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ABSTRACT  

 

Charles University in Prague 

Faculty of Pharmacy in Hradec Králové 

Department of Pharmacology and Toxicology 

 

Candidate:    Markéta Syslová 

Supervisors: Prof. Keiko Funa, Erik Johansson, Ph.D., Doc. 

PharmDr. Petr Pávek, Ph.D. 

Title of diploma thesis: Regulation of TLX expression by p53 family 

members 

 

The p53 mutation is associated with poor therapeutic response and prognosis, being 

observed in almost 60% of human cancers. p53 is kept at low steady-state levels in the 

absence of cellular stress. In response to various stress, p53 becomes activated. It binds 

DNA in a sequence specific manner to activate the transcription of a number of genes 

mostly belonging to cell cycle inhibitors and apoptosis inducers. When p53 is mutated it 

cannot fulfil its function and regulate target genes. p73, analogue of p53, has two 

different isoforms with two different functions. In neuroblastoma, TAp73, as well as 

p53, is infrequently mutated but overexpression of DNp73 is connected with poor 

prognosis. 

 

TLX (also called NR2E1) is an orphan nuclear receptor, a member of a highly 

conserved family in both vertebrates and invertebrates. TLX is an essential 

transcriptional regulator of maintenance and self-renewal of neural stem cells. 

 

In this study I investigated if there is a functional link between p53 family members and 

TLX. In this thesis is showed that p53 binds the TLX promoter and regulates its activity 

in both cell lines we tested. These results suggest that TLX interacts with the p53 

signalling pathway and is able to regulate the activity of postnatal neural stem cells. 

 

 



  

ABSTRAKT 

 

Karlova Universita v Praze 

Farmaceutická fakulta v Hradci Králové 

Katedra farmakologie a toxikologie 

 

Kandidát:    Markéta Syslová 

Vedoucí diplomové práce: Prof. Keiko Funa, Erik Johasson, Ph.D., Doc. 

PharmDr. Petr Pávek, Ph.D. 

Téma diplomové práce:  Regulace exprese TLX proteiny rodiny p53 

 

Mutace proteinu p53 souvisí se špatnou terapeutickou odpovědí a prognózou. Tato 

mutace se vyskytuje téměř v 60 % lidských nádorů. V nepřítomnosti buněčného stresu 

je hladina p53 udržována na ustálené nízké hodnotě. V odpovědi na buněčný stres se 

p53 stává aktivním a váže se ke specifickým sekvencím DNA. Tím aktivuje transkripci 

řady genů, často patřích k inhibitorům buněčného cyklu a induktorům apoptózy. Pokud 

je však p53 mutovaný, nemůže plnit svou fuknci a regulovat tak cílové geny. p73, 

analog p53, má dvě odlišné izoformy s odlišnými funkcemi. Zatímco TAp73, stejně 

jako p53, se u pacientů s neuroblastomem nachází v mutované podobě velmi zřídka, 

mutace DNp73 je spojena se špatnou prognózou. 

 

TLX (take nazývaný NR2E1) je sirotčí jaderný receptor. Je člen vysoce konzervované 

rodiny protein přítomných u obratlovců a bezobratlých. TLX je nezbytný transkripční 

regulátor zachování a sebeobnovy nervových kmenových buněk. 

 

Tato studie zkoumala, zda je funkční spojení mezi členy rodiny protein p53 a TLX. 

Prokázali jsme, že p53 se váže na TLX promotorovou oblast a reguluje jeho aktivitu 

v obou testovaných buněčných liniích. Naše výsledky naznačují, že TLX ovlivňuje 

signální dráhy proteinu p53 a je schopen regulovat aktivitu postnatálních nervových 

kmenových buněk. 
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1. ABBREVIATIONS 
 
AD1  acidic N-terminus transcription activation domain 

AD2  activation domain 

BD  binding domain 

ChIP  chromatin immunoprecipitation 

DBD  central binding core domain 

DG  dental gyrus 

DMEM Dulbecco´s modified Eagle´s medium 

F  phenylalanine 

FBS  fetal bovine serum 

GAPDH glyceraldehyde-3-phosphate dehydrogenase 

H  histidine 

HDAC  histone deacetylase 

NB  neuroblastoma 

NLS   nuclear localization signalling domain 

NSCs  neural stem cells 

OD  homo-oligomerization domain 

PBS  phosphate buffered saline 

PRD  proline rich domain 

SAM  sterile alpha motif 

SDS  sodium dodecyl sulfate 

SVZ  subventricular zone 

TAD  an acidic N-terminus transcription activation domain 

TBS  tris buffered saline 

TLX  tailless 

wT  wild type 
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2. INTRODUCTION 
 

2.1. Neuroblastoma 

Neuroblastoma (NB) is a type of cancer that most often affects children. Neuroblastoma 

occurs when immature nerve cells called neuroblasts become abnormal and multiply 

uncontrollably to form a tumor (Internet 1). NB is a disease of the sympaticoadrenal 

lineage of the neural crest, and therefore tumors can develop anywhere in the 

sympathetic nervous system. Most primary tumors (65%) occur within the abdomen, 

with at least half of these arising in the adrenal medulla. Other common sites of disease 

include the neck, chest, and pelvis (Brodeur et al. 2006). Neuroblastoma can spread 

(metastasize) to other parts of the body such as the bones, liver, or skin (Internet 1). 

Neuroblastoma is the most common and deadly extracranial solid childhood 

malignancy, accounting for about 15% of all childhood tumor-related deaths (Brodeur 

et al. 2006). There are about 650 new cases of neuroblastoma every year in the United 

States. This number has remained about the same for many years. The incidence rate is 

approximately 7.6 cases per million per year for children aged 0-19 years, 9.5 per 

million per year for children aged 0-14 (Internet 2). 

 

The average age at the time of diagnosis is about 1 to 2 years. In rare cases, 

neuroblastoma is detected by ultrasound even before birth. Nearly 90% of cases are 

diagnosed by age 5. Neuroblastoma is extremely rare in people older than 10 years 

(Internet 3). 

2.2. TLX 

TLX is a member of the tailless class of orphan nuclear receptors, a highly conserved 

family in both vertebrates and invertebrates, suggesting this family's importance during 

evolution. Nuclear receptors form a large family of transcription factors that are 

evolutionary conserved in species across the metazoans (Mangelsdorf et al. 1995) and 

have important roles in several biological processes, including cell proliferation, 

differentiation and cellular homeostasis (Evans 2005). The properties of many nuclear 

receptors are regulated by small hydrophobic molecules such as steroid hormone and by 

metabolites like oxysterols, bile and fatty acids. Others are called ‘orphan nuclear 

receptors’ because their corresponding ligands have not been identified (Gui et al 2011). 
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The orphan nuclear receptor TLX (also called NR2E1) is an essential transcriptional 

regulator of neural stem cell maintenance and self-renewal in the adult brain (Shi et al. 

