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1. Introduction 

An amino-acid in proteins shows two different, yet mutually dependent faces connected 
through the polymer character of a protein in the final product. They are the amino-acid side-
chain and its corresponding backbone part. On the level of the side-chains, we often refer to 
specific structural arrangements such as hydrophobic cluster motifs, salt-bridge motifs or 
hydrogen-bond motifs characterizing various parts of a protein and usually assigned to a 
certain function. The backbone on the other hand offers limited, yet general structural motifs – 

 and random coil patterns. All of these mentioned amino-acid features contribute to the 
synergy demonstrated observably by protein stability and protein function. 
Thermal stability is one of the most important features of the structure of a fully folded 
protein. It is defined as the difference in the Gibbs free energy between its native and 
denaturated states and as such is a function of temperature and implicitly a function of 
protein composition and the effect of the environment. Nevertheless, it is necessary to say 
that for this function we do not know yet the precise and general form which could be 
applicable for a large set of proteins. There have been many attempts to propose an 
intuitive, yet productive decomposition of Gibbs free stabilization energy (GFSE) into 
simple terms. One of the scenarios utilized for such purposes is that the total free energy is 
the sum of the free energies of various atomic groups and the hydrophobic effect. However, 
as the free energy is not additive and the fractionation of free energy to independent terms 
is difficult, this attempt has been quite unsuccessful. 
The utilization of molecular modeling methodology and tools has opened a more systematic 
and perhaps more promising approach – the evaluation of the enthalpy term in the equation 
for Gibbs free energy with reasonable accuracy (Lazaridis, Archontis, & Karplus, 1995). The 
remaining entropy term could be obtained by fitting the corresponding analytical form to 
the experimental data. There are basically three different enthalpy contributions that we can 
separate. The first comes from the intramolecular interactions between the atoms of 
proteins, producing the largest stabilizing enthalpy contribution. The second comes from 
the interactions between the molecules of a solvent, and finally the third contribution is the 
result of the interactions between the atoms of the solute (protein) and the solvent.  
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It is commonly believed that the dominant force of protein folding and therefore the main 
stabilizing force of the native structure is the hydrophobic effect (Dill, 1990). However, it has 
been insightfully pointed out (Makhatadze et al. 1995) that a water environment destabilizes 
folded protein structures and the decomposition of enthalpy shows that the solvation models 
introduce significant errors. In these studies, it has been assumed that the denatured state of a 
protein can be identified with the fully unfolded state (Makhatadze et al. 1989), where residues 
do not interact with each other. Even in light of this hypothesis, the intramolecular interactions 
between amino-acids in a protein are expected to contribute significantly to its overall stability. 
However, the hypothesis has never been proved and the importance of the intramolecular 
interactions would be much higher if the unfolding were considered as “core melting” rather 
than “oil-droplet dissolution”. Regardless of the denatured form, the intramolecular 
organization of a protein is the result of a subtle balance between the rigidity/flexibility of the 
protein backbone and the noncovalent interactions between protein’s side-chains. This result 
in conformational unique and stable protein structures as well as the ratio between the 
importance of the backbone/side-chain contributions can vary for different proteins.  
The main problem of the enthalpy (or the potential energy) approach is that we are unable 
to evaluate the enthalpy-entropy compensation; therefore, the theoretically determined 
enthalpy contribution should be adjusted in some other way. A realistic method is to 
correlate the calculated values with the experimental data obtained by microcalorimetry, 
where both the enthalpy and the entropy terms can be determined. On the level of particular 
amino-acids, we face the problem of their “denatured-state” definition for the reasonable 
decomposition of the free energy on individual amino-acids.  
The dissection of the enthalpy contribution which the intra-molecular noncovalent interaction 
energy (part of the potential energy) is a component of seems to be a reasonable approach for 
the study of the role of the composing amino-acids in protein stabilization. We can decompose 
this energy into individual pairwise amino-acid contributions and determine their importance 
for protein stability. The evaluation of the interaction energy (of noncovalent origin) between 
biomolecules or between their parts is a traditional field of the symbiosis between experiment 
and theory, and the methodology is well described and highly developed (Müller-Dethlefs & P 
Hobza, 2000). The crucial condition for the success of the theoretical methodology is the 
accuracy of the methods utilized. Recently, it has been quite common to evaluate the potential 
energy of a protein at the suitable ab initio methodology level, but we are still severely limited 
by the size of the protein. Therefore, the Density Functional Theory methods (DFT) are the 
most utilized for such purposes ( Riley, 2010). Unfortunately, the DFT methods fail to describe 
the noncovalent interactions reasonably mostly because of the missing electron correlation 
term. Even the new functionals recently introduced (Kolář, 2010) have failed to describe 
properly the noncovalent potential curve mostly in the repulsion and asymptotic regions. Such 
inaccuracies can be tolerated at the energy minima, but only a limited number of the 
interactions between amino-acids in proteins meet such a requirement. Therefore, only high-
level ab initio methods can be utilized – at least for benchmark studies. As was shown on a set 
of representative interactions between amino-acid side-chains in proteins in 2009, empirical 
force fields (namely OPLS and AMBER) are suitable for the description of their interaction 
(Berka, 2009). Kolar (Kolář, 2010) tested the performance of the energy calculations using MM 
on a representative set, S22, and found quite satisfactory agreement between the empirical 
force fields and high-level ab initio methods. It was later shown that we can use the empirical 
force field with satisfactory accuracy also for the description of the intramolecular interaction-
energy distributions for pairs of amino-acid side-chains (Berka, 2010). Still, one has to be aware 
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of the limitations of the force-field methods, namely for subtle cases of the interactions present 
in proteins. On the other hand, the utilization of empirical methods decreases the 
computational cost and provides an opportunity to investigate the trends presented in 
biomolecules if the highest accuracy is not the major issue.  
The evaluation of the interaction energy between amino-acid residues resulted in the 
interaction energy matrix (IEM) concept being introduced in 2008 (Bendová-
Biedermannová, 2008). The IEM approach was used to identify the key residues for protein 
stability in a model system – rubredoxin. The matrix carries information about the energy 
and the role of a residue in the protein structure, namely its interaction energy strength, 
which is more than the simple distance matrix concept. It also shows how much a certain 
residue is a hub within the context of the other interacting amino-acids. The IEM approach 
might also open new horizons for the investigations of proteins. The concept could be 
incorporated into the methods of protein-structure superpositions (similar to the DALI 
approach)(Holm & Sander, 1997) and can shed light on other protein-related issues – for 
example protein stability, folding kinetics, foldability and design.  
The work presented in this study is based on the calculations of the amino-acid – amino-acid 
interaction energies (IEs) between all of the residues in approximately 1400 proteins to 
justify the roles of different amino-acids, their backbones and side-chains and their physical-
chemical character for structural or stabilization preferences. We especially focused on the 
problem of how the interaction energy distributions are related to the secondary-structure 
content defined by the CATH (Orengo et al., 1997) and SCOP(Murzin, 1995) criteria.  

