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1 Abstract	
 
Pluripotency is an ability of a cell to differentiate into any cell type. It naturally forms 

during early mammalian development and it is accompanied by global reprogramming 

of gene expression. The process of natural pluripotency establishment remains poorly 

understood. To get further insights into this process, I studied gene expression changes 

during mouse oocyte-to-zygote transition. In this model system, the fertilized oocyte 

undergoes reprogramming resulting in formation of pluripotent blastomeres, which give 

a rise to the embryo. The goal of my thesis was to analyse transcriptional activation 

during early development and to develop a method for convenient monitoring of 

expression of numerous genes in oocytes, early embryos and embryonic stem cells. The 

method employs high-throughput quantitative real-time PCR and allows for measuring 

expression of 48 genes, which serve as markers for maternal mRNA degradation, 

activation of the pluripotent program, and differentiation into germ lineages. I show that 

the assay allows for monitoring transcriptome dynamics during oocyte-to-zygote 

transition and generates data comparable with microaray platforms. In addition, our 

bioinformatic screening identified novel oocyte-specific and zygotic non-coding RNAs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key words: pluripotency, oocyte-to-zygote transition, embryonic stem cells, real-time 
PCR, oocyte, zygote, zygotic genome activation 
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2 Abstrakt	
 

Pluripotence je schopnost buňky diferencovat do jakéhokoliv buněčného typu. Formuje 

se během časného embryonálního vývoje u savců a její vznik je spojen s reprogramací 

genové exprese na globální úrovni. Proces přirozeného vzniku pluripotence není stále 

zcela pochopen. Pro získání nového pohledu na události, které vedou ke vzniku 

pluripotence u savců, studovali jsme změny v genové expresi během oocyt-zygotického 

přechodu u myši. V tomto modelovém systému, oplodněné vajíčko podstoupí 

reprogramaci, která vede k vytvoření pluripotentních blastomer. Tyto blastomery 

zakládají samotné embryo. Cílem mé diplomové práce bylo analyzovat aktivaci 

transkripce během časného vývoje a vyvinout metodu pro monitorování exprese genů 

v oocytech, časných embryích a embryonálních kmenových buňkách. Metoda využívá 

kvantitativní PCR a umožnuje změřit expresi až 48 vybraných genů, které slouží jako 

markery pro maternální degradaci, aktivaci pluripotentního programu a diferenciaci do 

zárodečných linií. Dále ukazujeme, že náš systém monitoruje dynamiku transkriptomu 

během oocyt-zygotického přechodu, a získané výsledky jsou srovnatelné s daty 

naměřenými pomocí jiných metod. Díky našemu bioinformatickému přístupu jsme 

navíc identifikovali nové oocyt-specifické a zygotické nekódující RNA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Klíčová slova: pluripotence, oocyt-zygotický přechod, embryonální kmenové buňky, 
real-time PCR, oocyt, zygota, aktivace genomu 
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Aims of the thesis 
 

The main aim of the thesis was to get new insights into the zygotic genome 

activation and establishment of pluripotency during early development. My research 

involved the following tasks: 

 Identification of novel oocyte-specific and zygotic non-coding RNAs 

 Development a quantitative PCR array system for single-cell/single embryo 

phenotyping during oocyte-to-zygote transition 

 Development a quantitative PCR assay for monitoring of lineage commitment 

and pluripotency in embryonic stem cells 
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3 List	of	abbrevations	
 
 
1C     one-cell  
2C     two-cell  
8C     eight-cell  
ATRA     all-trans retinoic acid  
BrUTP     brome uridine triphosphate 
cDNA     complementary DNA 
DMEM    Dubelco modified medium 
dNTP     deoxyribonucleotides 
dpc     days post-coitum 
EGF     epidermal growth factor 
ESCs     embryonic stem cells 
FCS     fetal calf serum 
FSH     follicule stimulating hormone 
GV     germinal vesicle 
hCG     chorionic gonadotropin  
IBMX     3-isobutyl-1-methylxanthine 
ICM     inner cell mass 
IL     interleukin 
iPSCs     induced pluripotent stemcells 
LH     luteinisation hormone 
LIF     leukemia inhibitory factor 
lincRNA    long intergenic RNA 
MEF     mouse embryonic fibroblasts 
mESC     mouse embryonic stem cells 
MII     metaphase II 
miRNA    micro RNA 
mRNA     messenger RNA 
ncRNA    non-coding RNA 
NGS     Next generation sequencing 
OZT     oocyte-to-zygote transition 
PCA     principal component analysis 
PE     primitive endoderm 
PGC     primordial germ cell 
piRNAs    piwi interacting RNA 
PMSG     pregnant mare serum gonadotropin 
qPCR     quantitative PCR 
RT-PCR    real-time polymerase chain reaction 
SEM     standard error of the mean 
shRNA    short-hairpin RNA 
siRNA     short interfering RNA 
TE     trophoectoderm 
TGF-β     tumor growth factor 
TSS     transcription start site 
U     unit 
ZGA     zygotic genome activation 
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4 Theoretical	background	
 

 

During early mammalian development two forms of high developmental 

potential appear: totipotency and pluripotency. Totipotent cells have an ability to 

produce all differentiated cells in the entire organism including extraembryonic tissues. 

Pluripotent cells can differentiate into any cell type of the three germ layers of the 

embryo: endoderm, ectoderm and mesoderm. The actual word pluripotency comes from 

Latin, where plurimus stands for very many and potents means to have power. 

Pluripotency and totipotency are gained early in the mammalian development and their 

establishment are not fully understood. 

Mouse preimplantation development is a valuable model for studying 

totipotency and pluripotency. Embryonic development starts upon fertilisation of the 

female gamete (oocyte), which transforms into the totipotent zygote. Further cleavage 

of the zygote will give rise to a fraction of pluripotent cells in the inner cell mass (ICM) 

of the blastocyst. Mammalian blastocyst is formed usually 3.5 days post-fertilisation 

(dpc) and consists of three distinct cell types: epiblast, primitive endoderm and 

trophoectoderm. The pluripotent epiblast gives rise to the three major embryonic germ 

layers and contributes to the body plan establishment, whereas primitive endoderm and 

trophoectoderm form extra-embryonic tissues. 

The transition between fully differentiated mammalian oocyte and totipotent 

zygote, and the pluripotency establishment in the embryo are complex and encompass 

changes in gene expression, epigenetic modifications and activation of diverse signaling 

networks. In my thesis, I used high-throughput technologies and bioinformatic 

approaches to explore the earliest events of pluripotency formation during mouse 

oocyte-to-zygote transition (OZT) and in embryonic stem cells (ESCs). 
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4.1 Mammalian	oogenesis	
 

Omne vivum ex ovo, first postulated by William Harvey in 17th century, states 

that the oocyte is the most important cell that gives rise to everything living. 

Mammalian oocytes develop from primordial germ cells (PGCs), which are formed 

early in development. Soon after embryo implants in the uterus (dpc 7), PGCs are found 

between epiblast and allantois as a small population of cells. They are characterized by 

expression of several markers such as Blimp1, Fragilis (Ohinata et al, 2005; Saitou et al, 

2003). PGCs subsequently migrate to the genital ridge and enter the meiosis, thus 

becoming primary oocytes. Primary oocytes in the mouse are arrested at prophase of the 

first meiotic division until receiving the stimuli to grow and resume meiosis. Secondary 

oocytes develop from the primary oocytes by completing the first meiotic division. In 

the mouse, secondary oocytes become, however, arrested at metaphase of the second 

meiotic division (designated by MII) until fertilization (Sorensen & Wassarman, 1976). 

Development of mouse oocytes takes place in a spherical structure, called a 

follicle (Figure 1). Follicle cells surround the oocyte and control growth and resumption 

of meiosis in primary oocytes via secreting small signaling molecules. The transition 

from primary to secondary oocytes is controlled by hormones. Follicle-stimulating 

hormone (FSH) is a gonadotropin hormone, which plays an important role during 

oogenesis and folliculogenesis (Weil et al, 1999). FSH is secreted from hypothalamus 

after female reaches puberty and positively regulates synthesis of a receptor for 

luteinisation hormone (LH). It also promotes growing phase of the preantral follicle. In 

defined time periods, rapid increase of concentration of LH binds its receptors on mural 

granulosa cells and mediates expression of EGF-like molecules. EGF-like signaling has 

two major consequences on the preantral follicle. First, it promotes expansion of 

cumulus cells surrounding the oocyte and, second, it promotes resumption of meiosis of 

the oocyte [reviewed in (Edson et al, 2009)]. 
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Figure 1 Schematic representation of mammalian follicular development 

Growth and development of mammalian oocytes is tightly coupled with follicular development. During 

development, follicles change morphology and composition of cells from primordial germ cells to fully 

fertilization-competent cells and are accompanied by accumulation of mRNA molecules and transcription 

factors, which will support early events of embryo development. Up to the preovulatory follicle, the 

primary oocyte remains arrested at the prophase of the first meiotic division. Figure adopted from (Edson 

et al, 2009) 

 

4.2 Mammalian	transcriptome	in	oocytes	and	early	embryos	
 

Oocytes must accumulate factors sustaining zygotic genome activation and early 

development. Numerous factors, including proteins, RNAs are stored in the oocyte, 

which will be used at different stages of the oocyte-to-zygote transition [reviewed in 

(Stitzel & Seydoux, 2007)]. A specific storage mechanism is represented by so-called 

dormant maternal mRNAs. Dormant maternal mRNAs accumulate during oocyte 

growth but they are not translated [reviewed in (Vassalli & Stutz, 1995)]. The molecular 

mechanism of dormancy involves cytoplasmic polyadenylation, which is takes place 

upon resumption of meiosis (Huarte et al, 1987; Stutz et al, 1998). Dormant maternal 

mRNAs facilitate important biological functions, including cell-cycle regulation (Oh et 

al, 1997), replication of pronucleus (Murai et al, 2010), fertilisation (Colledge et al, 

1994), etc. 

While maternal mRNAs support oocyte-to-zygote transition and early 

development, maternal mRNAs are also removed during these processes as well. There 

are three major waves of maternal mRNA degradation, the first wave already takes 

place already during meiotic maturation (Piko & Clegg, 1982).  
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4.3 Zygotic	genome	activation	(ZGA)	in	early	embryos	
 

The mouse zygote forms upon fertilization, when a sperm enters an oocyte. The 

mouse 1-cell embryo contains maternal and paternal pronuclei, which do not fuse. 

These pronuclei replicate their genomes and enter the first mitosis (Krishna & 

Generoso, 1977). Blastomeres of the 2-cell stage contain the first diploid nuclei. 

The transition between 1-cell and 2-cell embryos is accompanied by global 

changes in chromatin structure and initiation of the first transcription (Ahmed et al, 

2010). Initiation of transcription is important for two reasons. First, mouse oocyte has a 

limited amount of stored mRNAs. Second, transcription is required for further cleavage 

of the embryo. Detailed analysis of transcriptome by microarrays shows that at 2-cell 

stage embryos contain transcripts of 10000 genes. Treatment by α-amanitin, potent 

inhibitor of polymerase II, shows that the actual number of genes transcribed at 2-cell 

stage embryos drop to 2600 genes (Figure 2)(Zeng et al, 2004). Importance of these 

genes was demonstrated by treatment with α-amanitin, after which embryos became 

blocked at the 2-cell stage (Braude, 1979; Flach et al, 1982). Microarray data suggests 

that transcriptional activation of the zygotic genome (ZGA) might not be as 

opportunistic as previously envisioned, but it is precisely organized and timed event 

(Hamatani et al, 2004; Zeng & Schultz, 2005). Interestingly, BrUTP incorporation 

experiments show that first RNA synthesis occurs already at the 1-cell stage (Aoki et al, 

1997). Biological roles of most of the genes, which become active during the first wave 

of transcription are largely unknown. Brg1 was the first identified regulator of ZGA and 

its depletion led to developmental arrest of 2-cell embryos, suggesting that Brg1 

facilitate ZGA (Bultman et al, 2006). Brg1 is a part of histone remodeling complex and 

its ablation reduced dimethyl at lysine 4 on histone 3 (H3K4me2) marks in early 

embryos. This study indicates, ZGA is coupled with remodeling of the chromatin 

(Bultman et al, 2006). 