2004). Neural stem cells (NSCs) continuously produce new neurons in postnatal brains. 

Niu et al. have showed that nuclear receptor TLX controls the activation status of 

postnatal NSCs in mice (Niu et al. 2011). Self-renewal and differentiation are two 

fundamental properties of stem cells. Neural stem cells are a subset of undifferentiated 

precursors that retain the ability to proliferate and self-renewal, and have the capacity to 

give rise to both neuronal and glial lineages (McKay et al 1997, Alvarez-Buylla et al. 

1998, Gage et al. 1998, Weiss & Kooy 1998). Stem cell self-renewal is regulated by the 

dynamic interplay between transcriptional factors, epigenetic control, microRNA 

(miRNA) regulators, and cell-intrinsic signals from the microenvironment in which 

stem cells reside (Shi et al. 2008; Qu & Shi 2009). Many transcriptional factors and 

cell-intrinsic regulators, including TLX, control self-renewal, differentiation and neural 

stem cell maintenance in both the adult and embryonic nervous system. 

 

TLX is expressed in the periventricular neurogenic zone during mouse embryonic 

development. TLX expression in the mouse starts at embryonic day 8 (E8), peaks 

around E12.5, and then declines from E13.5 through neonate. The expression of TLX 

increases after birth, with high levels detected in the adult brain (Monaghan et al. 1995). 

TLX knockout mice are viable and appear normal at birth. However, mature TLX 

knockout mice have significantly reduced cerebral hemispheres and specific anatomical 

deficits in the cortex and the limbic system (Chiang & Evans 1997, Monaghan et al. 

1995, 1997). TLX mutant mice also display severe retinopathies and exhibit increased 

aggressiveness and reduced learning abilities (reviewed by Gui et al. 2010 and Shi et al. 

2008). Late-developing structures such as the upper cortical layers and the hippocampal 

dentate gyrus (DG) are reduced in size. These phenotypic changes indicate that TLX 

has an important role for brain development in the young postnatal stage (Liu et al. 

2008) and plays a critical role in regulating the development of the visual and nervous 

system (Gui et al. 2010). 

 

It has recently been shown that TLX is expressed exclusively in astrocyte-like B cells in 

the adult subventricular zone (SVZ), and recognized to be multipotent neural stem cells. 

Thus, the TLX promoter is a useful tool to introduce genetic modification specifically 
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into neural stem cells (NSCs). In fact, inactivation of the TLX gene in the adult SVZ 

lead to loss of the self-renewal ability of adult NSCs (Liu et al. 2008). 

The subvenctricular zone of the lateral ventricle and the subgranular zone (SGZ) of the 

DG are the largest germinal zones of sustained neurogenesis during adulthood in the 

mammalian central nervous system (Gage 2000, Alvarez-Buylla and Garcia-Verdugo 

2002). 

 

The function of TLX is largely thought to prevent precocious differentiation of NCSs 

into mature neurons of glial cells during development (reviewed by Niu et al. 2011). 

TLX is essential for NSC proliferation and neurogenesis in the post natal brain (Shi et 

al. 2004, Liu et al. 2008, Zhang et al. 2008). The fate of stem cells lacking TLX was not 

clear, but it was thought that they undergo spontaneous differentiation into mature 

astrocytes and thus deplete NSCs (Shi et al. 2004). In contrast, Niu et al. showed that 

deletion of TLX during embryogenesis does not lead to a depletion of cells that have 

characteristic of NSCs or result in spontaneous differentiation on NSCs into mature 

astrocytes at the time points examined (Niu et al. 2011). Their data indicate that a loss 

of TLX function first result in age-dependent decrease of active proliferation, followed 

by an exit of cell cycle indicated by a non-licensed state.  

 

TLX genetically interacts with p53 signalling pathway in postnatal NSCs. This is 

supported by the significantly upregulated expression of p21/Cdkn1a, p53 induced 

cyclin-dependent kinase inhibitor in TLX-null stem cells, indicating a direct link 

between p21 expression and TLX function (Niu et al. 2011). It has also been shown that 

TLX directly binds to the promoter region of p21 (Sun et al. 2007). It is well established 

that the expression of p21 is under the direct control of the p53 signalling pathway in 

most cellular contexts (Niu et al. 2011). Deletion of p53 alone resulted in a small but 

significant increase of proliferating cells, which is consistent with a demonstrated role 

of p53 in adult NSCs (Meletis et al. 2006). Taken together, these data indicate that TLX 

genetically interacts with the p53 signalling pathway to tightly regulate the activity of 

postnatal NSCs (Niu et al. 2011). 

 

Niu and collaborators showed for the first time that expressing cells generate both 

activated and nonproliferative postnatal NSCs and that TLX is required for NSC 

activation and positioning in the neurogenic niche. TLX genetically interacts with the 
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p53 pathway to control NSC activation (Fig. 1). It should also be noted in addition to 

p53 signalling that TLX controls the expression of a plethora of other genes that may 

play important roles in the regulation of NSC activation (Niu et al. 2011). 

. 

 
Fig.1 TLX-expressing cells generate both activated and inactivated postnatal NSC, which are identified 

by marker expression. TLX is required for inactive NSC to proliferate by modulating p21 expression in 

a p53-dependent manner. Besides p53 signalling, TLX also modulates many other signalling pathways, 

which may contribute to the regulation of NSC activation (adapted from Niu et al. 2011). 

 

It was recently reported that TLX is overexpressed in various glioma cell lines and 

glioma stem cells, and that its expression in glioma patients is correlated with poor 

prognosis (Park et al. 2010). TLX is also expressed in the retina where it is a key factor 

in retinal development and essential for vision (Yu et al. 2000). 

 

2.3. TLX structure 

Being one of nuclear receptor, as pointed out, TLX contains several functional domains, 

which are characteristic for members of nuclear receptor family such as a DNA-binding 

domain (DBD) and a conserved ligand-binding domain (LBD). The human and mouse 

TLX are highly conserved (Fig 2) and are homologous with Drosophila tailless. TLX 

consensus DNA binding sequence is 5´-AAGTCA-3´. 
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Fig. 2 Structure-function domains and sequence homology of human (h), mouse (m) TLX and (dTLL). 

(adapted from Shi 2007). 

 

Nuclear receptors are ligand-dependent transcription factors that regulate the expression 

of genes critical for a variety of biological processes. Nuclear receptors carry out 

transcriptional functions through the recruitment of positive and negative regulatory 

proteins, referred to as coactivators and corepressors. One mechanism underlying the 

repression activity of nuclear receptors is through the recruitment of histone deacetylase 

(HDAC) complexes (Sun et al. 2007). Sun et al. also showed that TLX interacts with 

a set of HDACs in neural stem cells. TLX recruits these HDACs to its target genes to 

repress their expression. 

