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Poďakovanie
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existencie regionálnych a globálnych väzieb na rôznych akciových trhoch, ale aj vzájomné
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Chapter 1

Introduction

In the face of globalization, it is important to document developments and linkages in

global as well as in local markets. An accumulation of such information will provide a

platform for determining the integration of global markets. Understanding of linkages

and volatility transmission in stock and foreign exchange markets‘ returns and correla-

tion of such returns will help investors and fund managers better manage their invest-

ment portfolios. They want to diversify their portfolios as much as possible on account

of risk minimization however, the diversification benefits of investigating in the different

markets depend on the extend of the linkages between the markets, or we can ask how

strong are the markets integrated which requires a good understanding of the underlying

foreign exchange volatility. Only when market returns are less than perfectly correlated,

is risk reduction possible. Indeed with the current crisis of confidence in risk management

and the requirements of regulators, there is a requirement for GARCH modelling to take

explicitly into account multivariate issues. When we are in multivariate framework, we

are always balancing between two difficulties. The number of parameters in the model

increases quickly with the dimension of the model resulting estimation problems overleaf

simple models may not be able to capture the relevant dynamics in the structure. A lot of

multivariate GARCH models have been developed and we survey three basic approaches

of constructing. Then there exists a broad literature on the research done on markets

return, volatility and even integration in the stock markets all around the world. Most

of them have focused on national and regional stock and foreign exchange markets only.

The comprehensive analysis of more multivariate GARCH models is missing. Therefore,

motivated by the impact of the recent crisis authors own contribution was primarily into

the summarizing the particular component parts of multivariate GARCH models into the

one complex work thereof, to show robustness of the GARCH methods and show how

models are used in practice. Thesis contains two main aims, analyze the dynamics of
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volatility transmission in foreign exchange markets, examining the stock market linkages

from a very representative global perspective and then comparing such basic types of

multivariate GARCH models on the data.

The rest of the thesis is organized as follows. The next chapter gives some basic details

about the used data and presents some of the stylized features of financial data, which

need to be taken into account when writing down models. The Chapter 3 presents a the-

oretical survey of univariate GARCH models, while Chapter 4 collects theoretical survey

of multivariate GARCH framework, containing the following models: VECH, BEKK, O-

GARCH, GO-GARCH, CCC and DCC. For each class of the model, a theoretical review,

basic properties and estimation procedure are provided. Chapter 5 presents the findings

and analysis from applying three multivariate models namely BEKK, GO-GARCH and

DCC on the data containing data description, estimation results and models comparison.

The thesis is concluded in Chapter 6.



Chapter 2

Preliminary analysis

2.1 Data

In this thesis, we used data which can be divided into the two major groups. On one hand,

our data consists of the daily closing spot prices for the Czech koruna and Euro versus the

U.S. dollar from the Bloomberg research database. The daily series represents changes

between business days with no adjustment for holidays. On the other hand, data used in

the study consist of time series of daily stock market indices at the closing values of the

markets in Prague (PX), Amsterdam (AEX), Frankfurt (DAX) and the U.S. (DJIA). The

stock indices are based in the local currency terms and their changes are thus restricted

to the movements in the stock process, avoiding any distortions included by the currency

exchange rates devaluations of the countries.

The investigated currencies, U.S. dollar and Euro, constitute the largest foreign ex-

change markets in the world measured in terms of turnover, are highly liquid, and have

low transaction costs. Trading also occurs on a 24 hour basis, with almost instantaneous

transmission of news items to market participants using computerised technology and

on-line broking services. Consequently these markets are as close to the efficient market

ideal as is currently possible. It is clear that because of the market in Prague, we selected

third currency Czech koruna. We assume that the reader is familiar with background of

this three widely accepted currencies. We therefore focus more on stock market issues.

The stock market in Prague represents the emerging markets in Central and Eastern

Europe, Amsterdam represents the market situation in Western Europe, Frankfurt which

is one of the biggest stock markets in Europe represents the market situation in Europe

and finally we used data from U.S. given by Dow Jones index which generally reflects

the financial situation in this part of the world. The stock markets in Frankfurt and the
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U.S. are considered to serve well as leaders for the regional and global developed markets

respectively and are expected to play an influential role in the markets in Central and

Western Europe. The inclusion of the stock markets in Frankfurt and the U.S. therefore

permits us to investigate the regional and global linkages between markets.

The indices used in this thesis are the widely accepted benchmark indices for the

stock markets. Because in different countries holidays, no trading days fall on differ-

ent dates, we have removed the data of those dates, when any series has a missing value

due to no trading. Thus all data are collected for the same dates across the stock markets.

The DAX (Deutscher Aktien-Index (German stock index)) is a blue chip stock mar-

ket index consisting of the 30 major German companies trading on the Frankfurt Stock

Exchange. Prices are taken from the electronic Xetra trading system. According to

Deutsche Boerse, the operator of Xetra, DAX measures the performance of the Prime

Standard’s 30 largest German companies in terms of order book volume and market

capitalization. The base date for the DAX is 30 December, 1987 with a base value of

1,000. The Xetra system calculates the index every second since January 1, 2006.

The AEX index, derived from Amsterdam Exchange index, is a stock market index

composed of Dutch companies that are traded on Euronext Amsterdam, formerly known

as the Amsterdam Stock Exchange. Started on 3 January 1983 from a base level of 100

index points, the index is composed of a maximum 25 of the most actively traded securi-

ties on the exchange. The AEX is a market value-weighted index. The index comprises

a basket of shares, the numbers of which are based on the constituent weights and index

value at the time of readjustment. The value of the index is calculated by multiplying

the price (in Euros) of each of the stocks by the number of shares that are trading in the

basket, then summing the resulting numbers and dividing by 100.

The PX index (until March 2006 the PX 50) is an index of major stocks that trade on

the Prague Stock Exchange. Selected as the starting exchange day (a benchmark date) for

the Index PX 50 was 5 April 1994 and its opening value was fixed at 1,000 points. At this

time the index included 50 companies traded on the Prague Stock Exchange, accordingly

named PX 50. Frequency of calculation is every 15 seconds.

The DJIA index derived from Dow Jones Industrial Average, also referred to as the

Industrial Average, the Dow Jones, the Dow 30, or simply the Dow, is one of several



2.2 Stylized features of financial data 8

stock market indices created by Wall Street Journal editor and Dow Jones & Company

co-founder Charles Dow. It is an index that shows how 30 large, publicly owned compa-

nies based in the United States have traded during a standard trading session in the stock

market. It is the second oldest U.S. market index after the Dow Jones Transportation

Average, which Dow also created. Dow is among the most closely-watched benchmark

indices tracking targeted stock market activity.

The studied period is between 1 January 2000 and 30 December 2009, and the data

in this study are downloaded from the website Yahoo Finance 1, Prague Stock Exchange

and Bloomberg. Figures 2.1 and 2.2 presents the time plots of the time series, which

fluctuate on a daily basis.

Figure 2.1: FX rates EUR/USD and CZK/USD during January 2000 and December 2009.

Note that we denote successive price observations made at time t and t− 1 as Pt and

Pt−1, respectively, then transformation a price series Pt into a log return or simply return

series rt

rt = log
Pt
Pt−1

= logPt − logPt−1.

Note that, rt represents the interest or percentage yield obtained within period t − 1 to

t. Plots of returns computed from our data can be found in Figures 2.3 and 2.4.

2.2 Stylized features of financial data

When the statistical models are developed to describe financial data, it is often useful to

have some directives which describe the most important characteristic features of the data

which the models should have to consider. These directives are referred to as ”stylized

1http://finance.yahoo.com
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Figure 2.2: Stock indices of AEX, DAX, PX, DJIA correspond, to the stock markets in

Amsterdam, Frankfurt, Prague and the U.S. during January 2000 and December 2009.

features” or ”stylized facts”. Taylor [28] mentioned that ”General properties that are ex-

pected to be present in any set of returns are called stylized facts.” Stylized features are the

result of more than half of the century empirical studies on financial time series, examines

their properties from a statistical point of view. Let us start by stating a set of stylized

facts which are common to a wide set of financial analysis. Let us explain number of them.

2.2.1 Volatility clustering

Volatility clustering refers to observation, as noted by Mandelbrot [24], that large changes

tend to be followed by large changes, of either sign, and small changes tend to be followed

by small changes what is a well-known stylized fact in financial markets. In simple terms,

volatility clustering manifests itself as quiet periods interrupted by volatile periods called

turbulence. As can be seen from Figures 2.3 and 2.4 the changes between large return

changes and relatively silent phases of small price activity is a slow process and does not

indicate any significant autocorrelation. A look at the autocorrelation function Figure 2.5
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Figure 2.3: Return Series of FX rates EUR/USD and CZK/USD during January 2000

and December 2009.

of the realization shows a rapid decay of the autocorrelations of price changes. We can

also see that absence of autocorrelation in returns does not imply the independence of

the increments. Simple nonlinear function of returns, such as squared returns or absolute

returns, show significant positive autocorrelation.

2.2.2 Heavy tails

The observation of time series have a distribution, which is often assumed to be a normal

(Gaussian). However, empirical studies of any financial time series shows, that this is

not quite correct. Mandelbrot was the first to show that returns on financial markets

are not Gaussian, but exhibit excess kurtosis. Heavy tails distribution means that the

unconditional price or return distributions tend to have fatter (leptokurtic) tails then

the normal distribution. In terms of shape, as we can see from Figure 2.6 a leptokurtic

distribution has a more acute peak around the mean (that is, a higher probability than a

normally distributed variable near the mean) and fatter tails (that is, higher probability

for extreme events than in normally distributed data). Measure of fatness of the tails of

a random variable Xt distribution is kurtosis defined as κ4(X) = E(X − EX)4/(varX)2.

For normally distributed variable is equal to 3.

2.2.3 Aggregational Gaussianity

By aggregational Gaussianity we mean the fact that long term aggregation of returns, in

the sense of assuming the returns over longer periods, will lead to approximately normally

distributed variables.
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Figure 2.4: Return Series of AEX, DAX, PX, DJIA correspond, to the stock markets in

Amsterdam, Frankfurt, Prague and the U.S. during January 2000 and December 2009.

2.2.4 Leverage effect

The volatility tend to be larger for the price falls, than for price rises, when the magnitude

of the price rise and fall, is identical. This is asymmetric influence of negative and positive

information on future level of volatility.
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Figure 2.5: Autocorrelations of daily changes of PX index computed by R programming

software.

Figure 2.6: Histogram of price increments Dow Jones and Prague stock indices during

January 2000 and December 2009 computed by R programming software, solid line rep-

resent density function of normal distribution.



Chapter 3

GARCH

We start with basic univariate GARCH framework. In 1982 Engle1 introduced a volatility

process with time varying conditional variance, known as the Autoregressive

conditional heteroskedasticity (ARCH) process. The popularity of this class of models

can be inferred, that several hundred research papers using this model have appeared in

the decade since its introduction. Detailed discussion, technical conditions and statistical

properties this type of models have been studied for example in Weiss [33]. However, in

many of the financial applications with the ARCH models empirical works shows that

high ARCH order has to be selected to catch the dynamic of the conditional variance

of the financial time series. The high order of the model of course implies that many

parameters have to be estimated and this is also difficult for computation. Another

practical difficulty is that with high order of the model estimation will often lead to

the violation of the non-negativity constraints that are needed to ensure that the con-

ditional variance is always positive. Four years after, Bollerslev [7] introduced the gen-

eralized version of the model namely GARCH model as a natural solution of the high

ARCH orders problem. Bollerslev‘s model is based on an infinite ARCH and reduces

the number of parameters that needs to be estimated from infinite number to just a few.

The main principle of modelling time series using GARCH is that a large movements

in period (”bursts of activity”) increase the variance of the movements in the following

periods. This constructs a feedback mechanism whereby a single univariate series deter-

mines both, the time series and its conditional variance structure. Alternating between

volatile and quiet periods as we mentioned before is called volatility clustering.

In finance GARCH-type processes became very favourite to model returns of stocks,

1The winner of the 2003 Nobel Memorial Prize in Economic Sciences for his work Engle, R. F. :

Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation.
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exchange rates, stock indices and other series observed at equidistant time points. They

have been designed to capture so-called stylized facts of such data which are, as we said

before volatility clustering and others like dependence without correlation and tail heavi-

ness. There exist many types of GARCH processes and the linear ones were the earliest.

Before we start with the definition of GARCH model we introduce some of the basic

building blocks of time series analysis, which we will often use in the next parts. First

are the white noise series which can be defined as a doubly infinite sequence of random

variables Zt with mean zero and finite variances. Special types of white noise series are

independent and identically distributed series. The i.i.d. white noise series ourselves

are not so interesting, but are important to construct other series, for instance series

where the random variables are dependent, so that the future can be predicted from past.

We shall speak about a heteroscedastic white noise processes if the autocovariances at

nonzero lags vanish, but the variances are still time-dependent. A related concept is a

martingale difference sequences. Filtration Ft is a non decreasing collection of σ-fields

· · · ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ . . . . A martingale difference sequence relative to the filtration

Ft is a time series Xt such that Xt is Ft-measurable and E(Xt|Ft−1) = 0 almost surely

for every t. This implies that any martingale difference sequence Xt with finite second

moments is a white noise series with zero first moment given the past. However converse-

ly not every white noise series is a martingale difference sequence relative to a natural

filtration.

3.1 Linear GARCH

In this section we closely follow van der Vaart [30], chapter 8, whereas there exists plenty

of possible definitions of GARCH process. We chose this interpretation, because we can

easily move into multivariate framework.

Definition 1. A GARCH (p,q) process is a martingale difference sequence Xt relative

to a given filtration Ft, whose conditional variances σ2
t = E(X2

t |Ft−1) satisfy, for every

t ∈ Z and given constants α, φ1, . . . , φp, θ1, . . . , θq,

σ2
t = α +

p∑
i=1

φiσ
2
t−i +

q∑
i=1

θiX
2
t−i, (3.1)

where

p ≥ 0, q ≥ 0, α > 0,
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φi ≥ 0, i = 1, . . . , p,

θi ≥ 0, i = 1, . . . , q.

