (r, $)
W0($)

= 2
δR(r)
R0

+O
(

δR2

R2
0

)
. (4.13)

For a small radial oscillation we can assume that δR is linearly proportional to the oscil-
lation amplitude δr,

δR = α δr , (4.14)

thus the density perturbation is

δρ

ρ0
=

2 α

γ − 1
r0

R0

δr

r0
. (4.15)

The parameter α can be determined from the mass-conservation law. The total mass of
the gas contained in the torus is

M = 4 π2r

∫ R(r)

0
ρ($) $ d$ , (4.16)

where the density profile ρ($) on a cross-section is given by (3.41) with enthalpy (3.43).
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Using (4.10) this can be integrated to

M(r) ' 2 π2 γ − 1
γ

r R(r)2
(

γ − 1
K γ

R(r)2

B

) 1
γ−1

. (4.17)

The total mass in the torus should conserve during the radial oscillations, meaning that
dM/ dr = 0. This condition gives

α = − γ − 1
2 γ

R0

r0
. (4.18)

The negative sign of α reflects the fact that the torus gets bigger when it gets closer to
the centre. Going back to (4.15) we obtain the final expressions for the density and torus
size perturbations,

δρ

ρ0
= − 1

γ

δr

r0
, (4.19)

δR

R0
= − γ − 1

2 γ

δr

r0
. (4.20)

Luminosity variance

The radial oscillation of the incompressible torus with a fixed size results in a corresponding
variance of the volume, mass and luminosity (measured by a local observer orbiting with
the fluid), linearly proportional to the actual distance of the torus r(t) from the black
hole,

L◦(t) ∼
∫

f dV ∼ r(t) ∼ δr sin(ωrt) . (4.21)

In the compressible torus, the total mass is conserved and changes in the volume act against
the perturbations of density, δV ∼ δρ−1, so that the torus is blown up when compressed.
The local luminosity changes with r(t) too, but in a different way,

L◦(t) ∼
∫

f(ρ) dV ∼
∫ R(r)
0 ρ7/3 dV ∼ r(t)−0.8 . (4.22)

Note the opposite sign of the exponent, which causes a ‘change of phase’ in the luminosity
response to the radial oscillation. The luminosity is increased when the torus moves closer
to the black hole. This inversion has a significant impact on power spectrum.

Effect on power spectrum

Figures 4.6–4.9 (right) show how the power in the radial and vertical oscillation depends
on model parameters if the torus is compressible. We can see that the power in the
vertical oscillation stays unchanged, while the radial power is largely affected, particularly
if inclination is changed. There is a clear difference between the red curve progression
in the left and right panel in Figure 4.6. It is caused by the inversion of the luminosity
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Figure 4.11: Left: The azimuthally averaged density distribution in the inner part of the
simulated accretion flow. Due to the low efficiency of angular momentum transport, a small
transient torus develops at 16 rg. Right: Isosurfaces of the density in a spatial view. The green
and yellow contours correspond to ρ = 0.2 ρ0 and ρ = 0.1 ρ0 of the initial outer torus central
density ρ0, respectively. (Figures by M. Machida.)

dependence on the torus displacement, which in combination with the effect of g-factor
(explained before in Section 4.4) results in a reverse trend of the ωr power. A similar
incidence can be found also in the other figures.

4.9 Comparison with numerical 3D MHD accretion flow

simulations

In this section, the results obtained from our torus model are qualitatively compared with
outputs of a three-dimensional global resistive magnetohydrodynamical (MHD) simulation
of an optically thin accretion flow. This part of work has been done in a coopearation
with M. Machida.

The initial state of the magnetohydrodynamical simulation is an equilibrium polytropic
(γ =5/3) torus located at r0 =70 rg with a nearly Keplerian distribution of angular momen-
tum, L=L0(r0) (r/r0)0.46. The torus is threaded by a weak toroidal magnetic field (Okada
et al. 1989) with the initial gas to magnetic pressure ratio β ' 100. The presence of the
strong gravitational field is simulated by using the pseudo-Newtonian potential (Paczyński
& Wiita 1980) of a 10 M� black hole. The self-gravity of the gas and the radiative cooling
are neglected.

The initial torus is lead to evolve and after several orbital periods the magnetic field
is amplified by number of MHD instabilities together with the differential rotation. The
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magnetorotational instability (MRI) driven turbulence develops and the torus deforms it-
self into an accretion disc by transporting angular momentum outwards by Maxwell stress.
In the inner part, the matter accretes to the centre, while the disc is expanded radially by
gaining some angular momentum in the outer part. The radial angular momentum distri-
bution is very slightly sub-Keplerian, but because the efficiency of the angular momentum
transport rate is α . 0.01, it becomes almost constant in the region 10 rg < r < 22 rg

and a small transitional constant angular momentum torus is created at about 16 rg (Fig-
ure 4.11). The existence of such tori appears to be a robust feature of many global
magnetohydrodynamic simulations (c.f. De Villiers et al. 2003).