2.4. p53 family members 

The p53 tumor-suppressor plays a critical role in the prevention of human cancer. In the 

absence of cellular stress, the p53 protein is maintained at low steady-state levels and 

exerts very little, if any, effect on cell fate. However, in response to various types of 

stress, p53 becomes activated; this is reflected in elevated protein levels, as well as 

augmented biochemical capabilities. As a consequence of p53 activation, cells can 

undergo marked phenotypic changes, ranging from increased DNA repair to senescence 

and apoptosis (Oren 2003). The p53 gene is located on the short arm of chromosome 17 

(reviewed Levine et al. 1991). 

 

The p53 protein has a biological function as a G1 and G2 checkpoint control for DNA 

damage (Lane 1992) and also regulates the expression of a large number of target genes 

(Vogelstain et al 2000). 

 
2. 4. 1 Structure 

 
The p53 protein is composed of 393 residues and contains several structural domains 

(see Fig. 3). 

An acidic N-terminus transcription-activation domain (TAD, AD1) has 42 amino acids 

and interacts with the basal transcriptional machinery in positively regulating gene 
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expression. Amino acids 13-23 in the p53 protein are identical in a number of diverse 

species. The p53 amino acids F19, L22, and W23 have been shown to be required for 

transcriptional activation by the protein in vivo (Lin et al. 1995). It has been shown that 

p53 uses a hydrophobic interface in its N-terminal domain to interact with the 

transcriptional machinery of the cell and its negative regulators (Kussie et al. 1996). 

Activation domain 2 (AD2) was identified and characterized for p53-dependent 

apoptosis. 

Proline rich domain (PRD) of human p53 is required for induction of apoptosis, 

transcriptional repression, reactive oxygen species (ROS) production and 

transactivation. A p53 mutant lacking the proline-rich domain cannot repress a series of 

promoters efficiently compared with wTp53 (Venot et al. 1998). 

Central DNA-binding core domain (DBD) is localized between amino acid residues 

102 and 292. It is a protease-resistant and independently folded domain containing Zn2+ 

ion that is required for its sequence specific DNA-binding activity. This domain folds 

into a four-stranded and five-stranded anti-parallel β sheet that in turn is a scaffold for 

two α-helical loops that interact directly with the DNA (Cho et al. 1994). 

Nuclear localization signalling domain (NLS) within residues 316 to 325. 

Homo-oligomerisation domain (OD) within residues 334 to 356. 

C-terminal basic domain (BD) has 26 amino acids and is suggested to be an important 

regulatory domain. Residues 353 to 392. 

 
AD1 AD2 PRD DBD NLS OD BD 

 
Fig. 3 Schematic structure of p53. 
 

The native p53 is a tetramer in solution, and amino acid residues 324-355 are required 

for this oligomerization of the protein (Jeffrey et al. 1995). A 3-D model of the tetramer 

(Fig. 4) is best described as a dimer of dimers held together principally by the β-sheet 

structure in addition to helix-helix interaction (Clore et al. 1994). In vitro, 

tetramerization is not essential for DNA binding, and the isolated core domain can bind 

DNA with approximately one-fifth the affinity of intact p53 (Pavletich et al 1993). In 

vivo, however, oligomerization-deficient p53 cannot efficiently transactivate from 

genomic p53 binding sites in transient transfection assays (Pietenpol et al. 1994), and it 

cannot suppress the growth of carcinoma cell lines. Many mutants of p53 exert their 

effects through a dominant negative mechanism whereby heteromers of wild-type and 
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mutant p53 no longer bind DNA sequence specifically or bind with much reduced 

affinity. 

 

 

Fig. 4 Schematic structure of the oligomerization domain of p53 (adapted from Clore et al. 1994). 

 

The tumor suppressor p53 is the most commonly mutated gene in human cancers 

(Olivier et al. 2002). More than 90% of the missense mutations in p53 reside in the 

central DNA-binding core domain, and these mutations fall into two classes. Mutations 

in amino acid residues such as R248 and R273, the two most frequently altered residues 

in the protein, result in defective contacts with the DNA and loss of the ability of p53 to 

act as a transcriptional factor. A second class of p53 mutations disrupts the structural 

basis of the β-sheet and the loop-sheet helix motif that acts as a scaffold in this domain. 

More than 40% of the missense mutations are localized to residues R175, G245, R248, 

R249, R273, and R282, which play a role in the structural integrity of this domain or the 

DNA contact sites directly (Cho et al. 1994, Hollstein et al. 1994). 

 

Normal p53 acts as a ‘molecular policeman’ monitoring the integrity of the genome. If 

DNA is damaged, p53 accumulates and switches off replications to allow extra time for 

its repair. If the repair fails, p53 may trigger cell suicide by apoptosis (Yonish-Rouach 

et al. 1991). Tumor cells, in which p53 is inactivated by mutation or by binding to host 

or viral proteins, cannot carry out this arrest. They are therefore genetically less stable 

and will accumulate mutations and chromosomal rearrangements at an increased rate, 

leading to rapid selection of malignant clones (Lane 1992). Wild type (normal) p53 is 

accumulated in response to cellular stress, such as DNA damage, oncogene activation, 

hypoxia, and telomere erosion, and triggers several biological responses, including cell 

cycle arrest, apoptosis, senescence, and differentiation (Vousden et al. 2002) (Fig. 5). In 

effect, p53 prevents cells from entering or progressing through the cell cycle under 
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conditions that could generate or perpetuate DNA damage. As the inactivation or 

activation of p53 sets up life or death decisions, an exquisite control mechanism has 

evolved to prevent its errant activation at the same time as enabling rapid stress 

responses (Toledo et al. 2006). 

 

 

Fig. 5 The p53 signalling pathway and strategies for its restoration in tumors (adapted from Bykov et al. 

2003). 

 

The three members of the p53 family share very significant homology both at the 

genomic and at the protein level (Fig. 6). Each contains a TAD, a DNA-binding domain 

and an oligomerization domain. p63 and p73, but not p53, contain long C-termini. The 

determination of the three-dimensional solution structure of the p63 and p73 alpha 

isoforms C-terminus has shown that this region contains a sterile alpha motif (SAM), 

which is a protein-protein interaction domain (Chi et al. 1999). 