To understand properties of GARCH processes, it is informative to use the following

representation. We can rewrite equation (3.1) for the conditional variance σ2
t using lag or

backshift operator B, defined as BXt = Xt−1 and convention that φ(z) = 1− φ1z− · · · −
φpz

p and θ(z) = θ1z + · · ·+ θqz
q. Then we can rewrite (3.1) as

φ(B)σ2
t = α + θ(B)X2

t .

Note that for p = 0, i.e. if the coefficients φ1, . . . , φp all vanish, then the process of σ2
t

reduces to a pure ARCH (q) process, and for p = q = 0 the process of σ2
t reduces to the

white noise. In the ARCH (q) process the conditional variance σ2
t is modelled as linear

function of X2
t−1, . . . , X

2
t−q, when as the GARCH (p, q) allows lagged conditional variances

to enter as well. If we assume σt > 0, then we can define Zt = Xt/σt. The martingale

difference property of Xt with the definition (3.1) of σ2
t as conditional variance implies

that

E(Zt|Ft−1) = 0, E(Z2
t |Ft−1) = 1. (3.2)

We can also define the GARCH process Xt starting with given martingale difference

process Zt and a process σt that is Ft−1 measurable and then Xt = σtZt. If (3.1) is valid

then σt is the conditional variance of Xt. In the most cases we assume that the variables

Zt are i.i.d.. Then Zt is independent of Ft−1. This assumption is equivalent to assuming

that conditional law of the variables Zt = Xt/σt given Ft−1 is a given distribution, for

instance standard normal distribution and then we can write 2

Xt|Ft−1 ∼ N(0, σ2
t ). (3.3)

We now move on to the stationary condition of the GARCH processes. Consider the

following construction. Let Zt be a martingale difference sequence such that E(Zt|Ft−1) =

0, E(Z2
t |Ft−1) = 1, defined on a fixed probability space. Then we construct a GARCH

process such that Xt = σtZt by first defining the process of squares σ2
t in terms of the Zt.

If the coefficients α, φi, θi are nonnegative we obtain a stationary solution if
∑ p

i=1φi +∑ q
i=1θi < 1. Note that the non-negativity of α, φi, θi is necessary condition for the non-

negativity of σ2
t . We can state the following theorem see van der Vaart [30].

Theorem 1. Let α > 0, let φ1, . . . , φp, θ1, . . . , θq be non-negative numbers, and let Zt be a

martingale difference sequence satisfying (3.2) relative to a filtration Ft. Then there exist

2In assuming the conditional distribution to be normal we follow Engle [15], but other distributions

could be applied as well.
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a unique stationary GARCH process Xt such that Xt = σtZt, where σ2
t = E(X2

t |Ft−1),

if and only if
∑ p

i=1φi +
∑ q

i=1θi < 1. This unique process among the GARCH processes

Xt such that Xt = σtZt has bounded second moments and E(Xt) = 0, var(Xt) = α[1 −∑ p
i=1φi −

∑ q
i=1θi]

−1.

Proof. Assume that
∑ p

i=1φi +
∑ q

i=1θi < 1. Using substitution we get

σ2
t = α +

p∑
i=1

φiσ
2
t−i +

q∑
i=1

θiZ
2
t−iσ

2
t−i

= α +

p∑
j=1

φj

(
α +

p∑
i=1

φiσ
2
t−i−j +

q∑
i=1

θiZ
2
t−i−jσ

2
t−i−j

)
+

q∑
j=1

θjZ
2
t−j

(
α +

p∑
i=1

φiσ
2
t−i−j +

q∑
i=1

θiZ
2
t−i−jσ

2
t−i−j

)
...

= α
∞∑
k=0

M(t, k),

(3.4)

where M(t, k) are all the terms of the form

p∏
i=1

φaii

q∏
j=1

θ
bj
j

n∏
l=1

Z2
t−Sl

,

for
p∑
i=1

ai +

q∑
j=1

bj = k,

q∑
i=1

bi = n,

and

1 ≤ S1 < S2 < S3 < · · · < Sn ≤ max{kq, (k − 1)q + p}.

Since
∑ p

i=1φi +
∑ q

i=1θi < 1, then series α
∑∞

k=0M(t, k) converges and thus

M(t, 0) = 1,

M(t, 1) =

p∑
i=1

φi +

q∑
i=1

θiZ
2
t−i,

M(t, 2) =

p∑
j=1

φj

(
p∑
i=1

φi +

q∑
i=1

θiZ
2
t−i−j

)
+

q∑
j=1

θjZ
2
t−j

(
p∑
i=1

φi +

q∑
i=1

θiZ
2
t−i−j

)
,

and in general

M(t, k + 1) =

p∑
i=1

φiM(t− i, k) +

q∑
i=1

θiZ
2
t−iM(t− i, k). (3.5)



3.1 Linear GARCH 17

Since Z2
t is i.i.d., the moments of M(t, k) do not depend on t, and in particular

E(M(t, k)) = E(M(s, t)), (3.6)

for all k, t, s. From (3.5) and (3.6) we get

E(M(t, k + 1)) =

(
p∑
i=1

φi +

q∑
i=1

θi

)
E(M(t, k))

...

=

(
p∑
i=1

φi +

q∑
i=1

θi

)k+1

E(M(t, 0))

=

(
p∑
i=1

φi +

q∑
i=1

θi

)k+1

.

(3.7)

Finally by (3.5), (3.6) and (3.7),

E(X2
t ) = αE

(
∞∑
k=0

M(t, k)

)
= α

∞∑
k=0

E(M(t, k))

= α

[
1−

p∑
i=1

φi +

q∑
i=1

θi

]−1

,

(3.8)

if and only if
p∑
i=1

φi +

q∑
i=1

θi < 1,

and X2
t converges almost surely. E(Xt) = 0 and cov(Xt, Xs) = 0 for t 6= s follows

immediately by symmetry.

Note that in practice, one observes a sample X1, . . . , XT and also in this situation we

assume that this vector comes from a stationary model. In particular, we assume that

X0 and σt have the stationary initial distribution. The previous theorem implies that

the condition
∑p

i=1 φi +
∑q

i=1 θi < 1, is necessary for existence of a stationary GARCH

process with bounded second moments, but strong than necessary if we are interested

in a strictly stationary solution to the GARCH equations with possibly infinite second

moments. Conditions for strict stationarity we will specify later.

The GARCH process has a close relation to widely known Box-Jenkins ARMA pro-

cesses. Consider ηt = X2
t − σ2

t so that σ2
t = X2

t − ηt. Rearranging the terms in (3.1)

process can be interpreted as an ARMA process

X2
t = α +

max(p,q)∑
i=1

(θi + φi)X
2
t−i + ηt −

p∑
i=1

φiηt−i. (3.9)
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It is easy to check that ηt is a martingale difference series (i.e. E(ηt) = 0 and cov(ηt, ηt−i) =

0 for i ≥ 1) and a white noise sequence if its second moments exist and are independent

of t. However ηt in general is not an i.i.d. sequence. Equation (3.9) is an characterizing

equation for ARMA process X2
t of orders m = max(p, q) and p with AR parameters

φ(B) + θ(B), MA parameters −θ(B) and uncorrelated innovation sequence {X2
t − σ2

t }.

Furthermore, it may be seen that the GARCH model is based on a infinite dimensional

ARCH (∞) model. To ensure a well-defined process all the parameters in the infinite

dimensional ARCH representation

σ2
t =

α

1− φ(1)
+

θ(B)

1− φ(B)
X2
t , (3.10)

must be nonnegative. This assumed that all the roots of the polynomial 1− φ(B) = 0 lie

outside the unit circle.

In Chapter 2 we introduced some of the stylized facts of financial time series and let

now discuss how the GARCH models consider these features. Volatility clustering is one

of the features that is always presented in financial time series and it is completely cap-

tured by GARCH models. It is because large absolute values of a GARCH series at time

t−1, . . . , t−q in the past lead, through the GARCH equation (3.1), to a large conditional

variance σ2
t at time t, and hence the value Xt = σtZt of the time series at time t tends

to be large. By equation we can see that a large σ2
t−1 or X2

t−1 gives rise to a large σ2
t .

So then large σ2
t−1 tends to be followed by another large σ2

t , generating the behavior of

volatility clustering.

Another stylized fact that may be very often observed in financial time series are

leptokurtic tails of the marginal distribution. As we mentioned before a quantitative

measure of fatness of the tails distribution of a random variable X is the kurtosis defined

as κ4(X) = E(X −EX)4/(varX)2. And is equal to 3 for a normally distributed variable.

If Xt = Ztσt, where σt is Ft−1 measurable and Zt is independent of Ft−1 with mean zero

and variance one, then

EX4
t = Eσ4

tEZ4
t = κ4(Zt)E(E(X2

t |Ft−1))2 ≥ κ4(Zt)(EE(X2
t |Ft−1))2 = κ4(Zt)(EX2

t )2.

Dividing the left and right sides by (EX2
t )2, we can see immediately that κ4(Xt) ≥ κ4(Zt).

A soon as the variance of the random variable E(X2
t |Ft−1) is large the difference can be

significant. Taking the difference of the left and right sides gives

κ4(Xt) = κ4(Zt)

(
1 +

varE(Xt|Ft−1)

(EX2
t )2

)
.
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Consequently, the tail distribution of a GARCH process is heavier than a normal distri-

bution. If we use a Gaussian process Zt, then the kurtosis of the observed series Xt is

always bigger than 3. It follows that the GARCH structure is able to capture some of the

observed leptokurtosis of financial time series.

Next stylized fact observed in financial time series are positive auto-correlations for

the sequence of squares X2
t . The auto-correlation function of the squares of a GARCH

series will exist under appropriate additional conditions on the coefficients and the noise

process Zt. We can compute auto-correlation function of this using the ARMA relation

(3.9) for the square process X2
t and using formulas for the auto-correlation function of

an ARMA process. Note that the process ηt in (3.9) is defined through Xt and hence its

variance depends on the parameters in the GARCH relation.

3.2 GARCH (1,1) process

The most simple example of GARCH processes is GARCH (1, 1) process in which condi-

tional variances are given by

σ2
t = α + φσ2

t−1 + θX2
t−1, α > 0, φ ≥ 0, θ ≥ 0.

From Theorem 1 φ + θ < 1 suffices wide-sence stationary. If we assume stationarity of

the process Xt then expectation of σ2
t does not depend on t and is equal

Eσ2 = EX2
t =

α

1− φ− θ
.

By squaring the GARCH equation we can find

σ4
t = α2 + φ2σ4

t−1 + θ2X4
t−1 + 2αφσ2

t−1 + 2αθX2
t−1 + 2φθσ2

t−1X
2
t−1.

If Zt is independent of Ft−1, then Eσ2
tX

2
t = Eσ2

t and EX4
t = κ4(Zt)Eσ4

t . If we assume

that moments exist and are independent of t, then

E(X4
t ) = E(Z4

t )E(σ4
t ) = 3α2(1 + φ+ θ)[(1− φ− θ)(1− φ2 − 2φθ − 3θ2)]−1.

Since the marginal kurtosis is given by

κ4 =
E(X4

t )

[E(X2
t )]

2 ,

from previous calculus it immediately follows that

κ4 =
3(1 + φ+ θ)(1− φ− θ)

(1− φ− θ)(1− φ2 − 2φθ − 3θ2)
.
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A little calculus shows

3var(σ2
t ) = E(X4

t )− 3
[
E(X2

t )
]2

=
3α2(1 + φ+ θ)

(1− φ− θ)(1− φ2 − 2φθ − 3θ2)
− 3

[
α

1− φ− θ

]2

=
3α2

(1− φ− θ)2

2θ2

(1− φ2 − 2φθ − 3θ2)
.

Since from the assumptions we have that α > 0, 1−φ− θ > 0 and 1−φ2 + 2φθ−3θ2 < 1,

it follows that all the factors in are positive so we conclude that the GARCH (1, 1) process

is leptokurtic.

3.3 Estimation of the GARCH model

Existence of stationary solution for the GARCH process is the key ingredient to derive

the estimation procedure and asymptotic theory. Consider the GARCH (p, q) model

defined as before. The existence of unique and strictly stationary solution to the GARCH

equations is that if and only if the sequence of matrices At, where

At =



φ1 + θ1Z
2
t−1 φ2 · · · φp−1 φp θ2 . . . θq−1 θq

1 0 . . . 0 0 0 . . . 0 0

0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

...

0 0 . . . 1 0 0 . . . 0 0

Z2
t−1 0 . . . 0 0 0 . . . 0 0

0 0 . . . 0 0 1 . . . 0 0
...

...
...

...
...

. . .
...

...

0 0 . . . 0 0 0 . . . 1 0


has a strictly negative top Lyapunov exponent γ < 0, where

γ = inf
T∈N∗

1

T
E log ‖A−1A−2 . . . A−T‖ = lim

n→∞

1

T
log ‖A−1A−2 . . . A−T‖, a.s. (3.11)

Here ‖.‖ may be any matrix norm because the definition of γ does not depend on the

choice of a norm. The Lyapunov exponent in general cannot be calculated explicitly for the

model under study, but it can be estimated numerically for a given sequence Zt. Existence

of top Lyapunov exponent γ is guaranteed by the inequality E(log+ ‖A1‖) ≤ E‖A1‖ <∞.

Let Yt = (σ2
t , . . . , σ

2
t−p+1, X

2
t−1, . . . , X

2
t−q+1)′ ∈ Rp+q and b = (α, 0, . . . , 0)′ ∈ Rp+q.

Then GARCH equation can be equivalently rewritten as the system of equations

Yt = AtYt−1 + b, (3.12)
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and if γ < 0, the unique strictly stationary solution is given by

Yt = b+
∞∑
k=1

AtAt−1 . . . At−k+1b. (3.13)

Theorem 2. Let α > 0, and φ1, . . . , φp, θ1, . . . , θq be a nonnegative numbers, and let

Zt be an i.i.d. sequence with mean zero and unit variance. There exists a strictly sta-

tionary GARCH process Xt such that Xt = σtZt, where σ2
t = E(X2

t |Ft−1) and Ft =

σ(Zt, Zt−1, . . . ), if and only if the top Lyapounov coefficient of the random matrices At

given by (3.11) is strictly negative. For this process σ(Xt, Xt−1, . . . ) = σ(Zt, Zt−1, . . . ).