The inner torus is an eccentric and time-varying structure. As a response to an event of
enhanced mass accretion, a crescent-like density fluctuation develops in the torus sustained
by a strong magnetic field. The fluctuation can persist several rotational periods, but is
finally destroyed by a magnetic reconnection between the lower and higher density regions.
The degree of eccentricity of the torus fluctuates in the response to variations in the mass
accretion rate being more pronounced after an increased mass inflow and the development
of the crescent. For further details of the simulation refer to Machida et al. (2004, 2005)
and references therein.

The outputs of the simulation are used to analyse the X-ray emission from the inner re-
gion of the simulated accretion flow within 40 rg from the central black hole. A continuous
segment of 500 ms duration consisting of 100 frames is investigated after the development
of the eccentric crescent fluctuation, which corresponds to about 25 orbital periods of the
gas in the torus. Assuming the bremsstrahlung emissivity, the lightcurve and its Fourier
power spectrum are calculated by ray-tracing photon trajectories from the emission region
to the observer (Figure 4.12).
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Figure 4.12: Sample lightcurves (left) and corresponding Fourier power spectra (right) from
the inner region of the MHD simulation containing a transient torus. The viewing angle is 75◦

and cases both with and without inclusion of relativistic effects are shown. Dashed lines in the
PDS graph mark the Keplerian orbital and radial epicyclic frequencies of free test particles in
the Paczyński & Wiita potential.
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Figure 4.13: Instant snapshots and power spectra of a slender torus model at 16 rg viewed
from different positions (from top): 5◦, 30◦, 60◦ and 85◦.
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10−5

10−4

10−3

P
ow

er
[(

rm
s/

m
ea

n
)2
/H

z]

0 20 40 60 80 100 120
Frequency [Hz]

2νK
ν

r
νK

10−5

10−4

10−3

P
ow

er
[(

rm
s/

m
ea

n
)2
/H

z]

0 20 40 60 80 100 120
Frequency [Hz]

2νK
ν

r
νK

10−5

10−4

10−3

P
ow

er
[(

rm
s/

m
ea

n
)2
/H

z]

0 20 40 60 80 100 120
Frequency [Hz]

2νK
ν

r
νK

10−5

10−4

10−3

P
ow

er
[(

rm
s/

m
ea

n
)2
/H

z]

0 20 40 60 80 100 120
Frequency [Hz]

2νK
ν

r
νK

Figure 4.14: Instant snapshots and power spectra of a MHD accretion flow simullation by
M, Machida viewed from different positions (from top): 5◦, 30◦, 60◦ and 85◦.
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4. LIGHT MODULATION FROM AN OSCILLATING TORUS

The power spectrum typically shows three prominent features at frequencies 34 Hz,
53 Hz and 106 Hz. The strong 53 Hz and the 106 Hz oscillations clearly correspond to the
Keplerian orbital frequency and to its first overtone in the Paczyński & Wiita potential,
Ω2 (PW)

K = GM/[r(r−2 rg)2]. The identification of the 34 Hz oscillation is not that outright.
It might correspond to the radial epicyclic oscillation, it may be some beat or it may
represent some inertial mode. The radial epicyclic motion in the PW potential has the
frequency ω(PW)

r = Ω(PW)

K [(r− 6 rg)/(r− 2 rg)]1/2, which is 39 Hz at the place of the torus.
That is about 15% higher than the frequency of the peak in the observed PDS, but it should
be noted that the expression is valid for a free test particle motion without an influence of
additional forces. Conditions in the torus are strongly affected by the presence of magnetic
and gas pressure, so it is quite possible that the actual epicyclic frequency is shifted by
some factor (see also Blaes et al. 2006).

Figure 4.14 shows the resulting power spectra and instant snapshot images of the
transient torus calculated for several different inclinations. They may be compared with
similar panels in Figure 4.13, where power spectra and snapshots of a slender torus model
are shown. The parameters of the model are chosen such that they resemble the size and
distance of the torus in the MHD simulation. The model, however, stays axi-symmetric
and oscillates radially and vertically at epicyclic frequencies, as it has been considered
throughout this chapter. Despite of this difference, the power spectra reflect a similar
pattern of changing power of different peaks depending on the observer’s inclination. An
additional similarity between the model and the simulated flow may be found, namely that
the transient torus oscillates in the vertical direction as well, but not in the rigid mode
as the model does. The vertical oscillation frequency is equal to the orbital frequency in
the spherically symmetric spacetime, so that the vertical oscillation consequently tilts the
torus a little off the equatorial plane. This effect may be seen in the bottom panel in
Figure 4.14.
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SUMMARY AND FUTURE PROSPECTS

The work presented in this thesis has focused on some aspects of high-frequency quasi-
periodic oscillations observed in X-ray radiation coming from accreting neutron-star and
black-hole binary sources.