 

Despite structure homology and substantial sequence among the p53 family, they show 

significant functional divergence. p53 is a tumor suppressor that is inactivated in 

a majority of human cancers. In response to cell stress, p53 acts as a sequence specific 

transcriptional factor, with targets including genes which effect cell cycle arrest, DNA 

repair, and apoptosis (Stewart et al. 2001). p63 is a putative oncogene, and is required 

for the development and maintenance of stratified epithelium (Westfall et al. 2004). 
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p73 has some properties of a tumor suppressor, but unlike p53 or p63, is involved in 

neurogenesis, neuron survival, and the inflammatory response (Irwin et al. 2001). 

 

 
Fig. 6 Schematic representation of the protein modular structure of the p53 family members (adapted 

from Dötsch et al. 2010). 

 

There are three major domains, which are highly conserved between family members. 

The TAD is the least conserved with 22% identity between p63 and p53 and 30% 

between p73 and p53 (Yang et al. 1998). The highest level of homology is reached in 

the DBD (63% identity between p53 and p73, and 60% identity between p53 and p63), 

which suggest that the three proteins can bind to the same DNA sequences and 

transactivate the same promoters (Levrero et al. 2000). The carboxy-terminal 

oligomerization domain (OD) of p53 is 38% identical with p63 and p73 (Dötsch et al. 

2010). The carboxy-terminal isoforms differ in their ability to transactivate gene 

expression (Zhu et al. 1998, De Laurenzi et al. 1999, Lee & La Thangue 1999, Shimada 

et al. 1999). 

 

Because of alternative promoter usage and C-terminal alternative splicing, all p53 

family members are expressed in a number of isomeric forms. All p53 family genes 

contain the same modular domain structure, including an amino-terminal transactivation 

domain (TA), a DNA-binding domain, and a carboxy-terminal oligomerization domain 

(Dötsch et al. 2010). In addition, p63 and p73 undergo alternative splicing of their 

C-termini, resulting in three p63 isoforms (α to γ) and seven p73 isoforms (α to η). 

These isoforms are transcribed from an upstream promoter as well as from a cryptic 

promoter within intron 3, called the TA and ∆N isoforms (reviewed in Yang & McKeon 

2000). Each of these isoforms may (TA) or may not (∆N) contain the transactivation 

domain (TAD), depending on whether transcription of the precursor mRNA starts from 
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exon I (TA forms) or from exon III´ (∆N forms). The ∆N isoforms of p63 do not 

activate transcription but instead can act dominant negatively and inhibit transactivation 

by TA p63 proteins and p53 (Yang et al. 1998). The full-length isoforms (TAp63 and 

TAp73), containing a transactivation domain (TAD), generally behave similarly to p53 

in terms of overlapping target promoters and biological functions. The usage of the 

alternative promoter produces amino-terminally truncated ∆N isoforms, which are 

devoid of the TAD and therefore transcriptionally inactivate. As a consequence, these 

isoforms act as inhibitors of the active family members (Dötsch et al. 2010). TA 

proteins can directly activate the transcription of ∆N isoforms (Nakagawa et al. 2003, 

Grob et al. 2001). Full-length and truncated isoforms of the p53 generally exhibit 

reciprocal biological functions: truncated isoforms support proliferation while TA 

variants promote cell cycle arrest, cellular senescence and apoptosis. However, it also 

may depend on intracellular context (reviewed by Dötsch et al. 2010). 

 

2. 4. 2. p73 

 
The p73 gene is expressed as a p53 homologue (TAp73) and also as a negative regulator 

of p53-dependent apoptosis (∆Np73) in the control of cell fate. There is evidence that 

TAp73 proteins can regulate apoptosis and cell cycle arrest, respectively, to induce 

apoptosis. Both these actions of TAp73 are inhibited by ∆Np73, which is directly 

transactivated by the TA isoform. Cell fate may therefore be determined both by action 

of TAp73 and by the relative abundance of TAp73 and ∆Np73 isoforms (Fig. 7). This 

mechanism is relevant for several cancers, including neuroblastoma (Rossi et al. 2004). 

p73 shares the high homology with p53 and p73 maps to chromosome 1p36.1, a region 

frequently deleted in several tumors, including neuroblastoma, colorectal and breast 

cancer (reviewed by Ikawa et al. 1999). However, p73 is infrequently mutated in human 

cancers and has a pro-apoptotic function. The apoptosis-inducing activity of both wild-

type p53 and p73 can be inhibited through the induction of ∆Np73, while p53 

eliminates the function of both wild-type p53 and p73, through its loss-of-function 

mutations that frequently occur in many cancers. Thus, death and survival of many cell 

types in various organs could be regulated by a subtle balance between p53 family 

members and their isoforms, including the antagonizing variants such as ∆Np73 and 

∆Np63, as suggested (Pozniak et al. 2000). Nakagawa et al. has reported that ∆Np73 

which was induced by p73, in turn inhibited p73 by a direct interaction. The report has 
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also shown that in the autoregulatory system of the p53 family members, proapoptotic 

p73 function is negatively regulated by its own target ∆Np73, whose function is 

antiapoptotic (Nakagawa et al. 2002). 

 

 
Fig. 7 Schematic representation of interactions between p73, DNp73, wT-p53, or mutant type p53 

(adapted from Nakagawa et al. 2002). 

 

2. 4. 3. ∆Np73 

 
∆Np73 acts as a potent transdominant inhibitor of the wild-type p53 and the 

transactivation-competent TAp73 and confers drug resistance to the wild-type p53 

harboring tumor cells (Zaika et al. 2002). Recently, it has been reported that ∆Np73, 

a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human 

tumors but not in normal tissues. Thus, it is overexpressed in neuroblastoma 

(Douc-Rasy et al. 2002), vulval cancer (O’Nions et al 2001), ovarian cancer (Ng et al 

2000) and breast cancer cell lines (Fillippovich et al. 2001). Zaika et al. also showed 

that ∆Np73 can build a complex with wild-type p53 as demonstrated by 

coimmunoprecipitation from cultured cells and primary tumors (Zaika et al. 2002). 

 

2. 4. 4. p53His175 Mutant 

 
Mutation at amino acid residue 175 is one of the most frequently mutated sites at the 

DNA binding region of the p53 protein. The p53-R175H is a dominant negative 

conformational mutant as the mutation may affect the positioning of L2 and L3, 

2 amino acid loops that interact with the minor groove of DNA molecule (Tsang et al. 

2005). Tsang also showed that p53-R175H mutant is defective for the induction of cell 
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death by DNA damage. The protective effect of p53-R175H against drug-induced 

apoptosis was also reported in neuroblastoma cells that express wild-type p53 protein 

(Cui et al. 2002) and in Hep3B hepatoma cells, a p53-deficient cell line (Stähler 

& Roemer 1998). The overall structure of p53 relies on arginine 175, which is located in 

the L2 loop of the DNA binding domain (Cho et al. 1994). Full-length mutant p53 

R175H lacks wild-type-like p53 functions and is; therefore, transcriptionally inactive 

and unable to induce cell cycle or apoptosis (West et al. 2006). 

