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Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
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Vedoućı disertačńı práce:
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Matematický ústav UK, Univerzita Karlova v Praze,
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Abstrakt: Synoviálńı tekutina je polymerńı roztok, který se obecně chová jako viskoelastická
tekutina, a to předevš́ım d́ıky obsaženým makromolekulám hyaluronanu. V této práci
se zabýváme biologickými a biochemickými vlastnostmi synoviálńıch tekutin, dále jejich
komplexńı reologíı a jejich interakćı se synoviálńımi membránami během filtrace. Z matema-
tického hlediska modelujeme synoviálńı tekutiny jako vazké nestlačitelné tekutiny, pro něž
jsme vyvinuli nový zobecněný model mocninného typu, jehož exponent záviśı na koncen-
traci výše zmı́něného hyaluronanu. Takový popis je adekvátńı, pokud synoviálńı tekutina
nepodléhá vysokým zátěžovým test̊um. Dále se zabýváme popisem lineárńıch viskoelastických
odezev synoviálńıch tekutin z dostupných experimentálńıch dat, opět hledáme př́ıslušné
parametry model̊u jako funkce koncentrace. Pro popis prouděńı použ́ıváme zobecněné
Navierovy–Stokesovy rovnice svázané s podmı́nkou nestlačitelnosti a rovnice pro konvekci–
difúzi koncentrace hyaluronanu. V části práce zabývaj́ıćı se matematickou analýzou formulu-
jeme stacionárńı úlohu a dokážeme existenci odpov́ıdaj́ıćıho slabého řešeńı. Důkaz existence
je založen na metodě monotónńıch operátor̊u, kde kĺıčovou roli hraje d̊ukaz Hölderovské spo-
jitosti koncentrace. V numerické části teze se zabýváme výběrem a implementaćı vhodných
stabilizačńıch metod pro numerické řešeńı problému s dominantńı konvekćı, jak je charakteri-
stické pro synoviálńı tekutiny. Numericky pak řeš́ıme pro r̊uzné modely zobecněné vazkosti
a r̊uzné stabilizačńı metody systém ř́ıd́ıćıch rovnic v obdélńıkové oblasti, jakožto testovaćı
domény, která naznačuje př́ıpadné rozš́ı̌reńı modelu pro realistickou geometrii. Jako posledńı
se zabýváme problémem filtrace. Zde formulujeme podmı́nky na hranici membrány pro
prouděńı a tok koncentrace, které formálně popisuj́ı částečnou polopropustnost membrány,
hromaděńı koncentrace před membránou (v př́ıpadě jednosměrného toku) a vliv osmotického
tlaku.

Kĺıčová slova: Synoviálńı tekutina, zobecněná viskozita, lineárńı viskoelasticita, Navierovy–
Stokesovy rovnice, zobecněné Sobolevovy prostory, C0,α–regularita, stabilizované metody
konečných prvk̊u, transport přes membránu.
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Kurzfassung: Ein synoviales Fluid ist eine polymerische Flüssigkeit, die sich im Allgemeinen
wie eine viskoelastische Flüssigkeit verhält. Dieses Verhalten ist auf die Wirkung enthal-
tender Polysaccharide, sogenannte Hyaluronen, zurückzuführen. In dieser Arbeit werden
biologische und biochemische Eigenschaften von synovialen Flüssigkeiten untersucht, sowie
deren komplexe Rheologie und die Interaktion mit synovialen Membranen bei Filterprozessen.
Vom mathematischen Standpunkt aus modellieren wir das synoviale Fluid als ein viskoses,
inkompressibles Fluid, für welches wir ein neues Potenzgesetz–Modell entwickeln, wobei der
Exponent im Potenzgesetz von der Konzentration der Hyaluronen abhängt. Ein solches Mod-
ell ist dazu geeignet, um ein synoviales Fluid zu beschreiben, solange es zu keinen plötzlichen
Impulsen kommt. Des Weiteren beschreiben wir geeignete lineare viskoelastische Modelle,
welche das viskoelastische Verhalten der synovialen Fluide bei kleinen Deformationen als eine
Funktion der Konzentration beschreiben. In weiterer Folge werden die zugehörigen Modellgle-
ichungen betrachtet, und zwar die Inkompressibilitätsbedingung, das Momentengleichgewicht
– die verallgemeinerten Navier–Stokes Gleichungen und die Konvektionsdiffusionsgleichung für
die Konzentration des Hyaluron. Das Kapitel zur mathematischen Analysis konzentriert sich
im Wesentlichen auf die Formulierung des stationären Problems im schwachen Sinne und den
Beweis der Existenz einer zugehörigen schwachen Lösung für den Fall einer verallgemeinerten
Viskosität mit einer vom Potenzgesetzexponenten abhängenden Konzentration. Dazu ver-
wenden wir die Methode der monotonen Operatoren, wobei der Beweis der Hölder–Stetigkeit
der Konzentration den Hauptteil darstellt. Im Kapitel zur Numerik werden verschiedene
stabilisierte Finite Elemente Methoden für Probleme mit dominierender Konvektion betra-
chtet, welche typisch für synoviale Fluide sind. Numerische Beispiele werden für rechteckige
Gebiete präsentiert, um eine Einsicht in das Verhalten des Fluids zu bekommen und um es
zukünftig in realistischeren Gebieten lösen zu können. Des Weiteren werden die Lösungen
der verschiedenen Viskositätsmodelle für die einzelnen stabilisierten Finite Elemente Meth-
oden miteinander verglichen. Im letzten Kapitel wird ein mathematisches Modell für die
Strömung und den Transport einer verdünnten Lösung betrachtet, welches anschließend
auf das synoviale Fluid übertragen wird. Dabei sind die Gebiete durch eine semipermeable
Membran getrennt. Wir formulieren Transmissionsbedingungen für die Strömung und die
Konzentration der Lösung auf der Membran. Dabei kommt es zu einem teilweisen Rückgang
der Konzentration, welcher auf die Eigenschaften der Membran zurückzuführen ist. Die
Ablagerung der Lösung an der Membran und der Einfluss der Konzentration der Lösung auf
die Strömung ist als osmotischer Effekt bekannt.

Schlüsselwörter: Synoviale Flüssigkeiten, verallgemeinerte Viskosität, lineare Viskoelastizität,
Navier–Stokes Gleichungen, verallgemeinerte Sobolev Räume, C0,α –Regularität, Stabilisierte
Finite Elemente Methoden, Membrantransport.
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Abstract: Synovial fluid is a polymeric liquid which generally behaves as a viscoelastic
fluid due to the presence of polysaccharide molecules called hyaluronan. In this thesis, we
study the biological and biochemical properties of synovial fluid, its complex rheology and
interaction with synovial membrane during filtration process. From the mathematical point
of view, we model the synovial fluid as a viscous incompressible fluid for which we develop a
novel generalized power–law fluid model wherein the power–law exponent depends on the
concentration of the hyaluronan. Such a model is adequate to describe the flows of synovial
fluid as long as it is not subjected to instantaneous stimuli. Moreover, we try to find a suitable
linear viscoelastic model which can describe the viscoelastic responses of synovial fluid during
small deformation experiments, as, again, a function of concentration. Then, we consider
the governing equations, namely the constraint of incompressibility, the balance of linear
momentum – generalized Navier–Stokes equations and the convection–diffusion equation
for the concentration of hyaluronan. The part of mathematical analysis is focused on the
formulation of the stationary problem in the weak sense and the proof of the existence of the
corresponding weak solution, for the case of a generalized viscous problem with concentration
dependent power–law exponent. For that, we use the method of monotone operators, where
the essential role plays the proof of Hölder continuity of the concentration. In the numerical
part of the thesis, we consider different numerical stabilization methods which ensure better
numerical solvability of the system with dominant convection, as is typical for synovial fluid
flow. By their implementation into already existing code, we numerically solve for the flow of
the synovial fluid in a rectangular cavity, in order to gain some insight into the response of
such a fluid so that we can solve in the future the flows in more realistic geometries. We also
compare the solutions obtained with different models of generalized viscosities and different
stabilization techniques. As last, we propose a mathematical model for flow and transport
processes of diluted solutions, and afterwards of synovial fluid, in domains separated by a
leaky semipermeable membrane. We formulate transmission conditions for the flow and
the solute concentration across the membrane which take into account the property of the
membrane to partly reject the solute, the accumulation of rejected solute at the membrane,
and the influence of the solute concentration on the volume flow, known as the osmotic effect.

Keywords: Synovial fluid, generalized viscosity, linear viscoelasticity, Navier–Stokes equations,
generalized Sobolev space, C0,α–regularity, stabilized finite element methods, membrane
transport.
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Chapter 1
Introduction

1.1. Structure of the thesis

This thesis is concepted as an extended research on synovial fluids1 from the point of
view of the mathematical modeling. The mathematical modeling of biological materials
always has to be supported by deep physical, biological and chemical investigations to be
able to create reasonable models. Thus, we include to this work the introductory chapters
concerning the synovial joints and their single parts, on which basis we establish new models
for description of rheology of synovial fluid. Of course, by determination of new models,
valid under some specific restrictions, the work does not end, rather it continues with the
following mathematical analysis of the particular system of equations and the computational
simulations involving suitable numerical methods and their adaptations.

In order to keep a clear structure of the whole thesis, we introduce each field of the
research connected with the synovial fluid in a separate chapter. The reader then can always
choose to read the work as a whole or pick topics of his or her interest. We refer between
chapters to clarify particular assumptions and derivations made before, complement the
research by several figures for better visual understanding of the problem, emphasize the
main goal at the beginning of the actual chapter or section, and attempt to summarize the
known previous results and developments.

As a whole, this thesis is divided into three main parts, sometimes slightly overlapping
each other:

MODELING PART

Chapter 2. Biology of joints
Chapter 3. Description of response of viscous and viscoelastic material

in connection with synovial fluid
Chapter 4. Rheology of synovial fluid
Chapter 5. Modeling of viscous responses
Chapter 6. Modeling of viscoelastic responses
Chapter 10. Synovial membranes modeling

ANALYTICAL PART

Chapter 7. Problem formulation: governing equations and mathematical analysis

NUMERICAL PART

Chapter 8. Numerical methods
Chapter 9. Computational simulations
Chapter 10. Synovial membranes modeling

1Synovial fluid is a biological fluid present in the cavities of mammalian movable joints.
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1.2. Why is the mathematical modeling of synovial fluid important?

Mathematical studies of mechanical and rheological behavior of systems close or directly
connected with human physiology play an important role in several areas of bio–engineering
and medicine. One of the best examples is the mathematical modeling and consecutive
computational simulations which can predict important features of particular organs, tissues
or whole systems, otherwise difficult or even impossible to determine in vivo. Of course, one
needs to have by hand reasonable mathematical models, suitable (experimental) data, fast
reliable numerical methods, software and hardware, and experts who are able to interact with
the models and interpret the results. For example, the modeling of cardiovascular systems,
especially of the vessel parts and their interaction with blood, modeling of the heart muscle
or evolution of the aneurysms, or modeling in the field of neurology, becomes a standard part
of modern medical investigations. For these reasons, the fundamental research on biological
systems plays a crucial role for the future medical treatments or bio–engineering development.

In our case, we are focused on the understanding of the physiology and mechanisms
concerning human movable joints, more precisely, the mathematical description of the synovial
fluid rheology. To this date, there have not been fully understood the conditions and origins of
some pathological diseases, the mechanics of human joint lubrication or shock load absorbing,
for which the synovial fluid2 is an essential medium. These features could be, nevertheless, a
great enhancement in the engineering of designing the life–long functional joint prostheses or
in the disease treatment.

1.3. State of the art and main aims of the thesis

Mathematical modeling. To our knowledge, there are several models describing the
synovial fluid, see for example Rudraiah et al. (1991), Lai et al. (1978), Morris et al. (1981).
Nevertheless, they are great simplifications of the otherwise complex rheology of synovial fluid,
usually based on the simple experiments adapted for the linear theories, both viscoelastic
and viscous. In this we see the main obstacle in development of reliable models capturing
the most important non–Newtonian features of synovial fluid. To be more specific, the
synovial fluid has been modeled as either viscous shear–thinning fluid or linear viscoelastic
fluid–like material. The importance of the concentration of the molecules of hyaluronan,
which determines its non–linear character, was often undermined or completely neglected.
The aim: Our aim is to study such rheological behavior of synovial fluid, based on the
existing experimental literature, and create novel viscous and viscoelastic models, describing
the influence of concentration. Mainly, we focus on the description of viscous responses of
synovial fluid, as a fluid thinning the shear. Moreover, we intend to study the filtration
process of the synovial fluid through the synovial membrane and, on that basis, to create a
reasonable, nevertheless phenomenological, model for the synovial membrane transport.

Mathematical analysis. The existence theory of incompressible Navier–Stokes equations
with the viscosity of power–law type has been studied for more than 40 years, see for example
Ladyzhenskaya (1967), Málek et al. (1993), Frehse et al. (2000), Diening et al. (2010b). On
the other hand, the study of non–trivial coupling of the Navier–Stokes equations with another
governing equation, for example for temperature or electric field, through the power–law
index has been introduced in the recent decade. For instance in Růžička (2004), the variable
index is considered as a function of the electric field, in simplification of the space variable,
or in Antontsev and Rodrigues (2006), the variable index is temperature dependent. The
latter system is the closest to ours, nevertheless the proof is not constructive, based on the
use of the fixed point theory. Moreover, the diffusion of the temperature is considered to
be linear, and thus the standard Laplacian theory can be used to obtain necessary Hölder
continuity of the temperature and consequently of the variable power–law index. To the best
of our knowledge, the theory is not known for the case of the non–linear diffusion.

The aim: Since we model the flow of synovial fluid by the incompressible Navier–Stokes
equations coupled with the convection–diffusion equation for the concentration, and, the

2Here, of course, other parts of synovial joints, like cartilage and tendons, are essential and their
mathematical modeling as well as the understanding of their mutual interaction is necessary.



1.4 Summary of main results 3

viscosity of synovial fluid by a power–law type model with the shear–thinning exponent
dependent of the concentration, the mathematical approach introduced by Růžička (2004)
needs to be adopted for our case as well. The aim is then to prove the existence of the weak
solution for the stationary problem with Dirichlet boundary conditions for both the velocity
and the concentration in the framework of the generalized Sobolev spaces.

Numerical methods. In the case of dominated convection of the concentration, as is
the case of hyaluronan in synovial fluid, the numerical method needs to be adapted by an
introduction of suitable numerical stabilization. To this date, there are several stabilized
finite element methods, nevertheless, their application needs to be considered with respect to
several aspects. Since the objective of our study is a physical variable, the positiveness of the
scheme plays a crucial role. On the other hand, one needs to consider the convergence rate
and, particularly, the requirements for implementation and following numerical computations.
For these reasons, the streamline upwind Petrov–Galerkin method (Johnson (1982), Hughes
and Franca (1989)), continuous interior penalty method (Douglas and Dupont (1976), Turek
and Ouazzi (2007)) and Galerkin least squares method (Jiang (1998), Bochev and Gunzburger
(2009)) seems suitable for our case.

The aim: We intend to implement different stabilizations for an already existing code
for finite element method and study their characters in connection with the problem of the
flow of the synovial fluid. Then, we intend to compute and compare the numerical solutions
for different viscosity models and different stabilized finite elements. As last, we aim to
simulate the transport of the synovial fluid through the synovial membrane.

1.4. Summary of main results

Here, we would like to, very shortly, summarize the main results of this thesis. We have
decided to organize the results following the concept of the thesis, it means as the chapters
go.

The Chapters 2 and 3 are meant as introductory chapters. The Chapter 2 characterizes
the synovial joint system and its functions, the latter, Chapter 3, introduces the basic concept
of the generalized viscosity and viscoelasticity from the point of view of continuum mechanics.

Chapter 4. Rheology of synovial fluid
Here, we summarize the various rheological descriptions and available experimental data

of previous studies, and try to understand the nature of responses of synovial fluid under
different test conditions, for both normal and pathological synovial fluid.

Chapter 5. Modeling of viscous responses
In this chapter, we establish a novel generalized power–law fluid model for viscosity of

synovial fluid, wherein the power–law exponent depends on the concentration, characterizing
the concentration dependence of the shear–thinning phenomenon of the synovial fluid. By
the fitting procedure on the experimental data, we obtain the values of all free parameters
for such model.

Chapter 6. Modeling of viscoelastic responses
We try to use the theory of linear viscoelasticity on the known characteristic of synovial

fluid corresponding to small amplitude oscillatory tests. We generalize the Maxwell and
Oldroyd–B models in the sense that we consider their material parameters as concentration
dependent. Again, we use the fitting procedure for finding the suitable values of all free
parameters. As it seems, even for small deformations, the synovial fluid behaves in a more
complex, non–linear way. Nevertheless, we are able to obtain qualitatively satisfactory results
for the concentrations in the physiological range.

Chapter 7. Problem formulation: governing equations and mathematical analysis
We determine the equations of flow for synovial fluid as a generalized viscous fluid with

concentration, as coupled system of the generalized Navier–Stokes equations and convection–
diffusion equation with a non–linear diffusivity. We formulate the corresponding stationary
problem for the model with the variable power–law exponent and prove the existence of the
weak solution by using the theory of monotone operators in the framework of generalized
Sobolev spaces. The concept of the generalized Lebesgue and Sobolev function spaces with a
variable exponent needs to be involved since the spaces where we look for the weak solution
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are “dependent” on the solution itself, and thus, we a priori do not know them. The principal
step in the proof is then the proof of Hölder continuity of the concentration, which ensures
Hölder continuity of the variable exponent, a crucial assumption for the density of smooth
functions in the generalized Sobolev spaces, generalizations of embedding theorems and
Korn’s inequality. To the best of our knowledge, this is the first result concerning such a
system.

Chapter 8. Numerical methods
This chapter is focused on the formulation of the problem in the framework of finite

element method, which we use for the computation of numerical solutions. Since the Péclet
number corresponding to the synovial fluid is of the order of 10−7 − 10−6, we are challenged
with the convection dominated flow problem. Thus, for avoiding spurious oscillations in
the numerical solution, we introduce and implement three different numerical stabilization
techniques, namely the streamline upwind Petrov–Galerkin method, the continuous interior
penalty method and the Galerkin least squares method, which we compare for two different
testing problems.

Chapter 9. Computational simulations
Here, we focus on the computational simulations of the synovial fluid flow in two

dimensions. We compare different stabilization methods and the differences between models
for generalized viscosity as introduced in Chapter 5. Moreover, we run the simulations for
two different geometries to demonstrate the influence of the ratio of length and width of the
domain on the solution.

Chapter 10. Synovial membranes modeling
In this chapter, we propose a phenomenological model for the flow and transport process

of diluted solutions, and later of synovial fluid, in domains separated by a leaky semipermeable
membrane. We formulate transmission conditions for the flow and the solute concentration
across the membrane which take into account the property of the membrane to partly reject
the solute, the accumulation of rejected solute at the membrane, and the influence of the
solute concentration on the volume flow, known as the osmotic effect. The model is solved
numerically for the situation of a domain in two dimensions, consisting of two subdomains
separated by a rigid fixed interface representing the membrane. The numerical results for
different values of the material parameters and different computational settings are compared.

Despite the variety of the work, we were not able to cover all of the topics concerning
synovial fluid modeling. To them belong “hot topics” of recent years, such as

• fluid–structure interaction of membrane and synovial fluid, or the whole joint
system,

• computer simulations in real geometry,
• modeling of non–linear viscoelastic responses,
• mathematical modeling of pathological synovial fluids,
• mathematical analysis of the full evolutionary system,
• mathematical analysis and development of reliable numerical methods for the

viscoelastic models.

These, nevertheless, can be considered as possible topics for the future work.



Chapter 2
Biology of joints

2.1. Joints

Biological joints are formed between two or more bones of endoskeleton and are designed
to allow coordinated movement and stability of otherwise rigid skeleton. Considering that
adult human body has 206 bones, the total number of joints in human body is about hundreds.
Many of them are in some sense inconsistent with our basic notion of the body joint, since
they are indistinct, fully or dominantly rigid. It concerns for example the skull sutures
which are important in the infant growth, the joints of pelvic girdle which bear the weight of
the upper body and still allow sufficient expansion during the late pregnancy period and
childbirth, or slightly movable joints between vertebrae protecting the spinal cord. The whole
group of biological joints is thus very complex having wide functional, anatomical, structural
or biomechanical variety. For our needs, it is important to understand the functional and
structural classifications which actually largely overlap.

Structural classification determines the connecting material between the adjacent bones
while functional classification specifies the degree of the movement of the joint. The three
main classes are summarized in the Table 2.1.

Synarthroses are all those joints in which the surfaces of bones are in almost direct
contact, fastened together by intervening connective tissue, mostly by fibrous material. This
type of junction does not allow relative movement of the adjacent bones, it only meets
the needs of growth over years. One of the examples of synarthrosis are the skull sutures,
providing firm connection between skull bones but still allowing the skull growth during
skeletal maturation.

The second major type of bone junctions are the amphiarthroses. The contiguous bony
surfaces of amphiarthrosis are either connected by broad flattened disks of fibrocartilage
or are united by an interosseous ligament. As the name suggest, these junctions are both,
protective and slightly flexible. The flexibility occurs by bending under load, on the other
hand the extreme stability is required as a safety wall against external impacts and fractures.

Classification Class characteristics

Functional Structural
(degree of movement and
filling material)

Synarthrosis Fibrous No mobility Fibrous filling

Ampiartrosis Cartilaginous
Slight mobility
Cartilaginous filling

Diarthrosis Synovial
Variety of movement
Synovial fluid, cartilage

Table 2.1. Basic classification of joints
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Figure 2.1. Real structure of human shoulder joint: 1. Tendon of long
head of biceps brachii muscle; 2. Head of humerus (arm bone); 3. Glenoid
labrum (ligament attached to glenoid); 4. Articular cartilage of glenoid
fossa (articular surface of shoulder blade); 5. Scapula (shoulder blade); 6.
Articular capsule. From Rohen et al. (1998).

The typical examples of amphiarthroses are junctions of vertebrae, joints between ribs and
sternum or pubic symphysis.

The last class of joints, and for our needs the most important, is the class of diarthroses.
All diarthotic joints are synovial joints and are the most common form of articulation between
adjacent bones. They are highly movable junctions accommodating unique physical demands
of particular body part. However, diarthoses share the common design of relatively congruent
opposing cartilaginous surfaces enclosed within a synovial capsule filled with lubricating
synovial fluid. Characteristic examples are the knee, hip, elbow, shoulder, etc. Detailed
description of synovial joints shall be presented in the next section.

2.2. Synovial joint

In general, the structure of the bones connection in synovial joint can be complicated
like in e.g. knee joint where more than two bones are connected via complicated system of
intraarticular ligaments and other fibrocartilaginous disks (e.g. meniscus). For this reason
we shall focus on the characteristic description of synovial joints in simpler constituted joint
of shoulder, as presented in the Fig. 2.1.

As mentioned before, the synovial joint is designed to ensure mobility along with stability
of the connected system. Mostly it serves to drive the bone head into adjacent socket as in
the case of shoulder joint, schematically visualized in Fig. 2.2. The common feature of all
synovial joints is the enclosed articular capsule containing synovial fluid (6) which lubricates
articulating plates of cartilages (7) that slide against each other. The closure of the capsule
is provided by the synovial membrane (5) which generates the synovial fluid and keeps it
inside of the capsule during the articulation. The stability is supported mechanically by the
shape of the junction and supportive ligaments, tendons and muscles, and biochemically
which shall be described in the section of biochemical introduction, Chapter 4.

From rheological point of view, synovial joint is an effective lubricating configuration,
highly reducing the musculoskeletal friction. The effectiveness of this type of lubrication
has not been even approached by any man–designed machine. The principal answer to
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Figure 2.2. Schematic structure of shoulder joint: 1. scapula (shoulder
blade); 2. Acromion (feature on the scapula articulating with clavicle (collar
bone)); 3. Tendon of biceps bracii muscle (two head muscle of the arm); 4.
Articular capsule; 5. Synovial membrane; 6. Joint cavity containing synovial
fluid; 7. Articular cartilage. From Rigutti (2000).

the friction problem does not lie in the separated parts of the synovial joints but in their
coexistence in the open biological system. Nevertheless, for deeper understanding of synovial
joint as the whole we need to understand the morphology and biological properties of its
individual components, which shall be described in the next sub–sections 2.2.1–2.2.4.

2.2.1. Articular cartilage. Adjacent bones in synovial joint are covered by hyaline
(from Greek hyalos, glass) cartilage. Its thickness varies from joint to joint, in human body
it is thickest in the knee joint (2 − 4 mm). Hyaline cartilage is a highly specialized tissue
with porous structure, containing no nerves, lymphatics or blood vessels. In spite of the fact
that the hyaline cartilage comprises of approximately 75% of water it is not a soft tissue. Its
resilient and firm properties come from the macromolecular content. Approximately 15%
of wet weight of cartilage consists of collagen fibers stabilizing the network of proteoglycan
aggregates, which are structured macromolecules of glycosaminoglycan polymers, mainly
chondroitin sulfate and keratin sulfate, branched away from central protein cores that
themselves branch off from even larger glycosaminoglycan – hyaluronic acid, see Fig. 2.3.
Large amount of negatively charged sulfate SO−4 and carboxyl COO− groups in the molecules
of proteoglycans causes that the neighbor branches repel each other but they are attractive
for the water molecules which is important for hydratation of the cartilage and thus principal
in its lubrication properties. On the other hand, the glycosaminoglycans are covalently
restrained within the collagen framework which resists the movement of interstitial water
from cartilage and thus it allows the tissue to bear mechanical loading without permanent
distortion. The lowest concentration of proteoglycans (and chondrocytes) is in the thin
superficial zone where the concentration of collagen is highest. This slick fibrilar layer. see
Fig.2.4, has ability to resist shear stresses and thus it plays an important role in lubricating
properties of cartilage.

To the middle of the last century, it was considered that the articular cartilage is devoid of
all metabolic pathways due to its lack in blood/lymphatic supplies and nerves, and blockade
of non–permeable calcified cartilage from the side of subchondral bone. This view was
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Figure 2.3. Schematic cross–section through the articular cartilage. For
lucidity the cell and fibrous fractions are shown separately. Picture on
the left demonstrates the directional orientation of collagen fibers which
are perpendicular to the articular surface in the deep zone and becomes
tangentially oriented close to the superficial area. Picture in the middle
shows the distribution of cartilage cells, chondrocytes. Curved line represents
tidemark – boundary between calcified and non–calcified cartilage. Picture
on the right hand side demonstrates the macromolecular composition of
extracellular matrix with formation of proteoglycans having the structure of
bottle–brush.

Figure 2.4. Scanning electron microscopy of the articulating surface of
hyaline cartilage in synovial joint; magnification: ×8000. The collagen fibers
are oriented in one main direction and cross over each other in acute angles.
Cell elements and ground substance are not visible. From Kühnel (2003).

changed in connection with use of modern technologies like radioactive tracer method or
scanning microscopy which proved the biological activity of articular cartilage. The delivery
of nutrients and removal of metabolic wastes from chondrocytes is governed by fluid exchange
between cartilage and lubricating synovial fluid during oscillatory movement of synovial



2.2 Synovial joint 9

Figure 2.5. Schematic drawing of the cross–section of synovial membrane.
In the inimal part of the membrane, two types of synoviocytes are present
– type A cells (blue) are located at the superficial layer on the synovial
intima, type B cells (violet) are present at various depths of synovial intima,
in the yellow subintimal part, there is a blood capillary embedded in the
extracellular mixture of macromolecule aggregates of glycoproteins (bottle–
brush structure) and collagen fibrils (green strings). The upper white part
represents the joint cavity occupied by the synovial fluid.

joints. The synovial fluid is itself exposed to molecular/cellular exchange with blood vessels
and lymphatics in synovium. The negative consequence of this type of supplementation can
be found in immobilized joints where the cartilage slowly degenerates due to unduly slow
nutrient transport.

2.2.2. Synovial membrane. Synovium (or synovial membrane) plays an important
role in the metabolism of synovial fluid (and consequently in metabolism of articular cartilage).
Anatomically, it is characterized as a tissue enclosing the synovial cavity around the surfaces
of articular cartilage. Synovium is connected to the articular cartilage on its peripheral
rim and from the external side it is underlined by fibrous layer of the subsynovium. The
Area of synovial membrane is surprisingly large (for example in human knee joint it makes
approx. 280 cm2) what ensures that synovium is not mechanically limiting the movement of
the synovial joint when cartilages slide against each other. On the other hand, the potential
pinch between cartilaginous surfaces would be destructive and thus the synovium folds and
expanses like the folding of an accordion.

Synovial tissue, which is up to 25µm thick, comprises of two histologically different parts,
see Fig. 2.5. The thinner superficial layer, called intima, features a unique discontinuous
cellular lining, rarely more than three cells thick. The intimal cells (synoviocytes) are
not linearly organized into layers like in epidermis, instead, they are irregularly emplaced
through this thin superficial part. Recent microscopical studies revealed that synoviocytes are
connected via loose cell junctions and their extracellular distribution creates pores of effective
size of approximately 50 nm. Histologically, synoviocytes are of two types – macrophagic
cells (type A cells) which are imunoreactive and can phagocytose waste and cell debris, and
dominant fibroplast–like cells (type B cells) which are characteristic for their rich rough
endoplasmic reticulum indicating intensive protein activities. The real scans of synovial
intima are presented in Fig. 2.6 and 2.7.

The thicker outer layer of synovium, called subintima, is cell–free loose connective tissue.
Based on the composition of the subintimal tissue, the synovial membranes are usually
classified as areolar, adipose and fibrous. In the complicated system of synovial joint like in
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Figure 2.6. Scanning electron microscopic visualization of aggregation of
synoviocytes on the superficial area of synovial membrane; Magnification:
×3400. From Iwanaga et al. (2000).

Figure 2.7. Scanning electron microscopic visualization of superficial area
of synovial membrane; The foldings and microvili of the membrane are
clearly visible; Magnification: ×2300. From Iwanaga et al. (2000).

the knee joint, all three types of synovium are present. The most important type of synovium
is areolar which usually occurs in areas where synovium undergo the most extensive excursions
and where the production and drainage of synovial fluid is dominant. It is composed of
relatively thick cellular intima (3 cells depth), and its subintimal extracellular matrix, as the
name suggests, is rich in blood capillaries and lymphatics supported by extensive meshwork
of collagen fibrils with proteoglycan macromolecules. For adipose (fatty) type of synovial
membrane is typical cellular layer composed of single flattened lining cells underlined by a
layer of adipose cells and it usually lines articular fat pads. The fibrous type of synovial
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Figure 2.8. Consistency and visual appearance of synovial fluid. From
Rijswijk (1992).

membrane is usually found over tendons and ligaments and it is characteristic in dense
collagenous tissue of subintima1.

From physiological point of view, synovial membrane is essential organ controlling
homeostasis of synovial joint cavity. Its principal function is to maintain the synovial
fluid inside the joint cavity (even during high oscillatory loading), but also, the fibroplast–
like intimal cells are place of origin of the main chemical constituent of synovial fluid –
the hyaluronan (hyaluronic acid). The third important function of synovial membrane is
its property of a biological sieve which allows nutrients to enter the synovial cavity and
consequently the avascular cartilage but protects the fluid–filled cavity from invasion of
possible aggressors from close blood stream.

2.2.3. Synovial fluid. Since the study of synovial fluid is the main topic of this thesis,
we shall employ ourselves in deeper research on the biological, chemical and mechanical
properties of synovial fluid. This characteristics change with the health condition of the
involved synovial joint, however, in this section, we shall focus only on the characterization
of the normal2 synovial fluid. The study of pathological cases shall be then elaborated in
later section.

Synovial fluid is foremost contained in the cavity of synovial joint but in small amount
it is found in the articular cartilages and synovium, as well. The amount of synovial fluid
in synovial joint is very small to its internal surface area. In the human knee, for example,
the total volume of synovial fluid varies from 0.5 to 3 ml, occupying internal surface of
approximately 420 cm2. Normal synovial fluid is transparent, colorless, noticeably thick
with consistency like egg–white (hence the name, from Latin ovum, egg). With its chemical
constitution, synovial fluid is primarily an ultrafiltrate of blood plasma, with almost the same
electrolyte concentration but small concentration of blood proteins, see Tab. 2.2. The blood
plasma is ultrafiltrated from the blood capillaries in synovium and at the intimal layer of
synovium it is enriched by two types of locally synthesized molecules, hyaluronan (in higher
quantities) and lubricin (in smaller amount). Both of them are actively synthesized and

1Some authors regard the subintimal layer as a part of subsynovium and thus they consider the synovial
membrane to be only the cellular layer. In this thesis, we consider the subintima to be a part of synovial
membrane.

