
Charles University in Prague 

Faculty of Mathematics and Physics 

 

 

 

 

 

 

 

DOCTORAL THESIS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pavel Ježek 

 

Hierarchical Component Models – “A True Story” 

 

 

 
Department of Distributed and Dependable Systems 

Advisor: Prof. František Plášil 

 

Study program: Computer Science 

Specialization: Software Systems (4I2) 

 

Prague 2012 
  



2 

  



3 

Acknowledgments 

I would like to thank all those who supported me in my doctoral study and the work 

on my thesis. I very appreciate the help and counseling received from my advisor 

prof. František Plášil. For guidance during preparation of this thesis I thank Petr 

Hnětynka and Tomáš Bureš. For the various help they provided me, I also thank my 

colleagues, a particular thank goes to Ondřej Šerý, Tomáš Poch, Michal Malohlava 

and Jan Kofroň. I would also like to thank doc. Antonín Kučera, doc. Petr Tůma and 

Petra Novotná for their support in my doctoral study. 

My thanks also go to the institutions and companies that provided financial support 

for my research work. Through my doctoral study, my work was partially supported 

by the Grant Agency of the Czech Republic projects 102/03/0672, GD201/05/H014, 

and P202/11/0312, Czech Academy of Sciences project 1ET400300504, 

ITEA/EUREKA project OSIRIS ∑!2023, Charles University institutional funding 

SVV-2011-263312, Q-ImPrESS research project by the European Union under the 

ICT priority of the 7th Research Framework Programme, EU project ASCENS 

257414, Ministry of Education of the Czech Republic grant MSM0021620838 and 

France Telecom under the external research contract number 46127110. 

Last but not least, I am in debt to my parents and grandparents, whose support and 

patience made this work possible. 

  



4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I declare that I carried out this doctoral thesis independently, and only with the cited 

sources, literature and other professional sources. 

 

I understand that my work relates to the rights and obligations under the Act 

No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that the 

Charles University in Prague has the right to conclude a license agreement on the use 

of this work as a school work pursuant to Section 60 paragraph 1 of the Copyright 

Act. 

 

In Prague, June 7
th

, 2012 Pavel Ježek  



5 

Abstract 

Title: Hierarchical Component Models – “A True Story” 

Author:  Pavel Ježek 

 Email: jezek@d3s.mff.cuni.cz 

 Phone: +420 2 2191 4235 

Department:  Department of Distributed and Dependable Systems 

 Faculty of Mathematics and Physics 

 Charles University in Prague, Czech Republic 

Advisor:  Prof. František Plášil 

 Email: plasil@d3s.mff.cuni.cz 

 Phone: +420 2 2191 4266 

Mailing address (both Author and Advisor): 

 Department of Distributed and Dependable Systems 

 Charles University in Prague 

 Malostranské náměstí 25 

 118 00 Prague, Czech Republic 

WWW:  http://d3s.mff.cuni.cz 

This thesis:  http://d3s.mff.cuni.cz/~jezek/DoctoralThesis/ 

 

 

 

Abstract 

First, this thesis presents an analysis of diversity of component-based software 

engineering (CBSE) concepts and approaches, and provides a summary of 

selected runtime-aware component models structured according to newly 

proposed criteria. As a result of the analysis, hierarchical component models 

are identified as a CBSE domain still not sufficiently explored in the current 

research with respect to their lacking penetration into regular industrial use. 

The major part of the thesis consequently almost exclusively focuses on 

problems related to application of hierarchical component models to real-life 

applications development. 

The motivations for hierarchical structuring of application architectures are 

presented in the thesis and key advantages of hierarchical component models 

are thoroughly discussed and shown on examples from commercial software 

development. To verify the claims, two major case-studies are presented in the 

thesis and the Fractal component model is successfully applied to model and 

implement them focusing on formal verifiability of correctness of resulting 

component-based applications. The thesis proposes novel approaches to model 

dynamic architectures changing at runtime, to deal with complex error traces 

and a novel specification language for component environments, all resulting 

from our evaluation of the case-studies. 

Keywords: hierarchical component models, formal behavioral specification, case-

study, dynamic architectures, error traces, specification language 

  



6 

Abstract in Czech 

Název práce: Hierarchické komponentové modely – „pravdivý příběh“ 

Autor:  Pavel Ježek 

 email: jezek@d3s.mff.cuni.cz 

 telefon: +420 2 2191 4235 

Katedra:  Katedra distribuovaných a spolehlivých systémů 

 Matematicko-fyzikální fakulta 

 Univerzita Karlova v Praze, Česká republika 

Vedoucí doktorské práce:  prof. František Plášil 

 email: plasil@d3s.mff.cuni.cz 

 telefon: +420 2 2191 4266 

Poštovní adresa (na autora i vedoucího práce): 

 Katedra distribuovaných a spolehlivých systémů 

 Univerzita Karlova v Praze 

 Malostranské náměstí 25 

 118 00 Praha 1, Česká republika 

WWW:  http://d3s.mff.cuni.cz 

Tato práce:  http://d3s.mff.cuni.cz/~jezek/DoctoralThesis/ 

 

 

 

Abstrakt 

Práce se nejprve zabývá analýzou širokého spektra konceptů a přístupů ke 

komponentově orientovanému návrhu software a předkládá přehled vybraných 

komponentových modelů s běhovým prostředím strukturovaný podle nově 

navržených kritérií. Hierarchické komponentové modely jsou identifikovány 

jako jeden z přístupů, který ještě není dostatečně prozkoumán, vzhledem 

k jejich minimálnímu proniknutí do světa průmyslových aplikací. Zbytek práce 

se pak téměř výhradně věnuje problémům spojeným s nasazením 

hierarchických komponentových modelů v reálném vývoji softwarových 

aplikací. 

Práce představuje motivace vedoucí k nutnosti hierarchického strukturování 

aplikačních architektur a dále na příkladech z komerční sféry uvádí hlavní 

výhody vývoje aplikací pomocí hierarchických komponentových modelů. Jako 

důkaz jsou předvedeny dvě případové studie, které jsou úspěšně vymodelované 

a implementované pro komponentový model Fractal – práce se zaměřuje 

hlavně na formální ověřitelnost správnosti takto vytvořených aplikací. Na 

základě zkušeností z případových studií jsou v práci též předloženy návrhy 

nového přístupu pro modelování dynamických architektur, identifikování chyb 

v chybových výstupech a specifikační jazyk pro modelování okolí komponent. 

Klíčová slova: hierarchické komponentové modely, formální specifikace chování, 

případová studie, dynamické architektury, chybové výstupy, 

specifikační jazyk 



7 

Contents 

Acknowledgments ........................................................................................................ 3 
Abstract ........................................................................................................................ 5 
Contents ....................................................................................................................... 7 
Chapter 1 Introduction ............................................................................................ 10 

1.1 Basic CBSE Concepts ................................................................................ 11 

1.2 Problem Statement ..................................................................................... 15 
1.3 Goals and Structure of the Thesis .............................................................. 18 
1.4 Contributions and Publications .................................................................. 19 

1.5 Note on Conventions Used......................................................................... 20 
Chapter 2 Quest for an Ideal Component Model .................................................... 22 

2.1 Different Views on Basic Concepts ........................................................... 22 
2.1.1 Issues with Szyperski’s Definition .......................................................... 22 
2.1.2 Issues with Heineman and Councill’s Definition .................................... 25 

2.1.3 Issues with Categorizing Component Models ......................................... 27 

2.2 Conceptual Evolution of “Component” ..................................................... 30 
2.2.1 Component = Class and Beyond ............................................................. 30 

2.2.2 Component as a UI Building Block ........................................................ 31 
2.2.3 Component as a Unit of Deployment and Versioning ............................ 31 

2.2.4 Component as a Service .......................................................................... 33 
2.2.5 Component as a Unit of Dependency Injection ...................................... 35 

2.2.6 Nested Components Not by Accident ..................................................... 36 
2.2.7 The Summary .......................................................................................... 37 

2.3 A Guide to Component Models Overview................................................. 38 

2.3.1 A: Role of Component ............................................................................ 40 
2.3.2 B: Underlying Platform ........................................................................... 41 

2.3.3 C: Definition of Component Concept ..................................................... 41 
2.3.4 D: Unit of Code Deployment .................................................................. 41 
2.3.5 E: Support for Explicit Provisions .......................................................... 41 

2.3.6 F: Support for Explicit Requirements ..................................................... 42 
2.3.7 G: Runtime’s Knowledge of Component Nesting .................................. 43 

2.4 Component models overview ..................................................................... 46 

2.5 Lessons Learnt from Analyzing the Selected Component Models ............ 50 
2.6 Problem Statement Revisited ..................................................................... 51 
2.7 Revised Goals of the Thesis ....................................................................... 53 

Chapter 3 Hierarchical Component Models Coming to Rescue –  

Identifying Benefits and Key Problems ................................................. 54 

3.1 Target Domain of Hierarchical Component Models .................................. 54 
3.1.1 Hierarchical Component Models from Program Correctness 

Verification Perspective .......................................................................... 54 

3.1.2 Hierarchical vs. Flat Component Architectures at Runtime –  

A General View ....................................................................................... 56 
3.1.3 Importance of Hierarchical Runtime Architectures 

in Industrial Scenarios ............................................................................. 58 



8 

3.1.4 Putting All Together –  

Formal Behavior Specification as an Advantage .................................... 61 
3.1.5 Summary of Hierarchical Component Models’ Desired Properties ........ 63 

3.2 Guide to Published Results – Proposed Solution Explained ...................... 63 

3.2.1 Behavior Protocols and Verification of Software Model Correctness 

(Chapter 4) ............................................................................................... 64 
3.2.2 CRE Case-study – Enhancing the Fractal Tool-chain with Correctness 

Verification Techniques (Chapter 5) ....................................................... 65 
3.2.3 CoCoME Case-study –  

Comparing Our Approach to Others (Chapter 6) .................................... 67 
3.2.4 Case-studies Experience and Open Problems ......................................... 68 

3.2.5 Capturing Application Dynamism  

in Design and Runtime Architectures –  

A Fine-grained Entities Approach (Chapter 7) ....................................... 69 
3.2.6 Modeling Components’ Environment – Windows Kernel Driver 

Developer’s Perspective (Chapter 8) ....................................................... 70 

3.2.7 Further Focus of the Thesis ..................................................................... 71 
Chapter 4 Background: Behavioral specification ................................................... 72 

4.1 Introduction to Behavior Protocols ............................................................ 72 
4.1.1 Events and Traces .................................................................................... 74 

4.1.2 Behavior Protocol Basic Operators ......................................................... 75 
4.1.3 Frame and Architecture Protocols ........................................................... 75 

4.2 Static Verification of Behavior Protocols .................................................. 77 
4.2.1 Protocol Compliance ............................................................................... 77 

4.2.2 Composition Errors ................................................................................. 78 
4.2.3 Incomplete Bindings ................................................................................ 79 

4.3 Runtime Verification of Behavior Protocols .............................................. 79 

4.4 Code Analysis ............................................................................................ 80 
Chapter 5 CRE Case-study ..................................................................................... 82 

5.1 The Case-study ........................................................................................... 82 
5.1.1 Demo Behavior ........................................................................................ 83 
5.1.2 DhcpServer Component Description and Behavior ................................ 89 

5.2 BPC and Fractal Integration ....................................................................... 91 

5.2.1 Interceptors .............................................................................................. 91 

5.2.2 Checker for Code Analysis ...................................................................... 92 
5.3 Modeling the CRE Demo ........................................................................... 93 

5.3.1 Token Component Dynamism ................................................................. 93 
5.3.2 Enhancing the Behavior Protocols .......................................................... 94 
5.3.3 Expressing Synchronization .................................................................... 96 

5.4 Dealing with Complex Error Traces .......................................................... 99 
5.4.1 Example: A Fragment of the Test Bed Application ................................ 99 

5.4.2 Checking for Composition Errors and Compliance .............................. 102 
5.4.3 Approaches to Error Trace Analysis and Interpretation ........................ 103 
5.4.4 Evaluation .............................................................................................. 105 
5.4.5 Conclusion and Future Work ................................................................ 106 

Chapter 6 CoCoME Case-study ............................................................................ 108 
6.1 Modeling the CoCoME in Fractal ............................................................ 108 

6.1.1 Static View ............................................................................................ 108 

6.1.2 Behavioral View – Modeling CoCoME in General .............................. 110 
6.1.3 Behavioral View – Specification of Selected Components ................... 112 



9 

6.1.4 Deployment View ................................................................................. 115 
6.1.5 Implementation View ............................................................................ 116 

6.2 Tools and Results of Verification ............................................................ 117 
Chapter 7  Entities – Addressing Dynamism ........................................................ 120 

7.1 Goals ........................................................................................................ 121 
7.2 Capturing Dynamic Entities in Architecture ............................................ 122 

7.2.1 Solution B: Entities as Separate Components ....................................... 122 
7.2.2 Solution C: Entities as Separate Interfaces ........................................... 123 
7.2.3 Requirements ......................................................................................... 123 

7.3 Runtime vs. Design Architecture ............................................................. 124 
7.4 Entity Based Reconfiguration Actions ..................................................... 126 

7.4.1 Entity References .................................................................................. 128 
7.4.2 Basic Reconfiguration Actions.............................................................. 129 
7.4.3 Examples of Basic Reconfiguration Actions ........................................ 130 
7.4.4 Reconfiguration Actions for Dynamic Components ............................. 132 
7.4.5 Conclusion ............................................................................................. 133 

7.5 Evaluation – Enhancing the CRE Case-study Model .............................. 134 
7.5.1 Basic Architecture with Entities ............................................................ 136 
7.5.2 Enhanced Architecture with Entities ..................................................... 138 
7.5.3 Summary ............................................................................................... 140 

Chapter 8 Modeling Environment using DeSpec ................................................. 141 
8.1 Model Checking ....................................................................................... 141 

8.2 Verification of Windows Drivers’ Correctness........................................ 142 
8.3 Windows Kernel Environment ................................................................. 144 

8.4 Driver Environment Specification Language........................................... 144 
8.4.1 Structure of Specifications .................................................................... 145 
8.4.2 DeSpec Driven Model Extraction ......................................................... 151 

8.5 Conclusion and Future Work ................................................................... 152 
Chapter 9 Related Work ....................................................................................... 153 

9.1 Error Traces .............................................................................................. 153 
9.2 Entities ..................................................................................................... 154 

9.2.1 Component Models with Support for Data Modeling ........................... 154 

9.2.2 Behavior Specification and Verification ............................................... 155 

9.2.3 Dynamic Reconfiguration of Architecture ............................................ 155 

9.3 DeSpec ..................................................................................................... 156 
Chapter 10 Conclusion ....................................................................................... 157 

10.1 Summary of Contribution ........................................................................ 157 
10.2 Future Work – Key Open Problems and Research Ideas ......................... 158 

References ................................................................................................................ 160 
Appendix A Original Architecture of the CRE Case-study Demo ....................... 170 
 



10 

Chapter 1  

Introduction 

Software engineering is a very wide discipline of computer science covering many 

aspects of today’s applications’ development. As research always tries to move 

forward frontiers of the state-of-the-art in its target domain, it is only natural to 

analyze current trends in software engineering in order to come with a viable topic, 

where some enhancements can be done. By looking at popular technology 

assessment whitepapers (e.g. last year’s release of ThoughtWorks Technology Radar 

[168]), one can conclude that currently the most important topics are service oriented 

architectures (SOA), cloud computing or concurrent programming ([168] mentioning 

“service choreography”, “WS-*”, “WCF-HTTP” implying SOA; “Azure”, “vFabric” 

implying cloud computing; “concurrency abstractions and patterns”, “C# 4.0”, 

“Clojure” implying concurrency). General focus on these technologies or technology 

directions is understandable, as a boom of publicly available services, cloud systems, 

and multi-processor systems (multicore systems) is easily observable in current 

market. Increasing penetration of these technologies leads to natural demand for 

better software engineering techniques to enable more efficient and less expensive 

development of software applications for customers using current computer systems. 

In the light of these observations it might seem that topics very popular in past, like 

component-based software engineering (CBSE), are either widely used without any 

further problems emerging or at least well understood, but not useful anymore and 

superseded by more modern development techniques. Such conclusions would be 

however wrong and can be easily refuted: (1) reading several recent volumes of the 

CBSE conference proceedings (the most narrowly specialized conference/workshop 

on component-based software engineering) shows the number of accepted papers 

decreased a bit over the years (25 full papers in 2004, 23 full papers in 2005, 23 full 

and 9 short papers in 2006; and 16 full papers in 2009, 14 full papers in 2010, 17 full 

and 6 short papers in 2011), but there are still many open problems in the domain of 

programming with software components and there is still a reasonable amount of 

papers shifting the state-of-the-art frontier in the field; (2) an ongoing 

acknowledgement of the benefits of component-based software engineering by 

developers’ community and the currently increasing penetration of component 

systems into major platforms – to give at least two examples: (a) an increasing role 

of OSGi component platform [139] in the Java world (Equinox [66], an OSGi 

platform implementation, being a basis of the Eclipse IDE [62] – currently a de-facto 

standard for building Java based tools; acknowledgement of the OSGi importance by 

Oracle/Sun company itself, incorporating it into the NetBeans IDE [136][135] in 

2010, and OSGi probably being the platform of choice as an application packaging 

and deployment framework for upcoming releases of the Java platform), (b) the 

Managed Extensibility Framework (MEF) component system [112] being one of the 

key new features in the .NET framework 4.0 released in 2010, and  reimplementation 



11 

of Visual Studio module system using the MEF as a basic composition platform in its 

2010 release (with a little simplification and extension of the notion of C# 4.0 – 

being mentioned in the ThoughtWorks Technology Radar [168] – to the whole .NET 

4.0 platform, the CBSE can be in fact identified as one of the techniques proposed to 

be currently adopted). 

As shown in the previous paragraph CBSE is becoming an important paradigm in 

current software engineering, and is still a live research area with its open problems. 

Surprisingly one of the key problems in the CBSE domain are the foundations of the 

CBSE itself – the software components – more precisely a definition of what a 

component does and how having a system decomposed into components helps with 

the system development and future maintenance. Every component framework (a 

software framework allowing application development taking a special advantage of 

a specialized concept of a unit of code – a component) defines its notion of a 

component that fits the whole framework and other concepts defined in its context. A 

definition of a component as understood by a particular component framework is 

often very specialized and component definitions of different component frameworks 

have often a very different set of requirements on and services provided by a 

software component. This makes the term “component” or “software component” 

one of the most overridden terms in the whole software engineering domain. Authors 

of many component frameworks are probably aware of this problem as many 

frameworks come with their own name for a software component (see a “bean” in 

JavaBeans [94], or a “part” in MEF [112]). 

In order to be able to state the basic goals of this thesis, rest of this section presents 

an example showing differences in understanding of basic concepts of CBSE by 

different component frameworks. Another purpose of the following text is also to 

show a few basic advantages of how incorporating the ways of CBSE design can 

help software developers to produce better maintainable applications. 

1.1 Basic CBSE Concepts 

A typical user of modern commercial component frameworks is a mainstream 

developer implementing his or hers applications in an object oriented (OO) 

programming language. As further elaborated in Section 2.5, in fact most of the 

component frameworks (either commercial or academic) try to position themselves 

against the basic paradigms of object oriented programming (OOP) – i.e. a typical 

goal of a component framework or component modeling platform is to introduce 

several new concepts (at least a concept of a component) enhancing the chosen target 

OO programming language (or set of such languages) or platform. In order to present 

the CBSE concepts, it is then only natural to begin an example with a snippet of 

program written in a classic OO language without any CBSE concepts present at first 

(let's assume a declaration of the following class written in the C# programming 

language): 

public class Debug { 

 public static void Print(string message) { 

  ... 

 } 

} 

 

C# 



12 

The intent of this class is to provide a basis for a library implementing logging 

services for other applications (similar to the capabilities of the .NET's standard 

System.Diagnostics.Debug class). Just a reminder, in C# public methods are 

accessible by any code outside of the declaring class, static methods are methods 

of the class (and not of an instance) and can be used without a possession of a valid 

instance. To implement the Print method a backing store to save the logged 

messages is needed - a simple call to standard System.Console.WriteLine might 

seem sufficient. However using this simple approach is not very well suited for a 

library class implementation, as the potential users of the library will probably like to 

use it in a very wide spectrum of cases, e.g.: (a) implementing a GUI (Graphical User 

Interface) application that lacks any standard output capability, thus anything written 

using Console.WriteLine is lost; (b) debugging an application, thus requiring a live 

view of the logged messages – either via a standard output (then is 

Console.WriteLine sufficient) or via a debug pane in an integrated development 

environment (IDE); (c) or tracing of key checkpoint of a deployed application for 

post-mortem analysis after an application crash. To allow usage in all these and any 

other scenarios, the message target store should not be hardwired in the Debug class – 

this can be easily accomplished by holding a reference to a message store service 

provided by another class implementing for example the following interface:  

public interface ITraceListener { 

 void Write(string message); 

} 

 

The new implementation of the Debug class taking advantage of the 

ITraceListener interface then would look like this (adding a newline to the 

message serves as an example of potential added value/functionality of the Debug 

class): 

public class Debug { 

 public static ITraceListener traceListener; 

  

 public static void Print(string message) { 

  traceListener.Write(message + Environment.NewLine); 

 } 

} 

 

Having such an infrastructure prepared, anyone can now implement a class following 

the ITraceListener interface, e.g. to support printing the debug information to the 

system console (standard output) following ConsoleTraceListener class could be 

implemented: 

class ConsoleTraceListener : ITraceListener { 

 public void Write(string message) { 

  Console.Write(message); 

 } 

} 

 

So far this has been a classical approach of decoupling an API (application 

programming interface) and its actual implementation. The fact that this pattern can 

be easily and effectively described in a programming language is in fact implication 

of the key advantages of OOP against plain structured programming.  

C# 

C# 

C# 



13 

However, having this improved implementation introduces a new problem – when 

and by who will the traceListener static field get initialized. In standard OOP 

approach the initialization has to be hard-wired somewhere in the library or the 

application using the preceding classes (i.e. creation of a new instance of the 

ConsoleTraceListener class and assignment of the instance reference to the 

traceListener field). If we rewrite the example into the Java programming 

language, then a partial solution to the problem mentioned comes, if the code is 

enhanced by programming patterns suggested by the JavaBeans [94] component 

framework: 

interface TraceListener extends java.util.EventListener { 

 void write(String message); 

} 

 

public class Debug { 

 private ArrayList<TraceListener> traceListeners = 

  new ArrayList<TraceListener>(); 

 

 public Debug() { 

 } 

 

 public void addTraceListener(TraceListener tl) { 

  Listeners.add(tl); 

 } 

 

 public void removeTraceListener(TraceListener tl) { 

  Listeners.remove(tl); 

 } 

   

 public void Print(string message) { 

  for (TraceListener tl : listeners) 

   tl.Write(message + "\n"); 

 } 

} 

 

The example uses a design pattern of events and event listeners from JavaBeans 

component model, which enhances the previously shown implementation with an 

ability to notify multiple clients of an event occurrence – in this case a request to 

write some message into a logging facility. Now only one instance of Debug class (or 

bean in JavaBeans terminology – i.e. JavaBeans component) is logically expected 

exist (implementation of a singleton design pattern has been omitted from the 

example to keep it simple) and it does not have to locate the logging service (which 

would be another bean/component) by itself, but it delegates this duty to the actual 

logging service (bean/component) that needs to register itself by calling the 

addTraceListener method. The Debug bean serves as a JavaBeans event source in 

this example.  Furthermore by adhering to the event listener pattern (i.e. 

implementing the TraceListener interface, becoming an event listener), any 

logging service only has to take care for itself (e.g. eventually unregister itself 

properly), and does not have to know whether there are any more logging services 

using the same Debug bean (class). 

All the core features that JavaBeans extend the Java language with are in fact build 

into the C# language itself (since its first version 1.0) and, what it even more 

important, are not only a syntactic sugar of the language, but are also explicitly 

supported by the underlying platform runtime as well (i.e. by the .NET’s Common 

Java 



14 

Language Runtime – the CLR). However as C#/.NET events build upon a concept of 

delegates (managed references to static/class or instance methods), a C# 

reimplementation of the Debug class following the JavaBeans implementation would 

be a bit different. 

delegate void WriteDelegate(string message); 

 

public class Debug { 

 public event WriteDelegate Write; 

   

 public void Print(string message) { 

  if (Write != null) 

   Write(message + Environment.NewLine); 

 } 

} 

 

The key difference to observe is the following: should the Debug class provide more 

events, each of the events has to be represented by its own field in the class 

declaration. Whereas in JavaBeans multiple events can be covered by a single 

listener (e.g. MouseListener in standard Java’s Swing library defining 5 distinct 

events – all mouse related). Both approaches have their pros and cons, and neither of 

them is clearly better than the other, but an important lesson to learn is: even though 

both C# and JavaBeans define a similar concept of “events”, they are not the same 

and semantically can often differ a lot. 

Note: the .NET’s implementation of a similar Debug class in fact follows the 

JavaBeans style implementation (as the full implementation of trace listeners 

requires provision of several callback methods, is requires provision of an interface 

and not a single method). 

The previous enhancements of the example with either JavaBeans’ event listeners or 

C#’s events still did not fully solve the problem of responsibility of binding the two 

classes together (or beans/components in case of JavaBeans). All the solutions 

required either the Debug class to find available trace listeners (services) – the 

original C# solution – or required the trace listeners to proactively register 

themselves in the Debug class (component) instance – the latter implementations in 

Java and C#. This requires that at compile time a piece of code to do the registration 

is provided on one place or the other. However such requirement does complicate 

scenarios where the choice of a right implementation of a required interface (i.e. right 

trace listener implementing the ITraceListener interface in this example) should be 

done at deploy-time or at runtime by the final user of the application (e.g. via a 

configuration file) and not by the programmer at compile time. Fortunately other 

component models exist, that target to solve exactly this problem – for example in 

the Managed Extensibility Framework (MEF) [112] the Debug class would become a 

MEF part and could have a private collection of listeners (initially empty) annotated 

with an ImportMany attribute defined by MEF: 

C# 



15 

public class Debug { 

 [ImportMany] 

 private IEnumerable<ITraceListener> traceListeners; 

 

 public void Print(string message) { 

  foreach (var tl in traceListeners) 

   lt.Write(message + Environment.NewLine); 

 } 

} 

 

Then by correctly initialing the MEF framework, it will automatically locate all parts 

(MEF components) that are implementing the required functionality (the 

ITraceListener interface). An example implementation of such a component 

follows: 

[Export(typeof(ITraceListener))] 

class ConsoleTraceListener : ITraceListener { 

 public override void Write(string message) { 

  Console.Write(message); 

 } 

} 

 

Again an attribute (this time Export) is used to mark a valid MEF component and to 

specify the provided functionality (interfaces) of that component. By using MEF in 

this way the application would implement only a generic initialization method of the 

MEF framework and the rest will be done automatically by MEF – i.e. instantiation 

of the ConsoleTraceListener class (part/component) and filling out a reference to 

it into the traceListeners field of the Debug class (part/component). 

As one can observe from the examples presented, the concept of a component in 

JavaBeans is quite different from the concept of a component in MEF. In fact the 

overlap of the two definitions is minimal and if a MEF implementation for Java 

existed, we can imagine these two component frameworks can be combined in a 

single application. As JavaBeans’ bean describes a different concept than a MEF’s 

part and both JavaBeans and MEF serve a different purpose (each of them was 

designed with a specialized problem to solve in mind), thus if an application 

developer faces both problems during development of a single application, he or she 

can benefit from incorporating both technologies into the developed software. This 

again leads to an urgent need to clearly differentiate between different concepts being 

described as components (JavaBeans and MEF are the good examples here). If 

several concepts are all defined by the “component” term, it might be hard for a 

developer to correctly grasp and fully understand both of the concepts. Further 

challenge is then to even identify the concepts as different and be able to free of the 

idea that a choice must to be made to have a single component framework used in the 

whole application. 

1.2 Problem Statement 

As the CBSE concepts introduced in the previous Section 1.1 were presented on 

basic features of two of the mainstream programming languages/platforms, it is clear 

that CBSE is appreciated as a valuable approach to software engineering. In fact as 

the presented features form cornerstone aspects of the respective technologies, 

software developers cannot easily opt-out of them and are actually forced to use them 

C#/MEF 

C#/MEF 



16 

and design software using the CBSE concepts in mind. Even on these few concepts it 

was clear the understanding of a component and component-oriented software design 

is perceived very differently by orthogonal technologies. There are at least several 

dozens of CBSE related techniques in the world from ones coming from the 

commercial world (as the examples from Section 1.1) to purely academic or research 

ones. Moreover the various CBSE techniques cover a very broad spectrum of 

problems and issues from mostly any phase of software development. There are pure 

theoretical approaches designed to cope with general software design problems (e.g. 

UML components [137]), techniques targeting formal reasoning about software 

architecture, dependencies and their functional and non-functional properties (e.g. 

Darwin [109] or Palladio [23]), component models combining a formalized view on 

software architecture together with support for some advanced runtime features (e.g. 

SOFA 2 [40], Fractal [27][3]), component models specialized for a special domain 

(e.g. SafeCCM [6], ProCom [158], Koala [171], SOFA HI [160][150][84] for 

domain of real-time and/or embedded systems), as well as component systems 

designed to “just” simplify some complex day-to-day tasks developer often have to 

face during complex software implementation and deployment (e.g. COM [49] or 

OSGi [139]), and many, many more. Actually there is not a single rule defining what 

techniques fit the CBSE domain, but the other way around is true – i.e. both the 

existing and newly emerging techniques define the component-based software 

engineering as a discipline. Being that broad and broadening every day, it is not 

easily possible to analyze problems related to CBSE in general and in fact it would 

not be even reasonable as the theories on opposing sides of CBSE domain are 

conceptually so far, it is hard to identify even a single common point, where they 

would meet. 

Thus for sake of this thesis we will choose just a subset of CBSE, where our 

experience and expertise can be mostly utilized to advance the current state-of-the-art 

techniques. Our CBSE approach of choice is enhancements of runtime software 

frameworks by incorporation of advanced CBSE techniques and provision of 

technologies and methodologies bridging the design phase of software development 

and the phase of actual code implementation. So our reasoning about CBSE concepts 

will be always either directly or indirectly related to some component-oriented 

software framework. As a matter of fact the technologies presented in Section 1.1 

would fall into such a category. 

Even in such narrowed CBSE subdomain, there are still a lot of different approaches 

to software design using a concept of a component – an overview of the commonly 

used component models can be found in for example in [54] and [107], an overview 

of component models specialized for real-time embedded systems can be found in 

[88]. If we go through the existing component models, try to gather the features 

supported by the models, and divide the features on the typically understood to be 

more advanced ones (these are mostly support for complex solutions to most of the 

modeling, implementation, packaging and deployment phases of component 

developments) and the rest, an interesting observation can be made. The commercial 

component models that are widely used in today’s regular software development do 

typically incorporate the more “basic” CBSE concepts from the set. On the other 

hand the complex features are mostly promoted by the component models with 

academic or research background in general. 



17 

The obvious question one has to ask is what the academic models do wrong, that 

they are not able to persuade commercial component model writers of the benefits 

the advanced features they can provide. Unfortunately the key problem is probably 

inherent to the non-commercial research-oriented framework development – i.e. the 

framework are prepared with a vision of providing some new revolutionary features, 

but often a vision of a final product is missing. The reason for such state are quite 

understandable – the actual advance in the state-of-the-art can be easily sold to the 

research community, but quality of the implementation backing the ideas is not 

predominant for general good acceptance the research results. Prevailing attitude in 

the community tends to underestimate both the importance and overall cost of 

implementation of the ideas. It is often perceived the original idea is the key to 

success and the transition to the actual code implementing it is quite simple and 

every experience programmer can do it. 

However software development is not an easy task and especially the with growing 

complexity of the technology, it is very important how the implementation is 

designed and whether a set of features of the underlying technology has been 

carefully chosen with respect to the assignment and the target domain. This can be 

nicely summarized with a classical problem regarding algorithm complexity – the 

asymptotic complexity matters, but the constants often matter as well in the actual 

implementation – i.e. poor choice of instruments of the target platform or incorrect 

usage of the provided features can slow the final program (algorithm 

implementation) in orders of magnitude (e.g. in case of inappropriate utilization of 

system caches) or can render it unusable being inherently incorrect (e.g. a very 

typical misuse or misunderstanding of target system memory models – usually wrong 

assumptions make about volatile accesses to program variables on weak ordering 

memory architectures). 

In context of component model this problem arises much more often than in regular 

software development. As the advanced features can be often very nicely designed to 

seamlessly fit into the existing theory, and their formal specification can be quite 

simple, but the actual implementation can be overwhelmingly complex. The reason 

for it is the component model runtime stands at the bottom levels for software stack 

typically directly interfacing the operating system or the platform in general. 

However for the reasons presented above such complex component principles are in 

research component models often well-defined only on the conceptual level. And 

even if an implementation is provided, integration into existing tools is often not very 

well maintained or a complex tool-chain supporting the component software 

development is not provided. 

A closely related problem is the component models often lack more complex 

examples or case-studies that would not only prove the implemented concepts work, 

but more importantly also clearly show the benefits of the used CBSE approach and 

be able to persuade wider developer community about usefulness and maturity of the 

component model. To communicate the CBSE advantages better to the developer 

community it is necessary, the existing as well as any new emerging CBSE 

principles are validated on close-to-real software implementation. Furthermore, as 

the implementation oriented CBSE aspects do not float in the air, or are not 

beneficial on their own, it needs to be comprehended the CBSE related research have 

to mostly fall into a domain of applied research. Such classification means that new 

CBSE concepts need a clear motivation on their applicability especially regarding 



18 

any potential industrial use or advancements for broader software development 

community in general. 

1.3 Goals and Structure of the Thesis 

Goals: We feel the concepts introduced by many of the current component models 

are very interesting and we see their huge potential to qualitatively change the course 

of software engineering, even with respect to slow adoption of these advanced 

techniques by the software developers’ community as presented in the previous 

Section 1.2. However as the advanced CBSE related concepts like hierarchical 

components, controllers, connectors, etc. are not in focus of mostly spread software 

development frameworks and technologies, we are afraid a lot of the great results of 

current research in the domain of component-based software engineering slowly dim 

without any broader and deeper attention of developer community and the work of 

the researchers it then a bit underappreciated. This thesis aims at helping the CBSE 

community to be able to compete with the main stream of software engineering and 

bring the interesting CBSE oriented systems’ ideas to real life. Thus, the following 

goals of the thesis are proposed: 

(1) To identify common features of CBSE design principles adopted in current 

technologies, as well as the promising directions lacking wide common 

adoption in software industry. 

(2) To show key strengths and weaknesses of the component modeling 

approaches incorporating promising CBSE principles, especially with respect 

to their application onto actual software implementation. This requires 

verifying the approaches on real-life case-studies. 

(3) To provide solution to most severe of identified weaknesses of the advanced 

component modeling approaches (namely hierarchical component models). 

Structure: This Chapter 1 provides an introduction to the CBSE domain and 

presents a problem statement with regard to current software development with 

CBSE concepts and proposed goals of the thesis are stated. Chapter 2 shows current 

state of the art publications in CBSE domain sort of inherently imply a general quest 

for a holy grail of an ideal component model. The chapter continues with an 

overview of a few component models incorporating typical CBSE concepts from our 

point of view. The survey of component models is organized in a way, so that it can 

be naturally followed up with a summary of goals of different approaches to CBSE. 

Finally, the chapter concludes with a need to refine the goals proposed in Chapter 1. 

Aim of the following Chapter 3 it to provide a bridge between Chapter 1 and Chapter 

2 (more or less covering an extended problem statement) and the rest of the thesis 

which is mainly based on published results and on our participation in several 

projects and on their results. 

As most of the presented results are tackling with a notion of behavioral specification 

and verification of its correctness in context of behavior protocols formalism in 

context of hierarchical component models, the Chapter 4 provides an overview of the 

key behavior protocol concepts that are necessary to comprehend Chapter 5 to 

Chapter 7. This introduction to thesis background is followed by chapters presenting 

the two major case-studies - Chapter 5 presents an Internet access management 



19 

system developer as part of a CRE project, Chapter 6 presents our approach to an 

assignment of the CoCoME international contest. Chapter 7 then proposes a solution 

to the identified need of modeling of dynamic architectures and includes an 

evaluation of the proposed concept as well as its applicability on the presented case-

study, whereas Chapter 8 shows an alternative approach to modeling component 

environments in context of Windows kernel drivers. 

Chapter 9 summarizes the related work from the published papers covering the 

presented contribution. As in a limited space of the thesis it was not possible to 

provide a definitive solution to all the identified problems, Chapter 10 provides a 

short conclusion of all achievements of the thesis, and then Chapter 10 iterates again 

through the problems and show the areas where we were not able to provide 

sufficient solution. Also some future direction how to improve our solution and 

where to advance the research are presented in Section 10.2. 

1.4 Contributions and Publications 

A novel contribution of the thesis can be divided into several areas, that are covered 

in respective chapters of the thesis: (1) an overview of diversity CBSE concepts and 

approaches, (2) an analysis of current components models with a runtime 

environment and a consecutive summary of component models structured according 

to newly identified criteria, (3) an analysis of hierarchical component models’ goals 

and motivations, (4) introduction of a case-study and an analysis of suitability of 

hierarchical component models and their application correctness verification 

techniques in context of two major case-studies, (5) introduction of an approach to 

model dynamic entities and architectures changing at runtime in domain of 

hierarchical component models, and (6) introduction of an approach to model 

component environment. 

An overview of published results relevant to context of this thesis follows: 

Book chapters 

[38] Bulej L., Bureš T., Coupaye T., Děcký M., Ježek P., Parízek P., Plášil F., 

Poch T., Rivierre N., Šerý O., Tůma P.: CoCoME in Fractal,  Chapter in The 

Common Component Modeling Example: Comparing Software Component Models, 

Springer-Verlag, LNCS 5153, Aug 2008 

Reviewed articles 

[42] Bureš T., Ježek P., Malohlava M., Poch T., Šerý O.: Strengthening 

Component Architectures by Modeling Fine-grained Entities, in proceedings of 37th 

Euromicro SEAA 2011, Oulu, Finland, IEEE CS, Aug 2011 

[95] Ježek P., Bureš T., Hnětynka P.: Supporting Real-life Applications in 

Hierarchical Component Systems, in proceedings of SERA 2009, Haikou, China, 

Studies in Computational Intelligence (SCI), Springer, Dec 2009 

[113] Matousek T., Ježek P.: DeSpec: Modeling the Windows Driver Environment, 

in proceedings of FESCA, ETAPS'07, Braga, Portugal, ENTCS, Mar 2007 



20 

[96] Ježek P., Kofroň J., Plášil F.: Model Checking of Component Behavior 

Specification: A Real Life Experience, in Electronic Notes in Theoretical Computer 

Science, Vol. 160, pp. 197-210, Elsevier B.V., ISSN: 1571-0661, Aug 2006 

[99] Kofroň J., Adámek J., Bureš T., Ježek P., Mencl V., Parízek P., Plášil F.: 

Checking Fractal Component Behavior Using Behavior Protocols, presented at the 

5th Fractal Workshop (part of ECOOP'06), July 3rd, 2006, Nantes, France, Jul 2006 

Technical reports 

[41] Bureš T., Ježek P., Malohlava M., Poch T., Šerý O.: Fine-grained Entities in 

Component Architectures, Tech. Report No. 2009/5, Dep. of SW Engineering, 

Charles University in Prague, Jun 2009 

Presentations 

Ježek P.: Model-Driven Development on .NET Platform, Model-driven Software 

Development in the Real World Workshop, MDD-RW 2010, Karlsruhe, Germany, 

Jul 2010 

Ježek P.: Behavior Protocols: Formal Specification of Services Behavior in a 

Component Environment, 16th Annual Conference of Doctoral Students, WDS’07, 

Prague, Czech Republic, Jun 2007 

Ježek P.: Behavior Protocols: Using Behavior Protocols to Model Real-Life 

Software Components, 15th Annual Conference of Doctoral Students, WDS’06, 

Prague, Czech Republic, Jun 2006 

Adámek, J., Bureš, T., Ježek, P., Kofroň, J., Mencl, V., Parízek, P., Plášil, F.: 

Real-life Behavior Specification of Software Components, 11th EMEA Academic 

Forum, Dublin, Ireland, May 2006 

Ježek P.: Behavior Protocols: A Real Life Experience, 14th Annual Conference of 

Doctoral Students, WDS’05, Prague, Czech Republic, Jun 2005 

Ježek P.: Combining OMG Target Data Model and JMX Technology, 13th Annual 

Conference of Doctoral Students, WDS’04, Prague, Czech Republic, Jun 2004 

1.5 Note on Conventions Used 

The text of this thesis is partially based on the papers referenced in the previous 

Section 1.4 and manual of the project mentioned below. In order to emphasis this 

fact, the paragraphs taken from the papers are in the thesis marked by a side 

paragraph marker.  

This is an example of a paragraph that is copied verbatim from the published book 

chapter, a reviewed paper or a technical report and is marked by a vertical bar. 

 

This is an example of a paragraph that is copied verbatim from the manual of the 

France Telecom funded project Component Reliability Extensions for Fractal 

component model [2] and is marked by a vertical wavy line. The project manual is 

available on-line [3], however has not been previously officially published at any 



21 

conference or workshop. Contributors to the text of the manual are Jiří Adámek, 

Tomáš Bureš, Pavel Ježek, Jan Kofroň, Vladimír Mencl, Pavel Parízek, 

František Plášil. 

 

Where it was necessary, the original text is slightly modified to make the thesis easy 

to read. But these modifications are only in several sentences at beginnings of the 

copied text in order to fit together with the rest of the thesis. Also, phrases like “in 

this paper” are changed to “in this thesis”, etc., for obvious reasons. Furthermore the 

original text was often slightly reformatted and several small structural changes were 

made to fit the formatting and structuring style of the thesis. Also a few typos found 

in the camera-ready versions published were corrected in the thesis. 

The source of the text copied verbatim is denoted by the margin notes (in the right 

margin of the text) at the beginning of the each copied section. We use the following 

abbreviations for distinguishing the sources:  

CREman for text copied from [3] 

CoCoME for text copied from [38] 

DeSpec for text copied from [113] 

Entity for text copied from [42] 
EntityTR for text copied from [41] 

FACS for text copied from [96] 

 

To further enhance readability of the text, paragraphs comprising only from source 

code of a programming, specification or modeling language are indented more than 

regular paragraphs and are denoted by the margin notes (in the left margin of the 

text) identifying the target language, the paragraph is written in: 

This is an example of a paragraph written entirely in the Java 

programming language. 

Java 



22 

Chapter 2  

Quest for an Ideal Component Model 

2.1 Different Views on Basic Concepts 

To fulfill the first two goals as presented in Section 1.3 we need to analyze the 

current approaches to CBSE. As mentioned before, the CBSE conference is a 

respected source of CBSE related papers that usually form or are positioned near the 

frontier of state-of-the-art in the CBSE domain. Browsing through the papers 

published at CBSE conferences in recent years one can easily notice that most of the 

papers sooner or later in the text end up by anchoring themselves in the CBSE 

domain by defining a notion of a component or CBSE itself. The motivation is 

natural as to be able to reason about CBSE concepts and to provide some 

enhancements to the domain, it is necessary to have a clear understanding of what the 

concepts are and where the paper results are applicable. While most of the papers 

provide just a short definition of CBSE or a component (often just referencing 

relevant definition in literature) and thus implicitly postulating their authors’ 

assumption of fundamental roots of CBSE as being well-established without any 

need to further elaborate, the authors of few other papers are obviously aware of a 

complicated situation regarding a clear and sound definition of a component, and are 

trying to provide an analysis of various CBSE approaches to show a relevant CBSE 

subdomain, that their results fit in (thus providing a more constrained view of 

CBSE). As the third goal of this thesis expects us to provide a solution to some of 

CBSE related problems, it is for us also necessary to define an area of software 

engineering, where we believe our results can be ideally applicable. 

In Sections 1.1 and 1.2 we have shown the basic CBSE concepts (mainly a concept 

of a component) are not that clear as one would expect. On the other hand as 

mentioned in the previous paragraph authors of many CBSE related papers do not 

feel the same way and present or reference their “generic” definition of a CBSE 

component. One of the most cited one is the component definition by Clemens 

Szyperski as presented in his book “Component Software – Beyond Object-Oriented 

Programming” – as it requires more analysis, a reference will be given in Section 

2.1.1 which presents some problems regarding the definition. Another commonly 

referenced definition of a component is the one by Heineman and Councill from 

[81], Section 2.1.2 is dedicated to analysis of problem related to this latter definition. 

2.1.1 Issues with Szyperski’s Definition 

Typical references to Szyperski’s book unfortunately introduces already first 

problem – while a verbatim copy of Szyperski’s definition is often presented, some 

papers only reference the book as such. By carefully reading the book reader can in 

fact find two different component definitions there (so that if a paper references just 



23 

the book itself, it is not clear which definition had the authors in mind). The first 

definition of component presented in [167] is partially implicit by stating a set of its 

characteristic properties: 

(1) “A component is a unit of independent deployment.” 

(2) “A component is a unit of third-party composition.” 

(3) “A component has no persistent state.” 

Presented in the 1997’s print of the book these properties reflected the contemporary 

Szyperski’s insight and personal view on software components. As he later admitted  

over the years (with the evolution of the software engineering domain) he gradually 

shifted to slightly different understanding of components as is reflected in an updated 

definition of component presented in second edition of the book [165]: 

(1) “A component is a unit of independent deployment.” 

(2) “A component is a unit of third-party composition.” 

(3) “A component has no (externally) observable state.” 