2.5. p53 binding sites on TLX promoter 

The DBD of the p53 family proteins carries the greatest homology in between the p53 

family members. A fully functional DBD is essential, mainly by the fact that most 

mutations of p53 reside in this domain. The DBD of p53 family proteins all recognize 

the p53-responsive element defined by El-Deiry et al. consisting of the decamer 

RRRCWWGYYY, where R is a purine, Y a pyrimidine and W an adenine or thymine. 

However, p53 family members can bind to other sequences as well (El-Deiry et al. 

1992, Wetterskog et al. 2008). Putative p53 binding sites are shown in Figure 8. 

 

 
Fig. 8 Mouse and human TLX promoter. Green triangles show possible p53-binding sites and red arrows 

possible TLX-binding sites. 

2.6. p53 in cancer 

The p53 transcription factor prevents tumor development through induction of cell cycle 

arrest and cell death by apoptosis. The nuclear phosphoprotein, p53, is usually present 
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at low levels in the cell, due to a short half-life (approx. 30 min), but accumulates in 

response to cellular stress, such as DNA damage from irradiation. It binds DNA in 

a sequence-specific manner to activate the transcription of a number of genes including 

p21WAF1, MDM, and BAX. p53 is mutated in up to 60% of human cancers of different 

types, leading in most cases to accumulation of non-functional p53 (dominant-negative) 

protein. Mutations occurs most commonly within the DNA binding domain of the 

protein and the majority of these mutations are missense in nature, leading to an intact, 

albeit mutant protein (reviewed by Tweddle et al. 2003). This contrasts with other tumor 

suppressor genes, in which mutations generally lead to a complete loss of function and 

suggest that mutant p53 is offering a selective advantage to cancer cells. In a subset of 

non-mutated cancers, p53 is believed to be inactivated by other mechanism including 

viral inactivation, MDM2 amplification and deletion of the INK4a-ARF gene encoding 

p14ARF (Vogelstein et al. 2000). 

 

2.7. Neural stem cells 

Most adult stem cells are lineage-restricted, also known as multipotent. Thus, neural 

stem cells (NSCs) generate neural cells: neurons, astrocytes and oligodendrocytes. 

While progenitor cells already have a degree of differentiation and are committed to 

differentiating into a specific cell line, for example as neuronal progenitor cells 

differentiate into neurons (Vieira et al. 2011). 



 

 

15

3.THE AIM OF STUDY 
 
The general aim of this thesis was to study the role of p53 family members in the 

regulation of TLX expression. We wanted to see how overexpression of p53 family 

members affects TLX-promoter activity and gene expression in different cell lines 

(normal and neuroblastoma), and to analyse the underlying mechanisms. 
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4. MATERIALS AND METHODS 

4.1. Cell culture 

Two different cell lines were used in this thesis. The hTERT RPE-1 cell line is a near-

diploid human cell line of female origin. It is established from retinal epithelium. The 

other cell line used was SH-SY5Y, which is a subclone of SK-N-SH that was 

established from a bone marrow aspirate of thoracic catecholamine secreting 

neuroblastoma of a 4-year-old girl (Biedler et at. 1973). Both cell lines were routinely 

maintained in medium supplemented with 10% fetal bovine serum (FBS), glutamine 

and 100 units/ml penicillin. The medium used were DMEM/F12 for hTERT-RPE-1 and 

DMEM for SH-SY5Y. 

 

The cells were kept in 75 cm2 flask at the temperature of 37°C in a 5% CO2 humidified 

under an atmosphere of 5% CO2. The medium was changed every 3 days and when the 

cells achieved 80–90% of confluence, the medium was removed, washed with PBS, 

3 ml of 0.25% trypsin were added and cells were incubated for 5 minutes under the 

conditions mentioned above. After this time, cells were washed with medium to stop 

trypsin action. The detached cells were taken out and centrifuged at 1100 g for 

2 minutes at room temperature. The cell pellet was resuspended and seeded into a new 

flask with medium. 

4.2. Promoter Reporter Assay - Luciferase Assay 

Promoter reporter assays are used for studying the activity of a specific promoter, 

enhancer regions and transcription factors. The regulatory sequence of interest is cloned 

upstream of a reporter gene, in our case the luciferase gene, and the resulting vector is 

transfected into cells. The cells are treated with drugs or cotransfected with vectors 

expressing transcription factors or other proteins. If the promoter is active the luciferase 

enzyme will be expressed. When the luciferase substrate luciferin is added to the cell 

lysates, the enzymatic reaction produces light that can be quantified and give an indirect 

measurement of the degree of promoter activity. 

 

The different cell lines were seeded in 24 well plates at a density of 3 × 104 cells/well 

(RPE-1) and 4 × 104 cells/well (SH-SY5Y) and transfected on the next day using 

FUGENE®HD (Roche, Basel, Switzerland) transfection reagent following the 
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manufacturers protocol. Two days after transfection cells were lysed and the luciferase 

activity was quantified by addition of luciferase substrate solution following the 

manufactures protocol (Luciferase Assay System, Technical Bulletin, Promega) and the 

luminescence was recorded by a luminometer (Victor). Transfection of each construct 

was performed in quadruplicates in each assay. 

 

The luciferase constructs used in this thesis were containing the 4.7, 1.8 and 0.5 kb 

upstream sequence of the TLX gene. Cells were transfected with 0.3 to 0.4 µg reported 

plasmid and 0.3 to 0.4 µg expression plasmid. 

 

4.3. Western blot analysis 

Western blotting, also known as immunoblotting, is a technique to determine the 

presence, relative amount and molecular weight of various proteins of interests in cell, 

by specific antibody detection. 

 

Cultured cells were washed in phosphate buffered saline (PBS) and lysed using lysis 

buffer containing protease inhibitors. Lysates were sonicated. To remove cell debris, 

lysates were centrifuged for 20 minutes at 4°C at 14 000 rpm. Equal amounts of 

proteins were loaded to and separated on 10-12% SDS-PAGE gels and transferred to 

PVDF membranes that were blocked in 5% BSA and probed by primary antibodies 

(listed in Table 1) diluted in 5% BSA. The membrane was incubated and shaken 

overnight at 4°C. The membrane was then incubated in anti-mouse or anti-rabbit IgG 

secondary antibody diluted in TBS-T for 1 hour. After 3 × 10 min washes in T-BST 

membranes were developed using the enhanced chemiluminescence (ECL) Advance 

system (GE Healthcare) and scanned using LAS-1000 Plus (Fujifilm). 
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Table 1: List of antibodies used in this thesis. 