Besides the major wave of transcription at 2-cell stage embryos, there are two 

other waves of transcription in mouse development, designated as second and third 

waves, occurring at 8-cell stage and 16-cell stage (Figure 2). During each wave of 

transcription, thousands of genes become active, which are involved in the morula and 

blastocyst formation (Braude, 1979; Hamatani et al, 2004). 
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Figure 2 Oocyte-to-zygote transition  

Transcriptome of early embryos and oocytes changes during preimplantation development. Maternal 

mRNAs are selectively degraded while zygotic mRNAs accumulate. Three independent waves of 

maternal mRNA degradation have been recognized. During the first wave of degradation, which occurs 

after resumption of meiosis, one third of maternal transcripts becomes degraded. The second and the third 

waves of degradation occur after fertilization and zygotic genome activation, respectively. Zygotic 

genome starts being transcribed at the 2-cell stage and the amount of mRNA in embryos is gradually 

increasing during development. There are three major waves of transcription occurring consecutively at 

the 2-cell stage, the 8-cell stage and the 16-cell stage. Novel transcribed genes in the embryo regulate 

embryo fate determination and further development. Figure adopted from (Zernicka-Goetz et al, 2009) 

 

4.4 Preimplantation	embryo	development	
 

Following ZGA at the 2-cell stage, an embryo cleaves to the 4-cell stage and 

then to the 8-cell stage. At the 8-cell stage, the embryo undergoes Ca2+-dependent 

compaction and forms a 16-cell morula (Ziomek & Johnson, 1980). The morula stage is 

characterized by increased contacts between cells. The next cleavage of morula 

blastomeres produces two distinct populations – inner cells (ICM) and outer cells 

(known as the trophoectoderm) (Johnson & Ziomek, 1981; Pedersen et al, 1986). This 

formation of the two distinct cell types is also called the first cell fate decision. Besides 

first cell fate specification, cells in the ICM of the blastocyst undergo second 

specification, during which primitive endoderm forms on the surface of the ICM, and 

epiblast appears in the deeper layer of the ICM. Upon implantation into the uterus, 
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epiblast cells differentiate into the three germ layers and determine the future body plan 

of the embryo (Nichols et al, 1998). 

The cell fate specification is controlled by activity of genes. The formation of 

trophoectoderm is induced by expression of Cdx2 and Tead4 (Niwa et al, 2005). In 

contrast, formation of the ICM is controlled by Nanog, Oct4 and Sox2 (Avilion et al, 

2003; Mitsui et al, 2003; Nichols et al, 1998; Strumpf et al, 2005).  

During second cell specification, activity of genes dictates formation of two 

distinct populations of cells within ICM. Gata6 and Gata4 dictate primitive endoderm, 

whereas deeper ICM cells express pluripotent genes Oct4, Nanog and Sox2 (Figure 3) 

(Koutsourakis et al, 1999).  

 

 

Figure 3 Cell fate determination in early embryos  

Cell fate determination in early embryos is facilitated by activity of specific genes. Tead4 and Cdx2 are 

important for trophoectoderm formation. Nanog, Oct4 and Sox2 are implicated in formation of the ICM, 

which serves as pool for embryo development. Within the inner cell mass expression of Gata6 and Nanog 

directs primitive endoderm and epiblast lineage, respectively.	TE= trophoectoderm, EPI= epiblast, PE= 

primitive endoderm, ICM= inner cell mass. Scheme adopted from (Zernicka-Goetz, Morris et al. 2009) 

 

 

4.4.1 Differentation	into	germ	lineages	
 

During normal development, soon after a blastocyst implants in a uterus, 

gastrulation initiates development of the bodyplan of an embryo. To track lineage 

commitment during differentiation of the epiblast, one can monitor expression lineage 

specific markers. In principle, it is expected that some genes are on a top of the 
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differentiation hierarchy and initiate the differentiation program. This hypothesis is 

supported by knockout studies, in which embryos lacking one copy of the gene Gsc 

gene exhibited defects in musculature defects in embryo development. To trace 

differentiation into ectodermal lineage Nes, Pax3, Sox3 and Crabp2 genes are widely 

used as markers (Bergsland et al, 2011; Goulding et al, 1991). For mesoderm well-

conserved genes such as Brachyury (also known as T), Tbx6 and Gsc can be used 

(Hoffmann et al, 2002; Yamada et al, 1995). When monitoring endoderm lineage, 

Sox17, Gata6 and Gata4 are reliable markers (Figure 4) (Guo et al, 2010; Soudais et al, 

1995).  

 

4.5 Embryonic	stem	cells	
 

Embryonic stem cells are derivatives of the ICM, which can be cultured in vitro 

under defined conditions (Evans & Kaufman, 1981). ESCs require a defined set of 

interleukins, growth and signaling factors for their proliferation. Among all, leukemia 

inhibitory factor (LIF) is a regulator of pluripotency in murine embryonic stem cells 

(Cartwright et al, 2005). LIF belongs to the IL6 family of interleukins and regulates 

expression of Stat3. STAT3 acts as a transcription factor, which in turn triggers 

transcription of c-Myc. Importance of LIF for ESCs was demonstrated by a study, in 

which LIF removal from media positively regulated differentiation of ESCs (Cartwright 

et al, 2005). 

Established ESC lines are used as an in vitro model for studying pluripotency 

maintenance and differentiation. In vitro, one of the most potent ectodermal inducers of 

ESC differentiation is all-trans retinoic acid (ATRA). ATRA treatment induces 

differentiation of ES cells into neural cell types. Therefore, ATRA has been widely used 

for testing the quality and ability of ES cells to differentiate (Simeone et al, 1990). In 

addition, these prepared cell lines are used as a tool for producing genetically 

manipulated mice, where a gene of interest can be artificially introduced or inactivated 

in ESCs. These modified ESCs can be transferred into a blastocyst of a pseudopregnant 

female and contribute to chimeras [reviewed in(Mansour, 1990)].  
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4.5.1 Core	pluripotency	network	
 

While the first ESCs were obtained almost three decades ago, establishment and 

maintenance of the pluripotency program is not completely understood (Evans & 

Kaufman, 1981). What is known, however, is that pluripotency program can be initiated 

by expression of genes termed as the core pluripotency factors (Figure 4). Among them 

Oct4, Sox2, Nanog, Stat3, c-Myc, Klf4, Esrrb and Zfx are the most prominent members 

and are thought to be the major executors of pluripotency program (Boyer et al, 2006). 

 

Detailed transcriptome analysis indicates that pluripotency network is being built 

in a stepwise manner during development. Pluripotency is established and maintained 

by genes transcribed from the 2-cell stage onward during preimplantation development. 

Nanog is a zygotic gene, which first transcribed at 8-cell stage. Sox2 and Oct4, 

important regulators of pluripotency, are maternally provided factors but whose 

transcription appears at 8-cell stage (Hamatani et al, 2004). The expression of Oct4, 

Sox2 and Nanog dictates the first cell fate determination. Importance of Oct4 was 

supported by knockout studies, in which ablation of Oct4 induced trophoectoderm 

formation in ESCs (Velkey & O'Shea, 2003). Consistent with this proposal is the fact 

that Oct4-/- failed to develop ICM (Nichols et al, 1998). Interestingly, chromatin 

immunoprecipitation experiment followed by massive parallel sequencing (ChIP-Seq) 

revealed that Oct4, Nanog and Sox2 often co-occupy their own promoters and Sox2 and 

Oct4 operate as a part of the same complex suggesting that they target same genes 

(Chen et al, 2008; Loh et al, 2006; Rodda et al, 2005).  
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Figure 4 Core pluripotency network  

The pluripotency program of is propagated by transcription factors which operate in a network. These 

genes activate a large number of genes. Sox2, Nanog and Oct4 are essential key players in self-renewal of 

embryonic stem cells and pluripotency program. Scheme adopted from (Chen, Xu et al. 2008) 

 

4.6 Induced	pluripotent	stem	cells	(iPS)	
 

In 2006, Yamanaka and his colleagues performed a key experiment showing that 

pluripotency can be induced in somatic cells by a set of transcription factors (Takahashi 

et al, 2006). They used mouse embryonic fibroblasts (MEFs) and a lentiviral system 

expressing Oct4, Sox2, c-Myc and Klf4. Reprogrammed cells exhibited common 

features of pluripotent cells, such as surface markers, a specific signature of gene 

expression, and an ability to generate teratocarcinomas (Takahashi et al, 2006). Recent 

studies suggested that reprogramming of somatic cells is a stochastic process and can be 

rapidly improved via additional molecules (Hanna et al, 2009). Yamanaka and his 

colleagues recently tested a library of human transcription factors for the ability to 

replace Oct4, Sox2, cMyc and Nanog (Maekawa et al, 2011). They identified 18 novel 

transcription factors, which significantly increased reprogramming efficiency. Among 

those, maternal gene GLIS1 was identified as an important reprogramming regulator 

whose expression promotes iPS formation (Maekawa et al, 2011). There is evidence 

that reprogramming efficiency can be increased by a set of additional molecules (Yu et 
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al, 2007; Zhang et al, 2011). Besides transcription factors and inhibitors, other 

molecules such as non-coding RNAs seem to be important for reprogramming in vitro 

(Yang et al, 2011)  

 

4.7 Non‐coding	RNAs	&	lincRNAs	
 

In addition to protein coding genes, non-coding RNAs were identified as 

important regulators of gene expression in mammals. NcRNAs were reported to 

interfere with OZT in mouse(Murchison et al, 2007). Three clasees of small ncRNAs 

were found in mouse oocytes- Piwi-interacting RNAs (piRNAs), microRNAs 

(miRNAs) and short-interfering RNAs (siRNAs). PiRNAs have genome protective 

function, siRNAs and miRNAs interact with the mRNA and facilitate RNAi effect 

[reviewed in (Ohnishi et al, 2010)]. Interestingly, some ncRNAs, such as miRNAs, were 

shown to be non-functional during OZT (Ma et al, 2010). Recently, long ncRNAs were 

proposed as key regulators of biological processes. The role of long ncRNAs during 

OZT is, however, unknown. 

LincRNAs are long (usually 2-5 kb) non-coding RNAs generated from 

intergenic regions. Most of lincRNA transcripts are polyadenylated at the 3’ end and 

usually possess a cap at the 5’ end (Guttman et al, 2009). LincRNAs were originally 

identified based on distribution of epigenetic modifications typical for transcriptional 

units. Promoter regions of transcribed lincRNAs bear mark of tri-methylation of lysine 

at position 4 on histone 3 (H3K4me3). The transcribed region, known as gene body, of 

lincRNAs contains methylated lysines at position 36 on histone 3 (H3K36me3). These 

epigenetic modifications thus can serve as a clue for identification of transcribed 

regions producing lincRNAs. H3K4me3 and H3K36me3 modifications are also shared 

with actively transcribed protein coding genes. Thus, some lincRNAs have been 

originally annotated as mRNAs. The major difference between mRNAs and lincRNAs 

is in their protein coding potential. While mRNAs serve as template for ribosomes and 

encode proteins, lincRNAs produce no proteins at all (Guttman et al, 2009). Despite the 

effort, the precise mechanism of function of most lincRNAs remains unclear (Figure 5). 

LincRNAs apparently bind diverse proteins including chromatin modifiers and 

transcription factors, and interact with chromatin at specific genomic loci. LincRNAs 

have been reported to regulate gene cellular processes, such as X-inactivation in 
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mammals (Brown et al, 1991), alternative splicing (Tripathi et al, 2010), DNA damage 

response (Huarte et al, 2010), etc. In addition, long non-coding RNAs have been found 

associated with cancer (Niinuma et al, 2012) and neurological disorders (Qureshi et al, 

2010). In addition, lincRNAs can act as decoy molecules buffering key transcription 

factors (Azzalin et al, 2007). 

