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Abstrakt 

 

Pochopenie cyklu uhlíku v ihličnatých lesoch, ktoré predstavujú veľké zásobárne uhlíku má 

zásadný význam pre naše chápanie prírodných procesov v rámci zmeny globálnej klímy. 

Rozpoznanie húb ako základných rozkladačov môže prispieť k tomuto pochopeniu. Huby sú 

schopné rozložiť množstvo substrátov a majú celý rad enzýmov, aby tak urobili. 

V tejto štúdii prezentujem huby rozkladajúce opad v horských smrekových lesoch národného 

parku Šumava. Cieľom mojej práce bolo sledovať sukcesiu a zmeny spoločenstiev húb od 

skorých štádií rozkladu ihlíc Picea abies po rozklad organickej hmoty v humusovom 

horizonte pôdy. Tento cieľ bol čiastočne splnený skúmaním produkcie extracelulárnych 

enzýmov húb v rôznych fázach rozkladu ihličia a to ihličia pripevneného na vetvičkách 

spadnutých stromov až po ihličie z opadu na povrchu pôdy v neskorších fázach rozkladu. 

Okrem testovania húb na ich prirodzených substrátoch – opad, enzýmové aktivity boli tiež 

merané na agarových kultúrach, ktoré umožňujú porovnanie rôznych húb rôzneho pôvodu. 

Enzymatické aktivity boli merané na enzýmoch rozkladajúcich celulózu a látkynachadzajúce 

sa v opade. I keď ekológia endofitov a saprotrofov naznačuje rozdiely v produkcii enzýmov, 

tieto neboli zaznamenané. Enzýmove aktivity vrcholia ako sa spotrebováva málo úživný 

sladový agar a jediný zdroj živín – smrekové ihličie je ťažké rozložiť. 

Ďalšia časť výskumu bola sústredena na hubové spoločenstvá izolované z pôdy, kde 

pokračuje rozklad ihličia. Hubové komunity v pôde boli sledovanéslovený 454–

pyrosekvenáciu – metódou celého meatgenómu. Zameranie 454–pyrosekvenačnej štúdie bolo 

na úplnu a celulolytickú hubovú komunitu reprezentovanú cbhI génom. Aby som 

charakterizovala cbhI gén do detailu, naklonavala som cbhI sekvencie z niektorých húb 

izolovaných zo smrekového ihličia.  

Cieľom bolo zistiť, do akej miery sa líšia celkové i celulolytické hubové spoločenstvo medzi 

pôdnymi horizontami a ročnými obdobiami. Potvrdila som, že horizont je výrazny 

diskriminačný faktor medzi ekologickými skupinami húb. Saprotrofné huby boli nájdené v L 

horizonte, zatiaľ čo väčšina mykoríznych v horizonte H. Množstvo bazidiomycétov bolo 

väčšie v organickom horizonte zatiaľ čo u askomycétov to bolo naopak. Zistila som, že 

signifikantne sa viac vyskytujúcich v jednom horizonte je 73% skúmanej časť celkového 

spoločenstva a na období závisí 37%. V skúmanej časti komunity zastúpenej cbhI génmi bolo 

62% OTUs závislých na nejakom horizonte a 21% na určitom období. Výsledky ukazujú, že 

hubové komunity sú veľmi ovplyvniteľné faktormi životného prostredia. 



 

Kľúčové slová (12): Hubová komunita, Picea abies, 454–pyrosekvenácia, cbhI – 

celobiohydroláza I, ITS – vnútorný prepisovaný medzerník, celulóza, Opadový horizont, 

Organický / humózny horizont, Enzýmy, Saprotrofické, mykorízne a parazitické huby, lesné 

pôdy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

 

Understanding of carbon cycling in coniferous forests that represent a large carbon sink is 

crucial for our understanding of natural processes under global climate change. Recognition 

of fungi as fundamental decomposers can contribute to this understanding. Fungi are able to 

decompose numbers of substrates and possess a variety of enzymes to do so  

In this study I present litter decomposing fungi in mountain spruce forest from national park 

Šumava. The aim of my thesis was to follow succession and community changes of fungi 

from the early stages of decomposition of Picea abies needles until degradation of organic 

matter in the organic horizon of the soil. This aim was accomplished partly by recording the 

extracellular enzyme production of fungi in different stages of decomposition from needles 

attached to the twigs of a fallen tree to a litter material in later stages of decomposition on the 

soil surface. In addition to testing of fungi on their natural substrata – needle litter, enzyme 

activities were also measured in laboratory agar cultures, which allow comparison of diverse 

fungi with different origins. Enzyme activities were aimed at enzymes decomposing cellulose 

and compounds found in litter. Although ecology of endophytic and saprothrophic fungi 

suggest differences in enzyme production, these were not recorded. Enzyme activity peaks as 

poor malt extract agar becomes spent and the only nutritive source – spruce needles is 

difficult to decompose.  

Another part of research was triggered on fungal communities isolated from the soil where 

decomposition of needles continues. Fungal communities in the soil were approached by 

454–pyrosequencing method of the whole meatgenome. The focus of 454–pyrosequencing 

study was on a total and cellulolytic fungal community represented by cbhI gene as a proxy. 

To characterize cbhI gene in detail, its sequences from some of the fungi isolated from spruce 

needles were cloned. I have investigated to what extent does the abundance of fungi in 

general and cellulolytic fungi in particular, differ among soil horizons and seasons. I have 

confirmed that horizon strongly discriminates between fungal ecological groups. 

Saprotrophic fungi were found in L horizon while most of mycorhizzal in H horizon. The 

abundance of Basidiomycota in the organic horizon was higher than of Ascomycota and vice 

versa. I have found significant association with one of soil horizons for 73% of examined 

part of total fungal community and with a season for 37%. In examined part of community 

represented by cbhI gene pool, 62% OTUs depend on a soil horizon and 21% on a specific 



season. The results show, that fungal communities are strongly influenceable by 

environmental factors.  

 

Keywords (12): Fungal community, Picea abies, 454–pyrosequencing, cbhI – 

cellobiohydrolase I, ITS – internal transcribed spacer, Cellulose, Litter horizon, 

Organic/organic horizon, Enzymes, Saprotrophic, mycorrhizal and parasitic fungi, Forest soil 
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1. Introduction 
 

Soil is the largest pool of carbon in the biosphere. The transformation of organic compounds 

by soil–inhabiting heterotrophic microorganisms affects global carbon and nutrient cycles, 

the climate and plant production. Decay of organic substances in soil is mediated by 

extracellular enzymes that degrade biopolymers embodied in plant and microbial cell walls 

and reduce them to soluble molecules for microbial consumption (Burns and Dick 2002).  

Coniferous forest ecosystems can be found in the northern hemisphere in subpolar, moderate 

and partially in subtropical area. The widest continuous vegetation is the boreal forest biome 

– taiga, which covers 11% of Earths dryland (Sánchez et al. 2009). Coniferous forests play a 

prominent role in global carbon cycling as a carbon sinks (Myneni et al. 2001). 

Understanding of microbial involvement in decomposition in these ecosystems is thus 

required to estimate global C fluxes and their potential future changes (Buée et al. 2009). 

Flux of plant assimilates through tree roots into the biomass of ectomycorrhizal fungi and 

through plant litter to saprotrophic fungi and bacteria are the two key paths of carbon 

allocation into forest soils. Forests dominated by spruce (Picea spp.) constitute large 

ecosystems in boreal forest biomes and, due to climatic conditions, also in higher altitude 

forests in the temperate zones. Due to their economical importance, spruce forests are also 

abundant as plantation forests worldwide.  

Coniferous forests subsoil is usually composed of podsols, with acidic pH around 4 and has 

low fertility, the acidity of the soils being often increased by acid rain (Bardgett 2005). As a 

consequence of the low pH and high content of complex compounds like lignin, cellulose, 

waxes and defensive compounds (e.g., polyphenols), decomposition of spruce litter is very 

slow. This material is hard to process for soil fauna, which further slows down the 

decomposition rate. Fungi are able to tolerate low pH and decompose recalcitrant 

compounds, unlike bacteria, which are limited by low pH, enzymatic equipment, higher 

requirements for certain nutrients and lower ability to tolerate environmental changes 

(Allison et al. 2008, Carpenter et al. 1987). 

The present understanding of how ecosystem functions are influenced by soil biodiversity is 

far behind our understanding of how aboveground organisms contribute to these functions 

(Bowker et al. 2010). While several recent studies have used deep sequencing approaches to 

assess the diversity of soil bacterial components (Lauber et al. 2009, Roesch et al. 2007), the 

number of such studies addressing fungal diversity is still limited. Only a minor fraction of 

the estimated 1.5 million fungal species worldwide have been described (Hawksworth 2001). 
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The ecological roles of most fungal taxa are poorly understood since the complexity of 

fungal communities has so far limited our ability to estimate diversity and distinguish 

individual taxa (McGuire and Treseder 2010). The ability to assign functional trait values to 

species (or species groups) is a critical step in the interpretation of changes in community 

structure along environmental axes and would strengthen researchers’ mechanistic 

understanding of fungal community assembly. This is an area where functional gene 

approaches may provide an important link to generalizing patterns across studies. 

 

2. Literature outline 
 

2.1 Characterization of fungal community decomposing organic 

matter in the forest soil 
 

Studies using the isolation and analysis of individual microbial taxa together with recent 

molecular studies and observations of enzymatic activity in soils have revealed a typical 

pattern of litter decomposition. 

When the newly shed litter reaches the forest floor, it is already colonized by endophytic 

fungi. In pine needle litter, for example, the well known endophytic fungus Lophodermium 

pinastri is frequently found. Some authors report beneficial effects of endophytes on their 

hosts (Carroll 1988, Clay1988), leading to the impression that the term 'endophyte' defines 

fungal symbionts with mutualtic properties. Some studies demonstrate, however, that 

potentially pathogenic fungi are able to live latently for a longer or shorter period in their 

hosts (Dayer and Sinclair 1991, Sieber et al. 1988). Thus Sieber–Canavesiu and Sieber 

(1993) divided endophytic fungi into two groups according to their ecology: endophytic 

fungi – isolated from green living needles, having only an endophytic phase and 'transition–

fungi' – survivors in senescent tissues, recently dead tissues still attached to the plant and 

litter tissues, after endophytic life phase can switch to saprophytic. The ecological role of 

endophytes is not clear, but many stay in the dead litter and some have saprotrophic 

capabilities (Osono, 2006). In this early stage of decomposition, mainly soluble sugars and 

other low molecular weight compounds are lost from the litter (Berg et al. 1982). Enzymes 

degradating monosaccharides and disaccharides are also prominent but then rapidly decline 

(Sinsabaugh 2005). Some endophytic fungi in the early community also have cellulolytic 
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capacities and have been observed to cause significant mass loss in laboratory experiments 

(Korkama–Rajala et al. 2008).  

According to the results of Sieber–Canavesiu and Sieber (1993) on Abies alba needles only 

Exophiala sp. and Grovesiella abieticola belonged to the first group of endophytes. 

Prominent representatives of the second group were Cytospora pinastri, Hormonema 

dematioides, Rhizosphaera oudemansii, R. macrospora and Leptostroma sp. The frequency 

of colonization by the members of the second group decreased quickly after needle fall. 

Transition–fungi were fully substituted within one year after needle fall by members of the 

third group, such as Thysanophora penicillioides, Rhizoctonia sp., Gliocladium penicilliodes, 

Pseudomicrodochium sp., Cylindrocladium sp. or Coleophoma cylindrospora. In the Picea 

abies (Scots pine) needles, unidentified ascomycetous species belonging to either the 

Leotiomycetes, primarily within Helotiales, and Dothideomycetes dominate the fungal 

community at early stages (Lindahl et al.2007). The current knowledge on the functional 

capacities of these fungi is, however, very limited. The first fungal community in the recently 

shed litter is later enriched with early basidiomycetous fungi. Species within the genera 

Athelia and Sistotrema are frequently found (Lindahl et al. 2007, O'Brien et al. 2005) as well 

as with another very common and widespread litter fungus, Marasmius androsaceus (Holmer 

and Stenlid 1991, Korkama–Rajala et al. 2008, Lindahl et al. 2007). 

During the second phase of litter decomposition, cellulolytic enzymes are active and the main 

degradation of the polymer occurs. Laccase activity can also be observed relatively early in 

decomposition of litter with high contents of phenolic compounds (Sinsabaugh 2005). 

Typical litter basidiomycetes such as the species of the genera Mycena, Clitocybe and 

Collybia are prominent during this stage (Osono, 2007).  

In final stages of organic matter succession, the abundance of the typical litter decomposers 

tends to decrease and mycorrhizal fungi start to dominate the fungal community in the 

humus–layer of both deciduous and coniferous forests (Lindahl et al. 2007, O'Brien et al. 

2005).  

It is presumed that if there is a shift in a fungal community during the succession, and if 

different organic compounds are available at different phases of decomposition, there should 

be differences between various succession stages of decomposing community and in terms of 

production of enzymes.  

Previous study of Lindhal et al. (2007) shown, that fungal communities in the soil are 

spatially heterogeneous. Especially there is a separation of saprotrophic and ectomycorrhizal 

fungi along soil depth and continuing changes in C:N ratio, which reflects the changing 
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quality of decomposed organic matter. In the ‘late’ fungal community, defined as taxa 

occurring with a higher frequency in fragmented litter and humus than in the fresh litter, were 

described by Lindhal et al. (2007) ectomycorrhizal basidiomycetes, predominantly from the 

genera Cortinarius and Piloderma. Ascomycota Capronia spp. and Rhizoscyphus ericae, 

which both form mycorrhizal associations with ericaceous plants (Allen et al. 2003), were 

also common. Gadgil and Gadgil (1971) suggested that ectomycorrhizal and saprotrophic 

fungi compete with each other for N resources, and such competitive interactions could act to 

maintain the partitioning of the fungal community into two vertically separated and 

functionally distinct subcommunities. Saprotrophic fungi are more efficient than mycorrhizal 

fungi in colonizing and utilizing fresh, energy–rich litter (Colpaert and van Tichelen 1996) 

and may thus be able to outcompete mycorrhizal fungi in the upper part of the forest floor. 

However, as the C:N ratio decreases and the substrate becomes depleted in available energy, 

the saprotrophs become less competitive, which is consistent with the observed replacement 

of saprotrophs by mycorrhizal fungi that do not depend on litter–derived energy. 

The above-mentioned spatial heterogeneity implies also heterogeneity in time because the 

organic substrate is changed over the years of decomposition, but also heterogeneity in 

decomposition during the year can be suspected; however, the current knowledge of the 

seasonal changes of fungal communities is limited. Such changes are expectable for several 

reasons. Carbon cycling in a forest changes during the year. In summer, trees 

photosynthesize and send simple forms of carbon to the roots, where mycorrhizal fungi can 

utilize them Saprothrophic fungi decomposing organic material in the upper forest soil thus 

cannot compete for niches with ectomycorrhizal fungi in summer. In winter situation 

changes, the photosynthate input into the mycorrhizal fungi from trees is significantly lower 

than in summer and some of them might even switch to saprothrophic lifestyle to be able to 

compete with saprothrophic fungi and to gain some nutrients. Several studies in temperate 

forests have supported this hypothesis, demonstrating that ectomycorrhizal root tips exhibit 

high extracellular enzyme activity during winter months when photosynthesis rates decline 

(Buée et al. 2005, 2007; Mosca et al. 2007).summer. The carbon availability for saprotrophic 

fungi is more–less the same over the year in coniferous forests. Since saprotrophes are better 

adapted for degradation of complex organic substances, they have advantage before 

ectomycorrhizal fungi and can compete better for nutrients in winter under the snow cover. 

During autumn in deciduous forests have saprotrophic fungi huge supplies of fresh litter after 

leaf fall and should dominate over mycorrhizal fungi. Courty et al (2007) also found that 

ectomycorrhizal root tips in an old–growth oak forest produce a suite of extracellular 
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enzymes in the early spring that show peak activity immediately before and following bud 

break. Within a season, litter transformation results in the changes of both the litter chemistry 

and fungal community composition with increasing abundance of the Basidiomycota (Osono, 

2007). Seasonal changes of ECM fungi were observed in oak forest but the dominant taxa 

were present all time at considerable quantities (Courty et al. 2008, Walker et al. 2008). Both 

composition and metabolic activity (enzymes) of ECM show seasonal changes (Buée et al. 

2005). Arbuscular mycorrhizal fungi exhibit seasonal changes in community composition 

(Dumbrell et al. 2011). High seasonal variation but low interannual variation was observed 

for total fungi in boreal forest (Izzo et al. 2005, Taylor et al. 2010).  

Previous studies showed that (ecto–, arbuscular–, ericoid–) mycorrhizal fungi are able to 

decompose some simple organic substances and can transport amino acids even when 

associated with host plant (Abuzinadah and Read 1986, Bajwa and Read 1986, Finlay et al 

1992, Hawkins et al. 2000). The capacity of ectomycorrhizal and ericoid mycorrhizal fungi 

to produce enzymes involved in degradation of organic matter and to mobilize organic forms 

of N is well documented from laboratory experiments (Abuzinadah et al. 1986, Read and 

Perez–Moreno 2003, Lindahl et al. 2005). 

In the litter horizon where initial stages of litter decomposition occur, enzyme activities are 

typically substantially higher than in the deeper soil horizons (Šnajdr et al. 2008, Wittmann 

et al. 2004). Recent studies have shown that the activities of extracellular enzymes, 

especially those participating in lignocellulose degradation, are not only associated with litter 

decay but are also used for nutrient acquisition by microorganisms in the deeper soil horizons 

(Caldwell 2005, Moorhead and Sinsabaugh 2000). Soil horizons (L – litter horizon and H – 

organic horizon) exhibit profound differences with respect to enzyme activities (Baldrian et 

al. 2008, Šnajdr et al. 2008). Comparison of the effect of a site and season on enzyme 

activity showed that season played a principal role in the enzyme activity of the litter horizon 

measured in spoil heaps after brown coal mining. The highest activities of all enzymes were 

detected in October, which is most probably caused by the input of fresh litter, rich in easily 

available nutrients, into soil during the litter fall period (September–October). High 

ergosterol content points to fungi as the main litter decomposers. The importance of the litter 

compartment for plant biomass decomposition is also supported by the fact that the 

seasonality was more pronounced in the upper part of the topsoil (Baldrian et al. 2008). 

Edwards and colleagues (2008) recently designed a set of PCR primers that target the 

catalytic region of the fungal glycosyl hydrolase family 7 cellobiohydrolase I gene (cbhI) in 

Ascomycota and Basidiomycota. Targeting this gene allows a representative group of 
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cellulolytic fungi to be detected and monitored in soil ecosystems and has been shown to be a 

useful comparative functional gene marker for soil fungal communities (Edwards et al. 

2008). Cellulolytic ability is widespread in members of the Ascomycota (Eriksson and Wood 

1985) and Basidiomycota (Baldrian and Valášková 2008, Lynd et al. 2002). However, 

cellobiohydrolases have so far been isolated from several white rot basidiomycetes and the 

plant pathogen Sclerotium rolfsii. They are apparently absent from most brown rot fungi 

(Kämper et al. 2006, Loftus et al. 2005).Cellobiohydrolase activity was also documented in 

litter–decomposing fungi (Steffen et al. 2007, Valášková et al. 2007) and some 

ectomycorrhizal fungi (Burke and Cairney 1998, Cao and Crawford 1993). Three forms of 

CBHI protein with different activities towards carboxymethyl cellulose were isolated from 

Phanerochaete chrysosporium (Garzillo et al. 1994, Uzcategui et al. 1991). Edwards et al. 

(2008) isolated three distinct cbhI genes from Clitocybe nuda, Clitocybe gibba and 

Chlorophylum molybdites. These sequences within the same fungus had a nucleotide mean 

pairwise similarity of 70 – 80%. 

Edwards et al. (2008) was first who designed and used cbhI primers in environmental soil 

analysis. They succeed to identify into the groups sequences obtained from the soil covered 

with deciduous forest. Obtained cbhI were on the clades with Trichoderma spp., Xylaria spp., 

Organicola grisea, Alternaria spp. Apergillus spp., Penicilium spp., Pleurotus osteratus, 

Irpex lacteus, Phanerochaete chrysosporium, Clictocybe spp., Volvariela volvacera and there 

were also unidentified groups of forest floor–derived sequences. The most recent papers on 

fungal cbhI gene pools in soils show that several dominant fungal taxa possessing 

cellobiohydrolase belong to groups not yet recognized as cellulose degraders (Weber et al. 

2010). Weber et al. (2010) showed that the cbhI gene pools are ecosystem–specific; cbhI 

sequences from the Ascomycota comprised the majority of sequences from loblolly pine 

plantation, while Basidiomycota sequences comprised the majority of the aspen plantation. 

Phylogenetic tree constructed by Weber et al. (2010) proved that many of the cbhI genes do 

not form taxon–specific monophyletic clades. Because the cbhI phylogeny does not always 

parallel that of the ribosomal gene sequences and many isolates possess multiple and 

different copies of cbhI, it is difficult to discern taxonomic identity of an environmental cbhI 

sequence from its nearest BLAST hit or position within the phylogeny unless the similarity to 

the known sequences is high.  

For fungal succession it has been observed that the Mucoromycotina belong to the first 

colonizers followed by the Ascomycota (Torres et al. 2005). These fungi have limited ability 

to degrade lignin and are mainly regarded as cellulose decomposers or sugar fungi (Osono 
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2007). Basidiomycota, with their ability to degrade the recalcitrant lignin–containing litter 

material, appear only later in the decomposition process (Lundell et al. 2010, Osono 2007). 

Although mycorrhizal fungi may not be primary participants in cellulose degradation, higher 

exo-enzyme activity rates have been noted in mycorrhizal mats suggesting that they can 

enhance and alter saprotrophic activities, and perhaps richness, in the surrounding 

community (Entry et al. 1991, Kluber et al. 2010). 

 

2.2 Specific aspects of fungal ecophysiology 
 

Fungi combine the micro– and macroscopic lifestyles. Like microbial communities, fungal 

communities are highly diverse and poorly described. Their vegetative bodies are composed 

of microscopic filaments that interact directly with the environment at the micron scale. 

Fungal spores, often in the small–micrometer range (e.g., 10 to 20 micrometers), are 

produced in great numbers and are capable of long–distance dispersal. This microscopic 

aspect makes fungi nearly impossible to observe in their active, vegetative states and 

molecular tools are required for their identification and quantification. 

On the other hand, fungi share many ecological similarities with macroorganisms. Like 

plants, fungi are sessile and compete for space in order to control access to resources. 

Although individual hyphae are microscopic, genets can occupy large spaces and can survive 

for many years (Smith et al. 1992).  

Unlike bacteria, fungi do not seem to exhibit high frequency of horizontal gene transfer, so 

that their functional traits are relatively stable, and species concepts are useful and reasonably 

well developed (Taylor et al. 2000). The development of fungal–specific primers for 

amplification of the internal transcribed spacer (ITS) region of the ribosomal RNA genes 

(Gardes and Bruns 1993) opened the way for direct amplification of fungal DNA from 

complex substrates containing multiple sources of DNA, such as soil or plant tissue. 

Despite their ubiquity and importance in terrestrial ecosystems, the ecological research 

concerning fungal communities has long been held back by the inability to identify species in 

their vegetative states. Although reproductive structures can be diagnostic, they are not ideal 

for ecological studies because they are produced infrequently in the field, often harbor 

cryptic species complexes, and do not accurately represent species abundances. However, the 

recent adoption and dissemination of DNA– and RNA–based molecular tools has greatly 

reduced the barriers to sampling and identifying fungi from vegetative material. At the same 
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time, improvements in techniques for measuring fungal biomass and nutrient uptake (e.g., the 

use of stable isotopes, phospholipids fatty acids and ergosterol) have confirmed the 

importance of fungi in key ecosystem functions, such as carbon and nutrient cycling (Hobbie 

and Hobbie 2006).  