2By normal synovial fluid we mean the synovial fluid with rheological responses and biochemical
composition as that of a healthy young individual.
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Molecule of plasma SF/plasma ratio

Na+ 0.93
Cl- 0.01
Urea 0.96
Albumin 0.37− 0.45
Transferrin 0.24
Immunoglobulin G 0.21
α2−macroglobulin 0.03− 0.19
Total protein fraction 0.28
Hyaluronan 70000

Table 2.2. Ratio between concentration of particular plasma molecules in
synovial fluid (SF) and blood plasma. From Wright and Radin (1993).

secreted by the synoviocytes (lining cells) of type B. Total cell count in normal synovial fluid
does not exceed 200 per mm3. Most of the nucleated cells are from group of white blood
cells while erythrocytes are absent.

Biological function. As it has been already mentioned before, synovial fluid has three
vital biological functions. First, it supplies the cells of avascular cartilage with nutrients and
removes their metabolic waste, second, it lubricates the articular cartilage surfaces during
joint movement, and third, it stabilizes the joint capsule during joint movement or intensive
shock loading due to its exceptional viscoelastic behavior. While the nutrition of the joint is
predominantly biological issue, the lubrication and joint stabilization are primarily based on
bio–mechanical principles requiring the understanding of rheological responses of important
chemicals which are contained in synovial fluid. The main mechanical aspects of responses of
synovial fluid are in detail elaborated in Chapter 4, specifically focused on the rheology of
synovial fluid.

Joint nutrition. Despite very low cellular fraction of cartilage, which is about 5%, the
total cellular mass of cartilage highly exceeds the cellular mass of the synovium. Thus, under
normal conditions, cartilage consumes approximately 70% of glucose supply which comes
from subintimal capillaries of synovial membrane. This nutrient microcirculation in synovial
cavity is crucial in maintenance of the effective rheological properties of the cartilage, and
thus in prevention of cartilage from wearing and consequently from joint diseases. The
nutrient microcirculation in synovial cavity is closely related to synovial fluid exchange and
its chemical composition.

2.2.4. Ligaments, tendons, muscles. Last piece ensuring the synovial joint stability
are the strong supportive tissues like the ligaments and tendons. While ligaments are elastic
connections between adjacent bones in joints (they reversibly stretch up to 10%), the tendons
serve as an inextensible connection tissue between bone and muscle. In both cases, they are
composed of arrays of collagen fibers. The composition of such bone junctions is designed to
permit allowed flexion and extension of the joint but prevent any other inappropriate motion
or hyperextension. On the other hand, joint muscles predominantly serve as a contractive
tissue for voluntary skeletal movement and in maintaining the posture.

2.3. Joint diseases

To this date, it is known over 100 pathological disorders of synovial joints. They
do not share single cause or common pathway, and moreover, still some of them are not
fully understand. This diversity, nevertheless, has one common feature: the pain beyond
imagination of a healthy person. Each form of arthritis tends to target certain group of joints,
and thus it must be related to a joint function or its articular structure. The most common
forms of joint diseases are osteoarthritis, rheumatoid arthritis, gout and septic arthritis.

The joint diseases have noninflammatory stage during which the cell count in the synovial
fluid is not greater than 2, 000 cells per mm3. The exceeding of this limit is already considered
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Figure 2.9. Visual appearance of different pathological synovial fluids. 1.
synovial fluid from osteoarthritic joint, cell count 300 cells/mm3, does not
exhibit almost any changes in visual appearance; 2. slightly inflammatory
synovial fluid, less than 6, 000 cells/mm3; 3. extremely inflammatory synovial
fluid, rheumatoid arthritis 100, 000 cells/mm3 and septic arthritis 150, 000
cells/mm3. From: Rijswijk (1992).

as an inflammatory process. Correlation of the pathological synovial fluid is demonstrated in
Fig. 2.9.

Osteoarthritis. This degenerative joint disease is caused by mechanical wearing and
degeneration of the hyaline cartilage in synovial joint which lack the ability of self–regeneration.
Mainly, it is characterized by remodeling of the joint due to replacement of worn cartilage by
tougher tissue, which results the bony growths in the joint cavity. The common symptoms of
osteoarthritis are chronic pain caused by the dragging of the bony growths, joint stiffness as
the movement becomes painful, and joint effusion (volume of synovial fluid can be increased
up to 10–times).

Osteoarthritis can be caused by aging, or by repeated trauma, surgery, joint injury, as
well as by obesity or hormonal disorders. As emerge from the osteoarthritis character, it
affects predominantly large weight–bearing joint, such as knees and hips or spine.

Unfortunately, osteoarthritis can not be fully healed. Nevertheless, first stages can be
treated by lifestyle modification (weight–loss, exercises) or joint injection resulting short–term
pain relief. On the other hand, popular and expensive nutritional supplements are by scientific
community believed to have only placebo effect. Advanced stage of osteoarthritis can be
treated only by the joint replacement.

Rheumatoid arthritis. Rheumatoid arthritis is autoimmune disorder which forces the
immune system to mistakenly attack the healthy organ. The initial immune attack is aimed
against the synovium which results in retarded production of synovial fluid and consequently
in the inflammatory expansion to the joint cavity and neighboring tissues. Primary symptoms
of rheumatoid arthritis are chronic pain, morning stiffness, joint swelling. Nevertheless, the
patient may not suffer from any of them for a long time from the beginning of the illness or
the symptoms can come and go.

The cause of such autoimmune disorders remains unknown to this day. For long time,
the infectious agents such as viruses, bacteria or fungi have been suspected, nevertheless,
none of them has been claimed as the prime cause. Yet, stress, allergies, family history,
smoking and environmental factors are significantly correlated with inception of rheumatoid
arthritis.
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In contrast to osteoarthritis, rheumatoid arthritis affects small joints in a symmetric
fashion, such as the finger joints of both hands, wrists or the small joints of feet. There is no
known cure for rheumatoid arthritis, but some treatment tools can soften the symptoms and
relief pain. Common treatments consist in the joint injections and usage of anti–inflammatory
agents and analgetics.

Gout. In the case of big toe, gout is known as podagra. It is a disorder of purine
metabolism which final metabolite, uric acid, crystallizes and precipitate in synovial joints
and surrounding tissues. Elevated uric acid level then initiates the local immune inflammatory
reaction. Gout is characteristic for red, tender and swollen joint with pain occurring during
the night.

Gout is caused by significantly increased level of uric acid in the blood from many reasons
such as alcohol consumption, obesity, insulin resistance or chemotherapy. First stage of
treatment is focused on the acute inflammatory attack, and after, the medicament reducing
the uric acid level in the blood are prescribed.

Septic arthritis. Septic arthritis is an inflammatory reaction in the joint caused by
presence of infectious agent, usually bacteria. They are introduced to joint through the
synovial membrane (from blood stream or acute trauma of adjacent tissue) and after they
all over the joint. Septic arthritis is an medical emergency requiring immediate treatment
otherwise the permanent joint damage occurs within few days. Septic arthritis is treated
with intravenous antibiotics and joint washouts.



Chapter 3
Description of response of viscous and
viscoelastic material in connection
with synovial fluid

Before we discuss in more detail the rheological properties of synovial fluid, we shall
provide here a brief phenomenological background of the nature of viscous/viscoelastic
behavior and describe how such mechanical properties can be experimentally measured
especially in connection with synovial fluid. It is assumed that the reader is familiar with
the fundamentals of the classical theory of continuum, and thus, we shall not recall the basic
definitions of fluid/solid mechanics. For rigorous definitions and derivations of mentioned
terms and relations we refer the reader to books of introduction to mechanics of continuum,
for example by Truesdell and Rajagopal (2000), book with applications to biomechanics
by Fung (1993), or specifically mechanics of viscoelasticity of polymers by Ferry (1980).
Through the whole chapter we shall focus mainly on the description of the fluid–like materials,
nevertheless the comparison with solid–like bodies shall be commented.

It is well documented that for modeling of non–Newtonian1 fluids the classical theory of
continuum mechanics is not always sufficient. Instead, new approaches were derived to model
the non–linear effects of real materials, for instance the description of body deformation by
the means of natural configuration, which is very promising. Nevertheless, in the case of
synovial fluid we do not have the sufficient experimental data which we need for description
of non–linear responses, and thus, we can not model the responses of synovial fluid with
the new, more rigorous, descriptions. For these reasons, we shall describe the deformation
relations by the means of classical continuum mechanics.

In what follows, for simplification, we consider the incompressible material to be exposed
to one–dimensional simple shear, as illustrated in Fig. 3.1. We denote the shear stress by
τ , shear strain by γ and shear rate by γ̇. In the tensor notation, the strain ε and stress
T = −pI + S are expressed as

ε =
1

2

0 γ 0
γ 0 0
0 0 0

 , T =

−p 0 0
0 −p 0
0 0 −p

+

S11 τ S13

τ S22 S23

S31 S32 S33

 .(3.1)

3.1. Ideal versus real material

The classical theories of hydrodynamics and elasticity deal with the mechanical properties
of ideal materials such as linear viscous fluid and linear elastic solid, respectively. In the case
of a linear viscous fluid, or as often called a Newtonian fluid, its deformation is described by
the Newton’s law which states that the stress is always directly proportional to the strain rate
but is independent of strain itself. This material does not adopt fixed state of deformation if

1Non–Newtonian fluid is such that can not be described by one constant material parameter, the viscosity.
We would like to emphasize, that viscoelastic fluid is a subclass of the non–Newtonian fluid.
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shear force

Figure 3.1. Simple shear deformation.
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Figure 3.2. Shear stress–strain plot for a linear elastic solid and shear
stress–shear rate plot for a linear viscous fluid. Here, µ and E represent
the material parameters of linear viscous fluid – viscosity, and linear elastic
solid – Young’s modulus, respectively.

exposed to constant stress, and thus, it itself never recovers form deformation. On the other
hand, the response of a linear elastic solid obeys the Hooke’s law (therefore the name Hokean
solid) postulating linear relationship between stress and strain, see Fig. 3.2. In contrast
to linear viscous fluid, the elastic solid recovers completely from the deformation after the
removal of applied load. The schematic illustration of mechanical responses of ideal materials
during simple shear is shown in Fig. 3.3.

Even though these categories are idealizations, and for some materials they are good
approximations for infinitesimal deformation, the real material is known to behave in a
more complex way, combining liquid–like and solid–like characteristics. This behavior is
(unsurprisingly) called viscoelastic. Such material does not store or dissipate all of the
energy input, and it exhibits various, sometimes truly spectacular, non–linear properties, as
described for instance in Rajagopal (1993) for the case of fluids.

The mechanical response of an ideal elastic material is characterized by linear shear
stress–strain relation and thus the ideal elastic material is specified by a single number,
the slope of its deformation line, which is considered to be a material property. This is
analogous to the Newtonian fluid, which is characterized by one material parameter, the
viscosity, defined as a slope of shear stress–shear rate graph. The situation of viscoelastic
material is significantly different. The mechanical response varies and thus the material
characterizations can not be single numbers but the entire response curves.

In general, we distinguish between two standard types of experiments for determining
the material properties of viscoelastic materials: transient and dynamic experiments. In the
case of transient experiments, commonly, the material is subjected to a simple shear, while in
the case of dynamic tests the material is exposed to sinusoidal shear oscillations. While the
oscillatory test are typical for description of linear viscoelasticity, the transient experiments
are suitable for description of non–Newtonian characteristic of a material response. In the
next sections, let us go through the particular specifics of both types of experiments.

3.2. Transient experiments

Typical features of non–Newtonian behavior during transient experiments are stress–
relaxation and creep, as depicted in Fig. 3.4 and 3.5. In the case of stress–relaxation, the
material subjected to a continuous shear strain deformation exhibit non–immediate response
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Figure 3.3. Mechanical response of ideal materials to step stress test. Top:
Step stress test, at time t0 the shear stress is instantly increased to a certain
level and then held constant to time t1. Bottom: The instantaneous response
of linear elastic solid (green) and linear viscous fluid (pink).
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Figure 3.4. Stress relaxation. Top: Continuous strain history. Bottom:
response of viscoelastic solid (left) and viscoelastic fluid (right) to a strain
test. After some time, the fluid–like material does not require any additional
stress to maintain in the new shape, while solid–like materials do. The
decrease of stress at constant strain is called stress–relaxation.

in shear stress, in other words, it relaxes the stress. On the other hand, for the material
exhibiting the creep phenomena the stress recovery after the immediate strain removal is
relaxed. Generally, the material recovers only part of the strain (in the case of viscoelastic
fluid) or approaches the zero strain state asymptotically (in the case of viscoelastic solid).
Nevertheless, there are many other non–Newtonian behaviors which are observed by transient
experiments, among them the normal stress differences (for simple shear deformation the
normal stresses are different), yield stress (the deformation occurs after some critical value
of shear stress is reached) or shear tinning/thickening (see below). One can find more on
non–Newtonian fluids for example in Truesdell and Noll (1965). For now, let us focus for a
while on one specific slight departure from Newtonian characteristic, called shear–thinning,
since this is well documented for synovial fluid.
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Figure 3.5. Mechanical response of viscoelastic material to step stress test –
creep. Top: Step stress load. Bottom: Response to step stress of viscoelastic
solid (left) and viscoelastic fluid (right). For solid–like materials all the strain
is recovered and thus it asymptotically approaches zero, while for fluid–like
materials, only part of the strain is recovered, hence the asymptotic approach
to a constant value. This continued straining is called creep. Compare with
ideal materials in Fig. 3.3.
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Figure 3.6. Shear–thinning (left) and generalized viscosity (right) in com-
parison with Newtonian fluid (curve 1).

Shear–thinning. As it has been defined above, the viscosity is a material parameter of
Newtonian fluid, a proportion between shear stress and shear rate during simple shear, see
curve 1 in Fig. 3.6. However, in some fluids (especially in polymeric solutions) distinguished
departure from this linear relationship is observed (see curve 2 in Fig. 3.6). This non–linearity
then evokes as if viscosity is a function of shear rate. Following this phenomenological approach
we define the so–called generalized viscosity µg, through

µg (γ̇) =
τ

γ̇
.(3.2)

Even though such fluid is not Newtonian, one can still describe it in this framework, and thus,
sometimes such fluid is called generalized Newtonian. One should notice that the viscosity
is monotonic decreasing function of shear rate, as the fluid thins the shear rate. For most
shear–thinning fluids it has been observed experimentally that the generalized viscosity tends
to some limit value for very high shear rates.

3.3. Small amplitude sinusoidal oscillations

Now, let us discuss the oscillatory experiment in greater detail since the experimental
data of viscoelastic response of synovial fluid we obtained are of this kind.

In what follows, we assume that the material is an incompressible fluid, which rheological
behavior is expected to be describable by the model of linear viscoelastic fluid. This is a
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shear force

Figure 3.7. Harmonically oscillatory simple shear.
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Figure 3.8. Mechanical response of ideal material to harmonically changing
deformation. Top: The sinusoidal strain. Bottom: The response of linear
elastic solid (green) with zero phase shift between shear strain and shear
stress and linear viscous fluid (pink) with exactly π/2 phase shift between
shear strain and stress.
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Figure 3.9. Mechanical response of linear viscoelastic material to harmon-
ically changing deformation.The phase shift between strain and stress in the
case of linear viscoelastic material is general. Compare with ideal materials
in Fig. 3.8.

good approximation for most of the viscoelastic materials in such type of experiment, e. g.
small amplitudes and small frequencies deformation. For now, since it will be advantageous
for the derivation and understanding of some physical quantities used commonly in the
engineering/experimentalist community, let us start from the constitutive equation describing
the strain stress relation by an integral formula (see Lai et al. (1978), Ferry (1980) or
Rajagopal and Srinivasa (2000) for more details)

T = −pI + S, S(t) = 2

∫ t

−∞
G(t− t′)D(t′)dt′,(3.3)

where T is the stress tensor, p is the pressure, I is the identity tensor and S is known as
the extra stress tensor expressed in terms of history of all relative deformations. Here, D is
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the symmetric part of velocity gradient, D = 1
2

(
∇v +∇vT

)
, and G(t) is tensor of 4th order

called (tensorial) relaxation function.
Consider one–dimensional deformation of oscillating simple shear, with small amplitude

sinusoidal shear strain

ε(t) =
1

2

 0 γ(t) 0
γ(t) 0 0

0 0 0

 , γ(t) = γ0 sin(ωt),(3.4)

with frequency ω in rad/sec (ω = 2πν, ν in Hz) and strain amplitude γ0 small enough,
assuring that the material response is in the linear range, as illustrated in Fig. 3.7. Then the
symmetric part of velocity gradient and shear rate are

D(t) =
1

2

 0 γ̇(t) 0
γ̇(t) 0 0

0 0 0

 , γ̇(t) = ωγ0 cos(ωt),(3.5)

and thus the extra shear stress reduces to

S12 = τ(t) =

∫ t

−∞
G(t− t′)γ̇(t′)dt′,(3.6)

where G(t) is called the relaxation modulus, considered as the material function. In order to
use this integral constitutive equation, the material function G(t) has to be determined by
an experiment. One should notice, that other components of stress tensor do not have to be
automatically zero, even though the strain tensor takes the form of (3.4).

Substituting equation (3.5) into (3.6) and denoting t− t′ by s, we have

τ(t) =

∫ ∞
0

G(s)ωγ0 cos[ω(t− s)]ds =

=γ0

[
ω

∫ ∞
0

G(s) sin(ωs)ds

]
sin(ωt) + γ0

[
ω

∫ ∞
0

G(s) cos(ωs)ds

]
cos(ωt).(3.7)

In the case of viscoelastic fluid, the integrals make sence since G(s)→ 0 as s→∞. As one
can see, the shear stress τ is periodic as well as the strain γ, constructed by superposition of
two terms which are in the phase (as linear elastic solid response, see Fig. 3.8) and out of
phase by π/2 (as linear viscous fluid response) with strain. Thus, the relative phase shift
between shear strain and shear stress of linear viscoelastic fluid is of a degree depending on
the relative magnitudes of the coefficients in brackets in (3.7), which are frequency dependent
but free of dependency of elapsed time. Thus the constitutive equation can be rewritten in
terms of

τ(t) =γ0 {G′(ω) sin(ωt) +G′′(ω) cos(ωt)} ,(3.8)

where

G′(ω) = ω

∫ ∞
0

G(s) sin(ωs)ds,(3.9)

G′′(ω) = ω

∫ ∞
0

G(s) cos(ωs)ds.(3.10)

The frequency functions G′ and G′′ are called the shear storage (or elastic) modulus and
shear loss (or viscous) modulus, respectively. In fact, modulus G′ is a measure of energy
which is stored and subsequently released per cycle of deformation and thus it reflects the
elastic nature of the material. On the other hand, G′′ is a measure of energy which is
dissipated as heat per deformation cycle and therefore it is connected with the events having
the viscous nature.

Another possibility how to describe the material properties of linear viscoelastic fluid
exposed to small amplitude oscillations is to formulate the shear stress with the phase
difference angle δ and stress amplitude τ0

τ(t) = τ0 sin(ωt+ δ(ω)) = τ0 cos (δ(ω)) sin (ωt) + τ0 sin (δ(ω)) cos (ω) t,(3.11)
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in relationship to G′ and G′′

G′(ω) =
τ0
γ0

cos δ(ω), G′′(ω) =
τ0
γ0

sin δ(ω),
G′′(ω)

G′(ω)
= tan δ(ω).(3.12)

For each periodic measurement at a given frequency, one gets two independent quantities
describing the material response in regime of sinusoidal oscillatory deformation, either G′

and G′′ or δ and τ0/γ0.
Since the complex shear modulus G∗ is quite commonly used in the literature concerning

experimental measurements, let us briefly outline its derivation. Consider the stress and
strain in complex notation

γ∗ = γ0e
iωt, τ∗ = τ0e

i(ωt+δ),(3.13)

and the complex shear modulus defined as

G∗ :=
τ∗

γ∗
.(3.14)

Then, its real and imaginary parts are the G′ and G′′

G∗ =
τ∗

γ∗
=
τ0
γ0
eiδ =

τ0
γ0

(cos δ + i sin δ) = G′ + iG′′.(3.15)

The approach of complex quantities has advantage, as it represent the elastic and viscous
responses simultaneously and moreover, it allows the introduction of complex viscosity defined
in a natural way µ∗ := τ∗/γ̇∗. Nevertheless, in the chapter concerning fitting the synovial
fluid responses as of viscoelastic material, we use the approach of G′, G′′ involved in the
shear stress through (3.8).

Remark. For complicated materials, as most biological fluids and solids, the models of
linear viscoelasticity are strongly limited, usually applicable to certain very small range of
deformations. The theory of non–linear viscoelasticity proposes a bigger class of models,
but this direction of material modeling is quite new, not deeply adapted by experimentalists.
That is the reason, why the experiments are often carried on in the traditional way, suitable
for description of linear viscoelasticity. Even in our case, the available experimental data
concerning viscoelastic properties of synovial fluid are characterized by G′ and G′′ only,
and thus, we have no other possibility than to restrict ourselves to the linear viscoelastic
modeling.





Chapter 4
Rheology of synovial fluid

Rheological properties of synovial fluid have never been studied as frequently as for
example of blood. The main reasons are that the synovial fluid is not essential to life as for
example the blood or biological fluids of the brain, and, that the extraction of normal synovial
fluid from human joints is a difficult and painful process. Hence, the samples of human
synovial fluid for experimental needs are often substituted by these from animal synovial
joints, like of rabbits, oxes or horses, or the examination is accomplished on biological fluids
chemically analogous to synovial fluid, for example on the solutions from umbilical cord or
rooster comb. On the other hand, the rheological properties of pathological synovial fluid are
well documented. In this thesis, we study properties of normal synovial fluid, nevertheless,
we shall, in some cases, comment alternations arising from possible pathological deviations.

First intensive scientific investigations of composition and properties of synovial fluid date
back to the late thirties of the last century (Meyer et al. (1939), Ropes et al. (1940), Davies
(1946)), which were shortly followed by deeper study of the special rheological properties
of synovial fluid which were attributed to the main chemical constituent of synovial fluid,
hyaluronan, (Ogston and Stanier (1953), Sunblad (1953)). This pioneering work draw
attention especially after the introduction of joint disorder treatments by hyaluronan injections
what entirely accelerated the interest in study of hyaluronan functions in aqueous solutions
and its relation to viscoelastic properties of synovial fluid. For this reason, it is necessary to
understand the physico–chemical properties of hyaluronan molecules in liquid solutions, on
which we can build phenomenologically justified mathematical model describing synovial
fluid mechanical responses.

Figure 4.1. Schematic structure of hyaluronan molecule. The polyanion
forms an extended left–handed helix with three disaccharide units per one
turn. From Voet and Voet (2004).
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Name

Number of anionic
(sulfated) groups
per disaccharide

unit

Molecular
mass Mr[Da]

Occurrence

Hyaluronan 1 (0) 4− 7× 106 synovial fluid, skin,
vitreous humour

Chondroitin–4–
(6–)sulfate

2 (1) 1− 5× 104 major component of
cartilage

Dermatan
sulfate

2 (1) 1− 5× 104
mostly in skin, but
also in blood vessels
walls

Keratan sulfate 1 (1) 5− 15× 103 component of cornea,
cartilage, bone

Heparin 4 (3) 5− 20× 103
blood clot inhibitor,
not part of connective
tissues

Table 4.1. Comparison of typical glycosaminoglycans, focused on the chain
length and anionicity. From Voet and Voet (2004).

Figure 4.2. Disaccharide unit of hyaluronan molecule.

4.1. Hyaluronan

Hyaluronan (also called hyaluronic acid) is a long–chained polysaccharide typically
found in the soft connective tissues of vertebrates, especially in the synovial fluid, cartilage,
vitreous humor of the eye, umbilical cord or skin. Notable amount is found in the internal
organs, very little in the blood serum. Summary of typical concentrations of hyaluronan in
different human body organs is shown in Tab.4.1. Hyaluronan structurally belongs to the
group of glycosaminoglycans, the unbranched polysaccharides of alternating uronic acid and
hexosamine residues, often associated with tissue collagen fibrils. Nevertheless, hyaluronan is
quite distinct from other glycosaminoglycans. It is does not bond to proteins or polypeptides
to form proteoglycans (common aggregates found in cartilage, see section 2.2.1), it is not
sulfated and its molecular weight in normal synovial fluid, for example, reaches millions,
which is 102 − 103 times higher than for any other glycosaminoclycan molecules, see for
comparisons Tab. 4.1.

Molecule of hyaluronan is unbranched, composed of disaccharide units consisting of
D–glucuronic acid and N–acetyl–D–glucosamine linked by alternating β(1→ 3) and β(1→ 4)
bond (see Fig.4.2). Unlike other glycosaminoglycans, its chain is composed of up to 25000
repeating disaccharides units which makes the hyaluronan of an extraordinarily high molecular
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Organ or fluid Concentration [µg/g]

Umbilical cord 4100

Synovial fluid 1400− 3600

Dermis 200

Vitreous body 140− 338

Brain 35− 115

Urine 0.1− 0.3

Plasma serum 0.01− 0.1

Table 4.2. Normal concentrations of hyaluronan in various organs of human
body. From Fraser et al. (1997).

LENS
synovial fluid LENS

plasma

Figure 4.3. Demonstation of elastic–like properties of synovial fluid doc-
umented by Ogston and Stanier (1950). The elasticity of the solution
was related to the height of the gap between the lower plate and the lens,
measured by the resulting Newton rings when the lens was illuminated.

weight, of 4− 7× 106 Da. If straightened, the molecule would be several micrometers long,
approximately 2−times longer than disk diameter of typical human erythrocyte. Closer
biochemical description can be found for example in Voet and Voet (2004).

In the aqueous solution, the polymer takes up the helical configuration which is stabilized
by hydrogen bonds parallel with the chain axis, see Fig.4.1. The anionic carboxyl and car-
boxamide groups of glucuronic acid residues and hydroxyl group of N–acetyl–D–glucosamine
sugar residues are facing outward the chain core. This configuration and the strong anionicity
of abundant hydrophilic groups allow the chain to adopt overall expanded coil structure,
which can be regarded as a heavily hydrated sphere of radius of about 200 nm, containing up
to 1000 times more water than the organic material of the molecule itself, see for example
Laurent and Fraser (1992). Domains of hydrated hyaluronate molecules are so vast that
they overlap already at very low concentration ∼ 0.1%, Sabaratnam et al. (2006). At higher
concentrations the chains create uniform three–dimensional network continuously spanned
through the whole solution. This network is stiffened by specific transient non–covalent and
relatively weak chain–chain interactions, nevertheless it does not require other participant
to hold it together, Scott et al. (1991). These crosslinks are of low density and together
with highly flexible chains of hyalronan molecules, the mesh can undergo large deformations,
whilst the covalently linked polymers are free of flow properties undergoing only reversible
deformations.

4.2. Viscoelastic properties of hyaluronan solution

Physiological hyaluronate solutions at neutral pH, like in synovial fluid, feature an
extraordinary viscoelastic characteristic. The existence of an elastic–like property of synovial
fluid was early documented by Ogston and Stanier (1950), who noticed the behavior of the
synovial fluid in comparison with human blood plasma in a simple experiment of examining
the Newton rings, as briefly depicted in Fig. 4.3. Later viscoelastic measurements were
done by, for example, Gibbs et al. (1968) and Morris et al. (1980), or by Thurston and
Greiling (1978) who investigated the loss of viscoelastic behavior of pathological synovial
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fluid, or recently by Kobayashi et al. (1994) investigating the influence of molecular weight
of hyaluronan on the viscoelasticity of synovial fluid or Rwei et al. (2008) who measured
viscoelastic effect under different physical or chemical conditions. Typical and widely used
experimental test measuring viscoelastic responses of synovial fluid is the (small amplitude)
oscillatory measurement for wide range of frequencies, as shown in Fig. 4.4. The response is
presented in terms of G′ and G′′, where G′ is associated with elastic phenomena and thus
called storage modulus, while G′′ is associated with viscous dissipation of energy, and it is,
therefore, called the loss modulus, for definition see Chapter 3, section 3.3. At low frequencies
of oscillation, loss modulus G′′ is evidently greater than the store modulus G′, in other words
viscous responses are dominant to elastic responses, which is the consequence of the fact that
at lower frequencies of oscillations the molecular network is transient, or in other words, the
period of oscillations is long relative to the lifetime of hyaluronan chain–to–chain interactions
and thus the rearrangement of the molecules occurs. Hence the characteristic viscous flow.
On the other hand, at higher frequencies elastic responses are predominant which is the
consequence of the storing energy in elastic short–time network deformation. The magnitude
of the moduli (both G′ and G′′) is increasing with the concentration which is correlated with
the “density” of hyaluronan mesh in the solution. The characteristic crossover of G′ and G′′

is strongly influenced by the pH, enzymatic activity, protein or cell concentration, and by
the concentration and length/molecular weight of hyaluronan molecules as well, see Fig. 4.7,
or articles by Gibbs et al. (1968) and Thurston and Greiling (1978).

At first sight, the relation between concentration and the magnitude of response is simple.
Nevertheless, one must be careful with the understanding of term of concentration related
to hyaluronate solutions. For example for pathological inflammatory synovial fluids, the
concentration of hyaluronan can be relatively high but the length of molecules is short due
to intensive enzymatic hydrolytic reactions, which causes that the molecules cannot form
such quasi–continuous network through the solution, and thus, the elastic–like responses
diminish. For this reason, if we talk about concentration of hyaluronan, we always have in
mind only that part of concentration which refers to high molecular hyaluronan. Deeper
investigation of influence of molecular mass of hyaluronan on the rheological behavior of the
solution can be found for example in Bothner and Wik (1987) or Kobayashi et al. (1994).

While elastic part in synovial fluid response is important for joint stabilization during
the joint loading and high oscillatory shearing (like during running), the viscous part of the
response is crucial for joint lubrication at lower rates of the movement. Even though, it is
quite tempting to distinguish the elastic responses from viscous ones, it is not possible to
separate them, and thus one has to keep in mind that terms “viscous–like” and “elastic–like”
are meant in the sense of predominance.

4.3. Bulk flow properties of hyaluronan solution

During unloaded non–oscillating simple shear flows synovial fluid exhibit characteristic
viscous behavior. Typical experimental setting for viscosity measurement is then the flow in
the Couette viscosimeter, see example of the experimental result in Fig. 4.5. As one can
see, synovial fluid viscosity is not constant as in the case of Newtonian fluid but it exhibits
strong shear–thinning, peculiar to polymeric solutions. The difference is, that in the case of
hyaluronan solution, this phenomena is observed already at very low concentration due to the
extraordinary molecule length. The apparent viscosity of hyaluronan solution is increasing
with decreasing rate of shear while at higher rates of movement the viscosity drops. This
entails that the joint is “dynamically” stabilized and well lubricated during slower motions
but at higher rates of movement the drag of the bones faced against each other in synovial
joint is significantly reduced. Here, again, the concentration of hyaluronan in synovial fluid
significantly influences the behavior of the mechanical response, as expressed in Fig. 4.5. It
is observed that for concentration of hyaluronan close to 1mg/ml, by which the hyaluronan
chains are more or less separated (as described above), the apparent viscosity becomes almost
Newtonian and the shear–thinning vanishes.

The shear thinning of synovial fluid is the well–known phenomena but also other non–
Newtonian effects at transient flow were described in relation to synovial fluid. Davies and
Palfrey (1968) and King (1966) reported the normal stress differences, see Fig. 4.6, one of
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Figure 4.4. Small deformation experiment of hyaluronan solution. Dy-
namic storage moduli G′ and dynamic loss moduli G′′ plotted against
frequency of oscillation in logarithmic scale. Experiment was done in Weis-
senberg Rheogoniometer. From Balazs and Gibbs (1970).

Figure 4.5. Shear–thinning experiment on synovial fluid over a wide range
of physiological concentration of hyaluronan. Relative viscosity ηrel against
velocity gradient. Viscosity was measured in the Couette viscosimeter. From
Ogston and Stanier (1953).

the physical consequence of non-zero normal stress differences is the effect “die swell”, well
visible in Fig. 2.8 of Chapter 2. The stress relaxation from modeling point of view was
studied for example by Mow and Lai (1979).