 

 

Figure 5 Hypothetical models of long non-coding RNA action  

Four mechanisms how long ncRNAs can regulate cellular processes were proposed. Recent studies 

suggest that long ncRNAs can change binding properties of proteins and therefore modulate 

protein:protein interaction (1). The second potential mode of action assumes that long non-coding RNAs 

directly interact with DNA molecules and prevents binding of transcription factors (2). The third model 

suggests that long non-coding RNAs serve as protein binding platforms for transcription factors, 

enzymes, and DNA (3). The fourth mode of action proposes that long noncoding RNAs can directly 

interact with mRNAs or other non-coding RNAs (4). Figure adopted from (Guttman & Rinn, 2012) 

 

4.7.1 The	role	of	lincRNAs	in	the	pluripotency	program		
 

Loss-of-function studies in ESCs revealed that some lincRNAs act as positive 

regulators of the pluripotent program and as negative regulators of differentiation 

(Guttman, et al. 2011). What is striking is the impact of lincRNAs on pluripotency and 

self-renewal program in ESCs in knockdown experiments. While inactivation of key 

transcription factors, such as Oct4, Sox2 and Nanog, influenced on average hundreds of 
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protein coding genes, knockdown of specific lincRNAs influenced tens of protein 

coding genes (Guttman, et al. 2011). In addition, some lincRNAs have been associated 

with ectodermal, endodermal and mesodermal lineages (Guttman et al, 2011). Another 

study suggested that some lincRNAs strongly contribute to undifferentiated state of skin 

cells as their acute depletion resulted in burst of differentiation (Kretz et al, 2012). The 

role of lincRNAs during OZT, however, has not been addressed yet. 

 

5 High‐throughput	methods	for	gene	expression	analysis	
 

Recent progress in molecular biology has been accelerated by development of high-

throughput tools for analysis of gene expression. The main advantage of these tools is 

their ability to monitor whole transcriptomes of samples. Today, there are three main 

high-throughput tools for transcriptome monitoring: microarrays, next generation 

sequencing and qPCR arrays. 

 

5.1 Microarrays	
 

Analysis of gene expression has been accelerated by Affymetrix who developed 

technology for quantification of transcripts in biological systems in 1990’s. Affymetrix 

used sets of short 25-nt oligonucleotides (probes) against all mouse or human known 

transcripts. To increase specificity of detection the target, Affymetrix used ten to twelve 

probes against the same transcript. This set of probes is called a probeset. Affymetrix 

probes in the probeset target a defined region in a transcript. Probes organized into 

probesets were directly sythetized on a glass plate, giving rise to a microarray chip. 

To quantify gene expression on array, one must isolate RNA molecules and 

convert them to fluorescently labeled cDNA. Subsequently, labeled cDNA is hybridized 

to probes on an Affymetrix chip (Figure 6). Gene expression is then calculated from 

intensity of fluorescence of individual probes in a probeset. In general, the more 

abundant a transcript is, the higher amount of intensity of fluorescence will be obtained 

[reviewed in (Ahmed, 2006)].  
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Figure 6 Affymetrix technology  

A scheme of an Affymetrix array. Short nucleotides are immobilized on glass slide. Interaction between 

probes and fluorescence-labeled transcript generates a signal, which is scanned and quantified. The 

amount of fluorescence is proportional to the amount of transcripts in the tested sample. Figure adopted 

from (Affymetrix manufacturer website) 

 

5.2 Next	generation	sequencing	(NGS)	
 

 

Next generation sequencing (NGS) technology was introduced in 2006 and it has 

become a powerful tool for transcriptome analysis. NGS platforms allow for sequencing 

the whole transcriptome in a single experiment. Today, there are three major providers 

of NGS technology: Illumina, Roche and Applied Biosystems. Each of these NGS 

technologies has certain advantages and disadvantages (Werner, 2010). 

 

During NGS experiment, RNA is fragmented and ligated with adaptors. These 

fragments are amplified and immobilized on a glass chip or beads. Adaptor sequences 

serve as templates for sequencing primers, which initiate sequencing reaction. Next, 

fragments (also called tags or reads) are sequenced. There are three main methods how 

fragments can be sequenced. Roche modified pyrosequencing method, which uses 

luciferase to generate light for the detection of individual nucleotides added to nascent 
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DNA [reviewed in (Schuster, 2008)]. Illumina employs reversible dye-terminators to 

sequence the fragments. Applied Biosystems developed a sequencing method, which is 

based on ligation and fluorescence-labeled nucleotides [reviewed in (Mardis, 2008)].  

The outcome from NGS experiment is extremely rich, as it contains tens of 

millions of short sequences, which must be processed. To analyse the data, one must 

apply complex algorithms, which align sequenced fragments against a reference 

sequence. The results are more accurate when compared to microarray data mainly 

because NGS allows for quantification of the whole transcriptome. In contrast, 

microarrays quantify only expression only of transcripts, against which probes are 

present. Therefore, NGS also reveals information of rare or novel RNAs present in the 

sample. On the other hand, volume of the data limits the speed of analysis. Since NGS 

is a relatively new method, mathematical and statistical methods are required for 

accurate data analysis. Unfortunately they are still under development [reviewed in 

(Rogers & Venter, 2005)].  

 

5.3 Quantitative	PCR	arrays	
 

Quantitative PCR is a method, by which one can measure abundance of a 

nucleic acid in a sample. In principle, it employs a fluorescent molecule, which binds 

specifically the amplified DNA and which emits a signal during each cycle of PCR. As 

the amount of DNA in the sample geometrically increases during the PCR, the total 

amount of fluorescence increases exponentially. The quantification of transcripts is 

based on the, so called, CT value, which is defined by a cycle, in which fluorescence 

curve reaches a particular baseline (Figure 7) (Nolan et al, 2006). Relative changes in 

the amount of transcripts can be estimated from CT value difference. Recently, 

quantitative microfluidic PCR arrays became a powerful high-throughput tool for 

quantification of gene expression. Fluidigm™ developed a platform allowing 

quantification of large amount of transcripts during one experiment by reducing total 

volume of PCR reaction (Spurgeon et al, 2008). A great advantage of Fluidigm™ is that 

it developed system how to perform qPCR reactions on a chip. 

 

 



23 
 

 
 
Figure 7 Output of the qPCR experiment  

Left panel represents quantitative PCR method uses fluorescence-based reporter, which binds specifically 

the double-stranded DNA. During each cycle reporter emits amount of fluorescence, which is scanned 

and quantified. Right panel represents qPCR array with nanoliter chambers. Figure adopted from (Bar et 

al, 2012) 
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6 Methods	
 

6.1 List	of	instruments	
 

Centrifuge (Biofuge) 

Centrifuge (Eppendorf) 

CO2 incubator (Jouan) 

DeltaVision (Applied Precision) 

Flow box (Jouan) 

Fluidigm cycler (Biomark) 

Gel Dox XR+ (BioRad) 

Horizontal electrophoresis (BioRad) 

Light cycler 384 (Roche) 

LightCycler 480 System (Roche Applied Science) 

Mx3000P cycler (Stratagene) 

ND-1000 Spectrophotometer (NanoDrop) 

Odyssey Infrared Imaging System (LI-COR) 

PCR cycler MJ Mini Gradient (BioRad) 

Power supplies (BioRad) 

Rocker (Biosan) 

Rotator (Biosan) 

Shaker 37°C (Lab. Companion) 

Thermo shaker (Biosan) 

Vertical electrophoresis (BioRad) 

Vortex (Scientific Industries) 

 

6.2 Primer	design	
 

Primers were designed based on Ensembl (version 58) sequences using default 

settings of Universal probe library primer design software (Roche, 

www.universalprobelibrary.com). Primers were designed for melting temperature Tm = 

60°C. Primers were compared with the collection of cDNAs deposited in Ensembl 

database to assure that correct primer sequences were selected. Several primers were 

further modified by increasing GC content of the 3' end of the primer. Primers were 
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obtained from Sigma. Primers were tested by a real-time PCR using various templates. 

Quality of the primers was determined from amplification and melting curves. Primers, 

which made dimers and/or had low efficiency of amplification were replaced. 

 

Oocyte-to-zygotic set 

Primer Sequence Product UPL probe 
Actb_qpcr_fwd taaggccaaccgtgaaaagat 109 nt #64, cat.no. 04688635001
Actb_qpcr_rev ggtacgaccagaggcatacag 109 nt #64, cat.no. 04688635001

BMP15_qpcr_fwd acacagtaaggcctcccaga 75 nt #72, cat.no. 04688953001

BMP15_qpcr_rev atgctacctggtttgatgctagag 75 nt #72, cat.no. 04688953001

Cbx2_qpcr_fwd ggccgaggaaacacacag 75 nt #88, cat.no. 04689135001

Cbx2_qpcr_rev atttggatggcgcatctg 75 nt #88, cat.no. 04689135001

Cdh1_qpcr_fwd gccaccagatgatgataccc 89 nt #10, cat.no. 04685091001

Cdh1_qpcr_rev gctggctcaaatcaaagtcc 89 nt #10, cat.no. 04685091001

Cdkn1a_qpcr_fwd agatccacagcgatatccagac 103 nt #21, cat.no. 04686942001

Cdkn1a_qpcr_rev aagagacaacggcacactttg 103 nt #21, cat.no. 04686942001
cMyc_qpcr_fwd ctagtgctgcatgaggagacac 90 nt #77, cat.no. 04689003001
cMyc_qpcr_rev cacagacaccacatcaatttcttc 90 nt #77, cat.no. 04689003001

Dazl_qpcr_fwd tgatattttgcccaatgaatgtt 88 nt #78, cat.no. 04689011001

Dazl_qpcr_rev tatgcttcggtccacagactt 88 nt #78, cat.no. 04689011001

Dcp1a_qpcr_fwd ccttccattatcctcagcaagt 76 nt #1, cat.no. 04684974001

Dcp1a_qpcr_rev tgaggaagctggagtcattct 76 nt #1, cat.no. 04684974001

Dnmt3b_qpcr_fwd ccagggccttctttcagg 90 nt #94, cat.no. 04692110001

Dnmt3b_qpcr_rev cgataatgcactcctcataccc 90 nt #94, cat.no. 04692110001

E2F2_qpcr_fwd gcgcatctatgacatcacca 100 nt #67, cat.no. 04688660001

E2F2_qpcr_rev gtcttcaaatagttccctgcctac 100 nt #67, cat.no. 04688660001

E2F5_qpcr_fwd ctgcaattgctttcatggtg 92 nt #11, cat.no. 04685105001

E2F5_qpcr_rev cattctgtcccatttctggaata 92 nt #11, cat.no. 04685105001

E2F7_qpcr_fwd tgttacgtgagacatccggta 73 nt #13, cat.no. 04685121001

E2F7_qpcr_rev ggatgctcttgggagtcg 73 nt #13, cat.no. 04685121001

Eif1a_qpcr_fwd gccagaaccgaagtactattttgt 97 nt #27, cat.no. 04687582001

Eif1a_qpcr_rev caactgggacactgtgaatatagaa 97 nt #27, cat.no. 04687582001

Eif3l_qpcr_fwd gatggcgaattccagtcg 73 nt #10, cat.no. 04685091001

Eif3l_qpcr_rev tggtgtctgcaatatggatca 73 nt #10, cat.no. 04685091001
Esrrb_qpcr_fwd cgattcatgaaatgcctcaaa 68 nt #89, cat.no. 04689143001
Esrrb_qpcr_rev cctcctcgaactcggtca 68 nt #89, cat.no. 04689143001

Gapdh_qpcr_fwd cggtgctgagtatgtcgtgg 130 nt #29, cat.no. 04687612001

Gapdh_qpcr_rev tcacacccatcacaaacatgg 130 nt #29, cat.no. 04687612001

GDF9_qpcr_fwd ctacaataccgtccggctct 99 nt #104, cat.no. 04692225001

GDF9_qpcr_rev ttaaacagcaggtccaccatc 99 nt #104, cat.no. 04692225001

GLB_qpcr_fwd cgtggagaggatgttcttgg 67 nt #77, cat.no. 04689003001

GLB_qpcr_rev gtgggtgaagtcgaagtgg 67 nt #77, cat.no. 04689003001

Hdac1_qpcr_fwd tggtctctaccgaaaaatggag 78 nt #73, cat.no. 04688961001
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Hdac1_qpcr_rev tcatcactgtggtacttggtca 78 nt #73, cat.no. 04688961001

Hmga2_qpcr_fwd aaaacaagagcccctctaaagc 105 nt #34, cat.no. 04687671001

Hmga2_qpcr_rev tcttctgaacgacttgttgtgg 105 nt #34, cat.no. 04687671001
Hprt1_qpcr_fwd cctcagaccgctttttgc 74 nt #95, cat.no. 04692128001
Hprt1_qpcr_rev cctggttcatcatcgctaatc 74 nt #95, cat.no. 04692128001