2. Amino-acids in proteins and their distribution 

2.1.1 Representative structure-set selection 
All of the protein structures utilized in this study were obtained from the PDB database 
(download Jan 31, 2011). We selected only protein molecules with one chain, no ligands, 
resolved by the X-ray crystallography method at a minimum resolution of 2.0 A. We also 
omitted structures with a 70% sequence identity and higher. The database filter yielded 1531 
structures. This number was slightly reduced by inconveniences with file processing to 1358. 
The characteristics of the set are illustrated in Figure 1 (size histogram, resolution 
histogram). 
 
 

 

Fig. 1. a) Number of structures against protein length; binned by 20 AA; b) number of 
structures with a particular X-ray resolution; binned by 0.1 A; c) histogram of the sizes of the 
structures selected for secondary-structure studies. 

Incomplete amino-acid side-chains (missing heavy atoms, disordered) were replaced by 
glycine in the cases where backbone atoms were available. Amino-acids with missing 
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backbone atoms would have discredited the whole set and were therefore omitted. The 
missing hydrogen atoms were added by the Xleap program from the AMBER (Case et al. 2010) 
simulation package for pH 7 and the parameters were assigned according to the OPLS FF 
(Jorgensen & Rives 1988). The ambiguity of protonation, mainly in the case of histidine, is 
discussed later. The structures were optimized using the GROMACS (Hess et al. 2008) 
molecular simulation package with the steepest descent algorithm being employed. The 
hydrogen atoms were optimized first and then the full optimization of the whole protein in the 
gas phase was performed.  
To address the question of the residue selectivity for secondary structure motifs, the 

structures were classified according to the CATH and SCOP categories and four 

representative sets were selected. To prevent the interference of the size and secondary 

structure effect, we assured that the structure sets possess the same size distribution.  

Hence, the structures pertaining to particular secondary-structure sets were binned 

according to their chain length (bin size 50, see Figure 2) and were randomly removed from 

the bins until the number of structures in the corresponding bins was the same for all the 

sets. This procedure resulted in four sets, each containing 99 structures. 

2.1.2 The fragmentation of proteins 

To differentiate between the particular types of interactions which every amino-acid can 

maintain, we assigned every atom of a residue to one of four attributes according to their 

occurrence in the backbone or to their occurrence in certain types of amino-acid side-chains. 

The attributes were as follows – BB – backbone atoms, CH – side-chain atoms of charged 

residues (asp, glu, lys, arg, his), PO – side-chain atoms of polar residues (asn, gln, thr, ser) 

and NP – side-chain atoms of nonpolar and aromatic residues (gly, ala, leu, ile, val, pro, cys, 

met, phe, tyr, trp). Such classification provides the lowest number of groups necessary to 

discern between interactions characterized by different distance dependencies and orders of 

magnitude (different physical characters). On the other hand, breaking residues into more 

parts is restrained by the resulting charges of the fragments which would introduce 

significant but artificial electrostatic energies. The OPLS force field guarantees that the 

backbone (which includes C) and side-chain fragments are neutral. The physical character 

of the interaction energies of the aromatic residues is close to those of nonpolar residues. 

Hence, taking into account digestibility of presented data, we decided not to increase the 

number of attributes.  

2.1.3 The Interaction Energy Matrix (IEM) calculation  
After all of the structural optimizations, the pairwise interaction energies for all of the 
residues at the OPLS level were calculated excluding those between backbones of adjacent 
amino-acid in primary structure which were set to zero. The interactions were calculated 
separately for the backbones and side-chains as the sum of the interatomic Lennard-Jones 
and Coulombic contributions in the gas phase (r=1) using an in-house developed Python 
program utilizing the standard libraries. The classification of the amino-acid atoms in four 
groups resulted in ten types of mutual interactions – BB-BB, BB-CH, BB-PO, BB-NP,  
CH-CH, CH-PO, CH-NP, PO-PO, PO-NP, NP-NP – reflecting the attributes of the  
atoms involved. For example, CH-CH represents salt bridges and all of the interactions 
between the side-chains of charged residues regardless of their relative distance and 
charge sign. 
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Each type of interaction for one protein was represented by one interaction energy matrix, 
namely a NxN (where N denotes the number of residues) matrix containing the 
interaction energy between the atoms of residues i and j with particular attributes 
assigned. It is guaranteed that no interaction energy is counted twice, so the sum of all of 
the matrices provides the interaction energy between the corresponding residues. 
In order to compare the residual energy content, we have introduced a residue interaction 
energy (RIE) characteristic for each residue. The RIE of a certain type is defined as the sum 
of all of the interactions the residue can maintain – the sum of all the numbers in a particular 
row (or column) in the IEM of that type. At the end, we have ten (NxN dimension, where N 
is the number of amino-acids) IEMs of different types in one protein. Most of the IEs are of 
course almost zero; some are set as zero by definition. 