Although the definition is presented in the book first, we understand it more as an 

explanation or annotation of the second component definition presented later in the 

book. Having its own subsection the second definition can be probably considered as 

the grand-definition of component (which can be incidentally supported by a fact, 

that should a Szyperski’s component definition be provided as a verbatim copy in a 

paper, it would be this second one). While the first definition was updated between 

editions, the following one has remained the same throughout the years (in both 

[167] and [165] editions of the book): 

“A software component is a unit of composition with contractually 

specified interfaces and explicit context dependencies only. A 

software component can be deployed independently and is subject to 

composition by third parties.” 

And as it is stated in the book, the above definition is in fact an outcome of a very 

deep and long discussion in one of the workshops of 1996’s European Conference on 

Object-Oriented Programming (ECOOP) and was originally published in [166]. 

One can observe that the both definitions are quite general – in fact as noted for 

example in [80], a component defined by properties of “a unit” does not necessarily 

imply any connection to software engineering (so it can define a hardware 

component as well), nor even any connection to the computing world in general at all 

(thus being valid in potentially any domain with suitable “units”). The book presents 

a very thorough discussion on the topic; the definitions were carefully prepared as a 

result of an intensive research of the contemporary component-based systems and 

general state-of-the-art of CBSE as well. However when trying to analyze current 

software component-oriented software systems based on a provision of a runtime 

environment/platform, it will soon become clear that many of the systems do not 

fully fit with their approach to component modeling the definitions presented so far 

(in spite of their generality mentioned above). In fact, one could say that these 



24 

“problematic” component systems and their components do not conform to the 

definitions, as often one of the key requirements on a software component does not 

hold in the respective component system. Few examples of such inconsistencies with 

Szyperski’s definitions are as follows: 

One of component-oriented systems commonly considered in published CBSE 

related papers is the JavaBeans [94] component model. One of the explicit 

requirements on a JavaBean (bean = a JavaBeans’ component) is that it has to expose 

parts of its internal state via properties – which is in a direct contradiction with the 

(3) rule of the updated version of the first Szyperski’s definition of component (“A 

component has no (externally) observable state.”). One might argue the properties 

can be viewed as an optional feature of a bean and that a bean without properties 

(thus with only internal state) can exist – but such a bean would go directly against 

the JavaBeans’ basic concept, since beans are designed to encapsulate units of user 

interface interaction (UI components), where state sharing between a component 

(representing a subset of possible user interaction – gathering parts of user input and 

providing features for user output) and its environment is the key way of interaction 

between components. Windows Presentation Foundation (WPF) [132], Silverlight 

[130], Metro UI API for upcoming Windows 8 OS [131] are examples of graphical 

user interface (GUI) frameworks that are even more data oriented and the data 

exposed by respective UI components play there even more important role than in 

JavaBeans. In these technologies, the interaction with the user is not (only) defined 

by application’s code, but by application’s data relations as well (the relations are 

expressed as connections – or connectors – between the components the application’s 

architecture is built from) – and this focus on the data is believed to be the key 

success point of these technologies. This implies the data-centric approach of 

component frameworks targeting UI development should in fact strengthen in future 

and not weaken as Szyperski’s definition suggests. 

Furthermore component systems not able to fully fit the second Szyperki’s 

component definition can be also identified. As statistics of web browser popularity 

[174] show the Windows operating system with market share of 83.9% as of January 

2012 is still the most popular operating system on desktop computers (assuming the 

vast majority of desktop systems is connected to internet and is used to regularly 

access the world wide web). And COM [49] component model being a cornerstone 

of many basic application-to-OS and application-to-application interactions in 

Windows OS is, at time of writing of this thesis, probably the most commonly used 

component system in the world. The COM is based on the exposure of well-specified 

interfaces that define an interaction point between components. Even though a COM 

component does have “contractually specified interfaces”, it does not have “explicit 

context dependencies only” – in fact the component’s dependencies are rarely 

defined explicitly, a common approach is the dependencies are implicitly given by 

the code that tries to instantiate required components at runtime. 

Yet another problematic example is “the .NET components”, as the CBSE concepts 

are incorporated in many aspects of the .NET platforms. These different component-

oriented aspects of .NET are however not directly related to each other and in fact 

exist on different levels of abstraction. That is why the phrase “the .NET 

components” is quoted in the first sentence of this paragraph. Unfortunately this is a 

common problem of many CBSE related papers as their authors often do reference 

“.NET (components)” (without the quotes), but to not specify exactly which 



25 

component concept of the .NET platform they have in mind. We will get back to this 

problem later, so for now let’s assume a .NET component equals to a .NET assembly 

(as Szyperski does in his book) – a simplified view is that an assembly is a unit of 

binary code distribution and deployment on the .NET platform (typically it is a single 

EXE or DLL file, but multi-file assemblies can exist as well). 

Even if considering only the assemblies as .NET components, a problem with their 

view as Szyperski-style components arises. Whilst .NET assemblies do have 

explicitly specified dependencies (each assembly contains a list of required 

assemblies in its so-called manifest), the problem lays in the “a unit of composition 

with contractually specified interfaces” part of the component definition. The 

interface of an assembly as a unit of composition is just its “strong name” (in terms 

of .NET: plain text name, version, its language of localization, and cryptographically 

unique publisher’s ID) – i.e. relationships among assemblies as defined by their 

mutual requirements are explicit only in sense of their names and not their actual 

contents. However the assembly’s contents defines its true contract – i.e. all the 

features the assembly provides – and, as such, it does not form the assembly’s 

interface. Furthermore, even if the contract was understood to be a part of the 

assembly’s interface then the assemblies as components will get in conflict with the 

“explicit context dependencies only” rule, as the actual dependencies on another 

assembly’s contents are provided only implicitly in the assembly’s code. 

Interestingly enough, these dependencies are not even verified during assembly 

lookup process done by the Common Language Runtime (.NET’s virtual machine) 

[89][63], nor during loading a dependent assembly into process memory. The 

dependencies are always verified only lazily at the time of their actual need during 

application progress. Though such a feature might seem very odd from point of view 

of a software engineering theoretician, it makes a perfect sense in the world of real 

life desktop applications. Namely the lazy dependency verification allows silently 

ignoring any missing dependencies (e.g. missing classes, methods, etc.), and 

postponing any potentially fatal errors until a request to use such a missing feature 

arises. In a typical desktop application this approach manifests itself by a very user-

friendly behavior, where an application with missing dependencies would start 

usually start without problems and if a user does not click (for example) a menu item 

accessing the missing dependency, he or she will not notice any application usability 

problems. 

2.1.2 Issues with Heineman and Councill’s Definition 

It seems that trying to define the CBSE by establishing a component concept by its 

own is not the best direction. In reality the component abilities, behavior and 

constraints are tightly coupled to the component technology being considered. Thus 

it seems an opposite view on a component definition should be taken, i.e. not to try to 

define a component in isolation, but try to define it with respect to its context. 

Fortunately others already came to a similar conclusion, and for example Heineman 

and Councill in [81] provide a relevant definition of a component model as an 

abstraction of specific component context: 

“A component model defines a set of standards for component 

implementation, naming, interoperability, customization, 

composition, evolution and deployment.” 



26 

Having a component model defined this way component can be now redefined with 

respect to that component model definition – such component definition reads [81]: 

“A software component is a software element that conforms to a 

component model and can be independently deployed and composed 

without modification according to a composition standard.” 

This definition of component does not enforce very specific constraints, and it rather 

leaves an exact definition and constraints to the specific component model the 

components are considered in. Being so open, it allows a component model to freely 

define components’ constraints to fully fit its goals and needs, for example, as a bean 

conforms to the JavaBeans model’s specification and as much as a COM component 

conforms to a COM model’s specification, both JavaBeans and COM components 

(not conforming to Szyperski’s component definitions) do conform to Heineman and 

Councill’s component definition. 

On the other hand, strictly speaking, the .NET assemblies viewed as components 

might not adhere to the Heineman and Councill’s component definition, as their 

(contract) modification via publisher’s policy, or user/machine configuration might 

be required to allow them to participate in specific composition scenarios. 

Unfortunately Heineman and Councill’s component definition is not as trouble-free 

as the previous text might imply (the note above shows a sign of a potential glitch). 

The key problem of the definition is that it silently expects from the reader some 

previous intuitive understanding of the concept of component model and component. 

Let’s illustrate this on an example: 

The Java programming platform represents a quite broad spectrum of concepts – for 

typical cases four of them form the key parts of the platform: (1) the Java runtime for 

execution of Java binary code (i.e. the Java Virtual Machine or JVM [91][93]), (2) 

the binary code to be executed in context of a JVM itself (i.e. the Java bytecode 

[91][93]), (3) the Java programming language [91][92] (i.e. textual notation of a 

typical programming language used to create programs for the Java platform – to be 

compiled to Java bytecode), (4) the Java standard library (i.e. predefined set of code 

artifacts distributed in binary form of Java bytecode). The Java programming 

language defines some constraints on the structure of the source code – one of them 

being a rule of exactly one package public type per a Java source file and any 

number of package private classes per a Java source file – a Java source file is a plain 

text file typically with a .java file extension. In a binary form the code is divided 

into separate class files (files with a .class file extension) – where each binary 

class, either public or private, resides in its own class file. An important note is that 

the Java programming language and the Java bytecode are two generally unrelated 

concepts on different levels of abstraction - i.e. Java source code can be compiled 

into other binary forms as well (e.g. to .NET’s CIL intermediate code [89][63], or in 

a more typical case to Dalvik bytecode [56] of the Android [11] platform), and other 

then Java programming language source codes can be compiled into Java bytecode 

(in fact currently there are many newly emerging languages for the Java platform – 

common examples would be Scala [156][157] and Groovy [79] programming 

languages). 



27 

Though a JAR file (Java Archive [90]) is now in most cases a typical unit of 

deployment of binary Java code, for the JVM core a Java bytecode class is a most 

basic unit of code loading and thus of deployment too1. From JVM’s point of view a 

JAR file is just an optional simplification of bytecode class file distribution. As JVM 

imposes the rules all Java bytecode classes have to adhere to, if we defined JVM as a 

component model (according to Heineman and Councill’s definitions), then any Java 

bytecode class would be a component. However, there is something obviously wrong 

here as, common sense dictates that plain classes should not be equivalent to 

components as it would make explicit definition components redundant. As 

mentioned before, the problem lays in the Heineman and Councill’s definition 

expecting an implicit understanding of a component model. A typical CBSE 

developer with a good knowledge of a CBSE domain would obviously did not define 

Java classes as components as he or she would expect some added value for the 

classes to become (a part of) components. 

A clear conclusion that can be summarized from the previous paragraphs is that a 

commonly accepted opinion that a component definition clearly defines the CBSE 

can be unfortunately easily refuted. The presented and commonly referenced 

definitions of a component are (a) either too strict, so that software frameworks also 

commonly considered as component frameworks do not fit them, or (b) too general, 

so that many other concepts and frameworks fit the definition. Though the presented 

definitions of components are not the only one and in fact many tens of them exist all 

around in the literature (a nice summary of several other common ones can be found 

in [149]), they all inherently share the same problems mentioned. While any too 

generalized definitions are not useful to fulfill our goal of ultimately be able to define 

a CBSE domain where certain technological enhancements can be applied, having a 

too strict definition in fact can help to define exactly such a subdomain of CBSE. 

In this sense the Szyperski’s definition can be used to differentiate compatible 

component models that do fit the definition and the others. However the problem is 

that the definition is not perceived as defining a subset of CBSE instead of the whole 

CBSE (the definition’s wording itself suggests it is aiming at defining component in 

general). Thus referencing the Szyperski’s definition to define a CBSE subset only 

would be probably misleading as it would be often misunderstood as just a regular 

whole CBSE problem domain definition (as the many papers show, by mixing both a 

reference to this definition and referencing component models being in conflict with 

it). 

2.1.3 Issues with Categorizing Component Models 

Instead of a common all-encompassing component definition it looks more 

promising to try to find some common characteristics of component models. Each of 

these potentially identified characteristics would then form a separate definition of a 

component feature. Using these multiple component-wise definitions, component 

models can be classified into separate categories according to some rules defining 

compliance with these characteristic features. In fact this is not a novel idea and a 

                                                 
1 When loading the individual Java bytecode classes the JVM behaves in a similar way as the CLR (.NET) does 

in context of its assembly components. Java class files does not have any explicit dependencies on other classes 

and any external dependencies are discovered only at runtime as the JVM lazily loads the classes required by 

the code (i.e. the external dependencies are implicitly stated in the code – similar as in COM or .NET 

assemblies [if considering the actual assembly contract, as mentioned before, the assembly exported types]). 



28 

few very thorough papers have already been published providing exactly such a 

component model classification, see [54][107]. If trying to use these papers as basis 

for defining a CBSE domain, where a certain additional feature can be implemented, 

one can very soon run into problems again. Let’s illustrate it on a few examples 

presented below. 

In [107] authors present JavaBeans as a component model where “components are 

classes”, while COM component model is assigned into a category of component 

models where “component are objects” according to the methodology used in the 

paper. However as the JavaBeans are in facts just introducing missing features to the 

underlying programming language of Java, the execution model has to retain the 

same properties as the underlying Java platform has. Though in the proposed new 

version of JavaBeans the basic idea of a bean is more complex (allowing multiple 

classes to implement a single bean, etc.), the proposal is on the table for several years 

and it’s not probable it will be ever brought to life. And in the current version of 

JavaBeans a bean (type, i.e. component type) is just an enhanced Java class, i.e. an 

entity that has to be explicitly instantiated at runtime to get an object instance. 

However exactly the same is true for COM components – if a COM component is 

implemented in C++ programming language then a component type is a C++ class 

(in fact, a component type is named a class in COM terminology and is identified by 

a unique class ID). Only at runtime such a class is instantiated into a component 

instance by explicit call to CoCreateInstance function or similar (accepting the 

unique class ID as an identifier of a component to create). There is obviously a glitch 

or misunderstanding somewhere if JavaBeans and COM are classified differently 

vis-à-vis a classes versus objects criterion in [107] – unfortunately the reasoning 

behind such a conflicting classification is not presented in the paper. 

Similarly in [54] the JavaBeans are classified as having explicit distinction of 

provided and required interfaces. Thought the topic is in general discussed in the 

paper, this specific decision is not clarified there. While there can be many different 

views on specific component model features, we understand the JavaBeans 

dependencies differently. Services provides by a bean are defined by interfaces it 

implements (provided interfaces), and while a bean can be externally connected to 

another bean, should a bean require services of another bean the requirement would 

be present implicitly in the beans code. Thus only the provided interfaces are 

explicitly given, which is similar to the COM component model, and also behaves 

and has same implications as dependencies between “.NET components” (the 

problem of their missing requirements were discussed above). 

Another challenging point of [54] paper is a claim that “a component is executable”. 

While an exact definition of executable code is not given, the paper elaborates the 

statement with a footnote: “Executable property does not necessarily mean binary 

code. For example the execution can be achieved through an interpreter or by a 

virtual machine, or even through compilation before the execution”. This clarifies the 

authors’ understanding of executable code, but does not provide reader with exact 

definition. Even though the text implicitly permits looser interpretations of 

executable code and environment, from the choice of the component models we feel 

the authors tend to give precedence to a more typical algorithmic or imperative-wise 

concept of executable code. This might however contradict with some modern 

approaches to component-oriented software development where a more declarative 

way of behavioral description is often preferred. If the JavaBeans component model 



29 

is considered then other graphical component frameworks should be considered as 

well, so the reader can get a better understanding of the common CBSE related 

concepts – an example can the .NET platform with its WPF (Windows Presentation 

Foundation [132]) framework, where an application can be created from visual 

components just by declaratively instantiating and interconnecting them, while also 

providing data-driven behavioral dependencies between them. In extreme cases an 

application can be there created just by XAML-only assemblies (enhanced instance 

of a XML meta-format) without any regular executable code. 

As both these papers cope with many component models and present many different 

views on them providing a detailed elaboration of many CBSE related aspects, the 

examples above might seem marginal inconsistencies without any serious impact. On 

the contrary an important observation they imply can be made: Even being an expert 

on CBSE and thus having an excellent understanding of component modeling 

concepts is sometimes not enough when coping with real-life component models 

having many target language, platform or domain specifics. And as it is hard to 

become an expert of a specific component model, when someone tries to reason 

about one while having a specific understanding of CBSE concepts, he or she tries to 

map any new or unusual component model’s concepts to these previously known and 

understood ones, as well as abstract any very specific implementation details. The 

problem is such a generalization can then hide an important aspect of the new 

concept that can induce a thin, but impenetrable, barrier that stands between practical 

applicability and inapplicability of a new general component model feature idea. 

Unfortunately this leads to a pitfall of any summarizing paper that would try to 

categorize or classify component models into a reasonable number of generic easily 

understandable categories. As an inexperienced reader (i.e. non-expert in a specific 

domain – i.e. example of the reader targeted by a summarization paper) can easily 

draw false conclusions from it and imply some statements for a set of component 

models that are not true. 

The problem is not inherently in the classification process itself, but it lays in too 

abstract or generalized categories. Should the categories be selected to closely match 

the actual component model and its components implementation aspects, it should 

mitigate the problem. While papers [54][107] have their own motivation on selection 

of the classification criteria and are as exhaustive as possible in their component 

model selection, we believe that to be able to provide a brief summary of component 

models considered with respect the their features related to their runtime 

environment (see Section 2.4), we need an alternative approach to component model 

classification (see Section 2.3). 

Up to this point we aimed at fulfilling the first two goals of the thesis (as presented in 

Section 1.3) by analyzing the CBSE engineering domain, i.e. our initial believe was, 

we can first grasp the key CBSE concepts and with their good understanding apply 

them on commonly used component frameworks and to reason about them. This 

approach however does not seem to get us any closer to providing a solution to the 

proposed goals, as the CBSE concepts definitions leads to much confusion and as 

shown above it needs an interpreter to give it a correct meaning in context of each 

and every component model. As the real component-oriented technologies are in fact 

our main focus after all, the opposite direction to the component technologies 

analysis should be more feasible. 



30 

2.2 Conceptual Evolution of “Component” 

With the wide range of definitions of component identified in Section 2.1 it is quite 

hard to grasp a component based software engineering (CBSE) as a single well 

defined technique. However if we look at the mentioned definitions from a further 

perspective a common goal begins to unveil. All the definitions at least implicitly try 

to define themselves vis-à-vis classes, a key concept of the object oriented 

programming (OOP), leading to CBSE positioning itself as an enhancement of OOP. 

If we try to order the definitions causally, it can be observed the older concepts are 

more and more considered a standard and are superseded by newer (from a specific 

point of view, more advanced) concepts. We believe this continuous shift of 

component paradigm emerges from the continuous evolution of OOP languages and 

their runtime environments, and an ongoing desire of the CBSE community to 

further improve developers' experience in developing of software applications. At 

least several stages of the CBSE evolution can be identified – they are structured 

according to the original motivations behind the component concept introduction to 

the software engineering: 

2.2.1 Component = Class and Beyond 

In the early days of Windows programming, there was a strong demand on bridging 

the gap between multiple OO programming languages like C++, Visual Basic or 

Delphi – all sharing a similar concept of class, but implemented differently in each of 

them. This led to the notion of components as classes enriched by concept of binary 

code compatibility as defined by the COM component model. The COM defined a 

required organization of classes in memory, i.e. most importantly the format of a 

virtual method table (VMT) and its localization based on knowledge of a class 

instance reference. Furthermore COM defines another now standard OOP concept 

not commonly present in programming languages of that time – a concept of an 

interface. And as with the classes themselves, a specification how interfaces should 

be implemented on binary level is provided (including support for implementation of 

multiple interfaces by a single class – which must have been make with languages 

without multiple inheritance [e.g. Pascal] in mind). There two concepts together with 

ability to portably specify metadata of a OO program or library (in form of so called 

Type Libraries or TypeLibs for short) allowed increased penetration of OO 

programming concepts into regular software development. In this view a component 

is simply a class that follows some constrains and is as such portable at binary level 

(all of this implemented only using concepts already supported by programming 

languages).   

Such a specialized concept however became inherent part of OO environments with 

a wide spread use of Java and .NET languages, or more precisely with use of Java 

Virtual Machine (JVM) and Common Language Runtime (CLR) runtime 

environments having the binary code compatibility and code’s metadata specification 

as the defining features of the platform. It is worth noting that during design of the 

.NET platform, aiming at supporting very diverse set of programming languages, it 

became obvious that a common subset of language features would be quite small (in 

fact similar to the set of concepts supported by JVM), which would lead to more 

complicated porting of some advanced languages and it would be hard to incorporate 

many state-of-the-art software design concepts. So in order to support both 



31 

contradicting goals (seamless code compatibility and support of variety of 

programming languages) the set of supported language features had to be divided 

into two categories – (a) features complying a so called Common Language 

Specification (CLS) required to be supported by all .NET languages (all public API 

in .NET world should be ideally CLS compliant) and (b) the rest, that can be 

optionally supported by .NET languages and that should be primarily used to 

implement private (non-public) code. 

2.2.2 Component as a UI Building Block 

As the arrival of Java environment rendered distinction components as units of 

binary compatibility unnecessary, components, as a term, became unbound to any 

specific concept. The Java programming language was devised as a clear and sound 

language with minimum of concepts - however, it was found quite early that some 

concepts are missing from the language, should it be employed in some specific 

types of applications – mainly development of applications with a graphical user 

interface (UI). In an UI development process, developers typically expect an 

integrated development environment (IDE) to be able to help them visually design 

graphical look of an UI application. This requires the IDE is able to gather 

information about settable properties of UI controls and ideally register developer's 

code as reactions to events responding to application's user actions. And these are the 

key concepts introduced by the JavaBeans component model and thus defining a 

component as a class with explicit properties and events (again implemented only 

using concepts of the underlying Java language). The current use of .NET 

environment however again made this explicit distinction of components 

unnecessary as the concepts of properties and events are the core features of the CLR 

and all the programming languages have to support them. Furthermore it is 

recommended that all the classes use these concepts (i.e. all of class’s data should be 

exported via public properties and not public fields, listener design pattern should be 

implemented exclusively via events) as the standard .NET libraries do. Thus in this 

sense all .NET classes are components in JavaBeans’ point of view. 

On the other hand the .NET platform itself a concept of “components” – again 

related to development of application’s UI and its design in IDE. .NET components, 

i.e. classes implementing IComponent interface have two main features: (a) explicit 

knowledge about their location in applications architecture – identified via a 

reference to an implementation of ISite interface – i.e. ability to perceive the 

context in which a component is used and to be able to behave or layout itself 

accordingly, (b) knowledge of mode of component instantiation (at runtime or at 

design time), i.e. whether a component instance should exhibit its standard behavior 

(at runtime) or it should behave more as a design editor for itself (at design time). 

Even so the general goals of .NET components and JavaBeans are the same, just the 

underlying platform implied a different view on a UI component concept. 

2.2.3 Component as a Unit of Deployment and Versioning 

For at least two decades the world of Microsoft Windows had to live with a very 

serious problem arising from implementation of better software engineering concepts 

– more precisely software modularization. Developers quickly learned to take 

advantage of Windows dynamically linked libraries (DLLs) and almost every 



32 

Windows application sets off some of its functionality into separate libraries. One of 

the key advantages of DLLs perceived at that time was, that if multiple applications 

require a same functionality, its implementation can be share among these 

applications via a common DLL library. Applying this approach both saves the 

overall disk space occupied by all applications installed on the system (as the shared 

code does not have to be present multiple times) and any future updates of a library 

can be done centrally on one place for all the installed applications. 

During the 90’s (being the time of a large shift of users to Windows operating 

systems) as software was becoming less and less constrained by hardware limitations 

(with fast growing storage capacities available commercially to end-users) and with 

an emerging phenomenon of Internet, priorities for applying DLLs began to shift in 

benefit of ease of software updates. As data sharing was spreading and more and 

more computers were available on-line, computer viruses, Trojan horses and 

malware taking advantage of software bugs in general began to spread as well. Thus 

software had to become more dynamic, i.e. discovered bugs had to be corrected as 

fast as possible before they can be abused by remote computer attacks. At first glance 

the concept of shared libraries seem to be perfectly suited to such a scenario as if a 

bug is present in a library then all applications using that library are updated at once 

by a single update of it. Unfortunately this is a very idealistic view of software as the 

new versions of software often break backwards compatibility with any of its older 

versions. This problem is inherent to the update process in general and cannot be 

simply solved, which can be shown on a simple, yet unfortunately very typical 

example: if a bug is discovered by an application developer before its discovery by a 

library developer, the application has to come somehow with it; then if in a new 

version this bug is corrected, the original application often breaks as the library 

begins to behave differently (the bug was accepted as a feature by the application). 

Furthermore with an increasing popularity of software platform, thus increasing 

amount of available applications for that platform, there is also an increasing number 

of misbehaving installation programs that simply always copy all the required 

libraries to the target system. If another application depending on a same library is 

already installed, such rude installation process can lead to overwriting of a global 

copy of the library with its older version – in most cases leading to breakage of the 

original application installed.  

This problem of single globally shared copy of a library leading to the problems 

mentioned is in context of the Windows operating system typically referred to as the 

“DLL hell” problem [9]. Should the libraries in a system be shared, the obvious 

requirement to solve the DLL hell problem is to be able to transparently support 

parallel (or side-by-side) installation of multiple versions of a single library at the 

same time. The first solution to the problem was on the Windows platform again 

provided by means of COM components that explicitly support component and 

interface versioning. 

It is quite surprising that authors of the Java language and Java Virtual Machine were 

not aware of this problem, and did not provide a solution for it as a standard part of 

the Java platform [86]. However a need for such feature in the Java world is as strong 

as it was before in the world of Windows application development. This led to 

several external solutions emerging in parallel to the basic Java platform. Currently 

the most spread one is the OSGi component model (as already mentioned in Chapter 



33 

1, OSGi is currently heading to be a part of the Java platform in future versions) – 

while OSGi defines several concepts, the most basic one is a concept of a bundle (an 

OSGi component), which is exactly a unit of versioning and deployment in OSGi. 

The OSGi platform also defines a sophisticated means of inter-bundle dependencies 

and ability to locate and load all required bundles and in correct order. On this basic 

level the OSGi serves a very similar purpose as assemblies on the .NET platform, 

that (though being an inherent part of the .NET platform) also provide a solution to 

the problem described in this section for the .NET platform, as OSGi does for the 

Java platform. 

2.2.4 Component as a Service 

More than a decade ago as enterprise systems grown larger and more complex and 

also became more interconnected to Internet solutions, a strong pressure on better 

software engineering approaches especially designed according to needs of enterprise 

systems became apparent. The systems’ need to serve many purposes was leading to 

a need of better code structuring and ability to easily reuse existing code in new 

applications. Further as the systems became more globally available (also increasing 

their size) the requirements on the systems’ implementation started to change in the 

enterprise domain, aiming to solve problems related to especially high availability 

and scalability of the systems. 

This led to a new view on software components, where the important features were 

the ones that allowed large magnitude of connected clients to the component-based 

application, easily incorporation of external components (running on different 

computers on the Internet), ability to easily load balance the system providing the 

application services in cluster systems. Several component systems targeting such 

this domain were introduced, among the most commercially used ones is the EJB 

[65] component model in the Java world, and later introduced COM+ [48] 

component model for native Windows Server based enterprise application. These 

component models give the following features of components the main priority: 

(1) Remote components: Ability to publish components and allow remote access 

to their provided interfaces. In general an ability to create distributed 

applications just by wiring inter-component bindings between multiple 

computers. While this feature was already present in component 

technologies before EJB and COM+ (thus it is not a defining feature per se), 

we have included it in this list as it is a key to meaningfully support the rest 

of the features. 

(2) Stateless components: All the state is maintained by a client and all 

necessary information about the state is transmitted with every request to a 

component with allows high scalability by greatly reducing a component 

size, while providing ability to reuse components for multiple clients without 

problems of state synchronization. 

(3) Queued components: Communication with components is not in a form of 

direct method calls, but is handled as messages transmitted via a message 

queue service and received by possibly multiple copies of a component. This 

decoupling of client components from server components (requires from 

provides) increases system scalability by giving clients a single point of 



34 

communication in from of a message queue and allows server to change 

number of servicing component according to actual system load, also 

allowing for easy dynamic update on server side without any need to reject 

client requests (which are automatically postponed in the message queue, 

should a target component be currently unavailable – e.g. undergoing an 

update process). 

(4) Transactional components: Support for transactions on a component level 

means not only support for distributed transaction and components being 

automatically enrolled in active transaction along a sequence of calls 

between components, but also closely related to the previous point. If a 

message queue is transactional as well, it will allow automatic recovery in 

case of component failures (e.g. unexpected exceptions thrown from 

methods, etc.). Should a component fail, the original message it was 

processing is still stored in the message queue and another instance of the 

component can try later to reprocess it again. 

(5) Persistent components: To support long running client sessions and reusing 

system resources components with inner state can be saved to a persistent 

storage (persisted) and unloaded from memory. This not only allows system 

to actively maintain in memory only state for currently communicating 

clients, but also allows for seamless system restarts for maintenance or 

component migration.  

While both EJB and COM+ are commonly perceived as component models, from the 

list of the features we can see that currently they should be rather perceived as 

service frameworks – as the features described above are now considered a 

cornerstone of software services. The development of service-oriented applications is 

currently considered a specific software engineering domain – domain of Service 

Oriented Architectures (SOA) – that studies the problems typically originating from 

the key features of software services. However as shown above the SOA and CBSE 

are not two distinct approaches, but can be in fact seen as different points of view on 

a same problem. It implies that CBSE is not only black and white, but must be 

viewed very broadly, and even technologies that do not explicitly work with 

components can be evaluated in CBSE context and some CBSE techniques can be 

applicable to them as well – an example can be the Windows Communication 

Foundation framework introduced in .NET 3.0, which is a natural evolution of 

COM+ as a service-oriented framework for Windows platform – and in fact 

obsoletes COM+ (do not confuse it with pure/basic COM which is still an up-to-date 

component-based framework for native Windows applications): if COM+ is viewed 

as a component model the same should apply to WCF, even though WCF only 

describes and works with “services”. 

Moreover even specific technologies can change and during their evolution process 

can gradually move between SOA and CBSE views on application engineering. The 

reason is that as the software platforms change in time, so can the motivations of a 

component model change to compensate. An example can be the EJB component 

model – where is an important change in many basic concepts with EJB version 3.0. 

The technological shift since the first version of EJB, let to gradual change of 

motivations and priorities of EJB designers, which finally led to a shift in the base 

EJB component concepts as well. While originally the EJB was a mixture of several 



35 

software engineering approaches, the specification since version 3.0 clearly accents 

the service-oriented features as described above. 

2.2.5 Component as a Unit of Dependency Injection 

As typical desktop applications have grown larger and larger it has become more 

obvious that traditional development techniques do not provide enough flexibility to 

allow coping with the growing complexity effectively. While technologies like OLE 

or ActiveX components brought the unseen possibilities at the time of their arrival, 

their primary goal was to allow a smooth composition of more complex applications 

from 3
rd

 party components during the application development. These technologies 

were cornerstones of the first public component repositories or stores, were 

necessary components for application development could be purchased and 

downloaded from (as mentioned in [165]). This simplified typical desktop 

application development process as the ActiveX components were ready to use, it 

was possible to seamlessly compose them into the application being developed. 

While this was an important step forward the classical approach to composition 

remained in place, i.e. any respective ActiveX components an application is built 

from were very tightly coupled or glued together by the application’s main code (it is 

the same approach as is used to compose a GUI oriented application from JavaBeans 

components). Important note here is that only the development process for 

applications designed in such way is greatly simplified – after the application is 

deployed, its configurability is very limited (while it is still composed from 

components at runtime, any component interdependencies are given at compile time 

and as such these applications can be viewed as monolithic at runtime). 

The problem is that in recent years there is a new trend in desktop application 

domain to allow much greater customizability or extensibility by the end-users. It is 

often motivated by several reasons, two of them being: (a) to give the application 

producer option to provide end-users with much more variants of the application 

software, i.e. to have more diversified feature and pricing scenarios, or even to allow 

end-users to a basic version of an application and only to later buy more functionality 

if required, (b) to attract more potential users to producer’s application by developing 

it not as a closed application with predefined feature set, but to provide at least a 

semi-open application platform that can be further extended by extensions developed 

by forming application’s community. Obviously it is hard to achieve this goal using 

only traditional OO programming techniques, even when enhanced by abilities of 

component frameworks with components defined at level similar to ActiveX or 

JavaBeans (as the component dependencies are hardcoded into application’s code 

which implies difficulty of any updates at runtime whenever a new feature set is 

required from the application). To provide a solution to the goal a new view on 

software component had to be taken – the two basic requirement on the solution 

were: (a) application’s components have to explicitly state any requirements on any 

functionality that has to be provided by their environment (the application itself or 

possibly any other components loaded side-by-side), (b) the requirements should not 

be hardcoded into application’s or component’s code, and the application has to have 

an ability to enforce fulfillment of the requirement to its components (so-called 

dependency injection). 

As the idea of a component as presented above is in harmony with the common 

component definition of Szyperki’s books [167][165] (as presented in Section 2.1), it 



36 

is not such a surprise that one of the first widely used component models following 

this paradigm is the MEF component model (developed by a group at Microsoft 

Research lead by Clemens Szyperski). As we already know from Chapter 1 a 

component is called a part in the MEF. The Visual Studio 2010 integrated 

development environment (IDE) is a nice case-study of this approach – the MEF 

model has been adopted there as the new mechanism to provide a versatile 

extensibility mechanism of the IDE and allowed to transform the Visual Studio into a 

software platform with wide community (as the one mentioned in previous 

paragraph). 

2.2.6 Nested Components Not by Accident 

The concept of software component has probably originated from term component in 

the domain of electrical or hardware engineering. While the general idea of having 

reusable well-defined parts that software can be built from as a machine or hardware 

design as engineered and build holds an interesting parallel with hardware design has 

not been mentioned in previous motivations. In electrical design an engineer does not 

have to design a system solely based on basic electrical elements as resistors, diodes, 

transistors, etc., but in complex designs a more higher level components can be used, 

e.g. and, or gates or even buses or adder units on even higher levels of abstraction. 

While for example for an adder unit its design can be explored and one can learn that 

it is actually built using logical gates, which in turn can be explored further again to 

learn, they are built using transistors, etc., when someone is designing a processor (a 

component on a very high level of abstraction), he or she would not be interested in 

these “implementation” details of an adder unit (or component), but would need to 

know just the number or input and output lines (how many bits can it add), plus a 

few basic working parameters (like operational voltage, etc.). Thus, the adder unit 

will be viewed just as a black box with some define interface, even though that one 

can trace back its actual design down to the basic elements. And it is important if an 

added does comply do its specification (adheres to a specified interface), its actual 

implementation (i.e. for example which model or type of a transistor is used inside of 

it) is not important. The same would be true for logical gates on a lower level of 

abstraction, should one have a task of designing an adder unit instead of a processor. 

This approach has been also applied to domain software components – i.e. explicitly 

allowing two views on components: (1) as a black box with well-defined interfaces 

(importance of which is discussed in [30]), but without externally known 

implementation, (2) an actual implementation of such a component, i.e. giving the 

internals some structure, possibly creating a (composite) component from other 

components recursively down to some basic blocks (primitive components). While 

previously components could be also logically nested, the change lays in an explicit 

knowledge of the nesting by a component model. So, should an analysis of the 

internal structure of the components be required, it can be achieved. 

While there are many component models taking advantage of explicit hierarchical 

architecture of a component application like the Palladio Component Model [23], in 

this thesis we focus on component models with a runtime environment support. For 

us the main representatives will be hierarchical component models Fractal [27][3] 

and SOFA 2 [40], that both support the concept of explicitly nested components both 

at design time and at runtime.  



37 

As it will be explained later in Section 2.6 the main focus of the thesis since Chapter 

3 is exclusively on hierarchical component models. However we do not analyze 

motivations for hierarchical component models in detail in this section, as more 

details on hierarchical component nesting is given in Section 2.3, G and a whole 

Section 3.1 is dedicated to analyze and describe motivations and advantages of 

hierarchical component models, as well as discussion about design time vs. runtime 

support for explicit component nesting. 

2.2.7 The Summary 

The summary of CBSE concepts presented above tried to put motivation behind 

implementation of these concepts into various component models in both temporal 

and domain-wise contexts. It should be clear that not only the different approaches to 

CBSE (thus an actual concept behind a “component”) are semantically very distant 

from each other, but the component concepts in different component oriented 

technologies are in fact very orthogonal and cannot be simply compared together. 

Each and every one is simply trying to introduce solution of some domain-inherent 

problems to separate domains of software engineering. Nowadays it is in fact very 

typical that a single application would utilize multiple orthogonal component 

concepts – e.g. a typical web-based application (i.e. and application with front-end 

running at client side inside a web browser, for example as a Silverlight application, 

and with back-end running at a web server): (a) can be implemented in a .NET 

programming language – taking advantage of .NET assemblies as units (components) 

of versioning, packaging and deployment, (b) should it be an information system, its 

server-side part can be implemented also using MEF components, to take advantage 

of a runtime composability and ability to easily extend the system with new modules, 

and finally (c) the application distribution itself can be achieved by utilizing the 

WCF framework to expose the server-side API as a set of web-accessible 

components – services. 

As the CBSE is so diverse world of technologies and concepts, as shown above it is 

not possible to try to find a single all-encompassing definition of a component, what 

would suffice in all situations. The CBSE should be rather perceived a unifying view 

of how to enhance the current software engineering approaches. The common point 

where CBSE approaches agree is a notion of a component as a unit of some more or 

less defined properties giving it some advantages over code from a same domain 

without these properties defined. The basic unit of abstraction, many of CBSE 

oriented approaches begin with, is just a class. Thus a specific CBSE approach, when 

applied to a concrete programming or design or modeling environment/platform, 

introduces new advantages the platform previously lacked. A class being a concept to 

start with, concrete CBSE goals are typically achieved either by enhancing the class 

concept with more concepts than originally present in the platform considered (e.g. 

JavaBeans introducing properties and events), or vice versa by constraining it (e.g. 

COM allowing only specially crafted classes of a programming language to be 

exposed as components). A simplest definition of CBSE then would be: 

The CBSE (component-based software engineering) is an infinite 

quest to define a better OOP (object-oriented programming). 

If in section 2.1 we mentioned several component concept definitions and showed 

why they are not ideal for our cause, there is in fact one existing component 



38 

definition that with respect to the previous text and component model goals analysis 

nicely fits our vision of software components – it is a definition by Michael Feathers 

presented in [149]: “A component is an object in a tuxedo. That is, a piece of 

software that is dressed to go out and interact with the world.” Though we did not 

find any references to it in scientific papers, it seems the definition is beginning to 

spread and many found it as compelling as us (as also its incorporation into e.g. 

University of Wisconsin [170] or University of Pennsylvania [169] curriculums 

shows, it provides a clear and gentle introduction to the most fundamental term of 

CBSE by capturing the essence of general component understanding and bringing it 

closer to CBSE non-experts). 

To summarize the Section 2.1 and Section 2.2, our primary message from the text 

presented should be clear: it is all about the added value, i.e. it is not that important 

what a component is, but what it provides. So in order for the state-of-the-art in the 

CBSE domain to be pushed further, it is important for the research not to just come 

with new fancy component-oriented features, but in the first place to come with new 

goals the CBSE can help to solve. As shown in this section the CBSE is in fact 

defined right by these goals established by various component technologies. 

2.3 A Guide to Component Models Overview 

In the previous Section 2.2, we presented an overview of gradual evolution of CBSE 

related concepts in respective component models throughout the recent history with 

focus on their motivation and goals. In the next Section 2.4 we will give an overview 

of several common component models. This section provides a bridge from the less 

structured ideas presented in Section 2.2 and the component models overview 

presented in Section 2.4. We will first defend the choice of component models in 

Section 2.4 and later we will provide a guide on what information can be found in 

Section 2.4 for each component model considered, and how the component models 

are categorized and their features structured. 

As there currently exist tens of different component models [54][107] and with 

respect to our statement for need of a quite deep understanding of a component 

model for its analysis, we decided to choose the component models according to the 

following criteria: 

1. As already stated in the introduction to the thesis, only component models 

with a runtime are considered. 

2. Selected component models must be used by a large developer community, in 

order to be representative of a current general understanding of CBSE 

concepts (mainly by the regular software developers and not only by CBSE 

researchers – in fact we have especially focused on models typically not very 

well understood in the CBSE research community). 

3. There are many target domains of component models, and other papers do 

analyze some of the specialized ones (e.g. realtime and embedded systems 

[88]). We narrowed our search on component models from domains of 

development of desktop and/or enterprise applications. 



39 

4. From the component models by 1 to 3 we further choose the ones we have a 

lot of experience with and where we are confident to provide a well-grounded 

analysis. 

5. We also added two research component models (Fractal, SOFA) that are 

extending the concepts of models selected according to 1 to 4, and which we 

believe to be a promising step forward in the CBSE research. 

Though in Section 2.1.3 several issues with categorization of component models 

were presented, we will present the selected component models with respect to 

several attributes. However these attributes were not selected to give a set of general 

high level concepts that would help developers to select a correct component model 

by assessment of these attributes, nor to give understanding of general CBSE 

concepts. The attributes were rather selected according to our experience to point out 

the key specific features of each component model and their selection should quite 

easily imply from the text of previous Section 2.1 and Section 2.2, where was the 

experience presented. All of the component models are described elsewhere in more 

detail (some of them are presented in [69] technical report, which provides a very 

important annex to the [54] paper – each of the models presented in the technical 

report is described in a well-arranged and readable summary spanning just a few 

pages), but what we are missing is a detailed comparison of the component models 

not based on generic categories. The attributes are thus selected to provide the key 

characteristics of the component models where a set of models stands apart from the 

others. An important note is that although the selected attributes can be applied to a 

wide variety of component models (quite further beyond the restrictions 1 to 5 

presented above; and even to some component models without runtime component 

representation), their actual values are very specific to each of the component models 

(or at least to a set of similar component models). Thus a domain of attribute values 

for a larger set of selected component models would be superset of the attribute 

values presented here. And as the values tightly correspond to the actual features of 

each component model (the correct knowledge of which in turn requires deep 

understanding of the specific model), it was not our goal to provide a universal and 

definite set of possible attribute values. Instead we present only the values that 

exhibit themselves in an attribute of at least one of the selected component models. 

List of the attributes considered follows: 

A. Role of component 

B. Underlying platform 

C. Definition of component concept 

D. Unit of code deployment 

E. Support for explicit provisions 

F. Support for explicit requirements 

G. Runtime’s knowledge of component nesting 



40 

2.3.1 A: Role of Component 

The Section 2.2 concluded with a key observation – motivation and goals of 

component model are the key aspects by which was the component model’s design 

driven. All other features, aspects and many conceptual and implementation details 

are only more or less implied by establishment of the basic aspects. Thus the first and 

most important attribute of a component model we have defined is a role of 

component in the model – i.e. if we take a software platform without applying the 

specific component model, what are the weaknesses of the platform, and where does 

the component model enhance the platform with some previously unsupported 

features. The features themselves are either directly the components of the model or 

the components serve as a tool to achieve the component model’s goals. 

We consider the role of component as the only truly differentiating characteristics of 

a component model, which is an exception to our rather negative opinion on 

component model classification. We believe the role of component is a defining 

aspect of a component model and as such developers not only can, but must use it to 

identify the right platform for implementation of an application they are working on. 

Though we will present six distinct types of component roles, these are only the roles 

identified by analysis of the selected component model (so there definitely exist 

other roles of a component should one consider a broader domain of component 

models). Furthermore while the role of component uniquely characterizes a 

component model, it does not mean that a single component model has to provide 

only a single role for its component concepts. This situation can manifest itself in 

two ways: (a) component model has a single component concept that serves multiple 

roles or (b) component model has multiple component concepts, each of them 

implementing only a single role (or a subset of roles in general). In the second case 

the component model M often in fact comprised of two district component models 

that are both covered by the single encompassing model M. While technically the 

two sub-models should be utilizable separately, they often interconnected 

conceptually or in some specific implementation detail. Moreover they often build 

one on the other, thus one of them can be used separately, but the second one 

requires usage of the first one. If it makes sense in the specific case, we described 

both sub-models separately in Section 2.4, each having its own set of attributes 

assigned (i.e. also each having its own role of a component). 

With the motivation for distinction of component roles as described above, the actual 

roles identified match the motivations for component model development as they 

were presented in Section 2.2 (the roles are also presented in the same order as were 

the motivations presented). As the motivations behind the actual roles were already 

quite extensively described, only a list of the roles follows: 

1. Binary compatibility and metadata 

2. UI building blocks 

3. Support for versioning and deployment 

4. Services 

5. Dependency injection 



41 

6. Units of architectural nesting and composition 

2.3.2 B: Underlying Platform 

As we consider only component models with runtime in this thesis, it is natural the 

supported platform or platforms are another distinctive attribute of a component 

model. While some of the component models can be designed with platform 

independence in mind, most of them are tightly coupled to the underlying platform. 

While this can limit usability of a component model, as the models are typically 

meant to enhance an existing platform, the tight coupling is not only understandable, 

but often necessary so the model can achieve its goals. As the features provided by 

the model are in many cases platform specific, looser coupling to the platform of 

usually undesirable, if not even impossible (one of a common problem would be 

possible lack of optimality of the implementation, should the component model’s 

concepts be designed platform independently). 