In the case of neutron stars, it has been found that frequencies of the twin-peak oscilla-
tions are remarkably correlated among sources, and that this correlation can be described
by a linear function. The same is valid if sources are considered individually; linear fits
describe the individual frequency correlations with high accuracy, although in some cases
a power law can be somewhat better option. Then we have found that the parameters of
the linear fits, the slope and the shift, are anti-correlated, which means the source lines in-
tersect close to a single point in the frequency–frequency plot. This point, notably, lies at
the 3/2 line marked out by QPO observations from four black hole sources, which brings
to attention a possible connection between the neutron-star and black-hole QPOs, and
suggests the idea that they all may arise from acting of the same mechanism. Moreover,
based on the intersections of source lines with the 3/2 line, neglecting magnetic field effects
and assuming the general validity of the inverse mass scaling of QPO frequencies, it has
been deduced that the two classes of neutron stars, atoll and Z sources, should differ in
their masses by a few tens per cent.

A number of models try to explain the origination of QPOs. Among them, the epicyclic
resonance model proposes a class of possible resonances between various combinations of
frequencies connected with orbital motion. For each type of resonance, the model makes
specific predictions about angular momentum of the three black-holes, whose masses are
known. In the case of the source GRO J1655–40, for which also the angular momentum
has been estimated recently, the model predictions can be compared with the measured
spin estimates. It is found that currently none of the proposed resonances can satisfy the
observational evidence. As a possible solution a new type of resonance is proposed and
spins of the other two microquasars are predicted.

Then the focus has moved to a modulation mechanism of QPOs. In contrast with
previous works, the importance of relativistic effects on light propagation in an optically
thin medium is pointed out. A toy model is constructed containing a luminous torus filled
with an optically thin gas in order to inspect a possibility of the observed flux modulation
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by global oscillations of torus body. It is found that it is quite possible to modulate the
observed signal at a sufficient level just by relativistic effects such as light bending, lensing,
and time delays. Effects of changing viewing angle, torus size, position, and of a presence
of an outer thin disc are examined. Namely the changing inclination and a close presence
of the opaque disc is found capable to altering the distribution of power in the vertical and
radial oscillation modes. It has been also shown that the g-factor and the torus response
to the radial perturbations have a major impact on the observed PDS power in the radial
oscillation mode, while power in the vertical mode oscillation is unaffected.

The above summarised results suggest that the origin of high-frequency QPOs may be
found in the presence of a toroidal ADAF-type of accretion flow close to the marginally
stable orbit. The simple torus model considered in this thesis has primarily served to
demonstrate the principal possibility and importance of modulation of observed X-ray
lightcurves by relativistic effects on light propagation. Future work should then follow
three main directions:

Non-axisymmetric modes. Encouraged by the results of Chapter 2 that a resonance in an
eccentric torus may be responsible for QPOs, and by outputs of MHD simulations also
showing an eccentric transient torus, we would like to go beyond basic vertical and radial
oscillations and explore also a non-axially symmetric cases with non-zero azimuthal wave
number (m > 0).

Connection with MHD simulations. We plan to perform a ray-tracing from three-
dimensional magneto-hydrodynamical simulations to quantify the correlation between in-
trinsic variations of local emissivity in the flow and their presentment to a distant observer.
This work is already in progress and some results have already been presented in Chapter 4.

Spectral states. Some attempts has already been made to unify different spectral states of
black-hole binaries (Esin et al. 1997) in terms of a model with a thin disc and an extended
corona. We would like to follow up the idea, add spectral resolution to the ray-tracing
code and simulate energy spectra of various configuration of a cool disc and a hot ADAF.
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APPENDIX A

Frequencies of orbital motion in
axially symmetric spacetimes

Free particles moving in an axially symmetric gravitational field of a black hole can gener-
ally exhibit three fundamental modes of periodic motion. These are: the Keplerian orbital
motion, the radial epicyclic motion and the vertical epicyclic motion. Each mode has a
corresponding frequency associated with (Nowak & Lehr 1998; Merloni et al. 1999).

The Keplerian motion is the motion of a free particle azimuthally orbiting a point
mass. The frequency with which the particle completes full circles and passes through the
same azimuthal position, as measured by an observer at infinity, is

Ω2
K =

(
G M

r3
g

) (
r3/2 + a

)−2
. (A.1)

For a 10 M� Schwarzchild black hole, it has approximately the value of 220 Hz at r=6 rg

(the marginally stable orbit, see below).