4.4. Rheology of pathological synovial fluid

It is well documented that physico–chemical properties of synovial fluid extremely changes
with introduced joint disease, as the viscoelastic responses of synovial fluid are strongly
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Figure 4.6. Normal stress differences as functions of shear rate. Two
samples of bullock’s synovial fluid (from ankle and knee) were tested in the
Weissenberg rheogoniometer. The plot shows the peak values developed
within few seconds after beginning of the experiment. Then the normal
stress differences fell and reached the equilibrium values (after aprox. 50
seconds). In the case of the ankle joint, the differences between peak and
equilibrium values were not significant and thus the peak values are not
plotted. From King (1966).

limited, see Balazs (1968), Thurston and Greiling (1978), Gomez and Thurston (1993), or
Fig. 4.7. Higher synovial membrane permeability and decreased high–molecular weight
hyaluronan concentration in synovial fluid and synovial membrane cause that the protein,
cells and inflammation mediators can relatively easily penetrate into the joint cavity and set
in the immune enzymatic reactions which hydrolyze hyaluronan chains into small molecular
fragments. Low molecular weight hyaluronan then can not form an extended network through
the solution, moreover, it can penetrate the synovial membrane and consequently leave the
joint cavity. This results in the repression of cartilage nutrition and reduced lubrication. The
molecular network in the synovial fluid then clearly reflects its rheological properties and
vice versa.

In the case of inflammatory diseases, the synovial fluid is characterized as a Newtonian
fluid with relatively small viscosity due to lowered polymer size of hyaluronan and very high
level of inflammation mediators. On the other hand, synovial fluid affected by noninflamma-
tory degenerative joint disease (like osteoarthritis) has relatively normal composition and
still it reflects differences in the elastic stress–strain behavior, see Tab.4.3. This means, most
probably, that other factors independent of polymer size can influence the rheology, such as
type of protein in the fluid and thus type of protein–hyaluronan interactions, variable ionic
strength or presence of abnormal solutes, see Gomez and Thurston (1993).
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Figure 4.7. Dynamic storage and loss moduli of three human synovial
fluid samples of different hyaluronan (here marked as HA) concentration
plotted against frequency. Dashed vertical lines indicate the frequencies
corresponding to the movement of the human knee joint during walking and
running regime. Data from Balazs (1968) reproduced by Fung (1993).

Sample
Protein

concentration
[mg/ml]

Cell count per
mm3 ηv[P] ηE [P]

noninflammatory cases

Osteoarthritis 27 20 1.07 1.39

Traumatic
arthritis

34 20 0.61 0.50

inflammatory cases

Rheumatoid
arthritis

– 25600 0.07 0.02

Rheumatic fever 48 5400 0.15 0.09

Table 4.3. Mean values of selected rheological properties of different patho-
logical synovial fluid samples, obtained from shear rate dependencies of
shear stress at frequency of oscillation of 2 Hz. Viscous ηv and elastic ηE
parts of complex coefficient of viscosity are related to viscous and elastic
part of complex modulus G∗ by: ηv = G′′/ω and ηE = G′/ω. For com-
parison, experimental dynamic moduli of normal synovial fluid are approx.
ηE

.
= ηv = 4.5 (from Balazs (1968)). Data in table from Thurston and

Greiling (1978).





Chapter 5
Modeling of viscous responses

In this chapter, we shall create a new phenomenological model for the generalized viscosity
of normal1 synovial fluid which captures the well documented shear–thinning effect. The
rheological model of generalized viscosity shall be also, besides the shear rate, dependent
of concentration of hyaluronic acid which plays an important role in mechanical responses
of synovial fluid.2 These rheological properties of synovial fluid were closely described in
Chapter 4.

5.1. Constitutive equation

Even though synovial fluid is a complex biological material, a mixture of ultrafiltrated
blood plasma and hyaluronan molecules, under normal conditions, it can be approximated as
an isotropic incompressible homogeneous single constituent fluid. This homogenization can
be done since the physiological mass concentration of the hyaluronan is very low (usually less
than 1%) and other high–molecular chemicals in normal synovial fluid are not present (like
high–molecular proteins or aggressors of inflammation). In general, one would have to use a
mixture theory approach and deal with the material properties of both constituents – solute
and solvent, we, however, for the reasons mentioned above, assume the effect of hyaluronan
molecules on the properties of plasma (solvent) only as the influence of its concentration
on the fluid material parameter – the generalized viscosity µ. For simplification, we shall
further call the generalized viscosity only as viscosity.

Since the response of the fluid depends on the nature of the flow, the model for synovial
fluid must depend on the “dynamics” of the flow. Higher shear rates imply higher alignment
of the chains and thus a decrease in the viscosity. On the other hand, the influence of
concentration works contrariwise because higher concentration of hyaluronan implies higher
enlacement of the chains, which increases the viscosity. In previous studies, the viscous
behavior of synovial fluid has been mathematically modeled by a shear–thinning fluid with
constant concentration (Rudraiah et al. (1991); Lai et al. (1978)) or the effects of concentration
and the shear rate on the viscosity were separated (Morris et al. (1980, 1981)). This is
contrary to the results of the experiments (see Fig. 4.5) which show that the concentration
influences the shear rate response itself. Briefly speaking, the concentration determines
how much the fluid thins the shear. Hence, the restriction of constant concentration is not
appropriate for modeling the synovial fluid behavior under physiological conditions since,
in real joints, the concentration of hyaluronan varies. For example, it has been shown (see
Coleman et al. (1999)) that hyaluronan creates some kind of a boundary layer near the
synovium with concentration five times higher than in the central parts of the synovial
joint cavity (this is the consequence of the varying hyaluronan production in the synovium
combined with the flow conditions). Thus, we assume that the viscosity µ of the synovial

1By normal synovial fluid we mean the synovial fluid with rheological responses and biochemical

composition as that of a healthy young individual.
2Partial results of this chapter were already published in Hron et al. (2010)
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fluid is a function of concentration and shear rate and propose the constitutive equation for
synovial fluid when it flows:

T = −pI + 2µ(c, |D|2),(5.1)

where T is the stress tensor, D is the symmetric part of velocity gradient, I is the identity
tensor, p is the hydrodynamic pressure and c is the concentration.

5.2. Model for viscosity

Due to the shear–thinning effect of synovial fluid, we consider only models for the viscosity
µ that belong to the power–law class. We compare the model introduced in the literature
(for instance Lai et al. (1978); Laurent et al. (1995)), where the varying concentration plays
the role only as a “scaling factor” of the shear rate response

µ = µ0e
αc
(
1 + γ|D|2

)n
,(Model 1)

with our new model that takes into account the concentration influence on the shear–thinning
effect itself, specifically the shear–thinning index of the considered power–law model

µ = µ0

(
β + γ|D|2

)n(c)
.(Model 2)

In both models, the parameters α, β, γ and n are unknown and they have to be
determined by comparison with experiment. Since the synovial fluid with zero concentration
of hyaluronan is basically blood plasma, the parameter µ0 should represent the plasma
viscosity. Here, as one can see, the Model 1 exhibit wrong characteristic for this limiting case.
When the concentration tends to zero, the fluid should stop to feature any non–Newtonian
effects any more and the viscosity should become constant with the value of the plasma. In
contrast to the Model 2, the Model 1 captures the shear–thinning effects always.

Because the natural values of concentration of hyaluronan in synovial fluid occurs
normally between 0 mg/ml and 15 mg/ml and for concentrations higher than 20 mg/ml
the solution starts to turn into a gel (for which our approach is inappropriate), we make
the parametrization of the concentration in the following fashion: c = creal/clim, where
clim = 20 mg/ml and c is the parametrized concentration of hyaluronan with values between
0 and 1. For now, let us just intuitively accept, that the symmetric part of velocity gradient
is free of unit as well. The closer description of non–dimensionalization of the system is
introduced in the Chapter 7.

For Model 2 we need to specify also the dependence of the shear–thinning index on the
concentration c. To find such a suitable form for function n (c), it has to satisfy the natural
conditions for the shear–thinning index, which are:

• the values of n (c) have to remain in the range between (−0.5, 0) to ensure the
shear–thinning characteristic,

• the dependence on the concentration has to be monotonic,
• n(0) = 0, as the synovial fluid becomes Newtonian for zero concentration.

Moreover, it is desirable to consider the function of shear–thinning index as simple as possible,
with a small number of free parameters.

We decided to use the exponential behavior with one free parameter

n (c) =
1

2

(
e−αc − 1

)
,(Model 2a)

and a simple rational function with two free parameters

n (c) = ω

(
1

αc2 + 1
− 1

)
,(Model 2b)

which both satisfy the mentioned conditions, and, mainly, the fitting procedures, which are
the topic of the next section, lead to better results than for any other “simple” function with
only one or two free parameters.
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5.3. Identification of the model parameters – fitting procedure

Each of the models introduced above contains some unknown parameters. For Model
1 and Model 2a they are three, α, γ, n and α, β, γ, respectively, and in Model 2b we have
four unknown parameters α, β, γ, ω. We find the values of these parameters by a fitting
technique applied on the experimental data from Ogston and Stanier (1953). Specifically, we
use the least square method which can be described as follows.

The viscosity is measured as a function of two variables (concentration and shear rate),
thus, the experimental data have to be considered as a set of

{(x1, µ1), ..., (xi, µi), ..., (xn, µn)},(5.2)

where xi ∈ R2 are specific two–dimensional input data representing the given combination of
values of concentration and shear rate, for which we have the observed output data µi ∈ R1 –
the values of viscosity. Coefficient n responses to the number of single measurements. This
approach ensures that the output data are fitted together at once for all the concentrations.

Let us denote the unknown model parameters by a vector a ∈ Rm, where m is the number
of the model parameters (in the case of Model 2a, for example, m = 3 and a = (α, β, γ))
and the considered model of viscosity by µ̃ : Rm ×R2 → R1, as a function of variables x and
parameters a. Moreover, we shall call the departure of the mathematical model for viscosity
from the measured data as a vector F : Rm → Rn, where

Fi(a) = µ̃(a,xi)− µi, i = 1, ..., n.(5.3)

Then, the residual function for the least squares method is defined as

r(a) = |F (a)|2 =

n∑
i=1

(µ̃(a,xi)− µi)2
,(5.4)

and the least squares method can be formulated as procedure of finding the minimum of
residual function over all parameters within suitable range M

min
a∈M

r(a).(5.5)

This can be found by solving the system of equations

∂r(a)

∂aj
= 0, j = 1, ...,m,(5.6)

(the decrease of the residual function is controlled during the algorithm processing which
ensures that the sought critical point is minimum) equivalent to

n∑
i=1

2Fi(a)
∂Fi(a)

∂aj
=

n∑
i=1

2 (µ̃(a,xi)− µi)
∂µ̃(a,xi)

∂aj
= 0, j = 1, ...,m.(5.7)

If we denote the Jacobian matrix of the vector F (a) by J = ∂F (a)
∂a , the system of equations

(5.7) can be schematically rewritten in the form

JT(a)F (a) = 0.(5.8)

Whether one substitutes the partial derivatives by the explicit formula or whether one
computes it numerically by, for instance, the method of finite differences, the fitting procedure
reduces to solving the system of non–linear algebraic equations (5.8) (as the model is non–
linear function of its parameters).

In our case, the system of (5.8) can be numerically solved by iterative methods, such as
the Newton method, which require an initial guess of the solution. One full Newton iteration
consists of finding the solution update δa by solving the linearized system of the form(

JTJ +
∑
i

FiHi

)
δa = −JTF ,(5.9)

where H is a vector of matrices, with Hi standing for the Hessian matrix of the function Fi,
in other words the matrices of second derivatives of F . Another possibility to iterate is to
use the quasi–Newton method. In that case the Jacobian matrix is only approximated, by
neglecting higher order derivatives.
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Model 1 Model 2a Model 2b

eαc(1 + γ |D|2)n (β + γ |D|2)
1
2 (e−αc−1) (β + γ |D|2)

ω
(

1
αc2+1

−1
)

α 21.3 α 3.3 α 31.0

γ 13.9 β 7.1× 10−9 β 1.1× 10−8

n −0.28 γ 5.8× 10−8 γ 1.5× 10−7

— — ω 0.44

Table 5.1. Fitted values of the unknown parameters for all three models;
µ0 = 0.01 Pa · s, other parameters are non–dimensional.

Model 1 Model 2a Model 2b

eαc(1 + γ |D|2)n (β + γ |D|2)
1
2 (e−αc−1) (β+γ |D|2)

ω
(

1
αc2+1

−1
)

6922 3370 599

Table 5.2. Errors r(a∗).

Since our models are non–linear, multiple local minima can occur, and thus the initial
values determine to which local minimum the algorithm converges. How to find suitable
initial values is a difficult task and should be guided by the physical insight to the model.

Once the best possible fit is obtained, let us denote the corresponding values of parameters
by a∗, one is interested in the error of the fit with respect to the data. This quantity is
exactly the residual r(a∗) and based on its value we decide which of the considered models
fits the data best.

For our problem we used Matlab, particularly the built–in function lsqcurvefit. This
algorithm is based on minimization procedure as described above with the use of quasi–
Newton method combined with trust–region–reflective method to deal with the assumed
parameter constrains. For details, see for example Coleman and Li (1996).

5.4. Fitted results and their discussion

We present the final fits in Fig. 5.1 and the values of models’ parameters in Tab. 5.1.
From the fitting procedure, we also present the total errors r(a∗), see Tab. 5.2, and closer
diagnostic of the fit departure |Fi(a?)| in each experimental measurement point i, in Fig.
5.3.

Diagnostic of the errors presented in Tab. 5.2 indicates that the best fit of the experimental
data is the Model 2b. This is evident even from the comparison of the plots 5.1 (a) – (c) and
from Fig. 5.3 where distances between data and fits are plotted (here, the differences are
not squared). As we can see, error of Model 2a is accumulated at the very small shear rates
while the rest of the fit is comparable with the fit of Model 2b.

For illustration of the models characteristics, we include Fig. 5.2 – 5.5. Fig. 5.2 shows the
shear–thinning indexes as functions of the concentration. As we can see, n(c) of Model 2b has
smaller derivative at zero than Model 2a and thus it can fit the data for small concentrations
more accurately, see Fig. 5.1 for comparison. On the other hand, the characteristic of
shear–thinning indexes of the model of class 2 when the concentration tends towards unity, i.
e. when the fluid behaves close to gel, the power–law indexes tend to values close to −0.5,
which is the parametric value that determines the limit of shear thinning. It is worthy to
mention that the shear–thinning indexes of models of class 2 rapidly change their values in
the range of concentrations (0 − 0.75), where c = 0.75 represents the concentration limit
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Figure 5.1. Relative viscosity against shear rate for different physiological
concentrations. Graphs of the relative viscosity of all the models show the
fitted curves and the experimental data (points) which were taken for the
fitting procedure. Here we use the notation from Ogston and Stanier (1953)
for µrel = µ/µref, where µref refers to the viscosity of the glycerol solution.
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Figure 5.2. Shear–thinning index of all models. The green highlighted area
represents the concentration range of the experimental data, the mean con-
centrations in synovial fluid under normal physiological conditions. Dashed
line at c = 0.75 represents the concentration limit which is observed in vivo
close to the synovial membrane.
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Figure 5.3. Departures of considered models from experimental data:
|Fi(a?)| (i = 1, .., n), displayed as function of shear rate for different
concentrations.

which is observed in vivo close to the synovial membrane. This, in fact, advocates that the
usage of models of class 2 is reasonable.

In Fig. 5.4, there are portrayed series of plots of relative viscosity for higher concentrations
than that of the studied experiment, specifically c ∈ (0.1 − 0.6). From these graphs, it is
easy to observe that the models of class 2 predict more realistic values of viscosity even
for higher concentrations, while the viscosity prescribed by Model 1 excessively grows with
concentration. This behavior of the viscosity as a function of concentration is demonstrated
in Fig. 5.5.

Still, from all mentioned above, the Model 1 can fit the data reasonably well for some
specific applications in the range of the concentrations in which it was fitted, this means
in the range of 0.14 − 0.25. Moreover, even though the models of class 2 extrapolate the
viscosity values for higher concentrations accurately, their reasoning can be validated only by
experiments for extended range of concentrations.
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Figure 5.4. Relative viscosity against shear rate for higher concentrations,
plots (a), (c), (e) in zoom, and the same graphs in the logarithmic scale,
plots (b), (d), (f). Here we use notation from Ogston and Stanier (1953) for
µrel = µ/µref.
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Figure 5.5. Relative viscosity as a function of concentration for different
shear rates. Graphs (a), (c), (e) are plotted in zoom for concentration up to
0.3 (limit of value of concentration from the experiment), graphs (b), (d), (f)
are plotted in logarithmic scale for the whole range of concentration (0, 1).
Here we use notation from Ogston and Stanier (1953) for µrel = µ/µref.



Chapter 6
Modeling of viscoelastic responses

In this chapter, we focus on the mathematical description of viscoelastic responses of
the synovial fluid. The first section disserts upon the relevancy of the experimental data in
connection with synovial fluid, how they are measured and how little they are saying about
the viscoelasticity of the material. Then we introduce the Maxwell and Oldroyd–B models,
in both frameworks, as parallels to the mechanical analogues as in the standard forms of
characteristic times. Then, we fit the models to the available linear data, trying to find
suitable material parameters of the fluid as functions of the concentration.

6.1. Experimental data

The basics of classical theory of linear viscoelasticity were first laid in 1867 by Maxwell
(1867), where he discussed one–dimensional mathematical model for gas exhibiting viscous
and elastic behavior. Few years later, in 1874, Boltzmann formulated in his famous paper
,Boltzmann (1874), the basic hypothesis of the linear viscoelastic theory (again in one–
dimensional case), which, in fact, had not changed till beginning of 50’ of the last century,
when the seminal work Oldroyd (1950) was published. Oldroyd there developed a fully three–
dimensional systematic framework to obtain frame invariant constitutive relations describing
rheological behavior of viscoelastic fluids. The use of the objective (frame invariant) convected
derivative then led to introduction of more general non–linear three–dimensional models,
developed by generalization of one–dimensional models. Nevertheless with non–linearity
coming from the geometrical description. The consideration of a material non–linearity in
viscoelastic models was elaborated much later, by Rajagopal and Srinivasa (2000). They
introduced a new thermodynamically consistent methodology developing new constitutive
relations for rate type fluids, by the means of evolution of natural configuration. More
recently, another thermodynamically consistent framework based on the Gibbs potential
formulation was proposed by the same authors in Rajagopal and Srinivasa (2011).

Regarding the experimental settings, at least concerning the viscoelastic experiments
on synovial fluids, the examination of non–linear relationships during viscoelastic behavior
is not standard. At the beginning, the experimentalists had no other choice than to adapt
the experiments to the limited theory of viscoelasticity since other models were not known.
The reformulation of the one–dimensional version of linear viscoelasticity in the terms of
new material functions, as creep, stress relaxation function or frequency–dependent complex
modulus, then became very useful, since these functions are more or less directly measurable.
Nevertheless, the experiments were simplistic, since the deformation (strain) had to be small
enough, to presume the response of the material in a “linear” regime of responses. On
principle, such data reduction is not correct if dealing with non–linear viscoelastic material,
as in the case of synovial fluid. Let us be more specific and describe the limitation of standard
small amplitude oscillatory test which is, to our knowledge, the most popular way of studying
the viscoelasticity of synovial fluid.

6.1.1. Experiment of oscillatory flow. In what follows, we use the notation intro-
duced in Chapter 3, which is consistent with notation used by Balazs (1968), from where
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(a) Physiological range of concentration (b) Physiological limits of concentration

Figure 6.1. Small deformation experiment of hyaluronan solution. Dy-
namic storage modulus G′ and dynamic loss modulus G′′ plotted against
frequency of oscillation in logarithmic scale. Experiment was performed in
the Weissenberg rheogoniometer. Data from Balazs (1968), reproduced by
Fung (1993).

sinHΩtL

Θ

Figure 6.2. Simplified visualization of rheogoniometer. The main parts
of rheogoniometer are the (upper) plate and shallow cone, in the picture
represented by gray color. The sample of fluid (represented by pink color)
is placed in the space between these two parts. In this case, the cone is
mechanically driven with a given oscillatory rotation and on the plate the
torque is measured with a sensing device (not pictured).

the experimental data are obtained, see Fig. 6.1. The experiment itself was performed in
Weissenberg rheogoniometer. Sketch of such apparatus is depicted in Fig. 6.2.

The experimental determination of small amplitude oscillatory test is a complex ratio of
force to displacement (τ?/γ?), strictly speaking, complex ratio of torque to angular displace-
ment. In the framework of real–valued periodic variables, the complex ratio is equivalent to
information of ratio of maximal magnitudes of force to displacement and their mutual phase
shift. The assumption, that the stress/strain can be related to force/displacement ratios and
that they are periodic of the same frequency is presupposed by assumption that the fluid
is a linear viscoelastic fluid, or at least, it behaves as linear viscoelastic fluid in the regime
of “infinitesimal” deformations, thus when the amplitude and frequency of oscillations are
very small. Second presumption made here is, that the gap of the rheogoniometer is small,
which is equivalent to the saying that the the sample thickness is sufficiently small compared
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with the wavelength of the shear variation propagated through the fluid. In other words,
the shear rate on the upper plate is approximated by a constant mean value which can be
questionable in the experiment on a non–linear viscoelastic fluid.

Considering all the assumptions laid above as good approximations, the shear stress/
strain (τ/γ) relation is proportional to torque/angular displacement (T/α) relation

τ

γ
= b

T

α
, b =

1

2π

3θ

R3
,(6.1)

where θ is the angle of rheogoniometer cone to the plate, see Fig. 6.2, and R is the radius of
the cone. Then, one can describe the response of the material by two frequency–dependent
functions, G′(ω) and G′′(ω), the dynamic storage modulus and dynamic loss modulus,
respectively, see Fig. 6.1. Both functions are in fact the decomposition of the complex
dynamic modulus G? = τ?/γ?, and thus, see equation (3.15), they can be related to the
measured torque and angular displacement through

G′ = b
T0

α0
cos(δ), G′′ = b

T0

α0
sin(δ),(6.2)

where T0 and α0 are the amplitudes (peaks) of oscillatory torque and angular displacement,
respectively, and δ is the phase shift between them.

6.2. Linear viscoelastic model for synovial fluid

Fitting fully1 non–linear viscoelastic model to the experimental data we have at hand
would be at this point useless with respect to their linear character. Thus, in this section we
lay stress on the famous Oldroyd–B model in comparison to the model of Maxwell2.

Let us recall the basic formulas we shall need and derive the explicit functions for dynamic
moduli G′ and G′′. The (one–dimensional) deformation during oscillatory test is given by
sinusoidal shear strain γ with frequency of oscillations ω

γ = γ0 sin(ωt) −→ γ̇ = γ0ω cos(ωt),(6.3)

where γ̇ is the shear rate, and thus, in matrix notation, the symmetric part of velocity
gradient is

D =
1

2

 0 γ0ω cos(ωt) 0
γ0ω cos(ωt) 0 0

0 0 0

 .(6.4)

The Cauchy stress tensor, having the form of

T = −pI + S, S =

S11 τ S13

τ S22 S23

S13 S23 S33

 ,(6.5)

where τ is the shear stress, is then given by the constitutive relation of particular viscoelastic
model. Since the shear stress τ is decomposable into the sines and cosines, see derivation of
equation (3.8),

τ = γ0{G′(ω) cos(ωt) +G′′(ω) sin(ωt)},(6.6)

we can identify the functions G′(ω) and G′′(ω) in the constitutive relation.
Algorithm of obtaining the explicit formula for G′(ω) and G′′(ω) can be summarized:

1. take the rate type constitutive relation S ↔D,
2. solve the system of differential equations3 for S11, τ, S22, S23, S31, S33 with respect

to time, for boundary value problem (we deal with periodic functions),

1Even though the three–dimensional Maxwell or Oldroyd–B models are non–linear, they are generalizations
of linear one–dimensional models (one–dimensional Maxwell and Jeffrey model), and thus, their non–linearity
comes only from the geometrical description. For simplicity, we shall call these models linear (for completeness,

some authors use the term “quasilinear”). By fully non–linear viscoelastic models we mean such, that involve
a material non–linearity.

2From now on, if not explicitly specified, we assume the three–dimensional generalizations of the models.
3In the case of Maxwell and Oldroyd–B models, the system is not fully coupled.
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3. assume steady state oscillations (in the solution, the exponential e−const.t vanishes
for t→∞),

4. decompose the solution of τ into sine and cosine and their coefficients identify with
G′(ω) and G′′(ω).

Before we introduce the viscoelastic Maxwell and Oldroyd–B models, let us recall the
Oldroyd upper convected derivative, denoted by symbol O, and having the definition of

O
A =

∂A

∂t
+ (gradA)v −LA−ALT,(6.7)

or
O
A =

∂A

∂t
+ (gradA)v −WA+AW + a (DA+AD) , a = −1.(6.8)

Once again, L is gradient of velocity v, while D and W are its symmetric and antisymmetric
parts, respectively.

6.2.1. Maxwell model. The constitutive equations for Maxwell fluid is given by

S + λ1

O
S = 2η0D,(6.9)

involving two material constants, λ1 and η0. In the simple shearing flow, with the velocity
components v1 = γ̇y (γ̇ being a constant), v2 = v3 = 0, one has

S11 = 2λ1η0γ̇
2, τ = S12 = η0γ̇,(6.10)

S22 = S23 = S13 = S33 = 0,(6.11)

so that parameter η0 is called the steady shear viscosity, or sometimes zero–strain rate
viscosity. Clearly, η0 corresponds to apparent viscosity of the fluid. On the other hand, in
a relaxation test, the relaxation function decays with et/λ1 , and thus, the parameter λ1 is
called the relaxation time.

For simple oscillatory flow (γ and γ̇ are harmonic functions of time), the constitutive
equation (6.9) can be expressed as

∂S11

∂t
=
−S11

λ1
+ 2S12γ̇,(6.12)

∂S12

∂t
=
−S12

λ1
+ S22γ̇ +

η0γ̇

λ1
,(6.13)

∂S13

∂t
=
−S13

λ1
+ S23γ̇,(6.14)

∂S22

∂t
=
−S22

λ1
,

∂S23

∂t
=
−S23

λ1
,

∂S33

∂t
=
−S33

λ1
.(6.15)

One can solve this system of differential equations (with periodic boundary conditions), and
obtain explicit formulas for storage and loss moduli

G′ =
λ1η0ω

2

1 + λ2
1ω

2
, G′′ =

η0ω

1 + λ2
1ω

2
.(6.16)

We recall, that relations (6.16) are expected to be valid for small amplitudes and frequencies
of oscillations.

6.2.2. Oldroyd–B model. In comparison to the Maxwell model, the Oldroyd–B model
is three–parametric,

S + λ1

O
S = 2η0

(
D + λ2

O
D

)
.(6.17)

In addition to λ1 and η0, having the same meaning as in the Maxwell model, the Oldroyd–B
involves the material constant λ2. It is known as the retardation time, since in a single step
shear creep test, the creep function reaches the asymptotic value according to the creep
factor (1− e−t/λ2).
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We can, analogously to Maxwell, express the constitutive relation (6.17) for the oscillatory
flow, solve the system of differential equations and obtain explicit formulas for the dynamic
moduli. Specifically, the equations take form of

∂S11

∂t
=
−S11

λ1
+ 2S12γ̇ −

2λ2η0γ̇
2

λ1
,(6.18)

∂S12

∂t
=
−S12

λ1
+ S22γ̇ +

η0

λ1

(
γ̇ + λ2

∂γ̇

∂t

)
,(6.19)

∂S13

∂t
=
−S13

λ1
+ S23γ̇,(6.20)

∂S22

∂t
=
−S22

λ1
,

∂S23

∂t
=
−S23

λ1
,

∂S33

∂t
=
−S33

λ1
,(6.21)

and the dynamic moduli are

G′ =
(λ1 − λ2)η0ω

2

1 + λ2
1ω

2
, G′′ =

(1 + λ1λ2ω
2)η0ω

1 + λ2
1ω

2
.(6.22)

Here again, the apparent viscosity can be identified with η0 since the constitutive equation
for simple shear (of constant shear rate) reduces to

S11 = 2η0(λ1 − λ2)γ̇2, τ = S12 = η0γ̇,(6.23)

S22 = S23 = S13 = S33 = 0.(6.24)

Moreover, the ratio of λ1/λ2 suggest the “measure” of non–Newtonian character of the fluid,
as it becomes Newtonian for λ1/λ2 → 1.

6.2.3. Mechanical analogues. As it has been mentioned before, Maxwell and Oldroyd–
B models are generalizations of linear one–dimensional models to the three dimensions. For
better understanding of the character of 3D models, let us briefly discuss the 1D models,
which in fact, will be very useful in the next section of finding fits to the experimental data.

One possibility of deriving the 1D viscoelastic models is to use the spring–dashpot
formalism. It is claimed that the theory of linear viscoelasticity can be derived from
assumption that the matter, on some microscopic level, can be regarded as intricate network
of linear viscous elements – linear dashpots and linear elastic elements – linear springs (from
Coleman and Noll (1961)). Shortly, the one–dimensional stress/strain relation of linear
viscoelastic material can be correlated with force/displacement of mechanical network of
springs and dashpots.

Let us discuss the representation of 1–dimensional Maxwell and Oldroyd models by
mechanical analogues.

Η0 E1

Figure 6.3. Spring–dashpot analogue for the Maxwell fluid. Parameters
η0 and E1 are the dashpot and spring constants, respectively.

Maxwell. Even though Maxwell himself did not mention dashpot/spring in his famous
work (Maxwell (1867)), his model is based on superposition of viscous and elastic forces, which
refers to connection of one spring and one dashpot in series, see Fig. 6.3. If we balance the
total force with the total displacement of such assemblage, we obtain the (one–dimensional)
formula of the Maxwell fluid

F +
η0

E1

∂F

∂t
= η0

∂e

∂t
,(6.25)

where F is the total force and e the total elongation. The way of generalization of the model
to three dimensions is then obvious. The force/displacement functions are replaced by the
tensors of the stress and the symmetric part of the velocity gradient, and partial derivative
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by objective upper convected derivative. While the viscosity η0 keeps its physical meaning,
the relaxation time is

λ1 =
η0

E1
.(6.26)

The calculation of dynamic moduli in terms of “viscosity” η0 and “elasticity” E1 is straight-
forward, nevertheless lengthy, so let us introduce here just the result

G′ =
E1η

2
0ω

2

E2
1 + η2

0ω
2
, G′′ =

E2
1η0ω

E2
1 + η2

0ω
2
.(6.27)

Η0

Η1

E1

Figure 6.4. Spring–dashpot analogue for the Oldroyd fluid model. Param-
eters η0, η1 and E1 are the dashpots and spring constants, respectively.

Oldroyd. Similar analogue can be constructed for the Oldroyd fluid. Since the model has
to have three parameters and it should describe the fluid–like material, the composition of
dashpots/spring is unique, as depicted in Fig. 6.4. Another combination of elements would
lead either to a description of solid–like material or to a two–parametric model. The total
force/displacement balance of such assemblage gives the relation

F +
η0 + η1

E1

∂F

∂t
= η0

(
∂e

∂t
+
η1

E1

∂2e

∂t2

)
,(6.28)

which can be generalized to the three dimensions in the same way as in the Maxwell case.
The parameters of analogue model and (3D) Oldroyd–B model are following

λ1 =
η0 + η1

E1
, λ2 =

η1

E1
.(6.29)

Again, η0 is in both models identical, and represents the apparent viscosity in the simple
shear. At last, let us express the G′ and G′′ in terms of η0, η1 and E1

G′ =
E1η

2
0ω

2

E2
1 + (η0 + η1)2ω2

, G′′ =
η0ω

(
E2

1 + η1(η0 + η1)ω2
)

E2
1 + (η0 + η1)2ω2

.(6.30)

6.3. Concentration dependence – finding fits to data

In this section, our goal is to find the best possible fit to available experimental data.
We are considering only linear viscoelastic models due to the reasons mentioned before.
Algorithm of the procedure ,the least squares method, is the same as in the Chapter 5, and
thus, it shall not be described again.

The experimental data are expressed in terms of dynamic moduli as functions of frequen-
cies of oscillations and concentrations. While the dependence on frequency is well studied,
the concentration dependence has been, to our knowledge, avoided. Our approach of the
inclusion of the concentration in the standard formulas of dynamic moduli is through the
material parameters of the particular model.