Proof. We give a short proof for more details see van der Vaart [30]. Let first define b

as b = αe1, where ei is the ith unit vector in Rp+q+1. If γ′ is strictly larger than the top

Lyapounov exponent γ, then as T →∞

‖AtAt−1 . . . At−T+1b‖ < eγ
′T‖b‖, a.s.

If γ′ < 0 then
∑

T ‖AtAt−1 . . . At−T+1b‖ < ∞ almost surely. Then the series on the righ

hand side of (3.13) converges almost surely and defines a process Yt. Next step is define

processes σt and Xt by setting σt =
√
Yt and Xt = σtZt. It follows from (3.12) that this

equation satisfy the GARCH relation. And because the process is a fixed measurable

transformation of (Zt, Zt−1, . . . ) for each t, then the process (σt, Xt) is strictly stationary.

Now we have to prove that σ(Xt, Xt−1, . . . ) = σ(Zt, Zt−1, . . . ). We can see immediately

that Xt is σ(Zt, Zt−1, . . . )-measurable because of construction of Xt. For second impli-

cation Zt is σ(Xt, Xt−1, . . . )-measurable we use relation (φ− θ)(B)X2
t = α + φ(B)ηt, for

ηt = X2
t − σ2

t . We conclude that ηt is σ(X2
t , X

2
t−1, . . . )-measurable, if the polynomial φ

has no zeros on the unit disc.

Finally, we show the necessity of the top Lyapounov exponent being negative. If there

exists a strictly stationary solution to the GARCH equations, then by the non-negativity

of the coefficients
T∑
i=1

A0A−1 . . . A−T+1b ≤ Y0,

for every T , and then

A0A−1 . . . A−T+1b→ 0, a.s.forT →∞

By the definition of b the last equation is equivalent to A0A−1 . . . A−T+1e1 → 0. Using the

structure of the matrices At we next see that A0A−1 . . . A−T+1 → 0 in probability as T →
∞. Because the matrices At are independent and the event where A0A−1 . . . A−T+1 → 0

is a tail event, this event must have probability one. This is possible only if the top

Lyapounov exponent γ of the matrices At is strictly negative.
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The estimation of GARCH models is usually carried out using maximum likelihood

estimation. However, obtaining a likelihood function is not straightforward. We have

data X1, . . . , XT assumes to be random observations which are given from a distribution

FX(x; θ) and we denote joint probability density (x1, . . . , xT ) 7→ pT,θ(x1, . . . , xT ) of these

observations that depends on a unknown parameter θ from the parameter space Θ. The

stochastic process defined by

L(θ) 7→ pT,θ(X1, . . . , XT ) = pθ(x1)pθ(x2|x1) . . . pθ(xT |xT−1, . . . , x1),

is the likelihood function. If the observations X1, . . . , XT are i.i.d. then the likelihood

function is the product of the likelihood functions of the individual observations. We

may extend the conditioning in each term to include the whole past, yielding the quasi

(pseudo) likelihood

L(θ) = pθ(x1|x0, x−1, . . . )pθ(x2|x1, x0, . . . ) . . . pθ(xT |xT−1, xT−2, . . . ).

Observe that the formula of the quasi likelihood function requires to know all val-

ues XT−1, . . . , X0, X−1, . . . but in practice the variables X0, X−1, . . . are not observed.

However the past observations X0, X−1, . . . do not play an important role in defining

quasi likelihood because the likelihood does not change much if the conditioning in each

term is limited to a fixed number of variable in the past, and most of the terms of the

product will take almost a common form. Similarly, if the time series is AR of order p,

i.e. p(xt|xt−1, xt−2, . . . ) depends only on xt, xt−1, . . . , xt−p, then the two likelihoods differ

only in p terms. This should be negligible when T is large relative to p. In GARCH (p, q)

situation a practical implementation is to define σ2
0, . . . , σ

2
1−p and X2

0 , . . . , X
2
1−q to be zero,

and compute next σ2
1, σ

2
2, . . . recursively using observation X1, . . . , XT .

Now, suppose that we have GARCH process Xt = σtZt with the noise process Zt and

given observations X1, . . . , XT . A common practice in estimation of the GARCH models

is to assume Zt to be Gaussian when deriving the likelihood and this is a basic estimation

method for classic GARCH models. The vector of parameters is

θ = (θ1, . . . , θp+q+1)′ = (α, φ1, . . . , φp, θ1, . . . , θq)
′

and belongs to a parameter space Θ. We denote true unknown parameter value by

θ0 = (α0, φ01, . . . , φ0p,θ01, . . . , θ0q)
′, where θ0 ∈ Θ. Then

pθ(x1|x0, x−1, . . . )pθ(x2|x1, x0, . . . ) . . . pθ(xT |xT−1, xT−2, . . . )

=
T∏
t=1

1

σt(θ)
fz

(
Xt

σt(θ)

)
.

(3.14)
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Note that Xt given the whole past Xt−1, Xt−2, . . . , and conditioning argument yields the

density function pθ of X1, . . . , XT through the conditional densities of the Xt’s given

X1 = x1, . . . , XT = xT . Assuming that Zt is Gaussian then conditionally on initial values,

the quasi log-likelihood function for a GARCH (p, q) process is given by (ignoring some

constants)

Lt(θ) = Lt(θ;X1, . . . , XT ) =
1

2T

T∑
t=1

lt(θ), (3.15)

where

lt(θ) = −
(

log σ2
t (θ) +

X2
t

σ2
t (θ)

)
. (3.16)

The quasi maximum likelihood estimator of θ is defined as any measurable solution

θ̂T that maximizes the likelihood function within parameter space Θ, i.e.,

θ̂T = argmax
θ∈Θ

Lt(θ). (3.17)

The resulting value is the quasi maximum likelihood estimator of the parameters of

a GARCH (p, q) process. However, as we can see there are obvious problems with this

procedure. Most controversial assumption is that Zt as Gaussian noise process. Although

this is not the most realistic assumption, it gives nice results such as
√
T -consistency

(consistency with
√
T -rate) and

√
T -normality. Theoretical works (see references below)

shows that asymptotic properties remain valid for large number of noise distributions.

Attempts to replace the Gaussian density of the Zt’s by a more realistic density for

example t-density can lead to non-consistency of the QMLE. If one wants to achieve con-

sistency, the exact density of underlying Zt need to be known. But when dealing with

data one can never rely on this assumption.

There exist various papers dealing with the asymptotic properties of the quasi MLE

and have been studied initially by Weiss [33] but only for pure ARCH (q) processes and

fourth-order moment conditions on the process. The problem of finding weak assumptions

for the consistency and asymptotic normality of the QMLE in GARCH models solved

Lee and Hansen [22] and Lumsdaine [23] for the GARCH (1, 1) case. The asymptotic

properties of QMLE for the GARCH (p, q) models have been studied by, amongst others,

Francq and Zaköıan [19] and Berkes et al. [5]. We introduce convergence and asymptotic

normality under the conditions presented in Francq and Zaköıan. For more details and

proofs of the theorems see Francq and Zaköıan.

Assume that Zt is i.i.d. and the QMLE θ̂T maximizes the likelihood under Θ. Let

Aθ0(z) =
∑q

i=1 θiz
i and Bθ0(z) = 1 −

∑p
i=1 φiz

i with the convention Aθ0(z) = 0 if q = 0
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and Bθ0(z) = 1 if p = 1. To show strong consistency the following assumptions will be

made.

Assumption 1. The parameter space Θ is compact.

Assumption 2. γ < 0 and ∀θ ∈ Θ,
∑p

i=1 φi < 1.

Assumption 3. Z2
t has a non-degenerate distribution with EZ2

t = 1.

Assumption 4. If p > 0 then Aθ0(z) and Bθ0(z) have no common root, Aθ0(z) 6= 0, and

φ0p + θ0q 6= 0.

We are now in a position to state the following consistency theorem.

Theorem 3 (Strong consistency). Let (θ̂T ) be a sequence of QML estimators satisfying

(3.17). Then, under assumptions 1-4

θ̂T → θ0, almost surely when T→∞. (3.18)

Proof. See Francq and Zaköıan [19].

Theorem shows that there exists a consistent root of the likelihood equation.

To establish the asymptotic normality we require the following additional assumptions.

Assumption 5. θ0 ∈ Θc, where Θc denotes the interior of Θ.

Assumption 6. κ := EZ4
t <∞.

Theorem 4 (Asymptotic normality). Under the assumptions of Theorem 3 and assump-

tions 5 and 6
√
T (θ̂T − θ0) converges in distribution to N(0, (κ− 1)J−1), where

J := Eθ0
(
∂`t(θ0)

∂θ∂θ′

)
= Eθ0

(
1

σ4
t (θ0)

∂σ2
t (θ0)

∂θ

∂σ2
t (θ0)

∂θ′

)
. (3.19)

Proof. See Francq and Zaköıan [19].

The results above shows that the quasi likelihood estimate θ̂T is
√
T -consistent for

the true parameter values and
√
T -asymptotically normal with mean θ0 and covariance

matrix specified before. However, in the presence of non-Gaussian innovations, this esti-

mator can fail to produce asymptotically efficient estimates. Given the results of Theorem

2 and Theorem 3 and mild regularity conditions on the innovation terms we can construct

semiparametric estimators which are asymptotically more efficient than the QMLE.



Chapter 4

Multivariate GARCH

Nowadays globalization has resulted in higher international economics integration, in-

vestors and also financial institutions are interested in knowing financial markets integra-

tion and how financial volatilities together move over time across several markets. Empiri-

cal results show that working with separate univariate models is much less

relevant than multivariate modelling framework. Cross market effects capturing returns

linkage, transmission of stocks and volatility spillover effects are used to indicate markets

integration.

Multivariate generalized autoregressive conditional heteroscedasticity (MGARCH)

models were initially developed in the late of 1980s and the first half of the 1990s. The

most common application of these class of models is to estimate the volatility spillover

effects among different markets. When we are in multivariate framework, we are always

balancing between two expected difficulties, on one hand as the number of parameters

in MGARCH model often increases very quickly with the dimension of the model, the

specification of the model should be parsimonious enough to allow for relatively easy es-

timation of the model and also allow for easy interpretation of the model parameters. On

the other hand parsimony means simplification and models with only a few parameters

may not be able to capture the relevant dynamics in the covariance structure. Another

feature that needs to be taken into account in the specification of the model is imposing

positive definiteness (as covariance matrix need, by definition, to be positive definite).

One possibility is to derive conditions under which the conditional covariance matrices

implied by the model are positive definite, but this is often infeasible in practice. An

alternative is to formulate the model in a way that positive definiteness is implied by the

structure (in addition to some simple constraints).
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We review different specifications of conditional covariance matrices in the follow-

ing subsections. We distinguish three approaches for constructing multivariate GARCH

models

• Generalizations of the univariate GARCH model

• Linear combinations of univariate GARCH models

• Nonlinear combinations of univariate GARCH models

Before we start with the definitions we introduce some basic blocks of multivariate

framework concerned the GARCH models. Consider a stochastic vector process Xt with

dimension n. Let Ft be the non decreasing collection of σ-fields generated by past of the

series Xt, i.e. Ft = σ(Xt, Xt−1, . . . ).Assume that conditional covariance matrix Ht of Xt

is measurable with respect to Ft−1. The multivariate GARCH framework is then given

by

Xt = H
1/2
t Zt, (4.1)

where Ht = [hij]t is n × n symmetric positive definite matrix for all t. H
1/2
t may be

obtained by Cholesky factorization of Ht and Zt is a n dimensional i.i.d. vector process

with zero mean and unit variance. Hence Zt is independent of Ft−1, it follows that

cov(Zt|Ft−1) = cov(Zt) = In. The process Xt is then a n dimensional vector martingale

difference sequence

E(Xt|Ft−1) = 0,

cov(Xt|Ft−1) = H
1/2
t cov(Zt|Ft−1)H

1/2
t = Ht.

(4.2)

The information set Ft contains both lagged values of the squares and cross-product of

Xt and elements of the conditional covariance matrices up to time t. The challenge in

multivariate GARCH modelling is to find a parameterization of Ht as a function of Ft−1

that is fairly general while feasible in terms of estimation.

4.1 Generalizations of the univariate GARCH mod-

els

The extension from a univariate GARCH model to an n-variate model (multivariate)

requires considering n-dimensional stochastic process with zero mean random variables

Xt and covariance matrix Ht.
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4.1.1 VECH model

VECH model proposed by Bollerslev, Engle and Wooldridge [10] is straightforward

generalization of the univariate GARCH model. Every conditional variance and covari-

ance is a function of all lagged conditional variances and covariances, as well as lagged

squared returns and cross products of returns. The VECH (p, q) model can be defined

using Bollerslev interpretation as follows.

Definition 2. A VECH (p, q) process is a martingale difference sequence Xt relative to

a given filtration Ft, whose conditional covariance matrix Ht = cov(Xt|Ft−1) satisfy, for

every t ∈ Z

vech(Ht) = c+

q∑
i=1

Aivech(Xt−iX
′
t−i) +

p∑
i=1

Givech(Ht−i), (4.3)

where vech1(.) is the operator that stacks the lower triangular portion of a symmetric

square n×n matrix into a (n(n+1)/2)-dimensional vector, c is an (n(n+1)/2)-dimensional

vector, and Ai, Gi are square parameter matrices of order (n(n+ 1)/2).

For illustration we consider bivariate VECH (1, 1) model and denote ht = vech(Ht)

then (4.3) becomes

ht =


h11,t

h12,t

h22,t



=


c1,t

c2,t

c3,t

+


a11 a12 a13

a21 a22 a23

a31 a32 a33




X2
1,t−1

X1,t−1X2,t−1

X2
2,t−1

+


g11 g12 g13

g21 g22 g23

g31 g32 g33



h11,t−1

h12,t−1

h22,t−1

 .
Notice that, here we can immediately see equivalency VEC and VECH representa-

tion. In VEC2 representation all covariance equations appear twice, because there is an

equation for hij,t as well as for hji,t. All the off diagonal terms appear twice within each

equation (i.e. both of the terms Xi,t−1Xj,t−1 and Xj,t−1Xi,t−1 and both of the terms hij,t−1

1In many of the literature about the multivariate GARCH models we can find different notation, VEC

(p, q) instead of VECH (p, q). It is because we can use two possible vectorization of covariance matrix

Ht. The difference between vec and vech operator is that for a symmetric matrix A, the vector vec (A)

contains more information than is strictly necessary, since the matrix is completely determined by the

symmetry together with the lower triangular portion, that is, the (n(n+ 1)/2) entries on and below the

main diagonal.
2using vec vectorization in definition of VECH model.
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and hji,t−1 appear in each equation). These redundant terms we can remove without af-

fecting the model. If we do that, dimensions of our matrices Ai and Gi will be n(n+ 1)/2

instead of n2 as we mentioned before.