2.1.4 Representation of data – cumulative distribution functions and histograms  

There are two main data representation schemes in this work. Those are as follows: 

The distributions of RIEs of a certain type in one protein. For one specific type and one 
specific protein set (for example CH-CH in SCOP β), the following procedure was 
performed to acquire an average distribution representing the whole set. The non-zero RIEs 
calculated from appropriate IEM were sorted independently for each protein and the 
distributions were obtained as a plot of the RIE against the residue rank in the sorted list 
normalized to one. To enable the averaging of the distributions, we represented each one by 
1001 equally distant (on the rank coordinate) points between 0 and 1 (instead of for example 
N in the case of RIE BB). The RIE for each point was obtained by linear interpolation using 
the nearest two points of the calculated distribution. The averaged distribution was obtained 
by averaging the RIEs of the corresponding points of the curves of all of the proteins 
pertaining to the set. The inverse of the averaged distribution is a quite smooth cumulative 
distribution function representing the average for the set.  
The distributions of the RIEs of a certain type for a particular amino-acid were sampled 
from all of the 1358 proteins. The RIEs of a particular type and AA were sampled from all 
the proteins and binned to yield quite smooth histograms. 

2.2 Secondary-structure dependence 

The RIE distribution of a particular type in a protein describes the distribution of the energetic 
importance of the residues. An average distribution also characterizes the particular type of 
interaction in the ensemble – the fraction of the key residues, their importance, and the fraction 
of the residues with repulsive interactions. The magnitude interval of a distribution is a very 
important parameter. It contains information about the interaction strength in the native states 
of the proteins. Unfortunately, this information does not denote the contribution of particular 
interactions to stability as it lacks information on the denatured state. 
The shape of the distribution determines the pressure exerted on a residue and might help 
estimate the actual contribution of the corresponding interactions to protein stability. It is 
not surprising that the BB RIEs correlate with the secondary structures as the 
classifications indirectly use the BB RIEs. However, the differences are smaller than one 
might expect. It is also clear that none of the interactions other than BB is affected by the 
secondary-structure content. 
From Figure 2, it can be concluded that the difference between the CATH and SCOP 
classifications is more significant mainly in the case of α proteins. Figures 3 and 4 show all 
of the types of distributions for a nonpolar (ALA, Figure 3) and a polar (THR, Figure 4) 
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amino-acid. It is obvious that the BB RIE cumulative distributions are the only 
distributions to have their shape affected by the secondary-structure content and the 
particular AA RIE distributions show more than one peak. The distinctive peaks might be 
assigned to special structural features and their identification remains a task for future 
studies. 
 
 
 

 
 
 

Fig. 2. The average RIE distributions of all ten types: a comparison of the secondary-

structure classes. The colors of the lines correspond to the following structure sets: red – 

CATH , blue – SCOP , green – CATH , magenta – SCOP . The detail of the BB 

distribution in the bottom left corner is a zoom of the BB RIE distributions. 

The fact that the CYS average NPNP RIE distribution is the only exception to the rule, 
because it has two peaks, can be explained by a different strength of the noncovalent 
interactions of the cystein SH group and cystine SS bridge. 
The BB RIEs of particular AAs sampled through all of the structure sets are shown in Figure 
5. There are remarkable differences between the shapes of the distributions corresponding to 

the  and  proteins as well as between the shapes of the distributions for particular AAs. 
Generally, the BB RIE distributions of the beta-structured proteins are shifted to a less 
attractive (less negative) noncovalent region. 
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Fig. 3. All of the types of the RIE distributions of ALA. The red line corresponds to the 
CATH  set, the green line to the CATH . 

 

 

Fig. 4. All of the types of the RIE distributions of THR. The red line corresponds to the 
CATH  set, the green line to the CATH . 
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Fig. 5. The average BB RIE distributions for each AA. Sampled through proteins from the 
CATH  and CATH  sets. The red line corresponds to the CATH  set, the green line to the 
CATH . 

2.3 Size dependence 

The proteins were selected based on their chain lengths up to fourteen groups regardless of 
their secondary-structure content. Their characteristics (chain-length range, average chain 
length, amino-acid type composition, number of proteins, number of residues of particular 
types, average surface area) are reviewed in Table 1.  
 
 

 

Table 1. The characteristics of the structure sets used for the RIE-size dependence studies. 
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RIEs of a particular type were sampled from all of the proteins of a particular size group. 
The RIE averages were calculated separately for each interaction type of each size. The plots 
of the average RIEs against size are presented in four figures (Figures 6 to 9) in order to 
maintain the lucidity of the plots with lower magnitudes of average RIEs. The results 
reported in Figure 6 suggest that the RIE-size dependence varies significantly with the 
interaction type. On the one hand, the interaction of the polar residues with the backbone is 
almost independent of size. On the other hand, the interactions of the side-chains follow 
common rules, which are investigated later. 
An interesting notion comes from a comparison of the magnitudes of the POPO and BBPO 
average RIEs. The lower RIE magnitudes in the case of POPO RIEs are probably caused by 
the lower probability of hydrogen-bond formation with polar side-chains in comparison 
with the backbone-polar side-chain because of the lower frequency of their occurrence.  
A noticeable trend is the coupling of BBCH and CHPO interactions (see Figure 8). This 
binding may be ascribed to the same physical quality of these two types of interactions; they 
both represent charge–dipole interactions. The accuracy of the data can be estimated from 
the curve smoothness and is apparently lower in the case of charged residues. One possible 
reason for this trend is that the RIEs of charged residues are the products of a large 
compensation for the low amount of data. 
 

 

Fig. 6. The size dependence for BBPO, BBNP and NPNP interactions in the studied protein 
set. The NPNP differs significantly from the rest. 

 

 

Fig. 7. The Size dependence for the POPO and PONP interactions in the studied protein set. 
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Fig. 8. The size dependence for the CHPO, CHNP, BB and BBCH interactions in the studied 
protein set. 

 

Fig. 9. The size dependence for the CHCH interactions in the studied protein set. 
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be described by its porosity  (determining the ratio of the gap volume to the volume of the 
whole protein) and at least its length N. Assuming that all of these quantities except for N are 
constants, the volume of each protein can be expressed as Vp = NVr/(1- ) = Nfvr3/(1-) and the 
core volume as Vc = Vpφ = Nφfvr3/(1-). The interaction surface of the core residues can be 
considered as Si = NφSr and the core surface is Sc = 4πrc2. E can be calculated as 

  1 31  E E kN , (1) 

where 

 
2

3
2

10241

9 1

v

S

f
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
   . 