Even though the measurements were done for four different concentrations, c = 5.59mg/ml,
2.38 mg/ml, 2.23 mg/ml and 1.28 mg/ml, the most relevant set of data are those for high
concentrations, namely c = 5.59 mg/ml and 2.38 mg/ml. The other two sets of data can be
influenced by other pathological factors which can change the viscoelasticity of synovial fluid
in a different, for this data unknown, way, see Chapter 4. Nevertheless, the concentration
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conc. [mg/ml] c[−]

5.59 mg/ml 0.28

2.38 mg/ml 0.12

1.27 mg/ml 0.06

Table 6.1. Parametrization of concentration data. Exact scaling formula
was introduced in section 5.2 of Chapter 5.

c E1 η0 η1

M
ax

w
el

l 0.06 3.76 0.21 0

0.12 19.52 8.30 0

0.28 67.46 17.78 0

O
ld

ro
y
d

–B 0.06 3.90 0.21 num0

0.12 19.41 8.78 0.10

0.28 67.54 17.38 num0

Table 6.2. Calculated values of particular model parameters.

dependence is obvious even in pathological cases, and as expected, the data for limit concen-
tration ≈ 1 mg/ml correctly suggest rapid loss in both types of responses, viscous–like and
elastic–like. The set of data for concentration 1.28 mg/ml shall be then considered as well
but one should keep in mind its limitations.

Before the fits, let us recall the parametrization for particular concentrations, see Tab.
6.1, as was introduced in the previous chapter.

6.3.1. Separate fits for different concentrations. Unfortunately, we have almost no
information about the characteristic dependence of material parameters of the Maxwell/Old–
royd–B models on concentration. In the past, some authors performed mathematical fits
of linear viscoelastic models to experimental data (see Mow and Lai (1979), for example),
but the concentration influence was never considered. Hence, let us to fit the formulas of
G′ and G′′ of both models, (6.30) and (6.27), to the data for separate concentrations but
simultaneously for both moduli. Then, based on the results, we shall try to suggest a possible
phenomenological dependence of the material parameters on the concentration.

There are three parameters in the Oldroyd–B model, which need to be specified. Namely,
they are E1, η0 and η1. In the case of the Maxwell fluid, we have two parameters, E1 and η0.
Their values can be obtained by the method of least squares method in the same manner as
described in Chapter 5. The resultant separate fits are shown in Fig. 6.5 and the values of
calculated parameters in Tab. 6.2, for comparison, the results of both models are presented
together.

As we can see, the fits for Maxwell and Oldroyd–B do not differ almost at all. This is
caused by the smallness of the third parameter η1 in Oldroyd–B model, fitted as numerical
zero for two cases from three, which represent with respect to the Maxwell fluid the additional
dashpot, see Tab. 6.2. This suggests, that in the range of linear viscoelasticity of synovial
fluid the Maxwell model could be sufficient. Thus, in what follows, we shall assume the
Maxwell model, only.

We demonstrate the change of particular parameters E1 and η0, in fact particular
elements of the mechanical analogues, with concentration in Fig. 6.6. Since we have only
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Figure 6.5. Fitted curves of dynamic moduli for three different concentra-
tions. The fits are performed separately. Experimental data are represented
by points, solid points are data of dynamic loss modulus G′′, circles represent
dynamic storage modulus G′. Solid lines are calculated curves of dynamic
loss modulus and dashed lines are calculated curves of dynamic modulus.

data for three different concentrations, the comparison of the full three–dimensional models
with their one–dimensional simplifications shall help us to choose suitable form of parameter–
concentration relations. The linear growth of E1 (as the only elastic element of the models)
with c is obvious, and it basically reflects that the storage modulus G′ is “only” scaled with
the concentration, that it does not change the behavior of the function itself. Summarizing,
we assume the following relations between model parameters and concentration

E1 = a1c+ b1,(6.31)

η0 = b2e
a2c.(6.32)

6.3.2. Simultaneous fits. Having the relations (6.31)–(6.32), we can fit the experi-
mental data simultaneously for all concentrations. Instead of two material parameters, we
have to find values of four constants a1, b1, a2 and b2. Perceive, the fits we have obtained
before are the best possible fits.
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Figure 6.6. Model parameters growth tendencies with concentration for
the Maxwell model. Points represent the computed values of particular
parameters, violet curves are the functions we take as the approximative
relationships, and for comparison, we include linear regressions – blue line.

Model/data Error

2 sets of data

Maxwell 335.794

3 sets of data

Maxwell 351.324

Table 6.3. Errors r(a∗) of the best fits computed for the Maxwell model for
two and three sets of experimental data corresponding to the concentrations
of {0.12, 0.28} and {0.06, 0.12, 0.28}, respectively.

During the computation we have challenged few difficulties. First of all, the models are
quite sensitive to even slight change of the parameters. Second, the values of dynamic moduli
for the small concentrations are in a different range than that of the high concentrations.
This results in obviously wrong fits of dynamic moduli to the set of data for the smallest
(and in fact very limiting) concentration. That was the reason, we run the computations
twice, once for all data of all concentrations {0.06, 0.12, 0.28} and once only for data of two
highest concentrations {0.12, 0.28}, which represent concentration of hyaluronan in normal
synovial fluid.

The resulting fitted curves are shown in Fig. 6.7, the errors of the fits are summarized in
Tab. 6.3 and the explicit values of computed parameters are presented in Tab. 6.4.
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Figure 6.7. Resulting curves of fitted dynamic moduli to two (left) and
three (right) sets of experimental data corresponding to the concentrations of
{0.12, 0.28} and {0.06, 0.12, 0.23}, respectively. Dynamic loss modulus – solid
lines, dynamic storage modulus – dashed lines; solid points – dynamic loss
modulus experimental data, circles – dynamic storage modulus experimental
data.
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Model/data Parameters

a1 b1 a2 b2

2 sets of data

Maxwell 14.93 −16.02 0.237 4.72

3 sets of data

Maxwell 15.50 −18.55 0.232 4.85

Table 6.4. Values of parameters in material functions of Maxwell model,
computed as best fits to two and three experimental data sets corresponding
to the concentrations of {0.12, 0.28} and {0.06, 0.12, 0.28}, respectively.
The relationships of the parameters to the material functions are: E1 =
a1c+ b1, η0 = b2e

a2c.
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6.4. Generalization of the Maxwell model

In the Chapter 5, we have studied the viscous responses of synovial fluid as shear rate
dependent. We have generalized the viscosity to a function of the shear rate and concentration.
We can make similar generalization in the viscoelastic model as well. First of all, the material
function η0 corresponds to apparent viscosity of the fluid in simple (constant) shear, thus
we can identify the generalized viscosity µ from Chapter 5 with η0. Second, as one can see,
the“elasticity” of the fluid keeps its character for all concentrations, thus we shall exclude its
dependency on the dynamics of the flow. In this section, we shall consider again the Maxwell
model only, since both models, Oldroyd–B and Maxwell, give similar results.

We recall the formulas of generalized viscosity, expressed by means of parameters already
used in this chapter:

η0 = b2e
a2c
(
1 + ε1|D|2

)n
,(Model 1)

and

η0 = b2
(
ε2 + ε1|D|2

)(1/(a2c
2+1)−1)

,(Model 2b)

with a2, b2, ε1, ε2 and n being constant. The second material function, E1, is the same as
above, namely

E1 = a1c+ b1.(6.33)

It is obvious, that if we want to use even one of the material functions as frequency–
dependent (or generally |D|2 dependent), we can not use the forms of G′ and G′′ (6.30) and
(6.27), as they were derived for constant material parameters. This complicates the whole
fitting procedure since we are not able to solve the system of differential equations (6.17)
analytically anymore. The system has to be solved numerically4. The dynamic moduli G′

and G′′ are in relation to τ via

τ = γ0{G′ cos(ωt) +G′′ sin(ωt)},(6.34)

and thus, we have to expand the shear–component of the numerical solution (periodic as
well) in Fourier series

τ =
a0

2
+

∞∑
n=1

an sin(nωt) + bn cos(nωt),(6.35)

where the desired moduli are the second and third coefficients of the series, coefficients for
n = 1. Other coefficients are supposed to be negligible. Explicitly, the dynamic moduli are

G′ = a1 =
ω

π

∫ 2π
ω

0

τ cos(ωt)dt,(6.36)

G′′ = b1 =
ω

π

∫ 2π
ω

0

τ sin(ωt)dt.(6.37)

This means, that after the numerical solving of the differential equations, another numerical
procedure has to be called – the numerical integration.

Again, the fits were computed for experimental data sets of two and three concentrations.
The results are presented in Fig. 6.8 and values of parameters and errors of particular fits
summarized in Tab. 6.5.

6.5. Discussion

The lack of experimental data which demonstrate the non–linear viscoelastic behavior of
synovial fluid forced us to consider linear viscoelastic models and their generalizations, only.
Nevertheless, even for the experiment of small deformations, e. g. amplitudes and frequencies
of oscillations are small enough, the models were able to fit the data only approximately. This
suggest, that even for small deformations the fluid exhibit some non–linear characteristic.

4The numerical solution of the system is obtained by using buit–in Matlab function bvp4c, function for
solving the boundary value problem of systems of ordinary differential equations.
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Figure 6.8. Comparison of best fits of Maxwell model and its generaliza-
tions to experimental data. The variation between the models is in the
form of η0. Dynamic loss modulus – solid lines, dynamic storage modulus –
dashed lines; solid points – dynamic loss modulus experimental data, circles
– dynamic storage modulus experimental data.
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Model/data Error & Parameters

2 sets of data

Maxwell r(a∗) = 287

E1 = a1c+ b1 a1 = 314.0 b1 = −17.6

η0 = b2e
a2c
(
1 + ε1|D|2

)n
a2 = 7.73 b2 = 5.3

ε1 = 22.4 n = −0.11

Maxwell r(a∗) = 280

E1 = a1c+ b1 a1 = 314.0 b1 = −17.4

η0 = b2
(
ε2 + ε1|D|2

)γ(1/(a2c
2+1)−1)

a2 = 72.0 b2 = 2.1

ε1 = 2× 10−8 ε2 = 1× 10−10

γ = 0.14

3 sets of data

Maxwell r(a∗) = 308

E1 = a1c+ b1 a1 = 314.0 b1 = −17.6

η0 = b2e
a2c
(
1 + ε1|D|2

)n
a2 = 8.0 b2 = 5.4

ε1 = 28.7 n = −0.12

Maxwell r(a∗) = 285

E1 = a1c+ b1 a1 = 326.0 b1 = −19.8

η0 = b2
(
ε2 + ε1|D|2

)γ(1/(a2c
2+1)−1)

a2 = 92.0 b2 = 2.1

ε1 = 3× 10−8 ε2 = 1× 10−13

γ = 0.14

Table 6.5. Values of parameters in material functions of generalized
Maxwell model, computed as best fits to two and three sets of exper-
imental data corresponding to the concentrations of {0.12, 0.28} and
{0.06, 0.12, 0.28}, respectively.

The fits of the Maxwell model are almost identical to the fits done for the Oldroyd–B fluid.
When separate concentration data fitted, both models were able to predict reasonably well
the viscoelastic response for limiting concentration of 0.06 (which corresponds to 1.28 mg/ml).
Nevertheless, the explicit inclusion of concentration variable to the rheological models led to
wrong description of viscoelasticity for very small concentrations. We assume that this can
be partially the effect of small values of G′ and G′′ in comparison to the values of dynamic
moduli for higher concentrations.

Of course, one could adapt the least squares method by introduction of weights, which
would increase the significance of small values. Here, we must admit, we were not successful
with finding such weights. We have even generalized the models by introducing the extra
parameter a in the convected Oldroyd derivative, see definition (6.8). Nevertheless, the
numerical fits were almost independent of the value of a in the considered range a ∈ [−1, 1].

Since we have no more information about the concentration/frequency dependencies,
we can not point out other aspects influencing the dynamic moduli, and thus improve the
considered phenomenological model.



Chapter 7
Problem formulation: governing
equations and mathematical analysis

7.1. Governing equations

To this point, we have been focused on the description of the material only, by choosing
the suitable model for synovial fluid which can fit the experimental data in some known
range of deformations. Now, let us formulate the balance laws describing the flow of synovial
fluid under some justified simplifications. Before writing down the explicit equations, let us
conclude these simplifications we made in previous chapters

• synovial fluid can be approximated by homogeneous single constituent fluid – the
continuous approach is applicable,
• synovial fluid is incompressible,
• hyaluronan influences synovial fluid mechanical responses through its concentration,
• concentration appears in the material parameters of the model for synovial fluid,
• pathological cases are not considered.

7.1.1. Balance laws. We describe the flow of synovial fluid in the terms of the velocity
field v and the pressure field p which are governed by the generalized Navier–Stokes equations
and the constrain of incompressibility. The concentration distribution, the scalar field c,
which influences the flow only through the material parameter(s) in constitutive equation(s)
is described by the convection-diffusion equation1. The system of the governing equations
takes the form

div v = 0,(7.1)

%
∂v

∂t
+ %[gradv]v = − grad p+ divS + %f ,(7.2)

∂c

∂t
+ (grad c) · v = div qc,(7.3)

where f represents the specific external body force field, % is the density of synovial fluid
and S is the extra stress tensor of the Cauchy stress tensor. Term qc represents the diffusive
flux of the concentration c which, analogously to extra stress tensor S, has to be specified by
the constitutive equation for the diffusivity of concentration. In our case, we assume that
the diffusion is given by the Fick’s law

qc = Dc(c, |D|2) grad c,(7.4)

where Dc is the diffusivity, the characteristic of solute with respect to the solvent. In general
it is a tensorial function. As it was experimentally documented by Rudraiah et al. (1991) or
Gribbon et al. (1999), for instance, the diffusivity is dependent of concentration and shear
rate. Nevertheless, the consideration of constant diffusivity is quite often used in many

1The use of mixture theory would lead to balancing both constituents - the hyaluronan as solute and
ultrafiltrated blood plasma as solvent and to identification of their interaction terms.
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applications as the variations and even the values of diffusivity itself are very small compared
to dominant convection, see for example Coleman et al. (1999). The stress tensor S is given
by one of the considered viscous/viscoelastic models derived in Chapter 5 or 6. In comparison
with the viscous flow, the viscoelastic descriptions introduces one more (tensor) equation
which needs to be solved together with (7.1)–(7.3), the equation for the extra stress tensor.

Further, since the concentration of hyaluronan is very low, we assume that the density %
is not influenced by the varying concentration c and hence it remains constant. Regarding the
equation (7.3), one could even extend the convection–diffusion by the volumetric destruction
term which would represent eventual enzymatic hydrolytic reactions, often present at the
inflammatory stage of pathological diseases of the synovial fluid. The positive volumetric
term representing creation of the molecules of hyaluronan is non–realistic since hyaluronan
is produced only by the synovial membrane, in our setting represented by the boundary of
considered flow domain. Thus, in our case under consideration of non–pathological synovial
fluid, the volumetric production term is always zero.

7.1.2. Non–dimensionalization. For the consecutive numerical computations, it will
be useful to recast the equations (7.1)–(7.3) in terms of dimensionless variables. For that, we
need to specify the explicit constitutive equation for extra stress tensor S in (7.2). Assuming
the fact, that our main aim of this chapter is to accomplish the new existence results for the
viscous models only, let us proceed with the non–dimenzionalization for the viscous case and
at the end we shall remark the basic differences for the case of viscoelasticity. For the case of
viscous model the form of the extra stress tensor S (as derived in Chapter 5) is following

S = 2µ
(
c, |D|2

)
D,(7.5)

where D = 1/2
(
gradv + (gradv)T

)
and the viscosity function is specified by either Model 1

or Model 2, see Chapter 5. We define the non–dimensional variables

X =
x

L∗
, V =

v

V ∗
, C =

c

C∗
,

P =
p

P ∗
, F =

f

g
, M =

µ

M∗ , D =
Dc

D∗c
,(7.6)

where L
∗

and V
∗

are the characteristic length and velocity, respectively, and g is the
acceleration due to gravity. Regarding the concentration, we use the parametrization which
has been introduced in Chapter 5. For consistency, we choose

P
∗

= %(V
∗
)2 and M

∗
= µ0,(7.7)

where M
∗

is the characteristic viscosity, analogously to D
∗

c being the characteristic diffusivity.
Time has been naturally non–dimensionalized with respect to L

∗
/V
∗

and extra stress tensor
S with respect to M

∗
L
∗
/V
∗
.

From now on, for simplicity of the notation, instead of capitals the small letters for the
non–dimensional variables are used. The system of governing equations is then transformed
onto

div v = 0,(7.8)

∂v

∂t
+ [gradv]v = − grad p+

1

Re
2 div

(
µ(c, |D|2)

)
D + f ,(7.9)

∂c

∂t
+ (grad c) · v =

1

Pe
div
(
Dc(c, |D|2) grad c

)
,(7.10)

using the notation for reduced Reynolds number Re = %L
∗
V
∗
/µ0 and Péclet number

Pe = L
∗
V
∗
/D
∗

c .
In the case of viscoelastic fluid, one introduces in the Navier–Stokes equations (7.9)

additionally to Reynolds number the Weissenberg number, We = %λ1V
∗
/L
∗
, see for example

Wineman and Rajagopal (2000), describing the characteristic of flow as product of relaxation
time and shear rate.
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7.2. Mathematical analysis

The objective of this section is to obtain an existence result for the stationary problem
corresponding to (7.1)–(7.3) in two and more dimensions. First, we summarize the previously
obtained results of similar problems, including evolutionary ones. Then, we introduce suitable
vector spaces for the weak solution and their properties. We formulate the main existence
theorem and, as last, we prove it.

In contrast to formulation of (7.1)–(7.3) which is classical for continuum mechanics,
here, we use a different notation in order to achieve the consistency with the community of
mathematical analysists. First of all, we express, due to the constraint of incompressibility,

[gradv]v = div(v ⊗ v), grad c · v = div(cv)(7.11)

where the tensor product a⊗ b is the second–order tensor with components (a⊗ b)ij = aibj .
Moreover, we use notation of D(a) = 1/2(∇a+∇aT), and thus we express the symmetric
part of velocity gradient, as before denoted by D, by D(v). The stationary system then
reads

div v = 0,(7.12)

div(v ⊗ v)− divS(c,D(v)) = −∇p+ f ,(7.13)

div(cv)− div qc(c,∇c,D(v)) = 0.(7.14)

where the extra stress tensor S and the concentration flux qc
2 are of the form

(7.15) S(c,D(v)) =
2

Re
µ(c, |D(v)|2)D(v), qc(c,∇c,D(v)) =

1

Pe
K(c, |D(v)|)∇c.

Moreover, the power–law index, as used before, is expressed as n(c) = p(c)−2
2 , and thus the

generalized viscosity is given by

µ(c, |D(v)|2) =
(
κ1 + κ2 |D(v)|2

) p(c)−2
2

.(7.16)

To p(·) we shall refer as to a variable exponent.
In what follows, we use letters C, C, C1, C2, . . . , for constants, especially the symbol C

without index stands for a generic constant which may vary from line to line, but depends
only on data.

7.2.1. Survey of previous results. The existence results for the problem (7.12)–(7.14)
with a generalized viscosity of the form (7.16) is not known. Nevertheless, mathematical
analysis of simpler systems, both stationary and evolutionary, with constant shear–thinning
index or analogous systems with viscosity shear–rate and concentration/temperature or
electrical field dependent is developed for several special cases of boundary and initial
conditions. All the references we shall mention here are representing the results for the
incompressible fluid for the case of 3D.

The mathematical analysis of evolutionary Navier–Stokes equations for incompressible
fluid with non–constant viscosity, particularly shear–rate dependent, was first introduced by
O. A. Ladyzhenskaya in late 60’. She obtained the existence results for the weak solution
for power–law index p > 11

5 by using the method of monotone operators together with
compactness arguments, for both periodic and no–slip Dirichlet boundary conditions, see
Ladyzhenskaya (1967) and Ladyzhenskaya (1969). The same arguments can be used for
the stationary case for p > 11

5 . Later, the existence results were extended for the spatially

periodic problem by Málek, Nečas and Růžička for p > 9
5 by the means of the method of

regularities to obtain fractional higher differentiability, Málek et al. (1993), and for the no–slip
Dirichlet boundary conditions , for p > 2, by the same authors in Málek et al. (2001). Further
extension, for slip boundary conditions, was introduced by Frehse, Málek and Steinhauer for
p > 8

5 by using the method of L∞–approximations, Frehse et al. (2000), and shortly after

the results were even more broaden for index p > 6
5 by Diening et al. (2010b) who proved

the existence of the weak solution by the means of the method of Lipschitz approximations.
Concerning the easier steady problem with no–slip Dirichlet boundary condition, the method

2The general tensor form of diffusivity Dc(c,D(v)) is denoted here as a tensor function K(c, |D(v)|).
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of L∞–approximations was already used by Frehse et al. (1997) and Růžička (1997) obtaining
the existence results for p > 3

2 and the method of Lipschitz approximations was used by

Frehse et al. (2003) for extension of the result to p > 6
5 .

The coupled system of Navier–Stokes equations with the equation for convection–diffusion

–reaction with generalized viscosity of the form µ(c, |D(v)|2) ∼ µ1(c)µ2(|D(v)|2)
p−2

2 was
studied by Buĺıček et al. (2009) where the authors proved the long time existence of weak
solutions for p > 8

5 .
The models with non–constant power–law index, developed for electrorheological fluids,

are studied for instance in Růžička (2000), Růžička (2004). For this kind of fluids the
extra stress tensor is (non–trivially) dependent of electric field E and thus the Navier–
Stokes equation has to be solved with the (quasi-static) Maxwell’s equations. Nevertheless,
the governing equations are essentially uncoupled thus the Maxwell’s equations can be
solved first. The solution of electric field can be then considered as a known function,
resulting that the problem reduces to the problem of incompressible Navier–Stokes problem

with extra stress tensor having the growth property of |S| 6 C(1 + |D(v)|2)
p(x)−2

2 , where
p(x) := p(|E(x)|2) is given variable function (under some assumption of Hölder continuity),
satisfying 1 < p− < p(x) < p+ < ∞. Using the theory of monotone operators, the author
was able to prove the existence of a weak solution for lower bound p− > 9

5 , and in the case

of stationary problem the existence result was extended to p− > 6
5 by Diening et al. (2008),

by the means of the method of Lipschitz approximations.
The closest system to ours, (7.8)–(7.10), is studied in Antontsev and Rodrigues (2006).

The authors consider the stationary system of Navier–Stokes equations coupled with equation
for thermal diffusion obtained as Oberbeck–Boussinesq approximation of Fourier equation
for the temperature, under the consideration that the power–law index of the generalized
viscosity is dependent of temperature θ. For Dirichlet boundary conditions, for both velocity
and temperature, they prove the existence of the global weak solution for the case of
9
5 6 p? < p(θ) <∞ for large and sufficiently smooth data. There, the important assumption
simplifying the proof is the assumption of the constant diffusion tensor Dθ, which ensures
the Hölder continuity of the temperature.

7.2.2. Introduction of functions spaces. Before we formulate the problem and
introduce the theory for proving the existence of the weak solution, let us introduce relevant
functions spaces. It is obvious, that for the problem of non–constant viscosity with variable
exponent of the power–law, the functional setting of classical Lebesgue/Sobolev spaces is
not sufficient but more general approach needs to be introduced, in this case the setting
of generalized Lebesgue/Sobolev spaces with variable exponent p. The topic of generalized
Lebesgue/Sobolev spaces has been studied by many authors, for instance by Orlicz (1931),
Nakano (1950), Sharapudinov (1978), Kováčik and Rákosńık (1991), Fan et al. (2001) and
Diening et al. (2011).

In what follows, the terms measure and measurable will always mean (d–dimensional)
Lebesgue measure and (d–dimensional)Lebesgue measurable, and, the symbol Ω shall stand
for the domain of our interest, measurable open subset of Rd, with 0 <meas(Ω) <∞.

Concerning standard definition of classical real valued3 Lebesgue space Lp(Ω) for 1 6
p <∞, equipped by || · ||p norm

Lp(Ω) :=

{
f : Ω→ R measurable :

∫
Ω

|f(x)|p dx <∞
}
,(7.17)

||f ||p = ||f ||p,Ω :=

(∫
Ω

|f(x)|p dx
)1/p

,(7.18)

3The extension to the vector valued spaces is natural, for instance in the case of [Lp(Ω)]d each component
of the vector valued function belongs to the Lp(Ω) space.
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and additionally

L∞(Ω) :=

{
f : Ω→ R measurable : ess sup

x∈Ω
|f(x)| <∞

}
,(7.19)

||f ||∞ = ||f ||∞,Ω := ess sup
x∈Ω

|f(x)|,(7.20)

the generalized Lebesgue space Lp(·) and its norm must be defined more carefully. Generally,
the Lp(·) spaces belong to the class of more general Musielak–Orlicz spaces, see for example
Musielak (1983), and thus Lp(·) spaces can be properly defined by the use of this framework.
Nevertheless, for our needs, we shall only introduce the basic notation and definitions, without
the use of framework of general modular spaces. For closer study of Musielak–Orlicz spaces
we refer the reader to work of Musielak (1983) or compact and self–contained book Diening
et al. (2011).

Definition 7.1 (Variable exponent p(·)). We denote the set of all measurable functions
p : Ω→ [1,∞] by P(Ω), and call the function p ∈ P(Ω) a variable exponent. Moreover, we
define p− := ess infx∈Ω p(x) and p+ := ess supx∈Ω p(x), and, Ω∞ := {x ∈ Ω : p(x) = ∞}
and Ω1 := {x ∈ Ω : p(x) = 1}. We call the variable exponent to be bounded if p+ <∞.

At this point, let us even define for p ∈ P(Ω) the dual variable exponent p′ ∈ P(Ω) by
1

p(x) + 1
p′(x) = 1, for which we formally denote 1

∞ := 0.

Now, having a notion of a variable exponent, we can define the so–called semimodular
ρLp(·)(Ω) which induces a norm and the topology of generalized Lebesgue spaces.

Definition 7.2 (Semimodular %Lp(·)(Ω)). Let p ∈ P(Ω). For x ∈ Ω and t > 0 we set

Φp(·)(x, t) := ϕp(x)(t), where

ϕp(t) := tp for 1 6 p <∞, and ϕ∞(t) :=

{
0 t ∈ 〈0, 1〉,
∞ t ∈ (1,∞).

Then, we define the semimodular

%Lp(·)(Ω)(f) :=

∫
Ω

Φp(x)(|f(x)|) dx.

Definition 7.3 (Lp(·) space). The variable exponent Lebesgue space Lp(·) for p ∈ P(Ω) is
then defined

Lp(·)(Ω) :=
{
f : Ω→ R measurable : %Lp(·)(Ω)(λf) <∞ for some λ > 0

}
,

and equipped with the norm

||f ||Lp(·)(Ω) = ||f ||Lp(·) := inf

{
λ > 0 : %Lp(·)(Ω)

(
f

λ

)
6 1

}
,

which corresponds to the Luxemburg norm in Orlicz spaces.

In the case that p <∞ everywhere on Ω, we directly get

Lp(·)(Ω) =

{
f : Ω→ R measurable :

∫
Ω

|f(x)|p(x) dx <∞
}
,(7.21)

and for the case when p+ =∞ (meas(Ω∞) > 0), we have to redefine the semimodular and
consequently the norm as introduced by Kováčik and Rákosńık (1991)

%(f) := %Lp(·)(Ω\Ω∞)(f) + ||f ||∞,Ω∞ .(7.22)

For the introduction of Sobolev and generalized Sobolev spaces, we need the notion of
the weak derivative.
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Definition 7.4 (Weak derivative). Let α = (α1, α2, . . . , αd) ∈ Nd0 be a multi–index, |α| =
α1 + · · ·+ αd. Let u, g ∈ L1

loc. We call the function g a weak derivative of u with respect to
xα if ∫

Ω

uDαϕdx = (−1)|α|
∫

Ω

ϕg dx ∀ϕ ∈ C∞0 (Ω),

where Dα := ∂α1+···+αd

∂α1x1···∂αdxd . We denote by ∇u the weak gradient
(
∂u
∂x1

, . . . , ∂u∂xd

)
.

Since the terms weak and strong derivatives are closely related we shall denote the weak
derivative by the same symbol, thus Dαu = g. Recalling the standard definition of classical
Sobolev space W k,p(Ω) for k ∈ N0

W k,p(Ω) := {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) ∀α : |α| 6 k} ,(7.23)

and its norm

||u||k,p = ||u||k,p,Ω :=


(∑

|α|6k ||Dαu||pp
)1/p

p ∈ 〈1,∞),

max|α|6k ||Dαu||∞ p =∞,
(7.24)

the generalization of Sobolev space in a sense of variable exponent is then obvious.

Definition 7.5 (W k,p(·) space). Let k ∈ N and p ∈ P(Ω). The function u ∈ Lp(·)(Ω) belongs
to Sobolev space W k,p(·) if all the weak derivatives Dαu with |α| 6 k exist and belong to
Lp(·)(Ω), particularly

W k,p(·)(Ω) :=
{
u ∈ Lp(·)(Ω) : Dαu ∈ Lp(·)(Ω) ∀α : |α| 6 k

}
.

The semimodular defined on W k,p(·) by

%Wk,p(·)(Ω)(u) :=
∑
|α|6k

%Lp(·)(Ω)(D
αu)

then induces a norm by

||u||k,p(·) = ||u||k,p(·),Ω := inf
{
λ > 0 : %Wk,p(·)(Ω)

(u
λ

)
6 1
}
.

As in the case of classical Lp and W k,p, the functions of generalized Lebesgue and
Sobolev spaces are defined up to measure zero and thus we identify that functions which
are equal almost everywhere. Here, let us mention one straightforward property of Lp(·) and
W k,p(·), namely, for constant exponent p on Ω, indeed the generalized spaces coincide with
classical Lp and W k,p, as well as the norms (thus the same notation).

Additionally, we denote by C(Ω) the space of all continuous functions equipped with
the norm ‖ · ‖∞. Then, we denote by Ck(Ω), k ∈ N, the set of all continuously differentiable
functions up to the degree k, by C∞(Ω) the set of smooth functions – the functions arbitrarily
many times continuously differentiable, and by C∞0 (Ω) the set of smooth functions with
compact support. As last, we introduce the set of Hölder continuous functions

Ck,α(Ω) :=

f ∈ Ck(Ω) : sup
x,y∈Ω

x 6=y

|Dβx−Dβy|
|x− y|α

<∞ ∀β : |β| 6 k

 ,(7.25)

for α ∈ (0, 1], k ∈ N0.
In comparison with classical Lp and W k,p, the generalized Lp(·) and W k,p(·) exhibit

similar properties, like completeness, separability, reflexivity, etc. These we introduce without
any proof in the following theorem, nevertheless, the reader can find the exact proofs in the
following references Kováčik and Rákosńık (1991), Fan et al. (2001) or Diening et al. (2011).
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Theorem 7.1 (Basic properties of generalized spaces). The spaces Lp(·)(Ω) and W k,p(·)(Ω)
are Banach spaces for any exponent p ∈ P(Ω), separable for p ∈ P(Ω) with p+ < ∞, and
reflexive and uniformly convex for any p ∈ P(Ω) with 1 < p− 6 p+ <∞.
Moreover,

(
Lp(·)(Ω)

)′
= Lp

′ (·)(Ω) holds for any p ∈ P(Ω), and for p ∈ P(Ω) with p+ <∞,

the space C∞0 (Ω) is dense in Lp(·)(Ω).
In addition, for any exponent p ∈ P(Ω), the generalized Hölder inequality holds, i. e.
for any f ∈ Lp(·)(Ω) and g ∈ Lq(·)(Ω) and any p, q, s ∈ P(Ω) such that

1

s(x)
=

1

p(x)
+

1

q(x)
,

the following holds

%s(·) (fg) 6 %p(·)(f) + %q(·)(g),

||fg||s(·) 6 2||f ||p(·)||g||q(·).

Particularly, for s = 1 ∫
Ω

|fg| dx 6 %p(·)(f) + %p′(·)(g),

||fg||1 6 2||f ||p(·)||g||p′(·).

While above mentioned spaces properties are rather functional analysis–type, more
specific tools need to be involved for the study of partial differential equations, such as
density of regular functions or Sobolev embeddings, which, however, require additional
regularity of the exponent. While the smooth functions C∞0 are dense in Lp(·), p+ < ∞,
as proved by Kováčik and Rákosńık (1991), the same is not true for the space of Sobolev
functions W k,p(·). Already Zhikov (1987) presented a counter–example to the density of
smooth functions in W 1,p(·), for bounded but discontinuous exponent p. As Fan et al. (2006)
showed, the discontinuity does not play the crucial role rather the “non–regularity” of
the set of points of discontinuity, or, as demonstrated by Hästö (2005) and Diening et al.
(2005) the non–sufficient regularity of crucial points as saddle points. To this date, the
density of smooth functions or continuous functions is not resolved, nevertheless, sufficient
but not necessary conditions which guarantee the density are known. Among others, it is
the important log–Hölder continuity condition on exponent p, as studied by Edmunds and
Rákosńık (1992), Samko (2000) or Fan et al. (2006).