The radial epicyclic motion is the oscillation about the original circular orbit of a free
particle, if it is radially perturbed. Its frequency is given by the second derivative of the
effective potential (see e.g. Abramowicz & Kluźniak 2004a) and reads

ω2
r = Ω2

K

(
1− 6

r
+

8 a

r3/2
− 3 a2

r2

)
. (A.2)

In general relativity, there is a specific radius, where ωr drops to zero and where orbits
become unstable to radial perturbations. Particles, which pass beyond this point, cannot
stay on circular orbits any more and fall freely down to the black hole. For a Schwarzchild
black hole (a = 0), this innermost marginally stable orbit is located at r=6 rg and move
inwards with increasing a (Okazaki et al. 1987). In the Newtonian 1/r potential, all orbits
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are stable and the radial epicyclic frequency is exactly equal to the Keplerian orbital fre-
quency, which makes orbits around Newtonian bodies to be closed ellipses (Chandrasekhar
1995; Kepler 1609).

The vertical epicyclic motion is the oscillation about the original circular orbit of a
free particle, if it is perturbed vertically. The corresponding frequency (again given by the
second derivative of the effective potential) is

ω2
z = Ω2

K

(
1 +

4 a

r3/2
+

3 a2

r2

)
. (A.3)

In Newtonian potential and also in the gravitational field of a static black hole, it is exactly
equal to the Keplerian orbital frequency.

There are yet two other frequencies connected with the motion of free particles, which
are combinations of the fundamental ones: the periastron precession frequency and the
Lense-Thirring frequency. In relativity, eccentric orbits undergo an angular precession in
their lines of apsides. The frequency of this precession is

ωRP = ΩK − ωr . (A.4)

Finally, the next frequency of particle motion not known in the Newtonian physics is
the Lense-Thirring precession frequency. It is only present in the gravitational field of a
black hole with a non-zero angular momentum. If an orbital plane of a particle is inclined
with respect to the equatorial plane, it will start to precess due to the frame dragging
effect of the spinning black hole with frequency (to the first order in a)

ωLT = ΩK − ωz ' 2a/r3 . (A.5)
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APPENDIX B

The sim4 code

Introduction

In the past decade, missions such as XMM, RXTE, BeppoSAX and others have opened
an X-ray window to the deep universe and allowed us to observe sources of energetic
radiation in details we have never seen before. In many active galactic nuclei as well as in
cataclysmic variables and low-mass X-ray binaries we observe rapid temporal changes of
the flux (e.g. Leighly 2005; Woudt & Warner 2002; Strohmayer 2001; van der Klis 1997a)
and of individual spectral features (Miller et al. 2002). In the widely accepted scenario,
these sources contain a compact object surrounded by an accretion flow in the form of a
disc or a torus (see e.g. Ulrich et al. 1997, van der Klis 2000). The strong gravity near
these objects introduces distinctive deviations from Newtonian physics including bending
of light rays, gravitational red shift and existence of the inner-most stable circular orbit.
All these effects of general relativity affect profiles of observed light curves and have impact
on the power spectra.

To address these issues a new three-dimensional modular ray-tracing code has been
developed, which can be used to study light curve profiles and power spectra of luminous,
spatially extensive astrophysical objects, such as thick accretion flows or tori, as well as
radiation from 2D patterns, such as hot spots, belts, thin discs, etc.

Description of the code

Various numerical and semi-analytical approaches have been developed in order to tackle
the problem of light ray-tracing in a curved spacetime. Some of them are focused on
solving a special kind of problems, often they are limited to 2D geometry of a sphere or
a disc. Therefore the need for a general, efficient and 3D ray-tracing computational tool
has arised which motivates the development of a new code, called sim4.



B. THE SIM4 CODE

Sim4 is a parallel MPI/OpenMP modular ray-tracer written in the C language. It
is modular in the sense that certain parts of the code (modules) can be easily modified
or replaced. There are modules for a metric, a topology and for a model. Each module
provides a small set of functions which are called by the core and to which a user may put
its own implementation of a problem. This concept of modularity makes the code to be
very versatile and powerful – with several changes in the code it is possible to turn focus
to a completely different problems.

Ray-tracing

The code uses a method of direct ray-tracing outlined by Ftaclas et al. (1986) instead
of the more frequently used transfer-function method (Cunningham 1975, 1976), as it
is more convenient for the numerical calculations of radiative transport in the spatially
extended emitters. The approximation of geometrical optics in a vacuum spacetime is
adopted for calculations. The integration begins with division of the image plane into a
number of pixels of equal solid angle on the observer’s sky, each pixel corresponding to a
single light ray. Following the method proposed by Rauch & Blandford 1994 and using
given spacetime metric function, for each ray the code determines the initial position and
4-velocity and integrates the geodesic equation

d2xµ

dλ2
= −Γµ

αβ

dxα

dλ

dxβ

dλ
(B.1)

back in time, i.e. from the observer to the source. Note that both in the above equation
and throughout, geometrised units G = c ≡ 1 are used. This approach has the advantage
that only photons which hit the target are actually integrated. On the other hand it puts
a constraint on a metric function which must be stationary. Since in most astrophysical
cases the distribution of matter is, in the first approximation, spherical, rays for not all
pixels on the rectangular image plane are integrated, but only those which have impact
parameter less than a certain value.