The k and E1 parameters were fitted to the calculated data using Equation (1). As can be 
seen in Figure 10, the fitted curve does not represent the data very well. 
 

 

Fig. 10. The performance of Model 1 

2.3.1.2 The NPNP RIE Model 2 

The first model was extended by adding a new parameter, representing the domain size. 
The energy was represented by the following function: 

  1 31 :

: >

    
D

D D

E E kN N N
E

E N N
, (2) 

where ND is the domain size and ED = E∞ (1-kND-1/3) is NPNP RIE average at ND. The 
parameters ND, k and E1 were fitted to the NPNP RIE averages. The agreement of the fitted 
curve with the data is satisfactory considering the simplicity of the model as one can see in 
Figure 11. 
The coefficient k obtained by fitting the data is comparable to that obtained by a calculation 

using the estimated values of fv, fs, and the experimental value of φ. Other types of 
interactions seem to be unrelated to the domain size of a protein as there is no mechanism 
connected with size that we could follow. 
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Fig. 11. The performance of Model 2 

2.3.2 The reliability of the evaluated distributions 
To adjust the reliability of our findings from computational point of view, we divided all of the 
proteins randomly into two groups. The distributions are indistinguishable, which proves that 
the distributions can be obtained by averaging even smaller sets of proteins. Additionally, we 
calculated the distributions using the OPLS force field in a C representation of the protein 
side-chains. Apparently (see Figure 12), the distributions for both FFs are the same. This not 
only proves that our results are robust against a FF parametrization error but also suggests 
that both FFs are within their limits equally good for RIE-distribution investigations. 
 

 

Fig. 12. A Comparison of the distributions obtained by averaging the distributions within 
the whole set using the OPLS Ca FF (dots) and Amber 03 Ca (full line) shows the robustness 
of the distributions against the FF used. The distributions obtained by averaging the 
distributions in two randomly chosen half-sets of structures calculated using the Amber Ca 

FF are indistinguishable, which proves that our set is sufficiently large. 

3. Conclusion  

RIE distributions in proteins, except for the BB RIE distributions, are not affected by 
secondary-structure content. The same applies for the distributions sampled for each amino-
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acid separately. Hence, we can claim that the strength and selectivity of the SC-SC and SC-
BB interaction do not correlate with the secondary-structure content. 
The size dependence of the RIEs can be satisfactorily described by the second model 
proposed. Its three parameters can be fitted to the results obtained by FF calculations of a 
high number of protein structures. One of the parameters obtained by fitting to the NPNP 
RIE averages represents the optimum definition of the domain size in globular proteins. 
Although the models proposed apply for all types of NP and PO SC-SC interactions, the 
models fail in the description of the BB and CH interactions. Many interesting facts about 
the size dependence of the RIE averages were revealed. First, the BBCH and CHPO 
interactions seem to be bound by some as-yet unknown rule. Second, the PO interactions 
exhibit “strange” behavior at a protein chain length of approximately seventy residues. 
These findings need to be investigated more deeply.  
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ABSTRACT 

Although a contact is an essential measurement for the topology as well as strength of non-

covalent interactions in biomolecules and their complexes, there is no general agreement in the 

definition of this feature. Most of the definitions work with simple geometric criteria which do 

not fully reflect the energy content or ability of the biomolecular building blocks to arrange their 

environment. We offer reasonable solution to this problem by distinguishing between 

‘productive’ and ‘non-productive’ contacts based on their interaction energy strength and 

properties. We have proposed a method which converts the protein topology into a contact map 

that represents interactions with statistically significant high interaction energies. We do not 

prove that these contacts are exclusively stabilizing, but they represent a gateway to 

thermodynamically important rather than geometry-based contacts. The process is based on 

protein fragmentation and calculation using OPLS force field and relies on pairwise additivity of 

amino acid interactions. Our approach integrates the treatment of different types of interactions, 

avoiding the problems emanating from different contributions to the overall stability and the 

different effect of the environment. The first applications on a set of homologous proteins have 

shown the usefulness of this classification for a sound estimation of protein stability.  

Contact: jiri.vondrasek@uochb.cas.cz 
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INTRODUCTION  

In a simplified way, the structure and stability of proteins in water environment are 

determined by the flexibility of their backbones, by the non-covalent interactions between the 

side chains of the composing amino acids, their interactions with solvent and by the hydrophobic 

effect also driving the process of protein folding. Among the various non-covalent interaction 

motifs stabilizing biomolecules or their complexes, the hydrogen bonds, salt bridges and vdW 

interactions play the most important role, but their origin is fundamentally different and their 

proportions are not easy to set. The question is how to assess the importance of these different 

contributions for overall protein stability and how to properly take into account non-

homogeneous and non-uniform environments of the interacting amino acids. 

A large number of studies have analyzed the available 3D structural data in the Protein Data 

Bank (PDB) and have shown that side chains have preferred interaction geometries; their 

packing is not entirely random1-3. The potential energy landscapes of proteins are most often 

approximated as a sum of the electrostatic charge-charge and Lennard-Jones contributions 

including the exchange-repulsion and dispersion terms. Molecular mechanics energy landscapes 

and the distributions of amino-acid pairs and their geometries observed in protein structures 

suggest that the intrinsic pair-wise interaction energies indeed contribute to the packing of side 

chains in proteins rather than being overwhelmed by the numerous interactions with other atoms 

within the protein and with the solvent. As a protein folds into a stable 3D structure, residues, 

regardless of their distance in the sequence, mutually interact and come into ‘contact’. Although 

‘contact’ is a fundamental concept of protein structure analysis, there is no general agreement as 

to how it should be defined.  

A contact is a Boolean quantity determined usually by two steps for each pair of residues 

from the 3D structure of the protein. The first step is the quantification of their interaction – a 

function which takes two sets of atomic coordinate vectors as an input and produces a real 

number as an output. The full set of the atomic coordinates is often reduced to merely a single 

vector of three Cartesian coordinates, usually the geometry of an alpha carbon, beta carbon or the 

geometry of a side-chain centre of mass. The interaction between the two residues is then 
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calculated only between such points. More rigorous methods use mutual-surface-area 

calculations or the minimal distance of any pair of atoms and some other variants of this 

attempt4-6   

The second step in the definition of a contact is the selection of the threshold value for the 

calculated interaction quantity to be considered as a contact. Gromiha and Selvaraj presented in a 

review 7 an interesting survey of how many distance thresholds it is possible to use. Most 

researchers use arbitrary thresholds accepted in the field and justified by reasonable but 

heterogeneous assumptions8 9,10. Other ways are to perform analyses using different definitions 

and discuss their effect on the results. There have been several attempts9,10  to establish a 

standard threshold distance value for a contact.  