 
Antibody Company Species Application 

p73 (H79) Santa Cruz Rabbit WB (1:1000) 

TLX R&D Mouse ChIP 

Ac-Histone H3K9/14 Santa Cruz Mouse ChIP 

p53 (FL-393) Santa Cruz Rabbit ChIP, WB (1:1000) 

p53 (Pab-421) Calbiochem Mouse ChIP 

 

4.4. ChIP Assay 

Chromatin Immunoprecipitation assays (ChIP assays) is a method used to study in vivo 

the location of DNA binding sites on the genome for a particular protein of interest. It 

uses cross-linking DNA and proteins by formaldehyde fixation. It is followed by 

sonication to shear DNA into fragments of 200-1000 base pairs. ChIP validated 

antibodies specific to proteins are used to immunoprecipitate with protein-DNA 

complexes, assumed to bind the regulatory region. The DNA fragments bound by 

proteins are collected, the protein-DNA crosslinking is reversed, proteins and RNA are 

degraded while the DNA is purified using phenol chloroform extraction. The DNA is 

amplified with PCR using primers specific against the regulatory region of interest. If 

the antigen binds the region a band will be detected when run on an agarose gel. 

 

Cells were cultured in 10-cm dishes to almost confluence. Protein and DNA were 

crosslinked by incubating cells with formaldehyde at a final concentration of 1% for 

10 min at 37°C. Cells were lysed in SDS lysis buffer (50 mM Tris-HCl, 10 mM EDTA, 

1% SDS, pH 8.1), the lysate was sonicated and incubated at 4°C with antibodies. The 

antibody-protein-DNA complexes were precipitated by using ProteinA/G-agarose. 

Immunoprecipitates were washed once with Low Salt Immune complex buffer (20 mM 

Tris-HCl, 2 mM EDTA, 150 mM NaCl, 0.1% SDS, 1% Triton X–100, pH 8.1), High 

Salt Immune complex wash buffer (20 mM Tris-HCl, 2 mM EDTA, 500 mM NaCl, 

0.1% SDS, 1% Triton X–100, pH 8.1), LiCl buffer (10 mM Tris-HCl, 1 mM EDTA, 

0.25 M LiCl, 1% NP-40, 1% sodium deoxycholate, pH 8.1) and twice with TE buffer 

(10 mM Tris-HCl, 1 mM EDTA, pH 8.1). Immunoprecipitates were eluated twice with 
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elution buffer and incubated with 0.5M NaCl for 3 h at 65°C to reverse the 

DNA-protein crosslinks. RNA and protein was degraded using Proteinase K for 1 h at 

45°C and RnaseA for 30 min at 37°C. DNA was extracted with a PCR Purification Kit 

(Qiagen) and used for RT-PCR analysis, using promoter-specific primers (Table 2). 

 

Table 2: List of primers used for ChIP in this thesis. 

 
Primer Forward sequence Reverse sequence Species 

hTLX p53 1 
F1/R1 

5´-GGT CGA TCA CAG 
GGG ATT GG-3´ 

5´-AGG ACA AGC TTT 
CCC ATC AGC-3´ 

 

H 

hTLX p53 1 
F2/R2 

5´-AAG CTT GTC CTT 
TCA CCT TCG GT-3´ 

5´-TCT GAG GTT GAC 
TGC TAG CCC T-3´ 

 

H 

hTLX p53 
3F2/1R1 

5´-CCG GAT CAA CAA 
GTG GGT ACC TC-3´ 

5´-AGG ACA AGC TTT 
CCC ATC AGC-3´ 

 

H 

hTLX p53 2 
F1/R1 

5´-GCG TGA ACC AGA 
ACC TGA GG-3´ 

5´-CGT AGC GCT TTC 
TCG AAC TCG-3´ 

 

H 

hTLX p53 2 
F2/R2 

5´-CGA GTT CGA GAA 
AGC GCT ACG-3´ 

5´-GGG TTT ATT AGG 
TGA CAG GAC G-3´ 

 

H 

hTLX p53 3 
F1/R1 

5´-AGC ATG AGC AAG 
CCA GCC GGA T-3´ 

5´-GGC TCA GAT TCG 
CAG CGC TC-3´ 

 

H 

HPRT 5´-TGT TTG GGC TAT 
TTA CTA GTT G-3´ 

5´-ATA AAA TGA CTT 
AAG CCC AGA G-3´ 

 

H 

hGAPDH 5´-GAA GGT GAA GGT 
CGG AGT C-3´ 

5´-GAA GAT GGT GAT 
GGG ATT TC-3´ 

 

H 

hp53 5´-CCG CAG TCA GAT 
CCT AGC G-3´´ 

5´-AAT CAT CCA TTG 
CTT GGG ACG-3´ 

H 

4.5. RNA isolation, RT-qPCR 

Cells were seeded at 1, 5 × 105 (RPE-1) and 2 × 105 (SHSY) cells/well in 6-well plate. 

On the following day, cells were transfected using FUGENE®HD (Roche, Basel 

Switzerland) transfection reagent following the manufacturer’s protocol. Two days after 

transfection cells were harvested and RNA isolated using the TRIAzol reagent 
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(Invitrogen) and subsequent ethanol precipitation. Total RNA was then subjected to 

quantitative reverse transcription-PCR (qRT-PCR) analysis. Reactions contained 

10 pmol forward and reverse primers, 2 × SYBR green super mix (Applied Biosystems) 

and 2 µL template cDNA. All samples were run in quadruplicate in each experiment. 

Values were normalized by human HPRT or GAPDH for each sample. The primer 

sequences used in the qRT-PCR analyses are listed in Table 3. 

 

Table 3: List of primers used for qRT-PCR in this thesis. 

 

4.6. Statistical analysis 

The data presented were stored and analyzed using Excel software (Microsoft). 

Primer Forward sequence Reverse sequence Species 
hTLX 

F1 
5´-CAA GAG GTG GTG GCT 

CGA TTT A-3´ 
5´-ACC ACT ATG TGT AGG 

AAC GGC TTT G-3´ 
 

H 

hTLX-5 5´-GAG GTG GTG GCT CGA 
TTT AG-3´ 

5´-GCA TTC CGG AAA CTT 
CTC AG-3´ 

 

H 

HPRT 5´-TTT GCT TTC CTT GGT 
CAG GC-3´ 

5´-GCT TGC GAC CTT GAC 
CAT CT-3´ 

 

H 

p73 5´-GCA CCA CGT TTG AGC 
ACC TCT-3´ 

5´-GCA GAT TGA ACT GGG 
CCA TGA-3´ 

 

H 

∆Np73 5´-CAA ACG GCC CGC ATG 
TTC CC-3´ 

5´-TTG AAC TGG GCC GTG 
GCG AG-3´ 

H 
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5. RESULTS 

5.1. Luciferase assay 

5.1.1. RPE-1 cell line 

 

In order to investigate how the activity of a specific promoter is regulated by 

transcription factors, the promoter reporter assay (Luciferase assay) was performed. The 

mouse TLX promoter of three different length, 0.5, 1.8 and 4.7 kb, all inserted in the 

luciferase-reporter vector (pGL3), were used. Cells were cotransfected with a promoter 

construct and an empty vector or p53-expression vector. When p53 was transfected into 

RPE-1 a repression of reporter activity was observed in all TLX promoter constructs. 