An important note is that we consider the whole software and hardware stack of 

required features to be the underlying platform of a component model. And if model 

is tightly coupled to at least part of its required platform, it cannot be considered as 

platform independent (as porting it to another platform would require incompatible 

changes to some of its founding concepts). An example can be the OSGi model 

classified in [107] as platform independent, because to paraphrase [107]: “it is 

implemented in Java, which is platform independent, thus it is platform 

independent”. However the tight coupling of OSGi concepts to the Java platform 

makes it highly platform dependent, as implementing OSGi e.g. for the .NET 

platform would not be a straightforward task, and some of its concepts could be even 

in conflict with similar concepts of .NET. 

2.3.3 C: Definition of Component Concept 

Component defining attribute provides for each component model our view on what 

artifact is a component in that specific model. The component will be described in 

terminology of the component model considered, we will also provide the names 

under which are components used in the model. While for some component models 

distinction between component type and component instance is natural and does not 

require any detailed explanation, for some of them (e.g. the COM model), where the 

terminology is different and the distinction is not very clear, we will provide a 

separate definition of component type and component instance concepts. 

2.3.4 D: Unit of Code Deployment 

Although it is often assumed as a key property of a component, granularity of a 

component often does not correlate to granularity of units of code deployments in a 

respective component model. In fact many component models (e.g. COM) do not 

provide its own solution to the problem of code deployment, but reuse some other 

(pre-existing) technique available on the target platform of a component model.    

2.3.5 E: Support for Explicit Provisions 

May component be defined in many different ways, it always is defined to provide 

some features or functionality to its surrounding environment. All the component 



42 

technologies presented build on concepts of OOP, are mostly some sort of object 

encapsulation and a basic nature of every object is provision of its features available 

to the environment. Thus in most of the component models a component is always 

accompanied with a variant of provided functionality descriptions (component 

provisions by short – in a common case this functionality is exposed by 

implementing a set of interfaces by the component or its underlying class, i.e. 

provided interfaces). On the other hand some component models do not directly 

define components as classes (mostly the ones from with the “Support for versioning 

and deployment” component role) – e.g. .NET assemblies – leading to not such an 

automatic and clear definition of component provisions. However even in component 

models with components reflecting classes of the underlying platform, the 

requirement on explicitly supplying the component’s provided functionality is not 

always as automatic as the previous text suggests. An example can be a COM 

component without a provided optional type library does not have any information 

associated with the component type identification. Such a COM component does not 

explicitly promise any functionality, thus the COM component model runtime cannot 

take advantage of any such information to locate a suitable component for a client 

requiring a specific functionality. Any functionality provided by a component can be 

identified only at runtime by dynamic query by the client code. 

An explicit support for provisions defined as part of a component type is a key 

attribute of a component model as is if this feature is missing; it changes the 

programming model in a significant way. It may also imply further problems 

especially related to any enhancement of such a component model (e.g. components 

and their possible relations cannot be analyzed without executing or at least 

interpreting component’s code). 

2.3.6 F: Support for Explicit Requirements 

While most component models implement mandatory publishing of component 

provisions, the situation is more complicated on the other side, the side of publishing 

explicit component requirements (i.e. features or other or their functionality 

components required by a component from its environment; in a component model 

with provided interfaces specified on components this requirement typically 

transforms into a need for components to somehow specify a set of required 

interfaces – this means, the component expects the component model will provide a 

suitable implementation of such interface, usually in form of another component 

instance). As discussed in Section 2.1.1 whereas the Szyperski’s definition of a 

component dictates that explicitly specified requirements is a must for a component 

model, we show that for many component models that is not true. 

Although not that commonly supported the support for explicit requirements is very 

important attribute from a software engineering point of view, and as such it is also a 

key distinguishing feature of component models – which implies its inclusion in our 

set of component model’s characteristic attributes. Without knowledge of component 

requirements the component model has to rely on the component’s code to ask for 

any required features at runtime, and to correctly acquire and release any such 

resources dynamically provided by the component model. This leads to at least two 

problems: 



43 

(1) It is not possible (or at least it is very hard, as code analysis is required) to 

verify correctness of component composition beforehand, i.e. during design 

time. Especially for large and evolving applications this could pose a serious 

problem, as any inconsistencies in the component composition, or their 

interdependencies would lead to runtime exceptions. Thus having explicitly 

specified requirements can be of a similar advantage as statically typed 

programming languages have over dynamically typed ones. While using a 

dynamically typed language typically lowers immediate cost on software 

developments (as the software can be developed more easily and faster and 

less skilled developers are often required), in a long run cost of maintaining 

such applications increases dramatically as extensive testing is required often 

even for small localized changes to the code base. Similarly the explicit 

specification of component dependencies (requirements) can enable 

introduction of a verification system, what would verify the software’s 

correctness before its deployment. 

(2) The component model does not have full information about application’s 

runtime architecture (its information is separated into islands of knowledge, 

which are interconnected in reality due to the references components hold 

internally and that they interchange without component model’s supervision). 

While knowledge of the runtime architecture is not required for successful 

implementation and deployment of a component-based application, having 

this information can give the component model a great advantage that would 

in turn enable implementation of quite complex features otherwise 

unreachable. Example can be various means of application reconfiguration 

after it has been compiled – ranging from dependency injection allowing 

declarative way of component composition depending of specific end-used 

needs to a more dynamic component lifetime management allowing exchange 

of running component for their new versions without restarting the 

application, etc. 

With the explicit requirements knowledge any of the possibilities drafted above 

would be hardly achievable. On the other hand it is important to note, that missing 

support for explicit requirement does not limit component models in general. It again 

depends on the intended role of a component in the component model, as in many 

scenarios a simpler component model very tightly coupled with the underlying 

platform and very narrowly implementing a set of required features is sufficient and 

in fact can be more beneficial that a more complex model. 

2.3.7 G: Runtime’s Knowledge of Component Nesting 

This last attribute is in a sense an extension of the previous explicit requirements 

attribute (Section 2.3.6). Motivations for runtime’s explicit knowledge of component 

nesting are similar as the ones presented as the (2) problem for missing explicit 

component requirements in previous Section 2.3.6 – i.e. it is about runtime’s 

knowledge of application’s runtime architecture, that is detailed enough to enable 

some even more complex features. 

Especially in larger applications it is a must to structure the application into separate 

modules providing a specific functionality to rest of the application. In a plain OO 

application each of these modules would provide some public classes and interfaces 



44 

available for use by rest of the application (i.e. other modules of the application, or 

module’s environment), plus it would also contain some private code (private classes 

and interfaces), that is used solely to internally implement the public API of the 

module. While sometimes it is beneficial to separate these modules into distinct units 

of code distribution (Java’s JARs or .NET assemblies), often such separation is done 

only logically by structuring the source codes accordingly. In a typical scenario these 

two approaches are combined as the modules are often further structured into smaller 

units of functionality – this exhibits itself as a typical tree hierarchy of source files in 

nested file system directories (some OO environments, for example Java, even 

enforce such source code structuring, in case of Java it is source code structuring 

according to package hierarchy; While the Java type of hierarchy enforcement seem 

to be a good idea, in larger project it turns out, it is not the best approach – as the 

package structuring, i.e. structuring of the public API, might not be equivalent to the 

internal structuring of the application. By forcing the source code structure to be 

equivalent to package structure, the application is either required to reveal its 

internals to the outside world – by introducing new sub-packages induced not by API 

structure, but by its implementation – or mixing different application’s modules into 

a same source code directory, thus abandoning the foreseen application structuring). 

The component-based design often allows admitting such code structuring more 

explicitly. The typical approach is that a component is viewed as a black box, i.e. 

only the provisions and/or requirements are visible to the component model. 

Anything inside code, artifacts or features of a component is supposed to be its 

internals and the component model runtime does not have any knowledge about it. 

An application composed of many components will be probably logically structured 

in a similar way a plain OO application would be (as described above). This means 

that there will be some private components (implementing just some internal 

functionality, that should not be made separately available, thus is not part of 

application’s public API), and some public components providing the public API 

implementation via their exposed provided interfaces. 

Figure 1 shows example of such an application composed of two components: 

component A exposing the application’s API via its public interface; A’s code 

however does not implement the whole functionality, but it delegates part of its 

implementation to another component B. The component B is intended to be private, 

i.e. not exposed from the application (should it be implemented using MEF in .NET, 

A would be assembly public class, while B would be assembly internal class).  

public
interface private

interface

B

public
interface

A

B

public
interface

 

Figure 1. Sample component application composed of public component A and 

private component B. 



45 

If a component model used to implement the application does not have knowledge of 

the hierarchical code (component) nesting, the application would have to be 

implemented exactly as shown on Figure 1. However this approach hides the 

originally intended applications structure, where the B component is in fact logically 

nested inside A component as illustrates Figure 2. In the MEF component model one 

can emulate similar architecture by defining the field to reference the B component 

as private (as is denoted on Figure 1 and Figure 2). However even in MEF both 

components A and B would be physically on the same level of nesting as far as 

MEF’s runtime is concerned, i.e. as shown on Figure 1. 

Under the “Runtime’s Knowledge of Component Nesting” attribute of a component 

model we would like to capture a unique characteristic of some component models, 

which explicitly support more structured component applications. These component 

models usually define two types of components: (a) primitive components – they are 

similar to the file in a structured application’s source code file system (i.e. they 

contain the applications code), and (b) composite components – they are often 

defined similarly as directories, i.e. their basic mission is to provide structuring of the 

application, however they do not have do contain any code (an in some component 

models this is a typical case). 

A

public
interface private

interface

B

public
interface

A

private
interface

B

public
interface

 

Figure 2. Logical nesting of A and B components in MEF. 

SOFA is an example of such component model (as will be described in next section). 

An application similar to the one presented on Figure 1 and Figure 2 would be 

implemented in SOFA using two primitive components A and B (that would contain 

roughly the same code as in the previous scenarios), but the new artifact would be 

declaratively defined composite component C (without any actual implementation), 

that wraps both component A and B and delegates A’s public API as its own. Thus the 

new application’s public API is not defined by component A, but by the public 

interface of component C. The architecture is shown on Figure 3. 



46 

C
B

public
interface

A

public
interface

public
interface

C
B

public
interface

A

public
interface

public
interface

public
interface

 

Figure 3. Hierarchical component architecture in SOFA 

Another characteristic of component models with support for component nesting, 

they have more control of the inter-component dependencies. The ideal scenario is if 

a component model’s runtime has (almost) exclusive control of component 

dependencies, i.e. a component communicates with its environment only via its 

explicitly specified provisions and requirements (no communication with the 

environment is hidden inside component’s implementation). 

2.4 Component models overview 

With respect to the criteria described in the Section 2.3 we have selected several 

typical industry-supported component models (+ Fractal and SOFA 2 models). While 

we have analyzed the model in detail it turned out that preparation of a detailed 

description of each of the 15 component models in each of the proposed attributes is 

out of a scope of this thesis – we are preparing this description as our future work, 

and here we present only a short except of our key observation summarized into a 

following table (frameworks commonly referred to as “component models” are 

marked with a star [*], rest are frameworks with identified CBSE features): 

COM (Component Object Model) [49] * 

 

A - Role 1 (Binary compatibility and metadata) 

 

B - Platform Core programming language (OO optional, 

COM runtime not required in principle) 

 

C - Component • Component type = CLSID (GUID) = COM 

class = e.g. C++ class (but supports non-OO 

languages) [= class factory instance] 

• Component instance = object = e.g. C++ class 

instance or instances of multiple C++ classes (in 

case of aggregation) 

 

D - Unit of deployment PE binary file (multiple components per file) 

 

E - Explicit Provisions Partially (only with optional Type Library) 

 

F - Expl. Requirements No (component instantiated and bound in code) 

 

G - Runtime nesting 
No (allows aggregation and delegation patterns - 

but only component internals, structure always 

hidden from dependent components/runtime) 



47 

JavaBeans (required subset - properties, event listeners, constructor) [94] * 

 

A – Role 1 (Binary compatibility and metadata) - standard 

for enhancement of platform by advanced OO 

constructs 

 

B – Platform Java language 

 

C – Component Bean = Java class 

 

D - Unit of deployment Java class file 

 

E - Explicit Provisions Yes (via Java reflection) 

 

F - Expl. Requirements No (event source is a provided interface of a 

bean, event listener must be instantiated and 

bound in code) 

 

G - Runtime nesting No 

WinRT [176][59]   

 

A – Role 1 (Binary compatibility and metadata) - standard 

for enhancement of platform by advanced OO 

constructs 

 

B – Platform COM 

 

C – Component COM component with WinMD metadata + 

convention for advanced OO features 

(properties, generics, etc.) 

 

D - Unit of deployment PE binary file (multiple components per file) 

 

E - Explicit Provisions Yes (via WinMD metadata) 

 

F - Expl. Requirements No (component instantiated and bound in code) 

 

G - Runtime nesting No 

JavaBeans (optional subset - BeanInfo, DesignMode, prototypes, property editors, 

etc.) [94] * 

 

A - Role 2 (UI building blocks) 

 

B - Platform JavaBeans (required part of the specification) 

 

C - Component Core JavaBeans bean + additional features 

(persistence, control hosting, design support, 

etc.) 

 

D - Unit of deployment JAR file (containing the bean itself, serialized 

prototype instances, property editors, etc.) 

 

E - Explicit Provisions Yes (via BeanInfo) 

 

F - Expl. Requirements No 

 

G - Runtime nesting No 



48 

.NET components [128]   

 

A – Role 2 (UI building blocks) 

 

B – Platform .NET platform (CLR) 

 

C - Component • .NET class implementing IComponent 

interface 

• IComponent provides only support for hosting 

the class instance (reference to ISite interface) + 

information about design mode 

 

D - Unit of deployment .NET assembly (multiple components per 

assembly) 

 

E - Explicit Provisions Yes (via .NET reflection) 

 

F - Expl. Requirements No (component instantiated and bound in code) 

 

G - Runtime nesting No 

ActiveX [129]   

 

A – Role 2 (UI building blocks) 

 

B – Platform COM 

 

C - Component ActiveX control = COM component 

implementing recommended interfaces 

(persistence, late dispatch, control hosting, 

design support, etc.) 

 

D - Unit of deployment COM component (usually single component per 

PE binary file with .ocx extension) 

 

E - Explicit Provisions Partially (optional Type Library or 

IProvideClassInfo interface) 

 

F - Expl. Requirements No (component instantiated and bound in code) 

 

G - Runtime nesting No 

.NET assemblies [63][89] * 

 

 

A – Role 3 (Support for versioning and deployment) 

 

B – Platform .NET's CLR execution engine (EE) 

 

C – Component .NET assembly (main PE binary file + manifest 

+ optional additional files) = strong name 

 

D - Unit of deployment .NET assembly (usually single PE binary file, 

but multifile assemblies are also possible) 

 

E - Explicit Provisions Yes (via .NET reflection) 

 

F - Expl. Requirements Partialy (only assembly without contract) 

 

G - Runtime nesting No 

OSGi (Open Services Gateway initiative) [139] * 

 

A – Role 3 (Support for versioning and deployment) 

 

B - Platform Java plaform (JVM) 

 

C - Component Bundle = JAR file + metadata (manifest) 

 

D - Unit of deployment Bundle 

 

E - Explicit Provisions Yes 

 

F - Expl. Requirements Partially (only bundle without contract) 

 

G - Runtime nesting No 



49 

EJB (Enterprise JavaBeans) 3.1 [65] * 

 

A - Role 4 (Services) + 5 (Dependency injection) 

 

B - Platform Java platform (JVM) 

 

C - Component Bean = Java class 

 

D - Unit of deployment EAR file = JAR file + metadata 

 

E - Explicit Provisions Yes 

 

F - Expl. Requirements Partially (component instantiated and bound in 

code + option for simple dependency injection) 

 

G - Runtime nesting Partially (similar to MEF as described in Section 

2.3.7) 

COM+   [48] *   

 

A - Role 4 (Services) 

 

B - Platform COM 

 

C - Component COM component + 

additional features (application & services 

configuration) 

 

D - Unit of deployment PE binary file (multiple components per file) 

 

E - Explicit Provisions Yes (Type Library is required) 

 

F - Expl. Requirements No 

 

G - Runtime nesting No 

WCF (Windows Communication Foundation) [117] 

 

A - Role 4 (Services) 

 

B - Platform .NET platform (CLR) 

 

C - Component WCF service = .NET class 

 

D - Unit of deployment .NET assembly (multiple components per 

assembly) 

 

E - Explicit Provisions Yes 

 

F - Expl. Requirements No 

 

G - Runtime nesting No 

MEF (Managed Extensibility Framework) [112] * 

 

A - Role 5 (Dependency injection) 

 

B - Platform .NET platform (CLR) 

 

C - Component Part = .NET class 

 

D - Unit of deployment .NET assembly (multiple components per 

assembly) 

 

E - Explicit Provisions Yes 

 

F - Expl. Requirements Yes 

 

G - Runtime nesting Partially (see Section 2.3.7) 



50 

Spring  [163][164]   

 

A – Role 5 (Dependency injection) + 4 (Services) 

 

B – Platform Java (JVM) or .NET (CLR) platforms 

 

C - Component Bean = Java class/.NET class 

 

D - Unit of deployment Java class file/.NET assembly (multiple 

components per assembly) 

 

E - Explicit Provisions Yes 

 

F - Expl. Requirements Yes 

 

G - Runtime nesting No 

Fractal  [35][27][3] *   

 

A – Role 6 (Unit of architectural nesting and composition) 

+ 

5 (Dependency injection) 

 

B – Platform Java platform (JVM) 

 

C - Component 
• Primitive component = Java class, 

• Composite component = architectural unit 

(Fractal runtime entity) 

 

D - Unit of deployment Component 

 

E - Explicit Provisions Yes 

 

F - Expl. Requirements Yes 

 

G - Runtime nesting Yes 

SOFA 2 [40] *   

 

A – Role 6 (Unit of architectural nesting and composition) 

+ 

5 (Dependency injection) 

 

B – Platform Java platform (JVM) - (or similar OO language 

platform) 

 

C - Component 
• Primitive component = Java class, 

• Composite component = architectural unit 

(SOFA runtime entity) 

 

D - Unit of deployment Component 

 

E - Explicit Provisions Yes 

 

F - Expl. Requirements Yes 

 

G - Runtime nesting Yes 

 

2.5 Lessons Learnt from Analyzing the Selected 

Component Models 

Ability to combine multiple component models is not limited to having disjoint set of 

attributes of the participating component models – easiest way to see it is on the 

support for explicit provisions attribute: as most of the model support this feature, 

combining two of them will lead to “conflicting” set of provisions. However if look 

at the problem from a wider perspective (not restricting our view on the single 

attribute only), we will discover no conflict occurs in reality – if both component 



51 

models assume a different role of a component, thus themselves being on different 

levels of abstraction, each of them will define its own component provisions for each 

respective level of abstraction. The combination of “conflicting” attributes is then 

similarly possible as is the combination of two different component models. 

Furthermore two component models can be combinable even if they both define a 

same or similar role of a component. Compatibility of such models then depends on 

deeper analysis of respective features and their implementation of the two models. 

An example is the WinRT component model that falls into a same category 

according to the role of a component attribute as the COM component model. 

However as the WinRT is designed to enhance the COM features and uses the COM 

component model as part of its underlying platform, the two models are not only 

combinable, but the WinRT component model cannot be used without COM. 

Related to services interpretation there was a very interesting discussion among 

participants of FESCA 2007 [70] workshop. Ralf Reussner initiated a quite deep and 

long dispute on what is a relationship between components and services. The final 

result the community came up with was a statement that: “Services are defined on a 

different level of abstraction than components. A service can be implemented using 

one of the component technologies. And if so, a service is than equivalent to a 

deployed component (instance)”. While this seems to define services and 

components as two very distinct concepts, the statement is in fact coherent with our 

view on services and the conclusions presented. If we look at services as specific 

type of components, then according to our conclusion, one can choose another 

component model not in conflict with the “service” component model and create an 

application utilizing both of them. The “service” components will then provide the 

“service” features for the application, while the underlying components provide some 

other lower level features (e.g. dependency injection). The components from the 

lower component model will then be the “deployed components” from the FESCA 

statement. These components will then in turn use some features of the upper 

“service” component model that will allow them exhibit service oriented aspects. 

Example of such connection can be development of an enterprise application taking 

benefits of both EJB and Spring technologies – the EJB being the upper “service” 

component model, and the Spring being the lower component model serving as a 

dependency injection container – i.e. an example EJB bean (EJB components) could 

be composed of several Spring beans (Spring components) via dependency injection. 

2.6 Problem Statement Revisited 

Although there are many hierarchical component models (we presented the Fractal 

and SOFA representatives), to the best of our knowledge none of them is used in 

regular software development by a wide community of developers nor is 

acknowledged by the industry. At the first glance this situation seems puzzling as the 

hierarchical component models are of the farthest CBSE modeling approaches 

currently existing. Thus if we take a premise that CBSE should bring advantages 

over the classical OO programming techniques and common monolithic software 

design principles, the hierarchical component models should bring most advantages 

to the CBSE field. 



52 

For example, when trying to understand the advantages of the Fractal component 

model, one would typically look at the project’s web site first – to cite from two 

available project overviews at Fractal’s project page [72]: 

Fractal is a modular and extensible component model that can be used 

with various programming languages to design, implement, deploy and 

reconfigure various systems and applications, from operating systems to 

middleware platforms and to graphical user interfaces. 

and 

The Fractal component model heavily uses the separation of concerns 

design principle. The idea of this principle is to separate into distinct 

pieces of code or runtime entities the various concerns or aspects of an 

application: implementing the service provided by the application, but 

also making the application configurable, secure, available, etc. In 

particular, the Fractal component model uses three specific cases of the 

separation of concerns principle: namely separation of interface and 

implementation, component oriented programming, and inversion of 

control. 

The description is clearly feature oriented, i.e. it is trying to sell the most interesting 

and important features of the Fractal component model. There are also many Fractal 

or its Julia implementation related papers. Among them the original defining one 

[36] presents a thorough list of requirement on a component model as viewed by the 

authors. However the text is more oriented to again give a good understanding of 

Fractal component model features and to analyze their relationship to other existing 

component models and their features. The other key papers describing the 

implementability of Fractal in Java programming language [34][35] are then purely 

oriented to give readers introduction into the advanced concepts implemented. The 

most recent paper summarizing up-to-date state of the Fractal ecosystem [27] 

provides a nice overview of Fractal, but is written mostly with respect to the 

interesting feature set. While there are papers trying to put Fractal into a real life 

context (e.g. an extension of Fractal to allow seamless implementation of grid 

oriented applications [22]), papers describing the background goals the authors had 

in mind when designing Fractal are missing. 

The SOFA 2 component model as complex as it is, has a similar problem as the 

overview on its web site or contents of summary papers are also oriented towards the 

features SOFA provides. 

As many of the features of both Fractal and SOFA component model are quite 

complex and unorthodox (one of them is even the simple notion of component 

nesting into hierarchical architectures), the general lack of clear statements about 

component model goals and clear visions of how and where the provided features 

can be beneficial can be the key problem behind the low penetration of these 

component models into wider developer community. If we look at the component 

models presented in thesis, we can see a common pattern of all of the industrial 

component models falling into categories/roles (1) to (5) as defined in Section 2.3.1, 

and none of them being of the hierarchical nature. While it is hard to distinguish a 

cause and a consequence – i.e. whether the industrial component models have clearly 



53 

stated goals and whether they target specific developer needs because they are driven 

by a professional software company, that needs the solution; or whether the clear 

goals led to the wide adoption and later to adoption in the industry as well – it 

appears to be clear that a lack of well-defined goals or desired properties and some 

common case studies illustrating the key advantages of hierarchical component 

models is one of the common and key reasons for the low adoption. Simply said, the 

potential users of hierarchical component models just do not understand their key 

features due to their inherent complexity, and thus are not able to foresee the 

advantages they are able to deliver them. 

2.7 Revised Goals of the Thesis 

With respect to the current state-of-the-art in CBSE as analyzed in Section 2.1, 

Section 2.2 and Section 2.3 and the problems presented in previous Section 2.6 the 

goals of the thesis should be revised to closely reflect the current CBSE problems 

that we feel a necessary to solve. The goals are: 

(1) To identify the desired properties the hierarchical component models should 

expose in order to support wide use in software industry. We will provide 

examples of two industrial domains, where applying the hierarchical 

component models can be most beneficial. 

(2) To evaluate hierarchical component models in two major case-studies and 

present problems encountered. 

(3) To provide a novel contribution partially solving the problems identified 

while addressing the goal (2): approach to deal with complex error traces, 

support for modeling dynamic changes in hierarchical component 

architectures, and specification language for modeling component 

environment behavior. 



54 

Chapter 3  

 

Hierarchical Component Models Coming to Rescue – 

Identifying Benefits and Key Problems 

This chapter is structured according to the revised goals presented in Section 2.7. In 

Section 3.1 we identify and present the key areas where we see hierarchical 

component models most advantageous and propose their desired properties, whereas 

in Section 3.2 we provide an overview and summary of the published results. The 

latter section and the rest of the thesis are ordered again according to the goals 

presented. First we present two case studies to evaluate advantages and 

disadvantages of hierarchical components models (they are presented as a verbatim 

copy of parts of CRE project manual [3] and two of the published papers/book 

chapters [96][38]). In Section 3.2 we further present a summary of the key problem 

identified when modeling the case studies using a hierarchical component model – 

modeling an application with dynamic nature of its potential components and 

modeling the components environment behavior to allow its behavior verification 

without the whole application being completed – this presents summary of the 

remaining two papers coping with these problems [42][113]. 

3.1 Target Domain of Hierarchical Component Models 

This section forms our response to the first of the revised goals of the thesis, i.e. we 

analyze the concepts available in hierarchical component models and show their key 

advantages. 

3.1.1 Hierarchical Component Models from Program Correctness 

Verification Perspective 

During many of our projects (e.g. CRE project presented in Chapter 5, and CoCoME 

presented in Chapter 6) we gained a lot of experience with component based 

software engineering. While CBSE can be viewed from many different angles and 

covers many software engineering aspects (as presented in Chapter 1 and Chapter 2), 

our main focus lies in the domain of software correctness verification and 

performance prediction (which is unfortunately a very complex problem by itself and 

as such it is out of the scope of this thesis). An ability to apply some correctness 

verification techniques to component-based applications is a crucial feature we 

require to be present in any component-oriented modeling and/or development 

approach. Being this of our top priority, let us show advantages of hierarchical 

component models in the domain of software correctness verification first. 

During development of component-based applications two common approaches are 

usually taken: (1) the whole application code base is created from scratch and a 

CBSE approach is used to enhance application maintainability and extensibility, (2) 

there exists a repository of existing components (while it is common to think about a 

public component repository or a component store in this context, see [165], a private 



55 

repository of in-house developed components is also a valid case for the presented 

scenario), and the target application is “developed” just by selecting right set of 

components and interconnecting them accordingly (so called Commercially available 

Off-The-Shelf or COTS approach applied on software components – see [173]; for a 

more recent analysis of the idea see Chapter 15 in [53]). These two approaches are in 

fact very extreme cases of a real development process. On the one hand, it is virtually 

impossible to create a new application just from purely pre-implemented 

components, as at least some glue or transformation code is required in non-

theoretical cases. Furthermore the probability of having all the required components 

somewhere in a repository and at the same time not having an application with 

required features combining the components is fairly low. On the other hand in a 

typical situation with a constrained budget and deadlines, developers try to reuse as 

much code as possible, and do not try to develop everything from scratch. So a 

common scenario in component-based application development would be a 

combination of (1) and (2). 

In any case, the number of software components (whether newly developed or reused 

from some repository) can grow quite high, and it becomes a key problem to keep 

the whole application in a coherent state. The problem can even worsen if different 

components are developed by different developers or developer teams (this is 

inherently highly probable in case of components pulled from a repository of existing 

components). While initially it might seem the problem is easily solvable just by 

features of common programming environments – i.e. that it is sufficient just to 

verify compatibility of components based on syntactic compatibility of each other 

interfaces – it is generally not true. Each method implicitly assumes some 

preconditions are holding before its call, and the component itself usually maintains a 

set of invariants that have to hold for it to work properly. 

In our approach of behavior protocols (see Chapter 4) we cope with this problem by 

specifying all possible correct behaviors of a component by a behavior protocol (a 

combination of valid method calls on a component and all variations of responses the 

component can exhibit as a reaction to a sequence of method calls). For each of the 

components considered to be used in an application we have to have a single 

behavior protocol describing all the possible traces of incoming and outgoing calls 

on that component exhibiting component’s correct behavior (none of the 

preconditions and invariants of the component are broken). As in a typical 

application the components are not directly communicating only with their adjacent 

neighbors, but via them they are logically communicating also with the others (the 

rest), for a verification of a correct incorporation of a component we need to verify 

the composition as a whole (e.g. a component A might be so general, that a 

component B is not compatible with it [A exhibits some behavior the B is not able to 

accept); but adding a component C into the composition [connected just to the A 

component directly] might constrain the A’s behavior in a way it becomes 

compatible with component B). This then leads to a need to model the state space of 

the whole application at once, which in turn leads an exponential growth in number 

of states (so called state space explosion problem – see Chapter 4) – which is roughly 

a Cartesian product of the state spaces of individual components. 

Thus lowering a number of components needed in a single verification step would 

decrease the problem complexity in an order of magnitude. Such a simplification is 

natural result of hierarchical structuring of software components. With an application 



56 

modeled as a set of nested composite components, each of them being potentially 

composed of either primitive components (leafs of the hierarchy) or further nested 

composite components, the verification problem scales well by falling apart to 

smaller sub-problems. Now we have a behavior protocol for each of the primitive 

components (as in the original scenario of a flat model with all components on a 

single level of nesting), and add new behavior protocols for each of the new 

composite components. A behavior protocol for a composite component will 

describe only the expected behavior of the whole component (exhibited by its inner 

components), that is observable from the outside. With all this information, the 

verification then can be done step by step, i.e. for each composite component a 

composition of (behavior protocols) its subcomponents is verified against its own 

expected behavior to the outside world (composite component’s behavior protocol). 

When modeling the CRE case-study (see Chapter 5 for more details) we started with 

an initial simple model of several components and created behavior protocols 

describing their behavior. However after trying to verify correctness of their 

composition we ran into a dead end, as the all the possible interleavings of their 

behavior was simply too complex and we were not able to finish the verification in a 

reasonable time (in no more than a few hours). As a next step we naturally separated 

the applications components into subsets according to their functionality and created 

respective composite components encompassing the subsets behavior. It turn out this 

was a clear step that we should have done already during the original modeling of the 

application. Not only it would better allow us to reuse the composite components 

(behavior groups) in another projects, but more importantly, the problem of 

composition correctness verification shrunk at each level of nesting that much, that 

we were able to verify each of the smaller compositions in matter of hours (we had to 

verify correctness of composition inside each of the new composite components at 

each level of nesting, one by one). This final application architecture is the one 

presented in Chapter 5 and in Appendix A. 

3.1.2 Hierarchical vs. Flat Component Architectures at Runtime – 

A General View 

An important aspect has not been analyzed in detail yet – do we need the hierarchical 

component view both at the design time and at runtime? From the perspective of 

basic formal verification of the program correctness the answer seems quite 

straightforward – the model being the program’s abstraction seems to be the most 

important part by itself (or more precisely its structure – i.e. its hierarchical 

composition). A property verification tool can analyze the model and effectively 

decide if the required properties are satisfied by the model or not. The next step, i.e. 

the verification of the compliance of the actual program’s code to the model 

specification, would be typically done piece by piece – component by component 

(similar to some other static verification techniques – e.g. .NET Code Contracts 

Static Verifier verifying the preconditions and postconditions on method-by-method 

basis). The system would take each of the primitive components and verify whether 

their implementation complies with the appropriate portion of the model (primitive 

component behavior specification). And for this system to work it is not necessary, 

that the actual runtime components (as constituted by the implementation – e.g. 

actual Java class implementing the component) are still organized in a hierarchical 

manner – i.e. the system can be flattened. 



57 

A simplest approach to the flattening is to retain all the primitive components in the 

system and just erase the composite components – nonetheless all the bindings 

between the components will be retained as well. As a path formed by typical follow-

up of bindings in a hierarchical component architecture begins and ends at primitive 

components (e.g. A and B), during the flattening process these two components are 

just bound together directly (direct binding between A and B). 

A clear advantage of such approach is that the target system does not have to have 

any support for the component oriented code at all – i.e. no special component 

system runtime is needed and the application can be deployed to any regular software 

platform or software application framework without any need of special 

configuration. This is very advantageous in many common scenarios as it is 

minimizing external code dependencies – so the installation and distribution of the 

application is simplified (as a lot of complex component systems required 

complicated installation and configuration process which is often in contradiction to 

the more and more promoted XCOPY style installation experience on desktop/end-

user oriented platforms), or it can even enable using the componentized application 

code in situations unrealizable with common component systems (typical example is 

embedding the code into a more complex software system – e.g. using it as a sort of a 

plug-in or user-definable extension – as such systems typically define their own 

programming model and code distribution and localization inherently incompatible 

with a component system implementation). 

An interesting component system in this context is the MEF component model – as 

described in Section 2.3.7 and 2.4 – MEF can be considered to be somewhere 

halfway in between hierarchical and flat component models. The architecture as 

described by a MEF initialization code can be hierarchical in general, however such 

multilevel structure is only used during the component description phase and for 

component look-up and instantiation, but during the “composition” process the actual 

class instances implementing the available components are interconnected directly 

with each other – i.e. the flattening occurs at runtime during the last step of 

component architecture creation. This behavior allows developers to use the MEF in 

most .NET-based software development scenarios, as the MEF typically does not 

interfere with any other development paradigm required by the developer at the same 

time (in a same application). 

In component models more oriented on the architecture’s hierarchy, e.g. Fractal and 

SOFA 2, the flattening can be a bit more complex process. While composite 

components in this case often do not encompass any business code, they often 

contain a lot of application control features (e.g. life cycle controllers, interceptor and 

aspect waving infrastructure, implementation of other non-functional properties) that 

have to be somehow present in the final application’s code as well (so the 

applications behavior reflects all the features and properties induced by the 

application model or architecture design). This typically leads to generation of pieces 

of “glue” code during the flattening that will reside in the final executable along the 

code of all the primitive components. The glue code can be for example generated 

from connector description capturing the non-functional properties, see [43].  

To sum up the flat component representation at runtime seems to be rather 

straightforward approach without any disadvantages. While this might be true during 



58 

development of a typical desktop application, this observation does not hold in other 

more specialized scenarios as will be shown in the following Section 3.1.3. 

3.1.3 Importance of Hierarchical Runtime Architectures in 

Industrial Scenarios 

During our research in the component oriented software domain we have participated 

in several international projects with industrial partners involved. Aside from 

focusing on delivering the required results of the individual projects, we also 

intensively tried to listen to all the industrial partners’ needs and to gather as much of 

their experience as possible. Although companies do not always use component 

technology directly, they do often use similar concepts or are searching for new 

approaches to software development in directions, where the component oriented 

software design can be of a huge advantage. The following text presents our 

apprehension of needs two typical examples (ABB and ESA) relevant to the context 

of this thesis. 

ABB 

ABB is a large international corporation developing and selling many products and 

providing services in a broad spectrum of domains. In context of this thesis its 

German branch [1] and its German research and development center are particularly 

interesting as one of their target domains is development of control and monitoring 

systems for large industrial plants (ranging from gas-processing and chemical plants 

to wide range of power plants including nuclear power plants). When a new plant is 

built and an ABB control system is installed, it is expected to be in service for 

several decades. And for the types of plants mentioned the only admissible scenario 

is, that after the plant begins its regular operations, the owning company cannot 

afford some long lasting outages in the services provided by the plant. This implies 

that the control and monitoring system has to run without interruption or shut down 

for mostly the whole life-span of the plant where it has been deployed. However 

during such a long uptime (of several decades) the system definitely needs some 

maintenance, in context of the deployed software it naturally means deployment of 

new versions of the software (whether to correct any bugs or inconsistencies, should 

any be found, but mostly to shape it according to the changing needs in evolving 

production processes of the plant). 

Hierarchical component models/systems can bring a nice solution to this problem. If 

the system is modeled, designed and implemented correctly in agreement with ideal 

practices of designing hierarchically composed component application, the units of 

functionality would be separated in specific composite components. And if the 

component system runtime is aware of the hierarchy and force the code to obey the 

rules of nesting, the runtime has full information about the applications architecture 

and can take the liberty of exchanging the whole composite component (including its 

internals – i.e. the components nested in lower levels of component hierarchy) with 

its new version with corrected or enhanced functionality. With the fully known 

architecture of the system the task is much more simpler as in a general scenario of a 

unconstrained application not incorporating the concepts of hierarchical component 

models – in the earlier case the hierarchical component system runtime has “just” to 

monitor the components interfaces in question and pause all incoming and outgoing 

communications and in this window update the component and later resume the 



59 

communication by letting the retained flow of messages (method calls) to be passed 

to the new version of the component. The whole process can be done on a live 

system without a need to stop any other components that are not participating in the 

update. While the process is not exactly that simple as described above, the 

hierarchical component models are in a unique position to support such advanced 

scenarios – an example our experience with a successful prototype implementation of 

a similar approach proving the idea is feasible in context of hierarchical component 

models (namely the SOFA 2 component model) can be found in [152].  

Enhancing the common hierarchical component models concepts with a new concept 

of dynamic entities, that we have proposed in [41], [42], and later in Chapter 7, can 

further simplify the problem and would allow the implementation to be more general 

by supporting a wider range of application design approaches. The dynamic entities 

formalize a typical externally visible subset of components state (namely allows to 

identify and pass references to internally allocated resources) and allow to extend the 

component model’s runtime knowledge about the applications structure. Revealing 

such knowledge to the runtime then enables to more easily and directly implement 

the component exchange as described above even for more complex components that 

do not have their state idealistically encapsulated inside, but share part of the state 

with other components in the system (even on higher levels of nesting). 

Another challenge lay especially in emerging directions the ABB tries to apply in the 

context of human interfaces to the control and monitoring system it is developing. 

Traditionally the systems are managed both from a centralized control center and 

from local terminals located near the actual devices and facilities all around the plant. 

These local terminals are used to control any locally specific properties of the device 

and to provide many diagnostic and maintenance indicators and control options. 

However with the advent of highly computationally and graphically capable devices 

as smart mobile phones and smart tablets ABB is introducing an interesting paradigm 

shift in the area mentioned (among other reasons, this change is also backed up by 

demand of young employee generation, that is becoming a majority in many 

industrial plant world-wide, to use the systems they are used to and to control the 

industrial devices in a similar manner they are used to from their personal lives) – a 

prototype future plant employee is envisioned to have its personal smart phone 

and/or tablet and to be able to go thought the plant freely during his or hers shift, and 

control and monitor the devices remotely without need to use any specific local 

terminals. Furthermore he or she should not be constrained to a single plant, but he or 

she should be able to migrate between multiple plants of a company, even during a 

single shift. And the different plants (of even a same company) would most probably 

not be exactly the same (having different devices or different models of a same 

device for one functionality required, similar devices configured or deployed with a 

different sets of capabilities) – in context of software systems, this means the control 

system must be highly configurable to support different devices and different 

versions of the control subsystems (each plant might use a different version of a 

system). 

Again the hierarchical component model can provide advantages in this context. The 

clear structuring of the application’s architecture allows easy extensibility of the 

control system. Our positive experience on the subject is for example reflected in 

[142], that presents an implementation of component packaging and distribution 

system in context of SOFA 2 component system, which takes advantage of SOFA’s 



60 

hierarchical nature. Similar approach in cooperation with the one mentioned [152] 

can be used to implement a highly dynamic control system for a prototype future 

plant as described in previous paragraph. If the potential employee would come near 

a device of the plant, the component system can automatically download new control 

component in a correct version from the device and install it into the component 

system instance on the employees mobile device. 

ESA 

The European Space Agency (ESA) is an organization uniting several of the EU 

member states with the goal to cooperate and bring complex space missions to life. 

ESA covers effort of a lot of small companies as well as large international 

corporations and provides coordination for successful outcome of its own project 

proposals. The area covered by ESA missions is much diversified from regular Earth 

orbiting satellites, a cargo ship serving the International Space Station to missions 

studying several bodies in our solar system (from Mars to Titan), to the actual on 

orbit delivery vehicles. A typical long term space mission incorporates a space craft 

of any kind (including both mentioned satellites and missions to other planets) takes 

currently a lot of preparation spreading several years or even a decade. An interesting 

observation is that in most of the missions the whole spacecraft including all core 

and payload hardware and software is made from scratch. And ESA is aware that this 

is one of the main reasons for such a long time of a mission preparation – which not 

acceptable in a long term view as (a) cost of such missions is becoming increasingly 

large, (b) if a new interesting goal for space exploration is proposed the actual 

science results will be delayed many years or decades (as after the spacecraft launch 

the mission duration itself can span several years), (c) as the selection of 

technologies used in the mission has to be frozen in quite early phases of the 

spacecraft development (this applies to both hardware and software), the spacecraft 

is typically very outdated at the time of the actual launch. Taking all there problems 

into account ESA’s long term goal is to fundamentally shorten the mission 

preparation time from years to month (to a least one year, or in some more optimistic 

scenarios even to about three months). 

All of these goals has been summarized and applied in an ongoing ESA initiative 

SAVOIR (initiated as conclusions of [12], with state current report in [68]), which 

has main goal of creating a common base platform for development of on-board 

avionics. The initiative is formulated with the specifics of space bound missions in 

context of ESA projects in mind. There has been a lot of discussion on many ESA 

organized workshops on this topic and as a result and as one of the parts of the 

SAVOIR is a goal to prepare component-oriented software architecture to cope with 

the problems described above and in SAVOIR. Several approaches were proposed, 

among them is the proposal of a component framework [150][84] based on typical 

CBSE concepts. Currently the main project established to fulfill the SAVOIR goals 

is the CORDET [67] project. 

The advantages of the core component orientation aspects are clear and especially 

aim at solving the problem of software and hardware reuse, which is minimal in 

current approach to development of space crafts in ESA related projects (as 

described above). The software reuse, i.e. reusing a same piece of software – a 

software component – in multiple missions, is direct implication of a strict 

componentization of system software architecture. The hardware reuse (in a single 



61 

space craft) is an implication of not only the emergence of isolated components in 

the architecture, but the typical approach on designing component system’s runtime 

for more advanced component models – i.e. if the runtime is given an exclusive 

control of the system’s architecture evolvement and of inter-component 

communication, the components are bound by the component model’s rules. 

Multiple components, that would originally each require its own on-board computer 

(this need for component separation typically arises from a need to separate different 

payloads or to separate the payload from the mission control), can be in such system 

allowed to run simultaneously on a single computer. This change significantly lowers 

the overall cost of on-board avionics by greatly reducing the amount of needed 

hardware (by its aforementioned reuse). Note that the hierarchical component models 

typically exhibit such a tight control of components and their life time. 

Another specifics of space exploration missions is the typical requirement of multiple 

modes of operation as different on-board hardware is used during different phases of 

the mission – this is true especially for more complex solar system covering missions 

(i.e. vehicle delivery to the initial orbit, from Earth orbit to target body transition, 

target zone [orbit] entering, the actual science mission, optional return to Earth, etc.). 

Such missions often include large spacecraft’s hardware reconfigurations – e.g. 

physically releasing/dumping some components not necessary for the rest of the 

mission, or separation of science modules from the mother space craft (in a list of 

ESA missions we can find example of the Huygens lander separation from the 

Cassini probe [134]). The ability of hierarchical component models to easily support 

smooth system architecture reconfigurations was described above and was also 

discussed in this context in our previous work [95]. Moreover our experience is also 

reflected in a specific approach to take advantage of hierarchical component models 

and to handle directly the different modes of operation of systems componentized 

into hierarchical components has been developed in [141]. The original idea is 

further expanded in [140] and [148]. 

3.1.4 Putting All Together – Formal Behavior Specification as an 

Advantage 

Applying the CBSE concepts in regular software development unfortunately also 

introduces some problems. Several companies that already incorporated CBSE 

massively into their development process face the following problem: after several 

years of applications development they gathered a repository of several thousands of 

software components. Naturally when a new application is to be developed, they 

would like to reuse their existing components and at least partially develop the 

application just by assembling the pre-developed components together (i.e. a way of 

application of the COTS principle [173][53]). However, it is clear they have only the 

specification of the required behavior of demanded components at the initial stage of 

application development, and especially do not have their finalized interfaces ready. 

And even if they would, any component already implementing the required behavior 

would most probably have at least minor differences in the interface specification 

(not to mention, that in most cases the target component in the repository would be 

solving a subset or superset of the problem or be an under- or over-abstraction of the 

problem). This makes the process of finding the right components a quite challenging 

task. 



62 

It turns out that in a real scenario the size of a repository of components matters, but 

with opposite implications than would be naively expected – i.e. the larger the 

repository grows, the more useless it is. Even with hundreds of components the 

developers cannot browse the repository manually and standard searching 

mechanisms fail, as the developers are not only not able to “guess” a correct required 

interface declaration, but even a “guess” of a component/interface name or a 

reasonable subset of its informal description is impossible (the latter not only due to 

inherent creativity of human developers, when it comes to names and textual 

descriptions, but often also due to different levels of abstraction used in component 

description/name and the search string). 

The problem sketched in previous two paragraphs is in fact an extension of the 

problem discussed in Section 3.1.1, i.e. a necessity to verify component composition 

correctness. Let’s return back to the discussion presented in the section – we argued 

that syntactic interface compliance is not enough and to state that two components 

are compatible, one has to compare their behaviors on much deeper lever. However 

we silently assumed, the components to be composed were already found and 

chosen. As we leant later such an assumption is not always possible as it initially 

seemed. But should a developer already have a behavioral description for each of the 

components in a repository (to verify correctness of their composition in a potential 

future system), the same behavioral description can be used to locate the right 

component. If the developer prepares a formal description of the expected behavior 

for which a component needs to be localized, such description can be used during 

search to find a match with formal behavioral description of components existing in 

the repository. And should such a “intelligent” repository be implemented, the 

hierarchical component models would allow better search results as more abstract 

units of code in form of composite components can be also stored in the repository. 