Simple geometry definitions of a contact are satisfactory for studies which use contact maps 

as alternative structure representations of proteins11-13 . It is usually accepted that proximity in a 

3D structure can be considered as a sign of a thermodynamically important interaction having an 

impact on protein stability. It seems plausible to assume that the contacts in protein chains could 

be useful for the search for hydrophobic clusters14  or the development of statistical 

potentials15,16 . Other applications would also significantly benefit from a sophisticated definition 

of a contact based rather on energy than on simple geometry criteria. The contact by means of 

the energy content depends on the nature of the interacting atoms and their environment. In order 

to identify the key contacts and key residues in protein structures by computational chemistry 

methods, the interaction energy matrix (IEM) concept was introduced17  and further developed18-

20  to bring a new context into protein structure analysis. Still, further justification is needed, 

specifically sorting the contacts into categories of “productive” and “non-productive”. Such new 

methodology also needs a reasonable computational method capable of describing the interacting 

amino acids properly. The originally used quantum mechanics calculations demand an artificial 

fragmentation strategy17  and are computationally too expensive. Fortunately, it has recently been 

found that in some cases including the intramolecular interactions of biomolecular building 

blocks the available empirical potentials are in very good agreement with the benchmark 

interaction energy calculations determined at the highest ab initio level21 .  
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In this study, we have used the empirical potential energy function to quantify the interaction 

between any two residues of a protein. We suggest treating the backbone and side-chain 

separately so that the ‘contact’ is expressed by a value of the non-covalent interaction energy 

between both the backbones and side-chains. As the solvation energy of the ions, dipoles and 

quadrupoles of the residues in question is different, we assume that using only one uniform 

dielectric constant for scaling all types of interactions would not reliably model the effect of the 

environment. On the other hand, we cannot simply neglect the effect of the environment when 

evaluating the interactions between heterogeneous groups of amino acids in the gas phase. 

Therefore, we decided to classify the inter-residual non-covalent interactions based on their 

physical-chemical characteristics and sort them into corresponding groups reflecting their 

interaction properties. Besides the classification, it would be very useful to separate the 

interactions based on their contribution to the overall stability of a protein. We have therefore 

defined the productive and non-productive interactions as a measure of their importance to 

stabilize significantly or merely buffer other factors contributing to protein stability.  

Additivity is a very helpful property of molecular mechanics force field interaction energies. 

As we construct an independent optimal contact definition separately for each type of 

interactions, we implicitly assume that the whole stabilizing energy can be easily decomposed. 

An objection might be raised that, as the interactions are not independent, their free energies are 

not additive. Nevertheless, the potential energy contributions are additive in a single microstate. 

We model the native state ensemble for a protein with just one well-resolved experimental 

geometry structure. We further assume that there is interaction compensation in the unfolded 

state ensemble and an entropic compensation for each type of interactions which determines the 

properties of the native-state interactions. The contact definitions presented in this article are the 

statistical property of the native state of a protein only. Such a definition enables us to merge all 

of the inter-residual non-covalent interactions into one desired quantity – a contact.  

To follow the construction process, we first introduced representations of the non-covalent 

interaction-energy distributions – the cumulative distribution and its derivative function (the 

histogram of the contributions of the interaction energies – HCIE). We subsequently performed a 

classification of the amino-acid side-chains in globular proteins based on the similarity of their 

HCIE functions. Next, we discussed the number of the productive contacts of the amino acids in 
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each class in order to find reasonable limits for an optimum contact definition. Finally, we 

presented contact definitions for the derived classes of inter-residual interactions as the 

statistically significant values on the HCIE curves and discussed their properties. 
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METHODS 

The method of the structure set construction, protein fragmentation and calculation of the 

interaction energies is the same as in our characterization of the residue interaction energy (RIE) 

distributions in globular proteins20 . The X-ray structures with a resolution below 2.0 Å of the 

single-chain proteins with no ligands were obtained from PDB 22 (31st Jan 2011). Structures with 

a 70% sequence identity and higher were eliminated. The database filter yielded 1531 structures. 

This number was slightly reduced by inconveniences with file processing to 1358.  

After an energy optimization of the whole structure, the pairwise non-covalent interaction 

energies for 2N fragments (N side-chains and N backbone fragments) using an OPLS23-25  force 

field were calculated, excluding those between the backbones of subsequent amino acids and the 

side-chain and backbone of the same AA, which were set to zero. All the calculations were 

repeated using the CHARMM2726  force field for comparison. Utilization of the OPLS or 

CHARMM force fields guarantees that the backbone (including Ca atoms) and side-chain 

fragments are neutral. The interactions were calculated as the sum of the interatomic Lennard-

Jones and Coulombic contributions in the gas phase (er=1, see Eqs. 1 and 2). Only the 

interactions of an absolute value exceeding 0.05 kcal/mol were considered throughout the work 

in order to prevent sampling zeros. The terminal residues were not taken into consideration, as 

their backbones do not fit any group.  

    (1) 

 

                         (2) 

Construction of the HCIE curves, which are interaction energy histograms multiplied by 

interaction energy (IE), was done as follows. First, all of the interaction energies of the selected 

type of absolute value higher than 0.05 kcal/mol were sampled from all the proteins and sorted. 
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For each interaction energy value, all of the lower values were summed to obtain the cumulative 

HCIE, which was then differentiated. Differentiation was done by binning the cumulative HCIE 

and least-square fitting the lines to data points in the bins. This method of HCIE curve smoothing 

is not biased towards Gaussians, which ensures that the observed nature of HCIE is genuine.  