 

2.3 Different ecological strategies of fungi 
 

Considerable diversity of fungal species can be present already in living leaves as endophytes 

(Arnold et al. 2007). Current results show that among fungi associated with dead litter before 

abscission fungal endophytes quantitatively dominate over their bacterial counterparts 

concerning biomass (Šnajdr et al. 2011). Although the ecological role of endophytes is not 

completely clear, the fact that these fungi can start to exploit dead leaves immediately after 

their senescence and before these come into direct contact with soil may point to their 

potential importance in the initial stages of decomposition. This is in agreement with 

observations that endophytic species can be found in the litter horizon of forest soils where 

they may continue with decomposition (Livsey and Barklund 1992, Mitchell et al. 1978) and 

cause significant needle decomposition (Korkama–Rajala et al. 2008). On the other hand, the 

decomposition ability of most endophytic and phyllosphere–associated fungi seems to be 

limited compared to species occurring later during succession (Osono 2006 and 2007, 

Korkama–Rajala et al. 2008), although exceptions may exist (Boberg et al. 2010). The lower 

decomposition ability of endophytes might, possibly, be explained by the fact that fresh litter 

contains more easily available substrates that do not require biopolymer–cleaving enzymes 

(Šantrůčková et al. 2006). 

Mycorrhizal fungi are in contrary to endophytic fungi, widespread in the soil (Wang and Qiu 

2006). The symbiosis between plant roots and fungi, referred to as mycorrhiza (literally, 

“fungus root”), is one of the most ubiquitous mutualisms in terrestrial ecosystems. These 

mycorrhizal associations enable plants to acquire mineral nutrients and water in exchange for 

photosyntheticaly derived sugars. It is likely that plant adaptation to life on land 400 million 

years ago was possible only with the help of mycorrhizal symbionts (Simon et al. 1993). 

Many plants depend heavily on mycorrhiza for mineral nutrition, and the absence of 

appropriate fungi can significantly alter plant community structure (Weber et al. 2005). 

Although most mycorrhizal interactions are thought to be mutualistic, there are examples of 

mycorrhizal symbioses in which plants are parasitized by fungi (Johnson et al. 1997) or fungi 
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are parasitized by plants, as in the case of certain non–photosynthetic plants that have 

become parasites on mycorrhizal fungi involved in mutualistic interactions with other 

photosynthetic plants (Bidartondo 2005). Although we know little about the saprotrophic 

capabilities of many ectomycorrhizal taxa, an intriguing possibility is that ectomycorrhizal 

fungi may have evolved good abilities to degrade the structural macromolecules (e.g. 

suberin) found in fine roots but not in above–ground litter. Because the fine roots colonized 

by ectomycorrhizal fungi are low in lignin (e.g. oak; Soukup et al. 2004) compared with 

above–ground litter, it is plausible that the enzymatic systems necessary to degrade fine roots 

are poorly adapted for degrading lignin–rich above–ground litter. Recent research has shown 

that ectomycorrhizal and ericoid mycorrhizal fungi may contribute to litter degradation 

(Talbot et al. 2008). Also the arbuscular mycorrhizal fungi are able to decompose organic 

substances independently of their host and thus must possess extracellular enzymes to do so 

(Hodge et al. 2001, Trojanowski et al. 1984). 

Saprothrophic fungi live on organic substrates, which they are able to decompose and are not 

dependent on the living host plant. They typically express a wide set of enzymes involved in 

decomposition (Baldrian 2008). We can divide saprothrophic fungi into groups based on 

their ability to degrade lignin. Lignin modification and degradation has been most 

extensively studied in basidiomycota, in which a number of enzymes and mechanisms 

involved in lignin attack have been demonstrated (Kirk and Farrell 1987, Tuomela and 

Hatakka 2011,). White–rot basidiomycetes (notably Phanerochaete chrysosporium) are the 

most frequent wood–rotting organisms, because of their ability to degrade lignin, 

hemicelluloses, and cellulose, often giving rise to cellulose–enriched white material. Brown–

rot fungi grow mainly on softwoods and represent only 7% of wood–rotting basidiomycota. 

They can also degrade wood polysaccharides after only a partial modification of lignin, 

which results in a brown material consisting of oxidized lignin, which represents a potential 

source of aromatic compounds for the stable organic matter fraction in forest soils (Martinez 

et al. 2005) Lignin is degraded to a lesser extent by brown–rot fungi, via a different 

mechanism to white–rot fungi (Dey et al. 1994). Soft–rot fungi secrete cellulases from their 

hyphae and this leads to the formation of microscopic cavities inside the wood, and 

sometimes to a discoloration and cracking pattern similar to brown rot (Duncan and 

Catherine 1960). Soft–rot are presented by ascomyctes and mitosporic species, such as 

Chaetomium sp. and Ceratocystis sp. Another group of saprotrophic fungi are litter 

decomposing fungi, amongst which the best reviewed group are litter decomposing 

basidiomycets. Litter decomposing basidiomycets produce ligninolytic oxidases and 

http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2007.01984.x/full#b7
http://en.wikipedia.org/wiki/Cellulase
http://en.wikipedia.org/wiki/Hypha
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peroxidases, which are thought to be responsible for the transformation of lignin (Martinez et 

al. 2005, Sinsabaugh 2010). In addition, they can also degrade and mineralize chemically 

related compounds including organic and fulvic acids as well as numerous xenobiotics 

(Baldrian 2008, Steffen et al. 2002, Tuomela et al. 2002). Since the ability of efficiently 

decomposing and mineralizing lignin and organic acids was demonstrated for several 

saprobic basidiomycets and their isolated extracellular Mn peroxidases (Hofrichter et al. 

1998 and 1999; Hatakka 2001, Steffen et al. 2002), litter decomposing basidiomycets are 

regarded as the key players in microbial lignin and humus degradation in forest soil 

environments (Baldrian 2008, Osono 2007;. Mn–peroxidase, mannanase and xylanase were 

produced by Mycena galopus in Picea sitchensis litter (Gosh et al. 2003) and the litter–

decomposer Lepista nuda produced laccase, endoglucanase, β – glucosidase and β – 

xylosidase on Fagus sylvantica buried leaves in soil (Colpaert and van Laere 1996). 

Recently, litter–decomposing fungi Gymnopus sp., H. fasciculare, L. nuda, Marasmius 

quercophilus, Mycena inclinata and R. butyracea were reported to produce laccase, Mn–

peroxidase and a complete set of cellulose degrading enzymes on Quercus sp. litter (Staffen 

et al. 2007,Valášková et al. 2007).  

 

2.4 Properties of coniferous forest soils 

 

Soil properties include its physical, chemical and biological characteristics, which are 

represented by the bedrock composition, relief, time, vegetation, climate and representation 

of living organisms. All these characteristics affect the activity of microbial communities and 

vice versa (Šnajdr et al. 2008). 

Forest soils are typical by their sharp vertical stratification. Stratification develops because 

litter material is accumulated on the soil surface and as subsequent mineralization continues, 

mineralized material is pressed deeper to the soil by new litter layers. Podzols in area of 

Plešné lake are stratified into layers of the organic litter layer consisting predominantly of 

decaying spruce needles, branches and bark (L horizon); the uppermost mineral horizon with 

accumulated humified organic matter (H horizon) and mineral soil. H horizon is typical by 

lower ratio of C:N than litter, lower amount of organic matter relative to L horizon, bigger 

resiliency of organic compound and the related smaller amount of microbial biomass and its 

activity (Šnajdr et al. 2008). 
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Litter decomposition is one of the main processes responsible for the formation of typical 

forest soils with developed organic horizons, rich in lignocellulose–derived organic 

compounds. To sum up, physical, chemical and biological properties along with the plant 

litter input, its microbial degradation along with environmental factors lead to the formation 

of profile typical for forest soils. 

The two major sources of carbon in forest soils are plant litter and plant root exudates. While 

the root exudates usually contain soluble small–molecular–mass compounds, plant litter is 

mainly composed of plant cell wall polysaccharides (Baldrian 2009a). Forest plant litter 

decomposition is an important process in C, N and P cycles and soil formation. This process 

is controlled by abiotic factors, such as temperature, moisture, chemical composition of the 

litter, and microbial communities (Aber et al. 1990, Couteaux et al. 1995, Fassnacht and 

Gower 1999, Park and Matzner 2003, Pregitzer et al. 2004). Litter low in N and rich in lignin 

requires additional N to be decomposed and decomposition is not followed by N release into 

the soil (Meentemeyer 1978). Picea abies needles are exactly the case – they are rich in C 

and poor in N (Chyba! Nenašiel sa žiaden zdroj odkazov.), so their decomposition is 

incomplete unless extra N is supplied. Decomposition of spruce needles rich in lignin is 

slower than the decomposition of herbaceous understory litter containing more cellulose, 

nonstructural material and less lignin and related compounds. Deciduous forest litter has 

higher content of easily degradable substances like amino acids and simple sugars, which 

contributes to their faster decomposition (Bardgett 2005).  

Chemical composition of Picea abies needles differ in various phases of their decomposition. 

Decayed needles have less C and more N than mature needles, because as mentioned above, 

during decomposition litter lose C while obtain N since it is need in lignocellulose 

decomposition process. Chemical composition of Picea abies needles is in Chyba! Nenašiel 

sa žiaden zdroj odkazov. (Šantrůčková et al. 2006); the senescent needles were sampled 

from trees invaded by bark beetle.  

 

Table 1: Nutrient concentration in the mature, senescent and decayed spruce needles from Plešné Lake. Mean 

values from the material collected are given. 

 

Explanation: A mean values from 1 to 3 year old needles. 
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Lignocellulose is the structural material of plant cell walls, and is therefore the main 

component of plant biomass. Lignocellulose consists of three main components: cellulose, 

hemicelluloses, and lignin (Lee 1997, Sjöström 1993). 

Cellulose, which accounts for 30–50% dry weight of lignocellulose, is a polysaccharide 

composed of β–1,4–linked D–glucose units. Cellulose fibrils contain tightly structurally 

organized part – crystalline cellulose and loosely organized amorphic parts (Hon 1994). 

Amorphous domains are easy to decompose because they can be easily attacked by 

cellulolytic enzymes that ultimately convert it into glucose. 

Hemicelluloses consist of various polysaccharides, mainly the xylans and mannans, which 

are closely associated with the cellulose filaments, and chemically linked with lignin. The 

major hemicellulose in hardwoods is xylan (15–30% dry weight), a polysaccharide composed 

of β–1,4–linked D–xylose units, which can be substituted with other monosaccharide units. 

Softwood hemicellulose contains mainly galacto-, gluco-mannan (15–20% dry weight), a 

polysaccharide composed of β–1,4–linked D–glucose, D–galactose and D–mannose units. 

Lignin is a complex aromatic heteropolymer, composed of phenylpropanoid aryl–C3 units, 

linked together via a variety of ether and C–C bonds. Lignin accounts for 15–30% dry weight 

of lignocellulose, in which it forms a matrix that is closely associated with the cellulose 

filaments, and is covalently attached to hemicelluloses. Lignin is formed by radical 

polymerization of guaiacyl (G) units from precursor coniferyl alcohol, syringyl (S) units 

from precursor sinapyl alcohol, and p–hydroxyphenyl (H) units from precursor p–coumaryl 

alcohol (Faix 1991). The ratio of G:S:H units varies from species to species, but softwoods 

usually contain G type lignins, containing mainly G units, while hardwoods are generally 

GS–type lignins, containing mixtures of G and S units and grass lignins are H type lignins 

containing a higher proportion of H units (Lee 1997). The ether and C–C linkages present in 

lignin are not susceptible to hydrolytic attack, and therefore, lignin is highly resistant to 

breakdown. The embedding of cellulose filaments in lignin provides a physical barrier to 

lignocellulose breakdown.  

 

2.5 Enzymes degrading cellulose 

 

Efficient solubilization of the heterogeneous and highly insoluble native cellulose requires 

the presence of multiple enzymes. Characteristic feature of most cellulases is a domain 
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structure composed of a catalytic domain linked by an extended linker region to one or more 

cellulose–binding domains (CBDs) (Tomme et al. 1995). It is well documented that 

CBDs are required for efficient hydrolysis of crystalline substrates. All cellulolytic enzymes 

share the same chemical specificity for β–1,4–glycosidic bonds, which are cleaved by a 

general acid–catalyzed hydrolysis,(McCarter et al. 1994). Different modes of action of 

cellulolytic enzymes on the polymeric substrate are commonly described as endo– and exo– 

types of attack (Wood et al. 1979) (Figure 1).  

 

Figure 1: Decomposing of cellulose fibers by action of CBHI, CBHII (cellobiohydrolase I and II), EG 

(endoglucanase) and BG (β–glucosidase), adapted from Teeri (1997)   

 

 

 

Endoglucanases (EC 3.2.1.4) hydrolyze internal bonds at random positions of the less 

ordered (or amorphous) regions of cellulose. These enzymes generate chain ends for the 

processive action of another group of cellulases, the cellobiohydrolases (which are 

exoglucanases) (Himmel et al. 2007). A typical endoglucanase cleaves glycosidyc bonds 

along the length of the cellulose chains, resulting in a rapid decrease in the degree of 

polymerization (DP) of the substrate (Kleman–Leyer et al. 1994 and 1996). Because the 

glucan chains can remain associated with the rest of the crystal after a single bond cleavage 

at the surface, it takes a relatively long time before soluble products are observed after an 

endo– type of attack. Exoglucanases (also called cellobiohydrolases) are currently thought to 

be processive enzymes, initiating their action from the ends of the cellulose chains (Warren 

et al. 1996). These act in a unidirectional manner from either the non–reducing (EC 3.2.1.91) 

or the reducing (EC 3.2.1.176) ends of cellulose polysaccharide chains, liberating cellobiose 

as the major product. By sequence and structural comparison, cellulases and other glycoside 

hydrolases have been classified into families sharing similar structures and the same 

chemical reaction mechanisms. Cellobiohydrolases are classified into three glycoside 
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hydrolase families (GH6, GH7, and GH48) (Henrissat 1991). Of these families, only GH7 is 

thought to be exclusively fungal, and this family contains the CBHI cellobiohydrolases 

(mentioned above) and the EG1 endoglucanases from both ascomycota and basidiomycota 

fungi (Edward et al. 2008). β–D–glucosidases (EC 3.2.1.21) hydrolyze cellobiose into two 

glucose molecules (Himmel et al. 2007).  

Cellulolytic fungi typically produce more different cellobiohydrolases (CBHs) belonging to 

different GH families. For example in Trichoderma reesei, CBHI makes up 60% and CBHII 

20% of the total cellulolytic proteins, accounting for most of its cellulolytic activity. These 

two enzymes can achieve complete, although slow, solubilization of cellulose crystals even 

without the help of endoglucanases (Chanzy et al. 1985). 

CBHI and CBHII cellobiohydrolases liberate cellobiose from opposite glucan chains. 

Enzyme–kinetic data obtained using oligosaccharides labeled by 
3
H at their reducing end or 

by 
18

O at one glycosidic oxygen indicate that T.reesei CBHI prefers the reducing end while 

CBHII acts at the non-reducing ends (Barr et al. 1996).  

The complementary activities of endo– and exoglucanases lead to synergy, demonstrated as 

the enhancement of activity of the enzyme pool over the summed–up activities of the 

individual enzymes. The endo–exo synergy is easy to understand as the endoglucanases 

provide free chain ends on the cellulose surface for the exoglucanases to act upon (Wood et 

al. 1979).  

 

2.6 Other fungal enzymes involved in decomposition 

 

As was stated above in section 2.4, spruce litter is composed mostly from hardly degradable 

compounds like lignocellulose, cellulose or hemicellulose, but also from easy decomposable 

substrates like pectins, mannans, simple sugars, proteins etc. Due to spruce needle litter 

chemical complexity, a wide array of enzymes is necessary for its decomposition. 

Cellulases, in particular the complex consisting of endoglucanase, cellobiohydrolase (both 

discussed above in the section 2.5) and 1,4– α,β–glucosidase (EC 3.2.1.3/21), hydrolyze the 

long chains of cellulose, resulting in the liberation of cellobiose and finally glucose. 1,4–β–

glucosidase (EC 3.2.1.21) is exocellulase hydrolyzing terminal non–reducing residues of a 

variety of β–D–glycoside substrates (including cellobiose, see above) releasing glucose units. 

It was found in many fungal taxa both saprothrophs and mycorrhizal (Baldrian 2008). 

Enzyme involved in degradation of starch is 1,4–α–glucosidase (EC 3.2.1.3.), which was 
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identified from several wood–rotting basidiomyctes and soil–inhabiting saprothrophs 

(Baldrian 2008).  

Hemicellulases, such as endo–1,4–β–xylanase (EC 3.2.1.8), endo–1,4–β (EC 3.2.1.78) or 

exo–1,4–β mannanase (EC 3.2.1.25), exo–1,4–β–xylosidase (EC 3.2.1.37),  are involved in 

the breakdown of different polysaccharide chains such as xylans and mannans. These are 

among the main components of hemicellulose, a much more heterogeneous polysaccharide 

than cellulose. Range of endoxylanases like1,4–β–xylosidase (EC 3.2.1.37), catalyzing 

random hydrolysis of β–1,4–glycosidic bonds in xylans was found in both white–rot and 

brown–rot fungi. β–glucuronidase (EC 3.2.1.131) is another enzymes involved in 

hemicellulose decomposition (Baldrian 2008) and  was characterized from Phanerochaete 

chrysosporium (Castanares et al. 1995) and Schizophyllum commune (Johnson et al. 1989).  

Between enzymes degradating lignin belongs laccase (EC 1.10.3.2), lignin peroxidase (EC 

1.11.1.14), Mn–peroxidase (EC 1.11.1.13), versatile peroxidase (EC 1.11.1.16). Laccases can 

oxidize a wide variety of substrates and play variety of roles, but mainly they degrade lignin 

by oxidative mechanism. Laccase is produced by many Basidiomycota and Ascomycota, both 

saprotrophic and mycorrhizal. Although there are some records of laccase in mycorrhizal 

basidiomyctes and brown–rotter C.puteana (Lee et al. 2004), their role in these fungi is not 

known in detail (Baldrian 2006). Ligninolytic peroxidases (lignin peroxidase, Mn–

peroxidase, versatile peroxidase) participate in lignin decomposition. Their production is 

widespread among saprotrophic basidiomyctes although also some mycorrhizal fungi were 

demonstrated to possess genes encoding these enzymes (Baldrian 2008, Bödeker et al. 2009, 

Hofrichter 2002). 

Lipolytic enzymes like esterase and lipase catalyze hydrolysis of lipidic backbone and 

function mainly in basal metabolism. 

Hydrolytic enzymes accessing organic nitrogen to fungi are alanine aminopeptidase (EC 

3.4.11.2) – release of an N–terminal amino acid, preferentially alanine from a peptide, amide 

or arylamide and leucine aminopeptidase (EC 3.4.11.1) releasing N–terminal amino acid, 

preferentially leucine. In the acquisition of phosphorus are applied acid phosphatase (EC 

3.1.3.2) and phosphodiesterase (EC 3.1.4.1). Acid phosphatase together with alkaline 

phosphatase enables ectomycorrhizal and saprothrophic fungi to receive phosphorus from 

organic phosphates (Baldrian 2008). Sulfate containing phenol molecules are degraded by 

arylsulfatase (EC 3.1.6.1) and helps fungi to obtain sulfur from the nutrients.  

The main source of chitin in the litter are fungal cell walls – those of death, but also of living 

fungi. Fungi overcome nitrogen deficiency experienced during litter colonization by 

http://www.brenda-enzymes.org/php/result_flat.php4?ecno=3.2.1.8
http://www.jenabioscience.com/images/207bdf791d/EN-203.pdf
http://en.wikipedia.org/wiki/Enzyme_Commission_number
http://enzyme.expasy.org/EC/3.4.11.2
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translocation of nitrogen from the older parts of mycelium. 1,4–β–N–acetylglucosaminidase 

(EC 3.2.1.52) is able to mobilize nitrogen supplies by hydrolysis of chitin. Compared to 

phytopathogenic fungi, the occurrence of chitinase in saprotrophic basidiomyctes did not 

attract much attention. However, production of extracellular chitinases was demonstrated in 

non-basidiomycetous microfungi isolated from Quercus petraea forest soil based (Baldrian et 

al. 2011). Production of extracellular chitinases was documented from root–infecting 

basidiomyctes and several ectomycorrhizal fungi (Hodge et al. 1995). Lindhal and Finlay 

(2006) have shown that secondary wood colonizers can use chitinases to degradate their own 

cell walls or primary colonizers' chitin walls.  

 

2.7 Identification of fungi 
 

While filamentous fungi are identified using mainly morphological characteristics, yeasts are 

identified using biochemical characteristics; such is their ability to utilize carbon and 

nitrogen compounds. However, these methods of identification are often problematic as there 

can be different morpho/biotypes within a single species. They are also time consuming and 

require a great deal of skills.  

In the last two decades, the methods used to describe the diversity of microbial communities 

in soils have undergone a shift from cultivation–based approaches to more comprehensive 

culture–independent methods. This is of critical importance since only a minor fraction of a 

soil microbial community can be analyzed using cultivation–dependent techniques. Most 

recent molecular methods are based on the analysis of nucleic acids extracted from 

environmental samples. 

A single locus, the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA 

gene, has become widely used for near–species–level identification (Horton and Bruns 

2001). This region has four primary advantages over other regions: (1) it is multicopy gene, 

so the amount of starting material needed for successful amplification is low; (2) it has well–

conserved fungal specific priming sites directly adjacent to multiple highly variable regions; 

(3) there are many sequences already available for comparison, which greatly facilitates the 

identification of unknown samples; and (4) it correlates well with morphologically defined 

species in many groups (Smith et al. 2007).   

Although the consensus value for species discrimination using ITS is usually set at 97% 

(Amend et al. 2010, Buée et al. 2009, O’Brien et al. 2005, Tedersoo et al. 2010), it has been 
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shown that the ITS intra–specific similarity varied from 99% to 76% depending on the 

species in question (Nilsson et al. 2008). The fact that ITS is a multi–copy gene can be a 

hindrance, when one wants to quantify amount of fungi based on ITS qPCR. 

In last decade, a new gene – RPB (RNA polymerase II) is used in phylogenetic studies 

besides ITS. RPB as fungal taxonomical marker was first used by Cheney et al. (2001) to 

identify fungal groups inside of Microsporidia. Though almost entirely coding, the studied 

region of RPB2 is more variable than ITS. The combined analyses of ITS and variable 

regions of RPB1 and RPB2 greatly increase the resolution and nodal support for phylogenies 

of Cortinarius group, which are closely related species that until now have proven very 

difficult to resolve with the ribosomal markers. We speculate that sequence information from 

RNA polymerase II genes have the potential for resolving phylogenetic problems at several 

levels of the diverse and taxonomically very challenging genus Cortinarius (Frøslev et al. 

2005). The future prospects of fungal identification are that fungi will be molecularly 

identified based on multiple genes common to all fungi, but still able to distingue fungi into 

genera or species. 

 

3. Aims 
 

If there is a shift in a fungal community during the succession on decomposing organic 

matter reflecting the changing chemical composition of the material, there should be obvious 

disparity between various successional stages of the decomposer community in the 

production of extracellular enzymes. In addition to the differences in enzyme activities, the 

differences in organic matter quality among soil horizons may also cause the changes in the 

composition of the associated fungal community due to the differences in the availability of 

nutrients and the ability of fungal taxa to compete for nutrients and niches.  

In addition to the spatial heterogeneity of soils which reflects the development of the soil 

horizon during long-term decomposition of dead plant biomass, seasonal changes in nutrient 

availability may also play a role in the shaping of the composition of fungal communities. 

One can assume that there can be some changes in decomposition rates and fungal ecology 

during the year, which can affect fungal communities. Saprothrophic fungi decomposing 

organic material in the upper forest soil are likely less successful in the competition with 

ectomycorrhizal fungi during summer, when ECM fungi receive carbon from the host trees. 

In winter situation changes, the photosynthate input into the mycorrhizal fungi from trees is 



 29 

cedes and the switch to the saprothrophic processes in the soil can be expected. 

Ectomycorrhizal fungi should be thus spread in H horizon and proliferate in summer while in 

winter they should not be very abundant or extend their mycelia to L horizon for fresh 

nutrients. On the other hand litter saprotrophic fungi can thrive equally well in summer and 

winter due to the reserve of organic substances in the litter if they are not outcompeted by 

ectomycorrhizal fungi.  

Sapling sites were chosen to be as most homogenous as possible with respect to the 

vegetation cover, moisture, pH etc., so that large differences in the distribution of fungi 

across sites were not expected. 