The maximum reduction observed was approximately 35% for the 0.5 kb TLX promoter 

construct, 40% for the 1.8 kb TLX construct and 60% for the longest 4.7 kb TLX 

construct (Fig 9). The overexpression of p53 vector was confirmed by qRT-PCR (Fig. 

10). 

 

 
 

Fig. 9 The TLX promoter constructs were cotransfected to RPE-1 cells with empty vector and p53 

overexpressing vector. Data are presented as a percentage of luciferase activity compared to the activity 

of empty vector control (which was set to 100%). Results are the mean ± SEM of three independent 

experiments performed in quadruplicate. 
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Fig. 10 Overexpression of p53 and R175Hp53 in RPE-1 cells. 

 

5.1.2. RPE-1, 1.8kb TLX luc and p53 family members 

 
Next we examined the 1.8 kb long TLX construct with three different expression 

vectors: pcDNA3 containing p53, wTp73 or ∆Np73. When we transfected wTp53 and 

wTp73 into RPE-1 cell line a significant repression of approximately 60% for p53 and 

50% for wTp73 was observed (Fig. 11). Interestingly, the transfection with ∆Np73 

showed a significant decrease as well. The maximum reduction was approximately 

60%. The overexpression of p53 vector (Fig. 10) and wTp73 (Fig. 12A) and ∆Np73 

(Fig. 12B) were confirmed by qRT-PCR. 
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Fig. 11 The TLX promoter constructs were cotransfected to RPE-1 cells with vector alone, vector 

combined with wTp53, wtTp73 and ∆Np73. Data are presented as a percentage of luciferase activity 

compared to the activity of empty vector control (which was set to 100%). Results are the mean ± SEM of 

three independent experiments performed in quadruplicate. 

 

A B  

Fig. 12 Overexpression of (A) wTp73 vector and (B) ∆Np73 in RPE-1 cells. 

 

5.1.3. RPE-1, 1.8 kb TLX luc and p53 family members 

 
Another Luciferase assay was performed to examine the 1.8 kb long TLX construct 

with p53 mutant R175Hp53. Cotransfection of R175H mutant together with wTp53 

reduced the inhibitory effect of wTp53 on TLX promoter activity in RPE-1 cells 

(Fig. 13). The overexpression of p53 vector and mutant R175Hp53 was confirmed by 

qRT-PCR (viz. Fig. 10). 
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Fig. 13 The 1.8 kb TLX promoter construct was cotransfected to RPE-1 cells with vector alone, wTp53 

and H175Rp53. Values represent mean luciferase activity. Error bars indicate standard deviation of 

quadruplicate samples. 

 

5.1.4. SH-SY5Y cell line 

 
When p53 was transfected into SH-SH5Y a repression was observed in both of the 

0.5 kb and 1.8 kb TLX constructs. The maximal reduction is approximately 20% for 

the 0.5 kb TLX construct, and 70% for the 1.8 kb TLX luc construct (Fig. 14). The 

overexpression of the p53 vector was confirmed by Western Blot (Fig. 15A). 
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Fig. 14 The TLX promoter construct was cotransfected to SH-SY5Y cells with vector alone and p53. 

Values represent mean decrease of luciferase activity. Data are presented as a percentage of luciferase 

activity compared to the activity of empty vector control (which was set to 100%). Results are the mean ± 

SEM of three independent experiments performed in quadruplicate. 

 

 

Fig. 15 Overexpression of (A) p53 vector and (B) p73 in SH-SY5Y cells. 

 
5.1.5. SH-SY5Y, 1.8 kb TLX luc and p53 family members 

 
Next we examined the 1.8 kb long TLX construct with three different expression 

vectors: pcDNA3 containing p53, wTp73, ∆Np73, and p53 mutant R175H. In contrast 

to the others, co-transfection of wTp53 decreased the activity of approximately 73%. 

wTp73, ∆Np73 and p53 mutant R175H showed a significant increase when they were 

transfected. The maximal increases were approximately 60%, 1840% and 275% of the 

vectors: wTp73, ∆Np73 and p53 mutant R175H (Fig. 16). The overexpression of p53 

vector (Fig. 15A) and wTp73 (Fig. 15B) were confirmed by Western Blot. The 

overexpression of ∆Np73 (Fig. 17B) and also wTp73 (Fig. 17A) was confirmed by 

qRT-PCR.  
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Fig. 16 The TLX promoter construct was cotransfected to SH-SY5Y cells with vector alone wTp53, 

wTp73, ∆Np73 and mutant H175Rp53. Values represent mean luciferase activity. Error bars indicate 

standard deviation of quadruplicate samples. 

 

A B  

Fig. 17 Overexpression of (A) wTp73 vector and (B) ∆Np73 in SH-SY5Y cells.  

5.2. qPCR 

Following the repression exhibited by wTp53 on the promoter we confirmed the 

Luciferase assay results with qPCR. We found that p53 overexpression inhibited TLX 

mRNA expression in both cell lines RPE-1 (Fig. 18) and SH-SY5Y (Fig. 19). 
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Fig. 18 p53 inhibits mRNA expression of TLX. Error bars indicate standard deviation of two independent 

experiments performed in quadruplicate. 

 

 
 

Fig. 19 p53 inhibits mRNA expression of TLX. Error bars indicate standard deviation of two independent 

experiments performed in quadruplicate. 

5.3. ChIP 

In order to further analyze the mechanism by which p53 inhibits TLX we wanted to 

determine if p53 affects TLX expression by direct binding to the promoter region of 

human TLX in vivo using ChIP assay. Since we found several possible binding sites for 

p53 in the TLX promoter, specific primer pairs were constructed for the different p53 
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binding sites. The PCR reverse and forward primers flanking the essential regions are 

shown in Fig. 20. 

 

 

Fig. 20 A diagram illustrating the three pairs of primers used for ChIP analysis and p53 binding sites. 

 

In order to see whether p53 binds the TLX promoter in vivo, ChIP assays were 

performed for RPE-1 cell line, using 2 different antibodies for p53 (FL393 and AbI), 

TLX, Acetylated Histone (AcHis), and IgG as non-specific control (Fig. 21). Using 

chromatin immunoprecipitation and semi-qPCR with primers for the specific promoter 

regions, we showed that overexpression of p53 in RPE-1 cells led to increased 

recruitment of p53 to TLX promoter at putative p53 binding site 2 and 3 (but not site 1; 

data not shown) while histone acetylation (marker for active chromatin) was decreased. 