IAP_qpcr_fwd cgaggtgttctccactccat 85 nt #13, cat.no. 04685121001

IAP_qpcr_rev  acgtgtcactccctgattgg 85 nt #13, cat.no. 04685121001

Igf2bp1_qpcr_fwd gatgagaacgaccaagtcattg 76 nt #20, cat.no. 04686934001

Igf2bp1_qpcr_rev ctcggatcttccgctgag 76 nt #20, cat.no. 04686934001
Klf4_qpcr_fwd agtcccctctctccattatcaag 84 nt #82, cat.no. 04689054001
Klf4_qpcr_rev gaccttcttcccctctttgg 84 nt #82, cat.no. 04689054001

Lhx8_qpcr_fwd gagctcggaccagcttca 67 nt #1, cat.no. 04684974001

Lhx8_qpcr_rev ttgttgtcctgagcgaactg 67 nt #1, cat.no. 04684974001

Lin28_qpcr_fwd aagaacatgcagaagcgaagat 73 nt #94, cat.no. 04692110001

Lin28_qpcr_rev ccttggcatgatggtctagc 73 nt #94, cat.no. 04692110001

Mos_qpcr_fwd tgagcaagacgtttgtaagatca 95 nt #32, cat.no. 04687655001

Mos_qpcr_rev tgccccctatgtggtgag 95 nt #32, cat.no. 04687655001

MT_qpcr_fwd atgtcttggggaggactgtg 306 nt #45, cat.no. 04688058001

MT_qpcr_rev aaccagcatcaatagtcccagt 306 nt #45, cat.no. 04688058001

Muerv_qpcr_fwd tattatttgtgtcaagttgacaagg 150 nt #97, cat.no. 04692144001

Muerv_qpcr_rev cctccagataagggtcactgg 150nt #97, cat.no. 04692144001
Nanog_qpcr_fwd tacctcagcctccagcagat 82 nt #25, cat.no. 04686993001
Nanog_qpcr_rev ggttttgaaaccaggtcttaacc 82 nt #25, cat.no. 04686993001

Nlrp5_qpcr_fwd gcagacatcagaaaccttacaatc 91 nt #34, cat.no. 04687671001

Nlrp5_qpcr_rev ggccttgtagtcttgtaagtcacc 91 nt #34, cat.no. 04687671001

Nobox_qpcr_fwd aaagacccgaaccctgtacc 67 nt #11, cat.no. 04685105001

Nobox_qpcr_rev gtggtcttcctgaaatatcctctc 67 nt #11, cat.no. 04685105001

Obox1_qpcr_fwd ccttgaagacttttgacacatcag 95 nt #78, cat.no. 04689011001

Obox1_qpcr_rev aaggttggactcgtcaaggac 95 nt #78, cat.no. 04689011001

Oog1_qpcr_fwd ggtgatctgtctccattgtcc 111 nt #6, cat.no. 04685032001

Oog1_qpcr_rev tccctcagtagactctgaattgc 111 nt #6, cat.no. 04685032001

Plat_qpcr_fwd cctcatgggcaagagttacac 114 nt #9, cat.no. 04685075001

Plat_qpcr_rev atcacatggcaccaaggtct 114 nt #9, cat.no. 04685075001
Pou5f1_qpcr_fwd gttggagaaggtggaaccaa 75 nt #95, cat.no. 04692128001
Pou5f1_qpcr_rev gcaaactgttctagctccttctg 75 nt #95, cat.no. 04692128001

Ppil3_qpcr_fwd ttcgaggtgttgtatctatggcta 131 nt #5, cat.no. 04685024001

Ppil3_qpcr_rev ctccagaccatctattacctttcc 131 nt #5, cat.no. 04685024001

Prb1(107)_qpcr_fwd gcggcaactacagcctagag 66 nt #20, cat.no. 04686934001

Prb1(107)_qpcr_rev ggcaagcaacatataaagagca 66 nt #20, cat.no. 04686934001

Rbl2(130)_qpcr_fwd agattgggagacatggatttatct 63 nt #50, cat.no. 04688112001

Rbl2(130)_qpcr_rev caagagtgacctgtggaatgc 63 nt #50, cat.no. 04688112001

Rpl18a_qpcr_fwd cgcatgatccgaaagatga 79 nt #72, cat.no. 04688953001

Rpl18a_qpcr_rev cagaatccgcacatcatctgt 87 nt #72, cat.no. 04688953001
Sox2_qpcr_fwd acagctacgcgcacatga 99 nt #19, cat.no. 04686926001
Sox2_qpcr_rev ggtagcccagctgctcct 99 nt #19, cat.no. 04686926001



27 
 

Spin1_qpcr_fwd ctcctcgatgactacaaagaagg 123 nt #2, cat.no. 04684982001

Spin1_qpcr_rev ggcatattccacttgcttgc 123 nt #2, cat.no. 04684982001

Trim71_qpcr_fwd ttctccattctctcggtgttc 91 nt #29, cat.no. 04687612001

Trim71_qpcr_rev cagagcaggtgtcacagtagagat 91 nt #29, cat.no. 04687612001

Trp53_qpcr_fwd gagtatctggaagacaggcagac 170 nt #47, cat.no. 04688074001

Trp53_qpcr_rev ccagaaggttcccactgga 170 nt #47, cat.no. 04688074001

YY1_qpcr_fwd agaactcacctcctgattattctga 128 nt #79, cat.no. 04689020001

YY1_qpcr_rev aatttttcttggcttcattctgg 128 nt #79, cat.no. 04689020001

Zar1_qpcr_fwd catgtcctgccgcagaga 95 nt #15, cat.no. 04685148001

Zar1_qpcr_rev ccgtacttctgctctaagaactgg 95 nt #15, cat.no. 04685148001

ZP3_qpcr_fwd ctctccagttcacggtggat 73 nt #50, cat.no. 04688112001

ZP3_qpcr_rev agatggcaggtgatgtagagc 73 nt #50, cat.no. 04688112001

Ccnb1_qpcr_fwd tgcattttgctccttctcaa 126 nt #45, cat.no. 04688058001

Ccnb1_qpcr_rev caggaagcagggagtcttca 126 nt #45, cat.no. 04688058001
 

 

Pluripotency&Differentiation set 

Primer Sequence Product UPL probe 
Actb_qpcr_fwd taaggccaaccgtgaaaagat 109 nt #64, cat.no. 04688635001 
Actb_qpcr_rev ggtacgaccagaggcatacag 109 nt #64, cat.no. 04688635001 

Bax_qpcr_fwd acactggacttcctccgtga 84 nt #83, cat.no. 04689062001 

Bax_qpcr_fwd acactggacttcctccgtga 84 nt #83, cat.no. 04689062001 

Bax_qpcr_rev ggtcccgaagtaggagagga 84 nt #83, cat.no. 04689062001 

Bax_qpcr_rev ggtcccgaagtaggagagga 84 nt #83, cat.no. 04689062001 

Bcl2_qpcr_fwd agtacctgaaccggcatctg 77 nt #75, cat.no. 04688988001 

Bcl2_qpcr_rev ggggccatatagttccacaaa 77 nt #75, cat.no. 04688988001 

Bim_qpcr_fwd cgagttcaacgaaacttacacaag 108 nt #41, cat.no. 04688007001 

Bim_qpcr_rev agacggaagataaagcgtaacagt 108 nt #41, cat.no. 04688007001 

Brach.T_qpcr_fwd gataactggtctagcctcggagt 107 nt #27, cat.no. 04687582001 

Brach.T_qpcr_fwd gataactggtctagcctcggagt 107 nt #27, cat.no. 04687582001 

Brach.T_qpcr_rev acagaccagagactgggatactg 107 nt #27, cat.no. 04687582001 

Brach.T_qpcr_rev acagaccagagactgggatactg 107 nt #27, cat.no. 04687582001 

Cdkn1a_qpcr_fwd agatccacagcgatatccagac 103 nt #21, cat.no. 04686942001 

Cdkn1a_qpcr_rev aagagacaacggcacactttg 103 nt #21, cat.no. 04686942001 

Cdkn2a_qpcr_rev atctggagcagcatggagtc 131 nt #70, cat.no. 04688937001 

Cdkn2a_qpcr_rev ggggtacgaccgaaagagtt 131 nt #70, cat.no. 04688937001 

Cdx2_qpcr_fwd atacatcaccatcaggaggaaaag 85 nt #34, cat.no. 04687671001 

Cdx2_qpcr_rev gcggttctgaaaccaaatttta 85 nt #34, cat.no. 04687671001 

Cebpa_qpcr_fwd ccaaactgagactcttcactaacg 72 nt #12, cat.no. 04685113001 

Cebpa_qpcr_rev tccctaaaccaaaaagaatgagag 72 nt #12, cat.no. 04685113001 
cMyc_qpcr_fwd ctagtgctgcatgaggagacac 90 nt #77, cat.no. 04689003001 
cMyc_qpcr_rev cacagacaccacatcaatttcttc 90 nt #77, cat.no. 04689003001 

Crabp2_qpcr_fwd cacggagattaacttcaagatcg 89 nt #68, cat.no. 04688678001 

Crabp2_qpcr_rev cactctcccatttcaccaaac 89 nt #68, cat.no. 04688678001 
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Creb3l_qpcr_fwd cttatccttctgccaccaaga 101 nt #75, cat.no. 04688988001 

Creb3l_qpcr_rev ttagcaggttcctggatctcac 101 nt #75, cat.no. 04688988001 

Dppa3_qpcr_fwd aagcaatcttgttccgagcta 88 nt #29, cat.no. 04687612001 

Dppa3_qpcr_rev ccttcattgggtcgactttc 88 nt #29, cat.no. 04687612001 
Esrrb_qpcr_fwd cgattcatgaaatgcctcaaa 68 nt #89, cat.no. 04689143001 
Esrrb_qpcr_rev cctcctcgaactcggtca 68 nt #89, cat.no. 04689143001 
FGF5_qpcr_fwd aaaacctggtgcaccctaga 65 nt #29, cat.no. 04687612001 
FGF5_qpcr_rev catcacattcccgaattaagc 65 nt #29, cat.no. 04687612001 

Fgfr2_qpcr_fwd cactctgcatggttgacagttc 102 nt #60, cat.no. 04688589001 

Fqfr2_qpcr_rev gaagacccctatgcagtaaatagc 102 nt #60, cat.no. 04688589001 

Gapdh_qpcr_fwd cggtgctgagtatgtcgtgg 130 nt #29, cat.no. 04687612001 

Gapdh_qpcr_rev tcacacccatcacaaacatgg 130 nt #29, cat.no. 04687612001 

Gata3_qpcr_fwd cttatcaagcccaagcgaag 76 nt #108, cat.no. 04692276001

Gata3_qpcr_rev tggtggtggtctgacagttc 76 nt #108, cat.no. 04692276001

Gata4_qpcr_fwd gcccaagaacctgaataaatctaa 103 nt #18, cat.no. 04686918001 

Gata4_qpcr_rev gctagtggcattgctggagt 103 nt #18, cat.no. 04686918001 

Gata6_qpcr_fwd ggtctctacagcaagatgaatgg 104 nt #40, cat.no. 04687990001 

Gata6_qpcr_fwd ggtctctacagcaagatgaatgg 104 nt #40, cat.no. 04687990001 

Gata6_qpcr_rev gtgtgacagttggcacagga 104 nt #40, cat.no. 04687990001 

Gata6_qpcr_rev gtgtgacagttggcacagga 104 nt #40, cat.no. 04687990001 

Gsc_qpcr_fwd gagacgaagtacccagacgtg 119 nt #32, cat.no. 04687655001 

Gsc_qpcr_rev cgcttctgtcgtctccactt 119 nt #32, cat.no. 04687655001 
Hprt1_qpcr_fwd cctcagaccgctttttgc 90 nt #95, cat.no. 04692128001 
Hprt1_qpcr_rev cctggttcatcatcgctaatc 90 nt #95, cat.no. 04692128001 