This model is very general, flexible and we can also directly interpret the coefficients,

however it brings two major disadvantages in applications. The number of parameters in

the model equals (p+ q)(n(n+ 1)/2)2 + n(n+ 1)/2, which makes this model practicable

in practice only in the bivariate case. Second is that there exist only sufficient conditions

on the parameters to ensure that conditional variance matrices Ht are positive definite

almost surely for all t.

Bollerslev, Engle, and Wooldridge [10] introduced restriction of the model such that,

each component of the covariance matrix Ht depends only on its own past and past values

of XtX
′
t. In other words in the diagonal representation, is assumed that the matrices Ai

and Gi are diagonal. This so called diagonal VECH model (DVECH) reduces the number

of parameters to (p+q+1)n(n+1)/2 and in this case is also possible to obtain conditions

for positive definiteness of Ht for all t. However, DVECH representation seems to be too

restrictive since no interaction is allowed between the different conditional variances and

covariances.

Here we derive a sufficient condition for diagonal VECH model for Ht to be positive

definite. Then the diagonal VECH model can be written in matrix representation as

follows

Ht = C̃ + Ã�Xt−1X
′
t−1 + G̃�Ht−1, (4.4)

where the symbol� represents Hadamard3 product of the two matrices, C̃, Ã and G̃ are all

n× n parameter matrices. Using Cholesky decomposition of the parameter matrices and

from properties of Hadamard product can be seen that usual matrix multiplication will

be carried out first, hence ÃÃ′ �Xt−1X
′
t−1 should be interpreted as (ÃÃ′)� (Xt−1X

′
t−1).

Then

Ht = C̃C̃ ′ + ÃÃ′ �Xt−1X
′
t−1 + G̃G̃′ �Ht−1, (4.5)

since C̃C̃ ′, ÃÃ′ and G̃G̃′ are all positive semi-definite, Ht will be positive definite for all t

as far as the initial covariance matrix H0 is positive definite. If sample covariance is used

for H0 then Ht will always be positive definite.

So each conditional covariance depends on its own past values. The difference between

3The Hadamard product A � B of two matrices of the same dimensions is a matrix of the same

dimensions with elements given by (A�B)ij = Ai,j .Bi,j .
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this representation and Bollerslev diagonal VECH representation is that the parameteri-

zation used here imposed restrictions implicitly among different parameters to ensure that

the parameter matrix is positive semidefinite, and which further assure the conditional

covariance matrices are positive definite. By writing the parameter matrices in the form of

C̃C̃ ′, ÃÃ′ and G̃G̃′ instead of just C̃, Ã and G̃ the positive semi-definiteness is guaranteed

in estimation without imposing any further restrictions.

Let define the backshift operator L such that LKXt = Xt−k and convention that

A(L) = A1L + A2L
2 + · · · + AqL

q and G(L) = G1L + G2L
2 + · · · + GpL

p. Let Zt be

an n dimensional i.i.d. vector process with mean zero and unit variance. Hence Zt is

independent of Ft−1, it follows that cov(Zt|Ft−1) = cov(Zt) = In. There exists a VECH

process Xt such that Xt = H
1/2
t Zt, where Ht = cov(Xt|Ft−1) and Ft = σ(Xt, Xt−1, . . . ).

Assuming that Xt is doubly infinite sequence, we can rewrite equation for conditional

covariance matrix (4.3) as

vech(Ht) =
∞∑
i=1

G(L)i−1[c+ A(L)vech(XtX
′
t)]. (4.6)

The following computation shows that this parameterization gives indeed VECH model

vech(Ht) = c+ A(L)vech(XtX
′
t) +

∞∑
i=2

G(L)i−1[c+ A(L)vech(XtX
′
t)]

= c+ A(L)vech(XtX
′
t) +G(L)

∞∑
i=1

G(L)i−1[c+ A(L)vech(XtX
′
t)]

= c+ A(L)vech(XtX
′
t) +G(L)vech(Ht).

(4.7)

Note that the backshift operator L works also with vech operator such that shifts indices

in both Xt‘s and Ht. We can state the following stationary theorem of Bollerslev, Engle

and Wooldridge [10].

Theorem 5. Let c be an (n(n+1)/2)-dimensional vector and Ai, Gi are square parameter

matrices of order (n(n+ 1)/2). Let Zt be an i.i.d. vector process with mean zero and unit

variance. Hence Zt is independent of Ft−1, it follows that cov(Zt|Ft−1) = cov(Zt) = In.

Then there exists a covariance stationary VECH process Xt such that Xt = H
1/2
t Zt,

where Ht = cov(Xt|Ft−1) and Ft = σ(Xt, Xt−1, . . . ) if and only if all the eigenvalues of

A(1) +G(1) are less than one in modulus.

Proof. Assuming that Xt is doubly infinite sequence we can use the VECH represen-

tation for conditional covariance matrix given in (4.6) and for simplicity we denote
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ηt = vech(XtX
′
t) and ht = vech(Ht). Then second step is to define Et−1 to be expec-

tations operator, conditioned on the information set Ft−1. Then we can compute

Et−1ηt =
∞∑
i=1

G(L)i−1[c+ A(L)ηt−i]

Et−2ηt = Et−2Et−1ηt

= Et−2

∞∑
i=1

G(L)i−1[c+ A(L)ηt−i]

=
∞∑
i=1

G(L)i−1[c+ A(L)Et−2ηt−i]

= c+ A(L)
∞∑
i=1

G(L)i−1[c+ A(L)ηt−i−1] +
∞∑
i=2

G(L)i−1[c+ A(L)ηt−i]

= c+ A(L)
∞∑
i=1

G(L)i−1[c+ A(L)ηt−i−1] +G(L)
∞∑
i=1

G(L)i−1[c+ A(L)ηt−i−1]

= c+ [A(L) +G(L)]
∞∑
i=1

G(L)i−1[c+ A(L)ηt−i−1]

Et−3ηt = Et−3Et−2ηt

= c+ [A(L) +G(L)]
∞∑
i=1

G(L)i−1[c+ A(L)Et−3ηt−i−1]

= c+ [A(L) +G(L)](c+ A(L)ht−2) + [A(L) +G(L)]
∞∑
i=2

G(L)i−1[c+ A(L)ηt−i−1]

= c+ [A(L) +G(L)]c+ [A(L) +G(L)]A(L)
∞∑
i=1

G(L)i−1[c+ A(L)ηt−i−2]

+ [A(L) +G(L)]
∞∑
i=2

G(L)i−1[c+ A(L)ηt−i−1]

= c+ [A(L) +G(L)]c+ [A(L) +G(L)]A(L)
∞∑
i=1

G(L)i−1[c+ A(L)ηt−i−2]

+ [A(L) +G(L)]G(L)
∞∑
i=1

G(L)i−1[c+ A(L)ηt−i−2]

= c+ [A(L) +G(L)]c+ [A(L) +G(L)]2
∞∑
i=1

G(L)i−1[c+ A(L)ηt−i−2]

...

Et−τηt = [I + (A(L) +G(L)) + · · ·+ (A(L) +G(L))τ−2]c

+ [A(L) +G(L)]τ−1

∞∑
i=1

G(L)i−1[c+ A(L)ηt−i−τ+1].
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Next we use some knowledge from matrix theory about asymptotic properties of square

matrix U . If all the eigenvalues of matrix U are less than one in modulus then U τ → 0 as

τ →∞. Hence the eigenvalues of U are less than one in modulus if and only if [I + U +

U2 + . . . ]→ (I −U)−1. Therefore Et−τηt converges in probability to [I −A(1)−G(1)]−1c

as τ → ∞ if and only if the eigenvalues of (A(1) + G(1)) are less than one in modulus.

Also, E(XtX
′
t+γ) = E[E(XtX

′
t+γ)] = 0 for all γ 6= 0. Then E(XtX

′
t+γ) exists and depends

only on γ for all t.

For any parameterization necessary and sufficient conditions on the parameters we

have to ensure that conditional covariance matrices Ht are positive definite. This can be

difficult to check for given parameters, Engle and Kroner [17] propose a new parameteri-

zation for Ht that easily imposes these restrictions.

4.1.2 BEKK model

We consider BEKK (p, q,K) model proposed by Baba, Engle, Kraft and Kroner [4] defined

as follows.

Definition 3. A BEKK (p, q) process is a martingale difference sequence Xt relative to

a given filtration Ft, whose conditional covariance matrix Ht = cov(Xt|Ft−1) satisfy, for

every t ∈ Z

Ht = CC ′ +
K∑
k=1

q∑
i=1

A∗
′

ikXt−iX
′
t−iA

∗
ik +

K∑
k=1

p∑
i=1

G∗
′

ikHt−iG
∗
ik, (4.8)

where C is a upper triangular n × n matrix, A∗ik and G∗ik are n × n parameter matrices

and summation limit K determines the generality of the process.

The decomposition of the constant term into a product of two triangular matrices

ensures positive definiteness of Ht. A property of BEKK model is that conditional covari-

ance matrices Ht are positive definite by construction. A sufficient condition for positivity

is for example that at least one of the matrices C or G∗ik have full rank and the matrices

H0, . . . , H1−p are positive definite.

Let now turn to investigate the relationship between the BEKK and VECH parame-

terizations. Relationship between this two parameterizations can be found by vectorizing4

4Recognizing that vec(ABC) = (C ′ ⊗ A)vec(B), where ⊗ denote the Kronecker product that is an

operation on two matrices of arbitrary size resulting in a block matrix.
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of equation (4.8)

vec(Ht) = (C ⊗ C)′vec(In) +
K∑
k=1

(A∗1k ⊗ A∗1k)′vec(Xt−1X
′
t−1)

+
K∑
k=1

(G∗1k ⊗G∗1k)′vec(Ht−1).

(4.9)

Hence

A1 =
K∑
k=1

(A∗1k ⊗ A∗1k)′ (4.10)

and

G1 =
K∑
k=1

(G∗1k ⊗G∗1k)′, (4.11)

which leads to the following representation theorem Engle and Kroner [17] that

establishes the equivalence of DVEC models that have positive definite covariance matri-

ces and general diagonal BEKK models.

Theorem 6. The VECH and BEKK parameterizations are equivalent if and only if there

exist c, A∗ik and G∗ik such that

c = (C∗ ⊗ C∗)′vech(In),

Ai =
K∑
k=1

(A∗ik ⊗ A∗ik)′,

Gi =
K∑
k=1

(G∗ik ⊗G∗ik)′.

(4.12)

Proof. Without lost of generality we prove this theorem only for p = q = 1. Recognizing

that ηt = vech(XtX
′
t) and ht = vech(Ht), then the VECH (1, 1) becomes

ht = c+ A1ηt−1 +G1ht−1 (4.13)

and the BEKK (1, 1) becomes

Ht = CC ′ +
K∑
k=1

A∗
′

1kXt−1X
′
t−1A

∗
1k +

K∑
k=1

G∗
′

1kHt−1G
∗
1k. (4.14)
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Vectorizing equation (4.14) gives

vech(Ht) = vech(CC ′) + vech

(
K∑
k=1

A∗
′

1kXt−1X
′
t−1A

∗
1k

)
+ vech

(
K∑
k=1

G∗
′

1kHt−1G
∗
1k

)

ht = vech(CC ′) +
K∑
k=1

(A∗1k ⊗ A∗1k)′vech(Xt−1X
′
t−1) +

K∑
k=1

(G∗1k ⊗G∗1k)′vech(Ht−1)

= (C ⊗ C)′vech(In) +
K∑
k=1

(A∗1k ⊗ A∗1k)′ηt−1 +
K∑
k=1

(G∗1k ⊗G∗1k)′ht−1.

(4.15)

Now if (4.12) hold, then last term in (4.15) becomes

ht = c+ A1ηt−1 +G1ht−1,

which is exactly (4.13) and then we proved sufficiency. Next step is to show that relations

(4.13) and (4.15) hold for all Xt−1, proving necessity. So by appropriate choice of Xt−1,

each column of A1 can be equated individually with each column of
∑K

k=1(A∗1k ⊗ A∗1k)′.
For instance, letting X ′t−1 = (1, 0, . . . , 0) establishes equality of the first column of A1

with the first column of
∑K

k=1(A∗1k⊗A∗1k)′. The rest of relations (4.12) can be done in the

same way.

Conclusion of theorem is that each of the BEKK models implies a unique VECH

model, which then generates positive definite conditional covariance matrices, while the

converse implication is not true. To show that converse implication is not true we simply

distinguish that for a given A1 the choice of A∗1k is not unique. This can be seen by

recognizing that (A∗1k⊗A∗1k) = (−A∗1k⊗−A∗1k), so while A1 =
∑K

k=1(A∗ik⊗A∗ik)′ is unique

the choice of A∗ik is not unique. Note that from relations (4.12) is obvious that DVECH is

returned from the BEKK parameterization if and only if each of the A∗ik and G∗ik matrices

are diagonal. It can be also shown that the BEKK model eliminates few, if any of the

interesting positive definite models permitted by the VECH model. All positive definite

DVECH models can be written in the BEKK framework, so that if one restricts the focus

to diagonal models, the BEKK model is equally general as the VECH model.