 

4. Materials and methods 
 

Methodology in this thesis is composed of two parts: isolation of litter decomposing fungi 

from spruce needles in different stage of fungal succession and examination of fungal 

communities and their decomposing abilities in the soil horizons. In the first part of 

experiment, spruce needles representing different phases of needle decomposition were 

collected and fungi were cultivated from them. Abilities of fungal strains to decompose 

different organic substances were examined by enzyme assays. The aim of this part was to 

show fungal succession on spruce needles from endophytes to litter saprotrophes and find out 

whether fungi from different successional phases have differ in their abilities to decay litter. 

The second part of research followed the first one in terms of monitoring succession of 

fungal communities in different layers of the soil representing variously old and decayed 

organic matter. I studied soil fungal communities by 454–pyrosequencing approach, which 

allows covering huge part of soil fungal diversity without disadvantages of cultivation. The 

goal was to identify fungal communities based on ITS sequences and also, which part of 

fungal community have cellulolytic abilities (established by sequencing of partial cbhI gene) 

and whether this two communities respond to distinct soil profiles (L – litter and H – organic 

horizon) or to sampling seasons (winter or summer). 

 

4.1 Degradation of spruce litter by fungi 
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4.1.1 Study site and sample collection  

 

Needle samples were obtained from Norway spruce (Picea abies) in the National Park 

Šumava, Trojmezná region 48°47′N 13°52′E at 1 300 m altitude. This area is covered with 

Norway spruce with patches of ash (Fraxinus excelsior). The mean annual temperature is 5.5 

°C and mean annual precipitation 1 030 mm. The bedrock is granite and the prevailing soil 

types in this area are mainly podzols (Kopáček et al. 2002). Kopáček et al. (2002) and Veselý 

(1994) describe basic physico–chemical and biochemical properties of the soil. 

Three types of needle samples were collected into sterile plastic bags: (1) dead green needles 

attached to twigs on recently dead trees (wind–fallen during the preceding 6 months); (2) 

freshly abscised brown needles exposed for 1–month in litterbags on the soil surface; and (3) 

litter needles collected from the L horizon. These three kinds of samples represent three 

different stages of decomposition:  

(1) early decomposition of needles before colonization by soil fungi;  

(2) initial stages of decomposition on the soil (litter) surface; 

(3) later stages of decomposition.  

 

4.1.2 Isolation of fungi  

 

Needles were surface–sterilized by immersion into 30 % H2O2 and shaked for 90 s on a 

horizontal shaker. Surface sterilization was used to prevent the growth of surface–associated 

fungi. Ten needles from each sample were placed on the sterile MEA (20 g l
–1

 malt extract, 

20 g l
–1

agar) Petri dish. The plates were cultivated at a temperature 18°C /19 °C (day/night 

regime). After 4 – 5 weeks of incubation, colonies outgrowing from the needles were 

grouped according to morphology into morphotypes. Representatives of each morphotype 

were transferred onto fresh MEA plates. Sixteen strains representing the dominant 

morphotypes of stages 1 – 3 were used in subsequent analyses (Table 2). The strains were 

kept on MEA at 25 °C. The increase of a maximal colony diameter during the linear phase of 

the colony growth on MEA plates (the radial extension rate) was determined.  

 

4.1.3 Identification of fungal strains obtained from spruce needles 

 

Fungal strains were identified according to a combination of macro– and microphenotype 

characteristics with the molecular identification. DNA was isolated from pure agar cultures 
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using the Microbial DNA Kit (MoBio, USA). The manufacturer`s instructions were 

followed. Genomic DNA was used as a template in PCR reactions using primers for the ITS 

and 28S rDNA regions: ITS–1F (50–CTTGGTCATTTAGAGGAAGTAA–30) and NL4 

(50–GGTCCGTGTTTCAAGACGG–30) (Gardes and Bruns 1993). PCR conditions and 

reaction mixture were the same as stated previously (Valášková and Baldrian 2009). Each 

25–μl reaction mixture contained 16.75 μl H2O, 2.5 μl 10x buffer for DyNAzyme II DNA 

polymerase, 1.5 μl BSA stock solution (10mg/ml), 1 μl ITS–1F primer (250 pM/μl), 1 μl 

NL4 primer (250 pM/μl), 1 μl fungal genomic DNA, and 0.75 μl DyNAzyme II DNA 

polymerase (final concentration 2 U/μl) and 1 μl PCR Nucleotide Mix (10 mM). Program for 

PCR amplification reaction consisted of initial denaturation at 94 ºC, 5 min., 35 cycles (94 ºC 

1min., 50 ºC 1min., 72 ºC 1min.) and a 10–min final extension at 72 ºC.  PCR products were 

sequenced as a single extension with primers ITS–1F or NL4 by Macrogen Inc. (Korea) 

using an ABI 3730 XL DNA Analyzer (Applied Biosystems). Sequences were manually 

edited in BioEdit before they were  searched in BLAST (blastn) against the nucleotide 

database at NCBI (http://www.ncbi.nlm.nih.gov/blast). The isolates were assigned to species 

based on a combination of morphological characteristics and the best blastn match higher 

than 98 % similarity.  

 

4.1.4 Extracellular enzymes assays measurements 

 

4.1.4.1 Semi–quantitative assay of enzyme production in agar cultures 

 

To measure activities of enzymes, where substrates for individual direct assays are not 

commercially available, namely the esterase, esterase lipase, α–galactosidase, β–

galactosidase, β–glucuronidase, α–mannosidase, α–fucosidase was used API ZYM (Bio 

Merieux, France), semiquantitative analysis kit. Fungal strains were cultured on MEA at 

25ºC for 14 days. After the incubation, 1 cm
2
 of agar with about 7–days–old mycelium was 

homogenized with a mortar and pestle and supplemented with 2 ml of distilled H2O. 65 μl of 

the resulting suspension were then delivered into the API ZYM cupules and incubated at 37 

ºC for 4 hours as described in the manufacturer’s instructions with slight modifications 

(Baldrian et al. 2011). One drop of each ZYM A and B were added to the cupules. The color 

reactions were read after 5 min of incubation and compared with the color code provided by 

the manufacturer. The results were recognized as 0 (0 nanomoles substrate hydrolyzed), 1 (5 
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nanomoles substrate hydrolyzed), 2 (10 nanomoles substrate hydrolyzed), 3 (20 nanomoles 

substrate hydrolyzed), 4 (30 nanomoles substrate hydrolyzed), 5 (40 nanomoles substrate 

hydrolyzed). 

 

4.1.4.2 Production of extracellular enzymes in agar cultures 

 

Enzymes were extracted from fungal cultures, which were growing on MEA medium at 10 

ºC (the mean summer temperature at the site of isolation) in the dark, as described previously 

(Baldrian et al. 2011). Five 0.7 cm diameter plugs were cut off from 7–days–old mycelium 

plates, cut into small pieces and mixed with 50 mM sodium acetate buffer, pH 5.0 (3 ml cm
–

2
), and extracted for 2 hr at 4 ºC with constant mixing. Filtered extracts were used for 

analyses. 

 

4.1.4.3 Production of extracellular enzymes on spruce needles 

 

To measure enzyme activities in spruce needles colonized by fungi, isolates were cultured on 

MEA plates at 10 ºC in the dark. Two weeks after full colonization of a plate, when the most 

easily available nutrients were probably utilized, 10 spruce needles were added to each plate. 

Those freshly fallen needles were collected on soil surface in late autumn, air–dried and 

sterilized by gamma–irradiation. The needles were placed directly onto the fungal mycelia. 

After 14 and 35 days, 10 needles from 2 or 3 separate plates were removed and used for 

enzyme extraction. After 49 days, needles from plates of each strain were combined into 

three replicates (each from 2 or 3 separate plates) of 10 needles each, dried at 85 ºC until the 

constant mass and used for calculation of litter mass loss. 

Needles for enzyme activity assays were homogenize with UltraTurrax (IKA Labortechnik, 

Germany) for 3 min at 8 000 rev min
–1 

in 10 ml of cold 50 mM sodium acetate buffer, pH 

5.0. The homogenate was used as a sample in the enzyme assay.  

 

4.1.4.4 Enzyme activity measurements 

 

Activities of cellobiohydrolase (exoglucanase), β–glucosidase, β–xylosidase, α–glucosidase, 

N – acetylglucosaminidase, phosphatase, phosphodiesterase, arylsulphatase, alanine and 

leucine aminopeptidases were assayed by direct incubation of the needle homogenate with 4–
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methylumbelliferone (MUF) or 7–amino–4–methylcoumarin (AMC)–based substrates based 

on (Vepsäläinen 2001) MUF–cellobioside, MUF–β–glucosidase, MUF–β–xylosidase, MUF–

α–glucoside, MUF–N–acetylglucosaminide, MUF–phosphate, MUF–diphosphate, MUF–

sulfate, L–alanine–AMC, and L–leucine–AMC, repectively. Fluorescence of the released 

reaction products was measured as previously described (Baldrian 2009b). The final 

concentration of fluorescence substrates in each of the 96 wells in 96 multi–well plate was 

500 μM (100 μl of substrate in DMSO). Three technical replicates of 100 μl needle 

homogenate per well, were performed. For the background fluorescence measurement, 100 

μl of 50 mM sodium acetate buffer, pH 5.0 were combined with 100 μl of 4–

methylumbelliferone or 7–aminomethyl–4–coumarin standards to correct the results for 

fluorescence quenching. The multi–well plates were incubated at 40 °C, and fluorescence 

was recorded after 5 min and 125 min using the Infinite microplate reader (TECAN, Austria), 

using an excitation wavelength of 355 nm and an emission wavelength of 460 nm. The 

quantitative enzymatic activities after blank subtraction were calculated based on standard 

curves of MUF and AMC.  

Laccase activity was measured by monitoring the oxidation of 2,2´–azinobis–3–

ethylbenzothiazoline–6–sulfonic acid (ABTS) in 100 mM citrate – 200 mM phosphate buffer 

(pH 5.0) at 420 nm (Bourbonnais and Paice 1990). Manganese peroxidase (MnP) was 

assayed in succinate–lactate buffer (100 mM, pH 4.5). MBTH (3–methyl–2–

benzothiazolinone hydrazone) and DMAB (3,3–dimethylaminobenzoic acid) were 

oxidatively coupled by the enzyme, and the resulting purple indamine dye was detected 

spectrophotometrically at 595 nm (Ngo and Lenhoff 1980). The results were corrected by the 

activities of the samples without manganese – the addition of manganese sulphate was 

substituted by an equimolar amount of ethylenediaminetetraacetate (EDTA). One unit of 

enzyme activity was defined as the amount of enzyme forming 1 nmol reaction product per 

min (1 U = 16.67x10
−9

 katal). Specifics of solutions composition and enzyme measurements 

are in section 8 Buffers and solutions. 

 

4.1.5 Statistical analyses of enzymatic data 

 

Statistical tests were conducted using the software package Statistica 7 (StatSoft, USA). 

Statistical significance of differences among groups of strains based on their occurrence 

during needle decomposition or their taxonomic placement (Ascomycota versus 
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Basidiomycota) was evaluated using one–way ANOVA. Pearson’s correlations were 

calculated to find the relationships among enzyme activities and litter mass loss. Principal 

component analysis on enzyme production data was also used to discriminate these groups. 

Neither of these analyses showed differences between groups of strains at p ≤ 0.05. 

 

4.1.6 DNA isolation from fungal cultures 

 

DNA was isolated from pure fungal cultures to obtain cbhI sequences by modified method 

from Sagova–Marečková et al. (2008). Mycelium from a MEA plate was carefully removed 

and placed into a sterile microtube with 400 μl of extraction buffer (50 mM NaH2PO4 (pH 8), 

50 mM NaCl, 500mM Tris–HCl (pH 8), 5% SDS), 100 μl of pH 7.5 phenol and 100 μl of 

chloroform/isoamyl alcohol (24:1). Glass beads (0.25 g of 0.1 mm and 0.25g of 0.5 mm) 

were added and cell lysis was performed in Mini–BeadBeater–16 (Biospect product, USA) 

for 10 sec at speed 40. Homogenates were centrifuged for 3 minutes at 18 000 g and 

supernatants was transferred to sterile microtubes. The samples were extracted with phenol + 

chloroform/isoamylalcohol (1x the volume of supernatant). The mixtures were vortexed and 

centrifuged for 5 minutes at 6000 rpm. Supernatants were extracted with 1 volume of 

chloroform/isoamylalcohol (24:1). Again, the mixtures were vortexed and centrifuged for 5 

minutes at 6000 rpm. 6M NaCl (1/3 volume of supernatant) and 10 % (w/v) CTAB in 0.7 M 

NaCl (1/10 volume of supernatant) were added to the supernatants. The mixtures were stirred 

and incubated at 65ºC for at least 30 min and then cooled down to laboratory temperature. 

Chloroform/isoamylalcohol (24:1) (1x the volume of mixture) was added to the mixtures, 

which were than shaken and centrifuged for 20 minutes at 4500 rpm. The supernatants were 

precipitated for 20 minutes with isopropanol (3/5 volume of supernatant) and Na–acetate 

(3M, pH 4.8, 1/10 volume of supernatant) at laboratory temperature. The mixtures were 

centrifuged for 20 minutes at 18 000 g. Liquid parts of the mixture was removed from the 

microtubes and sediments were washed with 200 μl of cold 70% ethanol. The sediments were 

centrifuged for 20 minutes at 18 000 g. Ethanol was discarded from tubes. The sediment 

(isolated DNA) was dried for 4 minutes using SpeedVac (Savant, USA) and dissolved in 50 

μl of deionised water. Subsequently, DNA was purified by Geneclean Turbo Kit (Mpbio, 

USA) following manufacturer`s instructions. Concentration and quality of DNA was 

routinely measured using Nanodrop Spectrophotometer ND–100 (Microarray Core Facility) 

at 260 nm and 230 nm. 
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4.1.7 PCR amplification of fungal cbhI genes 

 

To obtain the partial sequences of the fungal cbhI genes, PCR amplifications were performed 

on isolated and cleaned fungal DNA in the thermocyclers GenePro (Bioer, China). 

Degenerate primers fungcbhIF (5`–ACC AA[C,T] TGC TA[C,T] ACI [A,G]G[C,T] AA–3`) 

and fungcbhIR (5`– GC[C,T] TCC CAI AT[A,G] TCC ATC–3`) (Edwards et al. 2008, 

Figure 2) were used for amplification. Each 25–μl reaction mixture contained 16.75 μl H2O, 

2.5 μl 10x buffer for DyNAzyme II DNA polymerase, 1.5 μl BSA stock solution (10mg/ml), 

1 μl fungcbhIF primer (250 pM/μl), 1 μl fungcbhIR primer (250 pM/μl), 1 μl fungal genomic 

DNA, and 0.75 μl DyNAzyme II DNA polymerase (final concentration 2 U/μl) and 1 μl PCR 

Nucleotide Mix (10 mM).  

Program for PCR amplification reaction consisted of initial denaturation at 94 ºC, 3 min,  

35 cycles (94 ºC 30 sec, 49 ºC 45 sec, 72 ºC 90 sec) and a 10–min final extension at 72 ºC.  

 

Figure 2: Position of cbhI primers in the CBH amino acid sequence based on the consensus of  

40 fungal amino acid sequences (adapted from Edwards et al.. 2008) 

 

 

 

4.1.8 DNA electrophoresis 
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Products of PCR were visualized on agarose gel electrophoresis. Agarose gel (1.5%) was 

prepared from 0.75 g of agarose and 50 ml of 1 x TAE buffer. 50x TAE stock solution buffer 

was made of 100 ml of 0.5 EDTA (pH 8.0), 57.1 ml of ice acetic acid, 242 g Tris. Solid 

chemicals were dissolved in deionised water and pH was adjusted with acetic acid to 7.8. 

Water was added to final volume of 1 liter. Agarose with TAE buffer was boiled until 

agarose was completely dissolved and after cooling down it was poured into the 

electrophoretic device. 10 μl of 1% ethidium bromide was added before gel solidification. 

After placing a comb into tray with a gel, it was left to cool down. The solid gel was placed 

into electrophoretic tank with 1 x TAE buffer. 5 μl of PCR sample with added 1 μl of 6x 

DNA Loading Dye was loaded on gel. O'GeneRuler™ 100 bp Plus DNA Ladder (Fermentas, 

Estonia, 2 μl) was used as a size marker. Electrophoresis ran at 90 V for 40 min and was 

viewed under UV in transilluminator and photographed. The images were examined for 

DNA band size and quality. 

 

4.1.9 Cloning of PCR products of cbhI gene amplification 

 

CbhI gene clone libraries were constructed from PCR products. Two 50 μl PCR reactions 

were combined and purified using Wizard SV Gel and PCR Clean Up System (Promega, 

USA) and Mini Elute Purification Kit (Qiagen, USA)according to the manufacturer's 

instructions. The PCR products were subsequently ligated into pJET1.2/blunt cloning vector 

according to the manufacturer's instructions for CloneJET
TM

 PCR Cloning Kit (Fermentas, 

Estonia). The ligation product was purified with the equal amount of chloroform 24:1 

isoamylacohol and transformed into electrocompetent cells – Escherichia coli, strain DH5α 

by electroporation. To 50 μl of thawed competent E. coli cells 1 μl of each ligation reaction 

was added and the tubes with mixtures of cells and ligation reaction products were left on 

ice. The mixtures were transferred into a cold electroporation cuvette. The cuvette was 

placed into the electroporator GenePulser XC (BioRad, USA) and pulsed once. After 

removing the cuvette from electroporator, 500 μl of 2x TY medium (1.6 g/l peptone, 1 g/l 

yeast extract, 0.5 g/l NaCl, pH 7) was added. The cells were resuspended with pipette and 

transferred to 1.5 ml tube and then shaken for 1 hour at 37°C. The cell suspension was 

poured out on 2x TY plates with ampicillin (0.5 g/l NaCl, 1 g/l yeast extract, 1.6 g/l peptone, 

pH was adjusted to 7 using NaOH, 0.1 g/l ampicillin, 2 g/l agar) and incubated at 37ºC 

overnight. The colonies containing an insert were able to grow on the above medium. When 

http://en.wikipedia.org/wiki/Chloroform
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the colonies grew, they were picked with a sterile toothpick and placed onto another agar 

plate with the selection medium. After incubation overnight at 37ºC, colonies were 

transferred into 1.5 ml tubes and resuspended in 300 μl of sterile deionized water. The 

suspensions were first incubated at 95ºC for 10 minutes and then cooled down on ice and for 

the second time incubated at 95ºC for 10 minutes. The cell lysate was centrifugated for 10 

seconds and the supernatant was used as a template for colony PCR. 

Alternatively, PCR products were ligated into the pGEM–T Easy Vector using pGEM®–T 

and pGEM®–T Easy Vector Systems (Promega), following the manufacturers' instructions. 

The ligation products were transformed into E. coli JM109 High Efficiency Competent Cells 

(Promega) by heat shock. 2 μl of each ligation reaction were added to 50 μl of thawed 

competent cells and tubes were left on ice for 20 minutes. Heat shock was performed for 45 

seconds at 42ºC. Tubes were left on ice for 2 minutes. After that, 950 μl of SOC medium 

were added and cells in the medium were incubated and shaken for 1.5 hours at 37°C. The 

mixture was plated onto LB/ampicillin/IPTG/X–Gal plates (composition described below) 

and incubated overnight at 37°C. The successful transformants were crossed onto new 

LB/ampicillin/IPTG/X–Gal plates and incubated overnight at 37°C. After the incubation, 

colonies were transferred into 1.5 ml ependorf tubes and resuspended in 300 μl of sterile 

deionized water. Resuspended colonies were incubated at 95ºC for 10 minutes and then 

cooled down on ice and again incubated at 95ºC for 10 minutes. The cell lysate was 

centrifugated for 10 seconds and the supernatant was used as template for colony PCR for 

each sample. Colony PCR was performed for each sample as described below. 

For both pGEM–T Easy Vector and pJET1.2/blunt cloning vectors, the used molar ratio of 

insert: vector was 3:1. Preparation of LB/ampicillin/IPTG/X–Gal plates and used buffers and 

solutions are listed in section 8 Buffers and solutions. 

Colony PCR was performed using the primer pairs pJET2.1forward: 5' 

d(CGACTCACTATAGGGAGAGCGGC) 3' and pJET2.1reverse: 5' 

d(AAGAACATCGATTTTCCATGGCAG) 3' or 5´–

d(TCACACAGGAAACAGCTATGAC)–3´ or, alternatively, using the pUC/M13 Forward 

Primer: 5´–d(GTTTTCCCAGTCACGAC)–3´ or the 5´–

d(CGCCAGGGTTTTCCCAGTCACGAC)–3´ pUC/M13 Reverse Primer: 5´–

d(CAGGAAACAGCTATGAC)–3´. 

Each 50–μl reaction mixture contained 40 μl H2O, 5 μl 10x buffer for DyNAzyme II DNA 

polymerase, 1 μl pJET2.1forward or pUC/M13 Forward primer (250 pM/μl), 1 μl 

pJET2.1reverse or pUC/M13 Reverse primer (250 pM/μl), 1 μl template DNA, and 1 μl 
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DyNAzyme II DNA polymerase (final concentration 2 U/μl) and 1 μl PCR Nucleotide Mix 

(10 mM).  

Program for PCR amplification reaction consisted of initial denaturation at 94 ºC, 3 min,  

35 cycles (94 ºC 30 sec, 60 ºC 30 sec, 72 ºC 105 sec) and a 10–min final extension at 72 ºC. 

All special chemicals used in methods are listed below in section 8.1. 

 

4.1.10  Sequencing and sequence analysis of the cbhI genes 

 

Approximately 40 μl of colony PCR amplified product was sent for sequencing to an external 

facility (Macrogen Inc., Korea). The cbhI fragments were sequenced by extension from 

pUC/M13 or pJET2.1 primers. DNA was sequenced under BigDyeTM terminator cycling 

conditions, using an automatic sequencer 3730xl (Macrogen Inc., Korea). CbhI sequences of 

individual clones were manually edited using the program BioEdit Version 7.0.0. 

(http://www.mbio.ncsu.edu/BioEdit/bioedit.html) and aligned using the program Mafft 

online (Asimenos and Toh 2009). Sequences of clones from one organism showing similarity 

>98% were replaced in SeaView Version 4.3.2. (http://pbil.univ–

lyon1.fr/software/seaview.html) with a consensus sequence representing one isoform of the 

enzyme.  

Representative sequence of each isoenzyme was submitted to GenBank database. The 

sequences were late used to construct phylogenetic tree together with cbhI sequences 

obtained by 454–pyrosequencing. 

 

4.2 Characterization of soil fungal community by 454 

pyrosequencing 

 

Aims here were to identify and characterize total and cellulolytic fungal community in terms 

of spatial and seasonal distribution. Soil samples were collected in winter and summer from 

three sampling sites and composite samples of L and H horizon separately were made. 

Metagenomes obtained were pyrosequenced and fungal species identified by PlutoF and 

Galaxy-454 pipeline. Cellulolytic OTUs were identified according to phylogenetic trees. 

 

4.2.1 Study site and sample collection 
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Soil and litter samples were isolated from Šumava National Park near the summit of the 

Přilba (48°59.01 N, 13°35.05 E). Study area was located in the highest altitudes (1170–1200 

m) of the Bohemian Forest mountain range (Central Europe) and was covered by an 

unmanaged spruce (Picea abies) forest. Soil and litter samples were taken on the 27.9.2010 

(summer, S) and on the 23.3.2011 from three sites (winter, W), located 250 m from each 

other. Six topsoil samples located around the circumference of a 4–m–diameter circle were 

collected for each season. Litter horizon (L) and organic (organic) horizon (H) material were 

separately pooled. After removal of roots, L material was cut into 0.5 cm pieces and mixed; 

H material was passed through a 5 mm sterile mesh and mixed. Aliquots for nucleic acids 

extraction were immediately frozen and stored in liquid nitrogen. Dry mass content was 

measured after drying at 85 °C, organic matter content after burning at 650 °C and pH was 

measured in distilled water (1:10). Soil C and N content was measured using an elemental 

analyzer. 