Klf4_qpcr_fwd agtcccctctctccattatcaag 84 nt #82, cat.no. 04689054001 

Klf4_qpcr_rev gaccttcttcccctctttgg 84 nt #82, cat.no. 04689054001 

Lefty1_qpcr_fwd ctgcccttatcgattctaggc 91 nt #97, cat.no. 04692144001 

Lefty1_qpcr_rev agctgctgccagaagttcac 91 nt #97, cat.no. 04692144001 

Lin28_qpcr_fwd aagaacatgcagaagcgaagat 73 nt #94, cat.no. 04692110001 

Lin28_qpcr_rev ccttggcatgatggtctagc 73 nt #94, cat.no. 04692110001 

Msc_qpcr_fwd agctttccaaactggacacg 135 nt #11, cat.no. 04685105001 

Msc_qpcr_rev gtccagagaccacgaatgg 135 nt #11, cat.no. 04685105001 
Nanog_qpcr_fwd tacctcagcctccagcagat 82 nt #25, cat.no. 04686993001 
Nanog_qpcr_rev ggttttgaaaccaggtcttaacc 82 nt #25, cat.no. 04686993001 

Nes_qpcr_fwd ctgcaggccactgaaaagtt 73 nt #1, cat.no. 04684974001 

Nes_qpcr_rev tctgactctgtagaccctgcttc 73 nt #1, cat.no. 04684974001 

Pdgfra_qpcr_fwd gtcgttgacctgcagtgga 61 nt #80, cat.no. 04689038001 

Pdgfra_qpcr_rev ccagcatggtgatacctttgt 61 nt #80, cat.no. 04689038001 

Pecam1_qpcr_fwd actcacgctggtgctctatg 62 nt #64, cat.no. 04688635001 

Pecam1_qpcr_rev tgctgttgatggtgaaggag 62 nt #64, cat.no. 04688635001 
Pou5f1_qpcr_fwd gttggagaaggtggaaccaa 75 nt #95, cat.no. 04692128001 
Pou5f1_qpcr_rev gcaaactgttctagctccttctg 75 nt #95, cat.no. 04692128001 

Rbl2(130)_qpcr_fwd agattgggagacatggatttatct 63 nt #50, cat.no. 04688112001 

Rbl2(130)_qpcr_rev caagagtgacctgtggaatgc 63 nt #50, cat.no. 04688112001 

Sox13_qpcr_fwd atgtggaagctaaggatgtcaaag 74 nt #102, cat.no. 04692209001
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Sox13_qpcr_rev gatcatgaccaaaagctggagt 74 nt #102, cat.no. 04692209001

Sox17_qpcr_fwd aacgcagagctaagcaagatg 129 nt #53, cat.no. 04688503001 

Sox17_qpcr_rev gtacttgtagttggggtggtcct 129 nt #53, cat.no. 04688503001 
Sox2_qpcr_fwd acagctacgcgcacatga 99 nt #19, cat.no. 04686926001 
Sox2_qpcr_rev ggtagcccagctgctcct 99 nt #19, cat.no. 04686926001 

Sox3_qpcr_fwd gaccgttgccttgtaccg 62 nt #101, cat.no. 04692195001

Sox3_qpcr_rev aaaaccccgacagttacgg 62 nt #101, cat.no. 04692195001
Stat3_qpcr_fwd agtttggaaataacggtgaaggt 71 nt #18, cat.no. 04686918001 
Stat3_qpcr_rev catgtcaaacgtgagcgact 71 nt #18, cat.no. 04686918001 

Tbx6_qpcr_fwd aggaactgtggaaggaattcag 93 nt #9, cat.no. 04685075001 

Tbx6_qpcr_rev tgactgatactcggcaagca 93 nt #9, cat.no. 04685075001 

Tcfap2a_qpcr_fwd caagtacgaagactgcgagga 97 nt #104, cat.no. 04692225001

Tcfap2a_qpcr_rev gctggtgtagggagattgacc 97 nt #104, cat.no. 04692225001

Tead4_qpcr_fwd ctctacgaaggtctgctcatttg 74 nt #22, cat.no. 04686969001 

Tead4_qpcr_rev cattctcatagcgggcatactc 74 nt #22, cat.no. 04686969001 

Trp53_qpcr_fwd gagtatctggaagacaggcagac 170 nt #47, cat.no. 04688074001 

Trp53_qpcr_fwd atgcccatgctacagaggag 78 nt #94, cat.no. 04692110001 

Trp53_qpcr_rev ccagaaggttcccactgga 170 nt #47, cat.no. 04688074001 

Trp53_qpcr_rev aagtagactggcccttcttggt 78 nt #94, cat.no. 04692110001 

VNP_qpcr_fwd agaagcgcgatcacatgg 63 nt #67, cat.no. 04688660001 

VNP_qpcr_rev ccatgccgagagtgatcc 63 nt #67, cat.no. 04688660001 

Zfp42_qpcr_fwd ggatttcctttttaaatccttcg 78 nt #69, cat.no. 04688686001 

Zfp42_qpcr_rev gaactcgcttccagaacctg 78 nt #69, cat.no. 04688686001 
 

Red color highlights primers, which are not spanning exon:exon junction. Black 

color represents spanning exon:exon junction.  

6.3 Sample	collection	
 
 Fully-grown GV oocytes were obtained from sacrificed mice (C57B16xBalb-c) 

by puncturing antral follicles with a needle. Oocytes were collected in M2 medium 

(Sigma) containing 0.2 mM isobutylmethylxanthine (IBMX; Sigma) to prevent 

resumption of meiosis. To obtain MII oocytes and embryos, female mice 14-16 weeks 

of age, were superovulated with 5 U of pregnant mare serum gonadotropin (PMSG, 

Intervet) followed by stimulation with 5 U chorionic gonadotropin (hCG). MII oocytes 

were collected 16 hours post hCG injection by tearing oviduct ampulla. To isolate 1-cell 

embryos, superovulated female mice were mated with C57B16 males overnight. 

Isolation was performed 24-26 hours post hCG in M2 medium containing 3 mg/ml 

hyaluronidase (Sigma) to remove cumulus cells. 2-cell, 4-cell and 8-cell stage embryos 

were isolated by tearing ampulla or flushing uterus and were collected 48 hours, 60 

hours, and 72 hours post hCG injection, respectively. All samples were isolated in pre-
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warmed M2 medium (Sigma) and washed 3-times in PBS before transfer to an 

eppendorf tube. 

Samples were transferred into a mix of 3.7 µl of nuclease-free water (Fermentas), 

0.3 µl of Ribolock RNase inhibitor (Fermentas), and 1 µl of 1000x diluted rabbit globin 

RNA (Sigma), which served as an external normalization control. Samples were 

immediately stored at -80°C. All animal experiments were approved by the Institutional 

Animal use and Care Committee and were consistent with the Czech law. 

 

6.4 Culture	conditions	
 

Human HEK293 and mouse P19 embryocarcinoma cells were maintained in 

Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen) supplemented with 10% 

fetal calf serum (FCS) (Sigma), penicillin (100 U/mL, Invitrogen), and streptomycin 

(100 µg/mL, Invitrogen). Cells were cultured at 37 °C and 5% CO2 atmosphere. P19 

cells were further supplemented with 50 µM β-mercaptorthanol (Invitrogen). 

Mouse embryonic stem cells (mESC) were cultured in 2i-LIF medium (Silva et al, 

2008). DMEM was supplemented with 15% ESC-compatible FCS (Invitrogen), 

penicillin (100 U/mL), streptomycin (100 µg/mL), 50 µM β-mercaptoethanol, 2 mM L-

glutamine (Invitrogen), and 100 µM non-essential amino acids (Invitrogen). To keep ES 

cells in undifferentiated state, inhibitors of mitogen-activated protein 

kinase/extracellular signal-regulated kinase (1 µM PD0325901) and glycogen synthase 

kinase 3β (3 µM CHIR99021) (both Selleck Chemicals) were used. 

 

6.5 RNA	isolation	
 

RNA was isolated with RNA Blue (Top-Bio) according to the manufacturer’s 

instructions. Briefly, P19, HEK293 and mouse ES cells were washed in PBS three times 

and lysed in 0.5 ml of RNA Blue reagent. Samples were shaked and left on bench at 

room temperature for 10 minutes. Subsequently, 200 µl of bromochloropropane (Sigma) 

was added and samples were centrifugated at 13000 rpm for 10 minutes at 4°C. The 

aqueous phase was transferred into a new 0.5 ml tube and RNA was precipitated with 

250 µl of isopropanol. Samples were freezed in -20°C for overnight. Next day, samples 

were centrifuged at 13000 rpm for 30 minutes at 4°C and precipitated RNA was washed 
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with 75% ethanol. The final pellet of RNA was resuspended in 12 µl of nuclease-free 

water (Fermentas). Isolated RNA was either used directly for reverse transcription or 

stored at -80°C freezer. 

 

6.6 cDNA	synthesis	
 

The amount of RNA isolated from population of mESCs, HEK293 and p19 cells 

was measured by NanoDrop (Thermo Fisher). For reverse transcription, 2 µg of total 

RNA were used as a template. Reverse transcription reaction included 4 µl M-MuLV 

buffer (Fermentas), 1 µl random hexamer primer (Fermentas), 4 µl of 10 mM dNTPs, 

0.5 µl of RiboLock (Fermentas), and 1 µl of (20 U) Revert Aid reverse transcriptase 

(Fermentas), and nuclease-free water (Fermentas) up to the total volume of 20 µl. 

cDNA synthesis was performed according to the conditions described above. 

 For single-cell qPCR, cDNA was prepared as follows: individual oocytes or 

embryos were lysed by heating to 85°C for 10 minutes. Samples were placed on ice and 

0.5 µl random hexamer primers (Fermentas) was added to prime reverse transcription. 

cDNA synthesis was performed using Revert Aid Reverse Transcription enzyme 

(Fermentas) according to the manufacturer’s protocol. Briefly, 2 µl M-MuLV buffer 

(Fermentas), 2 µl 10 mM dNTPs and 0.5 µl (10 U) Revert Aid reverse transcriptase 

(Fermentas) were added to each sample. Samples were incubated at room temperature 

for 10 minutes. Reverse transcription was performed at 42°C for 50 minutes. Reverse 

transcriptase was inactivated by heating samples at 70°C for 10 minutes, after 

inactivation samples were immediately centrifuged and stored at -20°C. 

 

6.7 Preamplification	
 

To yield an optimal amount of template for real-time PCR arrays, 

preamplification PCR was performed. Each preamplification reaction consisted of 20 µl 

of 2x Maxima qPCR SYBR GREEN Mix (Fermentas), 2 µl of preamplification primer 

mix consisting of 48 primers (500 nM each), 4 µl cDNA from reverse transcription and 

14 µl of sterile nuclease-free water (Fermentas). PCR was performed as follows: 10 

minutes of initial denaturation at 95°C to activate DNA polymerase, and 18 cycles of 

95°C for 15 seconds (denaturation), 57°C for 4 minutes (annealing), and 72°C for 30 

seconds (elongation). 
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To use Fluidigm™ for monitoring of expression in ESCs, samples were 

preamplified by 14 cycles of PCR. The preamplification mix constisted of 2 µl of 

cDNA, 10 µl of SYBR GREEN Mix (Fermentas), 2 µl of preamplification primer mix 

consisting of 48 primers (500 nM each) and 6 µl of water. PCR was performed as 

follows: 10 minutes of initial denaturation at 95°C to activate DNA polymerase, and 14 

cycles of 95°C for 15 seconds (denaturation), 57°C for 4 minutes (annealing), and 72°C 

for 30 seconds (elongation). For preamplification a Bio-Rad T100 cycler was used. 

Preamplified samples were freezed in minus 20°C immediately to inactivate the 

polymerase. 

 

6.8 Fluidigm™	experiment	
 

Microfluidic Fluidigm array was used according to the manufacturer’s protocol. 

Briefly, a primer mix consisted of 3 μl of 8 μM primers mixed with 3 μl of loading 

buffer (Fluidigm). A reaction mix consisted of 2.6 µl 10-times diluted preamplified 

sample, 3 µl of iQ mastermix (Bio-Rad) and of 0.1 µl 10-times diluted ROX fluorescent 

internal standard (Invitrogen). Primer and sample mixs were vortexed and 5 μl of each 

was loaded on PCR array. PCR was run for 35 cycles of 95°C for 15 seconds 

(denaturation), 59°C for 20s (annealing), and 72°C for 30s (elongation).  