Definition 7.6 (log–Hölder continuous exponent). We say that a function p : Ω → R is
locally log–Hölder continuous on Ω if there exists C1 > 0 such that

|p(x)− p(y)| 6 C1

ln
(
e+ 1

|x−y|

) ∀x, y ∈ Ω.

Moreover, if the function p satisfies so–called log–Hölder decay

∃ p∞ ∈ R, C2 > 0 : |p(x)− p∞| 6
C2

ln (e+ |x|)
∀x ∈ Ω,

we say that the function is globally log–Hölder continuous.
Then, we define a class of variable exponents such that

P log(Ω) := {p ∈ P(Ω) : 1/p is globally log–Hölder continuous}.

Remark. In some literature, instead of P log the acceptable class of exponents p is the
set of p ∈ P with p+ <∞ satisfying

|p(x)− p(y)| 6 C1

− ln |x− y|
∀x, y ∈ Ω : |x− y| 6 1

2
.(7.26)
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In fact, both descriptions are equivalent, since the mapping p 7→ 1
p is bilipschitz, see

Diening (2004). Furthermore, the log–Hölder continuity condition is sometimes named as
Dini–Lipschitz or weak Lipschitz.

At this point, we can state the basic theorem of density of smooth functions in generalized
Sobolev spaces. The proof can be found in Diening et al. (2010b), Section 9.1.

Theorem 7.2 (Density of smooth functions). Let Ω be an open bounded set with Lipschitz
boundary, k ∈ N and p ∈ P log(Ω) be a bounded exponent. Then C∞(Ω) is dense in W k,p(·)(Ω).

As we mentioned above, we can ask similar question of generalization about the embedding
W 1,p ↪→ Lq for q 6 p∗, p∗ being the Sobolev conjugate. Already Kováčik and Rákosńık (1991)
showed counter–example (with discontinuous exponent) that in general this generalization is
not possible. This counter–example was even extended for continuous, but not uniformly
continuous, exponent by Diening et al. (2005). Let us define the generalized Sobolev conjugate
point–wisely

p∗(x) :=


np(x)

n− p(x)
p(x) < d,

∞ p(x) > d.

(7.27)

For bounded Lipschitz domains Ω, Edmunds and Rákosńık (2000) proved under assumption
of p(x) being Lipschitz with supx∈Ω p(x) < d4 that W 1,p(·) ↪→ Lp

∗(·), and later Edmunds and
Rákosńık (2002) extended this result for p(x) ∈W 1,s for some s > d, assuming p+ < d. Later,
Diening (2004) proved same optimal Sobolev embeddings for bounded Lipschitz domain and
locally Hölder continuous p(x) with 1 < p− 6 p+ < d. Let us summarize the basic results on
embedding, first, the type of embedding between variable and constant exponents Sobolev
spaces, and after the generalization of one of the most widely used theorem in theory of
partial differential equations.

Theorem 7.3. Let p ∈ P log(Ω) and |Ω| <∞, then

W k,p(·)(Ω) ↪→W k,p−(Ω).

The proof of Theorem 7.3 is based on the embedding Lp(·)(Ω) ↪→ Lp
−

(Ω) which was
proven by Kováčik and Rákosńık (1991).

Theorem 7.4. Let p ∈ P log(Ω) satisfying 1 6 p− 6 p+ < d and q ∈ P(Ω) bounded such that
q(x) 6 p∗(x) for almost all x ∈ Rd. Then for open bounded Ω with Lipschitz boundary

W 1,p(·)(Ω) ↪→ Lq(·)(Ω)

where the corresponding embedding constant depends only on the dimension n, |Ω|, p+ and
constant of the log–Hölder continuity.

Moreover, if q(x) < p∗(x) for almost all x ∈ Rd, the embedding is compact.

The proof of Theorem 7.4 can be found in Diening (2004).
One can even ask more specific question from theory of fluid dynamics, the question of

generalization of the Korn inequality. In other words, if we can, under some restriction, control
the norm of the whole gradient ∇v by the norm of its symmetric part D(v) := 1

2 (∇v+(∇v)T)
in the spaces with variable exponents.

4In fact, Edmunds and Rákosńık (2000) proved the embedding even for supx∈Ω p(x) = d, nevertheless,

the space Lp
∗(x) with sup p∗(x) =∞ has to be then replaced by a more general space of Orlicz–Musielak

type.
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Theorem 7.5 (Korn’s inequality). Let p ∈ P log(Ω) with 1 < p− 6 p+ < ∞. Then there
exists a constant C ∈ (0,∞) such that

‖∇v‖p(·) 6 C‖D(v)‖p(·)

for all v ∈ [W
1,p(·)
0 ]d.

The proof of Theorem 7.5 can be found in Diening et al. (2010a) or Diening et al. (2010b),
Section 14.3.

Even though the condition p ∈ P log is very canonical, some techniques from the theory
of spaces with constant exponents are not applicable, not even under assumption of higher
regularity like for bounded p ∈ C∞. For instance, the spaces Lp(·) are not invariant with
respect to translations, which results in difficulties with convolutions or continuity in the
mean, for closer study see Kováčik and Rákosńık (1991) or Fiorenza (2002). Particularly, for
bounded non–constant p ∈ P(Ω), ||f ? g||p(·) 6 C||f ||1||g||p(·) is not valid.

7.2.3. Further notation. Additionally to the Lebesgue and Sobolev spaces and their
generalizations, we introduce the function spaces relevant for the treatment of the problems
of incompressible fluids. By W 1,r

0 (Ω) and W 1,r
0,div(Ω) we define the sets of

W 1,r
0 (Ω) := closure of C∞0 (Ω) in || · ||1,r norm,(7.28)

W 1,r
0,div(Ω) := {φ ∈ [W 1,r

0 (Ω)]d : divφ = 0}.(7.29)

Under the assumption of ∂Ω ∈ C0,1, there holds W 1,r
0 (Ω) ≡ {φ ∈ W 1,r(Ω) : φ = 0 on ∂Ω}.

Similarly we have

W
1,r(·)
0 (Ω) := {φ ∈W 1,r(·)(Ω) : φ = 0 on ∂Ω},(7.30)

W
1,r(·)
0,div (Ω) := {φ ∈ [W

1,r(·)
0 (Ω)]d : divφ = 0}.(7.31)

For the notation of the duality pairing between f ∈ X and g ∈ X? we use symbol
〈f, g〉X,X? , or, if it is from the context obvious, we skip for simplicity the indexes and write
〈f, g〉.
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7.2.4. Formulation of stationary problem. Let us assume stationary problem being
defined on an open bounded set Ω ⊂ Rd, d > 3, with Lipschitz boundary ∂Ω

div v = 0,(7.32)

div(v ⊗ v)− divS(c,D(v)) = −∇p+ f ,(7.33)

div(vc)− div qc(c,∇c,D(v)) = 0.(7.34)

with Dirichlet boundary conditions for both velocity and concentration

v(x) = 0, and c(x) = cd on ∂Ω.(7.35)

Concerning the character of extra stress tensor S and concentration flux vector qc of the
suitable fluid model, explicitly

S(c,D(v)) = µ0 (β + γ |D|2)(ω (1/(αc2+1)−1))D(v),(7.36)

qc(c,∇c,D(v)) = K(c,D(v))∇c,(7.37)

we assume that S : R+
0 × Rd×dsym → Rd×dsym fulfills following growth, strict monotonicity and

coercivity conditions for all c ∈ 〈minx∈∂Ω cd,maxx∈∂Ω cd〉 and D, D1, D2 ∈ Rd×dsym

|S(c,D)| 6 C1(|D|p(c)−1 + 1),(7.38)

(S(c,D1)− S(c,D2)) · (D1 −D2) > 0 D1 6= D2,(7.39)

S(c,D) ·D > C2(|D|p(c) + |S(c,D)|p
′(c) − 1),(7.40)

where p(·) is Hölder continuous function such that 1 < p− < p(·) < p+ < ∞, and the
concentration flux vector qc satisfies the (7.37), where K(c, |D(v)|) : R+

0 × R+
0 → Rd×d is

continuous mapping with Ki,j ∈ L∞(Ω) such that the flux vector fulfills following conditions

|qc(c, ξ,D)| 6 K1|ξ|,(7.41)

qc(c, ξ,D) · ξ > K2 |ξ|2 .(7.42)

Above, C1, C2,K1,K2 ∈ (0,∞) are constants and A ·B is notation for the scalar product
between two tensors. Moreover, we require that there exists a function

c̃d ∈ C0,β ∩W 1,2(Ω), β > 0, such that tr(c̃d) = cd on ∂Ω.(7.43)

Now, we are ready to formulate our existence theorem.

Theorem 7.6. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω and let p(·)
be a Hölder continuous variable exponent such that p− 6 p(·) 6 p+ <∞, where p− > 3d

d+2

and p− > d
2 . If f ∈W−1,p−

′
(Ω), S and qc satisfy conditions (7.38)–(7.42) and there exists

a function c̃d such that (7.43) holds and

∃β > 0 : ∀x0 ∈ Ω ∀R > 0 :

∫
BR(x0)∩Ω

|∇c̃d|2

Rd−2+2β
6 C3, C3 ∈ (0,∞) is a constant,

then there exists a weak solution (v, c) of the problem (7.32)–(7.34) satisfying the boundary
conditions (7.35) such that

v ∈W 1,1
0,div(Ω), D(v) ∈ Lp(c)(Ω),

(c− c̃d) ∈ C0,α(Ω) ∩W 1,2
0 ,

for some 0 < α 6 β, α being function of Ω,K1,K2, and (v, c) fulfills the following weak
formulation of the problem

−
∫

Ω

v ⊗ v · ∇ψ dx+

∫
Ω

S(c,D(v)) ·D(ψ) dx = 〈f ,ψ〉 ∀ψ ∈W 1,p(c)
0,div (Ω),

−
∫

Ω

vc · ∇ϕdx+

∫
Ω

qc(c,∇c,D(v)) · ∇ϕdx = 0 ∀ϕ ∈W 1,2
0 (Ω).
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To the best of our knowledge, this is the first result concerning the existence of the
system (7.32)–(7.34), where the variable exponent is concentration dependent. Since the
spaces where we look for the weak solution are “dependent” on the solution itself, we a
priory do not know them, and thus, a more general concept of function spaces with variable
exponent p(·), the so–called generalized Sobolev Spaces, needs to be involved. Nevertheless,
certain restriction on p(·) is required, namely its Hölder continuity, a crucial assumption
for the density of smooth functions in generalized Sobolev spaces, embedding theorems and
Korn’s inequality.

In the case, that the diffusivity matrix in the equation for the concentration is constant,
or only concentration dependent, the use of standard theory for Laplace operator, see
Ladyzhenskaya and Ural’tseva (1968), ensures the Hölder continuity of the concentration,
and thus of the variable exponent. In contrast to Antontsev and Rodrigues (2006), where
authors assumed the constant diffusivity matrix for similar equation of thermal diffusion,
we assume the diffusivity to be non–constant, and thus, we a priori do not know if the
concentration satisfies the Hölder continuity. Nevertheless, this we prove for certain, but not
restrictive, assumptions by the introduction of Green test functions in the weak formulation
for convection–diffusion equation. The proof of Hölder continuity of concentration is based
on the results of de Giorgi (1957) and Nash (1958).

In such setting, we can use the theory of monotone operators to prove the desired
existence. Nevertheless, this is restricted to the assumption of p− > 3d

d+2 , in 3D setting

p− > 9
5 , which is required for the convective term (v ⊗ v) being well defined for the test

functions from W
1,p(c)
0,div . Eventual relaxation of the lower bound of p would require to

generalize the approach of Diening et al. (2008), the Lipschitz truncation method.
The second restriction on the minimal value of p in Theorem 7.6, explicitly p− > d

2 ,
comes from the requirement of c being Hölder continuous. The prove of the Hölder continuity
is based on de Giorgi result for elliptic equation with measurable coefficients and the right
hand side in some W−1,q′ space with q > d. In our setting this means that we require
div(cv) ∈W 1,q′ , which results, using boundedness of c, in v ∈ Lq for q > d, and thus, using
the embedding theorem, in the second restriction on p−.

Proof. The proof presented here is constructive, based on the formulation of Galerkin
approximations solving the approximate system. First, we formulate the suitable Galerkin
approximations which existence is a direct consequence of the fixed point theorem in finite
dimensional space. Then, after establishing the uniform estimates, we present the limit
passage from the solutions of the approximative problems to the weak solution. As the
last, we identify the limit of non–linear term introduced from divS. The proof of Hölder
continuity of the concentration is then presented in the Appendix to the chapter.

(n, m)–approximate problem and uniform estimates. Let {wi}∞i=1 be a basis of

W 1,p+

0,div(Ω) such that
∫

Ω
wiwj dx = δij and {zj}∞j=1 be a basis of W 1,2

0 (Ω), again
∫

Ω
zizj dx =

δij . Then for positive, fixed n, m ∈ N we define the Galerkin approximations

vn,m :=

n∑
i=1

αn,mi wi, cn,m :=

m∑
i=1

βn,mi zi + c̃d,(7.44)

for which αn,m and βn,m solve the approximate system

−
∫

Ω

(vn,m ⊗ vn,m) · ∇wi dx+

∫
Ω

S(cn,m,D(vn,m)) ·D(wi) dx = 〈f ,wi〉(7.45)

∀i = 1, . . . , n,

−
∫

Ω

vn,mcn,m · ∇zj dx+

∫
Ω

qc(c
n,m,∇cn,m,D(vn,m)) · ∇zj dx = 0(7.46)

∀j = 1, . . . ,m.

The application of the fixed point theorem ,which is now standard since (7.45)–(7.46) is
finite dimensional problem, will then ensure the existence of its solution (vn,m, cn,m).
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Now, we shall derive the uniform estimates that are independent of n, m in the correspond-
ing function spaces. For simplicity, we shall use the notation of Sn,m := S(cn,m,D(vn,m))
and qn,mc := qc(c

n,m,∇cn,m,D(vn,m)). Multiplying the i–th equation in (7.45) by αn,mi and
taking the sum over i = 1, ..., n, we obtain

−
∫

Ω

(vn,m ⊗ vn,m) · ∇vn,m dx+

∫
Ω

Sn ·D(vn,m) dx = 〈f ,vn,m〉,(7.47)

where the convective term vanishes after integration by parts since div vn,m = 0, and
vn,m = 0 on boundary ∂Ω. Thus, the equation (7.47) reduces to∫

Ω

Sn,m ·D(vn,m) dx = 〈f ,vn,m〉,(7.48)

and further, using the assumptions (7.40), (7.38) and standard duality estimates with
Young’s5 and Korn’s inequalities on the second term, we obtain that∫

Ω

|D(vn,m)|p(c
n,m) dx < C.(7.49)

Next, multiplying the j–th equation in (7.46) by βn,mj and taking the sum over j = 1, ...,m
we arrive at

−
∫

Ω

vn,mcn,m · ∇(cn,m − c̃d) dx+

∫
Ω

qn,mc · ∇(cn,m − c̃d) dx = 0.(7.50)

Again, the integration by parts of the first term and the assumptions of div vn,m = 0,
vn,m = 0 on ∂Ω reduce the equation (7.50) to∫

Ω

qn,mc · ∇cn,m dx =

∫
Ω

qn,mc · ∇c̃d dx+

∫
Ω

c̃d∇cn,m · vn,m dx.(7.51)

After the use of assumption (7.41), the first therm on right hand side is estimated by the use
of the Hölder inequality with ∇c̃d ∈ L2(Ω) and ∇cn,m ∈ L2(Ω), followed by standard use of
Young’s inequality. The second term is estimated by the fact that c̃d is bounded and thus we
can use the Hölder inequality with vn,m ∈ L2(Ω) and ∇cn,m ∈ L2(Ω) and consequently the
Young inequality. All together with assumption (7.42), we arrives at∫

Ω

|∇cn,m|2 dx < C‖vn,m‖22 6 C,(7.52)

where we estimate the last term by the use of the Korn inequality on (7.49) together with

the embedding W 1,p− ↪→ L2 for p− > 2d
d+2 .

Moreover, it is easy to show, as a direct consequence of assumption (7.38) and estimates
(7.49), (7.52), that ∫

Ω

(
|Sn,m|p

+′
+ |qn,mc |2

)
dx 6 C.(7.53)

Limit m → ∞. Having the uniform estimate (7.49), the equivalence of norms in the
finite dimensional spaces leads to the |αn,m| 6 C(n). Then, together with estimate (7.52),
we can establish the following m→∞ convergence results for a suitable sub–sequences (for
simplification not relabeled)

αn,m → αn strongly in Rn,(7.54)

cn,m ⇀ cn weakly in W 1,2(Ω),(7.55)

Sn,m ⇀ S̄
n

weakly in Lp
+′

(Ω),(7.56)

qn,mc ⇀ q̄nc weakly in L2(Ω),(7.57)

and thus directly from (7.54) and the compact embedding W 1,2(Ω) ↪→↪→ L2(Ω) we obtain
the convergences results

vn,m → vn strongly in W 1,p+

0,div(Ω),(7.58)

cn,m → cn strongly in L2(Ω).(7.59)

5Lemma 7.12 in the subsection 7.3.2.
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Moreover, since S and qc are continuous with respect to their unknowns, (7.58)–(7.59) and
growth condition on S and qc imply that

S̄
n

= Sn := S(cn,D(vn))(7.60)

q̄nc = qnc := qc(c
n,∇cn,D(vn))(7.61)

Then, the convergence results allows to make the limit passage in the equation set
(7.45)–(7.46) and obtain following system

−
∫

Ω

(vn ⊗ vn) · ∇wi dx+

∫
Ω

Sn ·D(wi) dx = 〈f ,wi〉 ∀i = 1, . . . , n,(7.62)

−
∫

Ω

vncn · ∇ϕdx+

∫
Ω

qnc · ∇ϕdx = 0 ∀ϕ ∈W 1,2
0 (Ω).(7.63)

Minimum and maximum principle and further apriori estimates. Define zn1 :=
(cn −minx∈∂Ω cd)− and zn2 := (cn −maxx∈∂Ω cd)+, where (a)− and (a)+ denote the negative

and positive parts of a, respectively. It is clear, that functions zn1 , z
n
2 ∈W

1,2
0 (Ω) since cn = cd

on ∂Ω, and thus, from (7.63), we get

−
∫

Ω

vncn · ∇zn1 dx+

∫
Ω

qnc · ∇zn1 dx = 0,(7.64)

and

−
∫

Ω

vncn · ∇zn2 dx+

∫
Ω

qnc · ∇zn2 dx = 0.(7.65)

Let us consider equation (7.64) at first. Using the fact that div vn = 0 and that vn = 0 on
∂Ω on the first term, (7.37) and the property of negative part on the second term, we arrive
at ∫

Ω−
vn · ∇cnzn1 dx+

∫
Ω−

K|∇cn|2 dx = 0,(7.66)

where Ω− is the part of the domain on which zn1 < 0. Next, using that ∇cn = ∇zn1 on Ω−

and again the extension of ∇cn from Ω− on the whole domain Ω by using the negative part,
we obtain ∫

Ω

vn · ∇zn1 zn1 dx+

∫
Ω

K|∇zn1 |2 dx = 0.(7.67)

Applying on the first term the chain rule and then the integration by parts, we find that the
first term vanishes, and thus

zn1 = (cn − min
x∈∂Ω

cd)− = const. a. e. in Ω.(7.68)

Analogous treatment can be used on the equation (7.65) which consequently leads to
zn2 = (cn − maxx∈∂Ω cd)+ = const. a. e. in Ω. Combining both results, we then obtain
the boundedness of the concentration cn

min
x∈∂Ω

cd 6 c
n 6 max

x∈∂Ω
cd a. e. in Ω.(7.69)

Similar to the previous subsection, we can establish further uniform estimates. Multiply-
ing the i–th equation in (7.62) by αni and taking the sum over i = 1, ..., n, we obtain after
integration by parts together with condition (7.40), and using the same arguments on the
term with force as above, ∫

Ω

(|D(vn)|p(c
n) + |Sn|p

′(cn)) dx 6 C,(7.70)

from which, by using the condition (7.38), we arrive at∫
Ω

|D(vn)|p(c
n) dx 6 C,(7.71)

and thus ∫
Ω

|D(vn)|p
−
dx 6 C.(7.72)
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In equation (7.63) we can already use the approximation cn as a test function and thus,
similar as above, obtain ∫

Ω

|∇cn|2 6 C dx.(7.73)

Additionally, it is easy to show from above estimates and (7.41) that∫
Ω

(
|Sn|p

+′
+ |qnc |2

)
dx 6 C dx.(7.74)

As proven in the Appendix to the proof, section 7.3, Theorem 7.7, if vn ∈ Ld+δ
0,div and p− > d

2

then

‖cn‖0,α 6 C for some α 6 β.(7.75)

Limit n → ∞. It follows from the estimates (7.69)–(7.74) that there are v and c to
which converge some (again not relabeled) subsequences of approximations vn and cn as
follows

cn ⇀ c weakly in W 1,2(Ω),(7.76)

cn
∗
⇀ c ∗ −weakly in L∞,(7.77)

cn → c strongly in C0,α(Ω), 0 < α 6 β(7.78)

vn ⇀ v weakly in W 1,p−

0,div(Ω),(7.79)

Sn ⇀ S weakly in Lp
+′

(Ω),(7.80)

qnc ⇀ qc weakly in L2(Ω),(7.81)

and thus, from the compact embedding W 1,p−

0,div ↪→↪→ L2
div and above convergences

cn → c strongly in Lq(Ω), q <∞(7.82)

vn → v strongly in L2
div(Ω).(7.83)

If we unify the limit S = S(c,D(v)), this convergence results on the second level of the
Galerkin approximations allow us to take the limit in the equation (7.62) and (7.63) and
obtain

−
∫

Ω

(v ⊗ v) · ∇ψ dx+

∫
Ω

S(c,D(v)) ·D(ψ) dx = 〈f ,ψ〉 ∀ψ ∈W 1,p+

0,div(Ω),(7.84)

−
∫

Ω

vc · ∇ϕdx+

∫
Ω

qc(∇c) · ∇ϕdx = 0 ∀ϕ ∈W 1,2
0 (Ω).(7.85)

Identification of the limit S and qc. Here, we shall show, using theory of monotone
operators, that

S = S(c,D(v)) a. e. in Ω.(7.86)

Having the limit equation

−
∫

Ω

(v ⊗ v) · ∇ψ dx+

∫
Ω

S ·D(ψ) dx = 〈f ,ψ〉 ∀ψ ∈W 1,p+

0,div(Ω),(7.87)

we need to show that S and the convective term (v ⊗ v) belong to the right dual spaces
to obtain final weak formulation for the equation for velocity, and, to be able to use the
Minthy method for the limit identification. First, we show that S ∈ Lp′(c)(Ω) and after that

(v ⊗ v) ∈ Lp′(c)(Ω).
Let us divide the domain Ω on parts where |S| < 1 and |S| > 1, and denote them in the

same manner, then ∫
Ω

|S|p
′(c) dx 6

∫
|S|<1

|S|p
′(c) dx+

∫
|S|>1

|S|p
′(c) dx.(7.88)
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It is obvious, that first term is bounded by a constant due to the boundedness of the variable
exponent itself, p(·) ∈ P(Ω). Next, since

cn → c in C0,α(Ω), α > 0,(7.89)

and due to the continuity of p, it is valid that

∀ε > 0 ∃N > 0 : ∀n > N |p′(cn)− p′(c)| 6 ε

Θ
,(7.90)

where Θ > 1, large enough to satisfy p′(c)− Θ−1
Θ ε > 1. We can then deduce from estimate

above that

C >
∫

Ω

|Sn|p
′(cn) dx >

∫
|Sn|>1

|Sn|p
′(cn) dx(7.91)

>
∫
|Sn|>1

|Sn|p
′(cn)−p′(c)+p′(c)−ε dx >

∫
|Sn|>1

|Sn|p
′(c)−Θ−1

Θ ε dx.

Then, after adding to the inequality the term
∫
|Sn|<1

|Sn|p′(c)−Θ−1
Θ ε dx, which is bounded by

some constant C̄, we obtain

C + C̄ >
∫
|Sn|>1

|Sn|p
′(cn) dx+ C̄ >

∫
Ω

|Sn|p
′(c)−Θ−1

Θ ε dx.(7.92)

Using the weak lower semicontinuity, we see that∫
Ω

|S|p
′(c)−Θ−1

Θ ε dx 6 C,(7.93)

and consequently, the Fatou lemma6 with ε→ 0 will lead to∫
Ω

|S|p
′(c) 6 C.(7.94)

Next, to have the convective term from admissible space Lp
′(c)(Ω), we have to set up a

constrain on the lower bound of the variable index p such that W 1,p(c)(Ω) ↪→ L2p′(c)(Ω). This
is exactly the constrain p(c) > 3d

d+2 , in the 3D setting p(c) > 9
5 from Theorem 7.6. Having

this, we obtain

(v ⊗ v) ∈ Lp
′(c)(Ω).(7.95)

Now, since p(·) is Hölder continuous, smooth functions C∞0,div are dense in W
1,p(c)
0,div

7, we can
rewrite the weak formulation of equation for velocity as

−
∫

Ω

(v ⊗ v) ·D(ψ) dx+

∫
Ω

S ·D(ψ) dx = 〈f ,ψ〉 ∀ψ ∈W 1,p(c)
0,div ,(7.96)

and consequently take the velocity v as a test function. Moreover, if we take vn as a test
function in (7.62), the convective terms vanish for both cases, and since

lim
n→∞

〈f ,vn〉 = 〈f ,v〉,(7.97)

by comparison of the right hand sides we obtain

lim
n→∞

∫
Ω

S(cn,D(vn)) ·D(vn) dx =

∫
Ω

S ·D(v) dx.(7.98)

Next, we use Minty method. Indeed, for all φ ∈ C∞0,div(Ω) it is valid that

0 6
∫

Ω

(S(cn,D(vn))− S(cn,D(φ)) · (D(vn)−D(φ))) dx.(7.99)

6Lemma 7.9 in the subsection 7.3.2.
7In fact, we know that smooth functions are dense in W 1,p(·), Theorem 7.2. To prove also the density of

smooth solenoidal functions, it is enough to apply the Bogovskii lemma in spaces with variable exponents,
which holds also for log–continuous exponents as is shown in Diening et al. (2011).
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Using the strong convergence (7.82) and Lebesgue dominated convergence theorem 7.8, we
obtain that

S(cn,D(φ))→ S(c,D(φ)) strongly in [Lq(Ω)]d×d, q <∞.(7.100)

Now, we can take the limit n→∞ because of the (7.98), the growth condition (7.38) together
with the weak convergence of S(cn,D(vn)) and D(vn) in the admissible spaces. Thus, we
obtain

0 6
∫

Ω

(S − S(c,D(φ))) · (D(v)−D(φ)) dx ∀φ ∈W 1,p(c)
0,div (Ω),(7.101)

which is already written for all φ ∈W 1,p(c)
0,div (Ω) since of the density of smooth functions. Then,

the Minty trick with test functions φ = v ± λw, λ > 0, implies the desired identification
S = S(c,D(v)).

Finally, if S is strictly monotone, it follows from convergences results (7.80) and (7.82)
that also D(vn)→D(v) strongly in [L1(Ω)]d×d. Hence, we can use the Lebesgue dominated
convergence theorem8 to identify the limit of K(cn,D(vn)) and obtain

qc = qc(D(v),∇c).(7.102)

�

7.3. Appendix to the proof

7.3.1. Hölder continuity of cn. In what follows, we shall use notation for Br(x)
denoting an open ball in Rd with the center at x ∈ Ω and fixed radius r > 0,

Br(x) := {y ∈ Rd : |x− y| < r}.(7.103)

Moreover, we denote the average of a measurable function f over a set A by

〈f〉A :=
1

|A|

∫
A

f(x) dx,(7.104)

where |A| denotes the measure of the set.

Theorem 7.7. (Hölder continuity of concentration) Let Ω ⊂ Rd be a bounded set with
Lipschitz boundary and following conditions are satisfied

for all b ∈ Rd there exist constants C1, C2 ∈ (0,∞) such that

Kij ∈ L∞, |Kij | 6 C1, Kijbibj > C2|b|2,(7.105)

c̃d ∈W 1,2(Ω) such that

∃β > 0 : ∀x0 ∈ Ω ∀R > 0 :

∫
BR(x0)∩Ω

|∇c̃d|2

Rd−2+2β
6 C3, C3 ∈ (0,∞) is constant,(7.106)

there exists δ > 0 such that v ∈ Ld+δ
0,div(Ω).

Then there exists exactly one c ∈W 1,2(Ω) such that

∃β > α > 0 : ∀x0 ∈ Ω ∀R > 0 :

∫
BR(x0)∩Ω

|∇c|2

Rd−2+2α
6 C4(‖v‖d+δ,Ω, β, C1, C2),(7.107)

which fulfills the following weak formulation∫
Ω

(K∇c) · ∇ϕdx =

∫
Ω

cv∇ϕdx ∀ϕ ∈W 1,2
0 (Ω),(7.108)

where α is a function of Ω, C1, C2, δ.

8Lemma 7.8 in the subsection 7.3.2.
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The application of Morrey’s lemma, see Theorem 7.11, then gives the requested Hölder
continuity of c, more precisely c ∈ C0,α(Ω) where 0 < α 6 β, if c̃d ∈ C0,β(Ω). In the proof of
the Theorem 7.7 we shall employ the Green function, thus, let us now recall the fundamental
properties that will be used. Reader can find more details and exact proofs in Bensoussan
and Frehse (2002), Chapter 1.3.

Let Q ⊂ Rd be a ball such that Ω ⊂⊂ Q and x0 ∈ Ω, then Green function Gx0 is the
solution of ∫

Q

a∇φ · ∇Gx0 dx = φ(x0) ∀φ ∈ C∞0 (Q),(7.109)

where a(x) is a matrix a : Rd → Rd×d such that there exist constants M1 > 0 and M2 > 0:

M1|ξ|2 > a(x)ξ · ξ >M2|ξ|2, ∀ξ ∈ Rd.(7.110)

As can be found in Bensoussan and Frehse (2002), the Green function satisfies

Gx0
∈W 1,µ

0 (Q) for 1 6 µ <
d

d− 1
, Gx0

∈ Lν(Q) for 1 6 ν <
d

d− 2
,(7.111)

C1|x− x0|2−d 6 Gx0
(x) 6 C2|x− x0|2−d, ∀x ∈ Ω,(7.112)

where C1, C2 depend only on M1,M2.
Since of the singularity at x0, Gx0 does not belong to W 1,2 neither to L∞. This is the

reason we shall work with the approximations of the Green function Gnx0
∈W 1,2

0 (Q)∩L∞(Q)
obtained as solution of∫

Q

a∇ϕ · ∇Gnx0
= 〈ϕ〉B1/n(x0)∩Q ∀ϕ ∈W 1,2

0 (Q).(7.113)

For such approximations, we can then recognize that

Gnx0
→ Gx0 strongly in W 1,2(Qε1) ∀ε1 > 0,(7.114)

Gnx0
→ Gx0

strongly in W 1, d
d−1−ε2(Q) ∀ε2 > 0,(7.115)

where Qε1 := Q \Bε1(x0).

Proof of Theorem 7.7. Again, let Q ⊂ Rd be a ball such that Ω ⊂⊂ Q, and, let us fix R0 > 0
such that B4R0

(x0) ⊂ Q for all x0 ∈ Ω. In what follows, we shall always assume R ∈ (0, R0).
We define a smooth non–negative cut–off function τR ∈ C∞0 (Q) such that

0 6 τR 6 1, |∇τR| 6
C

R
, τR :=

{
1 in BR(x0),

0 in Ω \B2R(x0),
(7.116)

and we shall call the corresponding annulus by AR(x0) := B2R(x0) \BR(x0).
As a suitable test function in the weak formulation (7.108) we choose

ϕ(x) =

{
(c− cR)τ2

RG
n
x0

if B2R(x0) ⊂ Ω,

(c− c̃d)τ2
RG

n
x0

otherwise,
(7.117)

which obviously belongs to W 1,2
0 (Ω). Recalling (7.108)∫
Ω

K∇c · ∇ϕdx︸ ︷︷ ︸
LS

=

∫
Ω

cv · ∇ϕdx︸ ︷︷ ︸
RS

,(7.118)

we shall first derive the uniform estimates for right hand side (RS), and after for left hand
side (LS). Moreover, for now, we assume that B2R(x0) ⊂ Ω.