 

4.2.2 DNA isolation 

 

4.2.2.1 Extraction and purification of DNA from soil samples 

 

DNA was extracted in triplicate 0.300 g aliquots of each sample using the same method as 

was describe above in section 4.1.6. DNA was cleaned by Geneclean Turbo Kit (MPBio, 

USA). 1M HEPES/ 1M CaCl2 solution (pH 7) was added prior to cleaning procedure, sample 

was left standing for 5 minutes and then Geneclean Turbo Kit manufacturer’s instructions 

were followed. 

 

4.2.2.2 PCR amplification of target gene sequences 

 

PCR reactions were performed independently for each extracted DNA sample. The volume 

of each PCR sample was 50 μl. PCR primers ITS1 5`(TCCGTAGGTGAACCTGCGG)3` / 

ITS4 5`(TCCTCCGCTTATTGATATGC)3` (White et al. 1990, Figure 3) were used to 

amplify the ITS region of fungal rDNA for fungal community analysis and fungcbhIF/ 

fungcbhIF (see 3.1.7) were used for the amplification of partial cbhI gene sequences.  

Each 50–μl reaction mixture contained 45.5 μl H2O, 5 μl 10x buffer for DyNAzyme II DNA 

polymerase, 3 μl of 10 mg/ml BSA, 2 μl forward primer (final concentration 10 pmol/μl), 2 
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μl reverse primer (final concentration 10 pmol/μl), 1 μl template DNA, and 1.5 μl 4% Pfu 

polymerase / DyNAzyme DNA Polymerase (final concentration 2 U/μl) and 1 μl PCR 

Nucleotide Mix (10 mM).  

Program for PCR amplification reaction of fungal ITS consisted of initial denaturation at 94 

ºC, 5 min, 40 cycles (94 ºC 30 sec, 51 ºC 45 sec, 72 ºC 90 sec) and a 15–min final extension 

at 72 ºC. For cbhI amplification, the program consisted of initial denaturation at 94 ºC, 5 min, 

35 cycles (94 ºC 60 sec, 55 ºC 60 sec, 72 ºC 60 sec) and a 10–min final extension at 72 ºC. 

PCR products were collected and cleaned by Wizard SV Gel and PCR Clean–Up System 

(Promega, USA). 

  

Figure 3: Position of ITS1 and ITS4 primers in DNA coding for ribosomal genes (adapted from 

http://www.biology.duke.edu/fungi/mycolab/primers.htm) 

 

 

 

4.2.2.3 Quantification of DNA by fluorescent dye binding 

 

DNA concentration in purified PCR product was using the Quant–iT™ PicoGreen ds DNA 

kit (Invitrogen, USA). Each sample and standard was measured in triplicates on 96–well 

microplate. 100 μl of standard/sample and 100 μl of 200x diluted PicoGreen in 1x TE buffer 

were combined in each well. The concentrations of standards were 1 ng/μl, 0.001 ng/μl, 

0.025 ng/μl, 0,00025 ng/μl and 0 ng/μl. Plate was incubated at room temperature for 2 

minutes and fluorescently on Infinite microplate reader (TECAN, Austria). The excitation 

and emission wavelengths were 480 nm and 520 nm, respectively. 

 

4.2.2.4 Ligation of tagged adaptors 

 

http://www.promega.com/catalog/catalogproducts.aspx?categoryname=productleaf_1549
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The tagging of individual samples (PCR products obtained from the same sample) was 

performed using the Roche MID adaptors and GS Junior Rapid Library Preparation Kit, 

according to Rapid Library Preparation method Manual (Roche, USA). For each sample, 500 

ng of PCR product was purified using Wizard SV Gel and PCR Clean–Up System (Promega, 

USA), eluted in 25 μl of water and the elute was cleaned again using the MinElute PCR 

Purification kit (Qiagen, USA) as recommended by the Rapid Library Preparation method 

Manual. First, ends of PCR products were repaired and blunted. Then, pyrosequencing 

adaptors carrying different MID adaptors (tags) were blunt end–ligated to each sample. 

Ligation products were treated with AMPure beads to remove small fragments, the resulting 

samples being eluted in 25 μl of TE buffer. 7 μl of the PCR product with ligated MID adaptor 

were analyzed electrophoreticaly (prepared as described above in section 4.1.8) to check the 

length and quantity of the product.  

 

4.2.2.5 Emulsion PCR 

 

In this approach, an oil–water emulsion is formed in which the aqueous phase contains the 

PCR reagents and the DNA template to be sequenced. Capture beads containing one of the 

oligonucleotide primers attached to them are also included. This oligonucleotide is 

complementary to one of the adaptor sequences used in library construction. The other PCR 

primer is present in the solution. After controlled and vigorous agitation of the oil–water 

system, emulsification takes place and millions of aqueous droplets are formed, within which 

PCR amplifications take place. Optimization of the concentration of DNA template, beads, 

and water droplets guarantees that only one bead carrying one template occurs in each 

droplet. Then, millions of copies of a unique DNA template are generated on each bead in a 

clonal PCR amplification (Siqueira et al.2012). 

Prior to emulsion PCR copy number of designated gene was quantified by Kapa Library 

Quantification kit (KapaBiosystems, USA) following the manufacturers instruction. An 

emulsion PCR was prepared according manufacturer instructions (emPCR Amplification 

Method Manual–Lib–L) for GS Junior Titanium Series sequencing instrument. In the first 

step, AMP primer was ligated to a PCR product with MID adaptor, facilitating DNA capture 

bead attachment. Than emulsion PCR was performed to amplify attached molecule of DNA 

on the DNA capture bead. The PCR program consisted of initial denaturation at 94 ºC, 4 min 

and 50 amplification cycles (94 ºC 30 sec, 58 ºC 270 sec, 68 ºC 30 sec). 

http://www.promega.com/catalog/catalogproducts.aspx?categoryname=productleaf_1549
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DNA capture beads were then transferred into 50ml Falcon tube and washed several times 

with the enhancing buffer, isopropanol, and ethanol. Sediment of beads was transferred into 

clean microtube and Melt solution was added. Melt solution contained NaOH and caused 

separation of DNA strands. Enrich primer was than ligated on free end of DNA attached to 

DNA capture bead. Through Enrich primer, Enrich magnetic bead was bound to the free end 

of DNA. Such modified beads were then washed several times with Enhancing buffer to 

remove poorly attached or unattached DNA capture beads. DNA capture beads were released 

from Enrich beads by Melt solution. Supernatant containing the enriched DNA capture beads 

was transferred to new tube and Seq primer was added.  

 

4.2.2.6 454 pyrosequencing – sequencing step 

 

Prior to sequencing, the emulsion is broken, the DNA is denatured, and beads carrying 

single–stranded DNA are transferred to the wells of a picotiter plate in such a way that it 

permits a single bead to occur in each of the several hundred thousand wells. Because each 

bead has a fixed location in the plate, each sequencing reaction can be monitored. Beads 

containing the enzymes used in the pyrosequencing reaction steps are then deposited into 

each well. The pyrosequencing reaction takes place using a mixture of the single–stranded 

DNA template, the sequencing primer, and the enzymes DNA polymerase, ATP sulfurylase, 

luciferase, PPiase and apyrase (Figure 4). Two substrates are also included in the reaction – 

adenosine 5‘phosphosulfate (APS) and luciferin. The first one of the four deoxynucleotides 

(dNTPs) is added to the sequencing reaction, and the DNA polymerase catalyzes its 

incorporation into the DNA strand, in case there is a complementarity. During each 

incorporation event, a phosphodiester bond between the dNTPs is formed, releasing 

pyrophosphate (PPi) in a quantity equivalent to the amount of incorporated nucleotide. In 

sequence, the enzyme ATP sulfurylase converts PPi to ATP in the presence of APS. ATP is 

used in the conversion of luciferin to oxyluciferin mediated by the enzyme luciferase. This 

gives rise to light in intensity that is proportional to the amount of ATP used. Light is 

detected by a charge coupled device camera and detected as a peak in a pyrogram. The height 

of each peak is proportional to the number of nucleotides incorporated. The system is 

regenerated with apyrase that degrades ATP and unincorporated dNTPs and with PPiase 

enzyme in the buffer, which degradate pyrophosphate. Then, the next dNTP is added. 

Addition of dNTPs is performed one at a time. Generation of a signal indicates which 

nucleotide is the next one occurring in the sequence. As the process goes on, the 
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complementary DNA strand grows and the nucleotide sequence is determined according to 

the signal peaks in the program (Siqueira et al. 2012). 

Sequencing itself was performed according to the manufacturer instructions (Sequencing 

Method Manual, Roche, USA) for GS Junior Titanium Series sequencing instrument. There 

are four layers of different kinds of beads loaded onto PicoTiterPlate. First layer is called 

Enzyme Beads Pre–layer and is the same as 3
rd

 layer called Enzyme Beads Post–layer. The 

only difference is in the ratio of BB2 buffer and Enzyme Beads. I suppose that those two 

layers ensure proximity of enzymes like polymerase, bound on their surface, to DNA capture 

beads. The second layer between enzyme plies is DNA captured bead ply with Packing 

Beads and Control Beads XLTF added. The fourth layer is composed of PPiase Beads that 

contains beads with fixed PPiase enzyme. All plies are deposited on PicoTiterPlate 

centrifuging Bead Deposition Device with PicoTiterPlate inside.  

 

Figure 4: An overview of the 454–pyroseqencing workflow (adapted from 

http://cage.unl.edu/454%20Introduction.pdf) 

 

 

 

4.2.3 Analyses of 454–pyrosequencing data 

 

ITS sequences obtained by pyrosequencing were processed as shown on the  
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Figure 5 below. Only the sequences beginning with the primer ITS1 were processed. After 

obtaining sequences from 454–pyrosequencing, ITS flowgrams were quality–filtered, 

separated into individual samples and pyrosequencing noise (method–dependent 

inaccuracies) were corrected using the Denoiser program (Reeder and Knight 2010). 

Chimeric sequences were detected using UCHIME (Edgar 2010) and deleted.  

In the fungal community analyses, ITS sequences shorter than 380 bases were removed and 

the remaining sequences were truncated to 380 bases, which contained the ITS1 region, 5.8 S 

rDNA and a significant part of the ITS2 region. These sequences were clustered using CD–

HIT (Li and Godzik 2006) at a 97% similarity threshold (O'Brien et al. 2005) to yield 

Operational Taxonomic Units (OTUs). Consensus sequences were constructed for each OTU 

using automated alignment tool. ITS sequences submitted to first CD HIT were combined 

into one file with consensus sequences, which served as seeds in the second CD HIT. Second 

CD HIT–est yielded final clusters, which were used for all subsequent analysis. PlutoF 

pipeline (Tedersoo et al. 2010) was used to identify best species hits in the GenBank (Benson 

et al. 2005) and UNITE databases (Abarenkov et al. 2010). Taxonomic identifications of the 

best species hits were retrieved from GenBank using the Galaxy 454 pipeline 

(https://galaxy.jgi–psf.org/).  

 

Figure 5: Processing of ITS sequences 
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CbhI sequences were also quality–filtered, separated into individual samples and 

pyrosequencing noise was corrected using the Denoiser program (Reeder and Knight 2010). 

Chimeric sequences were detected using UCHIME (Edgar 2010) and deleted.  

CbhI sequences shorter than 380 bases were removed and the remaining sequences were 

truncated to 380 bases (Figure 6). These sequences were clustered using CD–HIT (Li and 

Godzik 2006) at a 98% to yield OTUs. Consensus sequences were constructed for each OTU 

using automated alignment tool. CbhI sequences submitted to first CD HIT were combined 

into one file with consensus sequences, which served as seeds in the second CD HIT. This 

step yielded final clusters, which were used for all subsequent analyses (Figure 6).  

Once consensus sequences were created for both reverse and forward sequences, the forward 

and reverse consensus sequences of all clusters with more than 3 members were merged 

based on the internal 200–bp overlap. From joined sequences consensus sequences were 

created and they were clustered by CD–HIT on 100% similarity level.  

 

Figure 6: Processing of cbhI sequences 

 

 

 

First 56 most abundant cbhI merged sequences were used for phylogenetic tree construction. 

Alignment was constructed using Mafft online (Asimenos and Toh 2009), intron positions 

were recorded, and introns were removed in BioEdit (Hall 1999). For identification, cbhI 

sequences were retrieved from GenBank Release 188.0 as well as from the fungal genomes 

available at the Joint Genome Institute. Additional sequences obtained from fungal isolates 

(see 4.1.3) were used as well. All nucleotide sequences except pseudogenes were translated 

into amino acid sequences. 
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Rarefaction and diversity analyses on OTUs/clusters were performed on 700 fungal and 267 

cbhI sequences per sample, to eliminate the effect of sampling depth. Richness non–

parametric Chao1 estimates were calculated using online tool Rarefaction Calculator 

(http://www.biology.ualberta.ca/jbrzusto/rarefact.php#ChaoEstimator).  

Shannon–Wiener index and Evenness were counted using Shannon–Wiener Diversity Index / 

Shannon Entropy Calculator (http://www.changbioscience.com/genetics/shannon.html).  

Statistical tests were performed using the software package Statistica 7 (StatSoft, USA). 

Statistical significance of differences in the abundance of fungal taxa among treatments was 

evaluated using one–way ANOVA with the Fisher LSD post–hoc test. Differences at p ≤ 

0.05 were regarded as statistically significant. The analysis of differences in the composition 

of total fungal communities, PCA on log transformed data was performed (Statistica 9.0, 

Statsoft, USA) on genera and subsequently on orders with relative abundance over 20 = 

relative abundance in percentage over 0.16%. To show differences between treatments 

(litter/humus and summer/winter) in the abundance of fungal taxa, CCA analysis in the 

program CANOCO (Braak 1990) was performed. CCA is a multiple regression for all 

species simultaneously with linear constraints on the regression coefficients. Principally, 

CCA is weighted PCA, where explanatory variables are linear combination of weighted 

environmental variables. T–value plots with the log data on genera, orders were created to 

visualize the effects of the season and the forest floor horizon. T–value biplots represent 

diagrams approximating a table of T–value statistics, each one corresponding to a simple 

regression model with one explanatory variable and one response (species). Species 

significantly associated with respective treatment in a T–value diagram are plotted inside the 

Van Dobben circles. Species with the positive correlation are in the red circle and those with 

negative one are plotted in the blue circle.  

Non–metric multidimensional scaling (NMDS) on relative abundances of fungal genera was 

performed in the program Past (Hammer et al. 2001). For ITS, Euclidian distance 

measurement was chosen. STAMP (Statistical Analysis of Metagenomic Profiles) package 

(Parks and Beiko 2010) was used to analyze the significant differences in the ITS data among 

seasons and horizons within individual sampling sites. This approach was used to reduce the 

nonrandom effects of sites on the fungal community identified in the previous analyses 

(PCA, RDA). Differences among samples were examined using Fisher’s exact two–sided test 

on datasets randomly resampled by the program. 

Litter/humus abundance ratios for individual OTUs or fungal taxa were calculated as the 

sums of their relative abundances in the litter divided by the sum of relative abundances 

http://www.changbioscience.com/genetics/shannon.html
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among all sequences, and summer/winter ratio was calculated similarly. In the case of 2D 

graphs, the x coordinate was winter/summer ration, y coordinate was humus/litter ration and 

an area of circle is an mean relative abundance of the OTU. 

Phylogenetic trees for 5.8S rDNA sequences of genera with abundance over 0.16% and for 

first 56 most abundant cbhI OTUs were constructed after aligning the sequences in the 

program Mafft online with default settings (Asimenos and Toh 2009). Alignments were 

treated by G-block (http://www.phylogeny.fr) to remove gaps from alignments. Aligned 

sequences were subjected to model testing using jModelTest 0.1.1 (Guindon and Gascuel 

2003, Posada 2008). Evolution model for CbhI protein sequences was estimated using 

Prottest with default settings (http://darwin.uvigo.es/software/prottest.html). The best model 

for cbhI and 5.8S nucleotide sequences was K80+I and for CbhI protein sequences it was 

Dayhoff+G. BioNJ tree was constructed for cbhI nucleotide and protein sequences from 454–

pyrosequencing data combined with the sequences available in the GenBank, in fungal 

genomes published on the Joint Genome Institute website and sequences obtained from 

fungal isolates in this study. Trees were bootstrapped 1000 times in the BioNJ tool on 

webpage http://www.phylogeny.fr with the Kimura 2–parameters substitution matrix 

(Dereeper et al. 2008) for cbhI nucleotide sequences and with Dayhoff matrix for CbhI 

protein sequences. The same procedure as was performed for cbhI nucleotide sequences was 

done for ITS sequences from metagenome, GenBank database sequences . 

 

5. Results 
 

5.1 Degradation of spruce litter by fungi 
 

More than 50 morphotypes of microscopic fungi were isolated from Picea abies needles. 

Sixteen of the most frequently occurring ones were identified based on the rDNA region 

sequencing combined with macro- and micromorphology examinations (Table 2).  

 

Table 2: Fungal strains isolated from Picea abies needles – identification. Abbreviations: (A) Ascomycota, (B) 

Basidiomycota. 

 
Stra
in 

GI No. of 
ITS 

Identification Division Order Source Ecology *1 Reference 

35 
FR71722
6 

Fomitopsis pinicola (B) Basidiomycota 
Polypora
les 

fallen tree 
saprotroph, 
parasite 

Sinclair and Lyon 
2005 

61 
FR71722
8 

Peniophora sp. (B) Basidiomycota 
Russula
les 

fallen tree 
saprotroph, 
parasite 

Dix and Webster 
1995 

http://www.phylogeny.fr/
http://darwin.uvigo.es/software/prottest.html
http://www.phylogeny.fr/
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17 
FR71599
5 

Phacidiopycnis sp. (A) Ascomycota 
Helotial
es 

fallen tree 
saprotroph, 
parasite 

DiCosmo et al. 
1984 

19 
FR71599
6 

Phacidiopycnis sp. (A) Ascomycota 
Helotial
es 

fallen tree 
saprotroph, 
parasite 

DiCosmo et al. 
1984 

26 
FR71599
7 

Sirococcus sp. (A) Ascomycota 
Diaporth
ales 

fallen tree parasite Smith et al. 2003 

148 
FR66786
0 

Cistella acuum (A) Ascomycota 
Helotial
es 

fallen tree, 
litterbag 

saprotroph Gremmen 1960 

151 
FR71723
2 

Cylindrocarpon 
magnusianum (A) 

Ascomycota 
Hypocre
ales 

fallen tree, 
litterbag 

Saprotroph, 
parasite 

Domsch et al. 
2007 

47 
FR71723
0 

Chalara longipes agg. 
(A) 

Ascomycota 
Helotial
es 

fallen tree, 
litterbag 

saprotroph 
Holubová-
Jechová 1984 

50 
FR71723
1 

Chalara longipes agg. 
(A) 

Ascomycota 
Helotial
es 

fallen tree, 
litterbag 

saprotroph 
Holubová-
Jechová 1984 

205 
FR71722
5 

Ceuthospora pinastri 
(A) 

Ascomycota 
Helotial
es 

litterbag saprotroph Gremmen 1960 

194 
FR71722
3 

Hormonema 
dematioides (A) 

Ascomycota 
Dothide
ales 

litterbag 
Saprotroph,  
parasite 

Gremmen 1960 

190 
FR71722
4 

Thysanophora 
penicillioides (A) 

Ascomycota 
Eurotial
es 

litterbag saprotroph 
Iwamoto et al. 
2005 

200 
FR82298
4 

Trichoderma sp. (A) Ascomycota 
Hypocre
ales 

litterbag 
saprotroph, 
parasite 

Domsch et al. 
2007 

24 
FR71722
7 

Marasmius 
androsaceus (B) 

Basidiomycota 
Agarical
es 

litter L 
horizon 

saprotroph 
Holmer and 
Stenlid 1991 

85 
FR71722
9 

Mycena galopus (B) Basidiomycota 
Agarical
es 

litter L 
horizon 

saprotroph 
Frankland et al. 
1995 

22 
FR82298
5 

Hormonema 
dematioides (A) 

Ascomycota 
Dothide
ales 

litter L 
horizon 

saprotroph, 
parasite 

Gremmen 1960 

*1 Ecology of a particular species is derived from the current study and literature (see Reference). 

 

Among the Ascomycota, the members of the order Helotiales were most frequently isolated 

with six morphotypes belonging to four genera Ceuthospora, Chalara, Cistella and 

Phacidiopycnis. By two morphologically distinct isolates were represented Chalara longipes 

agg. (Helotiales), Phacidiopycnis sp. (Helotiales) and Hormonema dematioides 

(Dothideales), the remaining genera were represented by a single species. Among 

basidiomycota, two strains of the recognized wood decomposers Fomitopsis pinicola and 

Peniophora sp. were recorded from needles collected from a fallen tree while the typical 

litter-decomposers Marasmius androsaceus and Mycena galopus were found in needles 

collected from the litter horizon. The radial extension rate of all strains was relatively fast, at 

50 - 508 μm hr
-1

 (Table 3).While the two Chalara longipes agg. isolates and the 

Trichoderma sp. were slow growers, the growth rate of basidiomycota was generally high,  

 

especially that of F. pinicola and Peniophora sp. All but six strains (including all 

basidiomycota) were able to produce cellobiohydrolase (exocellulase) on MEA, a complex, 

nutrient-rich medium, although the production differed widely; highest activities were 

detected in Sirococcus conigenus, M. androsaceus and Cylindrocarpon magnusianum ( 

 

 



 49 

Figure 8). All isolates were able to produce β-glucosidase but the production by both strains 

of H. dematioides was very low. In general, strains with high cellobiohydrolase activity also 

exhibited high β-glucosidase activity (p ≤ 0.01). Enzymes decomposing hemicelluloses were 

produced by all tested strains, but the production of individual enzymes differed widely 

(Table 3). 

 

Table 3: Properties of isolated fungal strains. Oxidation of phenols was tested with ABTS as a substrate, 

activity of hydrolytic enzymes was assessed using the API ZYM test and radial growth rates were measured on 

MEA plates. The +/- indicates the presence or absence of enzyme activity, the values 0 – 5 are visual estimates 

of enzyme activity from zero (0) and low (1) to high (5). See 3.1.3.1 for detail, see section 3.1.3.1. 
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Fomitopsis 
pinicola (B) 

35 + 1 1 0 0 0 5 1 2 4 0 4 4 0 0 
50
8 

Peniophora sp. 
(B) 

61 + 1 2 1 3 2 5 1 3 0 3 4 4 4 5 
46
9 

Phacidiopycnis 
sp. (A) 

17 + 2 2 1 2 0 5 1 2 0 4 5 0 1 0 
29
4 

Phacidiopycnis 
sp. (A) 

19 + 1 1 0 1 0 5 1 1 0 4 3 0 1 0 
28
6 

Sirococcus sp. 
(A) 

26 + 0 1 1 1 0 5 0 1 2 4 5 5 1 1 83 

Cistella acuum 
(A) 

148 + 5 1 2 3 0 5 2 1 0 2 5 1 4 0 58 

Cylindrocarpon 
magnusianum 
(A) 

151 + 1 2 2 0 0 3 0 0 0 1 4 5 0 0 
25
3 

Chalara 
longipes agg. 
(A) 

47 + 2 1 3 3 0 5 0 0 0 4 4 0 2 0 50 

Chalara 
longipes agg. 
(A) 

50 + 3 1 1 4 0 5 1 2 0 0 5 5 3 0 53 

Ceuthospora 
pinastri (A) 

205 - 1 1 1 0 0 5 3 5 0 1 4 0 1 0 
37
2 

Hormonema 
dematioides 
(A) 

194 - 1 2 1 3 0 5 0 1 0 2 3 1 0 0 
13
2 

Thysanophora 
penicillioides 
(A) 

190 - 5 1 0 0 0 3 2 0 0 0 4 4 3 3 
19
7 

Trichoderma 
sp. (A) 

200 + 1 1 1 2 0 5 0 1 0 5 5 4 5 0 55 
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Marasmius 
androsaceus 
(B) 

24 + 0 2 1 1 0 5 3 2 1 4 4 5 0 1 
15
3 

Mycena 
galopus (B) 

85 + 1 3 2 3 2 5 2 2 3 2 3 4 1 0 
40
8 

Hormonema 
dematioides 
(A) 

22 + 3 2 1 3 0 5 0 0 0 0 5 0 1 0 
28
3 

 

 

When grown on MEA, all strains except H. dematioides 22 and C. longipes agg. 47 produced 

β-xylosidase ( 

 

 

Figure 8). The activities were usually substantially lower (5-10 x) than those of β-glucosidase 

but F. pinicola, M. galopus and H. dematioides 194 produced more  

β-xylosidase than β-glucosidase. β-Galactosidase and α-amannosidase were produced by 12 

strains each, α-galactosidase by 10 strains, α-fucosidase and β-glucuronidase by four strains 

(Table 3). 12 strains produced N-acetylglucosaminidase, often with high activities 

comparable to β-glucosidase ( 

 

 

Figure 8). Among the other enzymes tested, phosphatase and esterase or lipase was produced 

by all 16 strains, phosphodiesterase by 13, leucine arylaminidase by 12, and α-glucosidase 

(amylase) by 11 strains. Only very low activities of arylsulfatase were produced by four 

strains, and valine arylaminidase by two strains; alanine and leucine aminopeptidases were 

not produced on MEA. Two species of Basidiomycota exhibited highly complex composition 

of their extracellular enzymatic systems: all enzymes except β-glucuronidase were produced 

by Peniophora sp. and all except α-fucosidase by M. galopus.  