 

6.9 	Quantitative	PCR	
 

Primer optimizing experiments on mESC were performed using a Roche Light 

cycler 384. The reaction was performed in total volume of 10 µl and consisted of 5 µl of 

2x Maxima qPCR SYBR GREEN Mix (Fermentas), 2 µl of a 2 μM primer mix 

(consisted of reverse and forward primer), and 3 µl of cDNA. For the qPCR reaction, 3 

µl of 40x diluted cDNA were used as a template. The template was obtained by reverse 

transcription of RNA, which was isolated from HEK293, NIH3T3 and mESC cells. The 

PCR was performed as follows: 95°C for 5 minutes to activate hot start polymerase, 

95°C for 15 s for denaturing of template, 60°C for 10 s for primer annealing, synthesis 

phase was run at 72°C for 10s. Melting curve analysis and CT values were calculated 

using the original Roche software. 

Expression of lincRNAs during OZT was assessed using a Stratagene Mx3000P 

lightcycler. The total volume of reaction was 10 μl. The reaction was performed in total 
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volume of 10 µl and consisted of 5µl of 2x Maxima qPCR SYBR GREEN Mix 

(Fermentas), 2 µl of 2 μM primer mix (consisted of reverse and forward primer), 0.5 µl 

of cDNA from reverse transcription of individual GV, MII, 1C and 2C and 2.5 µl of 

water (Fermentas). The experiment was performed as follows: 95°C for 10 minutes to 

activate hot start polymerase, 95°C for 15 s for denaturing of template, 60°C for 20 s for 

primer annealing and synthesis phase was run at 72°C for 30s. Fluorescence was 

measured at the end of synthetic phase during each cycle of the PCR. Melting curve 

analysis was performed for detailed analysis of specificity. CT values were calculated by 

the original software of the Mx3000P.  

 

6.10 qPCR	data	processing	
 

CT value corresponds to the cycle, in which amount of fluorescence crosses an 

artificially defined treshold level. In Fluidigm™ Biomark experiment, final CT values 

were calculated using the original Biomark software (Fluidigm). In lincRNA and mESC 

experiments CT values were calculated by MxPro software (Stratagene). In mESC 

experiment, CT values were calculated by Light cycler 384 software (Roche). 

Expression of mESCs was normalized to expression of housekeeping gene Actb. Raw 

data (CT values) were used for visualization of maternal mRNA degradation. Heatmap 

analysis of early embryos and oocytes was performed using GeneX software (MultiD), 

which calculates similarity level between samples. Clustering analysis of embryonic 

stem cells was performed in MultiExperimentViewer software (MEV4) using 

Manhattan clustering method. Principal component analysis (PCA) was selected as a 

statistical method for single-cell datavisualization. PCA of early oocytes and early 

embryos was performed in R environment by using princomp and biplot command line. 

To perform PCA of maternal and zygotic genes Ade4TkGUI package was used, PCA of 

embryonic stem cells was performed in GeneX (MultiD). 

 

6.11 Identification	of	ncRNAs	
 

Affymetrix MOE430 microarray platform was chosen for analysis because it 

should detect many ncRNAs. The reason is that the Affymetrix MOE430 microarray 

design was based on transcripts annotated in the Unigene database, the first attempt to 
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systematically annotate mammalian transcriptomes (Miller et al, 1997) 

(http://www.ncbi.nlm.nih.gov/unigene). The Unique database clustered cloned 

transcripts and anonymous expressed short tags (ESTs). Thus, long ncRNAs would be 

included in Unigene if they were cloned. These transcripts were poorly annotated and 

stored in the database regardless to their protein coding coding potential. Affymetrix 

MOE430 arrays were used for ncRNAs for identification of oocyte-specific and zygotic 

ncRNAs (Zeng & Schultz, 2005). Next, Ensembl (version 55) genome annotation was 

used to associate each individual probeset with targeted corresponding transcript.  

 

Ensembl (version 53) database was used as an external reference for Affymetrix 

probes. Analysis was performed in R environment. Probes corresponding to intronic, 

intergenic, exonic and intronic regions in antisense orientation by full length of the 

probe were used for the analysis. Probes, which corresponded to exonic sequences in 

sense orientation were removed from original Affymetrix data (Affybatch) by using 

script written by Dr. Jenny Drnevich (University of Illinois). Probes, which flanked two 

regions or probesets, which had only one probe left after filtering, were removed from 

the analysis.  

 

6.12 Microarray	data	analysis	
 

Affymetrix microarray technology assigns expression based on intensity of 

fluorescence, which is generated after the probe interacts with the transcript. The 

intesity of the probeset is calculated by amount of intensity from all individual probes in 

the probeset. Affymetrix gene expression microarrays use probesets as main working 

units. Specificity of each probeset is determined by 12 oligonucleotides, called probes, 

each which is 25 nt long. Analysis of microarray data was performed in R environment 

by using bioconductor software. Microarray raw data (CEL files) were loaded in R. 

Data were normalized using GCRMA, signals from probesets and environment was 

corrected by using GC robust multiarray averaging (GCRMA) algorithm from GCRMA 

package to calibrate microarrays. AFFY package was used for loading and processing 

of the probesets. Rowttest algorithm from GENEFILTER package was used to 

determine differentially expressed genes and ncRNAs. Rowttest algorithm calculated 

intensity of differentially expressed probesets using comparison of between GV oocytes 
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and 2C embryos, and between 2C embryos and. 2C embryos treated with α-amanitin. 

Package ANNOTATE was used for annotation of Affymetrix probesets. Selection of 

zygotic/maternal genes in analysis of promoter regions was performed via 

Present/Absent/Marginal calling using MAS.5 package, because it statistically defines 

significant intensity of the probeset. Probesets, which were classified as present or 

absent at least by three of the replicates were taken for the analysis. Probesets classified 

as marginal were not included in the analysis. All necessary packages were downloaded 

and manipulated from bioconductor website (www.bioconductor.org). 
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7 Results	

 

7.1 Identification	of	non‐coding	RNAs	during	oocyte‐to‐zygote	

transition	(OZT)	

 

OZT is a highly organized process. Activity, processing, and localization of 

mRNAs of protein coding genes were shown to have positive and negative effects on 

OZT (Chen et al, 2011; Mutter et al, 1988; Oh et al, 1997). Since the role of long 

ncRNAs in OZT is unknown, I decided to explore which long ncRNAs might contribute 

to OZT. I took the advantage of Affymetrix MOE430 arrays to identify maternal and 

ZGA long ncRNAs. 

I expected to detect many ncRNAs, because Affymetrix designed probes based 

on clustered EST sequences deposited in the Unigene database (Miller et al, 1997). 

These sequences were included in Unigene regardless of their protein coding potential. 

Therefore it was likely that some of the probes would detect lincRNAs and long 

ncRNAs (refer to the 6.12 section). Complete reannotation of Affymetrix MOE430 

microarray probes based on the latest transcriptome annotation (Ensembl, version 55) 

revealed that 14491 probesets on the array detect ncRNAs. As expected, most (~ 70%) 

of the ncRNAs are detected by the MOE430B platform of all ncRNAs (Table 1). This is 

due to the fact that MOE430A was largely used for detecting known protein coding 

genes.  

 

 

Array All probesets ncRNAs probesets 

MOE430A 22690 2270 

MOE430B 22575 12221 

	

Table 1 Distribution of ncRNAs on Affymetrix MOE 430 platforms 

Affymetrix MOE430A chip contains 22690 probesets; 2270 of those detect ncRNAs. MOE430B contains 

22575 probesets a significant fraction of those (12221) detect ncRNAs. 
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Next, I focused on identifying ncRNAs, differentially expressed between GV 

oocytes and 2-cell embryos, as these could play a role in regulation of zygotic genome 

activation. I focused on two types of ncRNAs: maternal and ZGA. Maternal ncRNAs 

are expressed in the oocyte and become degraded in the embryo. ZGA ncRNAs are 

expressed in early embryos. Altogether, I identified 143 maternal ncRNAs, whose 

intensity declined 2-fold between GV oocyte and 2C embryos. I also found that 223 of 

ZGA ncRNAs were detected in 2C embryos and were sensitive to α-amanitin, 

suggesting that these ncRNAs are transcribed from the zygotic genome. Intensity for 

these ncRNAs declined at least 2-fold after the treatment with α-amanitin (Figure 8). 

 

 

 

 

Figure 8 Oocytes and embryos contain many ncRNAs 

Affymetrix detects many ncRNAs. Plot of probeset hybridisationintensity of ncRNAs between in 

germinal vesicle oocytes (GV) and 2-cell embryos (2C) reveals that 2-cell embryos generate more 

ncRNAs. Each dot represents hybridization intensity of one ncRNA. 
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7.1.1 	Maternal	and	ZGA	ncRNAs	during	OZT	
 

Further characterization of ncRNAs showed that most of the maternal ncRNAs are 

generated from intergenic regions (65%), whereas the least represented class of 

ncRNAs are derived from intronic sequences in antisense orientation (5%) (Figure 9). 

 

Majority ZGA ncRNAs is generated from intergenic (52%) and intron (42%) sequences.  

A small population of ncRNAs comes from exon (4%) and intronic (3%) sequences in 

antisense orientation (Figure 9). Interestingly, the comparison of maternal and ZGA 

profiles indicates that the absolute relative amounts of intronic sense ncRNAs raises 

20% in the oocytes to 41% in the 2-cell embryos. This could be caused by higher rate of 

transcription of protein coding genes in 2-cell embryos, which generates more nascent 

transcripts, which would also be detected by these probesets. Next, I selected two 

maternal ncRNAs and validated their maternal status by qPCR. Both selected ncRNAs 

were detected in ovarian oocytes (GV), ovulated oocytes (MII) and are present in the 

zygote (1C), but they are absent in 2-cell embryos, suggesting that these ncRNAs are 

truly maternal (Figure 10). Taken together, I have identified 143 oocyte-specific and 

221 ZGA long ncRNAs, which can potentially interfere with OZT and can contribute to 

the ZGA. The role of these ncRNAs during OZT and in the zygotic genome activation 

will be subject for future research. 

 

 

 

Figure 9 Distribution of maternal and ZGA ncRNAs 
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Analysis of ncRNA distribution in the genome probesets reveals that most of the maternal ncRNAs are 

generated from intergenic regions (65%), intronic regions (20%), exon antisense (10%) and intronic 

antisense (5%), respectively. Most of the ZGA ncRNAs are generated from intergenic regions (52%), 

intronic regions (41%). Only a small fraction of ncRNAs is generated from intronic antisense (3%) and 

exon antisense (4%) regions of known protein coding genes.  

 

 

 

 

 

 
 

 

Figure 10 Validation of maternal ncRNA expression 

Real-time PCR confirms that two lincRNAs, Bbip1 and 9230115E21 are maternal ncRNAs as they are 

present in GV, MII, 1C and disappear in 2C suggesting that these are maternally expressed ncRNAs. 

Hprt1 was used as endogenous control and should be expressed in all samples. GV stands for germinal 

vesicle, MII stands for metaphase II oocyte, 1C stands for 1-cell embryo and 2C stands for 2-cell embryo.  

 

7.2 Monitoring	of	gene	expression	during	oocyte‐to‐zygote	transition	
 

Oocyte-to-zygote transition is a complex process with a dynamic transcript 

turnover. Our laboratory needed an assay for simultaneous gene expression analysis in 

individual oocytes and early embryos. Such assay would provide several benefits. First, 

it would allow to monitor transcriptome dynamics during OZT. Second, it would allow 

to study genes of interest, including ncRNAs, during OZT. Third, this assay could be 

used for rapid phenotyping of experimentally manipulated preimplantation embryos. To 

develop the assay, I took the advantage of qPCR-based platform Fluidigm™, which 

allows for analyzing expression of 48 genes in 48 samples in a single experiment. 

Development of the assay consisted of three main steps: i) selection of genes, ii) 

optimalization of primers, iii) optimalization of the preamplification step. 

Hprt1 

Bbip1 

9230115E21 
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7.2.1 Gene	selection	
 

To develop a method for simple and rapid phenotyping of cells during OZT, I 

selected marker genes for different phases of OZT, such as maternal mRNA 

degradation, zygotic genome activation and pluripotency establishment during OZT. I 

focused on genes, which would be informative markers of one of the three categories. 

To select marker genes, I combined literature search with analysis of microarray data. 

I selected several maternal genes, which exhibited phenotype and had significant 

consequences on embryo development: Spin1, Zar1, Zp3, Nlrp5, Mos and Nobox. Zar1 

is a maternal factor, which is crucial for oocyte-to-zygote transition (Wu et al, 2003). 