After integration by parts, we obtain

RS = −
∫

Ω

∇c · v(c− cR)τ2
RG

n
x0
dx = −1

2

∫
Ω

∇(c− cR)2 · vτ2
RG

n
x0
dx(7.119)

=
1

2

∫
Ω

(c− cR)2v · (τR∇τRGnx0
+ τ2

R∇Gnx0
) dx,
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and thus the limit n → ∞, involving the properties of τR, v ∈ Ld+δ
0,div(Ω) and the strong

convergence of the Green function approximations, leads to

lim
n→∞

RS =
1

2

∫
Ω

(c− cR)2v · (τR∇τRGx0 + τ2
R∇Gx0) dx(7.120)

6 C‖c‖∞

(∫
AR(x0)

|v|Gx0

R
dx+

∫
B2R(x0)

|v||∇Gx0 | dx

)

6 C‖c‖∞

(
R1−d

∫
AR(x0)

|v| dx+

∫
B2R(x0)

|v||∇Gx0
| dx

)
.

Now, since

1− d

d+ δ
> 0 and (d+ δ)′ <

d

d− 1
,(7.121)

we can use the Hölder inequality on both terms and obtain

lim
n→∞

RS 6 C‖c‖∞‖v‖d+δ

(
R1−d|AR(x0)|1/(d+δ)′ + ‖∇Gx0

‖(d+δ)′

)
(7.122)

6 C‖c‖∞‖v‖d+δR
1− d

d+δ 6 C(‖c‖∞, ‖v‖d+δ)R
γ ,

where γ � 1 depends on δ. From above we obtain a restriction on lower bound of variable

index, p− > d
2 , since we require W 1,p− ↪→ Ld+δ.

Now, let us focus on the left hand side of the equation (7.118). By simple calculations
we have

LS =

∫
Ω

K |∇c|2 τ2
RG

n
x0
dx+ 2

∫
Ω

K∇c(c− cR)τR∇τRGnx0
dx(7.123)

+

∫
Ω

K∇c(c− cR)τ2
R∇Gnx0

dx,

where the last term can be estimated by∫
Ω

K∇c(c− cR)τ2
R∇Gnx0

dx =(7.124)

1

2

∫
Ω

K∇
(
|c− cR|2 τ2

R

)
∇Gnx0

dx︸ ︷︷ ︸
>0

−
∫

Ω

K |c− cR|2 τR∇τR∇Gnx0
dx

> −
∫
AR(x0)

K |c− cR|2 τR∇τR∇Gnx0
dx

> −
∫
AR(x0)

K |c− cR|2 τR(∇τR)2Gnx0
dx−

∫
AR(x0)

K|c− cR|2τR

∣∣∇Gnx0

∣∣2
Gnx0

dx,

where we used the Young inequality and the the sign comes from the definition of the Green
function (7.113) with a test function ϕ = |c− cR|2 τ2

R. Now, we can proceed with the limit
n→∞ by using Fatou lemma since of the non–negativity of Gnx0

lim
n→∞

LS > C
∫

Ω

|∇c|2τ2
R

|x− x0|d−2︸ ︷︷ ︸
I1

−C
∫
AR(x0)

|∇c||c− cR|
Rd−1

dx︸ ︷︷ ︸
I2

(7.125)

− C
∫
AR(x0)

|c− cR|2

Rd
dx︸ ︷︷ ︸

I3

−C
∫
AR(x0)

|c− cR|2|∇Gx0
|2

Gx0

dx︸ ︷︷ ︸
I4

.

On the integral I2 we can use the Hölder inequality with ∇c/R d−2
2 ∈ L2 and |c− cR|/Rd/2 ∈

L2, Young’s inequality and consequently the Poincaré inequality9 and together with the

9Lemma 7.10 in the subsection 7.3.2.
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integral I3, estimated by the Poincaré inequality as well, we obtain the estimate

−I2 − I3 > C
∫
AR(x0)

|∇c|2

Rd−2
dx.(7.126)

The last integral I4 has to be treated more carefully since it obtains ∇Gx0 for which we have
no explicit estimate. Here, we have to use the definition of the Green function (7.109) with a
suitably chosen test function which will give us the required term of I4. Nevertheless, we
have to extra treat the singularity of Gx0

at x0. That we can manage by introducing a new
cut–off function such as

0 6 ηR 6 1, |∇ηR| 6
C

R
, ηR :=

{
1 in AR(x0),

0 in BR/2(x0) and Q \B4R(x0).
(7.127)

Again, we define the annulus A?R(x0) = B4R(x0) \BR/2(x0).
Now, in the definition of Gx0

, equation (7.109), we take

φ = G−1/2
x0

|c− cR|2 η2
R,(7.128)

which is suitably chosen since integral I4 can be estimated by

I4 6 C
∫
AR(x0)

|c− cR|2|∇Gx0
|2

G
3/2
x0

G1/2
x0

dx 6 C
∫
AR(x0)

|c− cR|2|∇Gx0 |2

G
3/2
x0

η2
R

R
d−2

2

dx,(7.129)

and, recalling that φ(x0) = 0, we have from the definition of Green function

0 =

∫
Q

K∇Gx0
· ∇(G−1/2

x0
|c− cR|2 η2

R) dx

(7.130)

=− 1

2

∫
Q

K∇Gx0
G−3/2
x0

· ∇Gx0
|c− cR|2 η2

R dx+ 2

∫
Q

K∇Gx0
·G−1/2

x0
∇ηR|c− cR|2 ηR dx

+ 2

∫
Q

K∇Gx0 ·G−1/2
x0

(c− cR)∇c η2
R dx.

Using the equality above and Young’s inequality with ε sufficiently small, we can estimate

∫
Q

|∇Gx0
|2

G
3/2
x0

|c− cR|2η2
R dx

(7.131)

6 C
∫
A?R(x0)

|∇Gx0
|

G
1/2
x0

(
|c− cR|2ηR

R
+ |c− cR||∇c|η2

R

)
dx

6 C
∫
A?R(x0)

(
|∇Gx0

|2 |c− cR|2 η2
R

G
3/2
x0

)1/2(
G

1/4
x0 (c− cR)

R
+G1/4

x0
|∇c|ηR

)
dx

6 C

(
2

ε

∫
Q

|∇Gx0
|2 |c− cR|2 η2

R

G
3/2
x0

dx+

∫
A?R(x0)

G
1/2
x0 |c− cR|

2

R2
dx+

∫
A?R(x0)

G1/2
x0
|∇c|2 η2

R dx

)
.

All together, the integral I4 reads

I4 6
∫
A?R(x0)

|∇Gx0 |2|c− cR|2

R
d−2

2 G
3/2
x0

dx(7.132)

6 C
∫
A?R(x0)

(
|c− cR|2

R2|x− x0|d−2
+

|∇c|2

|x− x0|d−2

)
dx 6 C

∫
A?R(x0)

|∇c|2

|x− x0|d−2
dx

where we used the Poincaré inequality10, on the last estimate.

10In fact, we wrote the Poincaré inequality, Lemma 7.10, for a ball, nevertheless, for the annulus, the
lemma holds as well.
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Now, we can reconstruct the estimate for the whole equation (7.118), for simplification
we write C = C(‖c‖∞, ‖v‖d+δ),∫

BR(x0)

|∇c|2

|x− x0|d−2
dx− C?

∫
A?R(x0)

|∇c|2

|x− x0|d−2
dx 6 LS = RH 6 CRγ ,(7.133)

and thus

∫
BR/2(x0)

|∇c|2

|x− x0|d−2
dx 6

∫
BR(x0)

|∇c|2

|x− x0|d−2
dx 6 CRγ + C?

∫
A?R(x0)

|∇c|2

|x− x0|d−2
dx.

(7.134)

In the case of B2R(x0) * Ω, we test the equation (7.108) by ϕ(x) = (c − c̃d)τ2
RG

n
x0

,
where c = c̃d in Q \ Ω, and by using the same arguments as above we obtain

∫
BR/2(x0)

|∇c|2

|x− x0|d−2
dx 6 CRγ + C?

∫
A?R(x0)

|∇c|2

|x− x0|d−2
dx+

∫
B4R(x0)

|∇c̃d|2

|x− x0|d−2
dx.

(7.135)

Here, let us estimate the last term with c̃d. Indeed, it is valid that∫
B4R(x0)

|∇c̃d|2

|x− x0|d−2
dx =

∞∑
k=1

∫
Ak

|∇c̃d|2

|x− x0|d−2
dx,(7.136)

where Ak = ARk(x0) := BRk−1
(x0) \ BRk(x0), Rk := 4R

2k
. Now, since the integral are

expressed for the annuli, we can extimate∫
B4R(x0)

|∇c̃d|2

|x− x0|d−2
dx =

∞∑
k=1

∫
Ak

|∇c̃d|2

|x− x0|d−2
dx 6 C

∞∑
k=1

∫
B2Rk

|∇c̃d|2

Rd−2
k

dx

(7.106)

6 C

∞∑
k=1

R2β
k 6 R

2βC

∞∑
k=1

(
4

2k

)2β

6 CR2β ,(7.137)

where we used the assumption (7.106) on c̃d of the Theorem 7.7.
Thus, all together, for all R < R0 holds∫

BR/2(x0)

|∇c|2

|x− x0|d−2
dx 6 CRγ+2β + C?

∫
A?R(x0)

|∇c|2

|x− x0|d−2
dx.(7.138)

Since the second term on the right hand side is still derived for the annulus A?R(x0), we need
to fill the “hole” of BR/2(x0) to obtain the final estimate. Adding the term

C?
∫
BR/2(x0)

|∇c|2

|x− x0|d−2
dx(7.139)

to both sides of the above inequality we get∫
BR/2(x0)

|∇c|2

|x− x0|d−2
dx 6 CRγ+2β +

C?

1 + C?

∫
B4R(x0)

|∇c|2

|x− x0|d−2
dx.(7.140)

Dividing the above inequality by (R/2)2α with some 2α < γ + 2β yields

∫
BR/2(x0)

1

(R/2)2α

|∇c|2

|x− x0|d−2
dx 6 CRγ+2β−2α +

82αC?

1 + C?

∫
B4R(x0)

1

(4R)2α

|∇c|2

|x− x0|d−2
dx

(7.141)

and by choosing 2α such that 82αC?

1+C? 6 1 we arrive at∫
BR(x0)

1

R2α

|∇c|2

|x− x0|d−2
dx 6 CRγ+2β−2α +

∫
B8R(x0)

1

(8R)2α

|∇c|2

|x− x0|d−2
dx.(7.142)

Let us denote ϑ := γ + 2β − 2α and define

rk :=
R0

8k
, ak :=

∫
Brk (x0)

|∇c|2

r2α
k |x− x0|d−2

dx,(7.143)
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then from (7.142) we have

ak+1 6 Cr
ϑ
k+1 + ak 6 CR

ϑ
0 8−kϑ + ak 6 CR

ϑ
0

k∑
m=0

8−mϑ + a0 6 CR
ϑ
0 + a0,(7.144)

and thus ∫
Brk+1

(x0)

|∇c|2

r2α
k+1|x− x0|d−2

dx 6 CRϑ0 + C

∫
BR0

(x0)

|∇c|2

R2α
0 |x− x0|d−2

dx.(7.145)

where C = C(‖c‖∞, ‖v‖d+δ, R0, β, γ)
Let R ∈ (0, R0) be arbitrary, then we can find k ∈ N such that rk+1 6 R < rk.

Consequently, we get∫
BR(x0)

|∇c|2

Rd−2+2α
dx 6

∫
Brk (x0)

|∇c|2

Rd−2+2α
6
(rk
R

)d−2+2α
∫
Brk (x0)

|∇c|2

rd−2+2α
k

(7.146)

6

(
rk
rk+1

)d−2+2α

ak 6 8k(d−2+2α)ak 6 C,

where for the last inequaltiy we used (7.144). Thus, by using the Morrey’s lemma11 we
obtain desired

c ∈ C0,α(Ω) for some α <
γ

2
+ β.(7.147)

�

7.3.2. Auxiliary lemmas. Here, we list the mostly used lemmas for the theory of this
chapter. We write the lemmas without proofs, nevertheless, we note the suitable references
where they can be found.

Lemma 7.8 (Lebesgue dominated convergence theorem, Lebesgue (1909)). Let {fk}k∈N ⊂
L1(Ω) be a sequence converging a.e. to some f and |fk(x)| 6 g(x) for some g ∈ L1(Ω). Then
f ∈ L1(Ω) and

lim
k→∞

∫
A

fk(x) dx =

∫
A

f(x) dx

for any measurable A ⊂ Ω.

Lemma 7.9 (Fatou’s lemma, Fatou (1906)). Let g ∈ L1(Ω) and {fk}k∈N ⊂ L1(Ω) be a
sequence of non–negative functions such that fk > g a. e. for all n ∈ N, then∫

Ω

lim inf
n→∞

fk dx 6 lim inf
n→∞

∫
Ω

fk dx.

Lemma 7.10 (Poincaré inequality on a ball, Poincaré (1890)). Let f ∈W 1,2(Ω), and let ball
BR ⊂ Ω, then ∫

BR

|f − 〈f〉BR |2 dx 6 CR2

∫
BR

|∇f |2 dx.

Lemma 7.11 (Morrey’s lemma, Morrey (1966), Theorem 3.5.2.). Let Ω ⊂ Rd, d > 1, and
f ∈ W 1,2(Ω). If there exist for each compact K ⊂ Ω constants M,α > 0, R 6 dist(K, ∂Ω)
such that ∫

Br(a)

|∇f |2 dx 6Mrd−2+2α

for all a ∈ K and every r ∈ (0, R), then f ∈ C0,α(Ω).

11Lemma 7.11 in the subsection 7.3.2.
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Lemma 7.12 (Algebraic Young’s inequality). Let a, b be non–negative real numbers, then

∀ε > 0 : ab 6 εap + Cεb
p′ , Cε :=

ε1/p−1 p1/p′

p− 1
.



Chapter 8
Numerical methods

The main aim of this work is the modeling of the flow of synovial fluid in the viscous
regime, thus, we shall focus on description of numerical methods for the case of viscous
fluids. At the end of this chapter we shall briefly comment the principal changes for the
computations concerning the viscoelastic rheology.

First, we focus on the description of the numerical discretization of the system of
equations we will use in the next chapters for computational simulations. Then, we describe
the convection dominated problem typical for synovial fluid and introduce three different
stabilization method for equation of concentration. These methods shall be then compared
at once.

8.1. System of equations

Once again, let us recall the system of governing equations

∂v

∂t
+ [gradv]v = − grad p+

2

Re
div
(
µ(c, |D|2)D

)
,(8.1)

div v = 0,(8.2)

∂c

∂t
+ (grad c) · v =

1

Pe
div
(
Dc(c, |D|2) grad c

)
,(8.3)

where v, p, c is the velocity, pressure and concentration, respectively, µ,Dc is the non–constant
generalized viscosity and diffusivity, and D denotes the symmetric part of the gradient of
velocity. The domain where this system is considered, is bounded set in Rd (d = 2, 3) denoted
by Ω with the Lipschitz boundary ∂Ω. For description of the numerical methods we use in
our computational simulations, we prescribe the Dirichlet and Neumann boundary conditions
for velocity on parts of boundary ΓvD and ΓvN, respectively. It is assumed, that ∂Ω = ΓvD

⋃
ΓvN

and ΓvD
⋂

ΓvN = ∅. We can make such boundary decomposition for concentration as well,

it means ∂Ω = ΓcD
⋃

ΓcN and ΓcD
⋂

ΓcN = ∅, where the Dirichlet and Neumann boundary
conditions for the concentration are prescribed. Explicitly, we consider

(v(t, x) · n)n = v1(t, x) on ΓvD, c(t, x) = cD(t, x) on ΓcD,(8.4)

vτ (t, x) = v2(t, x) on ΓvD,

[T (t, x)]n = gv(t, x) on ΓvN , qc(t, x) · n = gc(t, x) on ΓcN ,(8.5)

where n is the unit outward normal to the boundary and vτ = v − (v · n)n. The Neumann
boundary condition for velocity is prescribed by the condition for the whole Cauchy stress
tensor T = −pI + 2

Reµ(c, |D|2)D, and in the case of concentration it is determined by

the diffusive flux qc = 1
PeDc(c, |D|2) grad c. These conditions are more physical since we

determine on the boundary the physical force density and concentration flux, respectively.
For now, we assume that meas(ΓvN) 6= ∅, otherwise we would have to additionally introduce
extra pressure condition.
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The time interval of interest is I = 〈0, T 〉, for which beginning time we have initial
conditions v(0, x) = v0 and c(0, x) = c0 for all x ∈ Ω. We emphasize, that the domain Ω
and boundary parts ΓvD, ΓvN, ΓcD and ΓcN do not change with time.

In what follows, we describe the numerical method suitable for solving this system. First,
we discretize the system in time by finite differences method, and then, after obtaining
the stationary set of equations for each time step, we use the finite element method for
discretizing the space.

8.2. Time discretization

For the time discretization of the system (8.1)–(8.3) we use θ–scheme, specifically the
Crank–Nicholson scheme see e. g. Douglas Jr et al. (1970), Turek et al. (2006), which
is described as follows. We divide the time interval I into n time steps 〈tk, tk+1〉, for
k = 0, ..., n − 1, where t0 = 0 and tn = T . The step length of interval 〈tk, tk+1〉 is then
∆tk = tk+1 − tk. Approximating the time derivatives by the central differences–like quotient

∂f

∂t
≈ f(tk+1)− f(tk)

∆tk
,(8.6)

the θ–scheme applied on the system (8.1)–(8.3) leads to set of equations

vk+1 + θ1∆tk
(

[∇vk+1]vk+1 − 2

Re
div
(
µ(ck+1, |D(vk+1)|2)D(vk+1)

))
(8.7)

+ ∆tk∇pk+1

= vk − θ2∆tk
(

[∇vk]vk − 2

Re
div
(
µ(ck, |D(vk)|2)D(vk)

))
,

div vk+1 = 0,(8.8)

ck+1 + θ1∆tk
(
∇ck+1 · vk+1 − 1

Pe
div(Dc(c

k+1, |D(vk+1)|2)∇ck+1)

)
(8.9)

= ck − θ2∆tk
(
∇ck · vk − 1

Pe
div(Dc(c

k, |D(vk)|2)∇ck)

)
,

expressed at each discrete time tk, k = 0, ..., n− 1. Here, notation of zk represents z(tk) and
θ1 + θ2 = 1. By choosing the values of θ1 and θ2, not necessarily the same for the equation
of velocity and concentration, we are determining what scheme is used. For θ1 = θ2 = 1/2
we obtain Crank–Nicholson, while the backward and forward (implicit and explicit) Euler
schemes are obtained for θ1 = 1, θ2 = 0 and θ1 = 0, θ2 = 1, respectively. Even though
the Crank–Nicholson scheme is conditionally stable, we use it in our computations since
it is a second–order method. For the incompressibility constraint and the pressure we use
the implicit treatment which gives better stability properties and is consistent with the full
space–time finite element method discretization.

At this point, the set of equations (8.7)–(8.9) can be considered as a set of stationary
partial differential equations at a given time tk.

8.3. Discretization in space

In order to use the finite element method on equations (8.7)–(8.9), we have to formulate
them in a weak form by the means of test functions from appropriate spaces. The finite
element method is based on the discretization of these spaces to finite dimensional spaces,
and thus, the transformation of the partial differential equations to the set of algebraic
equations, see e. g. Johnson (1987), Eriksson et al. (1996) or Feistauer et al. (2003).

Let us define the function spaces V , P and C as

V = {v ∈ [W 1,2(Ω)]d; v|
Γv

D
= 0},(8.10)

P = L2(Ω),(8.11)

C = {c ∈W 1,2(Ω); c|
Γc

D
= 0}.(8.12)
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Moreover, before the introduction of the weak formulation, we have to treat the non–
homogeneous boundary conditions for velocity and concentration. We assume that there
exist functions v? ∈ [W 1,2(Ω)]d and c? ∈W 1,2(Ω) such that they satisfy in sense of traces
the Dirichlet boundary conditions (8.4) on ΓvD, ΓcD, respectively.

Then, independently on the choice of particular v? and c?, the weak formulation for each
time step k = 0, . . . , n− 1 with tn = T , reads: find (vk+1−v?, pk+1, ck+1− c?) ∈ V ×P ×C
such that

(8.13) (vk+1,ϕ)Ω + θ1∆tk
(
[∇vk+1]vk+1,ϕ

)
Ω

+ θ1∆tk
2

Re

(
µ
(
ck+1, |D(vk+1)|2

)
D(vk+1),∇ϕ

)
Ω

−∆tk(pk+1,divϕ)
Ω
− θ1∆tk

(
gv(tk+1),ϕ

)
ΓvN

= (vk,ϕ)Ω − θ2∆tk
(
[∇vk]vk,ϕ

)
Ω
− θ2∆tk

2

Re

(
µ(ck, |D(vk)|2)D(vk),∇ϕ

)
Ω

+ θ2∆tk
(
gv(tk),ϕ

)
ΓvN

∀ϕ ∈ V ,

(8.14) (div vk+1, ζ)
Ω

= 0

∀ζ ∈ P,

(8.15) (ck+1, ψ)Ω + θ1∆tk
(
∇ck+1 · vk+1, ψ

)
Ω

+ θ1∆tk
1

Pe

(
Dc(c

k+1, |D(vk+1)|2)∇ck+1,∇ψ
)

Ω
− θ2∆tk

(
gc(tk+1), ψ

)
ΓcN

= (ck, ψ)
Ω
− θ2∆tk

(
∇ck · vk, ψ

)
Ω
− θ2∆tk

1

Pe

(
Dc(c

k, |D(vk)|2)∇ck,∇ψ
)

Ω

+ θ2∆tk
(
gc(tk), ψ

)
ΓcN

∀ψ ∈ C,

where v0 and c0 are the corresponding initial conditions. Moreover, we assume the fluxes
to be functions gv ∈ [L2(ΓvN)]d, gc ∈ L2(ΓcN). As standard, we denote the scalar product in
L2(Ω) by

∫
Ω
fg = (f, g)Ω .

The last piece we need for discretization of the function spaces V , P and C, are the
domain and boundary approximation and their following discretization. Let us cover the
domain Ω by the set of quadrilaterals denoted by Th, suitably approximating the boundary
∂Ω by polygonal boundary ∂Ωh. The approximating domain Ωh is then defined by the
boundary ∂Ωh. Since the appropriate approximation of the domain is just technical but very
lengthy, we, for simplicity, assume that the Ω has polygonal boundary itself, Ωh ≡ Ω, and
thus, no approximation of the boundary is needed. The elements of Th are denoted by K
and additionally we define parameter h by

h := max
K∈Th

hK ,(8.16)

where hK is, in a suitable sense, a size-measure of the element K, the longest size of all
elements edges, for example. We require that the mesh fulfills standard regularity conditions,
in more detail in Ciarlet (1978), which are the local shape regularity and exclusion of hanging
nodes. The first one guaranties that with h→ 0 the mesh elements shrink uniformly, precisely
hK/dK < C for all K ∈ Th, where dK is the diameter of the largest ball inscribed into K
and C being a constant. The second requirement guaranties that any two elements are either
disjoint or have common whole edge or vertex.

Now, we can define the finite element spaces V h, Ph and Ch. Since we are dealing with
incompressible fluid, the combination of velocity and pressure finite element spaces has to
satisfy the Babuška–Brezzi stability condition (Babuška (1973) or Brezzi and Fortin (1991))
which guaranties the solvability of the coupled discrete system. Our choice (from many) is
the Q2, P disc

1 pair, the biquadratic and discontinuous linear polynomial spaces, chosen from
computational and simplicity reasons. Moreover, they are known to be stable since, beyond
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others, the incompressibility constrain is satisfied locally in the weak sense, it means as an
“average” on each element of the mesh, see Elman et al. (2005). The definition of the finite
element spaces is then as follows

V h = {v ∈ [C(Ω)]d; v|
K
∈ [Q2(K)]d ∀K ∈ Th},(8.17)

Ph = {p ∈ L2(Ω); p|
K
∈ P disc

1 (K) ∀K ∈ Th},(8.18)

Ch = {c ∈ C(Ω); c|
K
∈ Q2(K) ∀K ∈ Th},(8.19)

and for the treatment of Dirichlet boundary conditions we also define

V 0h = {v ∈ V h; v|ΓvD = 0},(8.20)

C0h = {c ∈ Ch; c|ΓcD = 0},(8.21)

where Q2(K) and Q1(K) denote the space of biquadratic, bilinear functions on the quadri-
lateral element K, respectively, and P disc

1 (K) denotes the space of linear functions on K,
without the requirement of continuity between adjacent elements. All finite element spaces
are conforming, since V h ⊂ [W 1,2(Ω)]d, Ph ⊂ L2(Ω) and Ch ⊂W 1,2(Ω).

The approximations of vk+1, pk+1 and ck+1 are vk+1
h , pk+1

h and ck+1
h , such that vk+1

h −
v?h ∈ V h, pk+1

h ∈ Ph and ck+1
h −c?h ∈ Ch, where v?h ∈ V h and v?h|ΓvD = v1+v2 and analogously

c?h ∈ Ch and c?h|ΓcD = cD, satisfying the discrete form of the equations (8.13)–(8.15)

(8.22) (vk+1
h ,ϕ)Ω + θ1∆tk

(
[∇vk+1

h ]vk+1
h ,ϕ

)
Ω

+ θ1∆tk
2

Re

(
µ
(
ck+1
h , |D(vk+1

h )|2
)
D(vk+1

h ),∇ϕ
)

Ω

−∆tk(pk+1
h ,divϕ)Ω − θ1∆tk

(
gv(tk+1),ϕ

)
ΓvN

= (vkh,ϕ)Ω − θ2∆tk
(
[∇vkh]vkh,ϕ

)
Ω

− θ2∆tk
2

Re

(
µ(ckh, |D(vkh)|2)D(vkh),∇ϕ

)
Ω

+ θ2∆tk
(
gv(tk),ϕ

)
ΓvN

∀ϕ ∈ V 0h,

(8.23) (div vk+1
h , ζ)Ω = 0

∀ζ ∈ Ph,

(8.24) (ck+1
h , ψ)Ω + θ1∆tk

(
∇ck+1

h · vk+1
h , ψ

)
Ω

+ θ1∆tk
1

Pe
(Dc(c

k+1
h , |D(vk+1

h )|2)∇ck+1
h ,∇ψ)Ω − θ1∆tk

(
gc(tk), ψ

)
ΓcN

= (ckh, ψ)Ω − θ2∆tk
(
∇ckh · vkh, ψ

)
Ω
− θ2∆tk

1

Pe
(Dc(c

k
h, |D(vkh)|2)∇ckh,∇ψ)Ω

+ θ2∆tk
(
gc(tk), ψ

)
ΓcN

∀ψ ∈ C0h,

for each time step k = 1, . . . , n− 1 with tn = T .
Since the functions spaces V h(V 0h), Ph and Ch(C0h) have finite dimensions, it is

equivalent to satisfy the equations (8.22)–(8.24) only for the bases functions of these spaces.
Then, we obtain a finite system of non–linear algebraic equations, written in matrix form as

(8.25)

(
Mv + θ1∆tkAv(v

k+1, ck+1)
)
vk+1 −∆tkBTpk+1 = f(vk, ck),

Bvk+1 = 0,(
Mc + θ1∆tkAc(v

k+1)
)
ck+1 = g(vk, ck)

where vk+1 represents the vector of coefficients obtained by expanding vk+1
h in bases of V h,

analogously for pk+1 and ck+1. Next, Mv and Mc represent the corresponding mass matrices,
B is the discrete divergence operator, Av(v, c) and Ac(v) are the operators representing the
convection and dissipation/diffusion parts of the corresponding equations and f and g are
the non–linear vector functions of vectors from the previous time level. All together, we have
(dimV h + dimPh + dimCh) equations, where (dimV h + dimPh + dimCh) − (dimV 0h +
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dimPh + dimC0h) is the number of equations representing the Dirichlet boundary conditions.
The system of (8.25) we need to solve for each time step, with initial conditions represented
by v0 and c0.

If the exact solution is regular enough, the finite element method as we described above
is of convergence of order p+1, p being the polynomial degree of the approximation functions,
as h→ 0

8.4. Computational algorithm

Let us discuss the algorithm of solution of the algebraic problem (8.25) for one time step.
It will be useful to write the algebraic system of equations (8.25) in a more compact way as

F(x̄) = 0,(8.26)

where x̄ = (vk+1,pk+1, ck+1) is the sought vector at the time step k + 1, and F is the
non-linear operator representing the discrete system of equations (8.25). In our case, F is
differentiable and have invertible first derivative ∂F

∂x since the Babuška–Brezzi condition is
satisfied and all the non–linear terms are continuous in x.

We solve the system (8.26) by using the iterative quasi–Newton method, see for example
Kelley (1995), Kelley (2003). For the n+ 1 iteration step it can be formulated as

xn+1 = xn − ωn
[
∂F
∂x

(xn)

]−1

F(xn),(8.27)

where the parameter ωn ∈ (0, 1〉 is the damping factor improving the convergence of the
Newton method. If the initial guess xn=0 is sufficiently close to the solution x̄, the Newton
method gives a quadratic convergence, but on the other hand, a poor initial estimate can
contribute to its non–convergence. The parameter ωn is then implemented to ensure the global

convergence by adaptively changing the length of the correction vector
[
∂F
∂x (xn)

]−1 F(xn)
being sought by standard line search algorithm, for detail see Deuflhard (2004). Of course,
this is at the cost of decrease in order of convergence.

The block structure of the Jacobian matrix ∂F
∂x is

∂F
∂x

(x) =

� � �
� 0 0
� 0 �

 ,(8.28)

where each of its blocks � is sparse. This is due to the standard bases selection of the
particular finite element spaces. Since we need to compute the derivative ∂F

∂x at each iteration
step, it is convenient to approximate the matrix by finite differences from the residual vector
F(x) which is possible because of the matrix sparsity. We write the approximation for [∂F∂x ]ij
which is linearization of i-th equation in j-th unknown[

∂F
∂x

]
ij

(x) ≈ [F ]i(x + εnej)− [F ]i(x− εnej)
2εn

,(8.29)

where ej are the unit bases vectors in Rm, with m being the dimension of the vector x,
explicitly m = dim(V h × Ph ×Ch), and coefficients εn are adaptively taken according to the
change in the solution in the previous step.

One iteration of the used method can be summarized in the following steps:

1. Let xn be some initial guess.
2. Set the residuum vector rn = F(xn) and the Jacobian matrix A = ∂F

∂X (xn).
3. Solve Aδ = rn for the correction δ.
4. Find optimal step length ωn.
5. Update the solution xn+1 = xn − ωnδ.

At the step #3 in the quasi–Newton method, the linear problem has to be solved. This
can done by either the direct solver or iterative solver with preconditioning. In our case, with
two–dimensional problem, we use sparse direct solver UMFPACK, see for example Davis
(2004).
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8.5. Convection–dominated problem

The straightforward numerical discretization described above works well for moderate
values of Reynolds and Péclet numbers. In the case of synovial fluid, the Reynolds number is
small due to small velocities and relatively high viscosity. On the other hand, the diffusivity
of hyaluronan in synovial fluid is extremely small, as described in Chapter 4, and thus very
high Péclet numbers are typical for the considered convection–diffusion equation. Due to
these reasons, the discretization of equation for velocity behaves as expected, while the
algebraic system corresponding to concentration does not meet desired matrix properties
and thus the numerical solution exhibits non–physical effects.

Numerical solution of parabolic equation of convection–diffusion with small diffusivity
shows spurious oscillations (usually originated at sharp layers) causing that the concentration
becomes locally negative and the sharp layers of the approximate solution are delocalized.
This completely numeric feature, worsening with the growing domination of convection, arises
from the form of the matrix Ac(v) associated with the convection and diffusion terms. This
phenomena is well known, see for example Johnson (1982) .

Let us demonstrate the structure of convection–diffusion matrix Ac(v) of convection–
dominated problem in one–dimensional case of steady state convection-diffusion equation

vc′ − 1

Pe
c′′ = 0,(8.30)

with the given constant velocity v and diffusivity Dc(c, |D|2) being constant D, and, for
instance, zero boundary conditions on both ends of the considered one–dimensional do-
main. After discretization of the weak form of (8.30) by piecewise bilinear Q1 functions on
quadrilateral mesh with element size h, one gets the algebraic system

Ac(v)c = 0,(8.31)

with

Ac(v) =

v

2h


1 0 0 . . .
−1 0 +1 0 . . .