The behavioral description of a composite component would only a subset of 

functionality of its internal components as constrained by the actual composition of 

the composed component – and as such it would be a better abstraction of the 

functionality provided by the composite component (as discussed in Section 3.1.1). 

As the behavioral description is clear of any internal behaviors not exposed by the 

composite component (i.e. its implementation detail), the search in the repository 

should be more successful, as the query can only describe the expected behavior and 

not an expected implementation (i.e. the developer can state in the query only what a 

component should do, and not how it should be done). A similar approach targeting 

localization of compatible components as presented above has been described in [31] 

Though it was not explicitly stated before, the ability of hierarchical component 

models to provide suitable means of component composition correctness (i.e. 

absence of some types of bugs, the verification framework targets) would be also a 

key feature in context of ABB and ESA projects showcased above. Having the 

behavioral description ready for the correctness verification can serve also as a 

documentation value as presented in this section. Last of strengths of hierarchical 

component models we would like to stress here is a unique position to support 

software performance predictability. Since the performance prediction is out of scope 

of this thesis as noted in previous chapters, let’s give only a few comments to this 

topic. The Palladio Component Model (PCM) [23] is a mature framework for 

performance prediction, i.e. for prediction of various QoS related attributes. The 

PCM shows nesting software components and creating hierarchical component 

architectures brings to the domain of performance prediction similar advantages as it 



63 

does to the domain of software correctness verification (i.e. structuring of the initial 

problem into smaller units on natural boundaries already present in the code and 

provision of abstractions for units of code). 

The performance prediction approach can be further extended to improve solution to 

the component localization problem. If PCM or similar approach is used as a basic to 

predict component performance, the Stochastic Performance Logic (SPL) [39] then 

can be used to match this performance related description to needs of a developer 

that is looking for a right component to solve his or hers problem. A combination of 

behavioral description (like behavior protocols) and SPL formulas can be used both 

as component specification as well as a search query. Components then can be found 

just by specification of their functionality and their QoS attributes (without a need to 

exactly require any specific implementation details). 

3.1.5 Summary of Hierarchical Component Models’ Desired 

Properties 

In Section 3.1.1 to Section 3.2.5 we provided a detailed analysis of advantages of 

hierarchical component models and shown several domains of software engineering 

where these advantages would be especially appreciated. They can be summarized 

into the following that can be viewed as the desired properties the hierarchical 

component models should target to fully live up to their potential: 

(1) Hierarchical component architecture at runtime 

(2) Software correctness assurance and verification 

(3) Performance prediction 

(4) Documentation 

3.2 Guide to Published Results – Proposed Solution 

Explained 

The goal of the rest of the thesis (covering the global revised goals of the thesis as 

introduced in Section 2.7), namely Chapter 4 to Chapter 8, is to evaluate the 

hierarchical component model’s desired properties (1), (2) and (4) (as defined in 

Section 3.1.5) in context of a selected hierarchical component model: Fractal 

component model and its Julia implementation – a model with an explicit support for 

hierarchical architecture at runtime, a choice that reflects the property (1) from 

Section 3.1.5. 

The goal of this section is to give the reader a summary of each of the following 

chapters (Chapter 4 to Chapter 8) and to give their content into context of remaining 

chapters as well as into context of the analysis provided in Chapter 1 and Chapter 2 

of the thesis. 

Exploring and enhancing hierarchical component models with respect of all four 

identified goals can lead to introduction of many very complex problems to solve and 

providing a solution to all of them would be out of the scope of this thesis. Instead 

we focus only on the problem of verification of the software design and 



64 

implementation correctness. On the other hand in the case-studies presented later in 

the thesis we tried to analyze the project assignments from many different angles in 

order to be able to deliver a complex solution that would have positive characteristics 

in as many software engineering aspects as possible. A more enhanced case-study 

solution in this sense is our CoCoME for Fractal project as described in Chapter 6, 

where we were able to provide an architectural model suitable for and used in both 

behavioral correctness verification and implementation performance predictions 

tasks. A complex approach to solve similar software design and development tasks is 

crucial to propose the best approach reasonably applicable in more than one domain. 

If the formal method used to provide proofs of application correctness is designed in 

isolation without relation to other analyses that might be required to be performed on 

the developed application’s code or design, it can lead to a state where the different 

analysis methods have contradicting requirements. The same or similar task – e.g. 

creation of application’s model – then has to be done multiple times – creating the 

similar input separately for each of the analysis methods for example. Such approach 

is of course time consuming and can lead to more errors in the models and especially 

to model inconsistencies. 

In Section 3.1 we identified the key goals of hierarchical component models. As it 

seems they should be ideal to model especially the types of applications and to solve 

the problems described above, the following Chapters 5 to 7 present our evaluation 

of application modeling utilizing all the means provided by componentization into 

hierarchically nested components. The following sections (Section 3.2.1, Section 

3.2.2, Section 3.2.3, Section 3.2.5, and Section 3.2.6) provide a more detailed 

explanation of published results of each respective chapter. Each section is dedicated 

to one of the chapters: Chapter 4 (background: behavior protocols), Chapter 5 (CRE 

case-study), Chapter 6 (CoCoME case-study), Chapter 7 (capturing entities in 

architecture), Chapter 8 (modeling Windows kernel drivers’ environment). 

3.2.1 Behavior Protocols and Verification of Software Model 

Correctness (Chapter 4) 

In Chapter 4 we introduce our approach to verification of application correctness and 

provide introduction into its background. First we introduce the behavior protocols 

formalism itself – it is a specification language, where each behavior protocol is an 

expression that expresses all possible behaviors of a software component (behavior 

protocols are especially targeting hierarchical component models). Basic unit of a 

behavior protocol is an action expressing an incoming or outgoing method call on a 

component boundary (more precisely behavior protocols distinguish more fine 

grained events of the call itself and its return back to caller). These method call 

actions are then composed with several operators (like sequence, alternative, parallel 

execution, etc.) to form a final behavior protocol expression. More details and a 

formal explanation can be found in Chapter 4. 

In the second half of Chapter 4 we show, how are behavior protocols used to verify 

correctness of component based applications. As already mentioned before, we 

verify the application correctness by studying the applications architecture and by 

verifying it for lack of composition errors. Each component in the architecture 

(whether primitive or composite) is assigned a single behavior protocol that describes 

its behavior – i.e. acceptable ordering of method calls on that component boundary, 



65 

that the component is able receive at its provided interfaces and a relationship to and 

promise of possibly emitted method calls to required interfaces. We introduce three 

methods used to apply behavior protocols in application correctness verification: 

(1) Static verification: In this method we verify the applications architecture for 

lack of various composition errors. This process is divided into steps, where 

in each step a correct composition is verified for a single composite 

component and all components directly nested inside of it (i.e. on a minus one 

level of nesting – these might be primitive components [directly implemented 

in some programming language] or other composite components). This 

process verifies the inner components’ composition as constrained by their 

enclosing composite component’s behavior protocols. This proves the inner 

architecture of a composite component behaves only according to the 

composite components behavior protocol and only such behavior is exhibited 

to the outside of than component. In next steps this process is repeated for 

other composite components in the architecture, considerably on different 

levels of nesting. An important note is that the whole application does not 

have to be verified always completely, but as the composite components can 

be reused in a different application than created for, the same is true for their 

behavior protocols forming a “prove” of their functionality (i.e. if a 

composition of a composite component is not changes, its composition can be 

verified only once). 

(2) Runtime verification: This method is a smarter variant of unit tests – it 

verifies for primitive components, they are implemented as specified in their 

behavior protocol. 

(3) Code analysis: This is another variant of verification of primitive component 

correctness. Contrary to the runtime verification the code analysis method 

does not test the component at runtime, but does an analysis of component 

source code to verify the component’s implementation really obeys its 

behavior protocols. While this method is more exhaustive and can provide a 

better confidence on component’s correctness than runtime verification, it 

might not be able to finish for too complex component implementations (due 

to the state space explosion problem). The runtime verification then can be 

used as a fall back method in such situations. 

Whole content of Chapter 4 is a verbatim copy of excerpts from CRE project manual 

[3]. 

3.2.2 CRE Case-study – Enhancing the Fractal Tool-chain with 

Correctness Verification Techniques (Chapter 5) 

In Chapter 5 we present our experience from the first case-study we have devised 

and implemented in one of our projects – the CRE for Fractal. The CRE project 

mostly targeted a viable way of verifying a componentized application design and to 

provide basic means to verify coherence between resulting application’s 

implementation to its original design. Contribution of the project can be divided into 

several key areas: design of a case-study demo, behavior protocols and their tool-

chain integration into Julia Fractal implementation, implementing the demo in 

Fractal and modeling it in behavior protocols, extensions of behavioral protocols to 



66 

be able to describe the case-study demo, verification of behavioral correctness, ideas 

how to cope with complex error traces possibly resulting from the verification 

process. In the following paragraphs we present a summary of the project results 

from Chapter 5. 

Applying a research concept in real life scenario is not a simple task as it might seem 

– as much has to be done to actually and successfully implement a viable idea, often 

some enhancements and/or changes are usually required (it was nicely summarized 

by team members of Ivana Černá from Masaryk University in Brno: “an algorithm 

[sketch] is not a tool – a lot of non-trivial work is necessary to provide a feasible 

implementation in a target programming environment [algorithm engineering]”). 

The step from an idea to its implementation is becoming more and more important 

and a gap between algorithms and implementation widens as the technology becomes 

more and more complex (a nice example of large distance of current hardware 

architectures from properties of they should have according to von Neuman’s 

architecture used in theory that illustrates the problem can be found in [15]). 

Applying the problem to discussed domain it mean that not only designing a formal 

specification language (as behavior protocols) is a challenge, but enough attention 

need to be paid even to the actual implementation of these concepts. As the way the 

ideas are implemented can be a reason allowing for a real practical usability of the 

whole system.  This was one of the points we focused on the CRE project and our 

approach to integrating and extending the behavior protocol verification tool chain 

(i.e. the Behavior Protocol Checker or BPC for short) into Julia Fractal component 

model implementation tool-chain is presented in Section 5.2. 

Preceding Section 5.1 presents the key contribution of Chapter 5, a case-study used 

to verify maturity and applicability of BPC + Fractal integration done as part of CRE 

project in a real-life scenario. The application presented as a case-study is an 

example of an enterprise system that takes advantages or hierarchical component 

structuring. The case study is devised in a way to incorporate many CBSE concepts 

and to provide a “stress” test for the tools as well as the behavior protocol formalism 

itself. While not directly presented in this thesis (for being quite long), the as part of 

the CRE project all the case-study components were implemented and also formally 

modeled in behavioral protocols. 

The last Section 5.3 summarized our experience from the CRE project. On an 

example it presents a key unsolved problem of the project: a need to model 

dynamism of the application during its runtime, more precisely a need to model 

dynamically changing architectures in context of hierarchical component models. 

While not solved as part of CRE project, we propose a solution to it by introducing a 

new concept of dynamic entities to CBSE – the solution has its own dedicated part of 

the thesis, Chapter 7. Further in Section 5.3 we present two enhancements of our core 

application verification techniques: (a) a solution to problem of formally describing 

synchronization problems in behavior protocols – introduction of so called Atomic 

Actions, (b) we discuss a problem of identification of errors from error traces 

returned by a verification tool. We propose and evaluate several approaches to cope 

with very complex and long error traces we have experienced in verification of the 

CRE project’s case study application. 



67 

Sections 5.1, 5.2, 5.3.2, 5.3.3 are verbatim copies of excerpts from CRE project 

manual [3], Section 5.3.1 is newly written for this thesis and Section 5.4 is a 

verbatim copy of an excerpt from [96] paper. 

3.2.3 CoCoME Case-study – Comparing Our Approach to Others 

(Chapter 6) 

After completion of the CRE project we participated in the CoCoME competition 

[151] – its main goal being to provide a comparison of different component modeling 

approaches and highlights of their key advantages and weaknesses. With our 

previous experience with Fractal component model, we were able to provide a 

complete solution to the problem identified above, ranging from formal behavior 

verification to performance evaluation and prediction. 

As a common case study based on example from [105] was in detail described in 

introductory chapters of the CoCoME book [151], a publically available source, we 

do not repeat it here. In Chapter 6 we rather focus on our experience from 

implementing the case study in Fractal hierarchical component model (more 

precisely again its Julia implementation), and an evaluation of our modeling process. 

While we have modeled many different aspects of the example application (as 

mentioned at the beginning of this section), in Chapter 6 only onto the key 

architectural modeling itself and of formal verification of applications correctness via 

behavior protocol checker (BPC) integrated into Fractal (Julia). 

With respect to goals of this thesis we have encountered two problems from a 

verification perspective in our CoCoME approach. First we ran into a problem with 

expressing synchronization again. While it has been solve by atomic action in the 

CRE project, during formal specification of CoCoME component behavior we found 

out, the atomic actions in fact “oversolved” the problem and that a more simple 

approach without atomic action could be taken. In Chapter 6 we show that modeling 

approach of Petri Nets [145] can be applied on behavior protocols and used to model 

synchronization problems. While it mitigates a need for atomic actions for 

expression of basic synchronization problems it is still a useful tool. As atomic action 

were fully implemented into BPC as part of CRE project they still can be regularly 

used to express complex problems in behavior protocols. 

Second, while the CoCoME architecture as described in [151] is static, we believe it 

was rather a choice of the CoCoME organizers (so that as many component model 

approaches as possible can participate), than being an inherent feature of the selected 

type of application. In a real-life application of the scenario we see a need for 

dynamically modifying parts of the architecture – especially the number of stores and 

cash desks per store would not be static and might change during time. And approach 

that would support dynamic changes to the architecture without stopping the system 

would be very beneficial here (especially for large grocery stores that has often 24/7 

business hours in Czech Republic). While we did not cope with the problem in 

CoCoME contest directly it forms another motivation for our proposal of dynamic 

architectures modeling via dynamic entities concept introduced in Chapter 7. 

Whole content of Chapter 6 is a verbatim copy of excerpts from CoCoME in Fractal 

[38] book chapter. 



68 

3.2.4 Case-studies Experience and Open Problems 

Though both CRE and CoCoME projects were successful (not only from our 

perspective but also from perspective of project initiators), we identified several 

problems during development of respective project components and their modeling 

and formal specification. While we have solved most of them during these projects, 

two problems remain still open or are not sufficiently solved in all cases: (1) support 

for applications with dynamic architectural changes at runtime, (2) specification of 

component’s behavior against its potential environment. The next two sections will 

summarize the remaining two key contribution chapters tackling these problems, but 

let us give now a short summary of the motivations – motivation for the capturing 

dynamic entities in component architectures is twofold: 

(a) As shown on concrete examples in Section 3.1.3 an explicit notion of parts of 

component state can be beneficial for a component model runtime to support 

complex reconfiguration scenarios (ranging from mode changes of 

components and implies architectural reconfiguration, to exchanging 

components with different ones), 

(b) If an application uses some concepts of a specific component model runtime 

or an underlying programming platform to achieve some dynamic 

reconfigurations to reflect needs of client requests, and if such changes in 

applications structure are not properly captured in application’s architecture, 

any correctness verification technique aiming at taking advantage of 

component nesting in hierarchical component models will not be able to 

correctly incorporate information about application dynamism in its program 

or architecture analysis as the changes in application structure happen on a 

different level of abstraction, out of reach of the analysis – thus results of 

such analysis become less reliable as more false positive or false negatives 

can be returned as a result of unintentional under-abstraction or over-

abstraction of the problem. The following Section 3.2.5 discusses the problem 

further and also provides a summary of a proposed solution from Chapter 7. 

In both CRE and CoCoME projects we have applied an approach to verify 

application correctness by recursively verify correctness of composition in hierarchy 

of nested components. The approach assumes a developer creates a primitive 

component’s behavior specification that is later used to verify correctness of its 

composition in a superior composite component. However in order for the whole 

approach to be valid not only at the specification level, but also for the real 

application behavior, a final step was needed – to verify correctness of primitive 

component’s implementation by verifying its code adherence to its formal behavioral 

specification. As described in Chapter 4, Chapter 5, Chapter 6 and also summarized 

above we use the Java PathFinder tool to do this final step. Unfortunately as stated 

above the approach requires a formal prior specification of primitive component’s 

behavior. However there are situations where one can assume the developer of the 

primitive component might not be skilled enough in formal methods to write such a 

specification correctly. Chapter 8 provides an alternative solution to code analysis, 

that can be used also to cope with this problem as will discussed in Section 3.2.6. 



69 

3.2.5 Capturing Application Dynamism in Design and Runtime 

Architectures – A Fine-grained Entities Approach (Chapter 7) 

In Chapter 7 we aim at proposing a solution to the aforementioned problem of 

capturing dynamic entities in application’s architecture. To provide a comprehensive 

solution, as well as to retain all possibilities of verification of both functional and 

non-functional properties as done in CRE and CoCoME projects any solution should 

aim at: (1) extend the traditional CBSE concepts related to hierarchical component 

models (we constrain ourselves only to this subset of CBSE), (2) provide an 

implementation of the proposed concepts in a hierarchical component model runtime, 

and (3) design a new or extend an existing formalism to capture the new concepts in 

behavioral description of software components, so that applications using them can 

have formally verified their correctness as applications without dynamic entities. As 

each of these steps is a very complex one, we did not want to solve them all at once, 

but decided to more carefully pay attention to them one by one, so that all are 

designed coherently and an overall solution is successful. 

In initial paragraphs of Chapter 7 and in Section 7.1 to Section 7.4 we propose a 

solution to point (1) – we introduce a concept of proto-binding that allows tracking 

references to dynamic entities as they are passed around application’s architecture. 

While defined on a conceptual level, all new concepts presented were designed very 

carefully to be able to fulfill also point (2) and (3) in future and yet be general 

enough not to be tied to any specific hierarchical component model or formal 

behavioral description language. For this reason we retain all the existing CBSE 

concepts and the concept of proto-binding only extends them and builds on them. To 

be able (both for a component model runtime and any analysis tool) to keep track of 

dynamic changes in application’s architecture we further introduce a concept of four 

reconfiguration actions that constrain architectural changes only to a valid subset 

tightly coupled to the proto-binding (i.e. only proto-bindings can participate in any 

changes of application’s architecture, regular bindings between application’s 

components will remain static backwards compatible with original dynamic entities 

unaware component model). The reconfiguration actions serve as annotations of 

application’s architecture and denote explicit points of allowed dynamicity (runtime 

reconfigurations). 

Building on the introduced concept of proto-bindings we also propose a new concept 

of proto-components capturing dynamic instantiation of components in the 

architecture. Proto-components again constrains dynamic reconfigurations related to 

component creation only to a “safe” subset we are able to guarantee to be able to 

apply in analyzed hierarchical component models as well as formal specification 

languages.   

A key feature of the presented solution utilizing proto-bindings is that a client using 

dynamic entities does not have to know anything about providers of dynamic entities 

nor about their actual implementation and vice versa. Each client and provider only 

sees its own end of a proto-binding and is concerned only about defining 

reconfiguration actions at its side. Thus our solution retains the most important 

CBSE concept of component encapsulation, i.e. components even if exposing 

dynamic entities can be still viewed as a black box and any component’s 

environment can depend only on its provided and required interfaces – the 



70 

importance of the black box feature of components is thoroughly analyzed in [30], 

and we target to have the all new CBSE concepts compatible with this view. 

The proposed approach assumes each dynamic entity (possibly a dynamically 

instantiated component created via proto-component) has its owner defined at time of 

its creation and for its whole life time the entity resides in a context of that owner. 

Thus a concept of component migration is not explicitly supported yet – however no 

feature of proto-bindings and proto-components should deny such feature and for 

example an implementation of factory pattern for hierarchical component models as 

proposed in [85] should be just an extension of set of reconfiguration actions without 

changes of the basic concepts. It is definitely a direction we plan to explore more in 

detail in future together with an evaluation of the basic concept of proto-components. 

The last Section 7.5 in Chapter 7 presents a short evaluation of presented concepts. 

First we provide a reference to a prototype implementation of the concepts in context 

of SOFA 2 component model, second we have remodeled relevant parts of the case-

study demo from CRE project (as presented in Section 5.1) using the proto-bindings 

and reconfiguration action architectural annotations and show they are feasible in 

such a real-life scenario. 

Content of initial paragraphs of Chapter 7 and text of Sections 7.1, 7.2, 7.3, 7.4 are 

verbatim copies of excerpts from [42] paper and [41] technical report, Section 7.5 

contains evaluation of presented concepts and is newly written for this thesis. 

3.2.6 Modeling Components’ Environment – Windows Kernel 

Driver Developer’s Perspective (Chapter 8) 

As shown in Chapter 2 various component models have quite different views on 

what is a component and how it should be used. We have also analyzed several 

frameworks and their component orientation, even though the frameworks 

themselves do not mention component at all (e.g. the aforementioned Spring 

framework). It turns out that if not focusing entirely on software frameworks 

positioning themselves as component models or systems, a whole new spectrum of 

software with component-oriented aspects arises. And if concepts of component-

oriented design are analyzed and their advantages are presented it is worth analyzing 

the broader software spectrum outside the typical component-oriented software 

boundaries, as it is possible the component-aware techniques will have the same 

advantage in the other similar component-oriented domain of software. 

One of such domain is an environment of Windows kernel drivers – there are well 

defined units of code with what can be viewed as a set of required and provided 

interfaces. As the Windows kernel is structured into fairly independent subsystems 

(managers), each subsystem can be also viewed as a component (all functions with a 

same prefix would form a provided interface of that component). In Chapter 8 we 

analyze a problem of verifying correctness of Windows drivers’ implementation, 

thus in CBSE concepts, correctness of composition of the Windows kernel 

subsystem components against the driver components (or even other drives 

components as well – as the Windows kernel infrastructure often utilizes a concept of 

base driver and its sub drivers [mini-drivers], a concept very similar to CBSE 

concept of hierarchically nested components). As a solution to the problem a new 

specification language DeSpec is introduced in Chapter 8. The language can be used 



71 

to formally describe the environment of the Windows drivers, i.e. the Windows 

kernel itself. However as its purpose is verify correctness of driver and not the 

Windows kernel, the environment’s specification does not have to describe the 

Windows kernel implementation detail, but it rather describes only the interface 

(API) to the kernel drivers on a level of WDK (Windows Driver [Development] Kit) 

documentation. 

As identified in both CRE and CoCoME case-studies, it is important to have a 

reasonable formal model of component’s environment to be able to verify its code 

mostly in isolation without a need to verify the whole application. While our current 

approach applied to hierarchical component models expects to have a formal 

behavioral specification of a primitive component and the Java PathFinder model 

checker is then exploited to verify its actual code correctness against the 

specification (or more precisely the component’s environment represented by 

automatically generated inverse behavior to that of the target component), the other 

way round is also feasible. Thus in scenarios where there is a rather stable 

implementation of an extensible component-oriented application, the DeSpec 

language can be used to describe the application core behavior with respect to any 

components it could be extended by – i.e. the allowed behavior of any additionally 

added components. The Zing model checker (considered in Chapter 8) then can be 

used as an alternative approach to verify correctness of these components with 

respect to their composition into the application. This approach does not require the 

developer of the (primitive) component to provide any specification, his or hers 

intentions are just given by the component’s code itself. While there might be many 

components prepared by different developers to plug-in into the application, the 

application is created only once, thus a formal specification of applications public 

API (environment from plug-in components point of view) in DeSpec has to be 

prepared once by a skilled developer with good knowledge of formal methods, which 

provides an elegant solution for the problem outlined in Section 3.2.4. 

Whole content of Chapter 8 is a verbatim copy of excerpt from [113] paper. 

3.2.7 Further Focus of the Thesis 

From the problems identified and discussed in Chapter 5 - Chapter 8 we further focus 

mainly on those listed below: 

(1) Dealing with complex error traces (Section 5.4) 

(2) Modeling dynamic component architectures (Section 5.3.1, and Section 3.2.3) 

(3) Modeling component environment behavior (Section 4.4, Section 5.2, and 

Section 3.2.6) 

These problems are addressed in the following parts of the thesis: (1) in Section 5.4, 

(2) in Chapter 7, and (3) in Chapter 8. 



72 

Chapter 4  

Background: Behavioral specification 

The purpose of behavior protocols is to specify the behavior of software components, 

so that interesting properties of their behavior can be verified. The problem of 

behavior verification is undecidable in general. There are two ways to face it: (1) to 

use behavior description languages which describe behavior of the software precisely 

and to put up with the fact that the tools will never stop for some inputs (behavior 

descriptions), (2) to use behavior description languages, which are not expressive 

enough to describe behavior of software precisely, but the verification of the 

specifications is decidable. The approach taken by the behavior protocols is the 

second one, due to its key advantage - possibility to implement a fully automatic 

method of behavior verification (as implemented in the behavior protocol checker). 

 

The rest of the chapter describes the basic concepts of behavioral protocols, as well 

as ways how to utilize them to verify behavioral correctness of software components.  

4.1 Introduction to Behavior Protocols 

The main difference between "full" description of a component behavior and a 

corresponding behavior protocol is that the protocol describes only sequences of 

method calls on the component's interfaces, abstracting from the values passed as 

method parameters and return values. Such a level of abstraction is very suitable for 

verification tasks specific to software components. 

 

On Figure 4, there is an example of a component application consisting of two 

simple components. The component Logger provides basic logging functionality, 

which is used by the component Client. Therefore, Client's (required) log 

interface is bound to Logger's (provided) log interface. Logger's log interface 

consists of three methods: open, which has to be called at the beginning of the 

"logging session", log, which can be called several times after the open method was 

called (every call of the log method causes writing of the string passed as the 

message parameter into a persistent store), and the close method, which has to be 

called at the end of the "logging session". In a classic software development process, 

description of a component's functionality (such as Logger) has typically the form of 

a plain English text, which is not suitable for automatized behavior verification. To 

fill this "semantic gap", we add a behavior protocol to the "classic" component 

interface specification.  

 

CREman 

CREman 



73 

 

Figure 4. Example of a component application with behavior protocols 

For example, the behavior protocol of Logger, consistent with the plain English 

specification above, reads as follows: 

 
?log.open ; 

?log.log* ; 

?log.close 

 

This protocol consists of tokens denoting method calls (?log.open, ?log.log, and 

?log.close) and operators specifying the ordering of the method calls (; and *). 

Every of these tokens consists of the question mark, denoting that the method call is 

absorbed by Logger, and the qualification of the method within the component, 

consisting of the interface name and the method name (separated by the dot sign). 

Finally, the ; binary operator stands for sequencing of method calls, while the * 

postfix unary operator denotes zero or more repetitions of ?log.log. Therefore, this 

protocol indeed specifies what was written informally above: the call of log.open is 

absorbed, then zero or more calls of log.log are absorbed, and finally log.close 

is absorbed. Now, let us focus on the behavior protocol of Client: 

 
!log.open ; 

!log.log ; 

!log.log ; 

!log.close 

 

It differs from Logger in two ways: First, the method qualifications are preceded 

with the exclamation mark, which stands for emitting a method call. Second, it 

specifies that Client calls log.log exactly twice. It is correct, because Logger is 

ready to accept an arbitrary number of log.log calls, if they occur after log.open and 

before log.close (which is the case). 

BP 

BP 



74 

4.1.1 Events and Traces 

Events are the keystone of behavior protocol semantics. Every event is atomic. We 

define two types of events: requests and responses. Let m be the (fully qualified) 

name of a method. Then, m^ (or m↑) stands for a request/call of m and m$ (or m↓) 

stands for a response/return from m. Always, two components cooperate on an event: 

one component emits the event and another component absorbs the event. To 

distinguish between those two roles, we use the prefix ! for emitting and ? for 

absorbing. If m is a method name, the symbols ?m^, ?m$, !m^, !m$ are called event 

tokens. Recall Figure 4 from the beginning of Section 0. In the protocol of Client, 

!log.log^ would stand for emitting the call of log.log, while ?log.log$ would 

stand for absorbing the return from log.log. To specify that an event occurs as an 

internal event of a component C (i.e., it results from a communication of C's 

subcomponents), we use the # prefix. To provide a way to specify a request and the 

corresponding response at once, we define abbreviations: if m is a (fully qualified) 

name of a method, ?m is an abbreviation for the protocol (?m^ ; !m$) (the whole 

method call from the point of view of the callee) and !m stands for (!m^ ; ?m$) (the 

whole method call from the point of view of the caller). In fact, in the examples in 

the Section 0 introduction, only these abbreviations were used to specify the 

behavior, and usage of explicit requests and responses was not necessary. 

 

We also define two more complex abbreviations: if P is an arbitrary protocol, ?m{P} 

means that the call request of m is absorbed, and while m is processed, the component 

behaves as specified by P; afterwards, the call response of m is emitted. In a similar 

way, !m{P} means that P specifies the behavior of the caller between issuing the call 

of m and receiving the response of m. The abbreviations not only serve as syntactic 

sugar, allowing writing readable behavior protocols, but they also explicitly denote 

pairing of events (requests and corresponding responses). In certain situations, such 

information is essential for the behavior protocol checker. This is why for certain 

types of interfaces, only an abbreviation can be used to specify the method call, and 

the use of explicit event specification is forbidden (see Section 4.5.1). 

 

A computation of a component application is formally described by a trace - a finite 

sequence of event tokens. Every protocol specifies a set of traces. Recall the protocol 

of Client from Figure 1.1: 

 
!log.open ; 

!log.log ; 

!log.log ; 

!log.close 

 

It specifies a single trace: 

 
<!log.open^, ?log.open$, 

!log.log^, ?log.log$, 

!log.log^, ?log.log$, 

!log.close^, ?log.close$> 

 

BP 

BP 



75 

For Logger, the situation is more complex: 

 
?log.open ; 

?log.log* ; 

?log.close 

 

This protocol specifies an infinite number of traces, as it accepts arbitrary number of 

calls to log.log. 

We show the first three shortest traces specified by the protocol: 

 
<?log.open^, !log.open$, ?log.close^, !log.close$> 

 

<?log.open^, !log.open$, ?log.log^, !log.log$, 

?log.close^, !log.close$> 

 

<?log.open^, !log.open$, ?log.log^, !log.log$, 

?log.log^, !log.log$, ?log.close^, !log.close$> 

 

... 

 

The set of all traces specified by a protocol P is denoted as L(P). 

4.1.2 Behavior Protocol Basic Operators 

For behavior protocols, the following basic operators are defined: sequencing 

(denoted by ;), repetition (denoted by *), alternative (denoted by +), and-parallel 

(denoted by |), and or-parallel (denoted by ||). We illustrate the meaning of the 

operators (except the last one) on the following protocol of the Client component 

from Figure 1.1: 

 
!log.open ; 

( 

 (!log.log | !log.log) 

 + 

 !log.log* 

) ; 

!log.close 

 

Client, whose behavior is specified by this protocol, first calls log.open. Then, it 

either calls log.log twice in parallel, or it calls log.log several times sequentially (or 

it does not call log.log at all, as * stands for zero or more repetitions). At the end, it 

calls log.close. 

 

Or-parallel is defined as follows: if P and Q are protocols, (P || Q) stands for (P + 

(P | Q) + Q). 

4.1.3 Frame and Architecture Protocols 

From the point of view of behavior, every component can be divided into two parts: 

frame and architecture. The frame of a component C consists of all interfaces which 

are provided or required by C to "outside world" (the components which are external 

to C). The architecture of C consist of frames of C's direct subcomponents and 

bindings between those frames (and also bindings between interfaces of C's 

subcomponents and interfaces of C itself). 

BP 

BP 

BP 



76 

 

On Figure 5, the frame of Client consists of the (only) log interface, while its 

architecture is formed by the frames of A, B and the bindings <A:log1-log>, 

<B:log2-log>, <A:nt1-B:nt2> (as explained in Section 1.2.2, in the context of the 

Client component <A:log1-log> stands for the binding of the log1 interface of the A 

subcomponent to the log interface of Client itself; here, we introduce <A:nt1-B:nt2> 

- the binding between interfaces of A and B subcomponents). 

 

An architecture is always associated with a concrete frame (we also say that the 

architecture implements this frame). 

Following the definition of frame and architecture, we also distinguish between 

frame protocols and architecture protocols. Frame protocol of a component C 

describes requests and responses on the frame of C. The frame protocol is specified 

by the developer. The architecture protocol of C is automatically constructed from 

the frame protocols of C's direct subcomponents by the behavior protocol checker. It 

describes what is happening "inside" C. 

 

 

Figure 5. Example of a composite component 

with bindings among subcomponents 

In the architecture protocol of a component C, two types of events appear: events on 

the frame of C, and events resulting from the communication of C's direct 

subcomponents (internal events). The first type of events is denoted in the same way 

as in frame protocols. The # prefix is used (in both event tokens and abbreviations) to 

denote internal events (Section 2.1). 

 



77 

For example, the architecture protocol of the Client component from Figure 2.1 reads 

as follows: 

 
!<A:log1-log>.open ; 

#<A:nt1-B:nt2>.notify { 

 !<B:log2-log>.log 

} ; 

!<A:log1-log>.log ; 

!<A:log1-log>.close 

 

Formally, the composition of subcomponent frame protocols resulting in the 

architecture protocol is defined by the consent operator [4]. This operator is never 

used by the designer specifying the frame protocols, it is only a formalization of the 

behavior composition which is done automatically by the behavior protocol checker. 

4.2 Static Verification of Behavior Protocols 

4.2.1 Protocol Compliance 

One of the behavior properties, which can be statically verified with our behavior 

protocol checker, is compliance of an architecture protocol PA (of a component C) 

with the frame protocol PF (of C). Informally, there are two conditions which have 

to be satisfied in order for PA to be compliant with PF (let F be the frame of C): 

(1)PA specifies acceptance of any sequence of calls of the methods provided by F 

that are dictated by PF. (2) For such sequences, PA specifies only such calls of the 

methods required by F that are anticipated by PF. Example of an architecture 

protocol not compliant with the frame protocol was already described in Section 

1.2.2. As a more elaborate example of compliant behavior, recall the architecture 

protocol of Client from Figure 2.1 in Section 2.3... 

 
!<A:log1-log>.open ; 

#<A:nt1-B:nt2>.notify { 

 !<B:log2-log>.log 

} ; 

!<A:log1-log>.log ; 

!<A:log1-log>.close 

 

... and the corresponding frame protocol: 

 
!log.open ; 

!log.log ; 

!log.log ; 

!log.close 

 

The architecture protocol is compliant with the frame protocol, because if we abstract 

from the internal events of Client (which are not important from the point of view 

of compliance), and from different naming conventions (the architecture protocol 

uses binding names, the frame protocol uses interface names), both the protocols 

specify the same set of traces (or, in this particular case, the same trace). We have 

developed two different formal definitions of behavior compliance: pragmatic 

compliance, published in [146], and consensual compliance, which uses the consent 

operator [4] and is implemented in the current version of the behavior protocol 

checker. 

BP 

BP 

BP 



78 

4.2.2 Composition Errors 

Composition errors are communication errors, which result from composition of 

components with incompatible behavior. If the definition of the components is 

enhanced by behavior protocols, those composition errors can be checked statically. 

 

The first type of composition error is bad activity, which was demonstrated in 

Section 1.2.2. It occurs when a component A tries to call a method of a component B 

in such a way which in not specified in B's behavior protocol. 

 

No activity (or deadlock) occurs when computation in a component application 

cannot progress (none of the components is able to emit an event), and at least one of 

the components has not finished its computation (the application thus cannot stop 

correctly). To show an example of no activity, let us modify the frame protocol of 

Client's A subcomponent from Figure 2.1 in Section 2.3: 

 
!log1.open ; 

!log1.log ; 

!log1.close 

 

Here, the B component will be "blocked", as it expects a call of the notify 

method on its nt2 interface - this call is never emitted by A. After A makes all the 

calls specified in its behavior protocol, a no activity error occurs. An infinite activity 

(divergence) occurs when computation of a component application never stops, but 

components are never blocked, i.e. always there is an event which can be both 

emitted and absorbed. An example of a component composition resulting in infinite 

activity can be found on Figure 2.2. Here, the A and B components call forever the 

notify method on each other's ntp interface in turns. More information on 

composition errors can be found in [4]. 

 

Figure 6. Example of an infinite activity 

BP 



79 

4.2.3 Incomplete Bindings 

We say that a component architecture has incomplete bindings, if there exists an 

interface (either provided or required), which does not participate in any binding (we 

call such an interface an unbound interface). The existence of an unbound interface is 

not necessarily a design error: this typically happens when the designer reuses a 

component developed originally for different application and decides to utilize only a 

part of the component's functionality. If the behavior of the components in the 

architecture is specified using behavior protocols, it is possible to statically check 

whether the incomplete bindings cause a problem. 

 

An unbound provided interface can cause bad activity or no activity (Section 2.4.2). 

On the other hand, an unbound required interface can cause a new type of 

composition error: unbound requires error. Unbound requires error occurs when a 

component tries to call a method on its required interface, which is unbound. An 

example of a component application with one unbound required interface (the nt 

interface of the A component) is shown on Figure 2.3. On the ch interface of A, the 

a or the b method can be called. If b is called, A reacts by calling nt.notify. 

As the B component calls only ch.a, the A:nt.notify method is never called 

and the fact that A:nt is unbound does not cause any problem. On the other hand, if 

the behavior protocol of B was (!ch.b*), it would result in an unbound requires 

error. More information on incomplete bindings can be found in [5]. 

 

 

Figure 7. Example of incomplete bindings 

4.3 Runtime Verification of Behavior Protocols 

The run-time checker monitors the events on the external interfaces of a component 

(the trace) and checks whether this trace is one of those specified by the frame 



80 

protocol of the component. If not, it is considered to be an error. The main reason for 

using the run-time checker is verification of the composite components with dynamic 

architectures (which cannot be verified statically). Also, run-time checking is an 

alternative to static checking in the situations when the architecture of a (composite) 

component is so complex that the static checker cannot be used. Last but not least, 

run-time checker can be used to check the compliance of a primitive component 

behavior with the frame protocol (this cannot be done using the static protocol 

checker in principle, because there are no subcomponent frame protocols). We show 

the functionality of the run-time checker on the example from Figure 1.1 in Section 

1.2.1. The frame protocol of Client specifies that the log.log method has to 

be called after log.open has been called. If log.close were called instead at 

that moment, the run-time checker would detect an error. What exactly happens when 

such an error is detected depends on the configuration of the run-time checker. 

Typically, the error is reported and logged within the runtime-checking framework. 

The runtime checking framework may throw an exception in the calling thread to 

notify the application about the erroneous call, or the application may continue 

without being affected. In either case, the run-time checking of the component 

(whose frame protocol was violated) is stopped. It is not possible to continue run-

time checking of the component in this case, as the behavior protocols formal model 

does not support "error recovery". The run-time checker also detects the violation of 

the frame protocol caused by the component's environment (the "outer world"). For 

example, if the frame protocol of Client were 

 
!log.open; 

!log.open; 

!log.close 

 

(i.e., to start by calling log.open twice) and Client behaved in compliance 

with this protocol (so that no protocol violation would be detected by the run-time 

checker for Client), error would be reported for Logger, as its protocol does not 

allow to accept a call of the log.open method twice. 

4.4 Code Analysis 

The purpose of code analysis of a primitive component is to check whether the 

component's behavior is bounded by its frame protocol, that means checking whether 

the component can accept and emit method calls on its frame interfaces only in 

sequences that are determined by its frame protocol. Main advantage of code analysis 

over runtime checking is that all techniques of code analysis are exhaustive, i.e. they 

check all the possible runs of the verified code. We decided to employ model 

checking, which is one of the more popular techniques of software code analysis. 

Model checking [47] is a formal method of verification of finite state systems. The 

basic idea is that a model checker checks whether the model of a target system 

satisfies the property expressed in some property specification language. The 

checking is done by traversal of the state space that is generated from the model. 

Some model checkers accept as input the model manually created by the user, while 

others are able to automatically extract the model from the source code. However, 

both approaches have severe drawbacks. Manual construction of the model is a 

tedious and error-prone process. On the other hand, automated extraction of the 

BP 



81 

model faces the problem that the model is an abstraction and, therefore, it may 

represent behavior not possible in the original program. Consequently, a model 

checker may then find errors that are not present in the program (i.e., false 

negatives). Fortunately, there exist model checkers that work directly with the 

implementation of a target system - Java Pathfinder is an example of such a model 

checker. 

Properties to be checked are usually expressed via temporal logic (CTL, LTL), or in 

the form of assertions. Some model checkers are also able to check for a fixed set of 

special properties (deadlocks, uncaught exceptions, etc). 

The biggest problem of model checking with respect to practical use of this 

technique is the size of the state space typical for software systems (the problem of 

state explosion). However, decomposition of a software system into components 

helps to mitigate the problem. A component usually generates smaller state space 

than the entire system and, therefore, can be checked with fewer requirements on 

space and time. 

In our case, we use model checking to check whether a primitive component is 

bounded by its frame protocol or not. And since most implementation of the Fractal 

Component Model (used in our projects presented later) are Java-based (including 

the reference implementation Julia), we decided to use the Java PathFinder model 

checker (JPF) [133]. 



82 

Chapter 5 CRE Case-study 

The CRE case-study presented in this chapter was created as part of our CRE 

(Component Reliability Extensions) project [2]. The project was done in cooperation 

with France Telecom and the goal of the project itself can be summarized by a short 

citation from [2]: “The purpose of this project is to extend the Fractal Component 

model and its Julia implementation with support for Behavior Protocols”. The 

following Section 5.1 presents a novel case study created in the CRE project to verify 

the new techniques implemented into Julia and Fractal. Section 5.2 describes our 

integration of Behavior Protocol checker into Fractal, Section 5.3 and Section 5.4 

present problems identified in modeling the CRE case-study in the extended 

Fractal/Julia, and propose solution to mitigate them. 

5.1 The Case-study 

In this section we present the case-study as engineered in the CRE project. As most 

of the text is verbatim copied from the project’s results manual, we retained its 

original wording – especially the case-study is referred to as “the demo” in the rest of 

the text. The case-study was prepared with cooperation with the France Telecom to 

reflect a typical application of one of its business domains. It was specially crafted in 

a way to employ a diverse set of architectural features, so that we would be able to 

stress test our modeling approaches to the edge. 

The demo presents a prototype implementation of a payment system for public 

Internet access on airports. It is designed so that clients of several air-carriers from 

the same group (e.g. SkyTeam) can have access to the Internet. Clients access the 

system via a wireless network (e.g. WiFi); before being able to establish 

communication with the Internet, they have to authenticate themselves and/or pay for 

the service. There are currently three different ways a client can gain access to the 

Internet: 

All clients that have a valid fly ticket for first class or business class have full 

Internet access during the ticket validity period free of charge. For this access method 

the fly ticket identification number is used during the client login as authentication 

credentials in the system. 

Any client that has a valid Frequent Flyer Card and has any valid fly ticket has also 

full Internet access during the ticket validity period free of charge. The Frequent 

Flyer Card identification number is used as credentials. The system checks that a 

valid fly ticket exists for the card. 

Any client of any air-carrier can prepay Internet access by a credit card. The clients 

using this method will get a user name and a password that are valid for a certain 

amount of time (e.g. 1 week or 1 month) and in this time period the prepaid time for 

Internet access needs to be used up (else the remaining prepaid time will expire). 

CREman 



83 

The client session (the client’s ability to communicate with Internet servers) starts 

when the client authenticates using one of the previous methods and terminates when 

one of the following events occurs: 

The client disconnects from the wireless network – any prepaid time not used up 

during the session being terminated can be used up in future sessions assuming the 

client’s user name will not expire until then. 

Client’s fly ticket becomes invalid or all of the client’s prepaid time is used up – the 

session terminates immediately and the client can start a new prepaid session. 

The key part of the system behavior will be implemented in Fractal components. 

However, the clients will communicate with the system via JSP web pages that will 

then call the Fractal components with appropriate requests. The demo environment is 

divided into three areas/networks: 

1. Airport WiFi – The public wireless network that clients connect to. 

2. Airport LAN – All demo Fractal components run on computers in this 

network. The communication between this network and the Airport WiFi is 

separated by the Firewall that is controlled by the Firewall Fractal 

component. 

3. Internet – The part representing the outer world. It hosts central servers and 

web services (e.g. credit card web services, air-carriers database servers) and 

also the client communication goes there (if not blocked by the Firewall) 

On the lowest level the client connections are managed by the DhcpServer Fractal 

component. This component assigns IP addresses to new clients and notifies other 

demo Fractal components when clients disconnect, so that their sessions can be 

terminated. The DhcpServer component might also communicate with some sort of 

wireless network access point, in order to get more accurate information about client 

connection and disconnection events. 

5.1.1 Demo Behavior 

See the diagram of the whole demo in Appendix A. 

Note: The numbered symbols like 2 , 3a , 3b  or 3c  reference the appropriate numbered 

steps in the picture. 

Initial state: 

 No clients connected 

 Any DHCP communication is allowed through the Firewall 

 All HTTP/HTTPS requests from clients are redirected to the airport’s 

WebServer residing in the Airport LAN. All such requests are redirected to 

the Login page, that all clients use to enter login credentials to open 

connection to the Internet. 



84 

 All other outgoing or incoming communication from/to clients is initially 

blocked 0  by the Firewall service. 

Event: A new client connects to the Airport WiFi network 

1. The Client sends a DHCP request for an IP address 1  and the DhcpServer replies 
1  assigning a new IP address to the Client (see section 2.1 for a detailed 

description of DhpcServer composite component behavior). The Client then uses 

this IP address for all communication with the system and during any access to 

the Internet. The assigned IP address also serves as a unique client identifier.  