The determination of the gravitational lensing effect is performed by construction
of two unit vectors U and V that, at the beginning, are perpendicular to the photon’s
4-velocity and they are perpendicular to one another as well, so they enclose an area of
a unit size. These vectors are transported along with the light ray by integrating the
geodesic deviation equation if the form

d2Uµ

dλ2
= −2Γµ

αβuα dUβ

dλ
− Γµ

αβ,γuαuβUγ , (B.2)

where u stands for the photon’s 4-velocity, and the same equation for V . The lensing
factor, defined as the ratio of the photon tube cross-section area in infinity and at the
point of emission, is given by

l ≡ Sinf

Sem
=

1
U × V

=
1√

UµUµ · V µVµ − (UµVµ)2
. (B.3)
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After certain number of integration steps the code collects the actual photon position,
momentum and corresponding lensing factor, passes these information to the topology
module which decides whether to save (and eventually dumps the data to an output file)
and whether to stop the integration. It allows the user to specify exactly what data will
be recorded and for how long the ray will be integrated. The recording condition can be
either two or three dimensional and also allows to select several distinct regions. How often
the data are recorded depends on chosen precision and also on the integration step. As
the integration goes on, the code watches the step size and adjusts the saving frequency:
when the step is small it saves more often, when it is large it saves less often and conserves
resources.

All data are stored in the file which can be small or huge depending on the resolution,
recording condition and chosen precision. This data file is then used to computation of
the light curve and, in fact, if the recording condition is made general enough it can be
reused many times even for completely different set of problems.

Light curve

In the next step the information from the photon data file is used to construct the light
curve. The code reads the set of recorded points for each photon from the file and using
the spline interpolation it reconstructs its whole trajectory. Then by making small spatial
steps it follows the trajectory back in time from its end to where it starts and always asks
the model module to return the amount of radiation flux (with respect to the observer at
infinity) which is produced at that place. Knowing the time delay it can then determine
the exact instant of time when this amount of flux reaches the observer.

The model module is where all the physics is stored and “where the radiation comes
from”. It can be as much complex and involve as much physics as one wish including
access to external data (for instance from MHD simulations). An example of a possible
model is given in the following section.

Visualisation

Visualisation is very similar process to construction a light curve and it follows almost the
same procedure. The difference is that while to make a light curve we require very good
time resolution and need no spatial resolution, to make an image or a movie we need no
or little time resolution but require the information about spatial resolution. So instead
of summing the flux carried by each photon to one number, the code records the numbers
separately to corresponding pixels of the projection plane making an actual image of the
observed object at that point of time.

Ray-tracing in the Schwarzschild spacetime

In spherical coordinates (t, r, θ, φ), the Schwarzschild metric is given by

ds2 = −
(

1− 2 M

r

)
dt2 +

(
1− 2 M

r

)−1

dr2 + r2 ( dθ2 + sin θ2 dφ2) . (B.4)
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B. THE SIM4 CODE

Figure B.1: Examples of the power of the ray-tracing code. The panels show models of an
optically thin (top, left) and optically thick (bottom, left) torus, models of an torus embedded
into a thin disc (bottom, right), and an output from a MHD simulation by M. Machida (top,
right).

For the ray-tracing it is more convenient to use a modified coordinate system (t, u, m, φ),
where u = r−1 and m = cos θ. The line element then has the form

ds2 = −(1− 2 M u) dt2+

u−4(1− 2 M u)−1 du2+

u−2(1−m2)−1 dm2+

u−2(1−m2) dφ2 .

(B.5)
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With this choice, the advantages are that the spatial infinity (r → ∞) is represented by
a finite value of u (u → 0) and that the integration routine does not need to evaluate
goniometric functions, which speeds up the calculations of photon trajectories.

The integration of geodesic equation starts with vectors for the initial position xµ and
momentum pµ of a photon, which are chosen in the following way (e.g. Chandrasekhar
1983):

xt = 0 , (B.6a)

xu = u0 = 10−11 , (B.6b)

xm = m0 = cos i , (B.6c)

xφ = 0 , (B.6d)

pt = 1− 2 u0 , (B.6e)

pu = + u2
0

√
R , (B.6f)

pm = ±u2
0

√
M , (B.6g)

pφ = u2
0 (1−m2

0)−1 , (B.6h)

where i is the observer’s inclination and R, M are given by the initial impact parameters
α and β in the x–y image projection plane,

l2 = α2
√

1−m2
0 , (B.7a)

q2 = β2 + m2
0 α2 , (B.7b)