0 −1 0 +1 0 . . .
. . .

+
D

h2


1 0 0 . . .
−1 2 −1 0 . . .

0 −1 2 −1 0 . . .
. . .

 .

Here, the first row of the matrix Ac(v) corresponds to the boundary condition. From
this scheme, it is clear that for |v|h > 2D the matrix is not diagonally dominant (the
absolute value of diagonal matrix entry is smaller than the sum of absolute values of non–
diagonal entries), and thus, by most iterative methods the convergence of (8.31) is not
guaranteed. This relation corresponds to the well known condition laid on Péclet number
Pe = L

∗
V
∗
/D
∗

c ≈ v/D claiming, that it has to be small enough to avoid non–physical
phenomena in the solution. There is another thing one should notice, the refinement of the
mesh and the choice of the approximation functions of higher order can positively influence
the properties of Ac(v) as well, hence the solvability of (8.31).

For illustration of the plausible numerical oscillations, we present simple two–dimensional
computations of the evolutionary non–coupled system

∂v

∂t
+ [∇v]v = −∇p+ 2

1

Re
divD,(8.32)

div v = 0,(8.33)

∂c

∂t
+∇c · v = +

1

Pe
∆c,(8.34)

assuming viscosity and diffusivity to be constants. The set of equations is considered on
I × Ω, I = 〈0, 100〉 and Ω = 〈−1, 1〉 × 〈−1, 1〉 square. We prescribe the boundary conditions
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vΤ

GD

(a) BC type I

Gin

Gout

(b) BC type II

Figure 8.1. Boundary conditions; (a) driven cavity type of boundary
conditions – on upper plate is prescribed tangential velocity and constant
concentration, the rest of the boundary is the wall; (b) inflow/outflow
test – on Γin is prescribed the velocity inlet and Dirichlet condition for
concentration, on Γout is velocity and concentration outlet, the rest of the
boundary is the wall. Under wall we understand type of boundary where
the no–slip for the velocity and zero normal flux for concentration are
prescribed.

of two types, as depicted in Fig. 8.1

BC I



v · n = 0 on ΓD

vτ = (x− 1)(x+ 1)τ

c = 0.5

v = 0 on Γ \ ΓD

qc · n = 0.

BC II



v · n = −vin on Γin

vτ = 0

c = 0.5

[T ]n = 0 on Γout

qc · n = 0

v = 0 on Γ \ ΓD

qc · n = 0

(8.35)

Using the standard Galerkin finite element method we get following computational
results, see Fig. 8.2 and Fig. 8.4, for both mentioned boundary conditions. Simulations
were computed for three different diffusivities and refinements of the mesh. The fashion of
the solutions is visible at first sight. With higher diffusivity the Galerkin method produces
oscillations even for very fine mesh and the values of concentration drops below zero or
are higher than the concentration value on boundary ΓD/Γin for all cases. The overshoot
and undershoot of concentration is represented by pink/violet color. The situation worsen
even more for function approximations of lower order, compare in Fig. 8.3 and Fig. 8.5.
Standardly, as in the case of results presented in Fig. 8.2 and Fig. 8.4, we use the Q2

approximations – piecewise biquadratic polynomials.
It is obvious, that for problems of dominated convection, like in the case of synovial fluid

with physical diffusivity of hyaluronan in order of 10−7cm2/s, one has to stabilize the whole
system by suitable tools which should eliminate the spurious oscillations but should not
significantly change the character of resulting solution. A number of stabilization methods
for finite element method has been developed to overcome these typical numerical problems.
Today, the most frequently used stabilization methods are the stream–line diffusion method
introduced by Hughes and Brooks in 1979, also called streamline upwind Petrov–Galerkin
(SUPG), and the Galerkin least squares (GLS) method. We shall, besides these two, introduce
another alternative, the continuous interior penalty (CIP) method.

8.6. Streamline upwind Petrov–Galerkin method

The SUPG method (Johnson (1982), Hughes and Franca (1989), Fries and Matthies
(2006)) is motivated by the finite difference method applied on parabolic equation and
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Figure 8.2. Computational results of concentration distribution for bound-
ary conditions of type BC I – without stabilization; plotted at time t = 50.
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Figure 8.3. Comparison of results obtained by Q1 and Q2 approximations,
Pe = 105, h = h0

4 at t = 50.
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Figure 8.4. Computational results of concentration distribution for bound-
ary conditions of type BC II – without stabilization; plotted at time t = 50.
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Figure 8.5. Comparison of results obtained by Q1 and Q2 approximations,
Pe = 105, h = h0

4 at t = 50.
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stabilized by the means of additionally introduced artificial diffusion. In that case, the very
small physical diffusivity Dc is increased by suitably chosen τ with the property of τ = O(h).
Even though that the oscillations of the resulting numerical solution are eliminated the
added diffusion is introduced in all directions which causes the blurring of sharp layers and
non–physical increase of the concentration in some regions. Finite difference method was
therefore adapted for application of artificial diffusion only in the streamline direction, which
can be interpreted as “what is just about to inflow to the point, influences the solution at this
point more than what has just passed away”. Mathematically, the introduction of artificial
diffusion can be formulated as a modification of the test function of the convective term. On
this basis is developed the SUPG stabilization method for finite element method, but for
consistency, the modified test function is applied to all terms of the weak form. In that case,
the exact solution of the problem satisfies the weak form.

Since the discretization of the equation for the velocity and incompressibility constraint are
unaltered, let us discuss the changes in the discretization of the equation for the concentration,
only. Again, we consider the boundary conditions (8.4) and (8.5), and for simplicity, the
diffusivity Dc to be constant. Then, after the discretization in time1, one obtains

(8.36) ck+1 + θ1∆tk
(
∇ck+1 · vk+1 − 1

Pe
∆ck+1

)
= ck − θ2∆tk

(
∇ck · vk − 1

Pe
∆ck

)
at a given time step k + 1. Then, the streamline upwind Petrov–Galerkin method ads to the
(still standard) space discretization with standard treatment of the boundary conditions

(8.37) (ck+1
h , ψ)Ω + θ1∆tk

(
∇ck+1

h · vk+1
h , ψ

)
Ω

+ θ1∆tk
1

Pe
(∇ck+1

h ,∇ψ)Ω − θ1∆tk
(
gc(tk+1), ψ

)
ΓcN

= (ckh, ψ)Ω − θ2∆tk
(
∇ckh · vkh, ψ

)
Ω

− θ2∆tk
1

Pe
(∇ckh,∇ψ)Ω + θ2∆tk

(
gc(tk), ψ

)
ΓcN

∀ψ ∈ C0h,

an additional term “acting” in the streamline direction, treated element–wise,

∑
K∈Th

τK

(
Rk+1
h,K ,∇ψ · v

k+1
h

)
K
.(8.38)

Here, {τK}K∈Th is a set of stabilization parameters, constants on each element K ∈ Th and

Rk+1
h,K is the residual of equation (8.36) expressed for approximations ck+1

h and ckh on each

element K2. Explicitly it is on each K ∈ Th

(8.39) Rk+1
h,K = ck+1

h − ckh + θ1∆tk
(
∇ck+1

h · vk+1
h − 1

Pe
∆ck+1

h

)
+ θ2∆tk

(
∇ckh · vkh −

1

Pe
∆ckh

)
.

1The formulation for the initial conditions is the same as in the straightforward discretization described
above.

2On each element, the equation in strong form makes sense, since the approximations are the polynomial
functions on K.
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Then, the SUPG method reads

(8.40) (ck+1
h , ψ)Ω +

∑
K∈Th

τK
(
ck+1
h ,∇ψ · vk+1

h

)
K

+ θ1∆tk
[(
∇ck+1

h · vk+1
h , ψ

)
Ω

+
1

Pe
(∇ck+1

h ,∇ψ)Ω

]
− θ1∆tk

(
gc(tk+1), ψ

)
ΓcN

+ θ1∆tk
∑
K∈Th

τK

(
(∇ck+1

h · vk+1
h ,∇ψ · vk+1

h )K −
1

Pe
(∆ck+1

h ,∇ψ · vk+1
h )K

)
= (ckh, ψ)Ω +

∑
K∈Th

τK
(
ckh,∇ψ · vk+1

h

)
K

− θ2∆tk
[(
∇ckh · vkh, ψ

)
Ω

+
1

Pe
(∇ckh,∇ψ)Ω

]
+ θ2∆tk

(
gc(tk), ψ

)
ΓcN

− θ2∆tk
∑
K∈Th

τK

(
(∇ckh · vkh,∇ψ · vk+1

h )K −
1

Pe
(∆ckh,∇ψ · vk+1

h )K

)
∀ψ ∈ C0h.

Recalling that the residual for (in space) exact solution is zero, the whole∑
K∈Th

τK
(
Rk+1
K ,∇ψ · vk+1

h

)
K

= 0,(8.41)

and thus the SUPG is a consistent method.
One can notice, that, as it has been mentioned before, the form of (8.40) can be obtained

if the test function ψ in (8.37) is taken as

ψ −→ ψ + τKv · ∇ψ.(8.42)

What remains is the computation of algorithmic parameter τK , which is in fact a crucial
question in application of the stabilization method on the convection dominated problem.
To this date, there is a notable amount of literature references concerning the τK estimation,
first time discussed in detail in Brooks and Hughes (1982). For the one–dimensional case,
the τK can be optimally computed which is usually, together with assumptions from the
convergence analysis, the base for (non–unique) higher–dimensional extension, Franca and
Valentin (2000), Codina (2000).

From many, we use the proposal of τK by Codina (2000)

τK ∼
(

c1
Peh2

K

+
c2|v|
hK

)−1

,(8.43)

where c1 and c2 are constants, coming from the error estimate. However, the constant from
inverse inequality can not be, in general, explicitly computed, and thus, the choice of c1 and
c2 is not obvious. Nevertheless, the values are usually used as in the one–dimensional case,
explicitly c1 = 4 and c2 = 2, as has been derived for linear elements, see Codina (2000).

For ck+1 ∈ W p+1,2(Ω) and suitable τK (in our case of form (8.43)), the spatial error
estimate can be then obtained as

||ck+1 − ck+1
h ||SUPG ≤ C

(
Pe−1/2 + h1/2

)
hp |ck+1|p+1,(8.44)

where || · ||SUPG is a suitable norm, see Roos and Stynes (1996). In comparison with the
classical Galerkin formulation, the error has “extra accuracy” of half of power of h in the
streamline direction.

Again, we present the exemplary computations for the same boundary and geometry
settings as computed for the non–stabilized scheme above, see Fig. 8.6–8.7, which shall be
discussed together with the other types of stabilization methods at end of the chapter.
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Figure 8.6. Computational results of concentration distribution for bound-
ary conditions of type BC I – SUPG stabilization; plotted at time t = 50.
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Figure 8.7. Computational results of concentration distribution for bound-
ary conditions of type BC II – SUPG stabilization; plotted at time t = 50.
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8.7. Galerkin least squares method

While SUPG was motivated by the finite differences method and artificial diffusion, the
Galerkin least squares method (Jiang (1998), Fiard et al. (1998), Bochev and Gunzburger
(2009)) is based on formulation of the problem in the sense of minimizing the error functional
in a suitable norm, usually the square of L2–norm, resulting in symmetric positive definite
matrix of the algebraic system.

Again, we shall describe the discretization of the equation for concentration, only, and
directly start with the form after the time discretization

(8.45) ck+1 + θ1∆tk
(
∇ck+1 · vk+1 − 1

Pe
∆ck+1

)
= ck − θ2∆tk

(
∇ck · vk − 1

Pe
∆ck

)
.

If we set for each time level k + 1

Lk+1(vk+1)ck+1 := ck+1 + θ1∆tk
(
∇ck+1 · vk+1 − 1

Pe
∆ck+1

)
,(8.46)

fk(vk, ck) := ck − θ2∆tk
(
∇ck · vk − 1

Pe
∆ck

)
,(8.47)

and after, for simplicity, drop the indexes (keeping in mind we operate on time level k + 1),

Lk+1(vk+1)ck+1 = fk(vk, ck) −→ Lc = f,(8.48)

one can formulate the problem (8.45) in the sense of GLS as: find the approximative solution
ch ∈ Ch such that

‖Lhch − fh‖22 = min
ψ∈Ch

‖Lhψ − fh‖22,(8.49)

where operator Lh = Lk+1(vk+1
h ) and function fh = fk(vkh, c

k
h).

This can be reformulated as

(Lhch − fh,Lhψ)Ω = 0 ∀ψ ∈ Ch,(8.50)

or in other words, we are looking for the stationary point for which the derivatives are zero
in all directions. The equation (8.50) can be paralleled to standard Galerkin formulation if
the test function ψ is replaced by Lhψ.

At this point, the matrix of the resulting algebraic system is symmetric positive definite.
Nevertheless the operator Lh is of second order and thus (8.50) is equivalent to solving the
4th order equation. Moreover, the formulation requires the direction ψ ∈ W 2,2(Ω), which
is not true since Ch 6⊂W 2,2(Ω) in the case of the Lagrange finite elements. To resolve this
complication, we can choose between two approaches. First, similar to SUPG, one can add
to the weak formulation the stabilization term∑

K∈Th

τK(RK ,Lhψ),(8.51)

where RK = (Lhch − fh)|K is the residuum on the element K and τK is the stabilization
parameter. Or, one can reduce the order of the operator L by following reformulation of the
equation (8.45), which is the approach we prefer since no additional information about the
stabilization parameter is needed.

Let us formally rewrite the (8.45) by the help of additional variable q

qk+1 = ∇ck+1,(8.52)

ck+1 + θ1∆tk
(
qk+1 · vk+1 − 1

Pe
div qk+1

)
,(8.53)

= ck − θ2∆tk
(
qk · vk − 1

Pe
div qk

)
.(8.54)
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Then, in the operator notation defined by

B(qk+1, ck+1) := qk+1 −∇ck+1(8.55)

fk := ck − θ2∆tk(qk · vk − 1

Pe
div qk)(8.56)

A(qk+1, ck+1) := ck+1 − θ1∆tk(qk+1 · vk+1 − 1

Pe
div qk+1)− fk(8.57)

one gets, again after dropping the indexes, the formally reformulated equation (8.45) in the
form

A(q, c) = f,(8.58)

B(q, c) = 0,(8.59)

and, the GLS applied on this system together with boundary conditions represented by
operator C reads

‖A(qh, ch)− f‖22 + ‖B(qh, ch)‖22 + ‖C(qh, ch)‖22,∂Ω(8.60)

= min
w∈[Ch]2

ψ∈Ch

(
‖A(w, ψ)− f‖22 + ‖B(w, ψ)‖22 + ||C(w, ψ)||22,∂Ω

)
.

This minimum, as the stationary point of (8.60), is then found by solving the system of

2

(
A− f, ∂A

∂qh
[w]

)
Ω

+ 2

(
B, ∂B

∂qh
[w]

)
Ω

+ 2

(
C, ∂C
∂qh

[w]

)
∂Ω

= 0,(8.61)

2

(
A− f, ∂A

∂ch
[ψ]

)
Ω

+ 2

(
B, ∂B

∂ch
[ψ]

)
Ω

+ 2

(
C, ∂C
∂ch

[ψ]

)
∂Ω

= 0,(8.62)

for all directions w ∈ [Ch]d and ψ ∈ Ch. By notation ∂A
∂ch

[ψ] is understood the Gâteaux

derivative d
dεA(qh, ch+εψ)|ε=0. The system of (8.61) and (8.62) is then the resulting system

of non–linear algebraic equations F(x̄) = 0.
For the c ∈W p+1,2(Ω) and q ∈ [W p+1,2(Ω)]d one can obtain the error estimate for GLS

method

||c− ch||1,2 + ||q − qh||1,2 ≤ Chp (|c|p+1 + |q|p+1) ,(8.63)

see Cai et al. (1994), Cai et al. (1997) or Jiang (1998). The error estimate of GLS can be
however improved for the case of GLS formulation by the means of stabilization term (8.51).
Then, one can obtain similar estimate as (8.44), formulated for a GLS suitable norm, see for
example Roos and Stynes (1996).

The exemplary computations for the case of the GLS stabilization are depicted in Fig.
8.8–8.9, which shall be discussed together with the other types of stabilization methods at
end of the chapter.
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Figure 8.8. Computational results of concentration distribution for bound-
ary conditions of type BC I – GLS stabilization; plotted at time t = 50.



8.7 Galerkin least squares method 91

0.0 0.1 0.2 0.3 0.4 0.5

(a) Pe = 104, h = h0

0.0 0.1 0.2 0.3 0.4 0.5

(b) Pe = 105, h = h0

0.0 0.1 0.2 0.3 0.4 0.5

(c) Pe = 106, h = h0

0.0 0.1 0.2 0.3 0.4 0.5

(d) Pe = 104, h = h0
2

0.0 0.1 0.2 0.3 0.4 0.5

(e) Pe = 105, h = h0
2

0.0 0.1 0.2 0.3 0.4 0.5

(f) Pe = 106, h = h0
2

0.0 0.1 0.2 0.3 0.4 0.5

(g) Pe = 104, h = h0
4

0.0 0.1 0.2 0.3 0.4 0.5

(h) Pe = 105, h = h0
4

0.0 0.1 0.2 0.3 0.4 0.5

(i) Pe = 106, h = h0
4

Figure 8.9. Computational results of concentration distribution for bound-
ary conditions of type BC II – GLS stabilization; plotted at time t = 50.
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8.8. Continuous interior penalty method

The keystone of continuous interior penalty method (Douglas and Dupont (1976),
Burman and Hansbo (2004), Burman and Ern (2007), Turek and Ouazzi (2007)) is the
penalization of the gradient jumps of the discrete solution on the mesh interfaces, to evoke an
apparent stiffness of rapidly changing fields in the space variables (like in the neighborhoods
of sharp layers). In contrast to SUPG, the CIP method introduces only one symmetric
stabilization term, generally independent of the diffusivity coefficient, which is important
for error estimates int the case when diffusivity is non–constant. Then, the mass matrix of
resulting algebraical system can be lumped. On the other hand, the CIP method results in
more dense matrix of the algebraical system than SUPG or GLS, and from practical point of
view, the extra information about the interior faces has to be recorded.

Before we formulate the stabilized problem, let us introduce new, nevertheless for CIP
or discontinuous methods standard, notation. Let the interior face be called F = K1 ∩K2,
where K1 and K2 are two distinct elements of Th, with the diameter hF and unit outer
normal n. The set of all interior faces of the mesh is called Fh. Then, on each interior face,
we define the scalar–valued jump of gradient of scalar field a at the face F between elements
K1 and K2 as

[∇a · n]F = ∇a|K1
· n1 +∇a|K2

· n2,(8.64)

where n1 and n2 are the outer normals with respect to elements K1 and K2.
The principle of CIP method is to add to the standard Galerkin discretization the term

penalizing the gradient jumps. In the case of discretization scheme by continuous functions,
the gradient jump is manifested in the normal direction only, and thus, the form of the
penalization is expressed in notation of (8.64) as follows

j1(ch, ψ) =
∑
F∈Fh

∫
F

γh2
F [∇ch · n]F [∇ψ · n]F dS(8.65)

or in element notation

j1(ch, ψ) =
∑
K∈Th

1

2

∫
∂K

γh2
∂K [∇ch · n][∇ψ · n] dS(8.66)

where [·] = 0 on ∂K ∩ ∂Ω, h2
∂K = h2

Fi
, Fi being the edges of element K, and γ is a user–

specified constant. Another possible variant is the weighting of the stabilization term by the
normal flux through each edge, see for example Burman and Fernández (2009),

j2(ch, ψ) =
∑
K∈Th

1

2

∫
∂K

γh2
∂K |vh · n|[∇ch · n][∇ψ · n] dS.(8.67)

The CIP stabilization method then reads for each time step k + 1: find ck+1
h − c?h ∈ Ch

such that3

(8.68) (ck+1
h , ψ)Ω + θ1∆tk

(
∇ck+1

h · vk+1
h , ψ

)
Ω

+ θ1∆tk
1

Pe
(∇ck+1

h ,∇ψ)Ω − θ1∆tk
(
gc(tk+1), ψ

)
ΓcN

+ j(ch, ψ)

= (ckh, ψ)Ω − θ2∆tk
(
∇ckh · vkh, ψ

)
Ω

− θ2∆tk
1

Pe
(∇ckh,∇ψ)Ω + θ2∆tk

(
gc(tk), ψ

)
ΓcN

∀ψ ∈ C0h.

Assuming the exact solution c belongs to W 2,2(Ω)4, the formulation (8.68) is consistent
as

j(c, ψ) = 0 ∀ψ ∈ C0h.(8.69)

3The treatment of Dirichlet boundary condition is the same as above, thus for the definition of c?h see

section 8.3.
4In that case the trace of gradient is well defined.
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Assuming the diffusivity is bounded from zero (the diffusive term does not vanish) and
ck+1 ∈W p+1,2(Ω), then the a priori error estimate yields

||ck+1 − ck+1
h ||2 ≤ Chp+1|ck+1|p+1,(8.70)

see for example Douglas and Dupont (1976) or Burman and Hansbo (2004).
The exemplary computations are depicted in Fig. 8.10–8.13, regarding both variants of

CIP. We call CIP1 the variant with stabilization term of (8.66) term, and CIP2 variant with
the (8.67). The computational results shall be discussed, together with the other types of
stabilization methods introduced before, in the next section.
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Figure 8.10. Computational results of concentration distribution for bound-
ary conditions of type BC I – CIP1 stabilization; plotted at time t = 50.
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Figure 8.11. Computational results of concentration distribution for bound-
ary conditions of type BC II – CIP1 stabilization; plotted at time t = 50.
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Figure 8.12. Computational results of concentration distribution for bound-
ary conditions of type BC I – CIP2 stabilization; plotted at time t = 50.
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Figure 8.13. Computational results of concentration distribution for bound-
ary conditions of type BC II – CIP2 stabilization; plotted at time t = 50.
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8.9. Comparison of the stabilization methods

For comparison of all three stabilization methods, together with the scheme without
stabilization, we present Tables 8.1 and 8.2, and the concentration profile cuts in Figures
8.15 and 8.16. For better comparison, all the computations were performed by the same
direct solver, and, let us recall once again, we resolve the velocity field together with the
concentration distribution at the same time. Nevertheless, the velocity is not influenced by
the concentration distribution, since the equations are not fully coupled for this testing cases.

The Table 8.1 presents the maximal and minimal values of numerical solutions for both
the computational settings, BC I and BCII. Since the analytical solution is satisfying the
principle of maximum/minimum, the interior values of the solution should not cross over
the boundary values of the concentration, explicitly, in our case, the values 0 and 0.5. We
can see, none of the introduced stabilization conserves positiveness, and generally the driven
cavity test sets higher demands on the numerical scheme. This is due the characteristic of
the exact solution, having spiral character of sharp and thin layers. Even though the CIP1
stabilization gives much over/under–shooting critical values in comparison with SUPG and
GLS, they are all concentrated near the boundary, which suggests that the implementation
of boundary conditions is not appropriate, or/and the implementation of the CIP method
close to the boundary is not properly “tuned”. The comparison is held for the computational
setting of Pe = 106 and the finest assumed mesh.

The comparison of number of degrees of freedom (only for concentration approximation
by Q2 polynomials) and relative computational cpu time5 presents Table 8.2, concerning the
driven cavity test, BC I, only. Since CIP stabilization introduces extra non–zero entries in
the resulting approximation system, we present the sparsity of the matrix as well. As we can
see, the number of degrees of freedom for basic, non–stabilized, numerical discretization for
the mesh density h = h0/4 is 16, 641, and only the SUPG and GLS methods increase it. In
the case of GLS, that is caused by the additional gradient discretization (in fact we solve
the equation of the fourth order, instead of second order) which is inevitable. On the other
hand, the way we discretize the SUPG is not optimal. For the computation of residuum
(8.39) we approximate the gradients as well, resulting in more robust approximation scheme.
This can be avoided by, for example, the gradient recovery technique. For this reason we call
streamline upwind Petrov–Galerkin by SUPG* in the Table 8.2, since, generally, the number
of degrees of freedom does not need to be increased. Concerning the relative cpu time of
each computation, the CIP method was fastest from all considered stabilization schemes,
even though the density of resulting matrix is higher, see Table 8.2. This is due to the fact
that the extra non–zero matrix entries represent simple linear symmetric additional coupling
between the standard equations.

The concentration profiles on specific domain cuts (see green lines for each specific
computational test domain in Fig. 8.14) are depicted in Figures 8.15 and 8.16. From Fig.
8.15 and Tab. 8.1 it is clear, that the CIP1 scheme and GLS are the most diffusive. This
results that in the CIP1 case the concentration values on the specific cuts does not become
negative but, on the other hand, the localized concentrations spiral layers are not well
preserved, concerning driving cavity test. The sharp layers are conserved mostly by the
GLS method. While while the SUPG and CIP2 methods are most oscillatory from all the
considered stabilizations, for our computations they are least diffusive. Here, again, it is
visible that the driven cavity is more computationally challenging than the inflow/outflow
test. The comparison of oscillatory profiles is presented in Fig. 8.16. The base lines represent
zero concentration. All the comparisons are made for computational setting of Pe = 106 and
finest mesh h = h0/4.

5Here, one should keep in mind that our aim is not to develop the high–performance computations, rather
to compare the resulting numerical solutions.
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Driven cavity test Inflow/outflow test

Method
Absolute

Min
Absolute

Max
Absolute

Min
Absolute

Max

No stabilization −0.404 0.737 −0.720 0.649

SUPG −0.214 0.568 −0.061 0.557

GLS −0.165 0.514 −0.219 0.523

CIP1 −0.726 0.624 −0.428 0.551

CIP2 −0.144 0.609 −0.264 0.576

Table 8.1. Comparison of considered stabilization methods concerning the
overshoots and undershoots of numerical solution for both computational
setting; SUPG – streamline upwind Petrov–Galerkin, GLS – Galerkin least
squares, CIP1/2 – continuous interior penalty (both variants); the analytical
bounds of concentration are 0 and 0.5. For both cases, Pe = 106 and
h = h0/4.

Method DOF #NZ rel. cpu time

No stabilization 16, 641 263, 169 1.00

SUPG* 25, 091 263, 169 2.14

GLS 25, 091 263, 169 2.13

CIP1/2 16, 641 1.034, 289 1.68

Table 8.2. Comparison of considered stabilization methods for computa-
tional setting BC I, the driven cavity test, concerning the number of degrees
of freedom (DOF) for Q2 approximation of the concentration, the informa-
tion of sparsity of the matrix of the resulting algebraic system represented
by the number of its non–zero entries (#NZ), and relative cpu time of
computation with respect to computational time of system without stabiliza-
tion; SUPG* – streamline upwind Petrov–Galerkin, GLS – Galerkin least
squares, CIP1/2 – continuous interior penalty (both variants). Comparison
for computational setting Pe = 106 and h = h0/4.

vΤ

GD

(a) BC I

Gin

Gout

(b) BC II

Figure 8.14. Domain cuts for driven cavity setting (BC I) at y = 0 and
inflow/outflow setting (BC II) diagonal cut between points [−1,−1] and
[1, 1].
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Figure 8.15. Concentration profiles of driven cavity test (BC I) for different
stabilization methods, profiles on horizontal domain cut at y = 0 (see Fig.
8.14 (a)); gridlines represent the analytical bounds of concentration, top:
cmin = 0 and cmax = 0.5, bottom: base line corresponds to c = 0.
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Figure 8.16. Concentration profiles of inflow/outflow test (BC II) for
different stabilization methods, profiles on diagonal domain cut between
points [−1,−1] and [1, 1], parametrized from −

√
2 to
√

2, (see Fig. 8.14 (b));
gridlines represent the analytical bounds of concentration, top: cmin = 0
and cmax = 0.5, bottom: base line corresponds to c = 0.
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8.10. Finite element method for viscoelastic flow

Generally, the numerical handling of the governing equations for viscoelastic flow is more
difficult, since we need to consider additionally to the system of

∂v

∂t
+ [gradv]v = − grad p+ divS,(8.71)

div v = 0,(8.72)

∂c

∂t
+ (grad c) · v =

1

Pe
div (Dc grad c) ,(8.73)

another tensor equation for the extra stress tensor S. In the case of Maxwell(λ2 = 0)/Oldroyd–
B fluid it takes the form of

S + λ1

O
S = 2η0

(
D + λ2

O
D

)
,(8.74)

where λ1, λ2 and η0 are material parameters of the viscoelastic fluid and O denotes the upper
convective derivative. Another three (in the case of d = 2) partial differential equations for
S11, S22 and S12 = S21 thus need to be solved in coupling with (8.71)–(8.73), which can be
handled by the finite element method algorithm as described above. Of course, we need to
be careful with the value of characteristic number of viscoelasticity, the Weissenberg number
We = %λ1V

∗
/L
∗

which suggests, as Reynolds or Péclet number, the characteristic of the
flow.

In our case, more challenging would be the fact that we consider (in the framework of the
linear theory) the Maxwell model as a description of viscoelastic rheology of synovial fluid.
It is well known that for λ2 → 0 the equation (8.74) turns to hyperbolic equation which is
for the finite element method without suitable stabilization unsolvable. We can stabilize the
Navier–Stokes equations similarly as in the case of convection–diffusion equation, or, we can
stabilize the equations by the use the Oldroyd model instead of Maxwell with reasonably
well chosen parameter λ2. The latter seems applicable in our case, since Oldroyd–B, as fitted
in Chapter 6, was giving similar characteristic as Maxwell model, considering the parameter
λ2 was fitted as λ2 ≈ 10−2.

If we want to compute the flow of viscoelastic fluid described by Oldroyd–B model, we
need to discretize the equation (8.74) as well. Nevertheless, it is more suitable to rewrite the
equation for extra stress tensor in term of the conformation tensor Z, defined through

S = 2kD +m(Z − I),(8.75)

with unknown constants k, m. Then, the convective derivative
O
D in the additional tensor

equation vanishes. Let us be more specific and consider that all the material parameters λ1,
λ2 and η0 are positive constants. Then the formal substitution of the extra stress tensor in

terms of Z in (8.74) leads to (
O
I = −2D)

mλ1

O
Z = m(I −Z) + (2η0 − 2mλ1 − 2k)D + (2η0λ2 − 2kλ1)

O
D.(8.76)

By choosing the form of constants k and m as

k =
η0λ2

λ1
, m =

η0

λ2
1

(λ1 − λ2),(8.77)

the terms with D and
O
D in (8.76) vanish.

The system of equations then takes the form

∂v

∂t
+ [gradv]v = − grad p+ 2 div(kD) + div(m(Z − I)),(8.78)

O
Z =

1

λ1
(I −Z),(8.79)

div v = 0,(8.80)

∂c

∂t
+ (grad c) · v =

1

Pe
div (Dc grad c) ,(8.81)
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with k, m defined by (8.77). At this point, we can consider the material parameters λ1, λ2

and η0 to be functions and formally introduce them in the equations.



Chapter 9
Computational simulations

9.1. Introduction to simulations of viscous models

We perform simulations for viscous model of synovial fluid as derived in Chapter 5, by
the use of the material parameters setting from the fitting procedures. First, we consider
driven cavity problem for domain setting as depicted in Fig. 9.1. For this case we study the
influence of two different, having the least diffusive properties, stabilization techniques on the
numerical solutions, explicitly the SUPG – streamline upwind Petrov–Galerkin method and
the CIP2 – continuous interior penalty method with the weights, from now on called CIP.
Later, we study the flow properties of fluid described by the proposed non–linear viscous
models for synovial fluid. Next, we consider the domain setting illustrated in Fig. 9.18,
where the domain aspect ratio is more realistic considering the synovial joint geometry. For
this case we study the computational results for different viscous models for synovial fluid,
as closely described in Chapter 5. In this chapter, one should keep in mind, that our aim is
not to simulate the flow of synovial fluid in a real geometry, rather to study the properties of
the flow itself in some kind of test geometry.

In all cases we assume the fully coupled system of governing equations, explicitly

∂v

∂t
+ [gradv]v = − grad p+

2

Re
div
(
µ(c, |D(v)|2)D(v)

)
,(9.1)

div v = 0,(9.2)

∂c

∂t
+ (grad c) · v =

1

Pe
div (Dc grad c) ,(9.3)

with constant diffusivity and non–constant viscosity of suitable, later explicitly chosen form.
The Péclet number referring to synovial fluid is of order 107.