Distance matrices were calculated for the four most commonly used definitions of 

residue-pair distance. Only heavy atoms were considered in all of the contact-matrix (CM) 

calculations. “CA” distances were defined as geometrical distances between Cα atoms of 

residues. “CB” distances were defined as geometrical distances between Cβ atoms except for 

Glycines, for which Cα atom positions were used instead of Cβ. The “center” distances were 

defined as the geometrical distances between the centers of geometry for residues which were 

calculated from positions of all the heavy backbone and side chain atoms. Finally, the 

“minimum” distances were defined as the distances between the two closest heavy atoms, one 

from each residue. When comparing the contact matrices, we set the contact definition values for 

each distance definition so that the number of all the contacts was equal. The similarity of the 

two contact matrices was defined as  

 

                                                                  (3) 

where A and B are sets of contacts in corresponding contact matrices, ∩  denotes the set 

intersection and |A| and |B| are the numbers of elements of sets A and B. 

To demonstrate the applicability of the contact definition, we decided to analyze the 

thermal stability on a set of homologous proteins – hyperthermophiles and their mesophilic 

counterparts. The application of the strategy described above was straightforward. The structures 

of twenty pairs of known homologous proteins from thermophilic and mesophilic organisms 

were downloaded from the pdb database (see Table 3). For the NMR structures, the first model 

was considered; if any other atom occupancy was present in the pdb file, the first occupied 

position was always considered. The gas-phase optimization of the hydrogen atoms in proteins 

was performed in GROMACS with an OPLS force field. The interaction energy matrices were 
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calculated and the contact matrices were constructed using our contact definitions. The numbers 

of residue-residue contacts of all the types were summed and divided by the number of residues. 

 

RESULTS  AND DISCUSSIONS 

The substantial difference between the interaction energy (IE) and previously defined 

residue interaction energy (RIE)20  distributions results from the fact that the number of pairwise 

interactions grows quadratically with the number of amino-acid residues in a protein, whereas 

the number of productive interactions grows approximately linearly with the chain length. The 

limit of an IE histogram in principle diverges at IE→0. Its finiteness, which is observed in 

reality, arises from the finite diameter of protein molecules. Therefore, the identification of the 

optimum definition of residue-residue contact from IE histograms is not straightforward. 

A useful alternative approach is the multiplication of an IE histogram by an IE value, i.e. 

construction of a HCIE curve. The HCIE function represents the contribution of IEs in an IE 

interval to the sum of all the IEs and is characterized by the following properties 

lim
IE→−∞

HCIE= 0
 

lim
IE→+∞

HCIE= 0
 

HCIE (0)= 0
                                                                                       (4) 

HCIE< 0∀ IE > 0  

IE→0 IE
x
, x∀{− 1 ,0}  

Integral    equals the contribution of all interactions lower than X to the 

stabilization enthalpy. The multiplication by IE ensures convergence in the case of short-ranged 

interactions like dispersion and multipole-multipole, whose density of state goes to , 

  at .  Long-ranged interactions compensate by a mechanism similar to that 

in ionic crystals and because of the finite diameters of proteins.  
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The IE value X for which  

 ∫
−∞

X

HCIE d IE= ∫
−∞

+∞

HCIE d IE
    (5) 

 seems to be a natural energetic definition of a residue-residue contact, because the X 

defines the point where the weaker attractive interactions are compensated by all of the repulsive 

ones. However, as we understand productive interactions as exceptionally strong and not only 

attractive, the sum of the bulk interactions should be non-positive but not necessarily zero. 

Therefore, it provides a useful upper boundary for productive contact definition.  

HCIE has an interesting shape with the local minima and maxima corresponding to specific 

interaction patterns. The interactions between residues in pairs rarely reach their energy minima, 

because the optimum positions are rarely met19 . As some types of interactions are required by 

global protein topology, the local density of the states is deformed. An example of this effect are 

the interactions between non-polar residues inside a protein, which are strongly affected by their 

tendency to cluster owing to the minimization of the exposed hydrophobic surface area. 

Therefore, the IE of each interaction pattern can be approximated by a random variable with 

normal distribution. The HCIE can be reliably approximated by a sum of Gaussians and a 

function (diverging to ∞  at IE →0 ) corresponding to the bulk interactions, all multiplied by 

IE. We approximated the function corresponding to bulk interactions by a sum of gaussians (n 

gaussians for bulk interactions and m-n for the productive ones in Equation 4).  

 

         






























 −








−−

∑∑

2

j

1

2

1

IEIE

e

IE

eIEHCIE j
m

+nj=

j
i

n

=i

i

σ
a+

σ
a=                     (6) 

The HCIE is very well described by the proposed function (see the fit in Figure 1) in the IE 

region of productive contacts but quite poorly in the bulk IE region. In our studies, we have 

found that fitting the proposed function on the obtained data leads to vast errors in the 

determined parameters, especially in the case of long-ranged interactions because of the large 
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contribution of the bulk interactions. Therefore, we attempted to identify stationary points – the 

intersection of two Gaussians corresponding to different interaction patterns.  

Figure 1 

 

 

Groups of amino acids  

The major difficulty of the pairwise interaction energy concept results from the huge 

compensation of the interactions of electrostatic origin. Therefore, only interaction energies 

undergoing the same compensation by solvation and with the same distance scaling can be 

directly compared. We therefore propose the classification of amino-acid fragments based on 

their multi-polar characters – charged (CH), polar (PO) and non-polar (NP) side chains. In 

addition to these, the backbone fragments (BB) are so numerous and their interactions are so 

specific in proteins that they need to be treated as a separate class.  

Our key hypothesis is that a residue-residue non-covalent interaction of a certain class 

with a lower IE value is stronger and more stabilizing than the one with a higher (less positive) 

value. We also suppose that each IE distribution corresponds to the free-energy distribution 

which has a similar shape with significantly strong interactions which can be considered as 

contacts. Although all types of interactions have different IE scales, their free-energy 

distributions should have scales comparably similar, because the experimentally observed effects 

of these interactions on the protein stability are very similar. Additionally, the forces forming the 

IE distributions of productive interactions Gaussian are of similar character and therefore similar 

in magnitude. It is plausible to suggest that the contact definition values can be understood as 

values scaling the IE distributions to sort out the free energy distributions and separating 

interactions with significant interaction free energies from the negligible ones. We require 

additivity of the contacts, so the number of contacts for a particular amino acid quantifies the 

stabilization of a protein by residue-residue interactions of this amino acid.  