2. The Client enters the Login page (by typing any URL in the web browser) 2  

3. The Client then continues in one of the three possible ways depending on the 

access method selected: 

4. Free access using first class or business class fly ticket ID: 

4.1. The Client fills the fly ticket ID in the login form 

4.2. The Login page calls the Arbitrator:ILogin.LoginWithFlyTicketId(Id) 

method with the fly ticket Id supplied by the Client 3a  

4.3. The Arbitrator calls the FlyTicketDatabase:IFlyTicketAuth.CreateT

oken( FlyTicketId) method 4a  to create the Token component 

representing the “logged in” state of the Client 

4.4. The FlyTicketDatabase:FlyTicketClassifier component then selects t

he appropriate fly ticket database component depending on the supplied fly 

ticket ID and calls the IFlyTicketDb.GetTicketValidity(FlyTicketId) 

method on it 5a  (CsaDbConnection component is selected in the example). 

4.5. The database component then uses any proprietary protocol to connect to the 

air-carrier’s database server to get the requested information 6a  

4.6. If the supplied FlyTicketId is valid then the associated fly ticket validity 

time is passed back to the FlyTicketClassifier component 5a  

4.7. The FlyTicketClassifier creates a new instance of the Token component 
7a  with the validity set to the time returned in the previous step. The Token 

component instance will be created without the Token:CustomToken inner 

component as it is not needed in this type of authentication. 

4.8. Further steps are common for all three authentication methods (to continue 

skip the specific steps for methods/steps 5 and 6). 

5. Free access using the Frequent Flyer Card ID: 

5.1. The Client fills the Frequent Flyer Card ID in the login form 

5.2. The Login page calls the Arbitrator:ILogin.LoginWithFrequentFlyerId(Id) 

method with the Frequent Flyer Card Id supplied by the Client 3b  



85 

5.3. The Arbitrator calls the CreateToken(FrequentFlyerId) method 4b  on the 

FrequentFlyerDatabase:IFreqFlyerAuth interface to create the Token 

component representing the “logged in” state of the Client 

5.4. The FrequentFlyerDatabase component then connects to the central database 

of issued Frequent Flyer Cards 5b  (“SkyTeam Frequent Flyer Database”) and 

checks the FrequentFlyerId validity 

5.5. If the supplied Frequent Flyer Card ID is valid then the 

FlyTicketDatabase:IFlyTicketDb.GetTicketByFreqFlyerId( FrequentFlyerId) 

method is called 6b  to check if there exists any valid fly ticket bought with 

the Frequent Flyer Card at any air-carrier’s office of the group   

5.6. The FlyTicketDatabase:FlyTicketClassifier requests the same information 

from all of the database connection providers by calling the 

IFlyTicketDb:GetTicketByFreqFlyerId method on them 7b  

5.7. Each of the database connection components then connects to its own air-

carrier’s database server 8b  to retrieve list of all valid fly tickets bought using 

the supplied FrequentFlyerId. 

5.8. The FlyTicketClassifier gathers responses from all fly ticket databases 7b  

and the resulting list of valid fly tickets (possibly empty) is retured back 

from the FlyTicketDatabase:IFlyTicketDb. GetTicketByFreqFlyerId 

(FrequentFlyerId) call 6b  

5.9. If the resulting list of valid fly tickets is not empty the 

FrequentFlyerDatabase selects one of the tickets that is currently valid and 

calls the FlyTicketDatabase:IFlyTicketAuth.CreateToken(FlyTicketId) 

method 9b  to create a new instance of the Token component. The following 

steps to create the Token component are similar to the most of the steps of 

the a) authentication method: 

5.10. The FlyTicketDatabase:FlyTicketClassifier component selects the 

appropriate fly ticket database component depending on the supplied fly 

ticket ID and calls the IFlyTicketDb.GetTicketValidity(FlyTicketId) method 

on it 10b  (AfDbConnection component is selected in the example). 

5.11. The database component then uses any proprietary protocol to connect to 

the air-carrier’s database server to get the requested information 11b  

5.12. If the supplied FlyTicketId is valid then the associated fly ticket validity 

time is passed back to the FlyTicketClassifier component 10b  

5.13. The FlyTicketClassifier creates a new instance of the Token component 
12b  with the validity set to the time returned in the previous step. The Token 

component instance will be created without the Token:CustomToken inner 

component as it is not needed in this type of authentication.  

5.14. The instance of the Token component 12b  returned from the 

FlyTicketDatabase:IFlyTicketAuth.CreateToken(FlyTicketId) method call 9b  

is then returned back 4b  to the Arbitrator component 



86 

5.15. Further steps are common for all three authentication methods (to continue 

skip the specific steps for method/step 6). 

6. Prepaid access 

6.1. If the Client does not possess a user name and a passport to a prepaid access 

account then such an account needs to be created first: 

6.2. The Client fills his or her credit card number and the card expiration date 

into the account creation form on the Login page. The Client also chooses 

the amount of time that will be prepaid to his or her new account.  

6.3. The Client selects an AccountId or a random AccoundId can be generated by 

calling the AccountDatabase:IAccount. GenerateRandomAccoundId() 

method. 

6.4. The Client selects a password or a random password is generated by the 

Login page 

6.5. The Login page calls the AccountDatabase:IAccount.CreateAccount( 

AccountId, Password) method 3c  to create a new prepaid account for the 

Client 

6.6. The AccountDatabase creates a new account in the central database 4c . The 

account will have default validity or timeout period associated with it (e.g. 1 

week or 1 month as mentioned earlier) and will have no Internet access time 

prepaid. 

6.7. The Login page uses the AccoundId and other information supplied by the 

Client to call the AccountDatabase:IAccount.RechargeAccount(AccountId, 

CardId, CardExpirationDate, PrepaidTime) method 5c  used to pay for more 

time to access the Internet. 

6.8. The AccountDatabase calls the CardCenter:ICardCenter.Withdraw(CardId, 

CardExpirationTime, Amount) method 6c  to withdraw the correct amount 

(depending on the PrepaidTime) from the Client’s account. 

6.9. The CardCenter component then selects the right credit card authorization 

center (“VISA Card Center” in the example), checks the validity of the 

requests and communicates with the card center 7c  to process the request. 

6.10. If the requested amount was successfully withdrawn from the Client’s 

account the AccountDatabase enters the new prepaid time into the Client’s 

account record in the central Account Database 8c  and success is returned to 

the Login page 5c . 

6.11. The Client fills his or her account used id and password into the login form 

on the Login page (these credentials are generated/selected during the 

account creation) 

6.12. The Login page calls the Arbitrator:ILogin.LoginWithAccountId( 

AccountId, Password) method with the credentials supplied by the Client 9c  



87 

6.13. The Arbitrator calls the CreateToken(AccountId, Password) method 10c  on 

the AccountDatabase:IAccountAuth interface to create the Token component 

representing the “loged in” state of the Client  

6.14. The AccountDatabase component gets the prepaid time of the account 

from the central Account Database 11c  

6.15. The AccountDatabase creates a new instance of the Token component 12c  

with its validity time set to the prepaid time from the previous step. The 

Token component instance will contain the CustomToken subcomponent. If 

the Client’s session terminates the CustomToken component is used to 

communicate the amount of prepaid time already used up back to the 

AccountDatabase via the IAccount:AdjustAccountPrepaidTime(AccountId, 

SecurityCookie, TimeLeft) method 21 . The SecurityCookie is a random 

string generated during creation of the Token component and it is passed by 

the AccountDatabase component to the CustomToken component during its 

construction. The CustomToken saves the SecurityCookie, so that it can use 

it later to prove its connection to the AccountId specified in the 

IAccount:AjustAccountPrepaidTime call.  

The following steps are common for all three authentication methods: 

7. Now the Arbitrator component already has a reference to a new instance of the 

Token component returned either from the FlyTicketDatabase, the 

FrequentFlyerDatabase or the AccountDatabase component, depending on the 

authentication method selected. The Arbitrator adds this reference into its internal 

table that maintains the bijection between Token component instances and 

connected Clients (Clients’ IP addresses) 

8. The Arbitrator calls the Firewall:IFirewall.DisablePortBlock(IpAddress) method 
13  ( 8a  or 13b  or 13c ) 

9. The Firewall component uses a proprietary communication mechanism to 

forward the request to the Firewall system service 14 . The Firewall service opens 

all communication ports to/from the Client and stops redirecting all 

HTTP/HTTPS communication from the Client to the airport’s WebServer 
15 – Cancel port block . Until the session terminates the Client can access the Login page 

only using a special URL (server address that was displayed on the Login page). 

If the Client forgets the URL, he or she can simply disconnect from the wireless 

network (this action will automatically terminate the current session) and 

reconnect again, so that a new session is started and all Client requests are 

redirected back to the Login page. 

10. The Client has now full access to the Internet 16  until its session terminates (its 

access Token becomes invalid or he or she disconnects from the Airport WiFi 

network).  

Event:  A client disconnects from the Airport WiFi network 17 – Client disconnects : 

1. If, after certain amount of time, the Client does not send the “Renew IP address” 

DHCP request the DhcpServer:IpAddressManager component will deduce that 



88 

the Client has disconnected and will call the Abitrator:IDhcpCallback 

:IpAddressInvalidated(IpAddress) method 18  (see section 2.1 for a more detailed 

description of this process). This will start the process of terminating current 

Client’s session 

2. The Arbitrator calls the IToken.InvalidateAndSave() method  on the right 

Token component instance (based on the IP address passed in the 

IpAddressInvalidated call and the IP address/Token instance mapping stored in 

the internal table) 

3. If the Token component instance contains the CustomToken subcomponent (i.e. if 

the instance was created by the AccountDatabase:IAccountAuth.CreateToken 

calls) the following steps will occur too: 

4. The Token:ValidityChecker component calls the Token:CustomToken 

.InvalidatingToken( TimeLeft) method 20  passing it the amount of time until the 

Token should have become invalid. 

5. The CustomToken calls the AccountDatabase:IAccount 

.AdjustAccountPrepaidTime(AccountId, SecurityCookie, TimeLeft) method 21  to 

update the amount of prepaid time left on the Client’s account. 

6. The AccountDatabase updates the prepaid time in the central database 22 . 

7. The Token:ValidityChecker component calls the Arbitrator:ITokenCallback 

.TokenInvalidated(TokenId) method 23 . This signals the Arbitrator component 

that the Token have become invalid and that the associated Client’s session 

should be terminated. 

8. The Arbitrator calls the Firewall:IFirewall.EnablePortBlock(IpAddress) 24  

9. The Firewall component then communicates with the Firewall system service 25  

so that all existing connections to or from the Client are closed and no new ones 

are allowed (except for the DHCP communication) and that all HTTP/HTTPS 

requests from the Client are again redirected to the Login page on the WebServer 
26 . 

10. The Client’s session is terminated and, from the point of view of the Client, the 

system is in the same state as it was in the initial state. 

11. Event:  Client’s Token becomes invalid – i.e. Client’s fly ticket becomes 

invalid or all of the prepaid time is used up: 

12. The steps that will follow are similar to the steps following the previous event. 

The only difference is that the session termination is not initiated by the 

DhcpServer component, but by one of the Token components itself. 

13. The Token:Timer component times out – i.e. Token validity has ended and it calls 

the ValidityChecker:ITimerCallback.Timeout() method 19ß . 

19α



89 

If the Token component instance contains the CustomToken subcomponent (i.e. if the 

instance was created by the AccountDatabase:IAccountAuth.CreateToken calls) the 

following steps will occur too: 

14. The Token:ValidityChecker component calls the Token:CustomToken 

.InvalidatingToken(TimeLeft) method 20  passing the amount of time until the 

Token should have become invalid. 

15. The CustomToken calls the 

AccountDatabase:IAccount.AjustAccountPrepaidTime( AccountId, 

SecurityCookie, TimeLeft) method 21  to update the amount of prepaid time left on 

Client’s account. 

16. The AccountDatabase updates the prepaid time in the central database 22 . 

17. The Token:ValidityChecker component calls the Arbitrator:ITokenCallback 

.TokenInvalidated( TokenId) method 23 . This signals the Arbitrator component 

that the Token have become invalid and that the associated Client’s session 

should be terminated. 

18. The Arbitrator calls the Firewall:IFirewall.EnablePortBlock(IpAddress) 24  

19. The Firewall component then communicates with the Firewall system service 25  

so that all existing connections to or from the Client are closed and no new ones 

are allowed (except for the DHCP communication) and that all HTTP/HTTPS 

requests from the Client are again redirected to the Login page on the WebServer 
26 . 

20. The Client’s session is terminated and, from the point of view of the Client, the 

system is in the same state as it was in the initial state. 

5.1.2 DhcpServer Component Description and Behavior 

The DhcpServer component can behave in two different ways: 

1. IP addresses for new clients are automatically generated (by a preconfigured 

pattern – e.g. valid IP address range) by the DhcpServer component. In this 

scenario the IP/MAC address mappings are stored in the TransientIpDb 

database component only and IpAddressManager’s IIpMacPermanentDb 

interface is not used at all (this implies that the 

DhpcServer:IIpMacPermanentDb interface does not need to be bound in this 

scenario). This scenario is used by the demo. 

2. The second option is that the IP/MAC address mappings can be permanently 

stored in an external database component (providing an IIpMacDb interface) 

and the DhcpServer assigns IP addresses to new clients according to their 

MAC address and the mapping stored in the database. As in the first scenario 

the IP address/MAC address mapping is also temporarily stored in the 

TransientIpDb component for the time the corresponding IP address is 

actually assigned to the client. Calling the 

DhcpServer:IManagement.UsePermanentIdDatabase method activates this 

behavior. 



90 

Event:  A new client connects to the Airport WiFi network 

1. The Client sends a DHCP request 1  for an IP address. This request is accepted by 

the DhcpServer:DhcpListener component. 

2. The DhcpListener component calls the 

IpAddressManager.RequestNewIpAddress method 1.1 . 

3. The IpAddressManager component determines a IP address for the new client – 

this action is different for each of the DhcpServer usage scenarios: 

4. IpAddressManager tries to generate a new IP address and checks whether it has 

been already assigned – by calling the IIpMacTransientDb.GetMacAddress 1.2  

method. If the generated IP address is already used it will generate another one 

and repeat the check. 

5. IpAddressManager calls the IIpAddressPermanentDb.GetIpAddress method to 

check if a mapping for client’s MAC address exists. If the mapping is not found 

the IpAddressManager can try to generate an automatic IP address as in the 

previous scenario. 

6. The IP address with client’s MAC address is then added by the 

IpAddressManager to the TransientIpDb database by calling it’s IIpMacDb.Add 
1.3  method. 

7. The assigned IP address is returned to the client via returning the 

IDhcpListenerCallback.RequestNewIpAddress method call 1.1  from 

IpAddressManager component back to the DhcpListener. The assigned IP address 

is then used as a unique client identifier by the rest of the system. 

8. The Client can enter the Login page 2  (by typing any URL in the web browser) 

Event: A client disconnects from the Airport WiFi network 17 – Client disconnects : 

The client disconnection event can occur, or be detected in one of the two ways: 

1. If, after certain amount of time, the Client does not send the “Renew IP address” 

DHCP request to the IpAddressManager component (via 

DhcpListerner:IDhcpListernerCallback.RenewIpAddress method call) the present 

timer will expire calling the IpAddressManager:TimerCallback.Timeout method. 

2. The WiFi Access Point detects client’s disconnection from the WiFi network and 

notifies the DhcpServer:DhcpListener component of that event. The 

DhcpListerner will call the 

IpAddressManager:IDhcpListenerCallback.ReleaseIpAddress method 17.1 . 

2.1. The IpAddressManager will the remove the IP address/MAC address 

mapping from the TransientIpDb database component by calling it’s 

IIpMacTransientDb.Remove method 17.2 . 



91 

2.2. The IpAddressManager will notify the rest of the system of client 

disconnection by calling the IDhcpCallback.IpAddressInvalidated 17.3  

method. 

2.3. That will lead into calling Abitrator:IDhcpCallback.IpAddressInvalidated 

method 18  that will start the process of terminating current Client’s session. 

5.2 BPC and Fractal Integration 

One part of the CRE project was also to integrate the Behavior Protocol Checker 

(BPC) and the Fractal component model – namely its Julia implementation for Java 

platform. During the integration process we had to tackle many problems and 

provide solution to many issues – details can be found in the original manual – here 

in the following text we will present only an overview of the key problems we have 

faced and the ones directly related to the goals of the thesis we will provide a more 

detailed analysis. 

To successfully finish the integration we had to introduce several assumptions about 

the Fractal component model and also extend some of its basic features:  

The Fractal component model specification is very flexible (and structured in several 

conformance levels), consequently, many concrete component systems comply with 

it. To make the integration of behavior protocols into Fractal possible, we take the 

following additional assumptions: 

(1) In Fractal, every component has internal and external interfaces. We suppose that 

for every external interface there exists an internal interface of the same type (and 

vice versa). In addition, an event on an external interface immediately causes the 

complementary event on the corresponding internal interface, and these two events 

happen atomically. In a similar way, an event on an internal interface immediately 

causes the complementary event on the corresponding external interface (and the two 

events happen atomically). 

(2) Interfaces in Fractal are connected by bindings. We suppose that an event 

occurring on an interface I causes immediately the complementary event on the 

interface I is bound to, and the two events happen atomically, assuming I is bound to 

exactly one interface. If I is bound to more interfaces, the events on those interfaces 

do not have to happen atomically. 

Next, as we associate a frame protocol with each component of an application, and 

also some environment-related information with each primitive component of an 

application. Thus, to enable the users to use Fractal ADL for describing the 

architecture of Fractal applications, we had to extend the Fractal ADL syntax to 

accommodate the frame protocol and environment declarations. 

5.2.1 Interceptors 

While extending Fractal and Julia with support for runtime checking of compliance 

of component behavior with the specified protocol, we have encountered a number of 

issues, some of which have required modifications to Julia. In this section, we 

CREman 



92 

describe the Fractal and Julia extensions we developed to support the runtime 

checking. 

In principle, runtime checking is achieved by introducing an interceptor for each 

business interface of the component being checked; on each event (method entry or 

exit), this interceptor notifies the runtimecheckcontroller introduced into the 

controller part of the component. This controller creates an instance of the runtime-

checker backend with the specified protocol, and notifies the checker backend of 

each such event. In case the checker detects that the event violates the protocol, the 

error is recorded; optionally, the application may be notified by throwing a 

ProtocolViolationException. The typical interaction among these parts is 

shown in the sequence diagram in Figure 8: 

 

Figure 8. Interceptor architecture 

More details can be found in [3]. 

5.2.2 Checker for Code Analysis 

We use JPF for checking primitive Fractal components implemented in Java against 

behavior protocols. However, it is not directly possible to use JPF for checking 

whether a primitive component is bounded by a protocol, because JPF is, by default, 

able to check only properties like deadlocks and assertions. In order to solve this, we 

decided to use JPF in combination with the protocol checker for code analysis. In 

other words, we decided to let JPF and the checker cooperate on code analysis while 

traversing their own state spaces. Since JPF and the checker work at different levels 

of abstraction, we had to define a mapping from the JPF state space into the state 

space of the checker to make such cooperation possible. For more information on the 

mapping, please refer to [143]. 

We have modified the behavior protocol checker for static testing by adding several 

methods to make the cooperation with JPF possible. In particular, the checker has 

been enriched by a method for notification of actions performed (method called and 

finished) in the JPF and uses this for coordination of the state space traversal. Each 

time JPF moves along a transition corresponding to a method call or return from a 

method call, it notifies the checker of this event. Checker moves along the 



93 

corresponding transition in its own state space. Should not such a transition exist 

within the checker's state space, an error is reported to the user and the 

implementation is considered not to be bound by the protocol. To treat all the 

combination of implementations and protocols correctly as well as to be able to 

handle cycles, it is necessary to coordinate the traversal in the following way: Each 

time JPF would backtrack within the state space because of being in an already 

visited state it asks the checker for permission. Only in situations when both JPF and 

the checker would backtrack at this point when executed on their own (i.e., if being 

in an already visited state), backtracking is allowed. Hence, the bounding relation can 

be checked correctly. 

More detailed analysis of JPF application to the CRE project can be found in [3]. 

5.3 Modeling the CRE Demo 

When modeling and implementing the demo application proposed in Section 5.1 

using behavior protocols and Fractal component model, we ran into several problems 

that needed to be solved. The following Section 5.3.1, 5.3.2, and Section 5.3.3, as 

well as Section 5.4 are dedicated to describe all the problems identified. All of the 

sections, with the exception of Section 5.3.1, also provide solutions to the problems 

that were devised as part of the CRE project. The Section 5.3.1 describes the most 

severe problem encountered (problem of modeling dynamic component 

architectures) that we were unable to solve in the CRE project without considerably 

changing the techniques available at that time. However later in Chapter 7 we 

provide a final solution to this problem and in Section 7.5 we return back to this 

case-study and remodel it with the newly introduced concepts and verify their ability 

to solve the problem described below. 

5.3.1 Token Component Dynamism 

One of the key challenges in the CRE project was to model, implement and verify 

correctness of the Token component from the case-study demo application. The basic 

functionality of the Token component is simple – it represents state of a client 

logged-in to the system, i.e. for each initiated session to the system there should exist 

a single Token component instance representing it – and this is the problem. The 

running application does not contain only a single Token instance, but multiple 

Token instances can be present at runtime, moreover, they are dynamically created as 

new clients arrive and dynamically destroyed as clients log out or disappear. 

Fortunately in the Fractal component model this can be implemented without 

problems as it supports dynamic component instantiation at runtime – the problem is 

that any newly created components are represented only as references to them and 

actually lay outside of applications architecture, and the component model runtime 

loses control of their further evolution in the application (a problem tackled before in 

Section 2.3.6). The application’s architecture the Fractal component model 

understands is only static and represents a view on component relations at start of the 

application – i.e. any further changes are not captured there. 

As the behavior protocols are based on similar CBSE concepts, they also do support 

only static architectures. In order to solve the Token problem (that leads to a dynamic 

architecture), we had to “cheat” a bit and prepare a simplified, idealistic architecture 

of the application. In the architecture the Token is represented with a single 



94 

component instance and also the behavior protocols for the static compositional 

verification were prepared as if only a single Token component instance existed for 

the whole application run time. It is obvious that by verifying correctness of 

composition we have provided a weaker prove than is needed to verify the actual 

application implementation – i.e. an abstraction of the application was used – while 

this approach is common, the simplification used can hide common problems with 

compatibility of the Arbitrator component and the Token component as it, for 

example, does not force the Arbitrator component to correctly handle the real multi-

instance scenario (e.g. with proper synchronization). 

Furthermore the behavior protocols designed for the static verification will not work 

with the runtime verification or code analysis methods that encounter the real 

components implementations that naturally exhibit behaviors not compatible with 

their original behavior. In order to solve the problem we had to provide another more 

generic variant of the protocols that would allow any method invocation traces that 

were originally prohibited, but could occur at runtime if the tool sees only a sequence 

of Arbitrator–Token method calls without the actual context (i.e. without the notion 

of the actual Token instance the methods are intended for). Such a protocol for a 

component that that would accept any method call of another component instance at 

any time must be naturally very generic, and thus potentially hiding many more 

errors from the verification tool. 

Also the Token component instances can logically originate from different sources in 

the architecture – either from the FlyTicketClassifier component, 

FrequentFlyerDatabase  component or from the AccountDatabase component. Each 

of these Token creators needs to maintain a different set of data as part of the 

Token’s state – it is represented by the optional CustomToken component in the 

architecture. Unfortunately it further complicates the problem, as during the 

verification process based on static architectures there are two pieces of information 

missing: (a) the information about the Token instance identification, i.e. Token 

instance current state in its contract described by its behavior protocol, (b) 

information about the Token variant a method invocation is carried out against, thus 

information about a behavior protocol variant describing the correct behavior of the 

actual Token component instance. Again to cope with the problem the behavior 

protocols had to be once again generalized to incorporate a combination of all the 

possible behaviors of any optional extensions. While such approach does mitigate 

false positives (i.e. correct components will not be marked as incorrect), it potentially 

introduces more false negatives – i.e. a wrong variant of Arbitrator component 

implementation can be successfully composed together with an inappropriate 

implementation of Token component (one exhibiting a behavior the other does not 

actually support). 

5.3.2 Enhancing the Behavior Protocols 

In order to formally describe the synchronization needed between the DhcpListener 

component and clients of IManagement interface (which both inherently support 

parallel invocation of incoming method calls) and the IpAddressManager component 

(which supports only sequential invocation of methods on its interfaces – in order to 

limit parallelism in the Arbitrator component, the IpAddressManager sends requests 

to) we propose an enhancement of the behavior protocol with concept of atomic 

actions. 



95 

Atomic actions (AA) are a behavior protocols construct allowing cooperating 

components to synchronize. They have been added to behavior protocols as a 

consequence of component synchronization problems which arose during the work 

on specification of the Airport Internet Access Application components. Although in 

some cases the behavior of a component may be described using behavior protocols 

without AA, a version using AA are usually not only much easier to construct, but 

also more readable afterwards. Furthermore, using AA, behavior protocols 

correspond with component implementation in a more straightforward way. As an 

example of a behavior protocol containing an atomic action (enclosed in square 

brackets '[' and ']'), consider the following example: 

 
?IDhcpController.Start^ ; !IListenerController.Start^ ;  

[?IListenerController.Start$, !IDhcpController.Start$] 

 

An atomic action may occur in a behavior protocol at positions where a single event 

and an abbreviation may. Atomic action starts with '[' and ends with ']'. There is a 

coma-separated list of events (the use of abbreviations is not allowed as their use 

doesn't make sense here) between '[' and ']'. 

 

Semantics 

Basically, an atomic action is treated as a single event, i.e., it is supposed to be 

"executed" in a single step.  

An atomic action is in one of the two states – enabled or disabled. It can be executed 

in the enabled state only. An atomic action is enabled in the current state if and only 

if for each accept event (an event starting with '?') in the atomic action there exists a 

component in the composition able to emit the corresponding request event in the 

current state. If there's not a component able to emit a request event corresponding to 

an accept event of the atomic action, the atomic action is disabled. The 

corresponding accept and request events yield, as in a common case, a tau action; 

consider the following protocol fragment: 

...[?ma^, !mc^]... (consent) ...!ma^... -> 

    ...[#ma^, !mc^]... 

 

The application of the consent operator to behavior protocols containing atomic 

actions may result in a protocol containing the bad activity composition error. This 

situation arises in the following case: 

The atomic action contains no accepting event (an event starting with '?'), i.e., it 

contains internal and emitting events (events starting with '#' and '!', respectively) 

only, and there's an emit event in the atomic action that is not accepted in the current 

state by any component in the composition. 

Notes 

For each two components combined via the consent operator there may be at most 

one event inside of an atomic action that is also contained in the set of 

synchronization events for these two components. This requirement reflects the fact 

that a component cannot perform more than one event (a simple event or an atomic 

action) in a single step, which causes the consent operator not to be associative when 

BP 

BP 

CREman 



96 

applying to behavior protocols containing atomic actions. In other words, the result 

of the composition depends on the order the components are composed together. 

Atomic actions need to be handled in a special way during the runtime checking. As 

only one event may be executed in each step and a protocol containing an atomic 

action thus can't be satisfied at runtime checking, each atomic action is replaced with 

a protocol consisting of atomic action events combined using the and-parallel 

operator expressing the necessity that each of the atomic action events has to be 

executed, but the order doesn't matter. The transformation is done during the protocol 

parsing process, so it is invisible to the other parts of the system. 

A formal specification of atomic actions can be found in [100]. 

5.3.3 Expressing Synchronization 

The virtual synchronization components S1 to S5 presented in Appendix A won’t be 

real Fractal components implemented as part of the demo. Their purpose is only to 

easily describe and easily autogenerate method call synchronization description in 

behavior protocols. These autogenerated components, more precisely only their 

behavior protocols, will be added in between real Fractal components during 

protocol checking. 

S1 – first synchronization component 

 provides IDhcpListenerCallbackIn (IDhcpListenerCallback interface 

type) 

 requires IDhcpListenerCallbackOut (IDhcpListenerCallback interface 

type) 

 requires IS2 (ILock interface type) 

The first synchronization component forwards the call on “In” interface to “Out” 

interface after it successfully locks the next synchronization component – i.e. after 

the INextLock.Lock call returns. When the call on the “Out” interface is finished the 

component unlocks the next synchronization component via INextLock.Unlock call. 

( 

 ?IDhcpListenerCallbackIn.RequestNewIpAddress { 

  !IS2.Lock; 

  !IDhcpListenerCallbackOut.RequestNewIpAddress; 

  !IS2.Unlock 

 } 

)* 

 

Si – intermediate synchronization component (synchronization components S2 to 

S5) 

 provides IDhcpListenerCallbackIn (IDhcpListenerCallback interface 

type) (IManagement for components S4 and S5) 

 provides ISi (ILock interface type) 

BP 



97 

 requires IDhcpListenerCallbackOut (IDhcpListenerCallback interface 

type) (IManagement for components S4 and S5) 

 requires ISi+1 (ILock interface type) 

Each of the intermediate synchronization component processes one call from 

IDhcpListernerCallback (S2, S3) or IManagement (S4, S5) interfaces. If the 

previous component tries to lock an intermediate component (via IPrevLock.Lock 

call), it will try to lock the next component via INextLock.Lock method call. If the 

component accepts call from the “In” interface either it locks the next 

synchronization component and processes the call by calling the appropriate method 

on the “Out” interface and then unlocks the next component; or, if it has been already 

locked by the previous component, it will postpone the “Out” method call until it 

accepts the IPrevLock.Unlock call. Then it calls the appropriate method on the 

“Out” interface (note that the next synchronization component is still locked) and 

only after this call returns it will unlock both the next component and itself (by 

returning the IPrevLock.Unlock method call). 

The following behavior protocol describes the S2 synchronization component. 

Behavior protocols for S3 to S5 components are similar, only the 

IDhcpListenerCallbackIn .RenewIpAddress and 

IDhcpListenerCallbackOut.RenewIpAddress method calls are replaced by a 

method name, that the synchronization component processes. 

( 

 ( 

  ( 

   ( ( ?IDhcpListenerCallbackIn.RenewIpAddress^; 

   !S3.Lock; !IDhcpListenerCallbackOut 

    .RenewIpAddress 

   ) | ?S2.Lock^ ) 

   + 

   ( ( ( ?S2.Lock^; !S3.Lock) | 

   ?IDhcpListenerCallbackIn.RenewIpAddress^ ) ; 

   !IDhcpListenerCallbackOut.RenewIpAddress ) 

  ) ; 

  !S2.Lock$; ?S2.Unlock^; !S3.Unlock; [!S2.Unlock$, 

  !IDhcpListenerCallbackIn.RenewIpAddress$] 

 ) 

 + 

 ( 

  ?S2.Lock {!S3.Lock}; ( 

  ?IDhcpListenerCallbackIn.RenewIpAddress^ | 

  ?S2.Unlock^ ); 

  !IDhcpListenerCallbackOut.RenewIpAddress; !S3.Unlock; 

  [!S2.Unlock$, !IDhcpListenerCallbackIn 

   .RenewIpAddress$] 

 ) 

 + 

 ( 

  ?S2.Lock {!S3.Lock}; ?S2.Unlock^; !S3.Unlock^; ( 

  ?IDhcpListenerCallbackIn.RenewIpAddress^ | 

  ?S3.Unlock$ ); 

  !S3.Lock; !IDhcpListenerCallbackOut.RenewIpAddress; 

  !S3.Unlock; [!S2.Unlock$, 

  !IDhcpListenerCallbackIn.RenewIpAddress$] 

BP 



98 

 ) 

 + 

 ( 

  ?S2.Lock {!S3.Lock}; ?S2.Unlock {!S3.Unlock} 

 ) 

 + 

 ( 

  ?IDhcpListenerCallbackIn.RenewIpAddress^; !S3.Lock; 

  !IDhcpListenerCallbackOut.RenewIpAddress; 

  !S3.Unlock^; ( ?S2.Lock^ | ?S3.Unlock$ ); 

  !S3.Lock; !S2.Lock$; ?S2.Unlock^; !S3.Unlock; 

  [!S2.Unlock$, !IDhcpListenerCallbackIn 

   .RenewIpAddress$] 

 ) 

 + 

 ( 

  ?IDhcpListenerCallbackIn.RenewIpAddress {!S3.Lock; 

  !IDhcpListenerCallbackOut.RenewIpAddress; !S3.Unlock} 

 ) 

)* 

 

S5 – last synchronization component 

 provides IManagementIn (IManagement interface type) 

 provides IS5 (ILock interface type) 

 requires IManagementOut (IManagement interface type) 

If the last synchronization component accepts the IManagementIn 

.StopUsingPermanentIpAddresses method call it can immediately forward the call to 

the “Out” interface (if it was not locked in the past). If it accepts the IPrevLock.Lock 

call it will only postpone the “In” interface call until the IPrevLock.Unlock call 

arrives. The behavior protocol follows: 

( 

 ( 

  ( ?S5.Lock^ | ( 

  ?IManagementIn.StopUsingPermanentIpDatabase^; 

  !IManagementOut.StopUsingPermanentIpDatabase ) ); 

  !S5.Lock$; ?S5.Unlock^; [!S5.Unlock$, 

  !IManagementIn.StopUsingPermanentIpDatabase$] 

 ) 

 + 

 ( 

  ?S5.Lock; ( 

  ?IManagementIn.StopUsingPermanentIpDatabase^ | 

  ?S5.Unlock^ ); 

  !IManagementOut.StopUsingPermanentIpDatabase; 

  [!S5.Unlock$, 

  !IManagementIn.StopUsingPermanentIpDatabase$] 

 ) 

 + 

 ( 

  ?S5.Lock; ?S5.Unlock 

 ) 

 + 

 ( 

  ?IManagementIn.StopUsingPermanentIpDatabase 

BP 



99 

  {!IManagementOut.StopUsingPermanentIpDatabase} 

 ) 

)* 

5.4 Dealing with Complex Error Traces 

Behavior protocols [146] are a method of software component behavior 

specification. They are used for behavior specification in the SOFA [161] (also in 

SOFA 2 [40]) and the Fractal [34] component models. We employed behavior 

protocols in several non-trivial case studies of component behavior specification, 

comprising high number of components. This includes a non-trivial component-

based test bed application in a project funded by France Telecom aiming at 

integration of behavior protocols into Fractal component model. One of the key 

lessons learned has been that the error trace length problem is severe and has to be 

addressed seriously. The goals of this paper are (i) to share with the reader the 

experience gained during specifying behavior of a non-trivial component-based 

application and show that the error trace length problem is really serious, and (ii) to 

describe the techniques we designed to address this problem. 

These goals are reflected in the rest of the Section 5.4 as follows: Section 5.4.1 and 

5.4.2 illustrates how to use them for component behavior specification and 

demonstrates the problem with the error trace length on a fragment of a non-trivial 

application that will be used as a running example. In Section 5.4.3, as the key 

contribution, the proposed techniques for addressing the error trace length and 

interpretation problems are described. Section 5.4.4 contains an evaluation of the 

proposed techniques while Section 9.1in related work summary chapter discusses 

related work. Section 5.4.5 concludes the paper and suggests future research 

direction. 

5.4.1 Example: A Fragment of the Test Bed Application 

In this section we describe in more detail a fragment of the demo application 

described above. The application is a quite complex system allowing clients of 

various air-carriers to access the Internet from airport lounges via local Wi-Fi 

networks. The whole Wireless Internet Access application is composed of about 20 

Fractal components. One of the key components is the DhcpServer composite 

component (Figure 9). It communicates with system’s clients at the lowest level, i.e. 

it is responsible for managing clients’ IP addresses, monitoring overall state of the 

local wireless network and providing this information to the rest of the system. A 

simplified version is presented in this section. 

FACS 



100 

DhcpServer Architecture 

 

Figure 9. DhcpServer Architecture 

In principle, the DhcpServer composite component works in two functionality 

modes which can be swapped via the Mgmt interface: (i) DhcpServer generates IP 

addresses dynamically for new clients (this is the default functionality that can be 

also set by calling the UseTransientIPs method on the Mgmt interface). (ii) 

DhcpServer assigns IP addresses statically based on mappings between clients’ 

MAC and IP addresses in an external database accessible via the PermanentDb 

interface (this functionality is set by calling the UsePermanentIPs method on the 

Mgmt interface). When a client disconnects from the network, the DhcpServer calls 

the Disconnected method on its Callback interface to notify its environment about 

this event. As already mentioned, the DhcpServer functionality is implemented by its 

subcomponents: ClientManager and DhcpListener. The architecture of the 

DhcpServer and bindings between the subcomponents is shown on Figure 9. 

 

Figure 10. Frame protocol of DhcpListener 

The DhcpListener component is responsible for the ”real” communication with 

network clients and the network infrastructure. Internally it uses existing system 

infrastructure to manage client nodes. Events that occur at the network level are 

unified by DhcpListener which converts them to method calls. As they can arrive at 

any time, the corresponding frame protocol has to express the inherent parallelism 

(Figure 10). ClientManager accepts notifications on network events from the 

DhcpListener and processes them either internally (RequestNew and Update) or 

BP 



101 

forwards them to DhcpServer’s environment (via Callback.Disconnected) as part 

of Return processing. ClientManager’s behavior is expressed by its frame protocol 

in Figure 11. The part A of the protocol represents the ”generate IP addresses 

dynamically” functionality of ClientManager while the part B represents the ”assign 

IP addresses statically” functionality. The parts A.1 and B.1 express the Client- 

Manager’s ability to process DhcpListener’s notifications and also describe reactions 

to them. The parts A.2 and B.2 capture ClientManager’s ability to detect client 

disconnections internally, resulting in a call of Disconnected. The ClientManager’s 

functionality mode swapping mechanism is reflected in the parts A.3 and B.3: At any 

time, ClientManager can accept a method call requesting a mode change 

(?Mgmt.UsePermanentIPs↑ or ?Mgmt .UseTransientIPs↑), but it does not 

respond it immediately. Instead, it waits until the processing of all pending method 

calls on the Listener interface is finished and then it issues the 

!Mgmt.UsePermanentIPs↓ or the !Mgmt.UseTransientIPs↓ response. Then 

ClientManager is again ready to accept further calls on the Listener interface and 

respond to them according to its newly set functionality mode. 

 

Figure 11. Frame protocol of ClientManager (The highlighted lines denote the 

events forming the composition error described in Sect. 2.3.3) 

DhcpServer Frame Protocol 

The frame protocol of DhcpServer is shown in Figure 12. The interactions between 

DhcpServer’s subcomponents are not visible in it. However, their communication 

can trigger interaction with the environment of DhcpServer that is therefore visible in 

its frame protocol. This is illustrated by the part C of the frame protocol in Figure 12: 

the !Callback.Disconnected call can be invoked by the ClientManager 

subcomponent either as a reaction to an accepted ?Listener.Return call or due to 

its internal detection of client disconnection; however these two causes are 

indistinguishable in the DhcpServer frame protocol. The part D of the protocol 

expresses the DhpcServer’s ability to swap between its two modes. 

BP 



102 

 

Figure 12. First version of the frame protocol of DhcpServer (Instead of +, the | 

operator should have been used here as demonstrated by the error trace in Sect. 2.3.3) 

5.4.2 Checking for Composition Errors and Compliance 

The application developer that sets up a composite component (such as Dhcp-Server) 

creates also its frame protocol, whereas the frame protocols of subcomponents 

(ClientManager and DhcpListener) are created by their respective authors. It is the 

developer’s responsibility to check first for composition errors (horizontal 

compatibility) between subcomponents. The frame protocols ClientManager and 

DhcpListener as presented above are compatible in this sense. It should be 

emphasized that behavior incompatibility may occur even though the components are 

connected via type-compatible interfaces. 

The next step in a composite component’s development is to check for compliance 

(vertical compatibility) of its frame protocol with its architecture protocol. During 

the development of the first version of the DhpcServer component, the + operator 

was used in its frame protocol (Figure 12). However, such a protocol was not 

compliant with its architecture protocol. Using the behavior protocol checker, the 

error was found and reported by an error trace (Figure 13). 

BP 



103 

 

Figure 13. Error trace representing a compliance error 

However, identifying the actual error only from such a plain error trace is not a trivial 

task. The key problem is that error traces of real components tend to be rather 

cryptic; in particular, several method calls of the frame protocol can occur in parallel. 

This leads to interleaving of the error-related events with other events processed in 

”background”. For example, only the highlighted events on Figure 13 lead to the 

conclusion that the parts D.1 and D.2 of DhcpServer’s frame protocol (Figure 12) 

need to be processed in parallel, because the ClientManager can issue the 

!PermanentDb.GetIP call (in B.1) in parallel with accepting the 

?Mgmt.UseTransientIPs↓ call (in B.3). 

5.4.3 Approaches to Error Trace Analysis and Interpretation 

In behavior protocols, an error trace’s end is reflected in the state space (defined by 

the protocol) as a state F. It is a specific feature of behavior protocols that each trace 

reaching F is an error trace. Hence, F is an error state. In consequence, an error state 

represents a set of error traces SF. (Note that the existence of error states is not a 

general feature of an LTS.) Finding all elements of SF means complete traverse of 

the state space. Sometimes, however, the knowledge of the whole set of error traces 

corresponding to an error state may be very beneficial for error cause’s identification. 

As the set of error traces may be huge (or even infinite), providing it as a list of 

traces would not be of much help. Therefore, additional forms of SF representation 

are needed. 

Plain Error Trace 

As demonstrated in Section 5.4.2, an error trace identifying a compliance or 

composition error may be quite long and hard to interpret. Moreover, due to the DFS 

tactic used, the error trace may contain states not capturing ”the essence” of the error. 

For example, the state subsequence S5, S226, S230, S231 of the error trace in Figure 

13 also forms an error trace, but the longer one was found first. In this respect, the 



104 

other states are “not-important” ones. It is a challenge to filter out these “not-

important” states (to find a canonical representation of the error trace set associated 

with an error state). One can imagine a filtering technique based on iterative re-

searching the state space, which would take advantage of the knowledge of the depth 

at which the error was found. 

State Space Visualization 

One of the checking outputs we propose in order to make error interpretation easier 

is state space visualization. Visualization is a graphical representation of the state 

space associated with the protocol. For the state space related to Section 5.4.1 

(DhcpServer architecture), this is illustrated on Figure 14 (only a fragment of the 

state space is captured here for brevity). This helps find out what the problem cause 

is by tracking the error trace in the state space. Apparently, state space size might be 

a problem here — a state space having more than 1,000 states is hard to visualize. 

Thus, visualizing only a part of the state space becomes a practical necessity. In this 

perspective, capturing only the part containing the error state and its “neighborhood” 

is a straightforward thought. We employed this idea with a very positive experience. 

Such a result still provides useful information, detailed enough to identify where the 

essence of an error is. Technically, our visualization outputs all the transitions leading 

from a state on the error trace — this helps with finding correspondence with the 

original protocol. 

 

Figure 14. State space visualization — dashed lines represent longer paths omitted 

due to the limited space of this paper. The state S231 is the error state F. 

Protocol Annotation 

Another way of representing an error state are annotated protocols. Consider a 

composition of protocols P and Q via the consent operator. If the composition yields 

a composition error in an error state S, the state S is represented by marks <HERE> 



105 

put into P and Q, forming the annotated protocols PS and QS. For illustration 

consider Figure 15 where a fragment of the annotated frame protocol of DhcpServer 

corresponding to the error trace in Section 5.4.2  is depicted. Advantageously, there is 

no need to construct the entire state space, but it suffices to annotate only the 

protocols featuring as operands in a composition. For example, the set of error traces 

specified by the annotated protocol in Figure 15, together with the annotated 

architecture protocol of DhcpServer internals, yields the error traces: 

 

There are two issues to be addressed with this technique: 

(i) Identical prefixes in alternatives. For example, consider the following frame 

protocol: . If an error state is to be 

indicated after , the corresponding annotated protocol takes the form: 

 

Even though one of the alternatives could be eliminated, we prefer keep them both to 

provide more context of the error. 

(ii) Transformations performed on input protocols. In the protocol checker, the 

protocols are modified during the parsing process (e.g.  is decomposed into 

 and the formatting information is lost). Therefore, exact mapping of 

an error state back to the source protocols may be difficult. Fortunately, the 

transformations typically still yield a reasonably readable behavior protocol, which, 

annotated, provides useful information for specification debugging. 

 

Figure 15. DhcpServer annotated frame protocol - simplified. 

5.4.4 Evaluation 

During the work on the case study mentioned in Section 5.4.1, it has turned out that 

combining all of the three forms of checking output is the most promising approach. 

Even though protocol annotation (Section 5.4.3) appears a very generic technique, in 

BP 

BP 



106 

complex cases the other checking outputs have to be also provided, since tracking all 

the path alternatives in an annotated complex protocol may be error-prone. 

The most complex components of the case study have behavior protocols with up to 

60 events; such behavior protocols generate a state space with hundreds of thousands 

of states. The typical errors encountered during the development of such components 

then generate error traces of about 100 states in length. However there were also 

some error states that generated error traces with several hundreds of states. It then 

took the developer about an hour (often even more) to identify the actual error in 

case only a plain error trace was available. The checking output techniques presented 

in Section 5.4.3 have been developed to improve debugging efficiency. During the 

further development of our case study application, the developers used a combination 

of these techniques and an average time to resolve a typical error shortened down to 

one third or one fourth of the original time. As for the plain error trace checking 

output, a problem is the existence of “local loops” in behavior of a component. 