Now we are going to discuss necessary and sufficient conditions for covariance sta-

tionarity of the BEKK process. Let L be backshift operator such that LKXt = Xt−k

and convention that A(L) =
∑K

k=1(A∗ik ⊗ A∗ik)
′L + · · · +

∑K
k=1(A∗qk ⊗ A∗qk)

′Lq, G(L) =∑K
k=1(G∗1k ⊗ G∗1k)′L + · · · +

∑K
k=1(G∗pk ⊗ G∗pk)′Lp and c = (C∗ ⊗ C∗)′vech(In). Let Zt be

an i.i.d. process with mean zero and unit variance. There exists a BEKK process Xt such
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that Xt = H
1/2
t Zt, where Ht = cov(Xt|Ft−1) and Ft = σ(Xt, Xt−1, . . . ). Assuming that

Xt is doubly infinite sequence we can rewrite equation for conditional covariance matrix

(4.8) using vectorization as

vech(Ht) =
∞∑
i=1

G(L)i−1[c+ A(L)vech(XtX
′
t)]. (4.16)

By the Theorem 6 this parameterization gives BEKK model because

vech(Ht) = c+ A(L)vech(XtX
′
t) +

∞∑
i=2

G(L)i−1[c+ A(L)vech(XtX
′
t)]

= c+ A(L)vech(XtX
′
t) +G(L)

∞∑
i=1

G(L)i−1[c+ A(L)vech(XtX
′
t)]

= c+ A(L)vech(XtX
′
t) +G(L)vech(Ht).

(4.17)

Notice that the parameterization in (4.16) nests both the VECH and the BEKK models.

Theorem 7. Let C is a upper triangular n× n matrix and A∗ik, G∗ik are n× n parameter

matrices. Let Zt be an i.i.d. process with mean zero and unit variance. Hence Zt is

independent of Ft−1, it follows that cov(Zt|Ft−1) = cov(Zt) = In. There exists a covari-

ance stationary BEKK process Xt such that Xt = H
1/2
t Zt, where Ht = cov(Xt|Ft−1) and

Ft = σ(Xt, Xt−1, . . . ) if and only if all the eigenvalues of A(1) + G(1) are less than one

in modulus.

Proof. The proof for the BEKK model is analogous as in the VECH model, except that

we substitute relations (4.12) into proof.

So BEKK model is covariance stationary if and only if all the eigenvalues of∑q
i=1

∑K
k=1(A∗ik ⊗ A∗ik) +

∑p
i=1

∑K
k=1(G∗ik ⊗ G∗ik) are less than one in modulus. Then the

unconditional covariance matrix, when it exists, is given for K = 1

E(vech(XtX
′
t)) = [I − (A∗11 ⊗ A∗11)− (G∗11 ⊗G∗11)]−1vech(C ′C). (4.18)

Estimation of multivariate GARCH models is troublesome, since the number of pa-

rameters may be large also for relative small vector dimension n. Let us assume through

this chapter that Zt are i.i.d. N(0, In). The conditional covariance matrices Ht are

modelled as (4.8). Let p be a density function, θ be the vector of parameters that are

needed to parameterize.

Suppose that there is an underlying data generating process characterized by the

unknown parameter vector θ0 which one wants to estimate using a given sample of T
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observations. Hence the joint distribution of (X1, X2, . . . , XT ) where T is the number

of observations, need not to be multivariate normally distributed. But the joint density

is the product of all the conditional densities, so the log-likelihood function of the joint

distribution is the sum of all the log-likelihood functions of the conditional distributions.

Thus under the assumption that Zt are i.i.d. conditionally on initial values, the quasi

log-likelihood function is given by

Lt(θ) =
T∑
t=1

`t(θ) (4.19)

where

`t(θ) = −n
2

log(2π)− 1

2
log |Ht| −

1

2
X ′tH

−1
t Xt. (4.20)

The quasi maximum likelihood estimator of θ is defined as any measurable solution θ̂n

that maximizes the likelihood function with respect to these parameters. A reasonable

set of assumptions on initial conditions is that all presentable data has been fixed at

their unconditional expectation. For example X0X
′
0 is assumed to equal its unconditional

expectation, given in (4.18). Note that because no reference is made to the functional

form chosen for the conditional covariance matrix, we may apply the result of this section

whether the VECH or BEKK parameterization is chosen. In either case, however, the

models are large and complex, leading one to question how flat the likelihood function is

with respect to many of the parameters in the model such as the diagonal model or the

BEKK model with K = 1 and then use Lagrange multiplier test to examine the validity

of the restriction.

Statistical properties of multivariate GARCH models are only partially known. For

development of statistical estimation, it would be desirable to have conditions for strict

stationarity and ergodicity of a multivariate GARCH processes, as well as conditions for

consistency and asymptotic normality of quasi maximum likelihood estimator.

Comte and Lieberman [14] study asymptotic properties of the quasi5 maximum likeli-

hood estimator. They provide conditions for strong consistency and asymptotic normality

of the quasi maximum likelihood estimator θ̂. In addiction they give, through survey of

asymptotic results published so far for univariate as well as multivariate GARCH process-

es. Let us state for completeness two of their main theorems for strong consistency and

asymptotic normality of the QML estimator. For the proofs and further details refer to

5Note that in Comte and Lieberman [14] θ̂ is presented as quasi MLE, since they do not assume that

Zt’s are Gaussian, but work with the Gaussian log-likelihood function.
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Comte and Lieberman [14].

Consider the BEKK (p, q) model as defined by (4.8) then we can write the following two

theorems.

Theorem 8 (Consistency of quasi MLE). For the MGARCH (p, q) process defined by

(4.8) with Zt ∼ i.i.d.(0, In) and for θ̂T , the quasi maximum likelihood estimate obtained

from a sample of length T , and the true parameter θ0 ∈ Θ, assume that

• Θ is compact, C, Ai and Gi, are continuous functions of θ, and there exists a c > 0

such that infθ∈Θ det(C(θ)) ≥ c > 0,

• model is identifiable in the sence of Engle and Kroner [17],

• rescaled errors Zt admit a density absolutely continuous with respect to the Lebesgue

measure and positive in a neighbourhood of the origin,

• for all θ ∈ Θ, ρ(
∑q

i=1Ai(θ) +
∑p

i=1 Gi(θ)) < 1. Where ρ returns the largest modules

of the eigenvalues.

Then θ̂T is strongly consistent that is, θ̂T → θ0 almost surely for T →∞.

Theorem 9 (Asymptotic Normality of quasi MLE). Under the assumptions

• assumptions from Theorem 8 and C, Ai Gi, admit continuous derivatives up to

order 3 on Θ,

• components of Zt are independent,

• Xt admits bounded moments of order 8,

• the initial states of the process Ht are fixed stationary.

Then the quasi MLE θ̂T given the initial state is strongly consistent and

√
T (θ̂T − θ0)→ N(0, C1

1C0C
1
1), (4.21)

where C1 = E
((

∂2`t(θ0)
∂θiθj

)
1≥i,j≥r

)
, C0 = E

(
∂`t(θ0)
∂θ

∂`t(θ0)
∂θ

′)
and r is the length of the pa-

rameter vector θ.

The BHHH (Berndt Hall and Hall and Hausman) iterative algorithm is useful in

practice to obtain the optimal values of parameters by utilizing the following equation

proposed by Engle and Kroner [17]

θ(i+1) = θ(i) + λi

((
∂`t
∂θ

)′
∂`t
∂θ

)−1(
∂`t
∂θ

)′
(4.22)
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where θ(i) denotes the parameter estimate after the ith iteration; ∂`t
∂θ

is evaluated at θ(i)

and λ is a variable step length chosen to maximize the likelihood function in the given

direction, which is calculated from a least squares regression of a T × 1 vector of ones on
∂`t
∂θ

.

4.2 Linear combinations of univariate GARCH mod-

els

In this section we introduce somewhat different approach of multivariate GARCH models.

One can assume that the observed data can be linearly transformed into a set of compo-

nents by means of an matrix i.e. model tries to express multivariate GARCH by means of

univariate GARCH models. This approach has been proposed initially by Alexander and

Chibumba [2] and called the Orthogonal GARCH (O-GARCH). Clearly one of the restric-

tions imposed by the O-GARCH model is that, it requires the matrix that is assumed to

link the components with the observed variables, to be orthogonal. This restriction has

great computational properties and analytical tractability, so that O-GARCH models have

found many applications in finance. However orthogonal matrices are very special and

they only reflect a very small subset of all possible invertible linear maps. The generalized

O-GARCH model allows the linkage to be given by any possible invertible matrix and

was proposed by van der Weide [31], as a generalization of the orthogonal GARCH model.

The O-GARCH model is also known to suffer from identification problem, mainly be-

cause estimation of the matrix is entirely based on unconditional information (the sample

covariance matrix). For example, when the data exhibits weak dependence, the model

has substantial difficulties to identify a matrix that is truly orthogonal.

4.2.1 O-GARCH model

Consider a vector process Xt representing n different returns. Letting Ft denote the

filtration generated byXt and denote Vt conditional covariance matrix ofXt such that Vt =

cov(Xt|Ft−1). The data are commonly normalized, so that every series has unit sample

variance and zero mean. The vector process Xt can be represented as linear combination

of n uncorrelated univariate GARCH processes Yt with unconditional variances of one.
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Definition 4. The O-GARCH (p, q) process is a vector process Xt defined as

Xt = MYt, (4.23)

where M is a n×n orthogonal6 matrix and Yt is n vector process with the components yit

which satisfy

E(yit|Ft−1) = 0, var(yit|Ft−1) = hit, cov(yit, yjt|Ft−1) = 0, i 6= j = 1, . . . , n, (4.24)

such that the components of Yt are conditionally uncorrelated and each component is

modelled as a univariate GARCH process

yit|Ft−1 ∼N(0, hit),

hit = αi +

q∑
j=1

θjiy
2
ji,t−1 +

p∑
j=1

φjihji,t−1 for i = 1, . . . , n.
(4.25)

The conditional covariances of Xt are given by

Vt = MHtM
′, Ht = diag(h1t, . . . , hnt). (4.26)

We assume that Yt and hence Xt is covariance stationary, such that the unconditional

variances H = var(Yt) and V = var(Xt) = MHM ′ exist. The parameters for O-GARCH

(p, q) model are all φji, all θji, M and V . The number of parameters to be estimated in

this model is equal (p+ q)n(n+ 5)/2.

Denote P the orthogonal matrix of eigenvectors of V , and Λ the diagonal matrix

containing the corresponding eigenvalues, such that V = PΛP ′. Then Yt satisfies H =

var(Yt) = PV P ′ = Λ, such that the components of Yt are unconditionally uncorrelated.

This property is then amplified by assumption that the Yt are conditionally uncorrelated

and then Ht is diagonal. After we have estimated all the parameters, the conditional

covariance matrix of the original series is simply

Vt = Et−1XtX
′
t = Et−1MYtY

′
tM

′ = PHtP
′. (4.27)

The advantage of the model is that only a few principle components are enough to explain

most of variability in the system which suggest this model applicable in large dimension

models. However when the data exhibits weak dependence, the O-GARCH model is not

always able to identify the orthogonal matrix M which lead to the development of more

general model.

6We follow Alexander [1], however there exist other possibilities for instance Vrontos et al. [32] restrict

M to be lower triangular, which is not without loss of generality.
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4.2.2 GO-GARCH model

Generalized O-GARCH model was proposed by van der Weide [31] and in this section

we closely follow his work. In the GO-GARCH model the components of Xt do not have

to be standardized as in the O-GARCH model. The starting point of the GO-GARCH

model is the assumption defined as follows.

Assumption 7. The observed process Xt is defined by a linear combination of

conditionally uncorrelated components Yt

Xt = MYt (4.28)

where Yt is a n vector process with the components yit of which satisfy

E(yit|Ft−1) = 0, var(yit|Ft−1) = hit, cov(yit, yjt|Ft−1) = 0, i 6= j = 1, . . . , n. (4.29)

The linear map M that links the unobserved components with the observed variables is

assumed to be constant over time, and invertible.

Hence the GO-GARCH model can be defined as follows.

Definition 5. The GO-GARCH (p, q) process is a vector process Xt defined as

Xt = MYt. (4.30)

Where each of the component process yit is modelled as a univariate GARCH process and

then

yit|Ft−1 ∼N(0, hit),

hit = αi +

q∑
j=1

θjiy
2
ji,t−1 +

p∑
j=1

φjihji,t−1 for i = 1, . . . , n.
(4.31)

Hence, the conditional covariances of Xt see van der Weide [31] are given by

Vt = MHtM
′, Ht = diag(h1t, . . . , hnt). (4.32)

Note that we impose without lost of generality that each of the unobserved components

yit have unit variance so that V = MM ′.

If we consider the singular value decomposition of M

M = PΛ1/2U ′ (4.33)

where P and Λ denote the matrices with, respectively, the orthogonal eigenvectors and

the eigenvalues of V = MM ′, then U is the orthogonal matrix of eigenvectors of MM ′.
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The matrices P and Λ will be estimated directly by means of unconditional information,

as they will be extracted from the sample covariance matrix V , the main task for inference

on the loading matrix M is to identify the orthogonal matrix U . The O-GARCH model

corresponds then to the particular choice U = In. Van der Weide express U as the product

of n(n− 1)/2 rotation matrices

U =
∏
i<j

Gij(δij), −π ≤ δij ≤ π, i, j = 1, 2, . . . , n, (4.34)

where Gij(δij) performs a rotation in the plane spanned by the ith and jth vectors of the

canonical basis of R over an angle δij. For example in the trivariate case

G12 =


cos δ12 sin δ12 0

− sin δ12 cos δ12 0

0 0 1

 , G13 =


cos δ13 0 − sin δ13

0 1 0

− sin δ12 0 cos δ13

 . (4.35)

As rotation angles are most often used the Euler angles which can be estimated by

means of maximum likelihood. It is obvious that the (G)O-GARCH model is covariance

stationary if the n univariate GARCH processes are themselves stationary.

GO-GARCH model has property that it can be nested as a more general BEKK model.

To keep it simple we focus on the GO-GARCH (1, 1) model only, but it can be verified

that the results also hold for the more general GO-GARCH (p, q) model. Consider the

following BEKK representation

Vt = C +
n∑
i=1

AiXt−1X
′
t−1A

′
i +BVt−1B

′, (4.36)

where C is a positive definite n× n matrix7, Ai and B are n× n matrices. The following

theorem show relationship between models.

Theorem 10. Let the matrices {Ai}mi=1 and B be restricted to have identical eigenvec-

tor matrix M , where the eigenvalues of Ai are all zero except for the ith one. Moreover,

assume that C can be decomposed as MDCM
′, where DC is some positive definite diagonal

matrix. Then the associated BEKK parameterization, given in (4.36) is a GO-GARCH

process with GARCH (1, 1) component where the M reflects the linkage between the con-

ditionally uncorrelated components and the observed process.