R = 1− (q2 + l2) u2
0 + 2 (l2 + q2) u3

0 , (B.7c)

M = q2 −m2
0 (q2 + l2) . (B.7d)

The sign of pm is determined by the sign of β, being the opposite. For the geodesic
deviation equation integration, two arbitrary vectors Uµ, V µ are constructed perpendicular
one another and to the initial 4-momentum vector pµ as well. Their initial values are:

U t = β u , V t = α u , (B.8a)

Uu = β u3 , V u = α u3 , (B.8b)

Um = −u
√

1−m2 , V m = −α u2
√

1−m2 , (B.8c)

Uφ = −α u2 m/
√

1−m2 , V φ = u/
√

1−m2 . (B.8d)

And the initial values of their derivations ( d/ dλ = pµ ∂/∂xµ) are:

dU t/ dλ = β u2 , dV t/ dλ = α u2 , (B.9a)

dUu/ dλ = 3 β u4 , dV u/ dλ = 3 α u4 , (B.9b)

dUm/ dλ = −u2
√

1−m2 , dV m/ dλ = −2 α u3 m/
√

1−m2 , (B.9c)

dUφ/ dλ = −2 α u3
√

1−m2 , dV φ/ dλ = u2/
√

1−m2 . (B.9d)
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APPENDIX C

Lightcurve analysis and PDS
normalisation

The product of the numerical ray-tracing is a lightcurve, which describes the flux seen
by a distant observer at equally spaced time bins. The amount of flux coming to the
observer in each time bin can be think of as a number of photon counts collected by a
detector per the binning interval. To quantify periodicities in the signal, the lightcurve is
Fourier transformed to the frequency domain. The procedure used for Fourier analysis of
computed lightcurves closely follow the method, which is actually used in the analysis of
real observed data (van der Klis 1997b).

A continuous segment of a lightcurve of length T is binned into N = 2m time bins,
where the kth bin contains xk counts. The Fast Fourier Transform is being performed on
the lightcurve, giving a series of frequency amplitudes

aj =
N−1∑
k=0

xke
iωjtk , tk = k T/N . (C.1)

The power spectrum Pj corresponding to statistically independent frequencies ωj = 2πj/T ,
j = 0..N/2 is defined as

Pj =
2
a0
|aj |2 , j = 0..N/2 , (C.2)

Note that a0 =
∑N−1

0 xk = Nph is the total number of photons detected over the period
T , i.e. it gives the total observed flux. A normalisation is used, where Fourier powers
Pj are given as Qj ≡ Pj/λ, where λ = Nph/T is the average ‘count rate’. With this
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normalisation, the sum of powers over all frequency bins multiplied by the width of the
bins ∆ν =1/T is

N/2∑
j=0

Qj∆ν =
2
a2

0

N/2∑
j=0

|aj |2 =
1
a2

0

N−1∑
j=0

|aj |2 − a2
0

 . (C.3)

The fractional root-mean-square of the variability is defined as

frms =

√
1
N

∑N−1
k=0 (xk − x̄)2

x̄
, (C.4)

where x̄ stands for the mean value of the time series,

x̄ =
1
N

N−1∑
k=0

xk =
a0

N
. (C.5)

The squared value of the fractional root mean square amplitude is

frms2 =
N

a2
0

N−1∑
k=0

|xk|2 − 1 , (C.6)

to which the Parseval’s theorem may be applied,

N−1∑
0

|xk|2 =
1
N

N/2∑
−N/2

|aj |2 , (C.7)

and we arrive to

frms2 =
1
a2

0

N−1∑
j=0

|aj |2 − a2
0

 . (C.8)

The last formula is identical with the equation (C.3) so that the integral over frequencies
of the normalised Fourier power spectrum gives the square of the fractional rms amplitude
of the original time series variability. The physical unit of Qj is [(rms/mean)2/Hz], where
‘rms/mean’ is just frms.
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APPENDIX D

Frequency-frequency correlations
from RXTE data

For the purpose of the linear fits analysis presented in Section 1.6, a set of frequency pairs
has been used, which was extracted from RXTE data archives. All science event files
were retrieved from the archives up to the end of 2004 for six atoll sources: 4U 1636−536,
4U 1608−522, 4U 1820−303, 4U 1735−44, 4U 0614+09 and 4U 1728−34. The analysis
was done by D. Barret, who kindly imparted the data to me, and its description follows:

Files are considered as they can be obtained from the archives. They are identified
with their Obs-IDs following the RXTE convention. An Obs-ID identifies a temporally
contiguous collection of data from a single pointing. Only files with time resolution better
than or equal to 250 microseconds and exposure times larger than 600 seconds are consid-
ered. No filtering on the raw data is performed, which means that all photons are used in
the analysis, only type I X-ray bursts and data gaps are removed from the files.