All fungal isolates showed rapid colonization of spruce needles with complete mycelial 

overgrowth before 14 d. Decomposition was estimated at 49 d since further mass loss was 

very slow for all strains (data not shown).  

Significant decomposition of P. abies needles was recorded for all fungal isolates but the 

rates of dry mass loss varied greatly among fungi. Highest decomposition of 61 ± 9 % was 

recorded in the case of H. dematioides 22 and the  

 



 51 

lowest one in M. galopus 8 ± 6 %. The rest of fungi exhibited mass losses between 18 % and 

41 % (Figure 8). 

 

Figure 7: Activity of extracellular enzymes in the cultures of fungal isolates from Picea abies needles on malt 

extract agar. Data represent means from three replicates; standard errors of the mean did not exceed 20 %. 

 

 
 

Enzyme production on the natural substratum of the studied fungi - sterile P. abies needles 

was substantially different from that on MEA (Figure 9). All fungi produced a more 

complete set of hydrolytic enzymes on needles. Enzyme production reflected the composition 

of the polysaccharidic substrate and thus the fungi produced on average higher relative 

activities of β-xylosidase and cellobiohydrolase on needles than on MEA; compared to β-

glucosidase, relative production of both enzymes increased dramatically. On the other hand, 

activity of α-glucosidase was much higher on MEA. Alanine- and leucine aminopeptidases 

that were not detectable on MEA were both produced by 14 fungal strains on the needles, 

although at low and variable quantities; the activity of arylsulfatase was also highly increased 

on spruce needles compared to MEA (Figure 9).  
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Figure 8: Decomposition of sterile Picea abies litter after 49 d incubation with fungal isolates and activity of 

extracellular enzymes in the early stage (14 d, blue bars) and late stage (35 d, red bars) of decomposition. Bars 

represent standard errors of the mean (SE) from three replicates; for enzyme measurements, SE did not exceed 

20 %. 
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Across the enzymes, activities measured on MEA showed significant (p ≤ 0.05) correlation 

to those measured in needles only for cellobiohydrolase. In the agar plate test, all but three 

isolates exhibited phenol oxidation when assayed using ABTS (Table 3). In spruce needles, 

despite great variation, laccase activity was detected in all strains except M. galopus. This 

fungus and M. androsaceus also produced Mn-peroxidase. Among cellulolytic enzymes, 

cellobiohydrolase and β-glucosidase were produced by all strains while endocellulase was 

not detected in one of the two Phacidiopycnis sp. isolates and in C. magnusianum. Enzyme 

activities varied among the fungi with Sirococcus sp. showing the highest activities of both 

endocellulase and cellobiohydrolase. High activity of cellobiohydrolase, the processive 

enzyme decomposing cellulose, was also detected in both of the isolates of H. dematioides. 

Endoxylanase production was highly variable among fungi and also with time, but only 

Phacidiopycnis sp. 17 and Thysanophora penicillioides did not produce the enzyme at all. 

Activities of endocellulase, cellobiohydrolase, β-glucosidase and β-xylosidase, the enzymes 

acting on plant cell wall polysaccharides, showed significant correlations (p ≤ 0.05) with 

each other across the fungal isolates.  

 
Figure 9: Relative activity of hydrolytic enzymes of fungal isolates from Picea abies needles on needle litter 

(35 d) and on malt extract agar. 
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Activity of the other two tested polysaccharide hydrolases, N-acetylglucosaminidase and α-

glucosidase varied among species but was relatively constant in time. All fungi showed 

relatively high and comparable production of phosphatase and arylsulfatase showing the 

importance of these enzymes for their growth on needles. When grouped according to their 

isolation source into colonizers of attached needles (present in green needles on fallen trees 

before contact with soil) and litter-decomposers (fungi isolated from litterbags or litter 

horizon material only), there was no significant difference in the production of any of the 

enzymes tested among these groups neither considering individual enzymes separately, nor 

using PCA analysis of data from all enzymes together. Also the differences in enzyme 

activities between Ascomycota and Basidiomycota were insignificant with the exception of 

Mn-peroxidase that was only found in basidiomycota. When the two strains causing the 

highest and lowest decomposition of needles were compared, H. dematioides 22 showed high 

activities of all cellulose and hemicellulose-decomposing enzymes except for endoxylanase 

while activities of all of these enzymes were relatively low in M. galopus, the slow 

decomposer. 
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5.2 Detection and sequencing of cbhI genes in fungal strains 
 

In total 48 partial cbhI gene sequences were obtained from 3 Basidiomycota, 16 Ascomycota 

and 1 member of the Mucoromycotina. The fungi Sirococcus conigenus, Phacidiopicnis sp., 

Chalara longipes, Mycena galopus, Mucor hiemalis, Cylindrocarpon magnusianum, 

Thysanophora penicillioides, Hormonema dematioides, Trichoderma pleuroticola, 

Ceuthospora pinastri were isolated from spruce needles in the catchment of the Plešné Lake, 

the other fungi have been obtained from culture collections as species occurring in the litter 

or soils from the Šumava National Park and identified using Stable Isotope Probing to 

incorporate cellulose-derived carbon from cellulose by Štrusová et al. (2012). Two Russula 

species were obtained and isolated from fungal sporocarps by T. Větrovský from NP 

Šumava. The overview of all species is in  

Table 4. Some fungi have synonymous names used in the text below: Phialophora malorum 

= Cadophora malorum, Phialophora luteo-olivacea = Cadophora luteo-olivacea, Sydowia 

polyspora = Hormonema dematioides.  

One to four genes were found in the studied fungi. Sequences with <98% similarity were 

considered genes isoforms of which most could be translated into amino acids without 

internal stop codons. Genes with stop codon in sequence after removing introns were 

considered pseudogenes. Pseudogenes were: gi 382929308 Chloridium virescens, gi 

325152929 and gi 325152880, Russula emetica, gi 382929304 and gi382929305 Mycena 

galopus. The gi numbers of cbhI sequences deposited in GenBank are in the Table 4 .  

 

Table 4: List of fungal species with cbhI genes and GenBank gi numbers of partial cbhI sequences. 

 

Collection number* Fungal species cloned 
cbhI 
isoforms 
count 

GI numbers of CbhI sequences in GenBank 

 Basidiomycota      

Isolated by 
T.Větrovský 

Russula paludosa 4 325152901 343129685 351735595 325152927 

Isolated by 
T.Větrovský 

Russula emetica 4 351735615 351735591 325152880 325152929 

ZK85/08 Mycena galopus 3 351735593 382929304 382929305  

 Ascomycota      

CCF3784 Cadophora malorum 4 325152923 325152889 325152905 325152913 

AK47/92 Phialophora sp. 4 325152878 325152917 310914183 310914176 

ZK194/08 Hormonema dematioides 3 351735603 351735601 351735607  

ZK207/08 Ceuthospora pinastri 2 325152876 325152891   

CCF1782, CCF1787 Chloridium virescencs 3 325152870 351735613 382929308  
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CCF3795 Cadophora luteo-olivacea 3 325152864 325152921 325152911  

AK289/05 Hypocrea lixii 2 351735619 325152887   

ZK50/08, ZK47/08 Chalara longipes 2 325152885 310914188   

CCF3045 Leptodontium elatius 1 325152868    

CCF3093 Phialophora cinerescens 2 325152925 325152903   

ZK26/08 Sirococcus sp. 2 351735621 351735605   

ZK151/08 Neonectria ramulariae 1 325152915    

CCF3410 Oidiodendron cerealis 1 325152866    

ZK19/08 Phacidiopicnis sp. 2 351735597 325152881   

ZK195/08 Trichoderma pleuroticola 1 351735599    

ZK190/08 Tysanophora penicilloides 1 325152897    

 Mucoromycotina      

ZK199/08 Mucor hiemalis 1 351735589    

* CCF - strains obtained from the Culture Collection of Fungi, Department of Botany, Charles University, 

Prague, Czech Republic, AK - fungal strains from personal collection of Alena Kubátová, ZK - fungal strains 

from personal collection of Zuzana Kolářová. 

 

Sequences without introns, which were not pseudogenes, exhibited 50% to 90% similarity in 

the identity matrix produced in BioEdit 7.0.0. Some cbhI sequences were more similar 

between species than within the isoforms of the same species. C. luteo-olivacea had intra-

species similarity of 60% while it was more similar to gi 325152905 of Cadophora malorum 

and gi 325152913 of Cadophora malorum (>90%) and to gi 325152876 of Ceuthospora 

pinastri (>80%). In addition, C. malorum had intra-species similarity of 60% and was similar 

to gi 325152868 of Leptodontidium elatius over 90% and to gi 325152876 of Ceuthospora 

pinastri and gi 351735619 of Hypocrea lixii over 80%. The two isoforms of C. pinastri were 

similar to each other 63.7% but gi 325152891 of Ceuthospora pinastri was similar over 90% 

to gi 325152889 of Cadophora malorum, gi 325152868 of Leptodontidium elatius, gi 

351735589 of Mucor hiemalis and gi 325152897 of Thysanophora penicillioides. The second 

isoform gi 325152876 of Ceuthospora pinastri is identical on 100% with gi 351735619 of 

Hypocrea lixii. A sequence of gi 351735613 of Chloridium virescens is similar to other gi 

325152870 of Chloridium virescens on 72% but is similar to gi 310914183 of Phialophora 

sp. on 99%. CbhI isoform of gi 351735593 of Mycena galopus was similar to gi 382929304 

of Mycena galopus on 81% and to pseudogene gi 382929305 of Mycena galopus on 28 – 

30% respectively, but showed 98% similarity with gi 325152929 of Russula emetica. 

Another example of inter-species similarity is isoform gi 325152903 Phialophora 

cinerescens, which is identical with gi 325152925 of Phialophora cinerescens on 64% but on 

99% with gi 351735619 of Hypocrea lixii and gi 325152876 of Ceuthospora pinastri. Also 

two of three cbhI gene isoforms of gi 351735603 of Sydowia polyspora and gi 351735601 of 
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Sydowia polyspora were similar to gi 351735605 of Sirococcus conigenus over 90%. Other 

very similar genes were: gi 325152897 of Thysanophora penicillioides and gi 325152889 of 

Cadophora malorum and gi 325152868 of Leptodontidium elatius on 99%., gi 351735599 of 

Trichoderma pleuroticola exhibited 93% sequence similarity with gi 325152887 of Hypocrea 

lixii on 93%. 

Product of cbhI PCR of requested size was obtained from Acephala sp., Filobasidiella 

depauperata, Fomitopsis pinicola, Geomyces pannorum, Hymenoscyphus sp., Hypocrea 

viridescens, Marasmius androsaceus, Peniphora sp., Rhizoscyphus ericae, Scleroconidioma 

sphagnicola, Trichosporon pullulans but I did not succeed to clone it. Neither of these 

species have any record of cellobiohydrolase I in Genbank, except Geomyces pannorum, 

which has a cellobiohydrolase-like gene. 

 

5.3 Analysis of the cbhI gene pool in spruce forest floor 
 

The main aim here was to describe distribution and richness of cellulolytic fungi in spruce 

forest soil. The questions asked here, were who are the members of cellulolytic community in 

spruce forest, whether some cellulolytic fungi have preferences for a one of examined soil 

horizons and whether their community is influenceable by seasonal changes. 

 

5.3.1 Diversity of cbhI defined OTUs in spruce forest litter and soil 
 

Pyrosequencing yielded the total of 8444 cbhI sequences of sufficient quality and length > 

380 bp. There were 1276 sequences from LS, 3180 HS, 1900 LW and 2088 HW. Thus, 

diversity from L horizon in the summer can be underestimated. In one horizon and season 

were occurring 65% of clusters – mainly singletons: 205 in HS, 168 in HW, 213 in LW and 

141 in LS. Sequences from 22 clusters were found ubiquitously across horizons and seasons.  

Since the estimates of diversity depend on sampling effort, dataset was resampled at the same 

depth of 270 sequences per sample for the construction of rarefaction curves and calculation 

of diversity indices. Based on the rarefaction analysis (Figure 10), none of the samples 

reached plateau indicating insufficient sampling depth to obtain all sequences in the samples; 

the samples HW3 and HS3 appeared to be the less diverse in the dataset. This is in agreement 

with the Chao1-based prediction of diversity that was also smallest for samples HS3 and 
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HW3 (Table 5). Low number of singletons in HS3 further supports this conclusion. 

According to Fischer's exact test Chao1 estimated the highest number of OTUs in LW (p =  

 

0.006), which contained high proportion of singletons. 39 ± 5.6 OTUs were needed to cover 

80% of fungal diversity in LW, while only 26 ± 4.5 OTUs in LS. In average 33 ± 8 OTUs are 

needed to cover 80% of fungal diversity in the L horizon, but this value is only 19 ± 0.4 

OTUs in the H horizon. There is an insignificantly higher estimated diversity in the L horizon 

than H because there are more singletons of sequences isolated from the litter.  

Evenness index from the Table 5. indicates that species were distributed evenly through the 

population of cellulolytic fungi and there were no extremely dominant species. However, 

there were differences in the ratio of singletons to number of all clusters among samples.  

 

 
Figure 10 Rarefaction curves of cbhI sequences resampled to the same sampling depth of 270 sequences. 
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Table 5: Diversity estimates of cbhI gene pools in individual samples. The pyrosequencing-derived dataset of 

sequences was resampled at 270 sequences per sample.  
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Sample Chao1 Chao1 SD 
Shannon-
Wiener 

Evenness 

Number of 
OTUs 
covering 
80% of 
diversity 

Number 
of 
observed 
OTUs 

LS1  153 26 3.52 0.82 25 73 

HS1 144 20 3.17 0.72 28 79 

LS2 193 30 3.36 0.76 31 85 

HS2 166 35 3.25 0.79 17 63 

LS3 146 25 3.43 0.81 22 70 

HS3 88 14 2.56 0.65 12 52 

LW1 273 45 3.61 0.79 41 95 

HW1 137 34 2.54 0.66 9 47 

LW2 261 47 3.55 0.8 33 87 

HW2 235 40 3.58 0.8 33 87 

LW3 239 36 3.89 0.85 44 98 

HW3 149 31 2.99 0.73 17 61 

 

5.3.2 Statistical and multivariate analyses of cbhI defined OTUs 

distribution among environmental variables 

 

Multivariate analyses were performed on the log transformed relative abundances of the 56 

most abundant cbhI sequences that exhibited sufficient abundance in the dataset and thus 

non-random distribution among samples. ANOVA analysis with a Fischer's post-hoc test 

showed that 26 OTUs were significantly associated with particular horizon (0, 1, 2, 3, 5, 6, 7, 

8, 9, 10, 11, 13, 14, 17, 22, 23, 26, 28, 31, 35, 36, 38, 39, 43, 54, 55), five with sampling site 

(16, 34, 41, 44, 53) and none with season. In the PCA analysis, the first two canonical axes 

explained 55.6% of total variability (Figure 11). OTUs were clearly divided by soil horizon 

into humus and litter horizons. Site 2 had the second biggest effect on dividing the 

cellulolytic community while the season had the smallest effect on the gene pool 

composition. In PCA asco – and basidiomycetes OTUs were not separated by soil horizon 

according their taxonomical classification but rather were mixed together. 

 

Figure 11: PCA of 56 cbhI clusters showing dependence of OTUs on season, horizon and sampling sites.  
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When the same data were analyzed in statistical and imaging program Canoco, DCA analysis 

with detrending by segments on log-transformed sequence abundance data was performed 

first. Short gradients in data were observed, so linear analysis was used to describe 

cellulolytic community. On the second run CCA was performed. It is unimodal method, but 

when analyzing data with short gradient it behaves as linear method. When testing statistical 

significance of all canonical axes, they had p value ≤ 0.02. Under Monte-Carlo unrestricted 

permutations with variables Site, as supplementary variables, environmental variable Organic 

horizon was statistically significant at p ≤ 0.04 and explained 0.43% of variability in data. 

The second tested variable Winter explained 0.087% of dataset variability and was not 

statistically significant at 5% level (p ≤ 0.24). The total variance explained by horizon and 
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season together was 0.52% and the residual variance explained by supplementary variables 

was 0.22%. 

Figure 12 represents the results of the CCA analysis as a triplot of species data, 

environmental variables and supplementary variables. If the red arrow marked Organic 

horizon is prolonged to other site of the same site, it divides species into to 2 sections in the 

graph in terms of dependency on the soil horizon. On the right side are genes which were 

more abundant in the H horizon, on the left side are those more abundant in the L horizon 

and in the middle are those distributed ubiquitously in both horizons. There was only a small 

effect of seasons on the cellulolytic community. Grey arrows represent supplementary 

factors, which were not included in the analysis. The direction of the arrows show the 

tendency of growing influence of factors if they were included in the analysis. If Sites will be 

included into analysis it would be impossible to separate effect of winter season and Site 2 

since they have the same direction of influence. Figure 12 is divided into 4 quadrants, which 

correspond to sampling conditions. OTUs from different quadrants suppose to prefer 

different conditions. OTUs in the quadrant marked HS should prefer H horizon in summer, 

HW – H horizon in winter and analogically the same principle can be applied to LS and LW. 

Nevertheless, on the others Figure 13 and Figure 14 can be seen that this preference is no 

absolute and neither significant for all OTUs.  

 

Figure 12: Triplot of environmental, supplementary and species data for 56 OTUs based on cbhI gene. Grey 

arrows represent supplementary variables, which are sampling sites – Site 1, 2, 3, which do not influence 

distribution of species in the graph. Triangles with names represent fungal species. Circles with marks HS 

(organic horizon summer), HW (organic horizon winter), LS (litter horizon summer), LW (litter horizon winter) 

represents sampling design.  
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Figure 13 and Figure 14 present CCA t-value biplot analysis using Van Doben circles to 

detect the OTUs significantly associated with certain environmental factor (soil horizon and 

season). Six OTUs were significantly more abundant in the winter (4, 8 – Ascomycota, 

Basidiomycota: 9, 22, Ascomycota: 35, 55) and another six in the summer (Ascomycota – 2, 

3, 5, 6, 7, 10).  

 

Figure 13: CCA t-values biplot with the indication of cbhI OTUs association with sampling seasons. OTUs 

inside the red circle are significantly more abundant in winter, these in the blue circle in summer. 
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T-plot analysis was used to identify OTUs associated with horizon. Eighteen OTUs were 

significantly associated with the H horizon (0, 1, 4, 8, 9, 13, 14, 15, 18, 19, 22, 23, 24, 26, 35, 

36, 39, 50) of which 10 belonged to Ascomycota, 4 to Basidiomycota and the rest 

unidentified OTUs – identified based on BioNJ tree Supplementary Figure 15. Nineteen 

OTUs were significantly associated with the L horizon (2, 3, 5, 6, 7, 10, 11, 17, 25, 27, 28, 

29, 31, 33, 38, 43, 44, 54, 55) of which 7 were Ascomycota, 6 Basidiomycota and the rest 

unidentified ( 

Figure 14). Nineteen OTUs did not show significant association with particular horizon. 

OTUs associated with winter and associated with H horizon were 4, 8 – identified from 

BioNJ tree as Ascomycota, 9 – Basidiomycota, 22 – Basidiomycota, 35 – Ascomycota and 

OTUs 2 – Ascomycota, 3 – Ascomycota, 5 – Oidiodendron sp., 6 – Pezizomycotina, 7 – 

Ascomycota were associated with  the summer and the L horizon. With respect to the 

distribution of cellulolytic community, there were both such clusters that occurred in both 

horizons and seasons and others, which were restricted to certain season or soil horizon. 

 

Figure 14: CCA t-values biplot with the indication of cbhI OTUs association with soil horizon. OTUs inside 

the red circle are significantly more abundant in the soil, these in the black circle in the litter. 

 



 64 

 

 

5.4 Analysis of total fungal community composition in spruce 

forest floor 
 

5.4.1 Diversity of total fungal community in spruce forest litter and soil  

 

Pyrosequencing yielded a total of 51550 raw ITS sequences of which 25037 started with the 

ITS1 (forward) primer and the rest with the ITS4 primer. Out of the 25037 forward 

sequences, 11866 were retained after the removal low quality sequences, sequences shorter 

than 380 bases and potentially chimeric sequences (Table 6). All these sequences were 

resampled at the same sampling depth of 700 sequences per sample for diversity analyses. 

Based on the rarefaction curves ( 

Figure 15), none of the samples reached plateau indicating insufficient sampling depth.  

 

Table 6: Sequence counts of the forward fungal ITS sequences in the environmental samples from spruce 

forest. 

 

Sample 
Total 
sequences 

Forward sequences 
surviving quality 
trimming 

LS1 1439 733 
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HS1 3029 1490 

LS2 1996 975 

HS2 2017 1112 

LS3 1864 706 

HS3 1806 854 

LW1 1838 754 

HW1 2040 954 

LW2 2548 1243 

HW2 2298 1166 

LW3 1787 793 

HW3 2375 1086 

Total  25037 11866 

 
Figure 15: Rarefaction curves of fungal ITS sequences resampled to the same sampling depth of 700 

sequences. 
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The L horizon samples were in average more richer in fungal species – 38 ± 17 OTUs were 

needed to cover 80% of fungal diversity comparing to 26 ± 15 OTUs in H horizon. This was 

similar to the cbhI sequences, where was insignificantly higher diversity in L horizon than H 

horizon. In total fungal community significantly more OTUs were needed to cover 80% o 

diversity in L horizon in winter when compared to H horizon or litter in summer (p = 0.04 

and p = 0.05). 
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The total Evenness was higher in the winter than in the summer, but not significantly. There 

were higher differences among sites than among horizons in terms of fungal community 

evenness (Table 7), although none of them were significant. Fungal community had more 

rare species and was dominated by fewer abundant ones when comparing to the cbhI 

community. The estimated diversity for cellulolytic community than overall fungal 

community according Chao1 estimator is understandable since cbhI possessing fungi are just 

a part of the total fungal community. The total fungal community was less balanced in 

Evenness and Shannon index, which indicated that dominant fungi were more important in 

the total than cbhI community. Chao1 estimator predicted insignificantly higher diversity in 

the L than in the H horizon and in the winter than in the summer for both the total fungal 

community and the cbhI gene pool. In conformity with the cbhI Chao1 results, there was a 

higher estimated diversity in the L horizon than H but there were more rare species in the soil 

organic horizon. Estimated diversity was not significantly different according Fischer's exact 

test between horizons or seasons. In contrast with the cbhI, the highest estimated diversity 

according Chao1 was in the sample HS3, which had many singletons. This suggests that the 

cellulolytic community in the HS3 shows low diversity while the total fungal community is 

species-rich. The lowest Chao1 was found in HS1, which had the most sequences and an 

average number of singletons. Shanon-Wiener index was highest in LW3 and HW3, what 

indicates that there are quite many common species and species are distributed more-less 

equally, therefore is easier to predict the next species. From the Evenness we can tell, that 

ITS community on the site 1 in the summer was defined by dissimilar abundances of 

different species. There were probably unequally abundant species, with few dominant ones. 