Proof. The matrices {Ai}ni=1 and B are assumed to have identical eigenvector matrix M .

So they can be diagonalized as follows

Ai = MDAi
M−1 and B = MDBM

−1, (4.37)

7In order to guarantee positive definiteness of Vt for all t.



4.2 Linear combinations of univariate GARCH models 41

where {DAi
} and DB denote diagonal eigenvalue matrices. Note that all element of the

matrix DAi
are zero except for its i’th diagonal element, which represents the only non-

zero eigenvalue of Ai and will be denoted as ai. By substitution we have

Vt = MDCM
′ +

n∑
i=1

MDAi
M−1Xt−1X

′
t−1M

−1′DAi
M ′ +MDBM

−1Vt−1(M−1)′DBM
′,

Vt = M(DC +
n∑
i=1

DAi
M−1Xt−1X

′
t−1(M−1)′DAi

+DBM
−1Vt−1(M−1)′DB)M ′.

(4.38)

By definition we haveXt = MYt. Then Yt = M−1Xt represent the unobserved components

in the GO-GARCH framework. Let Ht = M−1VtM
−1 denote the conditional covariance

matrix of Yt. Rearranging terms in (4.38) we can find that

Ht = DC +
n∑
i=1

DAi
Yt−1Y

′
t−1DAi

+DBHt−1DB. (4.39)

By the properties of the matrices {DAi
} it follows that the sum can be rewritten using

Hadamard product as
n∑
i=1

DAi
Yt−1Y

′
t−1DAi

= DA � Yt−1Y
′
t−1, (4.40)

where DA = diag{a1, . . . , an}. Then DC , DB and DA�Yt−1Y
′
t−1 are all diagonal, and the

conditional covariance matrix of Yt, denoted by Ht, is also diagonal. Therefore, equation

(4.39) implies univariate GARCH (1, 1) specifications for the components of Yt, as it is

assumed by the GO-GARCH model.

The parameter estimation of the GO-GARCH model is carried out as usual with

maximum likelihood estimation. We show before that GO-GARCH can be nested as

more general BEKK model, so that most of the theory of maximum likelihood estimation

available for the BEKK models can be applied for GO-GARCH models. The parameters

that need to be estimated include the vector θ of rotation coefficients that will identify

the invertible matrix M , and the parameters (φi, θi) for the n univariate GARCH models.

The quasi log-likelihood function Lt(θ) for the GO-GARCH with a given sample of T

observations is given by

Lt(θ) = −1

2

T∑
t=1

n log(2π) + log |Vt|+X ′tV
−1
t Xt

= −1

2

T∑
t=1

n log(2π) + log |ZθHtMθ|+ Y ′tM
′
θ(MθHtMθ)

−1YtMθ

= −1

2

T∑
t=1

n log(2π) + log |MθM
′
θ|+ log |Ht|+ Y ′tH

−1
t Yt,

(4.41)
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where MθM
′
θ = PΛP ′ is independent of θ. Even in high-variate cases, when the covariance

matrices are very large, it should not be a problem to maximize the quasi log-likelihood

function over the n(n− 1)/2 + 2n parameters. However practical power of GO-GARCH

model lies in its two-step estimation procedure. For this method it is necessary that

link matrix M is orthogonal. In first step, matrices P and Λ are estimated directly by

means of unconditional information as they will be extracted from sample covariance

matrix Vt. This involves only solving an eigenvalue problem. In the second step the con-

ditional information is used to estimate rotation coefficients of U and all θi and φi of n

factors. This separation shows that a two-step estimation procedure is feasible and that

variances and correlations can be estimated separately. The two-step approach main-

ly has the advantage that the dimensionality of the maximization problem is reduced

accelerating the maximization process.

The problems of maximizing the multivariate likelihood function for high dimensions

lead to development of three-step procedure. This method was proposed by Boswijk and

van der Weide [12]. First step is the same as before and the second step of the two-step

procedure is divided into two steps. This allows to separate the estimation of a part

of link matrix U from univariate GARCH parameters. The tree-step procedure tries to

identify U from the autocorrelation structure of stst
′ where st = Λ−1/2P ′Xt. They obtain

estimate for B = UA′U by regressing the following model

sts
′
t − Im = B(st−1s

′
t−1 − Im)B + Γt, E(Γt) = 0, (4.42)

using non-linear least squares method. Estimate for U may be obtained as the eigenvector

matrix of B as A is diagonal matrix. The three-step procedure is not only more practical in

terms of implementation but also is less prone to convergence problems. However the main

disadvantage is loss of efficiency. The two-step as well as the three-step procedure seem

to be too slow when dimension of the model is high. Broda and Paolella [13] introduced

a new two-step procedure for estimation of GO-GARCH model. They use independent

component analysis as the main tool for the decomposition of a high-dimensional problem

into a set of univariate models. The algorithm maximizes the conditional heteroscedas-

ticity of the estimated components. Their method is called CHICAGO (Conditionally

Heteroscedastic Independent Component Analysis of Generalized Orthogonal GARCH

models). Their procedure allows them to apply non-Gaussian innovations. For more de-

tails see Broda and Paolella [13].

As we discussed before in Theorem 10, the GO-GARCH model is a special case of the
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BEKK model of Engle and Kroner [17], and as such the general results of Comte and

Lieberman [14] concerning consistency and asymptotic normality of maximum likelihood

estimators can be directly applied. Conditions for strong consistency of the maximum

likelihood estimator for BEKK model are given by Theorem 8 and conditions for the

asymptotic normality are given in Theorem 9 and then strong consistency and asymptot-

ic normality of the quasi MLE for GO-GARCH can therefore be established by appealing

this conditions. For initial value we choose the unconditional covariance matrix.

4.3 Nonlinear combinations of univariate GARCH

models

This section collects such models that may be viewed as nonlinear combinations of uni-

variate GARCH models. The models in this category are based on the idea of modelling

the conditional variances and correlations instead of straight forward modelling the con-

ditional covariance matrix. In most of the literature about multivariate GARCH models

these models can be found as models of conditional variances and correlations. This class

of models includes Constant Conditional Correlation Model (CCC, Bollerslev [8]), and

Dynamic Conditional Correlation Models (DCC models of Tse and Tsui [29], and Engle

[16]).

4.3.1 CCC model

The conditional correlation matrix in this class of models is time invariant.

Conditional covariance matrix thus can be specified in a hierarchical way. First, one

chooses a GARCH-type model for each conditional variance. Second, based on the con-

ditional variances, one models the conditional correlation matrix (imposing its positive

definiteness ∀t). Since conditional correlation matrix is time invariant, the conditional

covariances are proportional to the product of the corresponding conditional standard

deviations. Let us formalize our assertions.

Definition 6. The CCC (p, q) process is a martingale difference sequence Xt relative to

a given filtration Ft, whose conditional covariance matrix Ht = cov(Xt|Ft−1) satisfy

Ht = DtRDt = (ρij
√
hiithjjt), (4.43)

where

Dt = diag(h
1/2
11t . . . h

1/2
nnt) (4.44)
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and

R = (ρij) (4.45)

is a symmetric positive definite matrix with ρii = 1,∀i. Then the off-diagonal elements of

the conditional covariance matrix are defined as [Ht]ij = h
1/2
it h

1/2
jt ρij for i 6= j, 1 ≤ i, j ≤ n.

hiit is defined as univariate GARCH(p, q) model8

ht = c+

q∑
i=1

AiX
2
t−i +

p∑
i=1

Giht−i, (4.46)

where c is n× 1 vector, Ai and Gi are diagonal n× n matrices.

Time invariant n×n symmetric matrix R with unit diagonal elements, containing the

constant conditional correlations ρij. If the elements of c and the diagonal elements of Ai

and Gi are positive, and the conditional correlation matrix R is positive definite, then the

conditional covariance matrix Ht is positive definite. Positivity of the diagonal elements

of Ai and Gi is not however necessary for R to be positive definite unless p = q = 1. This

CCC model contains n(n+ 5)/2 parameters.

The CCC model was first introduced by Bollerslev [8]. Although the CCC model

because of simplicity and attractive parameterization has been very popular in practice,

empirical studies have suggested that the assumption of constant conditional correlations,

and thus the conditional covariances may be too restrictive and unrealistic. A sufficient

condition for strict stationarity and the existence of fourth-order moment of the CCC

(p, q) is established in Aue, Hormann, Horvath, and Reimherr [3]. Existence of stationary

solution is the key ingredient for estimation, so we first state necessary and sufficient

conditions for strict stationarity of the model.

Technique is very similar as in the univariate GARCH models so we state only conse-

quential points. We can write

Xt = Dtηt, ηt = R1/2Zt, (4.47)

then we define matrix Ω as follows

Ωt =


η2

1t 0 · · · 0

0
. . .

...
...

. . .

0 . . . η2
nt

 .

8Can be defined as any univariate GARCH model, because of simplicity we choose the simplest one.
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And let define the (p+ q)n× (p+ q)n matrix

Ct =



ΩtA1 ΩtA2 · · · ΩtAq ΩtG1 ΩtG2 . . . ΩtGp

In 0 . . . 0 0 0 . . . 0

0 In . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
...

0 0 In . . . 0 0 . . . 0

A1 A2 . . . Aq G1 G2 . . . Gp

0 0 . . . 0 In 0 . . . 0

0 0 . . . 0 0 In . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . In 0



.

Theorem 11. Let ci be an n-dimensional vector R be a time invariant n× n symmetric

matrix and let Aij, Gij, are square diagonal matrices of order n. Let Zt be an i.i.d.

vector process with mean zero and unit variance. Hence Zt is independent of Ft−1, it

follows that cov(Zt|Ft−1) = cov(Zt) = In. There exists stationary CCC process Xt such

that Xt = H
1/2
t Zt, where Ht = cov(Xt|Ft−1) and Ft = σ(Xt, Xt−1, . . . ) if and only if

γ(C0) < 0, where γ(C0) is the top Lyapunov exponent of the sequence C0 = {Ct, t ∈ Z}.
This stationary solution, when γ(C0) < 0, is unique and ergodic.

Proof. The proof similar to that given for univariate GARCH (p, q) models. Existence of

top Lyapunov exponent γ is guaranteed by the condition E(log+ ‖C0‖) < ∞. Then for

γ(C0) < 0 the series

Yt = b+
∞∑
k=1

CtCt−1 . . . Ct−k+1b (4.48)

converges almost surely for all t. A strictly stationary and ergodic solution is obtained as

Xt = {diag(Yq+1,t)}1/2R1/2Zt where Yq+1,t denotes the (q + 1)th subvector of size n of Yt.

The proof of the uniqueness is exactly the same as in the univariate case.

Now we show the necessity of the top Lyapounov exponent being negative. It suffices

to show that

lim
k→∞

C0C−1 . . . C−k+1ei → 0, a.s. for 1 ≤ i ≤ p+ q. (4.49)

Existence of a strictly stationary solution implies as k →∞

C0C−1 . . . C−k+1b→ 0 a.s. (4.50)
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Using the relation b = e1Ω−kc+ eq+1c we get

lim
k→∞

C0 . . . C−k+1e1Ω−kc = 0, lim
k→∞

C0 . . . C−k+1eq+1c = 0, a.s.

Since components of c are strictly positive (4.49) thus holds for i = q + 1. Using

C−k+1eq+i = Ω−k+1Gie1 +Gieq+1 + eq+i+1, i = 1, . . . , p (4.51)

with convention ep+q+1 = 0, for i = 1 we obtain

0 = lim
t→∞

C0 . . . C−k+1eq+1 ≥ lim
k→∞

C0 . . . C−k+1eq+2 ≥ 0.

Therefore (4.49) holds for i = q+2 and by induction, for i = q+j, j = 1, . . . , p. Moreover,

C−k+1eq = Ω−k+1Aqe1 + Aqeq+1 so (4.49) holds for i = q and thus we can conclude that

for other values of i (4.49) holds using recursion.

Estimation of the CCC models is as usual carried out using maximum likelihood

estimator. Let (X1, . . . , XT ) be an observation of length T of the unique and strictly

stationary solution Xt of model (4.43). Conditionally on initial values we can write quasi

likelihood function as

L(θ) = L(θ;X1, . . . , XT ) =
T∏
t=1

1

(2π)n/2
|Ht(θ)|1/2 exp

(
−1

2
X ′tH

−1
t (θ)Xt

)
, (4.52)

and the corresponding quasi log-likelihood

Lt(θ) =
1

t

T∑
t=1

`t, (4.53)

where

`t = log |Ht(θ)|+X ′tH
−1
t (θ)Xt. (4.54)

A QML estimator of θ is defined as any measurable solution θ̂t of

θ̂t = argmax
θ∈Θ

Lt(θ). (4.55)

Asymptotic properties of QMLE were developed by Francq and Zaköıan [20]. They proved
√
n-consystency and

√
n-normality under the similar assumptions as they introduced in

the univariate case.

The following assumptions will be used to establish the strong consistency of the

QMLE. Assume that Zt is i.i.d. and the QMLE θ̂t maximizes the quasi log-likelihood under

Θ. Let Aθ0(z) =
∑q

i=1 θiz
i and Bθ0(z) = 1−

∑p
i=1 φiz

i with the convention Aθ0(z) = 0 if

q = 0 and Bθ0(z) = 1 if p = 1. To show strong consistency the following assumptions will

be made.
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Assumption 8. θ0 ∈ Θ and Θ is compact.

Assumption 9. γ(C0) < 0 and ∀θ ∈ Θ, |Bθ(z)| = 0⇒ |z| > 1.

Assumption 10. The components of Zt are independent and their squares have non

degenerate distributions.

Assumption 11. If p > 0, then Aθ0(z) and Bθ0(z) are left coprime and M1(Aθ0 ,Bθ0) has

full rank n.

Assumption 12. R is a positive definite correlation matrix for all θ ∈ Θ.

Theorem 12 (Strong consistency). Let θ̂t be a sequence of QML estimators satisfying

(4.55). Then, under assumptions 8-12

θ̂t → θ0, almost surely when n→∞. (4.56)

Proof. See Francq and Zaköıan [20].

Theorem shows that there exist a consistent root of the likelihood equation.

To establish the asymptotic normality, we require the following additional assump-

tions.

Assumption 13. θ0 ∈ Θc, where Θc denotes the interior of Θ.