 

 
 

Fig. 21 Overexpression of p53 led to increased recruitment of p53 to TLX promoter at putative p53 

binding site 2 and 3, while histone acetylation (marker for active chromatin) was decreased. The arrows 

show the specific product size. 
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6. DISCUSSION  
 
Neuroblastoma is the most common extracranial solid tumor in infancy and accounts for 

approximately 15% of childhood cancer deaths. Disruption of the p53 pathway is 

a common mechanism leading to defects in apoptosis in cancer cells. Increasing 

evidence suggest that the p53 pathway may be inactivated in NB. Inactivation of the 

p53 pathway occurs most commonly at the time of relapse. The p53 family proteins, 

p73 and p63, can also induce apoptosis, and early studies suggest that p73 may be 

important in NB pathogenesis and response to treatment (Wolter et al. 2010). The p53 

family members and TLX have important roles in neuronal development, but the 

relationship between them has not been investigated in this context. 

 
The primary purpose of this study was to investigate whether p53 protein can bind to 

the TLX promoter and if it can affect its activity. We demonstrated herein that p53 

binds the TLX promoter and regulates its activity. One putative binding site for p53 is 

presented on the shortest (0.5 kb) TLX promoter construct, and two and four sites, 

respectively, for the 1.8 kb and 4.7 kb TLX promoter constructs. Repression of TLX 

promoter activity by p53 was evident in both cell lines we tested.  

 
Next we examined whether and how other p53 family members and their mutants can 

affect the promoter activity in RPE-1 and SH-SY5Y. The 1.8 kb TLX construct was 

used. We expected to see similar expression profiles for the different p53 family 

members, but we found big differences between the two cell lines. As mentioned above, 

overexpression of wTp53 was able to downregulate the promoter activity when 

compared with the vector control in both cell lines.  

 

In NB cell lines, TAp73 is variably expressed in essentially all cells with few exceptions 

(Kaghad et al. 1997, Kovalev et al. 1998). Conversely, DNp73 was detected only in 

a subset of cell lines, primarily, but not exclusively, in those with MYCN amplifications 

(Casciano et al. 2002). The physiological contribution of p73 locus to NB development 

has been recently shown to be due not to the loss of proapoptotic TAp73, but to the 

induction of the antiapoptotic form of p73 (Casciano et al. 2002, Douc-Rasy et al. 

2002). 
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DNp73 is an NH2-terminal truncated isoform of human p73, lacking the transactivation 

domain, therefore it can bind DNA, but not activate transcription. It is also predicted to 

be a transdominant inhibitor of wTp53 through direct binding to wT-p53, thus inhibiting 

its apoptosis-promoting activity (Pozniak et al. 2000). DNp73 was able to activate the 

TLX promoter in the SH-SY5Y cell line, possibly due to its dominant-negative effect 

on endogenous p53 repression of TLX promoter activity. Surprisingly, DNp73 

repressed the TLX promoter activity in the RPE-1 cell line. This experiment must be 

repeated to confirm that DNp73 really does not activate the promoter in RPE-1 cells. 

 

Since the p53 family proteins are sequence-specific transcriptional factors where all 

members can bind to the canonical p53 binding sequence (Wetterskog et al. 2009) and 

share a high homology with p53, p73 should act similar as p53. However, the opposite 

effect was seen using p73. Overexpression of wTp73 was able to downregulate TLX 

promoter in RPE-1 cells, as expected, but slightly upregulated TLX promoter in 

SHSY5Y cells. This small effect by p73 on TLX may be due to high levels of 

endogenous p73 in the SH-SY5Y cell line and that overexpression does not give any 

additional effect. We were unfortunately not able to determine endogenous levels of p73 

and DNp73 in any of these cell lines. Since p73 can bind the same consensus sequence 

as p53 it is possible that DNp73 might compete with p53 and p73 for DNA binding 

(Wetterskog et al. 2009). Additional mechanism of p53 inhibition might be direct 

promoter competition, with ∆Np73 displacing p53 from the DNA binding site 

(Ischimoto et al. 2002). Possible explanation for why regulation of TLX expression 

shows such differences is that p73 and DNp73 might actually induce p53 nuclear 

accumulation. DNp73 can possibly induce p53 effects in some case (Goldschneider et 

al. 2004).  

 

In this study we next examinated a dominant negative 'hot spot' mutant in human cancer 

(Vousden & Lu, 2002) R175H p53. R175Hp53 is unable to bind to DNA but has the 

ability to bind to wTp53 and thereby reduce the amount of wTp53 able to bind to DNA 

by sequestering it. As a result the DNA-binding defective p53 mutant R175Hp53 was 

not able to repress the promoter activity. Coexpression of R175H mutant p53 with 

wTp53 inhibited the repressive effect of wTp53 on TLX promoter activity in RPE-1 

cells. However, expression of R175H p53 in SH-SY5Y activated the TLX promoter, 

showing that this DNA-binding deficient mutant has prevented wTp53 from binding to 
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DNA in both cell lines. The activation occurring in SH-SY5Y might be due to 

sequestering of TAp73 by the mutant p53, which might have enabled DNp73 to bind 

DNA. If TAp73 were bound to TLX promoter in SH-SY5Y, release of TAp73 from the 

promoter by increasing amounts of R175Hp53, which binds and sequesters TAp73, 

could lead to a relative activation of the promoter. 

 
Having seen the decrease of TLX expression due to p53 overexpression by using 

Luciferase assay and qPCR analysis, we wanted to verify that the effect of p53 was due 

to its direct binding to the TLX promoter chromatin in vivo. This was confirmed by 

using ChIP assay in RPE-1 cells, where we found binding of p53 to the TLX promoter 

chromatin at two different putative p53 binding sites. 
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7. CONCLUSION 
 

In summary we showed in this study, that p53 binds the TLX promoter and regulates its 

activity. Overexpression of p53 was able to downregulate TLX promoter in both tested 

cell lines. We expected to see similar expression profiles for the different p53 family 

members. Surprisingly, experiments with other members did not show such uniform 

results. It is necessary to determine endogenous levels of p73 and DNp73 in these cell 

lines in order to find the reason behind their different effects in the two cell lines.  

 

We also demonstrated the mechanism by which p53 inhibits TLX. We confirmed that 

p53 effects TLX expression by direct binding to the promoter region of TLX. From 

several possible binding sites we proved two of them. Further studies must be 

performed in order to find out the detailed mechanisms behind the interaction of p53 

signalling and TLX in neuroblastoma. 
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