At the site 1 only the 7-9 most abundant OTUs represented 80% of all sequences. PlutoF 

results suggest, that the highly abundant species found on this site in the summer was 

Nolanea, but according to GenBank it can be also Mycena, which has better maximal score 

when the same sequences is blasted. In all samples emerged Nolanea sp. as the dominant 

OTU, except for the HW3 and LW3, where the dominance of the first tree species was 

approximately the same.  

 

Table 7: Diversity estimates of fungal community in individual samples. The pyrosequencing-derived dataset 

of sequences was resampled at 700 sequences per sample. 

 

Sample Chao1 Chao1 SD 
Shannon-
Wiener 

Evenness 

Number of 
OTUs 
covering 
80% of 
diversity 

Number of 
observed 
OTUs 
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LS1 299 51 2.05 0.45 7 95 

HS1 196 32 2.50 0.56 9 84 

LS2 320 37 3.47 0.69 33 148 

HS2 244 29 3.21 0.67 20 123 

LS3 350 40 3.52 0.70 35 154 

HS3 401 46 3.79 0.74 48 172 

LW1 348 34 3.62 0.70 50 174 

HW1 374 52 3.56 0.72 28 138 

LW2 359 36 3.76 0.73 55 178 

HW2 265 38 3.00 0.64 13 108 

LW3 328 35 3.99 0.78 46 164 

HW3 265 26 3.89 0.77 40 151 

 

5.4.2 Composition and ecology of total fungal community in spruce forest 

litter and soil 

 

Fungi belonging to the Ascomycota were dominant in the litter horizon with 50 - 58% of 

sequences while the Basidiomycota dominated in the soil organic horizon with 55% of 

sequences in both seasons. The Mucoromycotina occurred mostly in the soil in both seasons. 

Glomeromycota and Chytridiomycota were present in both horizons and seasons but rather 

rare (Figure 16). Other sequences related to fungi in the dataset belonged to the 

Entomophthoromycotina, Zoopagomycotina, Blastocladiomycota, Cryptomycota, and others. 

Supplementary Figure 1 shows the abundance of fungal divisions in individual samples. We 

can notice that there were major differences between sites when it comes to the distribution 

of fungal divisions. Site 3 was the richest in the Ascomycota in both seasons and soil 

horizons. The Ascomycota were also very abundant on the second site in the litter horizon in 

both seasons. Site one, was, on the opposite, very rich in the Basidiomycota. On the site 3 in 

the organic horizon the abundance of the Mucoromycotina was also remarkable. These data 

show remarkable site-specific differences in the composition of the fungal communities.  

 
Figure 16: Relative abundances of fungal divisions in the litter and soil of the spruce forest 
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The abundance of major fungal genera (> 1.6‰) in the whole dataset is summarized in the  

Figure 177. The Basidiomycota were represented by 49.3 %, the Ascomycota by 47.1 %, the 

Mucoromycotina by 1.68 %, the Chytridiomycota by 0.30 %, the Glomeromycota by 1.09 %, 

the Blastocladiomycota by 0.06 %, the Cryptomycota by 0.02%; other sequences (0.54 %) 

included the Oomycota, plants and other sequences. The most abundant genus of the 

Basidiomycota was Nolanea (10.0 %) and of the Ascomycota it was Lachnellula (9.8 %). 

 

Figure 17: Relative abundances of major fungal genera in the whole dataset of spruce forest litter and soil. 
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Ecology was assigned to the genus identifications of individual fungal OTUs based on 

literature records. Significantly more (p ≤ 0.05) symbiotic fungi included those with ECM, 

ABM, DSE, ErM, ENDO ecology were recorded in the organic horizon and, on the other 

hand, more saprotrophic fungi were found in the litter (Figure 18). The share of the ECM 

fungi in the community was by 20 – 30% higher in winter than in summer, but this difference 

was statistically insignificant. Endophytic fungi were more frequent in the L horizon than in 

the H horizon. Parasitic fungi were more abundant in the winter than in the summer due to 

the high amount of Cadophora sp. sequences in HW. Arbuscular-mycorrhizal fungi were 

almost absent in LS. Ericoid mycorrhizal fungi accounted for only 0.56% of all fungal 

ecological groups. Over 1% of sequences belonged to the lichenised fungi, where the most 

abundant genus, Verrucaria, was mainly present in the LW. Lichenised fungi were isolated 

more or less evenly from all sites and seasons. In the section Others were represented non-

fungal sequences with abundance of 0.18%. 

 

Figure 18: Relative average abundances of fungi according to their ecology showed on percentage scale (notes: 

SAP – saprothrophes, PAR – parasites, ORCH/SAP – orchideoid mycorrhiza or saprothrophe, LICH- lichenised 

fungi, ErM – ericoid mycorrhiza, ENDO – endophyte, ECM – ectomycorrhiza, DSE – dark septate endophytes, 

ABM – arbuscular mycorrhizae, Ambrosious – associated with bark beetle, Others – mostly plants) 
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Figure 19 illustrates the overall composition of the fungal community by their ecology in the 

topsoil of the mountainous Norway spruce forest. There was approximately the same share of 

ectomycorrhizal (43%) and saprothrophic (39%) fungi, but much more species in 

saprothrophic fungi – 137 when compared to the ECM – 28 species. Other ecological groups 

of fungi had the following numbers of species: ErM 3, DSE and ENDO 5, ABM 7, LICH 24 

to parasites with 61 species. 
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Figure 19: Composition of fungal community in the mountainous Picea abies forest by ecology (abbreviations 

are the same as in the Figure 25). 
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5.4.2.1 Statistical and multivariete analyses of distribution of fungal taxa among seasons 

and soil horizons 

 

Graphs were constructed to show the preference of individual fungal genera for certain 

horizon or season. X axis , their relative occurrences were expressed by the litter / organic 

soil horizon (L/H) and summer / winter (S / W) ratios and depicted in Supplementary Figures 

2-14.  

On the Supplementary Figures 2 are depicted most abundant genera of total fungal 

community. It can be noticed that ECM fungi prefer HW, except Piloderma. On the other 

hand, most of saprotrophes occured mostly in LS. 

The most abundant genus amongst Basidiomycota that were left after graphs fro Agaricales 

and Agaricomycetes were constructed, was Cryptococcus (0.9%), which was found in HW. 

Other genera occurring only in H horizon were Auriculoscypha, Leucosporidiella, Puccinia, 

Pucciniastrum, Uromyces. Curvibasidium depend on L horizon but not a season. None of 

genera in Supplementary Figures 3 depends on summer season. 

Athelialen genus Piloderma fallax was the second most abundant among ECM fungi and had 

100x more sequences from HS when comparing to other seasons and horizons 
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(Supplementary Figures 4). On the other hand, ECM genera Russula, Xerocormus, Lactarius, 

Tomentella were preffering HW. Saprotrophes like Heterochaete, Clavulina, Ductifera, 

Xenasmantella occurred in litter. 

From the Supplementary figure 5 - Agaricales is evident that the members of the 

ectomycorrhizal genera Amanita, Cortinarius, Hygrophorus, Tricholoma, Inocybe are present 

only in the organic horizon while saprotrophes like Mycena, Rhodocollybia, Galerina, 

Marasmius occur in L horizon Nolanea conferenda (10%) was the most abundant fungus 

among ECM with more than 100x higher abundance in the L horizon than in the organic one 

and showed preference for summer.  

In Supplementary Figures 6 are ascomycetes that were left after graphs for Helotiales, 

Dothideomycetes, Eurotiomycetes, Lecarnomycetes, Sordariomycetes were created. The most 

abundant genus from this group was endophyte/ saprotrophe/ parsite Xenochalara (0.88%). 

Abundant genera occurred in L horizon and vice versa. The ericoid mycorrhizal genus 

Oidiodendron was found only in the H horizon in both seasons. Orchideoid mycorrhiza was 

represented by Gyoerffyella rotula found in the litter horizon.  

Most abundant genus amongst Dothideomycetes (Supplementary Figures 7) was ECM genus 

Cenococcum with hundreds of sequences in H horizon especially in the winter. 

Dothideomycetes species occurred mostly in L horizon.  

Genera belonging to Eurotiomycetes (Supplementary Figures 8) were separated between two 

horizons with only two minor genera dependent on a season. Cladophialophora was the most 

abundant genus with 6.1% of relative abundance. 

Cladonia (0.2%) was the most abundant among Lecanoromycetes (Supplementary Figures 

9). There were genera showing clear preference for one of seasons or horizons but this can be 

due to insufficient amount of obtained sequences.  

In Sordariomycetes graph (Supplementary Figures 10) parasites Truncatella, 

Phlogicylindrium, Cordyceps and saprotrophes Acremonium, Polyscytalum, Pochonia, 

Ophiostoma, Zalerion occurred only in l horizon. Some minor genera were found only in 

winter season: Tolypocladium, Zalerion, Chaetosphaeria. Stachybotrys, Lecythophora, 

Thozetella, Ophiostoma were found only in summer season. 

Most of Helotialen (Supplementary Figures 11) genera prefered litter over organic horizon. 

In H horizon were found DSE Acephala and Meliniomyces, parasite Neofabera and 

saprotrophe Scytalidium in HS. Saprotrophe Lachnellula was the most abundant with 9.8% 

and depend on L horizon. 
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Glomeromycota were separated by soil horizons but not affected by season (Supplementary 

Figures 12). Glomus, Gigaspora, Scutellospora, Entrophospora were found only in litter 

while Ambispora, Acaulospora, Paraglomus only in H horizon. 

There were only 6 members of Chytridiomycota on Supplementary Figures 13 and the most 

abundant saprotrophe Nowakowskiella (0.11%) was found only in H horizon.  

8 genera from the taxonomical group, that used to be called Zygomycota, occurred only in H 

horizon and mostly in winter. Mortierella (1.6%) was the most abundant genus in this group 

(Supplementary Figures 14). 

 

To show how total fungal community is influenced by environmental factors, principal 

component analyses was performed on non-transformed data of OTUs over 0.16% with 

relative abundances and it did not show any trends in orientation of species according to 

environmental variables (data not shown). The PCA on log transformed data of 61 OTUs and 

their orders showed clear spatial heterogeneity of fungal community (Figure 20 and Figure 

21). On the left side of both PCA figures can be found species and orders belonging mostly 

to mycorrhizal fungi occurring in the H horizon and on the right side saprotrophic one found 

mostly in L horizon. Sampling sites divide PCA into lower and upper part, where in the 

lower half are species and orders abundant on Site 1 and not on other sites while fungi in the 

upper part were found on all sites. Dividing of species and orders according to season is not 

so clear, but OTUs in the upper half of the figure tend to be more abundant in summer and 

those on the opposite site in winter. The most of the variation was explained by horizons. The 

effect of seasons was low compared to the effects of horizons and sampling sites. The PCA 

of orders explained 54.89% variability in data and PCA of OTUs over 0.16% abundance 

explained 50.97%. The position of orders on the Figure 20 is the average from the position of 

OTUs in Figure 21. 

 

Figure 20: PCA analysis on the abundance of ITS orders and the effects of horizons, sites and seasons.  
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Species belonging to the order Helotiales assigned to the saprotrophs Furcaspora eucalypti 

and Lachnellula calyciformis and the saprotroph Acremonium alcalophilum of the 

Glomerellales order were more abundant in summer in litter horizon. Some OTUs from the 

Eurotiales were more abundant in the soil - like the saprotroph Penicillium urticae and the 

ectomycorrhizal fungus Elaphomyces muricatus. Also the OTUs from the Hypocreales had 

diverse ecology – the parasite Ophiocordyceps sinensis (taxon with low taxonomical support 

by PlutoF) was more abundant in the H horizon while the saprotroph Sympodiella acicola 

was mainly recovered from the litter. The whole order behaves as if it depends on organic 

horizon. From the order of Chaetothyriales, saprotrophic species Cladophialophora 

minutissima and Amorphotheca resinae were associated with the litter and summer season. 

The H horizon also contained more sequences of the ectomycorrhizal fungus Cenococcum 
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geophilum and the ericoid mycorrhizal fungus Oidiodendron tenuissimum and the L horizon 

the saprotrophs Pseudeurotium bakeri and Marasmius androsaceus. Majority of OTUs 

belonging to the Agaricales were distributed equally among sites although the whole order 

itself prevailed at Site 1. This is because half of order`s OTUs were found in litter like 

saprotroph Marasmius androsaceus and the parasite Melanotaenium euphorbiae (taxon with 

low % support by PlutoF) and the other half like ectomycorrhizal Amanita sp. or Inocybe sp. 

were abundant in organic horizon. Some species were strongly associated with H horizon like 

the parasite Auriculoscypha anacardiicola belonging to order Septobasidiales. 

 

Figure 21: PCA analysis on the abundance of the 61 most abundant OTUs and the effects of horizons, sites and 

seasons.  
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The PC analyses explained only a small part of the total variability in fungal abundance. 

Non-metric multidimensional scaling (NMDS) was more efficient in exploring the 

relationships in the data. Furthermore, NMDS makes no assumption about data normality 

like PCA, and is thus better suited for data where normality is questionable. NMDS also 

allows the use of any distance measure of the samples, unlike other methods, which specify 

particular measures. 

Non-metric multidimensional scaling (NMDS) analysis on the log-transformed abundances 

of 61 dominant OTUs showed that OTUs formed four groups depending on the site of 

occurence and soil horizon (Figure 22). The upper left quadrant of the plot contains fungi 

universally distributed among sampling sites: Ductifera, Pseudeurotium, Phialocephala, 

Venturia, Rhizoscyphus, Lachnellula, Cladophialophora, Amorphotheca, Cadophora, 

Tylospora, Leptodontidium, Tricholoma, Meliniomyces, Cryptococcus, Mortierella. The 

upper right quadrant harbors fungi occurring at all sites but constrained to the organic 

horizon occurred: Elaphomyces, Neofabraea, Candida, Cortinarius, Leucosporidiella, 

Acephala, Amanita, Ambispora, Auriculoscypha, Scytalidium, Hygrocybe, Russula, 

Piloderma, Hygrophorus, Rhynchostoma, Penicillium, Xerocomus, Cenococcum. Lower left 

quadrant of the graph is occupied by fungi occurring at all sites but mostly in the litter 

horizon (Varicosporium, Sympodiella, Chalara, Hyalodendriella, Neofusicoccum, 

Botryosphaeria, Fulvoflamma, Melanotaenium, Cladonia, Leoorganicola, Furcaspora, 

Lophodermium, Verrucaria, Acremonium, Gymnopilus, Heterochaete, Marasmius, Nolanea, 

Xenochalara) and finally the lower right quadrant contains fungi abundant at one single sites 

and mostly in the organic horizon (Mycena, Glomus, Cortinarius, Sporendocladia, Laccaria, 

Rhinocladiella, Ophiocordyceps, Elaphomyces, Scytalidium, Lactarius, Inocybe). 

 
Figure 22: Non-metric MDS of fungal genera created with Euclidian similarity measurement  
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When the efects of horizons, seasons and sampling sites was explored by NMDS, the biggest 

effects were recorded for sites and horizons. Samples from both horizons were divided 

precisely but season effects in the litter horizon is hard to see (Figure 23). On the other hand, 

samples from the organic horizon were well separated by season. Samples from the litter 

horizon were more separated by sites – LS1 and LW1 were sampled from Site 1. 

 

Figure 23: Non-metric MDS of 12 samples in dependences on environmental factors with Euclidian similarity. 

Squares are samples from litter horizon – full pink squares were sampled in winter and empty blue squares in 

summer. Triangles represents samples from organic horizon – full yellow triangles were sampled in summer 

and empty blue triangles in winter.  
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Three statistical programs were used to describe differencies in total fungal community 

between soil horizons in seasons: ANOVA, STAMP and Canoco. One-way Anova analysis 

did not reveal any significant differences among the abundances of fungal phyla amongst 

horizons, seasons or sampling sites. Generally, the effects of sampling sites tended to be 

greater than those of horizons and seasons for fungal orders and genera. ANOVA with a 

post-hoc test indicated significant differences among sampling sites in the following 

basidiomycetous genera: Nolanea, Heterochaete, and Tylospora. Significant differences 

amongst horizons were found for Piloderma, Marasmius, Russula, Xerocomus, 

Auriculoscypha, Melanotaenium, Hygrocybe, and Leucosporidiella. Fungi significantly 

affected by seasons were Piloderma, Marasmius, Russula, Xerocomus, Auriculoscypha, and 

Leucosporidiella. Ascomycetous genera that showed significant differences in abundance 

among sites were: Lachnellula, Leptodontidium, Furcaspora. The genera Penicillium, 

Cladophialophora, Cenococcum, Meliniomyces, Amorphotheca, Rhynchostoma, Candida, 

Verrucaria, Sympodiella, Varicosporium, and Oidiodendron; Neofusicoccum differed in 

abundance among seasons and Cladophialophora, Cenococcum, Penicillium, Meliniomyces, 

Xenochalara, Rhynchostoma, Hyalodendriella, Varicosporium, Oidiodendron, 

Botryosphaeria were preferentially associated with either the L or the H horizon. 

Because the composition of fungal community differed widely among sampling sites, this 

seriously decreased the power of classical statistical tools to determine statistical significance 

of differences in abundance among seasons. For this reason, comparisons among horizons 
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and seasons were also performed for individual sites separately by random resampling 

corresponding pairs of datasets by the Fishers exact test. The trends in the abundance for 

certain treatments were regarded as statistically significant if they were found to be 

significant at all three sites separately at p < 0.05. To exclude positive results due to random 

recovery of sequences, only these 42 orders and 81 genera of fungi with the relative 

abundance over 1‰ in the whole dataset were tested and only 61 genera with relative 

abundance over 1.6‰ were discussed. The statistically significant effects in the dataset are 

shown in the Table 8 and Table 9. Significant differences among horizons or seasons were 

found for 9 orders of the Basidiomycota, 11 of the Ascomycota, 1 of the Mortierellomycotina, 

and 1 of the Glomeromycota. Ten orders were significantly more abundant in the L horizon, 

of which 7 were ascomycetes orders; 6 orders of the Basidiomycota, 3 of the Ascomycota, 

one of the Mucoromycotina and 1 of the Glomeromycota were more abundant in the H 

horizon. Two orders of the Basidiomycota and three of the Ascomycota were more abundant 

in the summer; another three orders of the Basidiomycota, three of the Ascomycota were 

more abundant in winter. Significant differences among horizons or seasons were further 

found for 16 genera of the Basidiomycota, 24 of the Ascomycota, 1 of the Mucoromycotina 

and 1 of the Glomeromycota. Fifteen ascomycetous genera were significantly more abundant 

in the L horizon, 10 in the H horizon, 5 in the winter 3 in the summer; ten basidiomycetous 

genera were more abundant in the H horizon, while only 5 in the L horizon, three genera 

were more abundant in summer and another three in winter. One genus of Mucoromycotina 

and one belonging to the Glomeromycota were abundant in the H horizon.  

 

Table 8: Significant association of fungal orders with certain site, horizon or season based on random 

resampling of pairs of samples  
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Phylum Order site 1 site 2 site 3 
STAMP 
horizons 

STAMP 
seasons 

Basidiomycota Agaricales +  + L S 

Basidiomycota Ascomycota_others  + + L  

Glomeromycota Archeosporales  + + H  

Basidiomycota Atheliales + + + H W 

Basidiomycota Auriculariales  + + L  

Basidiomycota Boletales + + + H S 

Ascomycota Botryosphaeriales  + + L  

Ascomycota Dothideomycetes_others + + + H S 

Ascomycota Eurotiales + + + H  

Ascomycota Eurotiomycetes_others + + + H S 

Basidiomycota Filobasidiales  + + H W 

Ascomycota Helotiales + +  L W 

Ascomycota Chaetothyriales + + + L S 
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Ascomycota Letiomycetes_others +  + L  

Basidiomycota Leucosporidiales + +  H  

Mucoromycotina Mortierellales  + + H  

Basidiomycota Russulales + + + H W 

Basidiomycota Septobasidiales + + + H  

Ascomycota Venturiales + +  L  

Ascomycota Verrucariales + +  L W 

 

Table 9: Significant association of fungal genera with certain site, horizon or season based on random 

resampling of pairs of samples  
 

Phylum/subphylum Order Genus 
site 
1 

site 
2 

site 
3 

STAMP 
horizon 

STAMP 
season 

Basidiomycota Agaricales Amanita + +  H W 

Basidiomycota Agaricales Gymnopilus +  + L S 

Basidiomycota Agaricales Hygrocybe +  + H  

Basidiomycota Agaricales Hygrophorus + + + H  

Basidiomycota Agaricales Marasmius + + + L  

Basidiomycota Agaricales Nolanea +  + L  

Basidiomycota Agaricales Tricholoma + + + H  

Glomeromycota Archaeosporales Ambispora  + + H  

Basidiomycota Atheliales Piloderma + + + H S 

Basidiomycota Atheliales Tylospora + + +  S 

Basidiomycota Auriculariales Ductifera + + + L  

Basidiomycota Auriculariales Heterochaete  + + L  

Basidiomycota Boletales Xerocomus + + + H W 

Ascomycota Botryosphaeriales Botryosphaeria + + + L  

Ascomycota Botryosphaeriales 
Neofusicoccu
m 

 + + L  

Ascomycota 
Dothideomycetes_ot
hers 

Cenococcum + + + H W 

Ascomycota Eurotiales Elaphomyces +  + H  

Ascomycota Eurotiales Penicillium + + + H  

Ascomycota 
Eurotiomycetes_othe
rs 

Rhynchostoma + + + H S 

Basidiomycota Filobasidiales Cryptococcus  + + H W 

Ascomycota Helotiales Acephala +  + H  

Ascomycota Helotiales Cadophora  + + H W 

Ascomycota Helotiales 
Hyalodendriell
a 

+ +  L  

Ascomycota Helotiales Lachnellula + + + L S 

Ascomycota Helotiales Meliniomyces + + + H W 

Ascomycota Helotiales Neofabraea +  + H  

Ascomycota Helotiales Phialocephala + +  L  

Ascomycota Helotiales Polydesmia + +  L  

Ascomycota Helotiales Varicosporium + + + L  

Ascomycota Chaetothyriales Amorphotheca + + + L S 

Ascomycota Chaetothyriales 
Cladophialoph
ora 

+ + + L  

Ascomycota Chaetothyriales Rhinocladiella +  + H  

Ascomycota 
Leotiomycetes_other
s 

Leptodontidiu
m 

+ + + L  

Ascomycota 
Leotiomycetes_other
s 

Oidiodendron + +  H  

Ascomycota Leotiomycetes_other Pseudeurotium +  + L  
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s 

Basidiomycota Leucosporidiales 
Leucosporidiell
a 

+ +  H  

Mucoromycotina Mortierellales Mortierella  + + H  

Ascomycota Pazizomycotina Sympodiella + + + L S 

Ascomycota Pazizomycotina Xenochalara + + + L W 

Basidiomycota Russulales Russula + + + H  

Basidiomycota Septobasidiales 
Auriculoscyph
a 

+ + + H  

Ascomycota Venturiales Venturia + +  L  

Ascomycota Verrucariales Verrucaria + +  L W 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CCA analysis on log-transformed species data was performed to explore the relative 

contribution of the following factors: soil horizons and seasons on fungal community 

composition. Although CCA is a unimodal method it acts as a linear one when gradients are 

short and so it was suitable for the analysis of the dataset. All four canonical axes were 

statistically significant (p = 0.038);when the variable sites was made supplementary, than 

under Monte-Carlo unrestricted permutations, soil horizon effect was statistically significant 

at p = 0.02 and explained 0.35= of data varaibility. The season effect was marginally 

statistically significant (p = 0.052). The season explained 0.08% of dataset variablity. The 

total variance explained by horizon and season together was 0.38% and the residual variance 

explained by supplementary variables (sites) was 0.17%. 

Triplot of genus abundance data, environmental variables and supplementary variables in the 

Figure 24 shows the association of individual genera with environmental factors. Grey 

arrows mark the supplementary factors (sites), which are not included in the analysis, but 

direction of the arrows shows the tendency of growing influence of factors if they were 

included in the analysis. 

 

Figure 24: Grey arrows represent supplementary variables, which are sampling sites – Site 1, 2, 3, which do not 

influence distribution of species in the graph. Triangles with names represent fungal genera.  
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The Van Dobben circle analysis (Figure 25) identified the following saprotrophic genera to 

be significantly more abundant in summer: Cladophialophora, Lachnellula, Amorphotheca, 

Sympodiella and the fungi more abundant in winter: the ECM fungi Amanita and 

Cenococcum, the lichenised fungus Verrucaria and the saprotrophs Cryptococcus and 

Mortierella. 