Typically, with respect to the other parts of the system, the actual number of local 

loop traversals is of no significance in terms of error localization. These loops 

lengthen the error trace, making it more complex and hard to analyze. Apparently, if 

loops are nested, the situation is even worse. A desire is to eliminate those of  “no 

influence” on the rest of the system. This is a challenging problem - currently, only 

the highest-level loops are identified and eliminated in an automated way. Annotated 

protocols are very similar to the approach used in Bandera Toolset [155] and PREfast 

[121] since they are based on emphasizing of the positions in the input protocols 

where a composition error has been found. Unlike in Bandera and PREfast, in 

behavior protocols the positions between two operations are highlighted to denote an 

error state.  

5.4.5 Conclusion and Future Work 

During the work on the project (Chapter 5) it has turned out that, besides plain error 

trace, additional checking outputs are needed for speeding up error detecting and 

debugging process. Therefore, we introduced two more approaches: (i) state space 

visualization, and (ii) annotated protocols. Using all the three methods in 

combination was found most beneficial (locating an error was then more efficient). 

Problems arise when checking the composition/compliance of several components 

described by really complex behavior protocols. The large state space generated by 

such a protocol causes that an error trace is typically very long and hard to interpret. 

Still, in our view, this is worth to pursue since we believe that the components’ 

compatibility problem cannot be restricted to the syntactic/type compatibility of their 

(bounded) interfaces [146], even though this could be checked with much smaller 

effort and would avoid the problems discussed in this paper; in fact, we can hardly 

imagine putting together a non-trivial component-based application of the size 

mentioned in Section 5.4.1, if the compliance checks were based only on 

syntactic/type compatibility of individual interfaces. Our future work is therefore 

focused on improving the methods currently used by the behavior protocol checker; 

in particular, a method for automated removing of unnecessary ”local loops” (Section 

5.4.4) would further simplify the plain error trace checking output. As for state space 

visualization, an automated method for detecting the ”important” part of the state 

space (currently done by hand) is needed to simplify the resulting graphical 

representation of an error trace. Similar to Bandera [155] and PREfast [121], the 



107 

possibility to dynamically indicate the correspondence between a particular position 

in an error trace and the associated part of the protocol would perhaps further ease 

and speed up the debugging process. 



108 

Chapter 6 CoCoME Case-study 

In this chapter we present our approach and experience of modeling the CoCoME 

case-study [82] in Fractal component model and its implementation in Fractal’s Julia 

runtime and tool-chain. The CoCoME case-study was prepared for the CoCoME 

modeling contest [151][55] that aimed at comparison of contemporary component-

oriented modeling approaches. 

6.1 Modeling the CoCoME in Fractal 

Employing Fractal in the CoCoME assignment revealed several issues that required 

modifications of the architecture. These modifications are presented and justified in 

Section 6.1.1 (Static view). Since behavior specification using Behavior Protocols is 

supported by Fractal, each of the components of the Trading System was annotated 

with its frame protocol. As CoCoME assignment does not include complete behavior 

specification, these protocols are created based on the CoCoME UML specification 

and the reference implementation and further described in Section 6.1.2 (Behavioral 

view). Section 6.1.4 (Deployment view) presents deployment and distribution using 

Fractal-specific means (FractalRMI and FractalADL). In Section 6.1.5 

(Implementation view), we describe beside the basic Fractal implementation strategy 

also the details related to performance evaluation and estimation. Additionally, 

Section 6.1.3 presents behavior specification of two components featuring non-trivial 

behavior (CashDeskApplication and CeshDeskBus) in more detail. Behavior 

specification of the rest of the components can be found on the Fractal-CoCoME web 

page [71]. 

6.1.1 Static View 

As the architecture of the Trading System used in Fractal differs slightly from the 

CoCoME assignment, this section presents the modified architecture and justifies the 

modifications made. In general, there are two sorts of modifications: (i) 

Modifications which are not directly related to Fractal and do not influence 

complexity of the solution, but rather contribute to the clarity of the design and the 

other views (in Sections 6.1.2 – 6.1.5). (ii) Modifications directly forced by specific 

properties of Fractal. These modifications reveal strengths and limitations of Fractal 

and therefore should be taken into account in the comparison between different 

modeling approaches. 

 

The (i) modifications include reorganization of the component hierarchy and explicit 

partitioning of EventBus into two independent buses. All primitive components are 

left unchanged, but the composed components GUI and Application located in the 

Inventory component are substituted by components StoreApplication, 

ReportingApplication (compare Figure 16 and Figure 18). The new components 

more clearly encapsulate the logical units featuring orthogonal functionality, whereas 

the old ones merely present a general three tier architecture. The StoreApplication 

component encapsulates the store functionality as required by the CashDeskLine 

CoCoME 



109 

component in UC1 (use case #1 in CoCoME assignment), whereas 

ReportingApplication encapsulates functionality for managing goods as used in UC3 

– UC7. The Data component is left unchanged. Second modification of the 

component hierarchy relates to UC8, as neither the architecture in CoCoME 

assignment, nor its reference implementation provides a full UC8 functionality. 

Specifically, UC8 expects communication among EnterpriseServer and StoreServers; 

however no interface for the communication is present. Moreover, the reference 

implementation includes UC8 8 Lubomír Bulej et al. functionality as a part of UC1, 

which, however, should be independent. The reference implementation deeply 

exploits the fact that it is not distributed and accesses the shared database, which 

would not be the case in a real-life implementation. Therefore, the new architecture 

is enriched by explicitly distinguishing the EnterpriseServer component and the 

ProductDispatcherIf and MoveGoodsIf interfaces that encapsulate UC 8 functionality 

(Figure 18). 

 

 

Figure 16. The original design of the Inventory component in CoCoME 

EventBus from the CoCoME assignment (Figure 17) represents a composite of buses 

eventChannel and extCommChannel. As there is no apparent benefit of having the 

eventChannel outside the CashDesk component, EventBus is split into two 

independent buses CashDeskLineBus and CashDeskBus, which correspond to 

extCommChannel and eventChannel, respectively. Moreover, CashDeskBus is 

moved inside the CashDesk component where it more naturally belongs, since it 

mediates mostly the communication among the components and devices internal to 

CashDesk. 

 

As to the (ii) modifications, Fractal does not support message bus as a first-class 

entity. Therefore, the CashDeskLineBus and CashDeskBus buses are modeled as 

primitive components, multiplexing the published messages to each of the 

subscribers (compare Figure 17 and Figure 18). 

 



110 

Despite the modifications made, many parts of the original design and prototype 

implementation are adopted even when “unrealistic”, such as the CardReader 

component communicating with Bank through CashDeskApplication instead of 

directly, which presents a security threat with PIN code interception possibility. In 

order to share as much of the CoCoME assignment as possible, other parts of the 

design such as the data model and the transfer objects are left unmodified. The 

Fractal implementation is designed to use Hibernate and Derby database for 

persistency as is the case with the prototype implementation. 

 

 

Figure 17. The original design of the CashDeskLine component in CoCoME 

6.1.2 Behavioral View – Modeling CoCoME in General 

The behavior protocols describing application’s behavior are meant to be part of the 

specification of the application. Created at the application design stage, they allow 

developers to verify that the implementation is compliant with the design, or, in other 

words, that it really implements the specification. However, as the behavior protocols 

were not part of the specification of the CoCoME assignment, they had to be 

recreated from the description provided in it. 

 

The provided specification contains only sequence diagrams and use-cases, which do 

not provide as precise and unambiguous specification of the application’s behavior as 

it is required to formally verify the resulting implementation correctness (in order to 

be sufficient, the specification would have to include more complete UML 

description, like collaboration and activity diagrams or state machines). For this 

reason, we had to use the reference implementation provided also as a part of the 

specification and use both the UML descriptions and the reference implementation to 

create the behavior protocols for the application. A problem has however arisen 

during the behavior protocol development process – we found that the reference 

implementation is not fully compliant with the CoCoME UML specification as 



111 

provided – there are two major differences between the reference implementation 

and the specification: (i) missing continuation of the payment process after erroneous 

credit card payment – UC1, (ii) missing implementation of UC8. We solved this 

problem by creating two alternatives of the protocols – the first specifying the 

behavior imposed by the CoCoME UML specification, and the second specifying the 

behavior observable in the reference implementation. As our component-based 

implementation of the application is based on the reference implementation (we have 

reused as much of the reference implementation code as possible), we show later in 

the text that our implementation (and the reference implementation) is not exactly 

following the requirements imposed by the CoCoME UML specification (by 

formally refuting it). 

 

 

Figure 18. Final architecture, as it is used in the Fractal modeling approach 

Regarding the behavior specification, it is also worth noting that we do not model the 

behavior of the actors (e.g. customer, cashier) specified by the UML model as we 

model only the software components that are part of the application’s architecture. 

However, as the behavior of agents is observable via interfaces provided for the GUI 

part of the application, the behavior protocols describing the behavior of 

application’s components also transitively impose restrictions on behavior of agents, 

though the actual formal verification is done against the GUI components. 

 

We show that creating behavior protocols as part of the application specification 

allows precisely defining the required application’s behavior early in the 



112 

development process (in the application design stage). Such specification then 

provides not only the global view that is required to correctly create the application’s 

architecture, but also a per component behavioral view that can serve as a precise 

guide for developers of specific component implementations. Furthermore, the 

specification can be used to formally verify that the implementation really complies 

with the specification requirements and that all the application components (although 

each might be implemented by a different developer) are compatible and together 

provide the functionality (exposed by their behavior) required by the specification. 

 

6.1.3 Behavioral View – Specification of Selected Components 

This section is mostly focused on behavioral view of CoCoMe components. More 

specifically, it assumes that the specification of component structure, interfaces, and 

overall architecture is taken over from the CoCoMe assignment with the few 

modification mentioned in Section 6.1.1. As emphasized in Section 6.1.2, the 

behavior specification provided here is done in behavior protocols and stems from 

the CoCoMe use cases and the component behavior encoded in the Java 

implementation provided in the CoCoMe assignment. Since the behavior 

specification of the whole application is too large to fit into space reserved for this 

chapter, two “interesting” components (Cash-DeskApplication and CashDeskBus) 

were chosen to demonstrate the capabilities of behavior protocols. Interested reader 

may find the specification of other “interesting” components in the appendix and full 

specification at [71]. 

Demonstrating the ordinary usage of this formalism, the behavior protocol of 

CashDeskApplication describes the actual behavior of a cash desk. In principle, it 

captures the state machine corresponding to the sale process. In contrast, the 

behavior protocol of CashDeskBus illustrates the specific way of expressing mutual 

exclusion. 

Since both these protocols are non-trivial, their “uninteresting” fragments are omitted 

in this section. 

CashDeskApplication 

The CashDeskApplication has application specific behavior – its frame protocol 

reflects the state of the current sale. It indicates what actions a cash desk allows the 

cashier to perform in a specific current sale state. The “interesting” parts of the 

protocol take the following form. 

( 

# INITIALISED 

( 

 ?CashDeskApplicationHandler.onSaleStarted 

); 

# SALE_STARTED 

( 

 ?CashDeskApplicationHandler.onProductBarcodeScanned{ 

 !CashDeskConnector.getProductWithStockItem; 

 !CashDeskApplicationDispatcher.sendProductBarcodeNotValid+ 

 !CashDeskApplicationDispatcher.sendRunningTotalChanged 

 } 

BP 



113 

)*; # <--- LOOP 

?CashDeskApplicationHandler.onSaleFinished; 

# SALE_FINISHED 

( 

 ?CashDeskApplicationHandler.onPaymentMode 

); 

# PAYING_BY_CASH 

( 

 ( 

 ( 

  ?CashDeskApplicationHandler.onCashAmountEntered 

 )*; 

 # On Enter 

  ?CashDeskApplicationHandler.onCashAmountCompleted{ 

  !CashDeskApplicationDispatcher 

   .sendChangeAmountCalculated 

  }; 

  ?CashDeskApplicationHandler.onCashBoxClosed{ 

  !CashDeskApplicationDispatcher.sendSaleSuccess; 

  !CDLEventDispatcher.sendAccountSale; 

  !CDLEventDispatcher.sendSaleRegistered 

  } 

 ) 

 ) 

)* | ( 

 # Enable Express Mode 

 ?CDLEventHandler.onExpressModeEnabled{ 

 !CashDeskApplicationDispatcher.sendExpressModeEnabled 

 } 

)* | ( 

 # Disable Express Mode 

 ?CashDeskApplicationHandler.onExpressModeDisabled 

)* 

 

To communicate with each of the buses CashDeskBus and CashDeskLineBus, the 

component features a pair of interfaces (CashDeskApplicationHandler, 

CashDeskApplicationDispatcher and CDLEventHandler, CDLEventDispatcher). The 

interfaces contain a specific method for each event type that can occur on a bus. In 

addition, the interface, CashDeskInterface serves to get the data from Inventory. 

The protocol specifies three parallel activities. The first one is the sale process itself, 

while the other two deal with cash desk mode switching. In the initial state, the sale 

process activity is waiting for SaleStartedEvent on the CashDeskBus (?Cash-

DeskApplicationHandler.onSaleStarted). It denotes beginning of a new sale. 

Then (; operator) BarcodeScannedEvent is accepted (?CashDeskApplication-

Handler.onProductBarcodeScanned) for each sale item. Repetition operator (*) 

ensures that arbitrary finite number of events can be accepted. In reaction (the 

expression enclosed in {}) to each BarcodeScannedEvent, the price is obtained from 

Inventory. (!CashDeskConnector.getProductWithStockItem) . Depending on 

the result, the rest of the CashDesk is informed about the change of total sale price 

(!Cash-DeskApplicationDispatcher.sendRunningTotalChanged) or, 

alternatively (+ operator), ProductBarcodeNotValidEvent is issued 

(!CashDeskApplication-Dispatcher.sendProductBarcodeNotValid). When 

SaleFinishedEvent is accepted (?CashDeskApplicationHandler 

.onSaleFinished), the sale process reaches the payment phase which is specified 

in similar manner. When one sale is finished, the sale process activity returns to the 



114 

initial state to accept another sale (repetition operator *). In parallel operators (|), the 

cash desk performs two other activities to process cash desk mode switching events 

coming from either of the buses. 

This simplified version of the frame protocol does not capture paying by credit card 

and does not cope with events not allowed in a particular sale process state. 

CashDeskBus 

The particular bus behavior comprises of two different aspects – events serialization 

and multiplexing. While the former aspect takes part in modeling “many to one” 

messages, the latter aspect is related to “one to many” messages. The event passing is 

synchronous, meaning that if an event is emitted by a publisher component, the 

component is blocked until all subscribers process the event. If there is another 

component wanting to emit a message when the bus is processing another message, 

the component is also blocked. Such behavior corresponds to the implementation 

using FractalRMI. This behavior might be prone to deadlocks, but fortunately, 

absence of deadlocks is one of properties we can verify using the behavior protocols. 

As discussed in Section 6.1.1, the bus is implemented as a component. For every 

publisher and subscriber, it has an interface containing a method for every event type. 

As the bus component does not contain any application logic, its protocol can be 

generated using the information from the architecture – which components are 

involved in subscriber role, which components are involved in publisher role and 

what event types do they accept, resp. emit. This situation is not typical for behavior 

protocols. 

The method used to model the serialization in behavior protocols follows the typical 

model of mutual exclusion in Petri nets [145] – borrowing a token. The protocol 

representing the bus is accepting events from event producers in parallel, but it does 

not propagate them to the subscribers immediately. Instead of it, the bus protocol is 

waiting for the token event which is emitted by helper protocol. As the helper 

protocol does not produce another event until it receives response from the previous 

one, the bus event propagation parts are mutually excluded. Finally, the bus protocol 

must have empty parallel branch accepting the spare token events. Although the 

helper protocol in the model produces many spare token events which are just 

accepted by the empty parallel branch with no other use, this is not a performance 

issue in the implementation. In the implementation, standard Java synchronization 

with passive waiting is used to achieve the mutual exclusion – important is 

observable behavior, the means can differ in the implementation and model. 

The multiplexing is straightforward – when the bus accepts an event from a producer 

and the token, the event is propagated to all subscribers. 

The following protocol is a fragment of the CashDeskBus protocol PCashDeskBus. 

(?CashBoxControllerDispatcher.sendExpressModeDisabled{ 

 ?Helper.token{ 

  !CashDeskGUIHandler.onExpressModeDisabled| 

  !LightDisplayControllerHandler.onExpressModeDisabled| 

  !CardReaderControllerHandler.onExpressModeDisabled| 

  !CashDeskApplicationHandler.onExpressModeDisabled 

 } 

BP 



115 

} 

)* 

| 

(?CashDeskApplicationDispatcher.sendExpressModeEnabled{ 

 ?Helper.token{ 

  !CashDeskGUIHandler.onExpressModeEnabled| 

  !LightDisplayHandler.onExpressModeEnabled| 

  !CardReaderControllerHandler.onExpressModeEnabled 

 } 

} 

)* 

 |?Helper.token* 

 

The fragment captures the synchronous delivering of ExpressModeEnabled and 

ExpressModeDisabled events. When the CashBoxController component emits the 

ExpressModeDisabled event, it is accepted by the bus (?CashBoxController-

Dispatcher.sendExpressModeDisabled). Then, after accepting the token event, 

the ExpressModeDisabled event is delivered in parallel to all subscribers 

(CashDeskGUI, LightDisplayController and CardReaderController). As the method 

calls are synchronous in behavior protocols, the bus waits until all subscribers 

acknowledge the event delivery. Then, the token is returned (the first closing curly 

brace) and finally, the CashBoxController is notified about successful delivery to all 

subscribers (the second closing curly brace). In the similar manner, the 

ExpressModeEnabled event is processed. 

While the events from producers are accepted in parallel, which ensures that no 

producer can issue an event in a wrong moment, waiting for the equal token within 

the processing of distinct events ensures the mutual exclusion of the event deliveries, 

so the subscribers need not to care about parallelism. The final part of the fragment 

(?Helper.token*) accepts the unnecessary token events. As there must be a token 

event source, the specification must be enriched by a helper protocol 

PHelper:!Helper.token*. The complete frame protocol of the Cash-DeskBus 

component featuring mutual exclusion is then obtained by composing the protocols 

PCashDeskBus and PHelper by the consent operator - PCashDeskBus ∇{Helper.Token} PHelper. It 

synchronizes the opposite actions (!Helper.token and ?Helper.token) and 

replaces them by single internal action. 

6.1.4 Deployment View 

From the deployment point of view, we introduced a few changes mainly to the 

middleware used in the reference architecture. These changes were motivated by the 

way Fractal can be distributed and by the libraries available for the distribution. 

 

We have used FractalRMI instead of Sun RMI. FractalRMI is a library for Fractal 

that allows transparent distribution. The components are not aware of the fact that 

they communicate remotely. 

 

In a similar fashion, we have eliminated the use of JMS, which has been used in the 

reference architecture for implementing buses. We have replaced each of the both 

busses by a component that is responsible for routing the messages. Remote 

communication in this case may be again transparently realized using FractalRMI. 

 



116 

The Fractal specification also lays out another way of solving distribution and 

various communication styles. It defines so called composite bindings. Each 

composite binding consists of a number of binding components. These components 

are classical components from the Fractal point of view, their responsibilities are to 

encapsulate or implement middleware. A significant help in implementing the 

composite bindings is provided by the Dream framework, which implements Fractal 

components that support construction of communication middleware with various 

communication styles, including JMS. 

 

Our choice of FractalRMI is transparent and requires no additional implementation 

effort. We did not use the composite bindings and Dream also because Dream is still 

under development; additionally, our solution brings no restrictions to the modeled 

CoCoME example. 

 

Another important aspect of deployment is the way deployment is planned and 

performed. In our approach, we have put the information about deployment into 

FractalADL. Each specified component is annotated with an element virtual-node 

which states the deployment node to which the component is to be deployed. The 

actual distribution is then realized via FractalRMI. 

6.1.5 Implementation View 

The Fractal implementation is based both on the Fractal architecture model of the 

application and the provided reference implementation. We have created a 

FractalADL model of the application architecture using the FractalGUI modeling 

tool [73], taking into account the changes mentioned in Section 6.1.4. The resulting 

model was then extended by hand to accommodate behavior protocol specification, 

because it is not supported by the modeling tool. 

 

To speed up and simplify the development, we have used a tool to create component 

skeletons from the architecture model. More detailed description of the 

transformation can be found in Sect. 4. The functional part of the application was 

then adapted from the CoCoME reference implementation and integrated into the 

generated component skeletons. 

6.1.5.1 Testing the Implementation against Use-case Scenarios 

To enable the testing of functional properties specified by behavior protocols, 

FractalBPC allows monitoring communication on the interfaces of a component C 

when the application is running. The runtime checker integrated in FractalBPC 

automatically tests whether C communicates with other components in a way that is 

allowed by C’s frame protocol. Any violation of the frame protocol by C or one of 

the components communicating with C is reported. 

 

In addition, the reference implementation of the trading system contains a small test 

suite for testing the behavior of the implementation against the use case scenarios 

described in the CoCoME assignment. The test suite, based on the jUnit [97] 

framework, contains a number of tests which exercise operations prescribed by the 

respective use cases and verify that the system responds accordingly. 

 



117 

As it is, however, the test suite from the reference implementation is unsuitable for 

testing. The key issues are testing of crosscutting concerns, test design, and 

insufficient automation. 

 

The tests attempt to verify not only that the implementation functions correctly, but 

also impose timing constraints on the executed operations. This makes the tests 

unreliable, because two orthogonal aspects are tested at the same time. Combined 

with rather immodest resource requirements of the application arising from the use of 

“heavy-duty” middleware packages for database functionality, persistence, and 

message-based communication, the application often fails to meet the test deadlines 

on common desktop hardware, even though it functions correctly. 

 

Moreover, the tests always expect to find the trading system in a specific state, which 

is a very strong requirement. To accommodate it, all the applications comprising the 

trading system are restarted and the database is reinitialized after each test run, which 

adds extreme overhead to the testing process. 

 

This is further exacerbated by insufficient automation of the testing infrastructure. 

The trading system consists of a number of components, such as the enterprise server 

and clients, store server and clients, database server, etc. Starting the trading system 

is a long and complicated process, which can take several minutes in the best case, 

and fail due to insufficient synchronization between parts of the system in the worst 

case. Manual starting of the trading system, combined with the need for restarting the 

system after each test run, makes the test suite in its present form unusable. 

 

To enable testing in a reasonably small environment, we take the following steps to 

eliminate or mitigate the key issues, leading to a considerable increase in the 

reliability of the tests as well as reduced testing time: 

 We simplify the implementation of the trading system by eliminating the GUI 

components, leaving just the business functionality, which allows the trading 

system to be operated in headless mode. 

 We eliminate the validation of extra-functional properties from testing; timing 

properties of the trading system are gathered at runtime by a monitoring 

infrastructure. Validation of extra-functional system properties is independent 

from functional testing and is based on the data obtained during monitoring. 

 We improve the testing infrastructure by automating the start of the trading 

system. This required identifying essential and unnecessary code paths and 

fixing synchronization issues between various parts of the system. 

6.2 Tools and Results of Verification 

Verification of an application consists of two steps. First step is checking the 

protocols compliance. Protocols of all components used to implement a composite 

component are checked against the frame protocol of the composite component. 

Second step is checking whether the implementation of the primitive components 

correspond to their protocols. 

Compliance of the whole Trading System was checked using the dChecker [57] tool 

with positive result. The dChecker tool is based on translation of the protocols into 

minimized finite state machines. Then, composite state space is generated on the fly 



118 

to discover a potential bad activity error or deadlock. Moreover, in order to fight the 

state explosion problem, dChecker supports both parallel and distributed verification, 

so that the full computational power of multiprocessor and multicomputer systems is 

exploited. For illustration, correctness of the whole architecture takes 192 seconds to 

be verified on a 2xDualCore at 2.3GHz with 4GB RAM PC. Specifically, the 

protocol of CashDeskApplication is translated into finite state machine consisting of 

944 states. The composite state space of CashDesk features 398029 states and it takes 

8 seconds to be verified (on the same PC). 

Correspondence of the implementation of primitive components to their frame 

protocols is verified by the Java PathFinder (JPF) model checker. Since JPF, by 

default, checks only low level properties like deadlocks and uncaught exceptions, we 

use JPF in combination with the behavior protocol checker (BPC) [144]. Component 

environment is represented by a set of Java classes that are constructed in a 

semiautomated way: (i) The EnvGen tool (Environment Generator for JPF) is used to 

generate the classes according to the behavior specification of the environment via 

the component’s inverted frame protocol, and (ii) the generated classes are manually 

modified if the environment has to respect data-flow and the component's state in 

order to behave correctly (original behavior protocols do not model data and 

component's state explicitly). 

By code checking implementation of the CashDeskApplication against the frame 

protocol created according to the reference specification of UC1, we were able to 

detect the inconsistency between the reference implementation and specification of 

UC1 that is first mentioned in Sect 3.2. Detection of this inconsistency took 2 

seconds on a 2xDualCore at 2.3GHz with 4 GB RAM PC. Code checking of the 

implementation of CashDeskApplication against the frame protocol created 

according to the reference implementation has not reported any error and took 14 

seconds. Nevertheless, switching between the express and normal mode is not 

checked, since the environment is not able to find whether the application is in the 

express mode or not, and thus it does not know whether it can trigger payment by 

credit card (forbidden in the express mode). Moreover, we also had to introduce the 

CashAmountCompleted event into the frame protocol and implementation of 

CashDeskApplication. This change was motivated by the need to explicitly denote 

the moment when the cash amount is completely specified (originally, the 

CashAmountEntered event with a specific value of its argument was used for this 

purpose). Were the CashAmountCompleted event not added, the environment for 

CashDeskApplication would exercise the component in such a way that a spurious 

violation of its frame protocol would be reported by JPF. 

As for run-time checking, the special version of BPC is used again. The difference is 

that notification is not performed by JPF, but by runtime interceptors of method calls 

on component’s external interfaces; moreover, no backtracking in BPC is needed 

since only a single run of the application is checked. 

When using the tools, however, the state explosion problem became an issue. Some 

of the behavior protocols (namely CashDeskBus and Data) originally featured 

prohibitively large state space. Thus, in order to fight the state explosion problem, 

heuristics were employed. First, CashDeskBus protocol is separated into multiple 

protocols (as if for multiple components), so that it can be represented by multiple 



119 

smaller finite state machines in contrast to a single unfeasibly large state machine. 

Second, method calls inside behavior protocol of the Data component are explicitly 

annotated by the thread number. This is again in order to the fight state explosion as 

this makes the protocol more deterministic while preserving the same level of 

parallelism. For these reasons, protocols on the CoCoME Fractal web page differ 

from the protocols described in here, as they include also the heuristics. 



120 

Chapter 7  

Entities – Addressing Dynamism 

Component-based software engineering is a methodology, which allows building 

software of well-defined blocks called components. A component explicitly defines 

its interaction points in the form of provided and required interfaces. The interaction 

among components is captured by so called component architecture which defines 

bindings (i.e., communication channels) between components required and provided 

interfaces. Such formalization brings important benefits in terms of documentation, 

analyzability, and code generation. 

 

A component is often viewed as a black-box, which is essential for many desired 

features such as separation of concerns, support of product lines, etc. In the black-

box view, all interactions of a component with its environment occur only through its 

well defined interfaces and any assumptions of the component regarding its 

admissible environment are made explicit, e.g., using a formal description of the 

component behavior or by specifying method contracts. This allows verifying that 

communicating components obey their mutual contract (in terms of method calls 

ordering, parameter/return value ranges, etc.). 

 

When considering the formal behavior description of a black-box component, the 

behavior model must be associated with some concept in the black-box view, which 

is either a particular interface or a component as a whole and refer to the behavior 

events observable at architectural level---method calls. However, components often 

operate with more fine-grained concepts (e.g., instances of different objects passed as 

method arguments), which are not reflected on the architectural level. 

 

 

Figure 19. An example architecture featuring a FileManager component 

As an example, consider the FileManager component from the architecture depicted 

in Figure 19. The FileManager provides a concept of a file to its environment---

namely the Client component. The files can be manipulated by calling the open, 

read, write, and close methods on the single provided interface of the 

FileManager. 

 

Entity 

EntityTR 



121 

When modeling admissible behavior on the FileManager interfaces, it is desirable to 

specify that a particular file has to be first opened, then it can be read from or written 

toa number of times, and finally it should be closed. Standard approaches to 

modeling behavior of components (e.g., [4], [58], [33], [8]) consider only ordering of 

method calls on the component interfaces. Unfortunately, there is no support for 

relating method calls with the actual methods parameters. Therefore, the resulting 

specification cannot express the required ordering of method calls on FileManager 

related to the different files. Without this dependency, one can only say that all the 

four methods can be called in any order, which is an over-approximation of the 

admissible behavior and not a particularly useful one. Significant aspect of the 

problem is that the objects (files) are not captured at the architectural level. 

 

Similar patterns occur very often in real applications and typically involve dynamic 

creation and deletion of the objects, reference passing among components and 

encapsulation of a number of object instances in a single component (1:N 

relation).At the implementation level, these objects do not necessarily have to be 

represented as the programing language objects. Depending on a particular 

component model, its underlying middleware, and design decisions, the 

implementation can use objects, structures, components. Therefore, to remain general 

enough, we will call these objects entities. In similar manner, references on entities 

may be implemented in various ways – by programming language references, 

pointers, handles or even string identifiers. 

 

7.1 Goals 

Our goal is to provide means for capturing entities on the architectural level. As 

already mentioned, such support is missing in the classical component models [35, 

40, 50] with static architecture. In dynamic component models supporting 

architecture evolution [7, 74], the concept of entities could be represented as a 

dynamically created interface/component. However, formal behavior description is 

not as advanced in the context of dynamic component models as in the static 

component models. This is mainly due to the fact that the dynamic component 

models are too general. 

Instead, we propose a conservative extension of a static component model to contain 

minimal set of concepts necessary to capture entities with emphasis on (i) practical 

implementability in a component framework, and (ii) future use of the additional 

information in various analysis tasks, and especially analysis of behavior 

compatibility among components. 

 

However, the benefits are not tied only to the behavior modeling. In the context of 

the file entities example, the performance prediction analysis may estimate system 

performance based on the number of opened files. Documentation value of the 

architecture also increases by capturing the dynamic file entities, which the 

developers should be aware of anyway. Last but not least, capturing the entities in the 

architecture offers additional opportunities for code generation, e.g., the translation 

into handles and proxy generation might be done automatically as well as for 

example control of access rights to the entities. 



122 

7.2 Capturing Dynamic Entities in Architecture 

In this section, different approaches to modeling entities are considered. In particular, 

we use means of a static component models to capture a static snapshot of a system 

involving entities – dynamic aspects are not modeled at this stage. The model 

examples serve as a basis for our proposal. Here, we first consider what existing 

concepts can represent entities. Later in Section 7.2, we propose extensions of these 

concepts to capture the inherent dynamism of entities. 

For the sake of completeness, we denote the model from Figure 19 as Solution A. 

However, as already mentioned in introduction of this Chapter 7, this solution does 

not reflect entities at all. 

7.2.1 Solution B: Entities as Separate Components 

 

 

Figure 20. Entities modeled as component instances 

Let us consider a case where files are modeled as separate components. Such 

architecture is depicted in Figure 20. In this case, the FileManager provides just the 

open method which results in instantiation of a new File component which then 

provides other methods related to individual files (read/write/close). When close 

is invoked, the particular File component instance is destroyed.In this case, 

individual files can be equipped with behavior description, performance information, 

and various quality attributes needed for different kinds of analysis. Apparently, 

since the application is evolving in time, the architecture in Figure 20 is just a 

snapshot taken in a certain moment. For instance, if the figure was capturing the 

structure at the beginning of the computation, there would be no File component 

present.  



123 

7.2.2 Solution C: Entities as Separate Interfaces 

 

Figure 21. Entities modeled as interfaces 

In some cases, using a component to model every opened file may be a too fine 

grained approach. The information kept for each file is not that large. In other 

situations, there might be also complex relations among individual entities and sub-

components which should not be exposed to the rest of the architecture. 

 

Figure 21 depicts a compromise solution where the files are modeled as separate 

interfaces in the architecture. The FileManager component provides an interface 

containing the open method. When it is invoked, a new interface representing the file 

is instantiated at the boundary of FileManager (the opened file itself will be 

represented by an internal component or object inside FileManager). In this case, the 

additional information can be associated with the interface representing the file. 

Notice that from the Client point of view the situation is the same as in Figure 20. 

Similarly to the previous solution, the architecture evolves at runtime and the figure 

is just a snapshot. Although the number of components remains the same (in the 

black-box view of the FileManager component), interfaces and bindings are being 

created and destroyed at runtime. 

7.2.3 Requirements 

The discussed approaches address entities in different ways – each with different 

pros and cons. When the information related to individual entities is not interesting 

for a developer, Solution A can be used. Since entities are not modeled at all, no 

additional means to capture dynamism of entities are needed. 

When the developer wants to take the advantage of modeling entities, Solution B and 

Solution C are preferred, depending on the required granularity. From the solutions 

presented, it is apparent that the existing component abstractions are sufficient for 

capturing snapshots of the architecture involving entities. To go further and describe 

also the way the entities evolve, certain kind of dynamism is required. To gain as 

much as possible from modeling entities, the component model must provide a 

consistent notion of dynamic entities from all points of view – describing evolution 

(creation of new entities, relations among them), describing behavior of individual 

components referencing individual entities, and also, the entities should be 

identifiable in the component model runtime to allow monitoring, profiling, etc. 



124 

Before describing the proposed extension of the standard static component models by 

the necessary dynamism, let us first summarize a set of requirements the extension 

should fulfill. 

 

R1: Be strong enough to support dynamism needed in Solution B and 

Solution C. In particular, the extension must support dynamic component 

instantiation, dynamic interface creation and dynamic bindings. 

 

R2: Keep the architecture analyzable. The extension must be conservative in 

terms of number of new concepts, their complexity, and  expressive power. 

The new concepts must be also consistent throughout the hierarchy of 

components to allow a compositional analysis. 

 

R3: Keep the documentation role of the architecture. The architecture must 

capture all configurations achievable by the application structure at runtime. 

The information should be separated from implementation details. 

 

R4: Preserve established concepts of component models. 

7.3 Runtime vs. Design Architecture 

We will use the concept of components and interfaces provided by legacy component 

models in two different roles:  (1) to model the structure of the application as usual, 

i.e. to capture the application in terms of functional blocks (components) and 

communication among them (interfaces), (2) we will use the concept to model 

entities and related communication. 

 

First, let us distinguish design architecture from runtime architecture. The runtime 

architecture reflects the structure of the application (including entities) in a particular 

instant of time during the computation. Some of components and interfaces model 

entities, but since it is just a snapshot no dynamism is considered and there is no need 

to distinguish them from other components. The information in the runtime 

architecture is the same as in legacy component models – static components 

featuring interfaces connected by static bindings and entities are formally 

indistinguishable from other concepts. On the other hand, the goal of the design 

architecture is to cover all configurations the application structure can reach in terms 

of number of existing entities, their location and established communication links. 

The design architecture can be also thought of as a template for runtime 

architectures. 

 

When the dynamism of the file manager scenario is considered, certain parts of the 

application remain the same during the computation. Those parts are captured in the 

design architecture using components, interfaces, and bindings as usual. However, 

some components are capable to instantiate new interfaces in a collection of 

interfaces2, which are bound together by new bindings (e.g., a new file was opened). 

Those interfaces and bindings can also disappear later (e.g., a file was closed). 

Nevertheless, it is always known in advance what components are able to instantiate 

new interfaces, what components are supposed to communicate with each other, and 

                                                 
2 Collection of interfaces is a group of interfaces of the same type. The number is varying during the computation. 

Such concept is already present in some component models [35, 40]. 



125 

what components represent dynamically created entities. What is not known in 

advance and what is being under permanent change during the computation is the 

number of interfaces, bindings, and components. Thus, instead of capturing the exact 

numbers, we propose to capture in the design architecture the information known in 

advance using new concepts of proto-bindings and proto-components as described 

below: 

 

Proto-binding defines a location in the architecture where the bindings can be 

established. The proto-binding has two end-points and serves as a template of regular 

bindings that can be established between the end-points at runtime. The proto-

binding end-point can be either a single interface or a collection of interfaces. 

 

Proto-component represents a template of a component which may appear in the 

runtime architecture at the certain place. The proto-component is connected to 

interfaces of other components. 

 

The concepts of proto-binding and proto-component allow enriching design 

architecture by information about dynamically created components and interfaces. 

The proposed degree of dynamism is designed with entities on mind. 

 

Let us reconsider the Solution C (Figure 21), modeled using the proposed concepts. 

In Figure 22, the design architecture of Solution C is depicted. While the interface for 

opening files of FileManager is connected to Client by binding, interfaces for 

individual files and related bindings are not captured since their number varies 

during the computation. However, the corresponding collection interfaces are 

connected by the proto-binding to identify places where dynamically created 

bindings can be instantiated. 

 

 

Figure 22. FileManager example - design architecture 

The runtime architecture in Figure 23 captures the structure of Solution C at a certain 

moment at runtime. Currently, there are two files provided by FileManager to Client. 

Bindings between interfaces representing individual files are established with respect 

to the proto-binding from the design architecture. 

 



126 

 

Figure 23. FileManager example - runtime architecture 

The design architecture in Figure 22 does not state whether the FileManager 

component is primitive or composite. If the component is primitive, the 

implementation of the open method just creates a new interface instance which is 

consequently bound to the interface of Client (illustrated by an example in the 

introduction of Section 7.2.2). On the other hand, if the component is implemented 

by composition of other components, dynamic entities can be represented by separate 

components. In such case, proto-components are used (illustrated by an example in 

Section 7.4.4). 

7.4 Entity Based Reconfiguration Actions 

In Section 7.3 the concept of proto-bindings was introduced. The goal of this section 

is to define mechanisms controlling creation of bindings templated by proto-

bindings. The proposed mechanisms are specially designed to support the concept of 

entities as introduced in Section 7.2 and fulfill all the requirements R1 to R4 

established in Section 7.2.3. Our proposal is structured into two parts: 

1) To meet the requirements R2 and R3, we propose that bindings templated by 

proto-bindings should not be allowed to be created or destroyed arbitrarily. 

Instead, these architectural changes should be triggered only by entity 

references passed among components.  

 

2) To capture the relationship between the data flow of entity references and the 

supported architectural changes, we propose four basic reconfiguration 

actions used to annotate component interfaces -- the reconfiguration actions, 

defined as part of the design architecture, constrain where, when, and which 

architectural changes can happen at runtime. 

 

In order to show a simple example of a design architecture using the proposed 

reconfiguration actions, a short overview of all four reconfiguration actions and their 

properties follows (more details are provided later in section 7.4.2): 

To meet the requirements R2 and R4, the reconfiguration actions should be defined 

in a way that they can be triggered by the events visible to the component system. 

For a typical component system, method calls are a common observable event, 

therefore we allow any architectural changes defined by reconfiguration actions to be 

triggered only as a reaction to a method call among components. All reconfiguration 

actions are associated with an entity reference argument or return value of an 

interface method and have another target interface or collection of interfaces 



127 

specified (the target interface or collection are expected to be one end of a proto-

binding).  The proposed actions are: 

a) link, creating a new binding templated by proto-binding leading from the 

target interface and associating it with the entity reference, 

 

b) unlink, destroying the binding associated with the entity reference, 

 

c) create, publishing/associating the associated entity reference via/with the 

target interface, 

 

d) destroy, removing the association of the entity reference with the target 

interface, making the entity reference unavailable. 

 

If the target of a reconfiguration action is a collection of interfaces, the link and 

create actions will create a new interface instance in the collection and the entity 

reference is associated with it, the unlink and destroy actions will remove and destroy 

the interface instance. 

 

Figure 24 presents a basic example illustrating behavior of reconfiguration actions3. 

The Client component is allocating multiple entities (i.e., opening multiple files) 

from the FileManager server component (this follows the motivation example 

presented in Section 7.2). Each time the Client calls the open method of the IA 

interface it will receive a reference to a new entity (a newly opened file). The open 

call raises the following actions: (1) the create reconfiguration action on the return 

value of FileManager provided open method ensures a new interface is allocated in 

the collection of provided interfaces IB and it is associated with the returned entity 

reference, (2) the link reconfiguration action on the return value of Client required 

open method ensures a new interface is allocated in the collection of required 

interfaces IB and a new binding templated by the proto-binding is created. Client can 

then interact with the entity by calling the use method repeatedly via the interface 

IB instance associated with the acquired entity reference. When the Client decides to 

stop the interaction, it will call the close method. The associated unlink 

reconfiguration action implies the close is the last call on this binding and will 

destroy the binding and remove the instance of the required interface at the end of the 

close call. Similarly, the destroy reconfiguration action ensures the instance of 

provided interface IB is removed from the FileManager collection. 

                                                 
3 In all figures the reconfiguration actions are marked by a @ prefix to enhance readability, actions associated with 

an argument or return value are added before that argument or return value, actions associated with a method 

are added after the method declaration. 



128 

 

Figure 24. Example – Client/FileManager 

7.4.1 Entity References 

All entity references representing entities have to originate from somewhere in the 

component architecture. More precisely, the first component publishing the entity 

reference in the architecture can be defined as an owner of the entity reference (and 

the entity behind it). We aim to support two types of entity reference owners: (i) a 

primitive component publishing an internal data structure or object, (ii) a 

dynamically created component publishing references to its own interfaces -- these 

are defined later in Section 7.4.4. The owner of an entity reference is known in the 

architecture only at the exact level of nesting, where the owner resides. Everywhere 

else in the architecture entity references fall into two groups at a certain level of 

nesting: 

1) Type A, no information about the entity reference is available to the 

component system, thus it can be only passed to other components, but 

cannot be used to establish any bindings,  

 

2) Type B, the entity reference has been published via a reconfiguration action. 

The interface used to publish the entity reference on such a component is then 

defined as a local source; reconfiguration actions can be applied only to this 

type of entity references. 

 

If the owner component of an entity reference is known at a certain level of the 

architecture the entity reference is supposed to be of type B and the local source is 

defined to be the source interface of the owner. Entity references identifying the 

same entity (originating from the same interface of the owner) can be of both types A 

and B on different levels of nesting. 

To simplify the description of architecture reconfiguration actions other criteria can 

be used to further divide the entity references into two disjoint groups: 



129 

1) Entering references, i.e., entity references passed as input arguments of 

methods in provided interfaces, or as output arguments and return value of 

methods in required interfaces. 

 

2) Leaving references, i.e., entity references returned as output arguments and 

return value of methods in provided interfaces, or input arguments of methods 

in required interfaces. 

7.4.2 Basic Reconfiguration Actions 

The goal of this section is to elaborate the four basic reconfiguration actions that 

were introduced in the overview at the beginning of Section 7.4. To the general 

properties of reconfiguration actions, the following should be added: 

1) A reconfiguration action is always defined on an interface instance of a 

particular component and not generally on an interface type. As illustrated by 

examples in this section, a method of one interface type can have, and 

typically will have, associated different reconfiguration actions in different 

contexts (e.g., the difference in provided and required interface). 

 

2) The actions can be associated not only with a direct argument of a method, 

but also with a method itself. Then by stating an action is associated with a 

method we mean the action is in fact associated with the “this” hidden 

argument of the method, i.e., it influences the reference on which the methods 

call occurs. 

 

3) A reconfiguration action can be associated only with entity references that are 

of type B in the given context, i.e., the local source (interface) of the entity 

reference is known. 

 

The section concludes with complete definitions of each of the four basic 

reconfiguration actions: 

a) link, creates new binding templated by a proto-binding leading from the target 

interface of the action. The other end of the proto-binding has to be a local 

source of the entity reference the link action is associated with. On composite 

components, the link also makes the target interface the local source of the 

entity reference for the immediate lower level of nesting inside the 

component with the target interface, i.e., the target component. Thus, the link 

action defines the entity reference to be of type B at the lower level of 

nesting. If the link action is omitted in the method specification, the entity 

reference would be only of type A in the lower level of nesting context, i.e., 

subcomponents would be only able to pass or store the reference, but would 

not be able to create a binding using the link action and call methods on the 

reference. 

 

On entering references, the action executes when the entity reference is 

received – i.e., during invocation of an incoming call with input references 

and during return of an outgoing call with output references. Using the action 

on leaving references makes sense only in the context of a caller – then the 

action executes during the call invocation. 



130 

 

b) unlink, undefines the target interface as the local source of the associated 

entity reference at the immediate lower level of nesting and removes the 

binding from the target interface to the local source at the level of nesting the 

target component resides. 

 

On entering references, the action executes always at the end of a method call 

– i.e., when returning from an incoming call or when an outgoing call returns. 

The unlink action can be used in both caller and callee contexts on leaving 

references and also executes when a method call ends. The unlink action can 

be associated with method arguments, as well as methods themselves. 

 

c) create, on primitive components, it prepares the associated entity reference 

(directly representing the internal state of the component, e.g., an object 

instance) to be sharable, plus defines the component as the owner of the 

entity reference, implying the create action target interface becomes the local 

source of the entity reference. 

 

On composite components (that, if not dynamically created as defined in 

Section 7.4.4, cannot own entity references), the create action creates a new 

internal binding templated by proto-binding leading to local source of the 

entity reference at the immediate lower level of nesting inside the target 

component. Again, the target interface becomes the local source of the entity 

reference at the level of nesting containing the target component. 

 

Similarly, as the link action makes the associated entity reference type B in 

the inner context of the target component, the create actions makes the entity 

reference type B in the outer context of the target component, i.e., at the same 

level of nesting the target component resides (component environment). 

Without the create action the entity reference would be only of type A to the 

component environment. 

 

The action is valid only on leaving reference} and always executes at the time 

the entity reference is being passed – i.e., in caller context, during the method 

invocation and in callee context, during the method return. 