Zar-/- females are infertile and embryos generated from these females are arrested at the 

1-cell stage (Wu et al, 2003). ZP3 is a gene expresed exclusively in mammalian 

oocytes. ZP3forms a receptor for interaction with the sperm and its depletion leads to 

100 % infertility (Litscher et al, 2009). Nlrp5 (Mater) is one of the first identified 

maternal effect genes in mammals (Tong et al, 2000). Female knockout of this gene are 

infertile and embryos arrest in the preimplantation development (Tong et al, 2000). 

The best characterized ZGA markers are Eif1a and two repetetive elements 

MuERV-L and IAP, whose expression increase several fold during ZGA (Davis & 

Schultz, 2000; Kigami et al, 2003; Svoboda et al, 2004). Other genes, such as Hdac1, 

YY1 and were selected based on published microarray data, generously provided by 

Zeng and her colleagues (Zeng & Schultz, 2005). For the complete list of genes 

included in the assay and their characterisation please refer to the Appendix. 

 

7.2.2 Primer	testing	&	Preamplification	
 

I tested the quality of primers using three independent templates (mESCs, 

NIH3T3, and ovarian templates), in which pluripotency, differentiation and maternal 

genes should be expressed (Figure 11). In addition to primer quality, I had to address 

the problem of sufficient template amounts. Despite numerous advantages, which 

Fluidigm™ system offers, it requires certain quality and quantity of the sample, which 

can be a challenge when it comes to single oocytes and single embryos, which contain 

up to hundreds of picograms (Piko & Clegg, 1982). To overcome this problem, I had to 

include a preamplification step, which would produce sufficient template to perform 

Fluidigm™ array experiment. I developed a protocol, which allows for an amplification 



41 
 

of 48 templates during one reaction by using a mix of forward and reverse primers of all 

tested genes.  

To test the protocol, I used three different templates– cDNA from embryonic 

stem cells, p19 cells and oocytes, and tested effects of preamplification. Selection of 

templates was based on genes in the assay. Oocyte template was selected to test 

monitoring of maternal genes. Templates from mESCs and p19 are used for testing the 

preamplification of pluripotent and zygotic transcripts in the assay. A small aliquot of 

each template for the preamplification reaction was used. Preamplification was primed 

by a primer mix consisting of all 48 genes (refer to the 8.7 section), the nature of 

amplification had therefore a similar pattern as a usual qPCR. The preamplified sample 

was then diluted ten times to reduce probability of primer dimers in the following 

qPCR. The overall behaviour of preamplification was tested for individual genes by 

qPCR method (Figure 12). 
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Figure 11 Primer test 

A heatmap generated from raw expression values of the genes used in the assay. Three different cDNAs 

were selected for testing. NIH3T3 cDNA was used as a negative control for pluripotency and some 

differentiation genes. ES cDNA was used for detecting pluripotency markers. Ovarian cDNA was used 

for testing the expression of maternal genes and some differentiation genes. Raw expression of the genes 

is indicated by the color gradient on the top of the heatmaps. Highly expressed genes are represented by 

orange color, whereas low-expressed genes are marked by blue color. Grey color represents genes, whose 
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expression was not detected as expected from their described roles. Analysis demonstrated that some 

genes are expressed in mES cells and are absent in NIH3T3.  

 
 

 

Figure 12 Efficiency of preamplification tested on p19, mESC and oocyte templates 

Preamplification was tested on 43 genes, included in the assay. The graph shows that the preamplification 

has different behavior for different genes, demonstrated by height of blue bars. The height of blue bar 

refers to efficiency of preamplification reaction and is calculated as a ΔCt difference between the mean of 

nonamplified and preamplified p19, mESCs and oocyte templates. Genes, for which preamplification 

efficiently increased number of template of molecules are demonstrated by higher bars. Error bars = 

standard error of the mean (SEM). 

 

 

Ideally, preamplification would show a constant increase of the amount of template 

molecules for all genes. This effect would be manifested by identical heights of blue 

bars. I observed that preamplification introduces certain amount of noise to the 

experiment, which varies between genes and which is most likely given by efficiency of 

primers (demonstrated by different heights of bars). However, there is also a second 

source of noise, which is caused by variability among templates, demonstrated by 

different length of error bars. Overall, the preamplification protocol has worked 

sufficiently well for the Fluidigm™ use.  
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Upon assessing preamplification noise per each gene in the assay, I proceeded to 

generating data by Fluidigm™ 48.48 PCR array. For the first experiment, I used 12 GV 

oocytes, 11 MII oocytes, 6 1-cell embryos, 11 2-cell embryos and 5 8-cell embryos. 

Preamplification was performed according to the optimized protocol and final results 

are shown in the Figure 13. One sample of 8-cell embryo, one sample of 2-cell embryo 

and two samples of GV oocytes were excluded from analysis because of poor quality. 

 

 

 

Figure 13 Analysis of gene expression in individual mouse oocytes and embryos 

Heatmap display of Fluidigm 48.48 array analysis of gene expression in oocytes and early embryos. Data 

from individual samples are shown in columns, whereas rows represent individual gene expression. Level 

of expression is indicated by colors. Highly expressed genes are marked by red color, whereas low-

expressed genes are shown by green color. The clustering analysis divides dataset into two groups. One is 

defined by presence of GV oocytes while 8-cell (8CC) and 2-cell (2CC) embryos are formed in the other 

one. Ovulated oocytes (MII) and 1-cell embryos (1CC) were found in both of the groups.  
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Clustering analysis separated the samples into two distinct groups – the first one 

consisted of all GV oocyte samples and many fertilized (1CC) and unfertilized eggs 

(MII). The second cluster consisted of early embryos and ovulated oocytes, 

demonstrating that transcriptome change between GV oocytes and embryos. This is 

likely caused by differences in maternal and embryonic transcriptome. The highest 

transcriptome similarity was found for 1-cell embryos and MII oocytes. As expected, 

maternal genes were found abundantly expressed in oocytes and declined in embryos, 

suggesting that the assay is suitable for maternal mRNA degradation (Figure 14). 

However, I observed that the assay poorly detected the activation of zygotic genes. 

 

 

 

 

Figure 14 Maternal mRNA degradation revealed by selected markers 

Three typical maternal transcripts were selected to illustrate dynamics of mRNA degradation during OZT. 

Individual stages of OZT are shown on x axis, whereas y axis represents raw expression (CT values) of the 

genes. Zp3, Mos and tPlat are abundantly present in GV premature oocytes (they have low CT values), 

their expression declines in 2C and 8C embryos (CT values increases). Surprisingly, the assay shows 

significant differences in expression between GV and MII oocytes for ZP3 and tPlat, which is in contrast 

with the microarray data. Please note that CT  values refer to geometrical amplification of the template, 

thus the lower the CT is, the more abundant the corresponding transcript is. Error bars = SEM 
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To further analyze the results, one can compare profiles of individual stages 

during OZT (Figure 15). As expected, the more distant the samples were in 

development, the higher difference in profiles was obtained. This demonstrates that the 

assay monitors dynamic changes of the transcriptome during OZT where zygotic 

genome activation is superimposed on maternal mRNA degradation. Notably, MII 

oocytes and 1-cell embryos were the most similar samples, suggesting that fertilization 

has minimal impact on degradation of marker genes.  

 

 

Figure 15 Transcriptome remodeling during OZT 

Plot of the averaged raw data from different stages shows that Fluidigm 48.48 assay reveals transcriptome 

remodeling during OZT. Similarity of the samples is manifested as diagonal distribution of expression 

data. Most similar were MII and 1C samples (marked by red). Likewise, distance between the most 

developmentally distant samples, GV oocytes and 8C embryos (marked by blue), is also expected because 

maternal mRNAs are degraded and transcription of embryonic genome is already initiated at 8-cell stage. 

 

 

Next, I performed statistical clustering of the data to have a more precise measure of 

similarity and difference among the data. I used principal component analysis (PCA), 

which was introduced as an alternative method for visualization of high-throughput 

data. By this method one can distribute samples according to the major variables in the 
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dataset and visualize the results in a user-friendly way (Figure 16). Plotting of the 

results showed three major groups of expression data in the dataset. 2-cell and 8-cell 

embryos represented one group, GV oocyte samples clustered separately. MII oocytes 

showed another cluster, creating a third group suggesting that these cells are in the 

transition process and have different signature from embryos and ovarian GV oocytes 

(Figure 16). These data show that a profile of 48 genes from samples yields enough 

information to allow for its classification into one of several biologically relevant 

categories. These results are consistent with data from recent study, which shows that 

embryos and oocytes have distinct transcriptome signatures (Tang et al, 2011).  

 

 
Figure 16 PCA reveals distinct signatures in embryos and oocytes 

PCA scoring suggests that there are three distinct patterns in the dataset. The most significant difference 

along the first experiment was between ovarian oocytes and cleaved embryos. This shows that 

transcriptomes of ovarian oocytes exhibited ovarian oocytes which scored in a separate cluster, whereas 

2-cell and 8-cell embryos resulted in clustered together in a distinct group suggesting that transcriptome 

between ovarian oocytes and early embryos have major differences. Ovulated oocytes (MII) scored in 

between ovarian oocytes and embryos indicating that these are already in transition process. Interestingly, 

ovulated oocytes exhibited a high level of variability. 1-cell embryos were excluded from the analysis. 
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Next, I compared my results with data from microarrays. I used the data from 

Affymetrix MOE430 microarrays, which monitor gene expression during OZT (Zeng et 

al., 2004). Relative gene expression of maternal genes was calculated from GV oocyte 

and 2-cell embryo data. The 2-cell embryos were selected, because at this stage 

maternal mRNA should be largely degraded. The results show good concordance of 

Fluidigm™ and Affymetrix data (Figure 17). Most of the genes (represented by dots in 

the Figure 17) scored in the same quadrant of the plot, suggesting that Fluidigm™ can 

be a method-of-choice for maternal mRNA degradation. Some genes showed 

discrepancy between Fluidigm™ and Affymetrix microarrays. This discrepancy might 

be caused by different priming of the reverse transcription in both experiments. Reverse 

transcription in Fludigm™ experiment was primed by random hexamer primers, 

whereas oligo(dT) were used for priming in Affymetrix experiment. These differences 

in cDNA priming may cause discrepancies because deadenylation will effect oligo(dT) 

primed mRNAs during reverse transcription.  
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Figure 17 Maternal mRNA degradation revealed by microarrays and qPCR 

arrays 

Comparison of monitoring of expression of maternal genes by qPCR Fluidigm™ platform and 

Affymetrix microarrays on genes. Results show a general concordance as well as a clear difference in 

dynamic ranges of mRNA levels measured by both platforms. Since most of the genes (represented by 

dots) locate into upper-right and lower-left quadrants data generated by Fluidigm™ are comparable with 

microarray platform for monitoring of maternal degradation. The fold-change of maternal genes from 

Fluidigm™ was normalized to Gapdh expression. Similarly, fold-change of Affymetrix data was 

calculated by normalization of intensity of probeset hybridization intensity to basal Gapdh intensity.  
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7.3 Analysis	of	pluripotency	and	differentiation	in	ESCs	
 

ESCs can be cultured in vitro in undifferentiated state. Today, they are being 

used for studying pluripotency and differentiation by RNAi and by small inhibitors. To 

analyze gene expression in ESCs on large-scale, one can use microarray platform or 

NGS. These experiments are, however, costly. Therefore, our laboratory was looking 

for a simpler and cheaper alternative. I decided to develop a qPCR array assay for 

analysis of transcriptome in ESCs. The assay would use 48 diagnostic markers for 

pluripotency and differentiation analyzed on Fluidigm 48.48 array. Development of the 

assay consisted of: i) gene selection and ii) primer testing. 

 

To develop the assay for gene expression in ESCs, I had to select relevant 

pluripotency and differentiation markers. I used the markers, which were already used 

in the literature (Guo et al, 2010; Chen et al, 2008). Guo and his colleagues identified 

and tested marker genes associated with pluripotency establishment and differentiation 

during preimplantation development in mouse (Guo et al., 2010). As the assay is based 

on qPCR, I designed and tested the primers for the selected marker genes (refer to the 

section 8.2). Once I finalized the panel of marker genes, I continued to test reliability of 

the assay by analyzing expression of 48 genes in ESCs. We took the advantage of a 

collaboration with the group of Domingos Henrique from Portugal, who provided 

samples of ESCs cultured under different conditions (Table 2). 