The proper classification of fragments was checked by comparing the HCIE curves for all 

the amino-acid pairs. Pairs with similar HCIE curves are supposed to belong to the same 
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fragment class. All 210 HCIE curves can be found in the supplementary material. We propose 

the following classification. Each residue is cut into two fragments – side-chain and backbone 

(BB). The side-chains are classified as charged (CH – Asp, Glu, Lys, Arg, His), polar (PO – Asn, 

Gln, Thr, Ser, Tyr, Trp) or non-polar (NP – Ala, Leu, Ile, Val, Pro, Cys, Met, Phe), yielding four 

types of fragments and therefore defining ten types of mutual pairwise interactions. The only 

exception is Gly with no side chain. The His was always treated as double protonated and 

charged. This simplification of the His protonation state should not be critical, and in the case 

where His is not charged it could be treated as a polar. Trp and Tyr residues are ambivalent: on 

the one hand, they can form hydrogen bonds and have a relatively strong dipole moment and 

therefore strongly interact with charged residues, but on the other hand they are very often 

located in the hydrophobic core of proteins and interact with non-polar residues via short-ranged 

and relatively strong van der Waals. We still face the problem of the proper description of some 

Cys residues which seem usually to subdue non-covalent interactions to covalent Cys-Cys bonds.  

 

 

 

Average number of contacts 

Having classified the side-chains into groups based on their HCIE, we can characterize each 

inter-residual interaction energy type by plotting the number of contacts possessed by one amino 

acid against the contact definition in log scale. The average number of contacts per one amino 

acid of a particular type is a sum of its four average numbers of contacts (contributed by the 

interactions with each type of fragment). We assumed that the reasonable sum of four average 

numbers of contacts should lie between 0.01 and 1.  

Figure 2 
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Productive contact definition  

Identification of the stationary point separating productive and bulk interactions is shown 

in Figure 3. For the justification of the stationary points, the average number of contacts was also 

taken into consideration (Figure 2) for each minimum or inflection point used for the contact 

definition. We have excluded all of the inflection points and minima with an unreasonable 

average number of contacts. For example, -0.5 kcal/mol in the case of BBNP would suggest that 

one backbone fragment has more than three productive BBNP interactions. 

Figure 3 

In the case of charged-charged interactions, the level of compensation productive/non-

productive IEs is higher. This is because the long-ranged non-productive interactions are more 

important for electrostatic than for the vdW interactions, whose strength decreases much faster 

with distance. The fact that the contribution of the bulk interactions is much higher in the case of 

long-ranged interactions (Figure 3) can be attributed to the higher compensation of the positive 

and weak negative interactions (see the BIE values in Table 1).  

In the case of backbone fragments and their interactions, we can see peaks representing 

particular structural motifs reflecting most probably their distance in sequence. The peak with 

dist=4 corresponds to helices with IE ~ -4 kcal/mol, dist >7 for beta-sheet interactions with IE ~ -

3.2 kcal/mol, dist=3 and dist=2 for interactions in loops with IE ~ -2.5 kcal/mol and IE ~ -1 

kcal/mol, respectively. 

As follows from Table 1, the consideration of Tyr and Trp as polar residues fits into our 

classification schema very well. It is demonstrated by the fact that the PONP and NPNP contact 

definition values are very similar. 

Table 1. 

As one contact is shared by two residues, the numbers of contacts per residue from Figure 2 must 

be divided by 2. The summation of all four contributions to each overall average number of 

contacts yields 1.34 for BB, 0.74, 2.25 and 2.56 for the CH, PO and NP side-chains, respectively.  
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Comparison of contacts defined by geometry and energy 

To assess the robustness and convertibility of the contact matrices defined by energy and by 

geometry criteria, we compared contact matrices constructed using our contact definition with 

matrices based on a different definition of the geometry criteria. It is clear (see Table 2) that 

geometry contact matrices are very sensitive to the way of their definition. Second, all of the 

geometry-based contact matrices are different from the contact matrices based on interaction 

energies, which can be attributed to the missing effect of mutual orientation and to different 

average distances between the residues for particular interaction types. A comparison of the 

contact matrices based on our contact definitions using OPLS and CHARMM force fields for 

interaction-energy calculations indicates that contact definition based on energy is robust to the 

utilization of a different force field. The sensitivity of energy-based contacts to a force field is 

even much lower than the sensitivity of geometry contacts to the way of definition used. 

Table 2 

Application of contact definition to thermal stability prediction 

To show a practical utilization of the suggested energy contact definition, we decided to test a 

correlation of protein thermal stability with the average number of contacts in globular proteins 

from thermophillic organisms and from their mesophilic counterparts. It is plausible to 

hypothesize that the highly stable protein homologs should have a higher number of contacts per 

amino acid. There are three main rebuttals to this hypothesis. First, the stabilization mechanism 

is probably not as simple as the number of intramolecular stabilization interactions or their 

strength. Second, the contacts in thermostable protein might just be stronger instead of more 

common. Third, the contacts might be enhanced or formed just at some location important for 

protein stability. On the other hand, it would be a great help for biochemists to acquire quick 

qualitative orientation in protein stability. The results for a set of twenty highly stable proteins 

and their less stable homologs are in Table 3. We must emphasize that we just took our contact 

definition and applied it to a set of proteins taken from the work of27 .  In most of the cases, the 

number of contacts per residue rises as the stability of a protein increases. It is however 

impossible to correlate directly the melting temperature and number of contacts per residue 

Page 13 of 25

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



mainly because of the fact that a different stabilization mechanism is characteristic for a certain 

protein fold. Another limiting factor is that only protein homologs with the same fold and 

topology can be compared. On the other hand, the presented correlation between protein thermal 

stability, the number of contacts per residue and average interaction energy per residue proves 

the usefulness of our contact-definition concept and its wise application.  