For each Obs-ID, Leahy normalised Fourier power density spectra (PDS) is computed
between 1 and 2048 Hz over 8 s intervals (with a 1 Hz resolution). A Fourier Power
spectrum averaged over the file is first computed. The file averaged PDS is then searched
for a QPO using a scanning technique which looks for peak excesses above the Poisson
counting noise level (see Boirin et al. 2000). No fit is performed at this stage as the
scanning procedures returns the QPO peak frequency and an approximation of its full
width zero maximum. In case of the presence of two peaks, the one with the highest
significance is considered. Then a window is defined of 25 Hz width around the QPO
profile, and a recursive search algorithm is applied a to define the shortest time interval
over which the QPO is detected over 4 σ (still above the Poisson counting noise level).
Specifically, starting from an interval of duration T with a QPO at frequency ν0, the
interval is divided in two parts of equal durations T/2 and search for a QPO between
ν0− 25 and ν0 + 25. The procedure is repeated updating continuously the window for the
search, using the information obtained at the lower time resolution. All 8 second PDS
within the time interval T are attributed the same QPO frequency. It has been checked
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Figure D.1: The frequency−frequency correlations and their linear fits for the six analysed
sources. (Adopted from Abramowicz et al. 2006.)

through simulations of a QPO signal of varying frequency and similar amplitude as in
the real data, that this procedure follows with great accuracy the changes in frequency.
The individual file can then be summarised as a list of QPO frequencies, estimated every
8 seconds.

At this stage, it is not known whether the QPO, which is followed, is the upper or
the lower QPO. Within a file, the individual 8 second PDS is shifted-and-added to the
mean QPO frequency over the file. The power spectrum so obtained is then searched for
a second QPO peak using the same scanning as above. The PDS are then converted in a
format readable by the XSPEC 11.3.2 spectral package. The procedure takes advantage of
the robustness of the XSPEC fitting procedures (including the error computations), and
the ease of the Tcl interface to access the fitted parameters. The QPOs are then fitted
each with a Lorentzian of three parameters (frequency, full width at half maximum, and
normalisation) to which a constant is added to account for the counting noise level (close
to 2.0 in a Leahy normalised PDS).

Next, only those QPOs are kept, which are detected above 2.5 σ (the significance being
then defined as the integral of the Lorentzian divided by its error), above 500 Hz, with a
quality factor larger than 3. The results of this selection is shown in Figure D.1 for all six
sources together with their linear fits. The results of the fits are given in Table 1.3.
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Pecháček, T., Dovčiak, M., Karas, V., Matt, G. (2005). The relativistic shift
of narrow spectral features from black-hole accretion discs., accepted for publication in
A&A arXiv:astro–ph/0507196 (Cited on page 72.)

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. (1989). Nu-
merical Recipes in C: The Art of Scientific Computing, 2nd edition, 1992, Cambridge
Univ. Press (Cited on page 66.)

Psaltis, D., et al. (1998). The Beat-Frequency Interpretation of Kilohertz Quasi-
periodic Oscillations in Neutron Star Low-Mass X-Ray Binaries, ApJ 501, L95–L99
(ADS) (Cited on pages 24 and 25.)

Rauch, K. P., & Blandford, R. D. (1994). Optical caustics in a kerr spacetime and
the origin of rapid X-ray variability in active galactic nuclei, ApJ 421, 46–68 (ADS)
(Cited on page 98.)

Remillard, R. A. (2005). X-ray States of Black Hole Binaries in Outburst, AIP
Conf. Proc. 797: Interacting Binaries: Accretion, Evolution, and Outcomes 797, 231–
240 (ADS) (Cited on page 18.)

— 116 —

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1999ApJ...510..874N&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1989PASJ...41..133O&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1987PASJ...39..457O&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002ApJ...568..845O&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2004ApJ...616..376O&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1987Natur.327..303P&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1980A%26A....88...23P&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1984MNRAS.208..721P&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1985MNRAS.213..799P&amp;db_key=AST
http://arxiv.org/abs/astro-ph/0507196
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1998ApJ...501L..95P&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1994ApJ...421...46R&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2005AIPC..797..231R&amp;db_key=AST


REFERENCES

Remillard, R. A., Muno, M. P., McClintock, J. E., & Orosz, J. A. (2002).
Evidence for Harmonic Relationships in the High-Frequency Quasi-periodic Oscillations
of XTE J1550-564 and GRO J1655-40, ApJ 580, 1030–1042 (ADS) (Cited on page 20.)

Rezzolla, L., Yoshida, S., Maccarone, T. J., & Zanotti, O. (2003). A new simple
model for high-frequency quasi-periodic oscillations in black hole candidates, MNRAS
344, L37–L41 (ADS) (Cited on page 69.)