Assumption 14. E‖ηtη′t‖2 <∞.

Theorem 13 (Asymptotic normality). Under the assumptions of Theorem 12 and

assumptions 13 and 14
√
n(θ̂t − θ0) converges in distribution to N(0, J−1IJ−1), where

J is a positive-definite matrix and I is a semi positive-definite matrix, defined by

I = Eθ0
(
∂`t(θ0)

∂θ

∂`t(θ0)

∂θ′

)
, J = Eθ0

(
∂2`t(θ0)

∂θ∂θ′

)
. (4.57)

Proof. See Francq and Zaköıan [20].

Note that when n = 1, results becomes to the univariate setting. In particular, no

assumption is made concerning the existence of moments of the observed process.
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4.3.2 DCC model

A new class of multivariate models called dynamic conditional correlation (DCC) model

was proposed by Engle and they are the generalization of the CCC model by making the

conditional correlation matrix time-dependent. These models are flexible like univariate

GARCH and parsimonious parametric models for the correlations.

Definition 7. The Dynamic Conditional Correlation (DCC) process of Engle [2002] is

a martingale difference sequence Xt relative to a given filtration Ft, whose conditional

covariance matrix Ht = cov(Xt|Ft−1) satisfy

Ht = DtRtDt, (4.58)

where

Dt = diag(h
1/2
1t . . . h

1/2
nt ) (4.59)

and Rt is n × n time varying correlation matrix of Xt. hit is defined as univariate

GARCH(p, q) model9

hit = ci +

qi∑
j=1

θijX
2
t−j +

pi∑
j=1

φijht−j, (4.60)

where ci, θij and φij are nonnegative parameters for i = 1, . . . , n, with the usual GARCH

restrictions for non-negativity and stationarity being imposed, such as non-negativity of

variances and
∑pi

j=1 φij +
∑qi

j=1 θij < 1.

Note that the univariate GARCH models can have different orders. The number of

parameters to be estimated equals (n + 1)(n + 4)/2 in bivariate case and is quite large

when the n is large. There exists different forms of Rt. When specifying a form of Rt,

two requirements have to be considered. First Ht has to be positive definite, because it is

a covariance matrix. To ensure Ht to be positive definite, Rt has to be positive definite

(Dt is positive definite since all the diagonal elements are positive). Second is that all the

elements in the correlation matrix Rt have to be equal to or less than one by definition.

To ensure both of these requirements in the model, Rt is decomposed into

Rt = Q∗−1
t QtQ

∗−1
t (4.61)

and Qt has the following dynamics

Qt = (1− a− b)Q̄+ aηt−1η
′
t−1 + bQt−1, (4.62)

9Can be defined as any univariate GARCH model, we chose the simplest one.
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where ηt = D−1
t Xt and Q̄ = cov[ηtη

′
t] = E[ηtη

′
t] = R is the the unconditional covariance

matrix of the standardized errors ηt. Q̄ can be estimated as

Q̄ =
1

T

T∑
t=1

ηtη
′
t,

where parameters a and b are scalars, and Q∗t is diagonal matrix with square root of the

diagonal elements of Qt at the diagonal. Qt has to be positive definite to ensure Rt to be

positive definite. There are also some criterions on the parameters a and b to guarantee

Ht to be positive definite such as a ≥ 0, b ≥ 0 and a + b < 1. In addition the starting

value of Qt, has to be positive definite to ensure Ht to be positive definite.

The correlation structure can be extended to the general DCC (M,N) model

Qt =

(
1−

M∑
i=1

am −
N∑
n=1

bn

)
Q̄t +

M∑
m=1

amηt−1η
′
t−1 +

N∑
n=1

bnQt−1. (4.63)

In this thesis only the DCC (1, 1) will be studied. For more details see Engle [16].

Suppose now that process Zt is multivariate Gaussian distributed such that EZt = 0

and E[ZtZ
′
t] = In, Engle proposed the estimation of the DCC model by two-step pro-

cedure. This is possible as the conditional variance Ht = DtRtDt can be divided into

volatility part and correlation part. Instead of using the likelihood function for all the

coefficients he suggested replacing Rt by the identity matrix which leads to a quasi log-

likelihood function that is the sum of likelihood functions of n univariate models. In the

second step Engle estimates parameters of Rt. Method produces consistent but not effi-

cient estimators. In order to estimate the parameters of Ht, the following log-likelihood

function L can be used

L = −1

2

T∑
t=1

(n log(2π) + log(|Ht|) +X ′tH
−1
t Xt)

= −1

2

T∑
t=1

(n log(2π) + log(|DtRtDt|) +X ′tD
−1
t R−1

t D−1
t Xt)

= −1

2

T∑
t=1

(n log(2π) + 2 log(|Dt|) + log(|Rt|) +X ′tD
−1
t R−1

t D−1
t Xt).

(4.64)

In the first step the likelihood involves replacing Rt with the identity matrix In in (4.64).

Let the parameters of the model θ be written in two groups (ψ, θ) = (ψ1, . . . , ψT , θ), where

the elements of ψi correspond to the parameters of the univariate GARCH model for the
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ith returns, ψi = (c, φ1i, . . . , φpii, θ1i, . . . , θqii). Lets call the first step quasi log-likelihood

function L1(ψ) defined as

L1(ψ) = −1

2

T∑
t=1

(n log(2π) + 2 log(|Dt|) + log(|In|) +X ′tD
−1
t R−1

t D−1
t Xt)

= −1

2

T∑
t=1

(
n log(2π) + 2 log(|Dt|) +X ′tD

−1
t R−1

t D−1
t Xt

)
= −1

2

T∑
t=1

(
n log(2π) +

n∑
i=1

[
log(hit) +

X2
it

hit

])

= −1

2

n∑
i=1

(
T log(2π) +

T∑
t=1

[
log(hit) +

X2
it

hit

])
,

(4.65)

which is the sum of the log-likelihoods of the univariate GARCH processes of n returns.

Hence the parameters of the different univariate models can be determined separately.

The result of first step is the estimator of parameter ψ. Then also the conditional vari-

ance hit is estimated for each returns i = 1, . . . , n and then ηt = D
−1/2
t Xt and Q̄ = E[ηtη

′
t]

can be estimated as well.

In the second step, θ = (a, b) is estimated, given the estimated parameters from step

one. Second step quasi log-likelihood is defined as follows

L2(θ|ψ̂) = −1

2

T∑
t=1

(n log(2π) + 2 log(|Dt|) + log(|Rt|) +X ′tD
−1
t R−1

t D−1
t Xt)

= −1

2

T∑
t=1

(n log(2π) + 2 log(|Dt|) + log(|Rt|) + η′tR
−1
t ηt).

(4.66)

Since we are conditioning on ψ̂, the Dt terms are constant and we can exclude that terms

and maximize

L∗2(θ|ψ̂) = −1

2

T∑
t=1

(log(|Rt|) + η′tR
−1
t ηt).

Asymptotic properties of the two-step estimation procedure have been studied in En-

gle and Schepard [18]. They introduced assumptions for consistency and asymptotic

normality of the parameter estimates for DCC models.
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Empirical application

This chapter contains empirical application of the multivariate GARCH models proposed

in the previous chapter. The models used in the empirical application were these three:

BEKK model proposed by Baba, Engle, Kraft and Kroner, GO-GARCH model of van der

Weide and Dynamic conditional correlation (DCC) of Engle. The used data are described

in Chapter 2, however let us it briefly recapitulate for completeness.

The data consists of daily foreign exchange returns of Euro/U.S. dollar and Czech

koruna/U.S. dollar pairs and as mentioned before, further we have returns of 4 stock mar-

ket indices. Namely AEX, DAX, PX and DJIA correspond to the Amsterdam, Frankfurt,

Prague stock market indices and Dow Jones Industrial Average respectively. This chapter

is organized as follows. In the first part data descriptions are summarized, then in the

second part we take a look at the dynamics of estimated conditional volatilities using

all three models. We study volatility dynamics of the returns by utilizing multivariate

GARCH models and then we report statistically significant cross market effects as evi-

dence of linkages and measure the extent of the linkages by the estimated time-varying

correlations. The next part of this chapter is focused on comparison of the multivariate

GARCH models. The focus of reporting results will therefore be on conditional correla-

tions implied by the estimated models. This chapter will end up with diagnostic checking

of our results.

All the estimations in this thesis were performed by the R programming software

which is freely available1. The main three packages used are: mgarchBEKK developed by

Schmidbauer and Tunalioglu (2006), ccgarch developed by Nakatani (2009) and gogarch

developed by Pfaff (2009).

1http://www.r-project.org/



5.1 Data description 52

Table 5.1: Descriptive Statistics of the foreign exchange returns.

EUR/USD CZK/USD

Mean -1.3992e-4 -7.1043e-5

Std. Dev. 0.005696 0.0066392

Skewness -0.095439 0.086989

Kurtosis 5.108289 5.072628

Jarque-Bera 4378.421 4316.572

P-value 0.000 0.000

Table 5.2: Descriptive Statistics of the Indices.

AEX DAX PX DJIA

Mean -2.6797e-4 -3.6927e-5 3.5270e-4 -2.2371e-5

Std. Dev. 0.01694524 0.01725464 0.01662702 0.01346429

Skewness -0.1711321 0.01974198 -0.6053644 -0.00931465

Kurtosis 6.668711 4.215467 11.64303 6.81868

Jarque-Bera 4412.066 1759.293 13554.24 4600.591

P-value 0.000 0.000 0.000 0.000

5.1 Data description

Table 5.1 provides a summary of the descriptive statistics of the returns for the two cur-

rencies measured against the dollar. For the standard normal distribution, the skewness

and kurtosis have values of 0 and 3, respectively. As can be observed from the Table

both series have a relatively high kurtosis greater than 3 indicating that the series is

non-symmetric with higher peaks than the normal distribution.

Situation is similar in stock markets data. In Table 5.2 we report the descriptive

statistics for each index. It can be observed that the standard deviation of the daily

returns shows little variation across the indices. We find out that the European indices

are maybe a bit more volatile than the U.S. Dow Jones index. The least volatile European

index is the Prague PX index. This may be, because it is the smallest from our sample in

terms of market capitalisation. However, there is still significant difference between PX
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Table 5.3: Unconditional Correlation coefficients of the returns series.

AEX DAX PX DJIA

AEX 1

DAX 0.8568444 1

PX 0.5330840 0.4924072 1

DJIA 0.5630591 0.6086716 0.3260289 1

and Dow Jones indices. More apparent differences between the indices concern skewness

and kurtosis. From descriptive statistics, we read that the empirical densities associated

with the PX and Dow Jones indices exhibit the most substantial heavy tails, however all

series exhibit heavy tailed distributions. The unconditional correlations for each pair are

displayed in the Table 5.3.

More importantly, we need to find out the dynamics of the correlations, so in the next

sections we take a look at the estimation results.

5.2 Estimation results

In this section we report the results for each estimated multivariate GARCH model. We

start with the BEKK (p, q) model. Estimated coefficients of the parameters of the BEKK

model for both data samples exchange rates and stock market indices respectively can

be found in Tables in the Appendix. The order of the model was estimated as BEKK

(1, 1) with K = 1 and the method for the estimation of parameters was maximum log-

likelihood. To illustrate the time commitment of the estimation of the complex BEKK

model we mention that it took 1 hour and 45 minutes. A plot of the estimated conditional

volatilities of the series in Figure 5.1 reveals that the volatility dynamics of foreign ex-

changes is similar e contra to Figure 5.4, which implies that European stock indices have

always been more volatile than the U.S. Dow Jones especially during the two financial

crises in 2002 and 2008 respectively, which is not surprising. However we can clearly see

quite similar dependence in conditional volatilities for each series.

The second model which we consider in our empirical application is the GO-GARCH

(p, q) model. Components were estimated by maximum likelihood with formula for unob-

served components as GARCH (1, 1). Estimation of the parameters included two parts.

The estimation of inverse matrix of the linear map M given in Table 7.5, and the estima-
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tion of the parameters of the GARCH models of the unobserved components. Coefficients

of the estimated parameters can be found in Table 7.6 in Appendix. Estimated conditional

volatilities for each of the series based on the GO-GARCH model are displayed in Figures

5.5 and 5.3. Here we can also see quite similar dependence in conditional volatilities for all

stock market series except PX. The PX index differs in its estimated conditional volatility

during the crisis in 2002, which is much smaller compared to the other series.

The last model which we consider was the DCC model. The DCC estimates of the

conditional correlations between the volatilities and also estimates of the GARCH param-

eters are presented in Table 7.7. As the estimates of both a, the impact of past shocks

on current conditional correlations, and b the impact of previous dynamic conditional

correlations, are statistically significant, this clearly indicates that the conditional corre-

lations are not constant. The estimate of a is generally low and close to zero, whereas the

estimate b is extremely high and close to unity. The conditional correlations between the

indices are dynamic. These findings are consistent with the plots of dynamic correlations

between the index pairs in Figures 5.7 - 5.12 which change over time. Figures 5.6 and

5.2 displays the estimated volatilities based on the DCC model. At first sight, all tree

methods seem to imply very similar volatilities.

Figure 5.1: Estimated conditional volatility of the foreign exchange rates during January

2000 and December 2009, using the BEKK model computed in R programming software.

Figures 5.1, 5.2 and 5.3 provides a general view of the dynamics of the conditional

volatility over the entire sample. We can clearly see from the graphs that as soon as in the

foreign exchange rates the GO-GARCH model provides smoother conditional volatilities

in comparison to the BEKK. In estimates in stock market data, the smoother volatilities

are provided by DCC model. In general, BEKK estimates are more volatile than the

other multivariate models. In 2000, volatility of the Euro/U.S. dollar averaged about 8
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Figure 5.2: Estimated conditional volatility of the foreign exchange rates during January

2000 and December 2009, using the DCC model computed in R programming software.

Figure 5.3: Estimated conditional volatility of the foreign exchange rates during January

2000 and December 2009, using the GO-GARCH model computed in R programming

software.

percent, before beginning a steady increase over subsequent year. In 2001, volatility in

the Euro/U.S. dollar averaged about 15 percent. In general volatility strongly increases

during the financial crises, which is not surprising. The first crisis known as dot-com bub-

ble2 started in 2001 and lasted up to second half of 2003. We also mention the September

11th 2001 terrorist attack into the Twin Towers of the World Trade Center in New York

City. In 2003, it has been just above 6 percent however we can see slowly decline over

the subsequent years. Again, looking at average volatility does not convey the full story.