 

d) destroy, undefines the target interface as the local source of the associated 

entity reference and, on composite components, also removes the internal 

binding leading to the internal local source of the entity reference. 

 

The action, being an inverse to the create action, can be used only on entering 

references and again executes as the reference is being received – i.e., in 

caller context, during method return and, in callee context, during method 

invocation. The destroy action can be associated with method arguments, as 

well as methods themselves. 

7.4.3 Examples of Basic Reconfiguration Actions 

In this section, we present other typical examples of using different reconfiguration 

actions at the level of design architecture to form a description of the allowed 



131 

architectural evolution. The first example was presented in the introduction of 

Section 7.4. 

The second example (Figure 25) shows the importance of timing of architectural 

change denoted by each reconfiguration action. The example represents a common 

pattern of passing a callback reference -- the entity reference is passed in opposite 

direction than in the first example. The binding to Client's entity (the callback) will 

be established at the beginning of the performWith method call, allowing the 

Worker to call back to Client during the call. At the end of the originating call the 

binding is destroyed again – so that the Worker is not allowed to call the Client out of 

the specific window provided by Client via the performWith call. 

 

Figure 25. Example – Callback 

The third example (Figure 26) shows the behavior of reconfiguration actions in a 

context of nested components (if we no longer look at the Client from Figure 24 as 

on a black box) and also illustrates component ability to just pass the received entity 

references without a need to create a binding to the originating component. An 

important note is that making the Client a composite component does not change the 

reconfiguration actions on its frame, but its behavior is refined by the reconfiguration 

actions associated with its subcomponents. The Security component opens the 

entities on Server, but does not use them directly (only passes them to the Worker 

component). This way, no reconfiguration actions are needed on any of its methods. 

On the other hand, the Worker component needs a binding to interact with Server 

entities, so the link action is required on the method argument where it receives the 

entity reference – i.e., on the performWith method. Similarly to the first example of 

the whole Client frame, the unlink action is required on the close method. Worth 

noting is also the inherent mechanism of partial building of bindings from Worker 

component back to the Server component – the first half (between Client and Server) 

will be created at the end of the open call, but the second half (between Worker and 

Client frame) won't be created until the beginning of the performWith call. Should 

the Server component be also composite, the same partial building would occur 

inside it as the open method call returns up through Server hierarchy. 



132 

 

Figure 26. Example – Passing a reference through a composite component frame 

7.4.4 Reconfiguration Actions for Dynamic Components 

The presented concept of dynamically created bindings over proto-bindings 

controlled by reconfiguration actions can be naturally extended to a concept of 

dynamically instantiated components from proto-components. Dynamic instantiation 

is however a much more complex task. The most challenging issues are the location 

of newly created components and the related need for their initialization. As a 

general evaluation of all possible options in dynamic component creation is beyond 

the scope of this paper, we present two reconfiguration actions – new and delete 

specifically targeting the scenario of encapsulated entities where the dynamic 

components need to be created at the callee side. 

An important difference from previously proposed basic reconfiguration actions is 

that the new and delete actions are defined at the level of the architecture and not at 

the level of component frames – i.e., the actions are added not by the component 

developers, but by the architecture designer. Another difference is they are never 

associated with a method argument or a reference but always with a whole method 

instead. Let us describe the new reconfiguration actions in more detail: 

a) The new action can be most easily described on an example (see Figure 27). 

The new action can be associated only with methods on unbound interfaces 

and only methods without input arguments are allowed. The action has also 

one proto-component (File in Figure 27) associated with it – each time a 

method with new action is invoked a new component from that proto-

component template is instantiated. All the output arguments and return value 

of a method with a new action then correspond to provided interfaces on the 

proto-component, i.e., also on each of the dynamically instantiated 

components, and is used to pass references of these interfaces to the calling 

component (FMLogic in Figure 27). An important feature of the new 

reconfiguration action is, that all provided interfaces of an instantiated 

component templated by a proto-component become local sources of the 

corresponding entity references returned from a new annotated method. From 



133 

this point on all references to instantiated component interfaces are handled in 

the standard way as other entity references. As illustrated on Figure 27, if 

FMLogic needs to call methods on IInit interface, the proper argument of 

newFile method needs to be associated with the link action. On the other 

hand, the IFile interface is directly passed as a return value of the open 

method call, so no reconfiguration actions are needed. Note that link action 

is added to the newFile method by the FMLogic component designer, but the 

new action is added later by the designer of the whole FileManager 

architecture. 

 

A great advantage of the proposed new action is that it can be replaced by 

actual binding to another component that will provide entity references 

instead. This change is completely transparent and does not influence 

behavior or associated basic reconfiguration actions of the FMLogic 

component itself. 

 

b) The delete action behavior is similar to the destroy action for interface 

bindings. At the end of the associated method call the dynamically 

instantiated component being called is destroyed – all bindings connected to 

it are destroyed as well. Such a component is then unreachable via standard 

method calls and can be stopped by the standard means of the component 

system. 

 

 

Figure 27. Example – Component instantiation from a proto-component 

7.4.5 Conclusion 

In this chapter, we have so far presented a way of capturing dynamic entities (e.g., 

files, database handles, and session objects) in a component model. Our approach 

allows capturing the dynamism in the initial design architecture using the proposed 

concepts of proto-bindings and proto-components, which explicitly document 

possible future bindings and component instances. Further, we have introduced six 

reconfiguration actions, which describe at the design level when and how the runtime 

architecture evolves. This way, we lay down basis for more precise modeling and 



134 

code generation, as we have also pointed out in this paper. The proposed approach 

works seamlessly both for flat and hierarchical component models. As for the future 

work, we plan to focus on adjusting our formalism for behavior modeling to reflect 

the proposed approach and also to focus more on a general way of component 

instantiation and initialization. 

 

7.5 Evaluation – Enhancing the CRE Case-study Model 

The goal of this section is to verify the concepts presented in this chapter so far and 

to show there are viable to model complex component architectures. Target 

application selected is the demo application from the CRE case-study – in Section 

5.3.1 we have presented the problems in modeling the original Token component 

using the existing CBSE concepts. In the original architecture (which was up to now 

inherently static) the Token component had to be represented as a single instance, 

whereas in the real application it would stand for a varying number of Token 

instances that would be created and destroyed dynamically at runtime according to 

needs of clients connecting to the application. Furthermore, there were multiple 

points in the architecture where the Token component instances can originate from 

(FlyTicketDatabase component – either directly or resent via FrequentFlyerDatabase 

component; or AccountDatabase component) and each of the creators could provide 

a slightly modified version of Token component (with or without CustomToken 

inner component). 

As the new architecture is intended to verify the dynamic entities concepts, the whole 

CRE case-study application has not been modeled – the irrelevant parts have been 

omitted from the architecture to keep it easily readable (so the figure illustrating it 

can fit to a single page) – these are namely: Firewall and DhcpServer component, all 

the services outside of the actual component architecture (remote services, clients, 

web application, etc.), and the CardCenter and AccountDatabase components (while 

these components play a similar role in the Token instantiation as the 

FlyTicketDatabase and FrequentFlyerDatabase components do [that are modeled], 

our solution with dynamic entities is designed in a consistent and generic way, and 

the interconnection of AccountDatabase to the Arbitrator component would be the 

same as for the FlyTicketDatabase and Arbitrator components, thus to further 

simplify the architecture the AccountDatabase has been omitted as well). Also the 

internal components of the FlyTicketDatabase component have been reduced to a 

single representative, the AfDbConnection component. The architecture of the other 

Connection components and their composition into the FlyTicketDatabase 

component would be exactly the same as is the design of the AfDbConnection 

component. 

Furthermore the component interfaces were simplified to contain only methods 

relevant to dynamic architectural changes for similar reasons. The following table 

summarizes the symbols used in figures illustrating the architecture (note that 

interface instances without annotation contain only methods that have no 

reconfiguration actions associated with them or with any of their arguments or return 

value): 



135 

 

We in fact provide two variants of the new CRE case-study architecture: (1) one 

trying to match the original application as closely as possible (Figure 28, described in 

Section 7.5.1), (2) the other enhanced one that exposes a more advanced 

functionality than was needed in the CRE project, but that is a natural evolution of 

the original application to illustrate the dynamic entities are suitable even for more 

complex scenarios (Figure 29, described in Section 7.5.2). 

In order to seamlessly support the dynamically instantiating Token components as 

well as possibility of their multiple variants, the key difference to the original 

architecture is made in both variants of the new architecture: the Token component is 

transformed into a dynamic entity and is moved outside of the Arbitrator 

component’s scope into the scope of Token’s respective creators. The Arbitrator 

component now only knows about IToken interface references bound to its IToken 

collection interface – this is a key enhancement of the original architecture, as the 

Arbitrator component is not bound to specific Token implementation anymore, thus 

the black box principle is strengthened in the architecture (that was a key goal to 

achieve in component-oriented architecture [30]). Now each of the three components 

(FlyTicketDatabase, FrequentFlyerDatabase and AccountDatabase) that can provide 

Arbitrator with new Token instance references can implement the Token entity in 

any way that is most reasonable to them. The FlyTicketToken component, that 

represents Token created by the FlyTicketDatabase component, is designed as a 

composite component and its internal subcomponent for reusability elsewhere in the 

architecture. This is the reason for existence of the unbound ICustomCallback 

interface of the ValidityChecker component (it would be used in AccountDatabase’s 

implementation of Token component, which would extend the architecture by its 

own subcomponent of Token bound to the ICustomCallback interface on 

ValidityChecker component). 

Primitive 
component

Composite 
component

Proto-component

Provided interface Required interface

Collection of
provided interfaces

Collection of
required interfaces

provided-provided interface binding

required-required or
required-provided interface binding

Proto-binding

Annotation

required-provided
binding

* *



136 

7.5.1 Basic Architecture with Entities 

The basic architecture is depicted on Figure 28 – both Arbitrator and 

FrequentFlyerDatabase are primitive components in the architecture, only the 

FlyTicketDatabase is a composite component. It is designed to be generic, thus the 

Token component is not instantiated directly by the FlyTicketDatabase, but the task 

is forwarded to the AfDbConnection component. The process of creating a new 

Token component based on fly ticket ID submitted by application’s client is initiated 

by the Arbitrator component, that receives the client request. The whole process can 

be divided into several steps: 

1. The Arbitrator component creates callback object specific for the new 

Token component to be created, and exposes it as an entity via its 

ITokenCallback interface. The actual exposure is done by Arbitrator’s call 

to IFlyTicketDb.CreateToken method on the FlyTicketDatabase 

component due to the create reconfiguration action annotation on the 

ITokenCallback argument. Note, that the Arbitator will hold one callback 

object for each Token component it creates in this way and uses them as a 

unique identifier to track request from Token components. 

2. The FlyTicketClassifier (after choosing a correct component representing 

the specific airline – AfDbConnection for Air France in the example) will 

pass the request to the AfDbConnection component. The link annotation on 

the ITokenCallback argument of CreateToken method will expose the 

Arbitrator’s callback entity (object) reference to the internals of the 

AfDbConnection component. 

3. The requested token will be represented by a new instance of 

FlyTicketToken component instantiated from the proto-component by 

AfDbConnectionCore calling the NewToken method (annotations on both 

ends of NewToken method ensure correct composition of the 

FlyTicketToken component to its neighborhood). Before returning the 

IToken (FlyTicketToken instance reference) reference back to components 

at higher levels of nesting, the AfDbConnectionCore component will 

initialize the FlyTicketToken via its ITokenInit configuration interface and 

yield further communication with the token due to the destroy 

reconfiguration action annotation on the SetTimeout method. 

4. As the CreateToken method calls are finished at each level of nesting, the 

FlyTicketToken instance reference (typed to IToken interface) will be 

returned and, due to correct reconfiguration annotations on the 

CreateToken return values, new binding is gradually build from the 

FlyTicketToken component instance through the composite component 

frames up to the Arbitrator’s IToken collection interface. 

Note the FlyTicketClassifier component does not have any proto-binding linked to it, 

as is does not need to communicate with the entity (component instance) behind 

IToken interface returned from AfDbConnection.CreateToken call nor with the 

Arbitrator’s callback entity referenced by ITokenCallback argument of its 

CreateToken method. The FlyTicketClassifier simply passes the ITokenCallback 



137 

reference down to the lower levels of the architecture and the IToken reference up to 

the higher levels as well. Everything else is managed by the annotations with right 

reconfiguration actions. 

 

Figure 28. Basic architecture of the CRE case-study with entities. 

The FrequentFlyerDatabase component in Figure 28 is implemented in a similar way 

the FlyTicketClassifier component is. As it only translates a frequent flyer ID into a 

valid fly ticket ID, which it in turn uses to query the FlyTicketDatabase for a new 

Token, it does not have to create its own Token instance. Thus it passes 

Timer

ITimerCallback

ITimer

ValidityChecker

ITokenITokenCallback

ICustomCallback

FlyTicketToken

IToken
ITokenCallback

ITokenInit ITokenInit

AfDbConnectionCore

IFlyTicketDb

AfDbConnection

IFlyTicketDb
ITokenCallback

IToken

SetTimeout(DateTime) @unlink

SetTimeout(DateTime) @destroy

InvalidateAndSave() @delete

@create IToken CreateToken(
    @link ITokenCallback
)

void NewToken(
    @link ITokenCallback
    out IToken
    out ITokenInit
) @new

void NewToken(
    ITokenCallback
    out IToken
    @link out ITokenInit
)

Invalidated() @unlink

Invalidated() @unlink InvalidateAndSave() @destroy

FlyTicketClassifier

IFlyTicketDb

IFlyTicketDb

FlyTicketDatabase

ITokenCallback IToken

Arbitrator

IFlyTicketDb

IToken

ITokenCallback

IFreqFlyerAuth

FrequentFlyerDatabase

IFlyTicketDb

@link IToken CreateToken(
    @create ITokenCallback
)

InvalidateAndSave() @unlink

Invalidated() @destroy

@link IToken CreateToken(
    @create ITokenCallback
)

* *

* *

*
*

*



138 

ITokenCallback and IToken instances down and up the architecture without change 

similarly as the FlyTicketDatabase component does. 

7.5.2 Enhanced Architecture with Entities 

The Figure 29 depicts a more complex architecture based on the one shown on 

Figure 28. The only difference of the two architectures is that the latter one on Figure 

29 implements the FrequentFlyerDatabase component in a way that would allow it to 

change behavior of the Token entity instances passed through it via CreateToken 

calls. The new FrequentFlyerDatabase component does not only forward the 

CreateToken method call as the original implementation from Figure 28 did, but for 

each Token it requests from the FlyTicketDatabase it creates a new instance of its 

own FreqFlyerToken wrapper component instance (primitive component, whose 

instantiation in the architecture is implemented by the proto-component concept), 

which is then returned to its callers. The FreqFlyerToken component maintains a 

reference for the Token entity it wraps via its IToken interface. The FreqFlyerToken 

also exposes its own ITokenCallback interface to be able to intercept any calls from 

the wrapped Token entity to its original requestor. 

Note the change from architecture on Figure 28 to architecture on Figure 29 is fully 

transparent to the Arbitrator component – all of its bindings remained the same, as 

well as all the reconfiguration action annotations on all of its interfaces. The 

replacement of the FrequentFlyerDatabase primitive component by its more complex 

composite implementation from Figure 29 is local and the only changes had to be 

made to its bindings and interface methods annotations to reflect the new 

requirements of the new implementation. The ability to do so shows key strength of 

proposed approach to modeling dynamic entities. 

The implementation of the core IFreqFlyerAuth.CreateToken method on the 

FreqFlyerCore component that drives the FreqFlyerToken component instantiation 

and initialization (by its method annotations) can be captured by the following 

pseudo code that is self-explanatory: 

IToken FreqFlyerToken.IFreqFlyerAuth.CreateToken( 

 ITokenCallback outerCallback 

) { 

 IToken ffToken; 

 ITokenCallback ffTokenCallback; 

 IFFToken ffTokenSetup; 

 

 NewToken( 

  outerCallback, 

  out ffToken, out ffTokenCallback, out ffTokenSetup 

 ); 

 

 IToken outerToken = IFlyTicketDb.CreateToken( 

  ffTokenCallback 

 ); 

 

 ffTokenSetup.SetChildToken(outerToken); 

  

 return ffToken; 

} 

Pseudo 

code 



139 

 

Figure 29. Architecture of CRE case-study enhanced with FreqFlyerToken 

Timer

ITimerCallback

ITimer

ValidityChecker

ITokenITokenCallback

ICustomCallback

FlyTicketToken

IToken
ITokenCallback

ITokenInit ITokenInit

AfDbConnectionCore

IFlyTicketDb

AfDbConnection

IFlyTicketDb
ITokenCallback

IToken

SetTimeout(DateTime) @unlink

SetTimeout(DateTime) @destroy

InvalidateAndSave() @delete

@create IToken CreateToken(
    @link ITokenCallback
)

void NewToken(
    @link ITokenCallback
    out IToken
    out ITokenInit
) @new

void NewToken(
    ITokenCallback
    out IToken
    @link out ITokenInit
)

Invalidated() @unlink

Invalidated() @unlink InvalidateAndSave() @destroy

FlyTicketClassifier

IFlyTicketDb

IFlyTicketDb

FlyTicketDatabase

ITokenCallback IToken

Arbitrator

IFlyTicketDbIToken

ITokenCallback

IFreqFlyerAuth

IFlyTicketDb

@link IToken CreateToken(
    @create ITokenCallback
)

InvalidateAndSave() @unlink

Invalidated() @destroy

@link IToken CreateToken(
    @create ITokenCallback
)

FreqFlyerTokenITokenCallback

IToken IToken

ITokenCallback

@create IToken CreateToken(
    @link ITokenCallback
)

FreqFlyerCore

FrequentFlyerDatabase

Invalidated() @unlink

InvalidateAndSave() @deleteInvalidateAndSave() @unlink

IT
o

ke
n

C
al

lb
ac

k

IT
o

ke
n

IT
o

ke
n

C
al

lb
ac

k

IT
o

ke
n

Invalidated() @unlinkInvalidateAndSave() 
@delete

InvalidateAndSave() 
@unlink

Invalidated() @destroy

Invalidated() @destroy

void NewToken(
    @link ITokenCallback
    out IToken
    out ITokenCallback
    out IFFToken
) @new

void SetChildToken(@link IToken) @destroy

void NewToken(
    ITokenCallback
    out IToken
    out ITokenCallback
    @link out IFFToken)

IFFToken

IFFToken

vo
id

 S
et

C
h

ild
To

ke
n

(I
To

ke
n

) 
@

u
n

lin
k

* *

* *

*
*

* * * *

*

*



140 

7.5.3 Summary 

As shown is Section 7.5.1 and Section 7.5.2 above, our approach to capturing 

dynamic architectural changes by concept of dynamic entities implemented via 

concepts of proto-binding, proto-components and reconfiguration actions is viable 

and can be successfully used to describe complex architectures in a consistent way. It 

is a key success as to our best knowledge no previously known and implemented 

approach is able to model the presented dynamic architecture of the CRE case-study 

in a way to capture all information necessary for the reconfigurations both in the 

design and runtime architectures (i.e. usable both for static and runtime application 

analysis tools, as well as the component model runtime itself). 

A final note on the subject is that the concept of dynamic entities and the four basic 

reconfiguration actions were already successfully implemented in a real component 

system. In [14] the SOFA 2 runtime has been extended with support for dynamic 

entities as prove of concept implementation. It shows the proposed approach is viable 

not only for modeling of complex applications, but also for their implementation in 

hierarchical component models. 

 



141 

Chapter 8 Modeling Environment using DeSpec 

In recent years, efforts to verify correctness of Windows kernel drivers [124] have 

emerged as it is crucial for stability of the whole operating system. Microsoft itself 

has developed several tools for driver verification including the latest Static Driver 

Verifier model checker. The key to successful application of the model checking 

approach in this area is a reasonable choice of the environment model. However, the 

environment models used in current tools are too (1) non-deterministic, degrading 

preciseness of the model checker reports, and (2) oversimplified, losing the ability to 

check more specific kinds of properties of drivers. On the other hand, neither a 

formal or readable specification usable for documentation purposes is provided by 

these models. This paper targets these issues by introducing a new language for 

formal specification and modeling of kernel drivers and their environment. 

Please note that due to space limitations the paper presents only a small excerpt of 

the language features. The full language specification, detailed elaboration of its 

features and also a large sample specification of the Windows environment can be 

found in [115]. 

8.1 Model Checking 

Model checking technique is a formal verification method based on thorough 

examination of a program model state space. The model reflects behavior of the 

program related to the property being verified. It should ideally retain any part of the 

software that might influence the property so that the verification is sound and 

complete. On the other hand, the model should be as simple as possible since the 

model checker has to explore all its possible states. The time and space requirements 

for the verification are growing exponentially with respect to the number of 

operations, threads and variables used in the model (the state explosion problem 

[116]). 

Usually, the goal is not to model check the system as a whole. Instead, the system is 

split into two pieces – a particular component of interest (a module, also an open 

system [172]) and the rest of the system (the module's environment). The 

environment is considered correct and its provided and required interfaces are 

defined by a specification. The verification tool is expected to extract a partial model 

from the module's source code and complete it by including the environment's 

behavior model according to the specification. The resulting model passed to the 

model checker, captures the module's interaction with the environment relevant to a 

set of properties being verified.  

The process of model extraction from the program's source code is a difficult task as 

the source code language itself can induce major problems. A C language extractor 

needs to understand constructs like pointers, arrays, unions, reinterpreting type casts, 

etc. Fortunately, even though some of these constructs in general allow the extractor 

to build neither sound nor complete model of the program, results of the software 

DeSpec 



142 

verification are still valuable. All the issues of the model extraction from the C 

source code have already been presented in paper [114]. 

This paper focuses on a formal description of the environment that combines the 

requirements on the module and modeling of the functionality provided by the 

environment. Temporal logics (e.g. Linear Temporal Logic (LTL) [104]) are often 

used for the former. They define how properties of the system should change in time 

using predicates quantified over time variable. However, specifying properties of a 

real application by means of plain temporal logic comes with a significant drawback. 

The specification is not easy to comprehend for the most of driver programmers and 

if a formula gets more complex neither for temporal logic experts. 

Plain logic unreadability drives efforts to develop a higher-level language like 

Bandera Temporal Logic Patterns [60]. Properties expressed in this language are 

translated into the temporal logic formulae consumed by many existing verification 

tools. The patterns allow writing frequently used temporal logic formulae in very 

simple plain English sentences, e.g. “P is absent between Q and R” is representing 

the following formula: 

 

Though incomplete the patterns are sufficient to specify widely used properties. 

Moreover, additional patterns can be added to the repertoire if needed. 

Note: 

 

In our work, we use Zing modeling language [10][119] as a basis for specification of 

the environment behavior and also as the output language of the model extractor. 

Zing language and Zing model checker have been developed by Microsoft Research 

group. The choice was made due to Zing's rich modeling functionality and the state 

of its current development (the preview implementation is available and works quite 

well). However, most ideas behind this work are not dependent on the target 

modeling language and can be applied to any other modeling language that provides 

at least classes, methods, exceptions, non-deterministic choices, and threads. Another 

modeling language meeting these criteria should be the new version of Bandera 

Intermediate Representation (BIR) – a modeling language of Bogor model checking 

framework [154]. 

8.2 Verification of Windows Drivers’ Correctness 

Windows kernel drivers are relatively small libraries usually written in the C 

language. They run in a privileged mode that enables them to work directly with 

hardware. This introduces a high risk of damaging other parts of the kernel if a driver 

contains an error. Hence the correctness of drivers is crucial for security and stability 

of an operating system and drivers are common subject of software verification. 

A driver can be seen as a component put into the environment comprising of the 

kernel and other drivers. Since drivers usually communicate with each other only via 

kernel function calls the inclusion of the other drivers into the environment is an 



143 

acceptable simplification. The verifier deals with the open system verification as the 

source code of the Windows kernel is usually not available. And even if it was, it 

would be virtually impossible to extract and verify the kernel model due to its 

inherent complexity. Besides, drivers shouldn't depend on the exact behavior of the 

private parts of the kernel as they can change version to version. Only the public 

documented functionality should be relied on. 

So the model extractor should only work with the kernel specification. However, 

such specification is not currently available in a form that would be feasible to drive 

the model extractor -- the only source of official documentation is the Driver 

Development Kit (DDK) [123] provided by Microsoft, where the rules the drivers 

should comply with are described in plain English and some important details are 

stated vaguely or even missing entirely. It is a goal of our work to provide a language 

for writing the specification and to apply it on significant parts of the kernel API. 

Several tools that verify driver correctness have already been developed by Microsoft 

itself. These include the Driver Verifier [120] tool for run-time driver verification, the 

PREfast [121] static analysis tool based on local analysis of driver functions and 

finally the Static Driver Verifier (SDV) [122] (still in development) based on 

techniques of static analysis of the whole driver and model checking. 

The Static Driver Verifier (SDV) models the kernel environment in C language 

enriched with special functions and macros that handle non-determinism necessary 

for emulating various execution paths. The rules the drivers can be verified against 

are written in Specification Language for Interface Checking (SLIC) [18]. Expressing 

a rule in the SLIC language inheres in writing pieces of C pseudo-code and defining 

how the environment model should be instrumented by them. The resulting 

instrumented code is converted to an abstract Boolean program which is passed to 

the model checker. The very first Boolean program extracted from the instrumented 

code abstracts from all local variables and replaces all conditions by non-

deterministic choices. Error traces are then discovered by the model checker and 

confronted with the original program via symbolic execution. If an error trace 

describes the execution that is actually infeasible, the Boolean program is refined to 

be more specific with respect to the variables influencing the trace. The refined 

program is passed back to the model checker. This process of error search and model 

specialization repeats until there are no infeasible error traces found or a timeout 

elapses. 

The environment model and the SLIC language allows safety properties to be 

checked with respect to operations performed sequentially on a single device object 

(an object representing a device in the driver). SLIC rules are limited to safety 

properties so it is not possible to encode all the rules defined in the DDK. The rules 

are specified separately from kernel environment which makes them less 

maintainable. Inability to model multi-threaded environment and simultaneous work 

on more device objects also prevents from verification of some race conditions 

commonly contained in faulty Windows drivers. In this work we introduce a solution 

that does not have these shortcomings. 

Contribution 

The aim of this work is to make it possible to specify and model the kernel 

environment in a formal yet comprehensible form, which could be used not only for 



144 

precise documentation of the kernel API but above all as an input for a model 

extractor that produces verifiable concurrent models of the Windows drivers. For this 

purpose, the paper introduces a new specification and modeling language called 

Driver Environment Specification Language (abbreviated as DeSpec). As shown in 

[115], the language is able to capture a significant subset of the rules imposed on 

drivers by the DDK including those that are difficult or impossible to express in the 

SLIC language and hence currently not verifiable by the SDV. 

8.3 Windows Kernel Environment 

The Windows kernel executive comprises of several components that manage 

various system resources – the managers [162]. The managers provide services for 

the other parts of the executive and for drivers. The I/O Manager, the Plug & Play 

Manager, and the Power Manager are the ones that are most interesting for driver 

verification as they do the majority of communication with drivers. Note, this work is 

limited only to drivers following the Windows Driver Model (WDM) [138]. Such 

drivers have to implement Plug & Play and power management features.  

The I/O Manager loads and unloads drivers and issues I/O requests on them. The 

drivers are directly controlled by the I/O Manager, which issues I/O requests in form 

of I/O Request Packets (IRPs). If a driver can complete the request it fills in a place 

in the packet reserved for output parameters and passes the packet back to the 

manager. If it doesn't implement the required functionality it can pass the request to 

an optional lower level driver – a hierarchy is being formed by such inter-driver 

relationships. The other managers issue their requests and notifications to the drivers 

through the I/O Manager. For example, the Plug & Play Manager keeps track of the 

device state transitions (device removal, stopping, starting, etc.) and the Power 

Manager monitors the power state of the machine (whether it is going to sleep, 

awaking, etc.). Both managers notify the driver appropriately by sending it the 

respective IRPs.  

Each driver has to respond correctly to an arbitrary request and content of the packet. 

It can return a result indicating an error, but it must never crash or damage other parts 

of the kernel. The driver cannot make any assumptions about drivers above or below 

it in the hierarchy. This requirement allows the verification tool to isolate the driver 

and test it on arbitrary inputs and outputs from the I/O Manager and higher/lower 

level drivers. 

8.4 Driver Environment Specification Language 

The Driver Environment Specification Language (DeSpec) is an object-oriented 

specification and modeling language incorporating the majority of features of the 

Zing modeling language [10] combined with design-by-contract elements inspired by 

Spec# language [20], and Bandera Temporal Logic Patterns [60]. It is designed to 

guide extraction of Zing models from source code of Windows kernel drivers.  

DeSpec language allows modeling of I/O Manager's behavior to drivers, modeling of 

kernel functions behavior and specifying constrains and rules that drivers should 

obey when calling these functions. Models and abstractions can be defined in various 

levels of detail, which, as one of the solutions fighting against the state space 



145 

explosion problem, enables the model extractor to infer the smallest available model 

sufficient for the verification of a particular rule. 

DeSpec language provides means for capturing basic elements of the interaction 

between driver and its environment (i.e. global variables, functions and data 

structures). It is designed as a bridge between constructs of the C language and their 

models in the Zing language. In particular the models of pointers, function pointers, 

unions and other constructs that are not directly expressible in the Zing language are 

hidden behind the syntax of DeSpec language. This allows adjusting models for these 

features without a need to rewrite the specifications. Apparently, some constructs 

exploiting memory layout, such as reinterpreting casts or unions, cannot be modeled 

in a feasible way. Therefore they are not directly expressible in the DeSpec language. 

Fortunately, the driver as well as environment interface should be as platform 

independent as possible and thus these constructs should be used rarely. 

8.4.1 Structure of Specifications 

The DeSpec language is similar to the C# language in its syntactical structure. Each 

source file contains a list of declarations grouped to namespaces. Declarations 

include classes, integer enumerations, integer ranges, method delegates and method 

groups. A class declaration comprises of its members. Apart from fields and methods, 

which are common for standard object-oriented languages, DeSpec classes can also 

contain rules. A rule specifies constrains on fields and methods by means of temporal 

logic patterns. This section briefly describes DeSpec namespaces, classes and rules. 

Namespaces 

A namespace defines a scope for abstractions of kernel functions and structures. 

When the model extractor searches for an abstraction of a kernel function or a 

structure used in the driver's source code it looks up a single namespace only. The 

choice of the namespace depends on constrains to be verified. The default (global) 

namespace describes a minimal model for kernel functions and structures. Other 

namespaces usually refine the default model – making it more complex to enable 

verification of a constraint not expressible by means of default model. Constraints 

are embedded into the specification as method preconditions, postconditions, type 

constrains, rules, etc. By choosing the constraint to verify, the containing namespace 

is designated for being searched by the extractor. The ability to differentiate 

specifications by level of details is important for reducing the size of the resulting 

model. 

Classes 

Although Windows kernel is written in the C programming language its design is 

object oriented. Usually, a structure representing an object within the kernel (e.g. 

semaphore, mutex or device) is provided along with functions working with it. These 

functions behave like methods of the structure (object) as they all take a pointer to 

the structure as one of their parameters (the “this” reference). A notion of inheritance 

is also present on several places. Inheritance is used for sharing data among 

structures representing different yet related objects. The sharing technically inheres 

in declaring common initial fields in the related structures. 



146 

These observations justify introduction of classes as main elements of the 

specifications – the kernel structures provided to drivers are modeled in DeSpec as 

classes. The functions bound to these structures are declared as class instance 

methods. Functions not bound to any instance are mapped to static methods. The 

formal parameter referring to the instance the method is working on is specified by 

the instance keyword. The method (whether static or instance) abstracting a kernel 

function has to have the same name as the kernel function and no other method in the 

same namespace can have the same name (even though declared in another class). 

This rule allows the model extractor to find a specification of a function whose call 

has been observed in the source code. An example of a class specification follows: 

 

Figure 30. DeSpec Example 1 

In Example 1 (see Figure 30), the DEVICE_OBJECT class abstracts the structure of the 

same name. Instances of the structure represent devices that drivers are working 

with. Both IoAttachDevice and IoAttachDeviceToDeviceStack kernel functions attach 

the device object to the top of the device objects chain. The immediate lower device 

object, where the instance is attached to, is returned in the attachedTo output 

DeSpec 



147 

argument and in the return value, respectively. The IoDetachDevice simply detaches 

the immediate higher level device from this device object instance4. 

The signature of a method abstracting a kernel function defines how parameters of 

the function are treated within the specification. The placeholder token (a single 

underscore) is used for arguments that are not important for the specification. The 

models of IoAttach- functions do not care about the second parameter. When a 

specification refers to the IoAttachDevice method, only one argument is stated in the 

list of actual arguments. The instance argument is picked from the argument list out 

before the method to denote the target instance using the dot notation. Arguments on 

the positions of placeholders are also omitted in the actual argument list. Methods 

declared in Example 1 (see Figure 30) are referred to as follows: 

    device.IoAttachDevice(out lower_device) 
    device.IoAttachDeviceToDeviceStack() 
    lower_device.IoDetachDevice() 
 
The out keyword specifies that the argument is an output argument and has to be 

assigned within the method's body. The output argument is mapped to the C language 

by an additional level of indirection. The C type of the argument is thus 

DEVICE_OBJECT**. The ref keyword is also supported for marking arguments passed 

in and out by reference. A possibly empty list of preconditions and postconditions 

follows the signature. The syntax is similar to the one used in the Spec# language – 

the conditions are introduced by requires and ensures keywords, respectively. The 

condition is a Boolean expression with some limitations on the terms. The conditions 

stated in Example 1 (see Figure 30) require the lowest level driver not to call the 

IoAttach- functions. Pre- and postconditions are translated to assertions when the 

Zing model of the method is generated. 

The body defines a model of the method's behavior using Zing syntax enriched with 

additional constructs that are translated to the Zing when the resulting model is 

generated. In Example 1, extended forms of the Zing's choose operator are used. 

Type NTSTATUS is an integer enumeration abstracting the kernel type of the same 

name. The operator IsSuccessful determines whether a value is a successful value of 

its type as recognized by the kernel. 

The body can also be omitted at all if the modeled function does nothing that 

influences the driver at the current level of abstraction and only its calls are 

significant. If a kernel function returns some value to the caller (via a return value or 

output parameters), throws an exception or has some side-effect the specification 

method should have a body that models these operations. 

Since a DeSpec class is usually an abstraction of a public kernel structure, it may 

contain fields corresponding to the fields of the structure. Additional fields that do 

not correspond to real fields might be necessary for storing auxiliary data used only 

for the sole purpose of modeling. Such fields are marked by the synthetic keyword. 

Similarly, synthetic methods and also synthetic classes can be defined in the 

specification. In general, DeSpec distinguishes synthetic language elements from 

                                                 
4 Note the reverse roles of the device objects -- the higher level device object is attaching but the lower level 

device object is detaching. 

DeSpec 



148 

non-synthetic ones. Note that all elements used in the first example are non-

synthetic. Synthetic classes contain no abstractions, particularly no kernel function is 

mapped to a method of a synthetic class. Example of a class containing synthetic 

attributes follows: 

static class Driver { 
  synthetic DEVICE_OBJECT LowerDevice = new DEVICE_OBJECT; 
 
  [ModelParam] 
  synthetic const bool IsLowest = false; 
 
  /* more members follow */ 
}  

Figure 31. DeSpec Example 2 

In Example 2 (see Figure 31), two synthetic fields are defined in the static class. The 

first one, LowerDevice, is used as a dummy device object that all devices of the 

current driver are attached to. The model can abstract from the precise device objects 

chain because the drivers shouldn't care about what drivers are layered beneath them 

in the chain. Similar simplifications are necessary to reduce the size of the generated 

model. 

The second field named IsLowest is a literal constant field defining whether or not 

the driver is the lowest level driver in the driver chain. The field is annotated by the 

ModelParam attribute, which means that its initial value should be set by the user 

prior to the model extraction. Model parameterization is utilized when the model 

depends on a property that is difficult to deduce automatically from the driver's 

source code. It can be also used for model size tuning. 

Rules 

Another member that can be present in the class is a rule. The rule is a list of 

quantified temporal logic patterns [60] with pattern parameters filled with Boolean 

expressions. 

DeSpec 



149 

class DEVICE_OBJECT { 
  /* method declarations from Example 1 omitted */ 
 
  static rule 
    forall(DEVICE_OBJECT device) 
    { 
       _.IoAttachDevice(out device)::succeeded || 
      (device === _.IoAttachDeviceToDeviceStack()) && 
       device!=null 
    } 
    corresponds to 
    { 
      device.IoDetachDevice() 
    } 
    globally; 
}  

Figure 32. DeSpec Example 3 

The rule in Example 3 (see Figure 32) is a single pattern, however, in general, a rule 

is a list of quantified temporal logic patterns separated by commas and ending by a 

semicolon. The rule presented has the following meaning: “Each successfully 

attached device is eventually detached and each device that is detached has 

previously been successfully attached.” Rest of the section explains the patterns in 

more detail. Each temporal logic pattern is formed by pattern keywords and pattern 

expressions. The pattern used in Example 3 (see Figure 32) can be generalized to {P} 

corresponds to {Q} globally, where {P} and {Q} are Boolean expressions. Each 

pattern can be split into two parts: the property and the scope. In this case, the 

property is {P} corresponds to {Q} and the scope is globally. A list of available 

pattern properties follows: 

 

Properties (i) to (vi) are defined in [60]. Properties (v) and (vi) are equivalent and it 

depends on the situation which one is more appropriate to use. The property (vii) is 

equivalent to a conjunction of properties (v) and (iv), i.e. to {Q} leads to {R} ˄ {Q} 

precedes {R}. It has been introduced to the language since the combination is 

frequently used in the kernel environment and it would be inconvenient to write the 

two patterns separately. The available scopes are: 

DeSpec 



150 

 

The meaning of each property and scope is obvious. Detailed definitions can be 

found in [60] along with the equivalent LTL formulae. The LTL formula for Q-

corresponds-to-R pattern with the global scope is: 

 

Temporal patterns can be quantified over value types or reference types. Patterns of 

instance rules are implicitly quantified by a variable of the declaring type. Instance 

rules can refer to that variable by using this keyword. This keyword can be omitted 

when referring to the instance members of the type. Unlike Bandera specification 

language [52], DeSpec allows quantifying over value types (i.e. integers, Boolean, 

enumerations). Zing symbolic value types can be used for the implementation. The 

reference type quantification may be implemented in the same way as in Bandera, 

however more scalable implementation would be possible using Zing symbolic 

reference types, which should be available in the next version of the Zing. 

 

Figure 33. Source code event operators for methods. M stands for non-synthetic 

methods, args stands for a list of arguments (possibly empty), and expr denotes an 

expression. 



151 

 

Figure 34. Source code event operators for fields. F stands for a non-synthetic field 

and expr denotes an expression. 

Boolean expressions comprising pattern parameters should refer to so called source 

code events via source code event operators. A source code event refers to an 

execution of a particular piece of code. DeSpec allows to specify events 

corresponding to function calls and operations on fields (read and write) within the 

driver's source code. Hence, source code event operators are applicable on non-

synthetic methods and fields only. Available source code event operators are listed in 

Figure 33 and Figure 34. In Example 3 (Figure 32), the source code event defined by 

the method(args)::succeeded operator establishes a watchdog for successful returns 

from the kernel function IoAttachDevice. It is triggered by only such function return 

that the third argument can be unified with the device quantification variable and the 

function return value means a successful call. The first two arguments could have 

been arbitrary when the function was called. 

Each source code event operator is replaced by the corresponding predicate for the 

purpose of rule verification. The use of the source code event operator inside a 

pattern expression implies adding a global state variable to the resulting Zing model 

and instrumentation of the model with pieces of Zing code that make transitions of 

the state. The value of the operator state variable determines the value of the LTL 

formula predicate. Although Zing doesn't support LTL verification directly, it is 

possible to use run-time verification algorithm proposed by [76]. 

8.4.2 DeSpec Driven Model Extraction 

Inputs to the model extraction process are the source code of the driver being 

verified, kernel header files, and the specifications of kernel functions and data 

structures written in DeSpec. At the beginning, the user should select a set of 

constrains that he or she wants to verify. 

The user also chooses the top-level model to be used for the verification. This model 

is also written in DeSpec as a class implementing the predefined methods. Its task is 

to emulate the kernel's behavior to the driver including driver loading and 

initialization and issuing I/O requests (IRPs). Default top-level model is the most 

complex one. It emulates multiprocessor environment, multiple device objects, and 

concurrent IRPs. However, for a verification of some rules a simpler model may be 

sufficient. DeSpec allows to write and use such model. The choice of the simpler 



152 

model may radically reduce the size of state space and make the verification faster 

and sometimes even allow the verification to be completed in realistic time. 

However, some errors may remain undiscovered. 

Once the top-level model is chosen, the model extractor generates Zing model of the 

driver (using its C source code and kernel headers) and combines it with the 

environment model. Since the resulting model is too large to be verified, the slicing 

[101][61] should take place retaining only those parts transitively referred to by the 

top-level model and the constrains being verified. As a final result, a Zing model of 

the driver and the related kernel functions and structures are output. 

8.5 Conclusion and Future Work 

This paper introduces the DeSpec language – a new specification and modeling 

language designed to enable writing modular, readable, and well-arranged 

specifications of the Windows kernel driver environment as well as formally, yet still 

comprehensibly, capture rules imposed on drivers by the kernel and documented in 

plain English in DDK. 

Expressiveness and suitability of the language are demonstrated on a part of the 

kernel functionality in [115]. This work also shows that the available documentation 

of the kernel environment [123] is not sufficient for its formal specification without a 

deeper understanding of the Windows kernel. 

As the DeSpec language is intended to be utilized by model checking tools, it 

addresses the main issue of this verification method – the state explosion problem. 

The abstractions may vary in the level of detail chosen according to the properties 

being verified. Complexity of the model can be further tuned by the user specified 

model parameters. By setting these parameters, the user can influence how complex 

the extracted model will be and what may it neglect. The user may also select a 

subset of tested driver functionality by choosing an appropriate top-level model. 

The possibility of verifying LTL formulae with finite trace semantics using assertions 

only (see [76]) arises a question whether the use of temporal rules brings something 

new beyond the use of explicit assertions. Although many rules may be equivalently 

verified manually, i.e. by adding assertions (or method contracts) on the right places 

in the functions' model code, the use of rules has some advantages. Several 

advantages are implied by the locality. If entire “business logic” of the rule is written 

on a single place it is easier maintainable, more readable, and the verification of the 

rule can be easier (un)selected for verification. Besides, when the rule is more 

complex it wouldn't be easy to manually keep track of all operations in the code that 

influences the verified property. On the other hand, some rules are too complicated to 

write or comprehend that it is better to implement them manually by explicit 

assertions. 

The ideas proposed by this paper are currently being implemented. The 

implementation comprises of the DeSpec language analyzer and a model extractor 

consuming C source code and producing a Zing model driven by DeSpec 

specifications. 

 



153 

Chapter 9  

Related Work 

As the initial Chapter 1 to Chapter 3 of the thesis analyze the related work quite 

extensively as an inherent part of the text and parts of motivations of the presented 

papers also position themselves relative to the related work, in this chapter we 

present only a rather short summary of related work not covered elsewhere in the 

thesis. 

9.1 Error Traces 

In [78], the authors address the counterexample complexity and interpretation 

problem by proposing a method for finding ”positives” and ”negatives” as sets of 

related correct traces and error traces. An interesting approach is chosen in [102], 

where the authors analyze the complexity of error explanation via constructing the 

”closest” correct trace to a specific error trace. In [177], the authors describe an 

algorithm (”delta debugging”) for finding a minimal test case identifying an error in 

a program. This idea could be used to modify an error trace in order to find a ”close 

enough” correct one. An optimization of the checking process is described in [17] 

where multiple error traces are generated in a single checking run. 

Static Driver Verifier (SDV) [122] is a tool used to verify correct behavior of WDM 

(Windows Driver Model) [125] drivers. The driver’s source code in C and the model 

written in SLIC (a part of the SLAM project [19][118]) are combined into a 

”boolean” program that is maximally simplified and selected rules are checked. If a 

rule is violated, an error trace of the program is generated and mapped back to the 

driver’s C source code. Because WDM drivers are very complex, to make checking 

feasible, both the Windows kernel model and the rules used in the SDV have to be 

simplified. Thus the error traces generated by SDV are relatively short and easy to 

interpret. And, since they contain also the states corresponding to traversing through 

the kernel model, such parts are optionally hidden in the checking output. This 

solution might be also applicable to our plain error traces (Section 5.4.3): The events 

generated inside a method call could be grouped into the ”background” (Section 

5.4.2). However, because it is not easy to identify the beginning and the end of a 

single method call in error trace (especially when the i.m{...} shortcuts are not used), 

employing this idea in the behavior protocol checker is not a trivial task. 

As to the classical model checker SPIN [87][24], in case of violating of checking 

property specified in LTL, Spin allows traversing the trace to the error state while 

watching the variable values, process communication graph, and highlighted source 

code. Sometimes the error trace length makes this approach very hard to use and 

identification of the actual problem may be quite challenging. Although the 

approaches to ease the interpretation of an error trace in SPIN work well in most 

cases, its modeling language Promela [24] is not a suitable specifying software 

FACS 



154 

components. Since such specification in Promela typically yields a large state space 

impossible to traverse in a reasonable time. 