 

Figure 25: T-value plot of CCA analysis of 61 ITS based OTUs in dependence of season. Genera positively 

dependent on winter season have their arrow inside the red circle and species dependent on summer vice versa. 

For simplicity, only significantly affected species are named on the figure. 

 

 

 

The saprotrophic genera Pseudeurotium, Gymnopilus, Lachnellula, Sympodiella, Ductifera, 

Amorphotheca, Cladophialophora, Varicosporium, Chalara, Marasmius, Hyalodendriella, 

mycorrhizal genera Leptodontidium, Nolanea, the parasites Neofusicoccum, Venturia, 

Botryosphaeria, Melanotaenium, the lichenised fungi of Cladonia and the endophytes 

Xenochalara were more abundant in the litter horizon (Figure 26). On the other hand, the 

ECM genera Piloderma, Russula, Amanita, Cenococcum, Xerocomus, Hygrophorus, the 

ericoid mycorrhizal genera Oidiodendron, the dark septate endophytes Acephala, 

Meliniomyces, the parasites Ophiocordyceps, Auriculoscypha, Rynchostoma and the 

saprotrophic fungi Mortierella, Hygrocybe, Ambispora, Cryptococcus, Rhinocladiella, 

Leucosporidiella, Penicillium were more abundant in the humus.  

http://fungalgenomics.concordia.ca/fungi/Ares.php
http://fungalgenomics.concordia.ca/fungi/Ares.php
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Figure 26: T-value plot of CCA analysis of 61 ITS based OTUs in dependence of horizon. Species positively 

dependent on organic horizon have their arrow inside the red circle and species dependent on litter horizon vice 

versa. For simplicity, only significantly affected species are named on the figure. 

 

 

 

5.4.3 Phylogenetic analyses of cellulolytic and total fungal community 

 

5.4.3.1 Phylogenetic analyses of cbhI nucleotide and protein sequences 

 

A total of 1550 cbhI sequences from GenBank, and the fungal genomes (published by the 

Joint Genome Institute (JGI), USA, http://www.jgi.doe.org) were used identify 

environmental cbhI genes. The BioNJ tree was constructed for 128 sequences of which first 

56 most abundant consensus sequences were the environmental ones, 46 were cbhI 

sequences obtained in this study from fungal isolates and the remaining sequences were from 

GenBank and JGI. Protein tree was constructed without pseudogene sequences of cloned 

fungi and environmental OTUs: 9, 12, 15, 14, 18,19, 30, 32, 34, 41, 44, 49, 53. 

No identified sequences with high similarity could be assigned to the most of the 

environmental cbhI clusters and they thus remained unidentified at a species or genus level. 

The cbhI obtained from fungal isolates were highly helpful when trying to identify 

metagenomic cbhI isoforms in a tree.  

Most of the cbhI clusters were specific for particular soil horizon and / or season as 

demonstrated for 56 dominant clusters in the Supplementary figure 15. Interestingly, related 
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clusters shared similar ecology in terms of the preference for particular horizon or season. 

This can be seen best in the Supplementary figure 16 where related clusters 29, 25, 42, 52, 

33, 28 and 17 are all from the L horizon and are can be assigned to Basidiomycota. All 

unidentified cbhI clusters fall more-less to asco- or basidiomycota clade but one group of 

clades on the nucleotide tree Supplementary figure 15 cannot be assigned to any division due 

to the lack of bootstrap support. Clusters 1 and 51 are basidiomycota because they are on the 

same clade with Jaapia argillacea, Phlebia brevispora and Mycena galopus in both 

nucleotide and with Phlebia brevispora and Volvariella volvacea in protein tree. Cluster 34 is 

close to Russula emetica / Mycena galopus branch but in the protein tree it is within an 

unidentified group of sequences. Cluster 6 is identified as an ascomycota based both on DNA 

and protein sequence. Cluster 50 is ascomycete, because it clusters with Ascomycota in both 

trees, although only with low bootstrap values. Cluster 23 clusters together with clusters 8 

and 35 found in H horizon in both trees and all these sequences are on the clade with the 

member of the Mucoromycotina Mucor hiemalis and with Ascomycota Thysanophora 

penicillioides, Leptodontidium elatius, Cadophora malorum and Ceuthospora pinastri; 

however, the position within this group is different in both trees. Clusters 30, 32 and 44 are 

assigned to the cluster of environmental sequences in both trees but are also on the same 

clade with ascomycota in the nucleotide tree, which has, however, only a small bootstrap 

value. Clusters 45 and 4 appear in protein tree as ascomycetes but in the nucleotide tree they 

cluster together with other environmental sequences. Cluster 2 clusters with a group of 

environmental sequences in the nucleotide tree but with Ascomycota in protein tree. Clusters 

54 and 31 group together in the nucleotide tree but not in the protein tree, where they have 

lower branch support. Cluster 31 is on the same branch with Chalara longipes and cluster 54 

is connected to the branch with asomycetous sequences in the protein tree although with low 

bootstrap values. Cluster 7 has low bootstrap supports in both trees, but clusters with 

ascomycetes in protein tree. Cluster 49 is close to Cadophora malorum, Cadophora luteo-

olivacea and Phialophora sp. in the nucleotide tree with low bootstrap support while it 

groups with cluster 37 and Russula emetica in the protein tree with a 0.34 bootstrap value, 

thus the placement of this sequence remains unclear. Clusters 3, 20, 14, 19 are associated 

with the ascomycota Glarea lozoyensis in both trees. The clade of clusters 15, 18, 53 in the 

nucleotide tree had a bootstrap 1 while it was distributed among two remote clades in the 

protein tree with lower bootstrap support. Cluster 18 was on the branch with clusters 55, 15 

in nucleotide tree and can be assigned to Ascomycota. Cluster 55 clustered in both trees with 

Botryotinia fuckeliana and Sclerotinia sclerotiorum, which suggests that it is an ascomycete. 
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Clusters 12, 38, 24 were on the same branch in both trees; in the nucleotide tree they were 

clearly associated with Russula emetica, while in the protein tree cluster 38 and 24 grouped 

with Chalara longipes. Clusters 43 and 5 were close to Oidiodendron maius in both trees 

with high bootstrap values. Cluster 37 was on the clade with Russula emetica with high 

bootstrap support in nucleotide tree but clustered with ascomycetes in protein tree, although 

its nucleotide sequence had similarity over 99% with R.emetica. Positions of clusters 10 and 

13 are different among trees and show low bootstrap, but clusters with Ascomycota in both 

trees. In protein tree they were associated with Ascomycetes. Clusters 0 and 26 are on the 

clade with Aspergillus sp. in both trees. Cluster 36 clusters with different Ascomycota in both 

trees. Clusters 21 and 39 are on the same branch in both trees but do not group closely with 

any identified sequence. Cluster 46 is close to Auricularia delicate in nucleotide tree and to 

Botryobasidium botryosum but with higher support in the nucleotide tree. Clusters 33, 28, 17 

are on the same branch in both trees with high support and cluster with basidiomycota 

sequences. Clusters 16, 48, 52 are on the same clade in the nucleotide tree and clusters 48, 52 

are close to Russula paludosa thus can be assigned to Basidiomycota based on the protein 

sequence. Clusters 22 and 9 were associated with Russula paludosa in nucleotide tree and 

cluster 22 also in protein tree. Cluster 9 was on the clade with other environmental sequences 

and cluster 22 was on the clade with Russula paludosa and Tramentes versicolor and can 

thus be assigned to basidiomycota. Clusters 47 and 11 were on clade with Russula paludosa 

and Tramentes versicolor in nucleotide and protein tree, thus these clusters are probably 

Basidiomycota. Cluster 40 was close to Tramentes versicolor in both trees. Cluster 41 was on 

different clades in both trees and cannot be reliably assigned to a higher taxon. Cluster 27 in 

was on the clade with Ascomycetes in both trees. Clusters 29, 42, 25 were on the same clade 

with R. paludosa in both trees and can be assumed that they are basidiomycota. In the 

nucleotide tree, there is one clade and one branch of unidentified clusters, in the protein tree 

there are 5 unidentified clades. Some of sequences in these clades are identified in nucleotide 

tree – as cluster 12 being close to R. emetica with bootstrap value 1.  

Interestingly some asco- and basidiomycota have very similar cbhI sequences. gi 325152901 

R.paludosa was on the same clade with gi 361126979 Glarea lozoyensis in both trees. In 

addition, gi 351735591 R.paludosa was associated with ascomycetes in both trees. Also gi 

351735589 Mucor hiemalis was associated with Ascomycota in both trees. Ascomycetous 

and basidiomycetous sequences were divided into phyla more precisely on the protein level 

than nucleotide ones, where pseudogens brought unnecessary noise. 
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5.4.3.2 Phylogenetic analysis of the ITS sequences 

 

All consensus sequences of environmental OTUs with relative abundance over 1.6‰ were 

included into BioNJ tree. Ascomycota OTUs were found more often in the L horizon 

compared to the Basidiomycota (Supplementary figure 17). Consensus sequences of ECM 

fungi identified by PlutoF as Russula ochroleuca (OTU 5), Lactarius rufus (12), Tylospora 

(7) were found in the H and L horizon mostly in the winter. Other ECM fungi like 

Xerocormus badius (18), Hygrophorus olivaceoalbus (10), Piloderma sp. (2) were found in 

the H horizon only. Interestingly, sequences related to the Mortierellales were found in the H 

horizon even though these fungi are considered saprotrophs living on decomposing litter and 

organic matter. 

In some cases, 165 bp of aligned 5.8S rDNA used to build a tree, were not accurate enough 

for an OTU to be assigned to the order or genus level. For example, consensus sequence of 

Amanita sp. (15) and one of Tricholoma sp. (8) did not cluster with asco – neither with 

basidiomyctes. In some cases, OTUs identifications by Plutof were flawed and these OTUs 

cluster in the tree somewhere else where they should. For example, consensus 43 clustered 

with Ambispora callosa and represented most distant sequence from the dataset. It was 

identified by PlutoF as Candida sp. with 97% of similarity but only 10% of coverage. 

Another misidentified fungus was consensus 58 identified by PlutoF as Acremonium sp. with 

90% identity and 38% query coverage and it was clustering with Glomus occultum, although 

with low bootstrap support. In addition, other sequences from the bottom cluster of 

unidentified sequences confirmed flawed identification by PlutoF and clustered together 

because they were most distant from other sequences in alignment. Consensus sequence 68 

identified by PlutoF as Hygrocybe sp., which clustered with consensus sequence 55 

(accurately assigned by Plutof to Ambispora sp.), showed similarity to uncultured 

Basidomycota (100% coverage and 95% similarity) and Glomeromycota (83% coverage and 

97% similarity) from GenBank. 

Most of environmental OTUs can be classified into orders or classes based on BioNJ tree. 

Some GenBank and environmental sequences were very closely related and thus created 

polytomies so OTUs can not be assigned to genera or order. This was case of some 

sequences in clusters Agaricomycetes and Pezizomycotina.  
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6. Discussion 
 

Successional changes of dominant fungal taxa typically occur during the decomposition of 

plant litter (Frankland 1998). This also applies to needle litter that usually decompose more 

slowly in situ than other litter types (Osono et al. 2003; Osono and Takeda 2004; Korkama-

Rajala et al. 2008). While the litter material in the initial stages of decomposition is often 

inhabited by opportunistic fungi, the proportion of efficient decomposers including 

ligninolytic basidiomycetes increases with time (Osono 2007).  

In the present study, however, efficient decomposers of litter were isolated from all stages of 

needle litter decomposition and basidiomycetes were found to be associated with both the 

initial decay on trees (the wood associated species F.pinicola and Peniophora sp.) and the 

late stages, where litter-decomposers M.androsaceus and M.galopus were recovered. Though 

the former species are rather unexpected for litter needles, the presence of wood 

decomposing basidiomycetes does not seem accidental. Sokolski et al. (2007) recorded an 

unidentified member of Peniophoraceae and Gloeophyllum sepiarium as needle endophytes 

of Picea mariana. Neither F.pinicola nor Peniophora sp. were found in the soil metagenome. 

These wood-decaying fungi occurred only in the early stages of needles decomposition a 

probably were not able to compete with litter decaying fungi in later stages. In a previous 

study where direct isolation from P.abies needles after surface sterilization by ethanol and 

cupric chloride, the fungal isolate pool was dominated by opportunistic fungi from the genera 

Penicillium, Cladosporium, Phomopsis and Mucor (Przyby1 et al. 2008). In the present 

study, fast growing ubiquitous fungi (Table 1) were also isolated with low frequencies from 

needles in later stages of decay, but only H.dematioides and T.penicillioides were selected for 

further studies. Neither H.dematioides nor T.penicillioides were isolated from the soil 

horizons, but were isolated  from the litterbag needles. This points out their restricted 

capacity for competition with fungi found in later stages of succession, because their 

enzymatic capabilities to decompose spruce needles were comparable (for H.dematioides 

isolate 194 from earlier stage even better than for the species isolate 22) to fungi found in 

later stages like M.galopus and M.androsaceus. In metagenome, Mycena sp. occurred mainly 

in L horizon, precisely in LW. In the cellulolytic community it was found in both horizons 

independently of the season. In total fungal community metageome, Marasmius sp. occurred 

only in L horizon with high abundance - 4% (when compared to most abundant species 

Nolanea sp. with 10%).  
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Changes in litter quality during decomposition are believed to be the most obvious cause of 

successional changes in the decomposer community. Indeed, the quality of litter changes 

substantially during decomposition. In both the Q.petraea and P.abies litters, cellulose 

decomposes more rapidly than hemicellulose, and lignin decomposition is very slow, 

resulting in its accumulation with time (Šnajdr et al. 2011). These chemical changes were 

well reflected in the relative activities of lignocellulose-decomposing enzymes during in situ 

decomposition of Q. petraea litter. Carbon mineralization during decomposition leads to a 

decrease of C/N and C/P ratio in litter (Osono and Takeda 2004, Voříšková et al. 2011). In P. 

abies needles, C/N ratio changes from 52 in mature needles over 47 in senescent needles to 

44 in needles decayed in situ, and C/P decreases from 2 040 to 1 230 and 1 180 (Šantrůčková 

et al. 2006) and fungal succession on litter may partly also take place as a consequence of 

these changes. 

Senescent spruce needles start to decompose while still attached to trees and these initial 

stages of decomposition may be performed by saprotrophic fungi already present in living 

needles as endophytes. Endophyte communities in P.abies needles are frequently dominated 

by Lophodermium piceae and other frequently recorded fungi include Tiarosporella parca, 

T.penicillioides, Lirula macrospora and Rhizosphaera kalkhoffii (Korkama-Rajala et al. 

2008, Müller and Hallaksela 1998 and 2000). When spruce needles were left to decompose in 

laboratory microcosms only in the presence of endophytes, the same initial rate of 

decomposition was observed as in needles primed with nonsterile forest soil (Müller et al. 

2001). On the other hand, litter containing exclusively endophytes decomposed more slowly 

than litterbags incubated in situ over a longer period of time (Korkama-Rajala et al. 2008). 

Only some endophytes continue decomposition when needles fall onto the forest floor. 

Within 2 years of in situ decomposition, L.piceae was still among the dominant needle litter-

decomposers, but the abundance of basidiomycetes from the genera Marasmius and Mycena 

increased (Korkama-Rajala et al. 2008).  

In our study, L.piceae was recorded only rarely and was not selected among the tested 

species. L.piceae was recorded in metagenome of the soil horizons. It was found in L horizon 

but also with low frequencies in H horizon. Lindhal et al. (2007) confirmed, that 

Lophodermium spp. belongs to the ‘early’ fungal community, defined as the taxa occurring 

with a higher frequency in litter samples compared to older organic matter and mineral soil.  

C.longipes was previously shown to be involved in organic acid decomposition (Koukol et 

al. 2004). On the other hand, the same strain of C.longipes was not able to spread over sterile 

spruce needles in a microcosm experiment and caused no decomposition (Koukol et al. 
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2006). This species was also tested for decomposition ability on sterile Abies needles where 

it showed intermediate activity compared to other ascomycete strains (Osono and Takeda 

2006) and on needles of Pinus sylvestris, where the result was similar (Boberg et al. 2010). 

The two strains used in our study belong to a complex of several species which are 

morphologically identical, but differ in their molecular characteristics and their phenotypical 

differences extend also to differences in their enzymatic capabilities.  

Chalara sequences were also identified from the soil metagenome, where it occured in all 

horizons and season with the most of reads in LW, but it was not very abundant species. In 

cellulolytic communitiy it was found in LW. 

The species T.penicillioides and M.androsaceus tested here previously showed similar 

decomposition rates on green and brown spruce needles (Koukol et al. 2008) but on Abies 

needles, T.penicillioides exhibited only slow decomposition (Osono and Takeda 2006). 

These differences may be attributed to intraspecific differences between strains.  

In earlier decomposition tests, basidiomycetes were usually superior to ascomycetous species 

in litter (Osono and Takeda 2006, Osono 2007, Tanesaka et al. 1993) and basidiomycetes 

isolated from the same habitat as ascomycetes had significantly higher activities of 

ligninolytic enzymes and several hydrolases (Baldrian et al. 2011). These observations, 

however, might be biased by the testing of opportunistic fungi among ascomycetes that have 

limited capability of enzyme production. The comparison of enzyme activities in 

ascomycetes from Q.petraea topsoil obtained by the dilution plate method with isolates from 

surface-sterilized litter isolated in this study shows, that the former group produced 

significantly less esterase, lipase, acid phosphatase, β-glucosidase, N-acetylglucosaminidase, 

α-mannosidase and especially laccase (Baldrian et al. 2011), which indicates that interior 

colonizers may be superior in enzyme production.  

My results show that the potential of fungi decomposing attached needles to produce 

extracellular hydrolytic enzymes is rich and essentially similar to that of later stage 

decomposers. Although the rate of production of individual enzymes differed among fungal 

isolates (and even between two strains of the same species), these differences did not 

correspond with the decomposition stage when the fungi were isolated.  

If the fungi from different stages of decomposition have comparable abilities to decompose 

litter and to produce different extracellular enzymes, a question arises what is the reason for 

successional changes in the needle-associated decomposer community? One of the possible 

explanations is that while many fungi are able to decompose litter of different quality, their 

individual competitive abilities depend on litter composition and their communities change 
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as a consequence of the competition. Another explanation accepts occurrence of a rather 

stochastic group of species out of a set of species with preference for particular substrata. The 

dominance of a particular species can be due to a coincidence of several factors including 

geographical area, (micro)climatic conditions or biotic factors, such as the 

competitive/mutualistic interactions with other organisms present in the substratum. 

The results of this study did not show a clear link between an individual enzyme or a group 

of enzymes, and overall needle decomposition. High decomposition rates compared to 

previous studies on fungal needle litter decomposition might be partly due to the pre-

cultivation of fungal mycelia on a nutrient-rich medium before spruce needle addition. The 

methodology or strain differences may also be responsible for the observed difference 

between this study and that of Boberg et al. (2010) on Pinus litter. Mycena sp. was one of the 

most potent decomposers of Pinus litter, but the worst in this study, whereas the most potent 

decomposer in the present study was Hormonema spp., while a member of the same genus, 

H.dematioides 

(Sydowia polyspora) barely caused any mass loss during 1 year on Pinus litter. 

Malt extract agar represents a complex substratum theoretically suitable for the comparison 

of enzyme production in fungi of different origin but different nutritional requirements. Our 

results, however, indicate that enzyme assays based on ME agar cultures might overlook the 

activity of some enzymes expressed on litter and other natural substrata - natural substrata 

are, therefore, more suitable for the characterization of decomposition abilities of 

saprotrophic fungi. Our study shows that there are no major differences among fungi from 

different stages of P.abies needle succession in terms of decomposition rates and enzyme 

production, including between basidiomycete and ascomycetes. However, more studies on 

natural substrata accompanied by fungal competition studies are required to understand the 

ecology of successive enzymatic decomposition of litter. 

 

Decomposition of organic matter by fungi, which begins in the needle litter, continues in the 

soil. Soil is a heterogeneous environment, which can be divided into soil horizons. Lindhal et 

al. (2007) and O'Brien et al. (2005) have already proved stratification of fungal OTUs across 

soil horizons. Fungal communities in studied Picea abies soil were diverse and vertically 

stratified due to different amount of organic matter, C and N content and decreasing nutrient 

availability with depth, creating two separated niches for fungi.  

I have examined the effect of soil horizons and seasons on the soil fungal community. Courty 

et al. (2008) and Walker et al. (2008) observed seasonal changes in composition of 
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ectomycorrhizal fungal community in oak forest, but the dominant taxa were present all the 

time. Buée et al. (2005) also showed seasonal changes in community composition and 

metabolic activity of ectomycorrhizal fungi. In boreal forest, high seasonal but low 

interannual variation was observed for total fungal community (Izzo et al. 2005, Taylor et al. 

2010).  

In metagenome of total fungal community from the spruce forest topsoil at a sampling depth 

of 700 for ITS yielded 94-177 OTUs per sample. Most fungal sequences recovered from the 

L horizon belonged to saprothrophic fungi and these from the H horizon were mostly 

mycorrhizal fungi. The L horizon exhibited higher evenness – 38 ± 17 OTUs were needed to 

cover 80% of fungal diversity comparing to 26 ± 15 OTUs in H horizon, but significantly 

more species were needed to cover 80% diversity in L horizon in winter when compared to H 

horizon or litter in summer. This is in agreement with Baldrian et al. (2012), who studied the 

same area in the Bohemian Forest Natural Park, where 18 ± 8 OTUs were needed to cover 

50% of diversity in L horizon and only 9 ± 3 OTUs in H horizon. Also in RNA community 

presented by Baldrian et al. (2012) was L horizon richer than H one. It seems that fungal 

community is more balanced in terms of species number in summer across horizons than in 

winter. The Chao1 estimates were significantly higher for the LW than in other samples. In 

Baldrian`s et al. (2012) paper, community Evenness varied across horizons in DNA and 

RNA from 0.7 to 0.8, which is in a good agreement with Evenness I had obtained. Fungal 

sequences from forest topsoil belonged mainly to Dikarya (49.2% Basidiomycota and 47.2% 

Ascomycota). Mucoromycotina were represented by 1.68% of the sequences, Glomeromycota 

by 1.08%, Chytridiomycota by 0.3%, Zoopagomycotina by 0.09%, Blastocladiomycota by 

0.05%, Entomophthoromycotina by 0.13%, Oomycetes 0.02%, Cryptomycota 0.01%, plants 

and animals sequences by 0.17% of ITS sequences.  

In this study significantly higher abundances in summer were recorded for genera: 

Amorphotheca, Cladophialophora, Sympodiella, Gymnopilus, Piloderma, Rhynchostoma and 

Lachnellula. On the other hand, Amanita, Cenococcum, Mortierella, Xenochalara, 

Xerocomus, Cadophora Verrucaria and Cryptococcus were more abundant in winter. The 

dominance of Cenococcum geophilum in winter has also been reported (Baier et al. 2006). 

Lindhal et al. (2007) found the fungi belonging to the Dothideomycetes in the ‘early’ fungal 

community, defined as the taxa occurring with a higher frequency in litter samples compared 

with older organic matter and mineral soil. In this study, there were only few members 

recorded from Dothideomycetes and two of them preferred L horizon: Botryosphaeria 

(0.18%) and Venturia (0.35%). In this study, the member of Dothideomycetes – Cenococcum 
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occured more frequently in the H horizon which would be rather typical for a ‘late’ fungus. 

This is in good compliance with the results of Courty et al. (2008), which isolated DNA from 

root tips of oak trees and found Cenococcum geophilum to occur in the A2 (organic) horizon. 

According to Baldrian et al. (2012) Botryosphaeriales, Lecanorales and Eurotiales were 

significantly more abundant in the L horizon. In this study, the order Lecanorales was 

represented by the lichenised fungus Cladonia occurring in the L horizon. Representatives of 

the Eurotiales order Elaphomyces and Penicillium were more frequent in the H horizon. 