Whereas spikes were common in the 1990s, they have been few and far between more

recently. Even dramatic events such as widely known financial crisis of 2007-present, a

crisis triggered by a liquidity crisis in the United States banking system. Volatility is

2The ”dot-com bubble” was a speculative bubble covering roughly 1995 - 2000 during which stock

markets in industrialized nations saw their equity value rise rapidly from growth in the more recent

Internet sector and related fields.
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Figure 5.4: Estimated conditional volatility of stock indices AEX, DAX, PX, DJIA (cor-

responding, to the stock markets in Amsterdam, Frankfurt, Prague and the U.S.) during

January 2000 and December 2009, using the BEKK model computed in R programming

software.

somewhere near the peaks reached in the mid-1990s. This increase is observable on all

financial markets and is captured by all models. We observe the same phenomenon in

the Czech koruna/U.S. dollar currency pair. Other papers find that this longer term phe-

nomenon in many emerging market currencies as well, including some that experienced

currency crises in the recent past. In recent years, a number of countries have adopted

more flexible exchange rate regimes, often after being unable to maintain fixed or very

narrow bands.

Much more interesting results of this investigation are the estimated conditional corre-

lations between the stock markets presented in Figures 5.7 - 5.12. Such previous findings

are robust across models and are valid also in stock markets. It is clear that correlations

have changed substantially over the 10 year period and exhibit time-dependence.

We now move to the investigation of market linkages between the European indices

and the globally leading developed market index Dow Jones. We can see from Figures
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Figure 5.5: Estimated conditional volatility of stock indices AEX, DAX, PX, DJIA (cor-

responding, to the stock markets in Amsterdam, Frankfurt, Prague and the U.S.) during

January 2000 and December 2009, using the GO-GARCH model computed in R program-

ming software.

5.10 and 5.11 quite similar level of dependence between DAX & DJIA and AEX & DJIA

respectively. The correlations between DAX & DJIA are quite strongly positively cor-

related and seem to be stable during the financial crises. High conditional correlation

represents high financial integration, however economic and political developments of the

different regions plays significant role especially during the relatively quiet periods without

financial crises. A bit different situation is displayed in Figure 5.12 which represents the

conditional correlation between DJIA & PX. Correlations seem to be stable in this case,

however BEKK line exhibits big volatility. From our sample pair DJIA & PX represents

for investors the best ability of portfolio diversification. In Europe the most developed

stock market is Frankfurt. As we expect the correlations between DAX & AEX are high-

est and smooth. These results suggest that the regional developed market in Frankfurt

is influential in the pricing process of the markets in Amsterdam and Prague, and there

is a close relationship between the stock markets in Amsterdam and Frankfurt in partic-

ular. Given this interdependence, investors may perceive the stock markets in Frankfurt
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Figure 5.6: Estimated conditional volatility of stock indices AEX, DAX, PX, DJIA (cor-

responding, to the stock markets in Amsterdam, Frankfurt, Prague and the U.S.) during

January 2000 and December 2009, using the DCC model computed in R programming

software.

and Amsterdam as one investment opportunity instead of two separate classes of assets.

The emerging stock market in Prague is much more affected by the local political and

economic decisions in the Czech Republic. The evidence in this study seems to confirm

some findings in earlier studies, which that suggest that stock market movements in one

country can significantly affect stock market movements in another country via a trans-

mission mechanism that exists because global markets are now more closely integrated.

It is possible that changes in the U.S. stock returns do indeed influence those of other

markets. However emerging markets of the world are responding to economic and politi-

cal developments in their regions as well. These results indicate further opportunities for

global portfolio diversification.
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5.3 Model comparison

We have observed a number of apparent results. Whereas estimated conditional volatility

for each model seems to be similar, for the conditional correlations the differences between

the three methods are more pronounced. This is obvious from Figures 5.7 - 5.12, where

we have depicted the estimated conditional correlation series of each stock market pairs

in a separate plot. The most obvious difference between the BEKK correlations and the

other two specifications is the range in which they vary. This feature of BEKK model is

useful, however for this generality indeed we need to pay that a lot of parameters have

to be estimated and then, as we mentioned before, this model cannot be used in high

dimensional systems. We also see that the GO-GARCH and DCC correlation patterns

are similar, and that correlation series behaves like a smoothed version of the BEKK

correlations. However DCC provides a little underestimate correlations comparing to the

GO-GARCH, most in the beginning of the period. It is quite debatable whether the short

periods of very low correlation implied by the BEKK model are genuine, they may be

fully driven by the volatility patterns in those periods, and in that case the less volatile

behavior of the GO-GARCH and DCC correlations may provide a better indication of

the actual correlation between the pairs of the stock markets indices.

The BEKK model is not very convenient for investigating conditional covariances in

high-dimensional systems, because it has huge time commitment. Thus we can use BEKK

model without any restrictions on the parameters in long term technical analysis on stock

markets, but it is useless in short decision processes such as algorithmic trading. However,

we have a direct interpretation of the parameters which explain such of an interesting

information. The off-diagonal elements of the matrices A capture the cross-market shock

effects among the four pairs. The off-diagonal elements of matrices G capture the cross-

market volatility spillovers. Although the estimated models do not display fully identical

correlations, the general message in them remains more or less the same. It is up to the

user to select the model he wants to use in portfolio management.

Finally we present in our empirical application small diagnostic checking on the stan-

dardized residuals. Figures 5.13 - 5.15 represent Q-Q plots which are Quantile-Quantile

plots where we can visually check for fit of a theoretical distribution to the observed data.

The observed values are plotted against the theoretical quantiles. A good fit of the the-

oretical distribution to the observed values would be indicated by this plot if the plotted

values fall onto a straight line. Except for a few points we can see in our figures that
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Figure 5.7: Estimated conditional correlation of stock indices AEX & DAX computed in

R programming software.

points lie more or less on a straight line and so we can conclude that our models fit well.
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Figure 5.8: Estimated conditional correlation of stock indices AEX & PX computed in R

programming software.

Figure 5.9: Estimated conditional correlation of stock indices DAX & PX computed in R

programming software.
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Figure 5.10: Estimated conditional correlation of stock indices DAX & DJIA computed

in R programming software.

Figure 5.11: Estimated conditional correlation of stock indices DJIA & AEX computed

in R programming software.
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Figure 5.12: Estimated conditional correlation of stock indices DJIA & PX computed in

R programming software.

Figure 5.13: The QQ-plot of BEKK standardized residuals for each of the series plotted

against normal distribution.
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Figure 5.14: The QQ-plot of GO-GARCH standardized residuals for each of the series

plotted against normal distribution.
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Figure 5.15: The QQ-plot of DCC standardized residuals for each of the series plotted

against normal distribution.
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Conclusion

Volatilities and correlations among market returns are widely used in asset pricing, risk

management, etc. The correct estimation in financial asset risk has important implications

for investors using standard asset pricing models. Although researches have built many

multivariate models, we still face the problems of curse of dimension due to the number

of parameters and the restrictions on the parameters to ensure the positive definiteness of

the covariance matrix. In this thesis we presented a summary of theoretical and empirical

modelling with multivariate GARCH models and highlighted their features. There exist

a lot of types of multivariate GARCH models, we give a survey into a basic construction.

For the empirical work, BEKK, GO-GARCH and DCC models are considered and we

used multistep maximum likelihood estimation procedures to estimate the models. One

of the main findings is that conditional correlations exhibit significant changes over time

so we concluded that despite the impact of globalization there still exist opportunities to

maximize global portfolio returns through diversification. Our comparison of the models

shows that the best model is BEKK, because contains the most information and is most

general. However it can be used only in small dimensional systems and long term technical

analysis. The differences between DCC and GO-GARCH models are not very significant

and it is up to the user to select the model that he wants to use in portfolio management.

Our data sample contains only 4 stock markets and 2 exchange rates all over the world.

Indeed one of the challenges for the future may be including many more stock markets

representatives with related exchange rates such as stock markets in New York, London,

Brussels, Vienna, Warsaw or markets in Russia, Asia etc. Up to now we are unable

to estimate the covariance matrix for more than 20 series keeping the flexibility of the

correlations.
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Appendix

Table 7.1: Estimated parameters of the BEKK model for the foreign exchange rates using

R programming software.

C estimates: ARCH estimates: GARCH estimates:

[, 1] [, 2] [, 1] [, 2] [, 1] [, 2]

[1, ] 0.004022 0.003747 [1, ] -0.213836 0.402224 [1, ] 1.137612 1.330774

[2, ] 0.000000 0.003085 [2, ] -0.024131 -0.647911 [2, ] -1.319593 -1.364835
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Table 7.2: Estimation of the unobserved components of the GO-GARCH model for the

foreign exchange rates using R programming software.

component GARCH model of y1 component GARCH model of y2

Estimate Std. Error Estimate Std. Error

α1 0.006876 0.002361 α2 0.004719 0.002403

θ1 0.066163 0.013278 θ2 0.035643 0.005629

φ1 0.923888 0.015038 φ2 0.961683 0.005971

inverse of linear map M

[, 1] [, 2]

[1, ] 1.106201 -1.760648

[2, ] -1.565876 0.758795

Table 7.3: Estimation of the coefficients of the DCC model for the foreign exchange rates

using R programming software.

c1 c2 θ11 θ21 θ21 θ22

Estimate 1.77e-09 1.93e-09 0.044451 0.010989 0.004733 2.01e-02

Std.Error 1.50e-06 3.59e-02 0.019356 1.014234 0.784739 4.78e-07

φ11 φ21 φ12 φ22 dcc a dcc b

Estimate 0.067246 0.244156 0.688066 0.782775 0.049417 0.926287

Std.Error 0.035229 0.013626 1.054878 0.805877 0.077242 0.121174
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Table 7.4: Estimated coefficients of the BEKK model for the stock indices using R pro-

gramming software.

C estimates:

[, 1] [, 2] [, 3] [, 4]

[1, ] -0.001328252 0.0007815360 -0.007136690 0.0009434768

[2, ] 0.000000000 -0.0002523830 0.001593616 0.0077046831

[3, ] 0.000000000 0.0000000000 0.004083134 0.0009110713

[4, ] 0.000000000 0.0000000000 0.000000000 0.0054894023

ARCH estimates:

[, 1] [, 2] [, 3] [, 4]

[1, ] 0.4498350 0.1717677 1.81319949 -0.34512093

[2, ] -0.5521095 -0.2778714 -1.75350218 0.32867268

[3, ] 0.2539265 0.4869067 0.29606270 -0.09401716

[4, ] -0.1322980 -0.4634222 -0.02202411 -0.18845023

GARCH estimates:

[, 1] [, 2] [, 3] [, 4]

[1, ] 0.53359550 1.67104581 0.630420825 0.555606895

[2, ] 0.14676640 -0.53467291 0.330673484 0.004454358

[3, ] 0.27559500 0.07941991 -0.511893705 0.011039569

[4, ] 0.01806348 0.02735065 -0.007910602 -0.176833176

Table 7.5: The inverse linear map M of the GO-GARCH model for the stock indices using

R programming software.

[, 1] [, 2] [, 3] [, 4]

[1, ] -1.5790340 0.54437287 0.5986121 -0.01659185

[2, ] 1.2247263 -1.85931672 0.1977904 -0.01368647

[3, ] 0.1504665 0.62499901 -0.3200783 -1.19868540

[4, ] 0.1740508 -0.06600478 -0.9525356 0.41074408
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Table 7.6: Estimation the unobserved components of the GO-GARCH model for the stock

indices using R programming software.

component GARCH model of y1 component GARCH model of y2

Estimate Std. Error Estimate Std. Error

α1 0.002453505 0.0007907027 α2 0.01169125 0.003377802

θ1 0.095984809 0.0113428725 θ2 0.07564997 0.009729530

φ1 0.903295047 0.0103996197 φ2 0.91696444 0.010068098

component GARCH model of y3 component GARCH model of y4

Estimate Std. Error Estimate Std. Error

α3 0.005753897 0.001574812 α4 0.02364814 0.005380396

θ3 0.087195479 0.010800894 θ4 0.10975311 0.012080695

φ3 0.904130614 0.011275317 φ4 0.87279734 0.012526196
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Table 7.7: Estimation the coefficients of the DCC model for the stock indices using R

programming software.

c1 c2 c3 c4

Estimate 2.150578e-09 2.172862e-08 4.036082e-05 3.736150e-07

Std.Error 1.165675e-05 3.476810e-02 3.304652e-02 1.731100e-02

θ11 θ21 θ31 θ41

Estimate 0.05819915 0.0001371262 0.001034935 0.03017585

Std.Error 0.04722802 0.4794529685 0.314904224 0.22678224

θ12 θ22 θ32 θ42

Estimate 0.05649081 9.987891e-03 0.009407108 0.001248209

Std.Error 0.64837345 1.546184e-05 0.033259931 0.040022438

θ13 θ23 θ33 θ43

Estimate 0.02124878 0.01411880 0.07519828 0.00875847

Std.Error 0.01663747 0.04481412 0.56621089 0.43600906

θ14 θ24 θ34 θ44

Estimate 0.0448448 0.02122279 1.777048e-01 0.06470316

Std.Error 0.3357809 0.80412176 2.355803e-05 0.03407691

φ11 φ21 φ31 φ41

Estimate 0.26481339 0.55286028 0.55360694 0.03337047

Std.Error 0.03238008 0.02720216 0.06119448 0.54261979

φ12 φ22 φ32 φ42

Estimate 0.05516633 0.1419639 0.06464883 2.664884e-02

Std.Error 0.40661244 0.4919522 1.24803387 5.204570e-06

φ13 φ23 φ33 φ43

Estimate 0.09009870 0.28060490 0.001208547 0.002628470

Std.Error 0.02081805 0.01545874 0.009197382 0.031374674

φ14 φ24 φ34 φ44

Estimate 0.6312651 0.1156965 0.05845889 0.7690477

Std.Error 0.2305305 0.1964639 0.15454294 0.2726603

dcc a dcc b

Eestimate 0.01614616 0.97938917

Std.Error 0.01585987 0.02006798
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