 

Sample Condition 
1 and 11 Cultured in GMEM and LIF, expressing endogenous NANOG 
2 and 12 Cultured in GMEM and LIF, low expression of NANOG 
3 and 13 Cultured in GMEM and LIF, intermediate expression of NANOG 
4 and 14 Cultured in GMEM and LIF, high expression of NANOG 
5 and 15 Cultured in GMEM in the absence of LIF for 48h 
6 and 16 Cultured in GMEM and LIF 
7 and 17 Cultured with ERK inhibitors 1:10 
8 and 18 Cultured with ERK inhibitors 1:5 
9 and 19 Cultured with ERK inhibitors 1:2 
10 and 20 Cultured in iStem medium (2i inhibitors) 

  

Table 2 

An overview of ECSc cultured under different conditions 
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We were particularly interested in quality assessment of samples cultured in the the 

iStem medium, in the samples cultured with presence/absence of LIF, and in samples 

with low/high protein level of NANOG. To explore whether the assay monitors 

differences in these samples, we performed heatmap analysis (Figure 18). The 

clustering analysis divided samples into three groups. We observed that samples with 

low and high protein expression of NANOG resulted in two distinct clusters. Samples 

with high NANOG (number 4) clustered together with samples cultured in iStem 

medium (number 10), indicating that higher concentration of NANOG promotes 

pluripotency program in ESCs. We observed significant transcriptome changes in 

samples cultured in the absence of LIF (number 5). In these samples expression of 

Stat3, Esrrb, Klf4, Nanog, Rex1 was reduced in comparison with samples cultured with 

LIF (number 6). Conversely, LIF removal promoted expression of Fgf5, Bcl2, Tcfap2a 

and Gata3. This suggests that LIF removal itself has negative effects on pluripotency 

and initiates differentiation program. 

 

 
Figure 18 Transcriptome analysis in ESCs cultured under different conditions 
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The Fluidigm™ assay accurately monitors differences in the expression of pluripotency and 

differentiation marker genes in samples cultured under different conditions. The heatmap shows 

expression based on color gradient. Green color represents low expressed genes, whereas red color 

represents genes with high expression. ESCs cultured in iStem medium (number 10) and cells with high 

protein level of NANOG (number 4) resulted separated from embryonic stem cells cultured in the 

presence/absence LIF in medium (number 6 and 5, respectively) and cells, expressing low protein level of 

NANOG (number 2). The analysis shows that LIF removal promotes expression of differentiation genes, 

such as Brachury T and Gata3, which is demonstrated by change of color towards the red color. In 

contrast, LIF removal suppresses expression of pluripotency genes, such as Nanog, Klf4 and Stat3. This 

change is manifested as a color change towards the green color. The expression of all genes was 

normalized to the endogenous Actb. The expression was calculated as the mean from two biological 

samples. 

 

 

 

 

Results from PCA from the first experiment showed that biological duplicates 

(here denoted by one digit and two digit pairs, e.g. 5 and 15) shared highly similar 

pattern of gene expression (Figure 19). Interestingly, the distribution of the points in the 

figure reveals that samples, which were cultured in the absence of LIF (S5 and S15) 

have distinct signature from samples, which were cultured in the presence of LIF (S6 

and S16). This suggests LIF removal have positive effect on initiation of differentiation. 

In contrast, samples cultured in a pluripotent medium iStem (S10 and S20) ended in the 

opposite direction than S5 and S15, indicating that iStem medium keeps cells in a truly 

pluripotent state. Apparently, the distribution of samples along the x axis can serve for 

monitoring of pluripotency in analyzed samples. Samples, which resulted on the right in 

PCA are more pluripotent that samples on the left. We conclude that the assay works 

and is prepared for monitoring the quality of ESCs and culturing conditions of ESCs. 
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Figure 19 PCA reveals differences in ESCs cultured under different conditions 

Results from Fluidigm assay reveals distribution along PC1 reflects pluripotent potential of analyzed 

cells. Cells, which resulted on the right side are more pluripotent than cells, which resulted on the left.  

Cells cultured in the absence of LIF (S5,S15) resulted in the opposite direction than ESCs cultured with 

LIF (S6, S16). 

 

 

 

 

 

 

 
 

 

  

Pluripotency 
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8 Discussion:	
 

During my thesis I applied high-throughput methods to analyze early events during 

activation of the pluripotent zygotic program during mammalian development. My 

thesis was divided into two parts: identification of ncRNAs during OZT and analysis of 

transcriptome dynamics during OZT and in ESCs.  

 

8.1 ncRNAs	during	OZT	
 

Taken together, I have identified 143 putative maternal ncRNAs and 223 ZGA 

ncRNAs by reannotation of Affymetrix MOE430 microarrays. The identification of 

ncRNAs opens questions and directions for the future research. First, it is necessary to 

evaluate how much of the data are computational artifacts. The easiest way how to 

validate the data would be via qPCR method. So far, I verified two differentially 

expressed maternal lincRNAs.  

Second, it is important to elucidate how much information is encoded by these 

ncRNAs and what is the actual function of these ncRNAs. While the function of long 

ncRNAs during OZT is unknown, I speculate that they can interfere with OZT by i) 

promoting of degradation of maternal mRNAs, ii) contributing to the activation of 

zygotic program. There is evidence that some human lincRNAs can interact and 

promote degradation of a mRNA (Gong & Maquat, 2011). It is unknown whether a 

similar mechanism operates in mice for degradation of maternal mRNAs during OZT.  

Microarray analysis revealed that 2-cell embryos contain 2607 active genes, 

which are transcribed from mouse genome (Zeng & Schultz, 2005). My data suggest 

that 223 (9%) of these transcripts do not encode any protein, suggesting that these 

ncRNAs might contribute to ZGA. There is increasing evidence that ncRNAs, such as 

lincRNAs, are implicated in initiation of transcription of other genes (Orom et al, 2010; 

Sessa et al, 2007). In addition, the knockout studies in embryonic stem cells indicate 

that some lincRNA can play an essential role in the circuitry controlling pluripotency 

and differentiation (Guttman et al, 2011). While embryonic stem cells are 

developmentally related to 2-cell embryos, what is the actual function of long ncRNAs 

on ZGA remains elusive. To address this question it would be necessary to apply loss-

of-function approach. The simplest strategy would be based on obtaining specific 

siRNAs and injecting them into oocyte or 1-cell embryo. It would also be worth of 
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further investigation of the target genes, which might be activated by lincRNAs. To 

address this question, one could compare nucleotide sequences of lincRNAs and regions 

upstream of lincRNA TSS. In addition, it is becoming evident that mammalian cells 

contain large fraction of ncRNAs, which come from permissive transcription and from 

splicing events (Valen et al, 2011). Therefore it is important to assess how many 

ncRNAs are transcriptional noise. 

There is evidence that some long ncRNAs promote generation of human iPS 

cells (Loewer et al, 2010). Thus, it would be interesting to test what is the direct effect 

of maternal lincRNAs on reprogramming of mouse somatic cells into iPSCs. One could 

test this ability by transfecting somatic cells, such as MEFs, by vector bearing lincRNAs 

sequences under conditions of iPSC production.  

 

8.2 Gene	expression	analysis	during	OZT	and	mESCs	
 

My experimental work largely focused on development of assay for rapid 

phenotyping of mouse oocytes and embryos by using a novel real-time PCR-based 

platform Fluidigm™. The assay uses 48 markers for maternal mRNA degradation, 

zygotic genome activation and pluripotency establishment and could be used for 

distinguishing between individual stages during OZT. Based on the results, I conclude 

that the assay allows for monitoring a signature of maternal mRNA degradation in 

individual cells. My results are consistent with the data from a study, in which authors 

employed NGS and PCA for cells during OZT (Tang et al, 2011). However, it seems 

that the Fluidigm™ assay is suboptimal for detailed analysis of ZGA and pluripotency 

establishment in the early embryos. One of the possible explanation might be a low 

amount of RNA in 2-cell embryos, which is significantly reduced after waves of 

maternal degradation (Piko & Clegg, 1982). Such a low amount of mRNA would 

require stronger preamplification, which introduces more noise into the results. 

Moreover, increased preamplification simultaneously disturbs the analysis of highly-

expressed genes which become out-of-range for detection by the Fluidigm™. Therefore, 

the system is suboptimal for detailed analysis of low-expressed genes.  

Another possible explanation why the assay does not monitor ZGA properly 

could be suboptimal selection of ZGA markers. Our panel of ZGA genes contained well 

known markers of ZGA, such as murine endogenous retrovirus-L (MuERV-L), 

intracisternal A particle (IAP) (Kigami et al, 2003; Svoboda et al, 2004), Yin Yan 1 
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(YY1), eukaryotic translation initiation factor 1A (Eif1a) and histon deacetylase 1 

(Hdac1). According to our data, MuERV-L and IAP did not turn out to be reliable 

markers of ZGA, as they seemed to be expressed across all samples, which is in straight 

contrast with published data (Kigami et al, 2003; Svoboda et al, 2004). Therefore future 

efforts should aim at finding better ZGA-specific markers. 

. 

In future experiments, it would be interesting to analyze each of the individual 

cells in the early embryos and to determine the level of pluripotency and lineage 

commitment in individual cells during OZT and blastocyst formation. These findings 

would provide novel insights into understanding, when the pluripotency network is built 

up during development and also at what point individual cells start to differentiate. It 

would also provide a toolkit for analysis of ncRNAs, transcription factors and signaling 

pathways as one could treat embryos by various inhibitors and siRNAs. 

To my knowledge, there is one recent publication studying lineage commitment 

and coherency of pluripotent network in individual cells in morula and blastocyst using 

Fluidigm™ (Guo et al, 2010). The authors applied Fluidigm for detailed analysis of 

three distinct population of cells in blastocyst. While, this study brings new light in the 

field, an important question how and when pluripotency network starts being built up in 

earlier stages of embryogenesis remains unanswered. 

 

Employing the assay for quality monitoring of embryonic stem cells suggested 

that the assay reflects differences in transcriptomes of ESCs cultured in different media. 

Further characterization of our data suggests that NANOG promotes pluripotency state 

of the ESCs and expression of Nanog correlates with the expression of pluripotency 

genes, such as Oct4, Sox2 and Esrrb. As expected, we observed that the absence of LIF 

in the culturing media initiates differentiation program. This was manifested by 

increased of expression of differentiation markers Gata4 and Tcfap2a. LIF removal 

simultaneously inhibited transcription of pluripotency genes, such as Stat3, Esrrb and 

Klf4. This data are in line with the study, in which authors tested the effect of LIF 

removal. Their conclusion was that Stat3 is the main effector of LIF-mediated pathway 

in murine ESCs (Cartwright et al, 2005). To our knowledge, we were the first group, 

which developed a qPCR array assay for quality assessment of murine ESCs.  
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8.3 Outlook	
 

Understanding natural formation of ESCs as well as generation of induced 

pluripotent stem cells are of a high priority. Every novel factor, which improves 

efficiency of reprogramming and pluripotency maintenance can have a deep impact on 

future treatment of patients suffering from devastating diseases. Implication of induced 

pluripotent stem cells holds great promises in next generation of therapy, as one can 

imagine that it would be possible to obtain pluripotent stem cells from any patient’s 

organ. Finally, these newly reprogrammed cells could be adjusted to patients, where 

they could replace not functional cells. This approach would revolutionize modern 

therapy as patient’s would not have to wait long period of time for suitable donor of 

organs. And from point of immunology, patients would not have to use suppressive 

therapeutics to prevent reaction against host organ. 
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Conclusions: 
 

 I have identified 143 maternal and 223 ZGA ncRNAs using Affymetrix 

MOE430 microarray. These ncRNAs might contribute to activation of zygotic 

program in the mouse. 

 

 I have developed an assay for monitoring of oocyte-to-zygote transition. The 

assay can be used for phenotyping of individual cells during oocyte-to-zygote 

transition 

 

 I have developed an assay for monitoring lineage commitment and pluripotency 

in mouse embryonic stem cells. 
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9 Appendix	
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*Blue typing marks genes, which were used in Guo et al., 2010 publication 
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