Schnittman, J. D., & Bertschinger, E. (2004). The Harmonic Structure of High-
Frequency Quasi-periodic Oscillations in Accreting Black Holes, ApJ 606, 1098–1111
(ADS) (Cited on page 69.)

Seguin, F. H. (1975). The stability of nonuniform rotation in relativistic stars, ApJ 197,
745–765 (ADS) (Cited on page 59.)

Shafee, R., McClintock, J. E., Narayan, R., Davis, S. W., Li, L.-X., & Remil-

lard, R. A. (2005). Estimating the Spin of Stellar-Mass Black Holes via Spectral Fit-
ting of the X-ray Continuum, accepted by ApJ, arXiv:astro–ph/0508302 (ADS) (Cited
on page 47.)

Shibazaki, N., & Lamb, F. K. (1987). Power spectra of quasi-periodic oscillations in
luminous X-ray stars, ApJ 318, 767–785 (ADS) (Cited on page 41.)

Stella, L., & Vietri, M. (1998). Lense-Thirring Precession and Quasi-periodic Oscil-
lations in Low-Mass X-Ray Binaries, ApJ 492, L59–L62 (ADS) (Cited on page 24.)

Stella, L., & Vietri, M. (1999). kHz Quasiperiodic Oscillations in Low-Mass X-Ray
Binaries as Probes of General Relativity in the Strong-Field Regime, Physical Review
Letters 82, 17–20 (ADS) (Cited on pages 24 and 69.)

Stella, L., Vietri, M., & Morsink, S. M. (1999). Correlations in the Quasi-periodic
Oscillation Frequencies of Low-Mass X-Ray Binaries and the Relativistic Precession
Model, ApJ 524, L63–L66 (ADS) (Cited on page 24.)

Stepney, S., & Guilbert, P. W. (1983). Numerical FITS to important rates in high
temperature astrophysical plasmas, MNRAS 204, 1269–1277 (ADS) (Cited on page 63.)

Strohmayer, T. E. (2001). Discovery of a 450 HZ Quasi-periodic Oscillation from the
Microquasar GRO J1655-40 with the Rossi X-Ray Timing Explorer, ApJ 552, L49–L53
(ADS) (Cited on page 97.)

Strohmayer, T., Zhang, W., Smale, A., Day, C., Swank, J., Titarchuk, L., &

Lee, U. (1996a). U 1728-34, IAU Circ. 6387, 2 (ADS) (Cited on page 24.)

Strohmayer, T. E., Zhang, W., & Swank, J. H. (1997). 363 HZ Oscillations during
the Rising Phase of Bursts from 4U 1728-34: Evidence for Rotational Modulation, ApJ
487, L77 (ADS) (Cited on pages 17 and 24.)

Strohmayer, T., Zhang, W., & Swank, J. (1996b). U 1728-34, IAU Circ. 6320, 1
(ADS) (Cited on page 24.)

— 117 —

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002ApJ...580.1030R&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2003MNRAS.344L..37R&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2004ApJ...606.1098S&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1975ApJ...197..745S&amp;db_key=AST
http://arxiv.org/abs/astro-ph/0508302
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2005astro.ph..8302S&amp;db_key=PRE
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1987ApJ...318..767S&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1998ApJ...492L..59S&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1999PhRvL..82...17S&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1999ApJ...524L..63S&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1983MNRAS.204.1269S&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001ApJ...552L..49S&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1996IAUC.6387....2S&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1997ApJ...487L..77S&amp;db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1996IAUC.6320....1S&amp;db_key=AST


REFERENCES

Strohmayer, T. E., Zhang, W., Swank, J. H., Smale, A., Titarchuk, L., Day,

C., & Lee, U. (1996c). Millisecond X-Ray Variability from an Accreting Neutron Star
System, ApJ 469, L9 (ADS) (Cited on page 21.)

Swank, J. (2004). Quasi-Periodic Oscillations from Low-mass X-Ray Binaries with Neu-
tron Stars, AIP Conf. Proc. 714: X-ray Timing 2003: Rossi and Beyond 714, 357–364
(ADS) (Cited on page 16.)

Tondl, A., Ruijgrok, T., Verhulst, F., & Nabergoj, R. (2000). Autoparametric
Resonance in Mechanical Systems, pp. 206. ISBN 0521650798. Cambridge University
Press (ADS) (Cited on page 44.)

Tooper, R. F. (1965). Adiabatic Fluid Spheres in General Relativity., ApJ 142, 1541–
1562 (ADS) (Cited on page 59.)

Török, G. (2005a). A possible 3:2 orbital epicyclic resonance in QPO frequencies of
Sgr A*, A&A 440, 1–4 (ADS) (Cited on page 20.)

Török, G. (2005b). QPOs in microquasars and Sgr A* measuring the black hole spin,
Astronomische Nachrichten 326, 856–860 (ADS) (Cited on page 46.)
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