Representatives of the order Chaetothyriales were found in the L horizon by Baldrian et al. 

(2012) and here the sequences from Amorphotheca were recovered from litter and these of 

Rhinocladiella from the organic horizon. The whole order showed higher abundance in the L 

horizon and in the summer.  

Lindhal et al. (2007) found in the ‘late’ fungal community taxa from within the Helotiales, 

but these were different taxa from the helotialean fungi detected in the surface litter. Baldrian 

et al. (2012) had found the members of the Helotiales in the H horizon which was confirmed 

in this study. Other Helotiales species were, however, more frequent in the litter and the 

members of the Helotiales representing the ‘early’ fungal community were also isolated from 

needles on fallen trees or litterbags: Phacidiopycnis sp., Chalara longipes, Cistella acuum, 

Ceuthospora pinastri. In agreement with Lindhal et al. (2007) I have found the genera 

Marasmius and Mycena mostly in the L horizon. According to Lindhal et al. (2007) the 

Mortierellomycotina and Mucoromycotina fungi (Mortierella and Umbelopsis spp.) also 

belong to the ‘late’ community. In this study, Mortierella (1.6%) and Umbelopsis spp. 

(0.033%) occured mostly in H horizon. In contrary to Lindhal`s et al. (2007) findings, 

Rhizoscyphus ericae, the most thoroughly studied ericoid mycorrhizal fungus, was more 

abundant in this study (0.25%) than other ericoid mycorrhizal fungus Capronia taxa 

(0.008%). Rhizoscyphus ericae did not show any significant dependence on any horizon 

maybe because Vaccinium myrtillus, which is most abundant ericoid plant in Šumava spruce 

forest, has shallow roots rooting in thin layer of organic horizon as well as in the litter 

horizon. Among fungi found in the ‘late’ fungal community, ectomycorrhizal basidiomycetes 

Amanita (1.2%), Elaphomyces (0.73%), Hygrophorus (2.3%), Piloderma(8.3%) Russula 

(3.4%), Tricholoma (4%) Xerocormus (1%) and Piloderma (8.3%) dominated with high 

frequencies in H horizon. Most of the ECM fungi including the genera Cortinarius, Laccaria, 

Amanita, Tricholoma, Hygrophorus, and Piloderma were confirmed from A1 = H horizon 

and Inocybe sp. from A2 horizon = mineral horizon in oak forest, when mycorrhizal root tips 

were examined (Courty et al. 2008). Piloderma was confirmed to be highly abundant species 
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in coniferous forests by several studies (Baldrian et al. 2012, Lindhal et al. 2007, Taylor 

2010) and together with ectomycorrhizal Tylospora were also the most abundant in the 

boreal Picea abies forests in Finland and Sweden (Korkama et al. 2006, Rosling et al.2003, 

Wallander et al.2010). Here Tylospora represented 3.7% of all sequences and did not show 

any significant trends in it occurrence. Piloderma was found to be indicator of the season. In 

this study, it showed higher abundance in summer (September), but according to Taylor et al. 

(2010) it should rather indicate spring (May) and winter (February). Cortinarius was showed 

to be abundant (Bueé et al. 2009) in H horizon (Lindhal et al. 2007, Taylor et al. 2010) and 

was significantly abundant in spring (Taylor et al. 2010). In this study Cortinarius (0.17%) 

had slightly higher abundance in the H horizon and was found in both seasons. The most 

abundant ectomycorrhizal basidiomycete - Nolanea (10% of all sequences) was significantly 

more abundant in the L horizon than H. This contradiction can be probably explained by 

shallow rooting of spruce trees. Saprotrophe Mycena was abundant in L horizon in O`Brien 

et al. (2005) study. In this thesis, Mycena (0.18%) was found mostly in L horizon and 

slightly more in the winter. Another abundant saprotrophic species found by classical ITS 

cloning channeled by O`Brien et al. (2005) was Cryptococcus found in litter. I have found 

the fungus (0.91%) in all horizons and seasons but it was significantly more abundant in HW. 

Russula showed strong association with H horizon (this study, Baldrian et al. 2012, Lindhal 

et al. 2007, O`Brien et al. 2005, Taylor et al. 2010). O`Brien et al. (2005) had recorded 

sequences of ECM fungi Tomentella, Tylospora, Hygrocybe from mineral horizon. I have 

found Tomentella (0.16%) exclusively in HW on one site; Tylospora (3.7%) in H horizon but 

also in LS with high abundance and saprotroph Hygrocybe (0.49%) in H horizon. Although 

Tylospora sp. is considered to be an ectomycorrhizal fungus it was highly abundant in L 

horizon sequenced by Baldrian et al. (2012).  

 

In terms of cellulolytic community, there were 51-97 clusters recorded when cbhI sequences 

were resampled at 267 per sample. L horizon was richer in OTUs and show more seasonal 

variance than H horizon. It seems that H horizon is more balanced in terms of species and 

seasonal impact on them. Evenness indicates that species were distributed evenly through the 

population of cellulolytic fungi and there were no extremely dominant species.  

From the 56 cbhI most abundant clusters included in the BioNj nucleotide tree, 53 clusters 

were assigned to phyla, of which 31 belonged to the Ascomycota and 22 to the 

Basidiomycota. Štrusová et al. (2012) observed that 94% of cbhI sequences in microcosms 

containing organic horizon from a similar environment belonged to the Ascomycota, while I 
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did not find any differences in the occurrence of Ascomycota clusters among soil horizons, 

but Basidiomycota were slightly more abundant in the L horizon.  

Among fungi isolated from spruce needles and whose cbhI sequence was cloned 

successfully, Hypocrea is a typical fast-growing non-basidiomycetous fungi that are able to 

efficiently degrade cellulose (Baldrian et al. 2011, Baldrian and Valášková 2008, Deacon et 

al. 2006, Štrusová et al. 2012). In the study of Štrusová et al. (2012) Geomyces belonged to 

the most abundant genera among fungi utilizing cellulose, but I was not able to clone any 

cbhI sequence from Geomyces panorum neither did I find any cbhI sequences similar to 

Geomyces in the environmental sequences. It is possible that Geomyces in Štrusová et al. 

(2012) study was just paraziting on other fungi, which were truly able to decompose 

cellulose and was feeding on simple sugars released into the microcosms. Alternatively, the 

fungus can use another enzyme for cellulose decomposition or contain an intron in the 

sequence of primers used for cbhI amplification. Basidiomycetous cord-formers represented 

mainly by the genera Marasmius and Mycena were found to decompose cellulose in Štrusová 

et al. (2012) and Baldrian et al. (2011). This study confirmed the presence of the cbhI gene in 

Mycena galopus but not in Marasmius androsaceus. Although the basidiomycetous yeast 

Cryptococcus was abundant in H horizon in the total fungal community (0.9%) its abundance 

in soil can reach as much as 1/3 of all sequences (Bueé et al. 2009).  

According to Štrusová et al. (2012) Russula emetica was an abundant species in litter 

microcosms but showed only low incorporation of cellulose-derived C. In a previous study, 

members of the Russulales have been found to be inactive during winter, considered to be the 

period of prevailing organic matter decomposition (Baldrian et al., 2012). I have identified 9 

cbhI OTUs clustering with Russula species. This finding can suggest that ectomycorhizzal 

fungi may be more capable to decompose litter than was originally thought and have highly 

abundant cellulolytic genes in the environmental DNA. Štrusová et al. (2012) showed that 

members of the Dothideales, Leotiomycetes, Tremellales and Chaetothyriales orders were 

also incorporating cellulose-derived carbon.  

Some of the fungi isolated from Picae abies needles where cellobiohydrolase activity was 

recorded and the cbhI gene was sequenced were also present in the total fungal community 

from the topsoil. One of these fungi was Mycena galopus, which was present mostly in the 

LW but also in the LS, less frequently also from the HS. Mycena is a saprotroph found in 

upper layers of soil - litter horizon (Frankland et al. 1995). Members of the genus Chalara 

was isolated from needles on fallen tree, litterbags and form soil. It was found mostly in from 

the LS and LW, but also in the HS. Chalara is a saprothrophic fungi and it was also isolated 
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from the litter in the same ecosystem. Thysanophora penicillioides was isolated from 

litterbags and was also present in the metagenomic DNA. Finding Thysanophora 

penicillioides in the organic horizon was unpredicted because this saprothrophic fungus was 

previously found mostly in the litter (Iwamoto et al. 2005). Fungi Sirococcus conigenus 

(isolated from the needles of a fallen tree in a similar ecosystem), Hormonema dematioides 

(litterbags), Ceuthospora pinastri (litterbags), Cylidrocarpon magnusianum (needles on 

fallen tree and litterbags), Phacidiopycnis sp.(needles on fallen tree), Trichoderma 

pleuroticola (litterbags) were not recorded from the soil by 454-pyrosequencing. Cistella 

acuum was found on needles on fallen tree and litterbags and also in the soil in the litter by 

pyrosequencing. Marasmius was found in the litter horizon on Picea abies needles and also 

detected in the litter by pyrosequencing. Fomitopsis pinicola and Peniophora sp. were 

isolated from needles on fallen tree but were not found in the topsoil DNA, which is 

understandable due to the fact that they are ligninolytic wood-decomposing fungi. Some 

fungal strains from which cbhI gene was cloned were found in metagenome of total fungal 

community: Russula, Cadophora, Phialophora, Leptodontium, Oidiodendron and Mucor. In 

this study, Russula ochroleuca was found in H horizon but also in L horizon, which is 

surprising because it is an ectomycorrhizal fungus occurring mostly in an organic horizon 

(Courty et al. 2008). A parasitic fungus Cadophora malorum was found in H horizon, which 

is in discrepancy with its ecology but Cadophora finlandica found in both horizons, can form 

ERM with ericoid hosts and ECM with ectomycorrhizal hosts (Vrålstad et al. 2002). Fungi 

isolated from litterbags or litter horizon were recorded by 454-pyrosequencing also from the 

litter horizon. 

Multiple isoforms of the cbhI gene were identified in fungal isolates. Ascomycota and  

Basidiomycota possess more than one gen isoform, suggesting that they may play bigger role 

in cellulose decomposition than originally thought. We can only argue whether different 

isoforms have different functions. The exocellulase activity in the studied fungi was 

confirmed by enzymatic tests. We may guess that some of these isoforms, if they are 

functional, would act differently in cellulose decomposition. Until now, there is only one 

record on differences among isolated CBHI enzyme isoforms. Medve et al. (1998) showed 

that the isoenzymes of Trichoderma reesei had different isoelectric points (pI) but their 

catalytic and substrate-binding properties were similar. I have shown that CbhI isoenzymes 

are probably orthologs, but also horizontal transfer might theoretically take place resulting in 

different placing of cbhI isoforms of the same fungus in a phylogenetic tree and its similarity 

to the genes of unrelated taxa. We do not know whether CbhI enzymes have the same or 

http://d360prx.biomed.cas.cz:2082/science/article/pii/S0953756209001828#bib71
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different function just based on their partial sequence, but cbhI genes in constructed 

phylogenetic trees isolated from basidiomycota were clustering with basidiomycota and from 

ascomycota with ascomycota, thus seems to be conserved amongst phyla. 

 

The assessment of diversity by molecular methods presents several experimental and 

informatics hitches that introduce uncertainties into diversity estimation (Huse et al. 2007, 

Kunin et al. 2010, Quince et al. 2009) and which are further complicated by the huge amount 

of unknown fungal taxa likely to be found in soils (Buée et al. 2009, Schmit and Mueller 

2007). From an experimental point of view, PCR and sequencing errors, as well as alignment 

and clustering methods based on approximate algorithms, may create artificial OTUs which 

may inflate the diversity estimation (Huse et al. 2007 and 2010, Kunin et al. 2010, Quince et 

al. 2009). In this study, 62% of PlutoF ITS hits were assigned sufficiently, meaning that 

OTU had at least 80% similarity with hit and was aligned at least on 70% of its length. The 

question remains about the OTUs showing lower similarity to known taxa that may represent 

so far unknown species or genera. For these fungi, further efforts should be oriented towards 

isolation and characterization of their traits.  

 

7. Conclusion 
 

Fungi from different decomposition stages from spruce needles were isolated into pure 

cultures. This collection of fungi represents different succession stages of fungal community 

on Picea abies needles. I supposed that if different species were present on the litter material 

in different time of succession they would possess different enzymatic equipment for litter 

degradation. Although species from different succession stages differ in ecology, they did not 

differ significantly in production of enzymes, either their quality or quantity. To verify ability 

of isolated fungi to decompose cellulose – the main component of spruce needles, cbhI genes 

were amplified and cloned. The cbhI gene as cellulolytic proxy were also cloned from 

species of fungal collection and from sporocarps previously showed to be able to degradate 

cellulose (Štrusová et al. 2012). The analysis of the cbhI genes of fungal isolates obtained in 

this study confirmed the previous findings of Edwards et al. (2008) that most fungal species 

contain more than one gene (typically 2-3) and that these are very often highly dissimilar. 

The most of isolated fungi from spruce litter were Ascomycota and proved to be particularly 
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important for cellulose hydrolysis and that the fungi involved in cellulose decomposition 

contain the cbhI gene.  

To follow the succession in later stages of decomposition, analysis of fungal community in 

litter and organic horizons of the soil were examined by 454-pyrosequencing. Previous 

studies of Baldrian et al. (2012), Bueé et al. (2009),  Izzo et al. (2004), Lindhal et al. (2007), 

O`Brien et al. (2005), Taylor et al. (2010) indicate horizontal distribution of fungal 

communities in the soil. Total fungal community was examined with ITS1 and ITS4 primer. 

From 11866 sequences were constructed 1267 clusters and identified 275 species. Among the 

61 most abundant genera recovered, 73% showed clear preference for one soil horizon and 

37% exhibited differences in abundance among the summer and winter. From 26 

saprotrophic fungi 11 were more frequent in the L horizon and 7 in the H horizon, while from 

the 22 mycorrhizal fungi 12 were more frequent in the H horizon and only 3 in the L horizon. 

Generally, mycorrhizal fungi were found mostly in the H horizon and saprotrophic, parasitic 

or lichenised fungi in the L horizon. Studies of Buée et al. (2005), Courty et al. (2008), Izzo 

et al. (2005), Taylor et al. (2010) and Walker et al. (2008) proved seasonal differences 

between fungal communities. I supposed that mycorrhizal fungi should have higher biomass 

in summer season when they have enough root exudates from the photosynthesizing trees. 

Saprotrophic fungi should then outcompete the mycorhizzal fungi in the upper layers of soil 

in winter due to the better enzymatic equipment for litter decomposition and the reduction of 

nutrient availability in the mycorhizzal fungi. Contrary to the expectation, six mycorrhizal 

fungi were found to be more abundant in winter and only one in summer, while six 

saprotrophic fungi were dominant in summer and 7 in winter. The higher preference for 

winter can be due to the stable temperature and water content during the winter when snow 

layer is present (the temperature of soil is >0°C under the snow cover). The cbhI gene was 

demonstrated to be present in ectomycorrhizal fungi, so it is possible that in times of low 

nutrient support from trees ECM fungi can partially switch to saprotrophic way of life. 

Fungal community was also explored in terms of functional cbhI gene as proxy representing 

cellulolytic community. Cellulolytic community should respond flexibly to changes in 

cellulose availability during the year and in different soil horizons representing very different 

environments when comes to nutrient availability. Although cloned cbhI genes from isolated 

fungi helped a lot, identification of cellulolytic OTUs was demanding because of the limited 

amount of sequences present in the public databases. Like total fungal community, there 

were OTUs significantly dependent on some horizon or season and resilient part of 

community. From 56 clusters involved into analyses, 62% of cbhI OTUs depend on some 
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soil horizon and 21% on some season. Of 31 Ascomycota 6 OTUs were dependent on LS, 

one on LW, 2 on HW, 10 on H horizon without seasonal influence and 6 only on L horizon. 

From 22 identified Basidiomycota 2 were significantly dependent on HW, 2 on H and 7 on L 

horizon only. Unidentified cluster 4 was positively influenced by HW. CbhI community 

seems to be more stable trough the year and not so much affected by soil horizons as the total 

fungal community.  

The analyses of environmental samples were strongly influenced by differences of fungal 

community composition among sampling sites. This is an important finding for the future 

research showing that ecosystems must be described by analyzing many independent 

samples. The influence of environmental factors on fungal communities – in particular the 

seasonality – is expectable for the active part of the community, which can be analyzed as a 

pool of RNA or the metatranscriptome. Since cbhI is only one of multiple genes involved in 

ligno-cellulose decomposition, more genes have to be included into future analyses to 

describe the complexity of cellulolytic communities. One of recently reviewed enzyme - 

polysaccharide monooxygenase, seems to have great potential in decomposition of ligno-

cellulose also of other organic compounds (Žifčákova and Baldrian 2012).These analyses are 

planned in my future research. 

 

8. Buffers and solutions 
 

Buffers and solutions used for enzyme assays: 

100 mM succinate-lactate buffer, pH 4.5: 

100 ml deionised H2O 

1.64 g DL-lactic acid, sodium salt 60% 

0.146 g succinic acid 

 

100 mM citrate – 200 mM phosphate buffer, pH 5: 

100 ml deionised H2O 

3.56 g Na2HPO4.2H2O 

2.1 g citric acid, monohydrate 

 

100 mM phosphate buffer, pH=6.5 (for DMAB dissolution): 

100 ml deionised H2O 
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0.95 g KH2PO4 

0.54 g Na2HPO4.2H2O 

 

50 mM Acetate buffer,pH 5: 

1000 ml distilled H2O 

900 μl acetic acid 

2.78 g sodium acetate 

 

0.08% (w/v) ABTS 

25 mM DMAB 

1 mM MBTH 

2 mM MnSO4 

5 mM H2O2 

2 mM EDTA 

 

ZYM A  

25 g Tris-hydroxymethyl-aminomethane  

11 ml 37 % HCl  

10 g sodium lauryl sulfate 

100 ml H2O 

 

ZYM B  

0.12 g Fast Blue BB 

50 ml methanol  

50 ml dimethyl sulfoxide 

 

Azo-CM cellulose: 

40 ml H2O heated to 85-90ºC 

5 ml deionised H2O 

5 ml 2 M acetate buffer pH 5 

1 g Azo-CM-cellulose 

0.02 g sodium azide 

Azo-CM-cellulose and hot water was mixed 15 min before adding the rest of chemicals. 
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Azo-Xylan : 

Azo-Xylan (1% w/v final concentration) was dissolved in 11.428 ml acetic acid and 

mixed with 800 ml of deionised water.pH was adjusted to 4.5 with HCl. Than 200 ml of 

water was added. 

 

Precipitant: 

40 ml deionised H2O 

10 g sodium acetate x 3 H2O 

1 g zinc acetate 

pH 5 was achieved by adding HCl and the volume was complete to 50 ml. Then 200 ml of 

95% ethanol was added to the final solution. 

 

Enzymes stated below, were measured by following procedures:  

Laccase (EC 1.10.3.2) 

In a 96-well microplate were mixed: 

150 μl  citrate-phosphate buffer, pH 5 

50 μl  sample 

50 μl  ABTS solution 

We observed the spectrophotometric change of absorbance at 420 nm for 3 minutes in 30 s 

intervals and than for 12 minutes in 2 minutes intervals (Šnajdr et al. 2008). 

 

 Mn-peroxidase (EC 1.11.1.13) 

In a 96-well microplate were mixed: 

200 μl  AR or AP or AB 

50 μl  sample 

AR, AP and AB consist of: 

AB: succinate-lactate buffer, DMAB, MBTH, EDTA, water (15:2:1:1:1 vol/vol) 

AP: succinate-lactate buffer, DMAB, MBTH, EDTA and H2O2 (15:2:1:1:1 vol/vol) 

AR: succinate-lactate buffer, DMAB, MBTH, MnSO4 and H2O2 (15:2:1:1:1 vol/vol) 

We examined the spectrophotometric change of absorbance at 590 nm (Ngo and Lenhoff 

1980) for 3 minutes in 30 s intervals and than for 12 minutes in 2 minutes intervals (Šnajdr et 

al. 2008). The activity of all oxidases is defined by the measurement of sample with the AB 

solution. The activity of peroxidases, without MnP, is defined by the measurement of sample 

with the AP solution minus measured activity of the AB solution. The activity of MnP is 
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defined by the measurement of sample with the AR solution minus measured activity of the 

AP solution. EDTA in the AP and the AB solutions replaced MnSO4 to chelate any Mn ions 

present in the measured solution. 

 

Endo-1,4-β-glucanase (EC 3.2.1.4) 

The test substrate supplier protocol was followed (Megazyme, Ireland).150 μl of a sample (as 

a blank was used distilled water) was mixed with 150 μl Azo-CM cellulose, the chromogenic 

substrate. The mixture was vortexed and incubated for 120 minutes at 40ºC. Then 750 μl of 

ethanol-based precipitant was added. An eppendorf tube with mixture was vortexed 10 s and 

centrifugated 10 min at 10000 x g. The absorbance of supernatant was measured at 595 nm in 

a spectrofotometr (Šnajdr et al. 2008). 

 

Endo-1,4- β -xylanase (EC 3.2.1.8) 

The protocol is identical with the endoglucanase protocol, but like a chromogenic substrate 

was used Azo-xylan. 

 

Measuring of enzymes using MUF and AMC as substrates:  

In a 96-well microplate were mixed: 

160 μl  substrate 

40 μl  sample 

 

Chromogenic substrates for fluorescently measured enzymes: 

1,4-β-N-acetylglucosaminidase (EC 3.2.1.52) 1.2 mM p-nitrophenyl-N-acetyl-β-D-

glucosaminide 

cellobiohydrolyse (EC 3.2.1.91)  1.2 mM p-nitrophenyl-β-D-cellobioside  

1,4-β-glucosidase (EC 3.2.1.21)  1.2 mM pnitrophenyl-β-D-glucoside  

1,4-β-xylosidase (EC 3.2.1.37)  1.2 mM p-nitrophenyl-β-D-xyloside  

arylsulfatase  (EC 3.1.6.1)  4 mM p-nitrophenylsulfate  

acid phosphatase (EC 3.1.3.1) 2 g / l p-nitrophenylphosphate  

leucine aminopeptidase (EC 3.4.11.1) L-leucine-7-AMC 

alanine aminopeptidase (EC 3.4.11.2) L-alanine-7-AMC 

 

8.1 Special chemicals 

http://en.wikipedia.org/wiki/Enzyme_Commission_number
http://enzyme.expasy.org/EC/3.4.11.2
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ABTS Sigma 

AC-Axo-CM cellulose M e gazyme 

AC-Axo-Xylan M e g azyme 

Agarose United States Biochemical 

BSA New England Biolabs 

10x buffer for DyNAzyme DNA Polymeraze Finnzymes 

Citric acid Sigma 

CloneJETTM PCR Cloning Kit Fermentas 

CTAB Serva 

Cyclohexane Chromservis 

DL-lactic acid, sodium salt Sigma 

DMAB Sigma 

6X DNA Loading Dye Fermentas 

DyNAzyme II DNA polymerase Finnzymes 

EDTA Amersham 

Ethidium bromide Fluka 

Formamide Serva 

Glass beads 0.5 mm and 0.1mm Biospec products Inc 

HEPES Serva 

Isoamyl alcohol Sigma 

Isopropanol Sigma 

MBTH Sigma 

Methanol Sigma 

Mini Elute Purification Quiagen 

O'GeneRuler™ 100 bp Plus DNA Ladder, ready-to-use Fermentas 

PCR Nucleotide Mix Roche 

Phenol for molecular biology Serva 

pJET2.1forward Generi Biotech 

pJET2.1reverse Generi Biotech 

p-nitrophenyl-N-acetyl-β-D-glucosaminide S i g m a 

p-nitrophenyl phosphate S i g m a 

p-nitrophenyl sulfate S i g m a 

p-nitrophenyl-β-D-cellobioside S i g m a 
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p-nitrophenyl-β-D-glucoside S i g m a 

p-nitrophenyl-β-D-glucoside S i g m a 

Primer ITS1F Generi Biotech 

Primer ITS4 Generi Biotech 

Primer ITS4B Generi Biotech 

Tris (2-Amino-2-hydroxymethyl-propane-1,3-diol) S i g m a 

Wizard SV Gel and PCR Clean Up System Promega 
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