As for other tools, Java PathFinder (JPF) [133], Bogor [154][153], BLAST [28][26], 

SMV [159], Moped [127], and MAGIC [110] cope with counterexamples and all 

provide them as error traces. Specifically, JPF, Bogor, BLAST, Moped, and MAGIC 

print the sequence of steps leading to an error state annotated by a corresponding line 

of the source code, while the SMV tool provides an error trace consisting of the input 

file lines written in the SMV specification language. Moped is a similar to SDV in 

the sense that it first translates the input program (in Java) into the language of LTL 

in which the counterexamples are generated. They are then translated back to the 

input language. The MAGIC tool checks behavior of a C program against a 

specification described via an LTS. Besides an error trace, it can also generate 

control flow graphs and LTSs using the dot tool of GraphViz package [77] (also used 

by the behavior protocol checker). In all cases, but especially in the case of JPF, the 

error trace may get quite complex and not easy to interpret. 

9.2 Entities 

Since the proposed extension influences many aspects of component-based 

development, the related work ranges from formal verification methods through 

description of architecture dynamism in component models and its support at runtime 

to data modeling. To our best knowledge, there is no approach in the domain of 

component-based systems that would tackle the problem of modeling dynamic 

entities in a comprehensive fashion. However, there are works that solve some of the 

aspects, though, often with different motivation. 

9.2.1 Component Models with Support for Data Modeling 

Although, the concept of data and data-flow modeling is well known and accepted in 

different domains of software engineering, contemporary component models often 

neglect this part of application design and do not provide any constructs of explicit 

representation. Nevertheless, there are attempts to fill the gap. 

In [106], the authors provide a formalization of data passing and data circulation 

through a component-based application. The approach considers data as a part of a 

component. The data can be accessed from other components, updated, and 

transferred among components. The basic idea is to distinguish between control and 

data flow. Dedicated data connectors manage access to data through a global shared 

data space where data are created and shared. Although, the work tries to formalize 

the area of component-based systems which is not deeply explored, we see the main 

disadvantage in the shared data space where all data has to be stored and which can 

cause a substantial overhead at runtime. Comparing to our approach, we preserve the 

place where data are created. 

Scade [103], Pin [83], PECOS [75], ProCom [158] propose a data-flow modeling 

based on connecting components with input and output pins which represent required 

and provided data. Such concept is typical for embedded systems where data are 

produced by various sensors, processed by control components, and then they serve 

as inputs for actuators. Such concept differs from our proposal where data are owned 

by a particular component and just a data reference circulates in the application. 

Entity 

EntityTR 



155 

Providing persistency in component-based applications can be seen as a data 

modeling approach [50], however this concept operates with the granularity of 

components. However, we claim that it is not enough to represent typical application 

data. 

9.2.2 Behavior Specification and Verification 

The need for associating properties directly with dynamic entities like a file is not 

new. In the context of general code analysis, it has already been applied using 

BLAST [26], SLAM [16]. The BLAST and SLAM model checkers allow inspecting 

state space of a program in C for assertion violations. Moreover, there is additional 

specification language that allows associating an additional (shadow) state with a C 

structure and specifying allowed sequences of function calls using the structure. 

Thus, it is possible to associate such shadow state with, e.g., the FILE structure in the 

C library and restrict the correct usage patterns to those starting with a call to open 

and ending with a call to close. Another way to associate design information with an 

entity is using TraceMatches [29]. A TraceMatch is a negative specification, i.e., a set 

of traces (of method calls on a Java object) that are considered erroneous. Absence of 

such traces can be proved using either runtime checks (injected by AspectJ) or static 

analysis (by extension of the Soot framework). 

These approaches can be used to analyze properties associated with dynamic entities. 

However, they expect availability of the source code and do not work 

compositionally, which is a basic requirement in the software component context.  

There are behavior specification formalisms specific to component systems. 

However, majority does not consider dynamic entities at all (e.g., Interface 

automata [58], COIN [33], Wright [8], BP [4]). In principle, π-calculus [126] and 

some derived formalisms [44] have enough expressive power to describe this kind of 

dynamism, but the encoding is not trivial and generally unrelated with the 

implementation language.  

9.2.3  Dynamic Reconfiguration of Architecture 

Presently, dynamic architectures are quite well explored and several approaches to 

modeling them exist. The surveys of dynamic software architectures [32][37] present 

a categorization of different architecture evolution styles based on graphs [175][25], 

process algebras [8][108][45], UML profiles [98][13], or various logic [64]. 

In contrast with our proposal, all described approaches applicable in the domain of 

component-based systems focus on capturing general architecture reconfigurations 

which manipulate with coarse-grained architecture artifacts like components, 

bindings, interfaces, and connectors. However, we focus on describing dynamicity of 

more fine-grained parts of component-based applications resulting from 

implementation demands. 

Certain contemporary component models also provide a capability of modeling 

architecture evolution (ArchJava [7], ACME [74], Plastik [21]) or at least have some 

support of architecture modification at runtime (Fractal [35]). However, they do not 

provide smaller granularity of modeling than a component. 



156 

9.3 DeSpec 

This work incorporates or relies on ideas and approaches of model checking  

[47][116], model extraction [51][155], temporal logics [147][104][46], source code 

static analysis and slicing [101][61], and Windows kernel driver environment 

[162][138]. 

In particular, the Zing model checker [10], Bandera toolset (especially the Bogor 

model checking framework [154][153]), Java PathFinder [133], and SPIN model 

checker [87][24] are related tools devoted to the model checking. The SLAM project 

[118] is addressing the static analysis and verification of the C programs, especially 

the Windows kernel drivers. The beta version of Microsoft Static Driver Verifier 

(SDV) tool [122] has been recently released as a result of efforts in this area. Since 

this paper targets on Windows kernel drivers verification, the SDV is the closest 

related work. The way how rules are specified in this tool limits its verification 

power to safety properties. The environment model used by SDV is single-threaded, 

preventing verification of some race conditions, and quite non-deterministic, 

introducing additional false reports. It neither provides a specification of the kernel 

functions that might be used as documentation. On the other hand, SDV is a 

functional tool whose application in practice already led to discovering several errors 

in Microsoft's own drivers. 

Finding errors in drivers is not limited to the model checking technique. Microsoft 

PREfast tool for drivers [121] performs static analysis of the source code and 

searches for common error patterns. It can, for example, find memory leaks incurred 

by missing function calls, dereferences of null pointers, buffer overruns, kernel 

functions called on incorrect IRQL level, and so on. The analysis is function scoped 

and hence it introduces false negatives and also restricts a set of errors it is able to 

detect. 

The Windows operating system also enables to check how drivers work in stress 

conditions such as lack of memory, missing resources, lost packets, etc. In 

cooperation with the kernel, Driver Verifier tool [120] emulates such conditions and 

runs tests on the specified driver. The tool is able to detect many errors but it doesn't 

do any static verification so many execution paths remain unchecked. 

DeSpec 



157 

Chapter 10  

Conclusion 

10.1  Summary of Contribution 

All the goals of the thesis have been successfully fulfilled and the contribution of the 

thesis can be summarized as follows:  

(a) Focusing on component models with runtime support we have introduced a 

new system of categorization and description of component models (with key 

distinction of role of component and additional categories of target platform, 

component definition, unit of code deployment, support for explicit 

provisions, support for explicit requirements and explicit support component 

nesting). 

(b) Based our proposed categorization system we have provided a short overview 

of industry-supported component models and component-oriented 

frameworks. 

(c) We have analyzed the key features of hierarchical component models and 

shown their key advantages for real-life software development. We have also 

provided several motivational examples based on industrial experience and 

articulated key desired properties of hierarchical component models. 

(d) We have also identified a key weakness of current hierarchical CBSE 

approaches – inability to model dynamic changes in component architecture. 

(e) We have introduced a novel case-study from our CRE project and evaluated 

Fractal hierarchical component model on CRE and CoCoME case-studies. 

We have also provided several enhancements to the Fractal model 

implementation as well as component composition verification techniques. 

(f) We have provided the following contribution to the problems that hinder 

industrial use of hierarchical component models: 

 Dealing with complex error traces inherent to behavior protocol 

compliance verification. 

 Capturing dynamic architectural modification via the novel concept of 

entities. 

 Capturing component environment behavior via introducing the novel 

specification language DeSpec in support of compositional 

verification. 



158 

Throughout the thesis we have already mentioned a number of open problems, which 

we recall in following Section 10.2 that also provides a summary of proposed future 

work. 

10.2  Future Work – Key Open Problems and Research 

Ideas 

Even though the table of component models presented in Section 2.4 provides a well-

arranged overview and categorization according to the criteria proposed in Section 

2.3, it is too brief to prevent any ambiguity in interpreting the evaluated CBSE 

concepts with respect to each component model implementation details. Thus we 

think a more detailed description of each of the component model and component-

oriented frameworks is needed. However the description still must be prepared in 

context of the proposed categories – i.e. mainly the category terms and common 

CBSE terms should be used uniformly to analyze implementation details of each of 

the component models. We are currently preparing such a more detailed description 

as our future work. 

In Section 7.5 we have shown that the entities (proposed concepts of proto-bindings 

and proto-components) are fully suitable to model architecture of component-based 

applications similar to the one created as part of the CRE project. However, we 

foresee that more complex requirements on the application’s architecture might arise 

in future and the current proposal of proto-bindings would not be sufficient or well 

suited. As an example, one can imagine an extension of the CRE demo application in 

a way, the “Connection” components, that provide a mechanism to get airline 

specific information in a unified way, would not be local to the CRE demo 

application, but would be provided by the airline itself and as such be accessible 

remotely. Should such a change be applied to the model with entities and proto-

bindings as presented in 7.5, it would imply the FlyTicketToken component will be 

created also on a remote computer and all communication with it will cross the 

computer boundary as well. However as all the required information is encapsulated 

inside each of FlyTicketToken component instances, it would be more beneficial if 

the component would be able to migrate itself closer to the actual client (the 

Arbitrator component) – i.e. similar feature as the core SOFA 2 provides as a nested 

factory pattern concept [85]. Our current implementation is SOFA 2 specific and 

stands on its own, thus a natural future goal is to combine the SOFA 2 factories with 

the general concepts of proto-bindings in future (the extension should be rather 

straightforward by enhancing the notion of currently static reference owner on a 

proto-binding context by an ability move in the architecture at runtime). 

As described before the solution to dynamically evolving component architectures 

(Chapter 7) provides a corner-stone for foreseen behavioral correctness verification 

and performance prediction analysis techniques applied on applications with such 

complex architectural needs. While the concepts of proto-bindings and proto-

components mark relevant points where the architecture can change and the 

reconfiguration actions defined in Chapter 7 constrain the application to a reasonable 

subset of reconfiguration changes possible, a general specification that would impose 

a contract on the application has not been provided yet. Thus our next goal is to 

provide a formal specification language (or an extension to an existing one, like 



159 

behavior protocols) to allow reasoning about the allowed orderings of 

reconfiguration actions the architecture is annotated with. 

An important problem currently not solved in dynamic entities is the behavior in case 

of exceptions during application’s runtime. As it is considered on different level of 

abstraction, than the key concepts of proto-bindings, proto-components and 

reconfiguration actions, a solution to the problem has been intentionally omitted 

from the core specification in Chapter 7. In fact, being an extension to a set of 

allowed application behaviors the problem regarding runtime exceptions should be 

solved together with (or as part of) the specification language for dynamic entities – 

the goal proposed in the previous paragraph. 

In evaluation of our proposed approach to modeling dynamic entities (Section 7.5) 

we have shown architecture of the CRE case-study modeled using proto-bindings 

and proto-components and annotated with reconfiguration actions. As this approach 

incorporated more information than usual, the resulting architecture can become 

quite large and complex. Thus, in order to apply a hierarchical component model like 

Fractal or SOFA 2 in commercial development environment, the current 

development tools should be enhanced to cope with entity related concepts and to 

provide means to easily develop applications with complex dynamic architectures. 

This includes not only visualization, editing and annotating of the architecture, but 

also an extension to component model’s runtime to allow easy debugging of proto-

bindings (i.e. visualization of both design and runtime architectures). 

We have also presented the problem of localization of suitable component 

implementation based on a query describing the required functionality – i.e. the 

application of the COTS principle to component-based applications in a way 

component models are often believed to be used in future. While in Section 3.1.4 we 

have shown the advantages of hierarchical component models with respect to formal 

specification of component behavior and its verification can be used to solve the 

problem mentioned, we have presented it only as an idea for future CBSE research 

directions. Thus a next goal is to analyze the problem in more detail and to propose a 

solution, ideally prepared in conjunction with a formal correctness verification 

technique, so that any future components can have only a single unified formal 

specification that can be used both for correctness verification and as a key in 

compatibility searches. Any proposed approach should also fit into existing 

performance prediction techniques in order to fit as many proposed hierarchical 

component models desired properties as possible. 

In Chapter 8 where we have introduced the DeSpec language and we have also stated 

that in order to get a full working system for Windows driver verification the final 

step has to be finished – a full implementation of a Zing model extraction tool from 

component (driver) sources – one of our future goals. In the discussion in Section 

3.2.6, we proposed another important goal: to use the DeSpec language and extractor 

tools in context of generic component systems to provide a universal tool for formal 

environment description usable also in regular application development. 



160 

References 

1. ABB in Germany, http://www.abb.de/?siteLanguage=us 

2. Adámek J., Bureš T., Coupaye T., Horn F., Ježek P., Kofroň J., 

Mencl V., Parízek P., Plášil F., Rivierre N.: Component Reliability 

Extensions for Fractal Component Model project web site: 

http://d3s.mff.cuni.cz/projects/formal_methods/ft/ 

3. Adámek J., Bureš T., Ježek P., Kofroň J., Mencl V., Parízek P., 

Plášil F.: Component Reliability Extensions for Fractal component model: 

Architecture/Design manual and User manual: 

http://fractal.ow2.org/fractalbpc/index.html 

4. Adámek J., Plášil F.: Component Composition Errors and Update 

Atomicity: Static Analysis, Journal of Software Maintenance and Evolution: 

Research and Practice 17(5), 363–377, Sep 2005 

5. Adámek J., Plášil F.: Partial Bindings of Components - any Harm?, 

Presented at the SACT 2004 Workshop, Busan, Korea (held in conjunction 

with the APSEC 2004 conference), and published in the Proceedings of 

APSEC 2004, IEEE Computer Society, ISBN 0-7695-2245-9, pp. 632-639, 

Nov 2004 

6. Akerholm M., Carlson J., Fredriksson J., Hansson H., Hakansson J., 

Moller A., Pettersson P., Tivoli M.: The SAVE approach to component-

based development of vehicular systems, Journal of Systems and Software, 

vol. 80, no. 5, pp. 655–667, May 2007 

7. Aldrich J., Chambers C., Notkin D.: ArchJava: Connecting Software 

Architecture to Implementation, International Conference on Software 

Engineering, p. 187-196, ACM Press, 2002 

8. Allen R., Garlan D.: A formal basis for architectural connection, ACM 

Transactions on Software Engineering and Methodology, Volume 6, 

Number 3, p. 213-249, ACM, 1997 

9. Anderson R.: The End of DLL Hell, Microsoft Corporation, 

http://msdn.microsoft.com/library/techart/dlldanger1.htm, archived at 

http://web.archive.org/web/20010605023737/http://msdn.microsoft.com/libr

ary/techart/dlldanger1.htm, Jan 2000 

10. Andrews T., Qadeer S., Rajamani S. K., Rehof J., Xie Y: Zing: A model 

checker for concurrent software, Technical report, Microsoft Research, 

2004 

11. Android platform web site: http://source.android.com/ 

12. Avionics Reference Architectures, ESA Workshop on Avionics Data, 

Control and Software Systems (ADCSS) 2007, ESA/ESTEC, Noordwijk, 

The Netherlands, http://www.congrex.nl/07c38a/ 

13. Ayed D., Berbers Y.: UML profile for the design of a platform-independent 

context-aware applications, MODDM '06: Proceedings of the 1st workshop 

on MOdel Driven Development for Middleware (MODDM '06), 

Melbourne, Australia, p. 1-5, ACM, 2006 

14. Babka D.: Dynamic reconfiguration in SOFA 2 component system, Master 

thesis, Charles University in Prague, Faculty of Mathematics and Physics, 

Czech Republic, May 2011 



161 

15. Babka V., Tůma P.: Computer Memory: Why We Should Care What Is 

Under The Hood, Invited Paper, To Appear in Post-conference proceedings 

of MEMICS 2011, Springer LNCS 7119, ISBN 978-3-642-25928-9, Jan 

2012 

16. Ball T., Bounimova E., Cook B., Levin V., Lichtenberg J., McGarvey 

C., Ondrusek B., Rajamani S. K., Ustuner A.: Thorough static analysis of 

device drivers, SIGOPS Oper. Syst. Rev., Volume 40 Number 4, p. 73-85, 

ACM, 2006 

17. Ball T., Naik M., Rajamani S.: From symptom to cause: Localizing errors 

in counterexample traces, Proceedings of POPL 2003, ACM, 2003 

18. Ball T., Rajamani S. K.: SLIC: a Specification Language for Interface 

Checking, Technical Report, MSR-TR-2001-21, Microsoft Research, 2002 

19. Ball T., Rajamani S. K.: The SLAM Project: Debugging System Software 

via Static Analysis, POPL 2002, ACM, Jan 2002 

20. Barnett M., Leino K. R. M., Schulte W.: The Spec# Programming System 

– An Overview, Microsoft Research, 2004 

21. Batista T., Joolia A., Coulson G.: Managing Dynamic Reconfiguration in 

Component-based Systems, EWSA 2005, p. 1-17, Springer, 2005 

22. Baude F., Caromel D., Dalmasso C., Danelutto M., Getov V., Henrio L., 

Pérez C.: GCM: a grid extension to Fractal for autonomous distributed 

components, Annals of Telecommunication, Volume 64, Numbers 1-2, 5-

24, DOI: 10.1007/s12243-008-0068-8, Springer, Jan-Feb 2009 

23. Becker S., Koziolek H., Reussner R.: The Palladio component model for 

model-driven performance prediction, Journal of Systems and Software, 

Volume 82, Issue 1, Pages 3-22, ISSN 0164-1212, 

10.1016/j.jss.2008.03.066, Jan 2009 

24. Bell Labs: SPIN model checker, http://spinroot.com 

25. Berry G., Boudol G.: The chemical abstract machine, POPL '90: 

Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on 

Principles of programming languages, San Francisco, California, United 

States, p. 81-94, ACM, 1990 

26. Beyer D., Henzinger T. A., Jhala R., Majumdar R.: Checking Memory 

Safety with Blast, Proceedings of the Eighth International Conference on 

Fundamental Approaches to Software Engineering (FASE 2005), 

Edinburgh, LNCS 3442, p. 2-18, Springer-Verlag, Berlin, Apr 2005 

27. Blair G., Coupaye T., Stefani J.-B.: Component-based architecture: the 

Fractal initiative, Annals of Telecommunication, Volume 64, Numbers 1-2, 

1-4, DOI: 10.1007/s12243-009-0086-1, Springer, Jan-Feb 2009 

28. BLAST tool web site – http://www-cad.eecs.berkeley.edu/~blast 

(http://mtc.epfl.ch/software-tools/blast/index-epfl.php) 

29. Bodden E., Hendren L. J., Lam P., Lhotak O., Naeem N. A.: 

Collaborative Runtime Verification with Tracematches, RV, p. 22-37, 2007 

30. Brada P.: A Look at Current Component Models from the Black-Box 

Perspective, 35th Euromicro Conference on Software Engineering and 

Advanced Applications 2009, SEAA '09, pp. 388-395, Aug 2009 

31. Brada P.: Specification-Based Component Substitutability and Revision 

Identification, Ph.D. Thesis, Charles University in Prague, Faculty of 

Mathematics and Physics, Czech Republic, Aug 2003 



162 

32. Bradbury J. S., Cordy J. R., Dingel J., Wermelinger M.: A survey of self-

management in dynamic software architecture specifications, WOSS '04: 

Proceedings of the 1st ACM SIGSOFT workshop on Self-managed systems, 

Newport Beach, California, p. 28-33, ACM, 2004 

33. Brim L., Černa I., Vareková P., Zimmerová B.: Component-interaction 

automata as a verification-oriented component-based system specification, 

SIGSOFT Softw. Eng. Notes, Volume 31, Number 2, p. 4, ACM, 2006 

34. Bruneton E., Coupaye T., Leclercq M., Quéma V., Stefani J.-B.: An 

Open Component Model and Its Support in Java . 7th International 

Symposium on Component-Based Software Engineering (CBSE-7). LNCS 

3054, pp. 7-22, May 2004. 

35. Bruneton E., Coupaye T., Leclercq M., Quéma V., Stefani J.-B.: The 

Fractal Component Model and Its Support in Java . Software Practice and 

Experience, special issue on Experiences with Auto-adaptive and 

Reconfigurable Systems. 36(11-12), 2006 

36. Brunneton E., Coupaye T., Stefani J.B.: Recursive and Dynamic Software 

Composition with Sharing, In proceedings of WCOP’02, Malaga, Spain, 

June 2002 

37. Bucchiarone A.: Dynamic Software Architectures for Global Computing 

Systems, Ph.D. thesis at IMT Institute for Advanced Studies, Lucca, 2008 

38. Bulej L., Bureš T., Coupaye T., Děcký M., Ježek P., Parízek P., 

Plášil F., Poch T., Rivierre N., Šerý O., Tůma P.: CoCoME in Fractal,  

Chapter in The Common Component Modeling Example: Comparing 

Software Component Models, Springer-Verlag, LNCS 5153, Aug 2008 

39. Bulej L., Bureš T., Keznikl J., Koubková A., Podzimek A., Tůma P.: 

Capturing Performance Assumptions using Stochastic Performance Logic, 

In Proceedings of ICPE 2012, Boston, USA. ACM, ISBN 978-1-4503-

1202-8, pp. 311-322, Apr 2012 

40. Bureš T., Hnětynka P., Plášil F.: SOFA 2.0: Balancing Advanced Features 

in a Hierarchical Component Model, SERA 2006, 

http://doi.ieeecomputersociety.org/10.1109/SERA.2006.62, 2006 

41. Bureš T., Ježek P., Malohlava M., Poch T., Šerý O.: Fine-grained 

Entities in Component Architectures, Tech. Report No. 2009/5, Dep. of SW 

Engineering, Charles University in Prague, Jun 2009 

42. Bureš T., Ježek P., Malohlava M., Poch T., Šerý O.: Strengthening 

Component Architectures by Modeling Fine-grained Entities, accepted for 

publication in proceedings of 37th Euromicro SEAA 2011, Oulu, Finland, 

Aug 2011 

43. Bureš T.: Generating Connectors for Homogeneous and Heterogeneous 

Deployment, Ph.D. thesis, Charles University in Prague, Faculty of 

Mathematics and Physics, Czech Republic, Sep 2006 

44. Buscemi M. G., Montanari U.: CC-Pi: A Constraint-Based Language for 

Specifying Service Level Agreements, Programming Languages and 

Systems, 16th European Symposium on Programming, ESOP 2007, Lecture 

Notes in Computer Science 4421, p. 18-32, Springer, 2007 

45. Canal C., Pimentel E., Troya J. M.: Specification and Refinement of 

Dynamic Software Architectures, WICSA1: Proceedings of the TC2 First 

Working IFIP Conference on Software Architecture (WICSA1), p. 107-126, 

Kluwer, B.V., 1999 



163 

46. Clarke E. M., Emerson E. A., Sistla A. P.: Automatic verification of finite-

state concurrent systems using temporal logic specifications, ACM 

Transactions on Programming Languages & Systems, 244-263, 1986 

47. Clarke E. M., Grumberg O., Peled D. A.: Model Checking, MIT Press, 

2000 

48. COM+ (Component Services): http://msdn.microsoft.com/en-

us/library/ms685978(v=VS.85).aspx 

49. Component Object Model (COM): http://msdn.microsoft.com/en-

us/library/ms680573(v=VS.85).aspx 

50. Corba Component Model Specification: 

http://www.omg.org/technology/documents/formal/components.htm 

51. Corbett J. C., Dwyer M. B., Hatcliff J., Laubach S., Pasareanu C. S., 

Robby, Zheng H.: Bandera: Extracting Finite-state Models from Java 

Source Code, proceedings of the International Conference on Software 

Engineering (ICSE), 2000 

52. Corbett J. C., Dwyer M. B., Hatcliff J., Robby: Expressing Checkable 

Properties of Dynamic Systems: The Bandera Specification Language, 

International Journal on Software Tools for Technology Transfer (STTT), 

ISSN: 1433-2779, Volume: 4, Issue: 1, pages 34-56, Oct 2002 

53. Crnkovic I., Larsson M. (editors): Building Reliable Component-Based 

Systems, Artech House, ISBN 1-58053-327-2, Jul 2002 

54. Crnkovic I., Sentilles S., Vulgarakis A., Chaudron M.R.V.: A 

Classification Framework for Software Component Models, Software 

Engineering, IEEE Transactions on , vol.37, no.5, pp.593-615, Sep-Oct 

2011 

55. Dagstuhl Research Seminar: Modelling Contest: Common Component 

Modelling Example (CoCoME) web site: http://www.cocome.org/ 

56. Dalvik VM (virtual machine) web site: http://code.google.com/p/dalvik/ 

57. dChecker tool web site: 

http://d3s.mff.cuni.cz/projects/formal_methods/dchecker/ 

58. de Alfaro L., Henzinger T. A.: Interface automata, SIGSOFT Software 

Eng. Notes, Volume 26, Number 5, p. 109-120, ACM, 2001 

59. de Icaza M.: WinRT demystified: http://tirania.org/blog/archive/2011/Sep-

15.html 

60. Dwyer M. B., Avrunin G. S., Corbett J. C.: Patterns in property 

specifications for finite-state verification, in Proceedings of the 21st 

international Conference on Software Engineering, 411-420, 1999 

61. Dwyer M. B., Hatcliff J.: Slicing Software for Model Construction, Journal 

of High-order and Symbolic Computation, 2000 

62. Eclipse IDE web site: http://www.eclipse.org/ 

63. ECMA-335 Standard: Common Language Infrastructure (CLI), 5th 

edition, http://www.ecma-international.org/publications/standards/Ecma-

335.htm, Dec 2010 

64. Endler M., Wei J.: Programming generic dynamic reconfigurations for 

distributed applications, Configurable Distributed Systems, 1992., 

International Workshop on, p 68-79, Mar, 1992 

65. Enterprise JavaBeans (EJB) 3.1 specification: 

http://jcp.org/aboutJava/communityprocess/final/jsr318/index.html 

66. Equinox web site: http://www.eclipse.org/equinox/ 



164 

67. ESA CORDET (Component Oriented Development Techniques) 

project homepage: http://www.pnp-software.com/cordet/ 

68. ESA SAVOIR (Space Avionics Open Interface Architecture) initiative, 

Avionics Reference Architectures, ESA Workshop on Avionics Data, 

Control and Software Systems (ADCSS) 2011, ESA/ESTEC, Noordwijk, 

The Netherlands, 

http://www.congrex.nl/11c22/pages/standaard/page_2903.html?pid=2903&

page=Programme SAVOIR 

69. Feljan J., Lednicki L., Maras J., Petricic A., Crnkovic I.: Classification 

and Survey of Component Models, Technical Report MRTC report ISSN 

1404-3041 ISRN MDH-MRTC-242/2009-1-SE, 

http://www.mrtc.mdh.se/index.php?choice=publications&id=2099, Dec 

2009 

70. FESCA 2007: 4th International Workshop on Formal Foundations of 

Embedded Software and Component-Based Software Architectures, Satellite 

event of ETAPS, Braga, Portugal, Mar 2007 

71. Fractal CoCoME web site: http://d3s.mff.cuni.cz/projects/cocome/fractal/ 

72. Fractal component model web site: http://fractal.ow2.org/ 

73. Fractal GUI web site: http://fractal.objectweb.org/fractalgui/ 

74. Garlan D., Monroe R. T., Wile D.: ACME: Architectural Description of 

Component-Based Systems, Foundations of Component-Based Systems, p. 

47-67, Cambridge University Press, New York, 2000 

75. Genssler T., Christoph A., Winter M., Nierstrasz O., Ducasse S., 

Wuyts R., Arevalo G., Schonhage B., Muller P., Stich C.: Components 

for Embedded Software: the PECOS Approach, Proceedings of the 

CASES'02, New York, USA, ACM, 2002 

76. Giannakopoulou D., Havelund K.: Runtime Analysis of Linear Temporal 

Logic Specifications, RIACS Technical Report 01.21, 2001 

77. GraphViz tool web site – http://www.graphviz.org/ 

(http://www.research.att.com/sw/tools/graphviz) 

78. Groce A., Visser W.: What went wrong: Explaining counterexamples, 

Proceedings of the SPIN Workshop on Model Checking of Software, LNCS 

2648, Springer, 2003 

79. Groovy programming language web site: http://groovy.codehaus.org/ 

80. Hamlet D.: Composing Software Components: A Software-testing 

Perspective, Springer, Aug 2010 

81. Heineman G. T., Councill W. T.: Component-based Software 

Engineering: Putting the Pieces Together, Addison-Wesley, 2001 

82. Herold S., Klus H., Welsch Y., Deiters C., Rausch A., Reussner R., 

Krogmann K., Koziolek H., Mirandola R., Hummel B., Meisinger M., 

Pfaller C.: CoCoME - The Common Component Modeling Example, in The 

Common Component Modeling Example, Rausch A., Reussner R., 

Mirandola R., and Plášil F. (Eds.), Lecture Notes In Computer Science, Vol. 

5153. Springer-Verlag, Berlin, Heidelberg 16-53, 2007 

83. Hissam S., Ivers J., Plakosh D., Wallnau K. C.: Pin Component 

Technology (V1.0) and Its C Interface, technical report at Software 

Engineering Institute - Carnegie Mellon University, Pittsburgh, USA, 2005 

84. Hnětynka P., Bureš T., Procházka M., Ward R., Hanzálek Z.: SOFA 

High Integrity: Our Approach to SAVOIR, DASIA 2009, DAta Systems In 

Aerospace, Istambul, Turkey, May 2009 



165 

85. Hnětynka P., Plášil F.: Dynamic Reconfiguration and Access to Services in 

Hierarchical Component Models, Proceedings of CBSE 2006, Vasteras near 

Stockholm, Sweden, LNCS 4063, ISBN 3-540-35628-2, ISSN 0302-9743, 

pp. 352 - 359, (C) Springer-Verlag, June 2006 

86. Hnětynka P., Tůma P.: Fighting Class Name Clashes in Java Component 

Systems, Proceedings of JMLC 2003, Klagenfurt, Austria, Copyright (C) 

Springer-Verlag, Berlin, LNCS2789, ISSN-0302-9743, pp. 106-109, Aug 

2003 

87. Holzmann G. J.: The SPIN Model Checker: Primer and Reference Manual, 

Addison-Wesley Professional, 2003 

88. Hošek P., Pop T., Bureš T., Hnětynka P., Malohlava M.: Comparison of 

Component Frameworks for Real-time Embedded Systems, Proceedings of 

CBSE 2010, Prague, Czech Republic, LNCS 6092, Springer, pp. 21-36, 

ISSN 0302-9743, ISBN 978-3-642-13237-7, Jun 2010 

89. ISO/IEC 23271:2012 Standard, Common Language Infrastructure (CLI), 

http://standards.iso.org/ittf/PubliclyAvailableStandards/c058046_ISO_IEC_

23271_2012(E).zip, 2012 

90. Java Archive (JAR) file specification, 

http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html 

91. Java Language and Virtual Machine Specifications web site: 

http://docs.oracle.com/javase/specs/ 

92. Java Language Specification, Java SE 7 Edition, 

http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf 

93. Java Virtual Machine Specification, Java SE 7 Edition, 

http://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf 

94. JavaBeans 1.01 specification: 

http://www.oracle.com/technetwork/java/javase/documentation/spec-

136004.html 

95. Ježek P., Bureš T., Hnětynka P.: Supporting Real-life Applications in 

Hierarchical Component Systems, in proceedings of SERA 2009, Haikou, 

China, Studies in Computational Intelligence (SCI), Springer, Dec 2009 

96. Ježek P., Kofroň J., Plášil F.: Model Checking of Component Behavior 

Specification: A Real Life Experience, in Electronic Notes in Theoretical 

Computer Science, Vol. 160, pp. 197-210, Elsevier B.V., ISSN: 1571-0661, 

Aug 2006 

97. JUnit web site: http://www.junit.org/ 

98. Kacem M. H., Kacem A. H., Jmaiel M., Drira K.: Describing dynamic 

software architectures using an extended UML model, SAC '06: 

Proceedings of the 2006 ACM symposium on Applied computing, Dijon, 

France, p. 1245-1249, ACM, 2006 

99. Kofroň J., Adámek J., Bureš T., Ježek P., Mencl V., Parízek P., Plášil 

F.: Checking Fractal Component Behavior Using Behavior Protocols, 

presented at the 5th Fractal Workshop (part of ECOOP'06), July 3rd, 2006, 

Nantes, France, Jul 2006 

100. Kofroň J.: Enhancing Behavior Protocols with Atomic Actions, Tech. 

Report No. 2005/8, Dep. of SW Engineering, Charles University, Prague, 

Nov 2005 

101. Krinke J.: Advanced Slicing of Sequential and Concurrent Programs, PhD 

thesis, Fakultät Für Mathematik und Informatik, Universität Passau, 2003 



166 

102. Kumar N., Kumar V., Viswanathan M.: On the Complexity of Error 

Explanation, VMCAI’05, ACM, 2005 

103. Labbani O., Dekeyser J.-L., Boulet P.: Mode-Automata based 

Methodology for Scade, Hybrid Systems: Computation and Control (HSCC 

05), Zurich, Switzerland, Mar 2005 

104. Lamport L.: “Sometime” is sometimes “not never” – on the temporal logic 

of programs, in Proceedings of 7th ACM Symposium on Principles of 

Programming Languages, pages 174-185, 1980 

105. Larman C.: Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and Iterative Development, 3rd edition, 

Prentice-Hall, Englewood Cliffs, 2004 

106. Lau K.-K., Taweel F.: Data Encapsulation in Software Components, Proc. 

10th Int. Symp. on Component-based Software Engineering, LNCS 4608, p. 

1-16, Springer-Verlag, 2007 

107. Lau K.-K., Wang Z.: Software Component Models, IEEE Transactions on 

Software Engineering, 33(10):709–724, Oct 2007 

108. Magee J., Dulay N., Eisenbach S., Kramer J.: Specifying Distributed 

Software Architectures, Proc. 5th European Software Engineering Conf. 

(ESEC 95), Sitges, Spain, Volume 989, p. 137-153, Springer-Verlag, Berlin, 

1995 

109. Magee J., Kramer J.: Dynamic Structure in Software Architectures, in 

proceedings of FSE’4, San Francisco, USA, 1996 

110. MAGIC tool web site – http://www-2.cs.cmu.edu/~chaki/magic 

111. Managed Extensibility Framework (MEF) Overview: 

http://mef.codeplex.com/wikipage?title=Overview&referringTitle=Home 

112. Managed Extensibility Framework (MEF) web site: 

http://mef.codeplex.com/ 

113. Matoušek T., Ježek P.: DeSpec: Modeling the Windows Driver 

Environment, in proceedings of FESCA, ETAPS'07, Braga, Portugal, 

ENTCS, Mar 2007 

114. Matoušek T., Zavoral F.: Extracting Zing Models from C Source Code, 

SOFSEM 2007 

115. Matoušek T.: Model of the Windows Driver Environment, Master Thesis at 

Department of Software Engineering, Charles University in Prague, 2005, 

http://nenya.ms.mff.cuni.cz/publications/Matousek-thesis.pdf 

116. McMillan K. L.: Symbolic model checking – an approach to the state 

explosion problem, PhD thesis, SCS, Carnegie Mellon University, 1992 

117. McMurty C., Mercuri M., Watling N., Winkler M.: Windows 

Communication Foundation Unleashed, Sams Publishing, Mar 2007 

118. Microsoft Research: SLAM project web site, 

http://research.microsoft.com/slam 

119. Microsoft Research: Zing Model Checker, 

http://research.microsoft.com/en-us/projects/zing/ 

120. Microsoft: Driver Verifier tool web site, 

http://www.microsoft.com/whdc/DevTools/tools/DrvVerifier.mspx 

(http://msdn.microsoft.com/en-us/windows/hardware/gg487310.aspx) 

121. Microsoft: PREfast tool web site: 

http://www.microsoft.com/whdc/devtools/tools/PREfast.mspx 

(http://msdn.microsoft.com/en-us/windows/hardware/gg487345.aspx) 



167 

122. Microsoft: Static Driver Verifier – Finding Driver Bugs at Compile-Time, 

WHDC, http://www.microsoft.com/whdc/devtools/tools/sdv.mspx 

123. Microsoft: Windows Driver Development Kit, WHDC, 

http://www.microsoft.com/whdc/devtools/ddk/default.mspx 

124. Microsoft: Windows Driver Foundation (Framework), WHDC, 

http://www.microsoft.com/whdc/driver/wdf/default.mspx 

(http://msdn.microsoft.com/en-us/windows/hardware/gg463268.aspx) 

125. Microsoft: Windows Driver Model (WDM): Apr 2002, 

http://msdn.microsoft.com/en-us/windows/hardware/gg463453 

126. Milner R.: Communicating and Mobile Systems: the π-calculus, ISBN: 0-

521-64320-1, Cambridge University Press, 1999 

127. Moped tool web site – http://www.fmi.uni-stuttgart.de/szs/tools/moped, 

archived at 

http://web.archive.org/web/20090505120655/http://www.fmi.uni-

stuttgart.de/szs/tools/moped/ 

128. MSDN Library: IComponent interface: http://msdn.microsoft.com/en-

us/library/system.componentmodel.icomponent.aspx 

129. MSDN Library: Introduction to ActiveX Controls: 

http://msdn.microsoft.com/en-us/library/aa751972(v=vs.85).aspx 

130. MSDN Library: Silverlight: http://msdn.microsoft.com/en-

us/library/cc838158(v=vs.95).aspx 

131. MSDN Library: Windows 8 Metro UI API: System.Ui.Xaml: 

http://msdn.microsoft.com/en-

us/library/windows/apps/windows.ui.xaml.aspx 

132. MSDN Library: Windows Presentation Foundation (WPF): 

http://msdn.microsoft.com/en-us/library/ms754130.aspx 

133. NASA Intelligent Systems Division: Java PathFinder (JPF) web site, 

http://babelfish.arc.nasa.gov/trac/jpf 

134. NASA/ESA Cassini-Huygens mission: ESA’s mission homepage: 

http://www.esa.int/esaMI/Cassini-Huygens/ 

135. NetBeans and OSGi: NetBeans wiki: 

http://wiki.netbeans.org/OSGiAndNetBeans 

136. NetBeans IDE web site: http://netbeans.org/ 

137. OMG Unified Modeling Language (UML): 

http://www.omg.org/spec/UML/2.4.1/ 

138. Oney W.: Programming the Microsoft Windows Driver Model, Microsoft 

Press, 1999 

139. OSGi Service Platform specification: 

http://www.osgi.org/Specifications/HomePage 

140. Outlý M., Pop T., Malohlava M., Bureš T.: Mode Change in Real-time 

Component Systems - Suitable Form of Run-Time Variability in Resource 

Constrained Environments, Tech. Report No. 2011/7, Dep. of Distributed 

and Dependable Systems, Charles University in Prague, Sep 2011 

141. Outlý M.: Mode Change in Real-time Component Systems, Master thesis, 

Charles University in Prague, Faculty of Mathematics and Physics, Czech 

Republic, Sep 2011 

142. Papež M.: SOFAnet 2, Master thesis, Charles University in Prague, Faculty 

of Mathematics and Physics, Czech Republic, May 2011 



168 

143. Parízek P., Plášil F., Kofroň J.: Model Checking of Software Components: 

Making Java PathFinder Cooperate with Behavior Protocol Checker, Tech. 

Report No. 2006/2, Dep. of SW Engineering, Charles University, Jan 2006 

144. Parízek P., Plášil F., Kofroň J.: Model checking of Software Components: 

Combining Java PathFinder and Behavior Protocol Model Checker, 

Proceedings of 30th IEEE/NASA Sofrware Engineering Workshop (SEW-

30], IEEE Computer Society, pp. 133-141, Jan 2007 

145. Petri C.A.: Communication with automata, DTIC Research Report 

AD0630125, 1966 

146. Plášil F., Višňovský S.: Behavior Protocols for Software Components, 

IEEE Trans. Software Eng. 28(11), 1056-1076, 2002 

147. Pnueli A.: The temporal logic of programs, in 18th IEEE Symposium on 

Foundation of Computer Science, pages 46-57, 1977 

148. Pop T., Plášil F., Outlý M., Malohlava M., Bureš T.: Property Networks 

Allowing Oracle-based Mode-change Propagation in Hierarchical 

Components, accepted for publication in proceedings of CBSE 2012, Apr 

2012 

149. Portland Pattern Repository: Component Definition: 

http://c2.com/cgi/wiki?ComponentDefinition 

150. Procházka M., Ward R., Tůma P., Hnětynka P., Adámek J.: A 

Component-Oriented Framework for Spacecraft On-Board Software, 

Proceedings of DASIA 2008, DAta Systems In Aerospace, Palma de 

Mallorca, European Space Agency Report Nr. SP-665, ISBN 978-92-9221-

229-2, May 2008 

151. Rausch A., Reussner R. H., Mirandola R., Plášil, F. (editors): Common 

Component Modeling Example: Comparing Software Component Models, 

Springer-Verlag, LNCS 5153, Aug 2008 

152. Remeš V.: Migration and load-balancing in distributed hierarchical 

component systems, Master thesis, Charles University in Prague, Faculty of 

Mathematics and Physics, Czech Republic, Sep 2010 

153. Robby, Dwyer M. B., Hatcliff J.: Bogor web site, 

http://bogor.projects.cis.ksu.edu 

154. Robby, Dwyer M. B., Hatcliff J.: Bogor: An Extensible and Highly 

Modular Software Model Checking Framework, SIGSOFT Softw. Eng. 

Notes 28, 5, 267-276, 2003 

155. SAnToS laboratory: Bandera project web site, 

http://bandera.projects.cis.ksu.edu 

156. Scala Language Specifiction, 2.9, 

http://cs.olemiss.edu/~hcc/csci581scala/notes/ScalaReference.pdf 

157. Scala programming language web site: http://www.scala-lang.org/ 

158. Sentilles S., Vulgarakis A., Bureš T., Carlson J., Crnkovic I.: A 

Component Model for Control-Intensive Distributed Embedded Systems, 

CBSE 2008, p. 310-317, http://dx.doi.org/10.1007/978-3-540-87891-9_21, 

2008 

159. SMV tool web site  – http://www-2.cs.cmu.edu/~modelcheck/smv.html 

160. SOFA High Integrity (SOFA HI) web site: http://sofa.ow2.org/sofahi/ 

161. SOFA web site: http://sofa.ow2.org/sofa1/index.html 

162. Solomon D. A., Russinovich M. E.: Inside Microsoft Windows 2000, Third 

Edition, Microsoft Press, 2000 



169 

163. Spring Framework web site: http://www.springsource.org/spring-

framework 

164. Spring.NET application framework web site: 

http://www.springframework.net/ 

165. Szyperski C., Gruntz D., Murer S.: Component Software: Beyond Object-

Oriented Programming, 2
nd

 Edition, Addison-Wesley, 2002 

166. Szyperski C., Pfister C.: Workshop on Component-Oriented Programming, 

Summary, in Mühlhäuser M. (ed.): Special Issues in Object-Oriented 

Programming, ECOOP’96 Workshop Reader, dpunkt Verlag, Heidelberg, 

1997 

167. Szyperski C.: Component Software: Beyond Object-Oriented 

Programming, Addison-Wesley, 1997 

168. ThoughtWorks Technology Radar – January 2011: 

http://www.thoughtworks.com/sites/www.thoughtworks.com/files/files/thou

ghtworks-tech-radar-january-2011-US-color.pdf 

169. University of Pennsylvania curriculum: 

http://www.cis.upenn.edu/~val/EMTM600/11-ln01.ppt 

170. University of Wisconsin curriculum: 

http://www.uwplatt.edu/csse/courses/prev/s05/csse411/SE411_09_Compon

ent-Based%20Software%20Engineering.pdf 

171. van Ommering R., van der Linden F., Kramer J., Magee J.: The Koala 

Component Model for Consumer Electronics Software, IEEE Computer 

33(3), 78–85, 2000 

172. Vardi M. Y.: Verification of Open Systems, Lecture Notes in Computer 

Science, Volume 1346/1997, Springer, 1997 

173. Voas J.: COTS Software: the Economical Choice?, IEEE Software, Volume 

15, Issue 2, 1998 

174. w3schools.com OS Platform Statistics: 

http://www.w3schools.com/browsers/browsers_os.asp 

175. Wermelinger M., Lopes A., Fiadeiro J. L.: A graph based architectural 

(Re)configuration language, SIGSOFT Softw. Eng. Notes, Volume 26, 

Number 5, p. 21-32, ACM, 2001 

176. WinRT preliminary documentation: Creating Windows Runtime 

Components: http://msdn.microsoft.com/en-

us/library/windows/apps/hh441572(v=vs.110).aspx 

177. Zeller A.: Isolating cause-effect chains for computer programs, 

Proceedings of FSE 2002, ACM, 2002 

 

 



170 

Appendix A  

Original Architecture of the CRE Case-study Demo 

As the architecture of CRE case-study does not easily fit a single A4 sized page, it 

has been separately printed on a single A3 sized sheet of paper that was freely 

inserted into each copy of this thesis. 

Note the numbers in the figure mark steps in application’s behavior – a detailed 

description can be found in Section 5.1. 

The figure of the original architecture has been verbatim copied from results of our 

Component Reliability Extensions for Fractal component model project [2], only 

minor formatting changes have been applied.  