  

Table 3
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CONCLUSION 

We have proposed a method of a protein native geometry conversion into a map of 

contacts based on statistically significant interaction energies. The process is based on 

fragmentation and calculation using an empirical (OPLS or CHARMM) force field and relies on 

its pairwise additivity. Our approach unifies the treatment of different types of interactions, 

avoiding the problems arising from the different contributions to the overall stability and the 

different effect of the environment. On the one hand, we can understand the values in 

interaction-energy matrices. On the other hand, we hypothesize that these interactions are the 

productive or the most stabilizing ones. The matrices of productive contacts can be used 

whenever the energy content of the contact instead of the geometric proximity is required. We 

have shown that our contact definition is sufficiently robust and different from a geometry-based 

definition to replace them in such applications. We have also applied our contact definition to a 

naïve model of globular protein thermostability and shown that the number of energy-defined 

residue-residue contacts per residue is increased in thermostable homologs. 
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TABLES 

Table 1: The calculated contact definitions and their properties. The BIE (abbreviation for boundary interaction 
energy) is an IE value, for which all the weaker interactions compensate with positive interactions (see Eq (5)). The 
compensation of the interactions with positive and negative IE values (“compens”, fourth column) is always 
expressed as a ratio of the sum of all the negative interactions to the sum of all the interactions. compCD is the ratio 
of the energy content of the productive and energy content of all the interactions. All the energy values are in 
kcal/mol 

 

#IE 
CD 

OPLS 
BIE compens compCD 

CD 
charmm 

BBBB -1.6 -0.2 1.14 0.72 -1.5 

BBCH -10 -3.5 4.04 0.39 -10 

BBPO -3 -0.4 1.26 0.28 -3.5 

BBNP -1.8 -0.1 1.05 0.08 -1.5 

CHCH -82 -69 11.70 0.81 -82 

CHPO -12 -4 3.03 0.47        N/A 

CHNP -3 -1.4 2.50 0.44 -3 

POPO -0.8 -0.5 1.29 0.90 -0.7 

PONP -0.4 -0.1 1.06 0.82 -0.4 

NPNP -0.3 -0.2 1.09 0.96 -0.3 

 

 

Table 2. Similarity of contact matrices. “opls“ denotes contact matrices calculated from interaction energy matrices 
using an OPLSAA force field and our contact definitions. “charmm” denotes the same using CHARMM27 force 
field. “CA” contact matrices are based on Calpha atom distances, “CB” on C beta atom distances. “center” contact 
matrices are based on the geometry centers of  residues calculated from positions of heavy atoms. “mindist” contact 
matrices are based on the minimum heavy atom distance. See the methods section. 

 
  opls charmm CA CB center mindist 

opls 1 0.95 0.49 0.44 0.52 0.51 

charmm 0.95 1 0.49 0.43 0.52 0.50 

CA 0.50 0.49 1 0.71 0.77 0.79 

CB 0.44 0.43 0.71 1 0.77 0.65 

center 0.52 0.52 0.77 0.77 1 0.72 

mindist 0.51 0.50 0.79 0.65 0.72 1 
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Table 3. The application of contact matrix construction to thermostable and mesostable protein homologs. The PDB 
code of thermostable homolog can be found in the first column (“thermo”), the number of all contacts determined by 
our method in the second column (“Cont”) and the length of its chain (number of residues) in the third column 
(“N”). The fourth column contains the number of contacts per residue (“Cont/N” = the value in the third column 
divided by the value in the second one). The next four columns contain the same characteristics for mesostable 
homologs. The last column contains the difference for the number of contacts per residue connected with the 
stability increase. In 16 out of 20 protein pairs, an increase of number of contacts per residue is found. The same 
result was obtained using the CHARMM force field. 

 
thermo Cont N Cont/N meso Cont N Cont/N Delta 

1THL 754 316 2.39 1NPC 729 317 2.30 0.09 

1LDN 775 316 2.45 1LDM 729 329 2.22 0.24 

1BMD 853 327 2.61 4MDH 777 333 2.33 0.28 

2PRD 390 174 2.24 1INO 353 175 2.02 0.22 

1PHP 973 394 2.47 3PGK 676 415 1.63 0.84 

1THM 692 279 2.48 1ST3 631 269 2.35 0.13 

1YNA 447 193 2.32 1XYN 401 178 2.25 0.06 

1XYZ 937 320 2.93 2EXO 846 312 2.71 0.22 

1CAA 107 53 2.02 6RXN 105 45 2.33 -0.31 

1BRF 110 53 2.08 1RB9 100 52 1.92 0.15 

1GD1 755 334 2.26 1GPD 569 333 1.71 0.55 

1TIB 678 269 2.52 1LGY 719 265 2.71 -0.19 

1ZIP 542 217 2.50 1AK2 528 220 2.40 0.10 

1FFH 779 287 2.71 1FTS 786 295 2.66 0.05 

1PCZ 440 183 2.40 1VOK 468 192 2.44 -0.03 

1OBR 879 323 2.72 2CTC 819 307 2.67 0.05 

1PHN 421 162 2.60 1CPC 414 162 2.56 0.04 

1TMY 304 118 2.58 3CHY 346 128 2.70 -0.13 

1GTM 1131 419 2.70 1HRD 1151 449 2.56 0.14 

1HDG 800 332 2.41 1GD1 755 334 2.26 0.15 
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FIGURE CAPTIONS 

Figure 1 The HCIE curve for backbone interactions constructed from the calculated data (red) 
and the function (Equation 4) fitted to these data (green). m=8 Gaussians were used, 7 of which 
for productive interactions. The calculated data are very well described excluding HCIE at IE>-
0.2 kcal/mol, where the Gaussian is a wrong approximation of the function diverging to ∞ . 
 
 
Figure 2: The number of contacts that one residue of a particular type (types in rows – first row 
BB, second row CH, third row PO, fourth row NP) participates on average from a particular type 
of interaction as a function of the interaction energy contact definition. Results for the OPLS 
force field is in red. The determined optimum contact definitions (marked blue) are very close to 
the inflection points with the lowest first derivatives. The result calculated by CHARMM force 
field is in green. 
 
 

Figure 3: The HCIE curves for all 10 types of interactions calculated using OPLS (green) and 
CHARMM (red) force fields. The contact definitions are marked in blue. 
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Figure 3. 
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