In following sections, we shall assume the computational setting of driven cavity on a
rectangular domain with the aspect ratio 10 : 1 or 100 : 1, see Fig. 9.1 and Fig. 9.18. We
resolve the evolutionary problem with initial conditions of

v(0, x) = 0, c(0, x) = 0.1.(9.4)

The boundary conditions are set as follows: on the upper part Γ1 of the domain Ω we prescribe
the Dirichlet conditions, for both, the velocity and concentration, and, on the walls Γ2 we
assume the zero flux of concentration through the walls and no–slip boundary conditions
for the velocity. Moreover, we consider the boundary conditions to be time–dependent, by

G2

G2

G1

G2

Figure 9.1. Domain Ω of tested problem with aspect ratio 10 : 1.
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Figure 9.2. Time scale function φπ(t)
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Figure 9.3. Time profiles of boundary functions for concentration and
velocity on the Γ1 wall.

which we aim to stabilize the passage from the initial state to the evolutionary state. For
this reasons we assume the characteristic curve φπ of a form

φπ(t) =

{
1
2 (1 + cos(t− π)) t ∈ 〈0, π〉,
1 t > π,

(9.5)

with a graph plotted in Fig. 9.2.
All together, the boundary conditions read

c(t, x) = c(0, x)(1 + φπ(t)),(9.6)

vτ (t, x) = v̄(x)φπ(t), vn|Γ1
= 0, ∀x ∈ Γ1,

∂c

∂n
|Γ2

= 0, v|Γ2
= 0 ∀x ∈ Γ2,(9.7)

where v̄(x) = −(1 + x)(1− x), x parameterizing wall Γ1, and vn and vτ being the normal
and tangential components of velocity vector, in this domain setting consilient with the
velocity vector components vy and vx, respectively. The time–evolution functions of boundary
conditions on the moving wall Γ1 are depicted in Fig. 9.3.

We discretize the domain Ω by a quadrilateral mesh, as shown in Fig. 9.4, quadratically
refined in the vertical direction. By this we meet the higher computational requirements of
the boundary condition settings.

9.2. Influence of stabilization – Model 2b

Here, let us present the numerical results we obtained by the approximate system
described in Chapter 8. We assume for our computations the Model 2b only, since it predicts
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Figure 9.4. Cut of the computational mesh covering domain Ω (in vertical
direction of full size). For computational reasons, the mesh is quadratically
refined in the vertical direction.

G1

@-1, -0.1D

@1, 0.1D

Figure 9.5. The geometrical positions of domain cuts; vertical cut (pink)
is positioned between points [0,−0.1] and [0, 0.1], and horizontal cut (green)
between points [−1, 0] and [1, 0].

the viscous properties of synovial fluid more accurately. We recall the formula for viscosity

µ = µ0

(
β + γ|D|2

)n(c)
,(9.8)

where the shear–thinning index is of the form of

n (c) = ω

(
1

αc2 + 1
− 1

)
.(9.9)

From the stabilization techniques, we use the SUPG and CIP, which shall be compared.
All figures are plotted for time t = 100. The structure of the presented results is following:
we present the area distributions of concentration for different mesh refinements, for both,
the SUPG and CIP stabilizations, see Fig. 9.6. For better comparison of the methods and
meshes, we include the profile cuts of concentration on specific domain cuts as well, see Fig.
9.7 and 9.8. The domain cuts are visualized in Fig. 9.5. The last figure, Fig. 9.9, presents the
relative differences between numerical solutions obtained by SUPG and CIP stabilizations,
|cSUPG − cCIP|/cCIP, for the mesh density of h = h0/2.

As one can see, the trend of influence of the stabilization algorithms with the refinement
of the meshes is obvious. The oscillations are becoming less distinguishable, and for the
finest considered mesh they almost vanish. Moreover, on the finest mesh, both stabilizations
yield almost identical numerical solutions. The differences between solutions are more visible
on vertical rather than horizontal cut. This is well observable in the Fig. 9.9, where the
relative differences between numerical solutions are plotted. The fashion of the numerical
properties of the stabilizations and the mesh density is distinctive, the higher density of the
mesh, the more similar the solutions of both stabilizations are.
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Figure 9.6. Distribution of concentration for different mesh densities,
h = 2h0, h = h0 and h = h0/2, and both SUPG and CIP stabilizations.
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points [0,−0.1] and [0, 0.1], for both stabilizations and three different mesh
densities. The gridlines represent the concentration value of 0.1.
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Figure 9.9. Relative differences between numerical solutions obtained by
the use of SUPG and CIP stabilizations – |cSUPG − cCIP|/cCIP.

9.3. Comparison of results for models with different viscosities

In this section, we present the results obtained by the SUPG method for the same
geometry setting as above, but for different viscosity models for synovial fluid. We compare
the Navier–Stokes fluid

µ = 1,(N–S)

with the viscosity models for synovial fluid from the Chapter 5

µ = eαc
(
1 + γ|D|2

)n
,(Model 1)

µ =
(
β + γ|D|2

) 1
2 (e−αc−1)

,(Model 2a)

µ =
(
β + γ|D|2

)ω( 1
αc2+1

−1
)
.(Model 2b)

We, again, present the area distributions and profiles on domain cuts, this time for all,
concentration, velocity, viscosity and shear–thinning index, see Fig. 9.3–9.17. For better
comparison, all the area distribution plots concerning the visualization of the same physical
quantity are made with the same color scale. Regarding the concentration and viscosity
profiles on domain cuts, the zooms at particular domain walls are included.

Concerning the concentration profiles in Fig. 9.3–9.11, only one dominant undershoot
occurs, close to the boundary Γ1, as closely visible in profiles on vertical domain cut. This is
due to the boundary condition we impose on the wall. Figures 9.14–9.15 present the viscosity
distributions. We can notice the differences of the models quite distinctively. This is due to
the concentration and velocity/shear rate influence. In the profile on vertical domain cut,
the first peak in viscosity is the result of different velocity profiles for particular models,
more precisely, different maximas in the velocity cause different values of the shear rates,
which are the cases where the viscosity models exhibit most differences. The second peak,
the one closer to the lower wall, is a result of different concentration profiles. The next set
of figures 9.12–9.13 represents the velocity distributions. While the first figure is picturing
the area distribution of the velocity magnitude, the second figure of the set presents the
profiles of particular velocity components on the vertical and horizontal domain cuts. In
comparison of all models with the Navier–Stokes, the velocity profiles are more flattened and
exhibiting smaller velocity maximas. Moreover, the slowest flow is obtained by the viscosity
Model 1 which is due to the smallest value of shear–thinning index from all the models being
compared, see sets of figures Fig. 9.16–9.17. Here, the variance of values of shear–thinning
indexes is significant, where the smallest values refer to the Model 1.
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Figure 9.10. Concentration distribution for different viscosity models.
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Figure 9.12. Magnitude of velocity for different viscosity models.
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Figure 9.13. Velocity profiles on vertical and horizontal cuts of the com-
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Figure 9.14. Viscosity for different models.
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Figure 9.16. Shear–thinning index for different viscosity models.
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Figure 9.18. Domain Ω of tested problem with edge ratio 100 : 1.

9.4. Geometry influence

In this section, we study the influence of the ratio of domain walls on the numerical
solution, as the joint cavities are in reality very thin domains, see Fig. 2.1. For this reason,
we change the computational domain geometry to a domain setting as depicted in Fig. 9.18,
with an aspect ratio of 100 : 1. The rest of the computational setting remains the same as in
the previous section. Again, we present the same figure sets for concentration (Fig. 9.19 and
9.20), velocity (Fig. 9.21 and 9.22), viscosity (Fig. 9.23 and 9.24) and shear–thinning index
(Fig. 9.25 and 9.26), presenting the whole area distributions and zooms at the right–hand
side of the domain and the profiles of solutions on the same vertical and horizontal domain
cuts as before, this time defined between the points [0,−0.01]↔ [0, 0.01] and [−1, 0]↔ [1, 0],
respectively.

As we can see, the computational results exhibit less oscillatory behavior in comparison to
the previous ones, which is caused by the gradual changes in the solution profiles. Nevertheless,
the characteristic of profiles is similar to the computational results of setting with aspect
ratio 10 : 1. All the plots are presented for the results obtained by the SUPG stabilization
method, however, the differences in numerical solutions obtained by the CIP and SUPG are
of very small order. This is presented in Fig. 9.4 where the relative differences of numerical
solutions of concentration, in a sense of |cSUPG − cCIP|/cCIP, are compared for SUPG and
CIP and for two different mesh densities.
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Figure 9.19. Concentration distribution for different viscosity models, the
whole domain figures and zooms of figures at right–hand sided wall.
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Figure 9.20. Concentration profiles on vertical and horizontal cuts of the
computational domain.
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Figure 9.21. Magnitude of velocity distribution for different viscosity
models, the whole domain figures and zooms of figures at right–hand sided
wall.
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Figure 9.22. Profiles of velocity vector components on vertical and horizon-
tal cuts of the computational domain. Left: the vy component on horizontal
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Figure 9.23. Viscosity for different models, the whole domain figures and
zooms of figures at right–hand sided wall.
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Figure 9.24. Concentration profiles on vertical and horizontal cuts of the
computational domain.
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Figure 9.25. Shear–thinning index distribution for different viscosity mod-
els, the whole domain figures and zooms of figures at right–hand sided
wall.

-1.0 -0.5 0.0 0.5 1.0

-0.25

-0.20

-0.15

x

s-
t
in

de
x

-0.25 -0.20 -0.15

-0.010

-0.005

0.000

0.005

0.010

s-t index

y

Model 2b

Model 2aModel 1

Figure 9.26. Profiles of shear–thinning index of different models on vertical
and horizontal cuts of the computational domain.



9.4 Geometry influence 119

-0.5 0.0 0.5 1.0
x

10-6

10-5

10-4

0.001

0.01

diff

1´10-4 2´10-4 5´10-4 0.001 0.002 0.005 0.010
diff-0.010

-0.005

0.000

0.005

0.010

y

h0 h0�2

Figure 9.27. Relative differences between numerical solutions obtained by
the use of SUPG and CIP stabilizations; diff = |cSUPG − cCIP|/cCIP.





Chapter 10
Synovial membranes modeling

10.1. Introduction to membrane modeling

Membranes play an important role in many applications. For example, biological
membranes act as selective barriers between or around living cells, artificial membranes are
used for separation purposes in laboratory or in industry, like in dialysis, water purification,
seawater desalinization or removing of microorganisms from dairy products. Their structure
alters with the application, above all adapted to the chemical composition of the fluid mixture
passing through. This indicates that modeling of membrane transport can not be unified in
a general way, instead it has to be suited to the specific problem. In the case of synovial
membrane, the solution is very diluted, i.e. the mass concentration of the solute is very
low, and the molecules of hyaluronan are large with respect to the membrane pores and
thus high amount of hyaluronan molecules is “reflected”1 back to the joint cavity while the
ultafiltrated plasma, the “volume background”, can diffuse freely through the membrane.
Moreover, the transport of the fluid is passive, no special active transport is involved in the
process. Due to these reasons we shall study the flow of volume (solvent – the Newtonian
plasma ultrafiltrate) and the diluted chemical (solute – the hyaluronan) in domains separated
by a leaky semipermeable2 membrane which can be modeled as an interface allowing solvent
to go through, but rejecting high amount of solute.

The most commonly used driving forces of the flow through semipermeable membrane are
pressure and concentration gradients. This process is known as filtration, and in the literature,
see e.g. Kedem and Katchalsky (1958), Patlak et al. (1963), Cheng (1998), Kocherginsky
(2010), is described by two equations, one for solute flux and one for volume flux (their
explicit formulas shall be introduced later). They involve three parameters which model the
membrane properties: the filtration coefficient or hydraulic conductivity of the membrane,
the solute reflection coefficient (describing the property of the membrane to partly reject
the solute), and the solute permeability of the membrane. Although general, this approach
describing total volume fluxes through the membrane is limited due to the fact that the effects
considered processes are taken in average. This might be sufficient, e.g. for experimental
needs when one needs to predict approximative total flux through the membrane. However, if
we want to model the flow of the solvent and transport of concentration in domains separated
by a membrane, we need suitable transmission conditions at the membrane, which lead to
well posed models. In the case of reaction–diffusion processes in domains separated by the
membrane, the effective transmission conditions were derived in Neuss-Radu and Jäger (2008)
and Neuss-Radu et al. (2010) by means of multi–scale techniques, starting from a microscopic
model of the processes in the membrane, and letting the scale parameter (ratio between
the thickness of the membrane and the dimension of the domain) tend to zero. The flow

1Reflection of the membrane is standard term used in the membrane classification, it describes the
property of membrane to separate particular component(s) form the fluid mixture.

2The semipermeable membrane is a membrane that allows certain type of molecules or ions to pass

through by diffusion while other molecules can not penetrate. The term “leaky” reflects that even the second
type of molecules/ions can pass but only of some fraction which is being usually very small.
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of miscible mixtures through membrane could be also studied in the context of the theory
of mixtures, see e.g. Rajagopal et al. (1983), and Tao et al. (2001). In this concept, the
processes inside the membrane are resolved starting from the balance of mass, momentum
and energy. However, this approach has its own difficulties, namely the specification of
boundary conditions.

For our application, we propose a new mathematical model for flow and transport
processes in domains separated by a zero–thickness interface representing leaky semipermeable
membrane. The model of the processes in the bulk domains consists of the the Navier–Stokes
equations describing the flow of diluted solution, together with the convection–diffusion
equation modeling the solute transport, as introduced in the Chapter 7. This system of
non–dimensionalized governing equations takes the form

∂v

∂t
+ [gradv]v = − grad p+ 2

1

Re
div
(
µ(c, |D|2)

)
,(10.1)

div v = 0,(10.2)

∂c

∂t
+ (grad c) · v =

1

Pe
div
(
Dc(c, |D|2) grad c

)
,(10.3)

where v is the velocity vector of the solvent, p hydrodynamical pressure, c concentration of
the solute and D symmetric part of the velocity gradient. The system of governing equations
(10.2)–(10.3) has to be complemented with initial conditions, boundary conditions at the
outer boundaries, and, mainly, by transmission conditions at the separating membrane. These
transmission conditions shall create the membrane model, formulated on the macroscopic scale,
assuming the membrane to be fixed and rigid interface, separating the flow domains. Thus,
the processes inside the membrane are not resolved, however, their effective contributions
are included phenomenologically in the transmission conditions. We consider the membrane
to be symmetric, i.e. the transmission properties of the membrane from both sides are the
same, without the influence of its possible curvature on the flow of the solvent, which is
however up to now an open question.

In the formulation of the transmission conditions across the membrane, the following
aspects shall be taken into account: first, the separating properties of the membrane with
respect to the solvent, which lead to the buffering of solute concentration at the membrane
and second, connected with the first aspect, the influence of the concentration accumulation
on the volume flow, known as osmotic effect. Such transmission model has similar features
with other models existing in the literature, see e.g. Kedem and Katchalsky (1958). However,
the important difference is that we shall not formulate equations only for the total volume
fluxes across the membrane, as it is done in the existing literature, but we give transmission
conditions which can be used to describe the influence of the membrane on the processes in
the bulk regions.

The model, first derived for a Newtonian fluid, is introduced gradually, starting with
the formulation of the transmission conditions for the situation when the osmotic effect is
neglected, which means that, at the beginning, only the process of concentration buffering is
modeled. Next, the general model including the osmotic effect is formulated. Via the osmotic
pressure, which is a function of solute concentration, the flow equations for the solvent are
also coupled with the transport equation for the solute, yielding a fully coupled model. This
model is then applied on the synovial membrane case. Partial results of this chapter were
already published in Hron et al. (2011).

10.2. Modeling of concentration buffering

At this point, the solution parameters – density, kinematic viscosity and diffusivity
are considered to be constant as we aim to model the effects of the transport through the
membrane, free of other rheological effects.

The effect of concentration buffering (sometimes called the concentration polarization) is
caused by the free transport of the solvent through the membrane while the solute carried
by the solvent to the membrane is partially rejected by the membrane and consequently
accumulated in front of it.
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Figure 10.1. One–dimensional description of membrane surroundings.
Membrane is placed at point x = 0.

Let us consider the one–dimensional stationary case, where we can find the analytic
solution of the system and therefore identify the proper transmission conditions. Then, we
shall generalize the model to higher dimensions.

10.2.1. 1D model. For the stationary case in one dimension, due to the incompress-
ibility of the fluid, the system of the Navier–Stokes equations provides unique constant
solution of the velocity, which we denote by u. The governing equation for the concentration
reduces to the ordinary differential equation where enters the known constant velocity u.
Our domain of interest is the interval 〈−1, 1〉, where we place the membrane at position
x = 0 as schematically depicted in Fig. 10.1. Since the solvent can go through the membrane
freely, the velocity remains constant in the whole domain. We set the solvent velocity in the
direction of the positive axis.

We denote by c− the concentration on the interval 〈−1, 0〉, and by c+ the concentration
on the interval 〈0, 1〉, in front and after the membrane, respectively. The governing model
for concentrations c− and c+ together with outer boundary conditions can be written in the
form

−1 ≤ x ≤ 0



− 1

Pe

d2c−

dx2
+ u

dc−

dx
= 0,

c−(−1) = cin,

− 1

Pe

dc−

dx
(0) + σuc−(0) = 0,

(10.4)

0 ≤ x ≤ 1



− 1

Pe

d2c+

dx2
+ u

dc+

dx
= 0,

− 1

Pe

dc+

dx
(1) = 0,

− 1

Pe

dc+

dx
(0) + uc+(0) = u(1− σ)c−(0),

(10.5)

where σ is called the membrane reflection coefficient, describing the property of the membrane
to be leaky semipermeable. More precisely, the parameter σ takes the values between 0 and
1, and it specifies the fraction of the convective flux of the solute molecules which is rejected
by the membrane. Accordingly, (1− σ) specifies the fraction being allowed to pass through
the membrane. The ideal semipermeable membrane (i.e. membrane that perfectly separates
solute from solvent) would be then described by the reflection coefficient σ = 1.

The conditions for concentrations on the membrane imply the natural assumption on the

continuity of the solute fluxes 1
Pe

dc−

dx (0)− uc−(0) = 1
Pe

dc+

dx (0)− uc+(0) across the membrane.
The membrane condition for the “inflow” concentration c− specifies that only σ fraction
of the convective transport is rejected by the membrane, and thus only this part is active
in the convection–diffusion balance. On the other hand, the rest, the (1 − σ) fraction, is
allowed to pass and thus this fraction is governing the total flux of the concentration c+ on
the right–hand side of the membrane.

The analytic solution of system (10.4)–(10.5) is

c−(x) = −cin(1− σ + σexuPe)

−1 + σ − σe−uPe
, c+(x) = − cin(1− σ)

−1 + σ − σe−uPe
.(10.6)
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Figure 10.2. Profiles of concentration buffering; membrane is placed at
position x = 0. Four plots for different velocity and Péclet number (diffusiv-
ity) setting. The Range of concentration corresponds to diluted solution of
1% mass concentration.

The plotted solutions for different parameter values are given in Fig. 10.2. We remark
the formation of the concentration polarization layer, and the discontinuity in the solute
concentration at the membrane. As one can see, the influence of velocity and diffusivity
on the concentration polarization layer are of the similar effect, with higher velocity and
lower diffusivity the boundary layer is more distinguishable and more steep. This behavior
qualitatively agrees to the experimental results found for example in Scott et al. (2000a).
In the next section, the transmission conditions for the concentration at the membrane are
generalized to higher dimensional setting.

10.2.2. Generalization of the transmission conditions to higher dimensions.
For higher dimensions, we consider domain Ω consisting of two subdomains Ω+, and Ω−

in Rd separated by an interface Γm representing the membrane, see the two–dimensional
configuration in Fig. 10.3. Thus, we have Ω = Ω+ ∪ Γm ∪ Ω−. The restrictions of functions
defined on Ω to the subdomains Ω+, and Ω− are denoted by the superscripts + and −,
respectively.

The transmission conditions for the solvent flow at the membrane now consist of the
continuity of the normal component and no–slip condition in the tangential direction with
the respect to the membrane interface for the velocity and of the continuity of normal stresses

vτ
+ = vτ

− = 0, v+ · n+ = −v− · n− = v · n+,(10.7)

[−(p− − p+)I +
2

Re
(D− −D+)]n− = 0n−,(10.8)

where n+,n− are the outer unit normal vectors on Γm with respect to the domains Ω+,Ω−

and vectors vτ
+/− represent the tangential components of velocity defined as vτ

+/− =
v+/− − (v+/− · n+/−)n+/−.
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G1

G2
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G4 Gm

Figure 10.3. Two–dimensional computational domain with dimensions
〈−5, 5〉 × 〈0, 1〉; boundaries Γ1 and Γ3 are impermeable walls, Γ4 is the inlet
and Γ2 is the outlet. Γm is the inner boundary representing the zero–thickness
membrane.

Concerning the transmission conditions for the solute concentration, we require the
continuity of the normal fluxes across the membrane, and the condition modeling the partial
rejection of the solute by the membrane. If we assume that the velocity v has the property
v · n− ≥ 0, then these conditions have the form

(10.9)
− 1

Pe
grad c− · n− + σc−v · n− = 0,

− 1

Pe
grad c+ · n+ + c+v · n+ = −(1− σ)c−v · n−.

The main disadvantage of this formulation is the directional dependence of the conditions
for the concentration. Since the buffering occurs in the case of outflow while in the case of
inflow the washout of concentration from the membrane is observed, we have to explicitly
know the flow direction. One of the possible generalization of the transmission conditions for
the concentration (10.9), assuming symmetric properties of the membrane from both sides, is

(10.10)

1

Pe
grad c− · n− = (σc−)v · n− + (1− σ)(c− − c+) min(0,v · n−),

1

Pe
grad c+ · n+ = (σc+)v · n+ + (1− σ)(c+ − c−) min(0,v · n+).

It is easy to see that (10.10) reduces to (10.9) if v · n− ≥ 0, and on the other hand, for the
case v · n− ≤ 0 we obtain analogous condition for outflow in opposite direction.

The complete model for higher dimensions thus consists of the equations (10.2)–(10.3),
together with the boundary conditions at the outer boundary, and the transmission conditions
(10.7), (10.8) and (10.10).

For the numerical simulation of the concentration buffering in two dimensions, we use
the following computational setting. We consider the domain from Fig. 10.3, with the fixed
and rigid membrane Γm. The domain Ω− on the left from membrane is prolonged since
there the most interesting accumulation of concentration occurs. We assume the pressure
driven flow, for which the fluid of a given concentration enters the channel on boundary Γ4,
and the filtrate leaves the channel on boundary Γ2. The walls of the channel Γ1 and Γ3 are
impermeable for both, the concentration and velocity. The form of the boundary conditions
on the outer boundaries is

Γ4 : [−pI + 2
1

Re
D]n = −pinn, c = cin,(10.11)

Γ1,Γ3 : v = 0,

(
1

Pe
grad c+ cv

)
· n = 0,(10.12)

Γ2 : [−pI + 2
1

Re
D]n = 0n,

1

Pe
grad c · n = 0,(10.13)

where cin is a constant inlet concentration and pin is a constant or a periodical function of
time. The transmission conditions on the membrane are (10.7), (10.8), and (10.10). Since
we solve the time–dependent problem, we set the initial conditions as a rest state (v = 0 and
c = 0).

The computational results are shown later, in section 10.5, for comparison with the
results obtained for model extended by the osmotic effects.
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10.3. Extension of the model by osmotic effect

In this section, we take into account the influence of the solute concentration on the volume
flow, via the osmotic pressure. In the literature concerning the filtration problems, the flow
through the membrane including the effects of the osmosis is usually described by the Kedem–
Katchalsky equations (Kedem and Katchalsky (1958)). They describe the simultaneous
trans–membrane volume Jv and solute Js fluxes in the pressure–driven membrane processes
by

Jv = Lp(∆p− σ∆π),(10.14)

Js = −Ps∆π/RT + (1− σ)Jv c̄,(10.15)

where ∆p is the pressure difference and ∆π is the difference in osmotic pressures (∆π =
π(c+)−π(c−)) across the membrane, R, T are the gas constant and temperature, respectively,
and c̄ is the average solute concentration. The membrane properties are described by three
membrane parameters: the filtration coefficient or hydraulic conductivity Lp, the reflection
coefficient σ and the solute permeability Ps. One should notice here, that the osmotic
pressure in the formula (10.14) is scaled by factor σ.

This general yet simple approach describes the total fluxes in average, however, in our
case, we are not interested only in the resulting outflows rather in the spatial distribution
of particular physical quantities themselves. This means, we need to modify our current
transmission model to include the osmotic effect in agreement with the common approach
based on (10.14)–(10.15).

Due to the physical reasons, we prefer to include the osmotic pressure π(c) into our
model via the the normal stress of the fluid at the membrane. In that case, the transmission
conditions for the flow are of the following form

vτ
+ = vτ

− = 0, v+ · n+ = −v− · n− = v · n+,(10.16)

[−(p− − p+)I + 2
1

Re
(D− −D+)]n− = −(π(c−)− π(c+))n−.(10.17)

Here, we do not scale the osmotic pressure since the reflection effect is already included
in the concentration profile, which generates the osmotic pressure profile, and thus, it is
already incorporated in the model. In this work, we still assume the existence of the osmotic
pressure only on/across the membrane but the approach of considering the osmotic pressure
as a part of normal stress allows us to consider the existence of osmotic pressure in the whole
space. This can be advantageous in the cases of the concentration shock waves or steep
concentration gradients, which are, from our point of view, the typical cases where osmotic
pressure can play an important role even for the membrane–free cases. The influence on the
flow would then be via its gradient, as a complement of hydrodynamical pressure gradient in
the Navier–Stokes equations.

For the osmotic pressure of the solution, we use the following representation

(10.18) π(c) = P1c+ P2c
2.

This quadratic dependence is typical for polymeric solutions, in contrast to much more com-
mon linear dependence of solutions of ions or small molecules, for example. Here, parameters
P1 and P2 are constants3, reflecting characteristics of the solute–solvent interactions, see e.g.
Cheng (1998) and Coleman et al. (1999) and are the first two of the virial coefficients of the
osmotic pressure virial expansion. First parameter P1 is dependent on the molecular weight
of the polymer while P2 reflects the energy of binary interactions between polymer chains
and solvent molecules. This representation immediately suggests that the second parameter
can not be neglected in the case of hyaluronan molecules diluted in synovial fluid due to
their significant chain–solvent interactions.

The complete model describing the filtration problem in the domain Ω containing the
membrane Γm thus consists of the equations (10.2)–(10.3) on the subdomains Ω+, and
Ω−, together with the boundary conditions (10.11)–(10.13) at the outer boundary, the
transmission conditions (10.10) for the solute concentration, and the transmission conditions

3Different constants for different solute–solvent constitution of the fluid.
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(10.16), (10.17) for the flow. As one can see, the equations for the flow and the transport
equation for the solvent are now fully coupled via the transmission condition (10.17).

For the numerical simulations of the model including osmotic effect, we consider the
setting from Section 10.2.2. The results are compared for the transmission model without
and with the osmotic pressure effect in Section 10.5.

10.4. Adaptation of numerical method

We use standard Galerkin finite element method to solve the PDE system consisting
of equations (10.2)–(10.3) on the domain introduced in Fig. 10.3 and boundary conditions
(10.11)–(10.13), as in greater detail described in Section 8. Beside standard assumptions on
the mesh, we require that the membrane Γm coincides with edges of the mesh.

While the velocity is required to be continuous on the membrane and can be approximated
by globally continuous functions, the concentration and the pressure are allowed to be
discontinuous on the membrane. Since, for the pressure, we use approximation by piecewise
linear but discontinuous functions and the membrane boundary coincides with the mesh
edges, the discretization of the pressure does not need to be adapted. On the other hand, the
concentration discontinuity has to be treated in a special way. Among many different ways,
the simplest one is the splitting of c into two continuous variables c+ and c− defined on Ω+

and Ω−, respectively. The standard weak formulation of the system is thus derived separately
on the two subdomains Ω+ and Ω−, where the mutual coupling is provided through the
requirement of continuous velocity on the membrane and the transmission conditions (10.17)
and (10.10). If we define the global concentration4 variable as

(10.19) c(x) =

{
c+(x) if x ∈ Ω+,

c−(x) if x ∈ Ω−,

with the spatial approximation from the space

Ch = {ch ∈ C(Ω+) ∪ C(Ω−), ch|T ∈ Q2(T ) ∀T ∈ Th},(10.20)

then the global discretization remains almost unaltered.

10.5. Numerical simulations

In this section, we present numerical simulations giving an insight of the importance of
osmotic pressure and the membrane parameter σ on the flow through membrane in pressure
driven filtration processes. The numerical solutions of the transmission model are computed
for the computational setting described in section 10.2.2, for Reynold’s number Re = 1 and
Péclet number Pe = 100, still for a Newtonian fluid. In each set of plots, we compare the
model without the osmotic effect with the full transmission model. Hereby, we consider linear
or quadratic osmotic pressure dependence on concentration, and two different values of the
reflection coefficient σ. The following physical quantities are being plotted:

– the distribution of solute concentration, hydrodynamical pressure and flux/velocity
component vx in the whole domain Ω, see Fig. 10.4, 10.5, 10.7 and 10.9,

– the curve profiles of the concentration, hydrodynamical pressure and total flux on
the central horizontal cutline 〈−5, 5〉 × [0, 0.5], see Fig. 10.6, 10.8 and 10.10,

– the time evolution of the concentration, pressure, and total flux, at the middle
point of the membrane [0, 0.5], see Fig. 10.11–10.14.

Fig. 10.4 and 10.5 present the steady state of the concentration distribution in the whole
domain, the Fig. 10.6 visualizes the profiles of concentration on the second half of horizontal
cut (between points [0, 0] and [5, 0]). As we can see, the shape of the concentration layer
strongly differs. In the case of simulation without inclusion of osmotic pressure (case (a)), the
concentration at the membrane is higher towards the walls than in the middle part. This is
caused by the non–decelerated parabolic velocity profile. The velocity is higher in the middle
part than close to the walls thus it carries away more of the concentration. This phenomena
is not observed for the cases where the velocity at the membrane rapidly drops like in the
settings of (b) and (d), as it can be seen in Fig. 10.13, and Fig. 10.14. For the setting (c)

4On the membrane boundary, we use similar notation even for the pressure.
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and (d) with low reflection coefficient and quadratic osmotic pressure dependence, a small
concentration layer is created compared to the setting with higher σ and linear dependence
of osmotic pressure, setting (a) and (b).

Profiles of hydrodynamical pressure are presented in Fig. 10.7 and 10.8. In the case of
computational setting without osmosis, the equations for velocity and concentration are not
fully coupled and thus the hydrodynamical pressure is a solution of the classical Navier–Stokes
equations, and thus, it has a linear profile. For the settings including osmosis the jumps in
the pressure occur. In the case of small σ, the concentration layer at the membrane is not so
significant, see Fig. 10.11, and thus it does not evoke high difference in the osmotic pressures
which could act against the fluid pressure, see Fig. 10.12. In the case of the quadratic osmotic
pressure dependence on the concentration, the compensation of the pressures occurs even
though the drop in concentration was not so high as for the case in Fig. 10.11, (b).

Last set of pictures reflecting distributions at the steady state are Fig. 10.9 and 10.10,
characterizing the x–component of the velocity vector v, thus in some sense, the flux of
the fluid. This clearly demonstrates the important role of the osmotic pressure and high
reflection coefficient of the membrane for the fluid drainage.

Figures 10.11–10.13 present the time evolution of individual physical quantities in the
middle point of the membrane. Since the values of the concentration and of the pressure
are discontinuous at the membrane, we plot the traces of these functions from both sides of
the membrane, the solvent flux is continuous across the membrane. At the beginning of the
computation, there are no jumps since at that time no concentration layer at membrane has
been created. During this time the solvent flux is constant and highest. After the creation
of the concentration layer, the flux decreases corresponding to the induced hydrodynamical
pressure drop. These sets of graphs illustrate, that even high pressures induced in the
channels (cavities) can be apparently diminished behind the membrane, and thus, the
channels boundaries are stable without the risk of rapture. Moreover, the flux through the
membrane is controlled and thus no high drop in the volume is observed.

The last set of graphs in Fig. 10.14 shows the solution of computation with time periodic
inlet pressure pin = p0(1 + sin($t)). As we can see, after a short initial phase, the solution
becomes periodic with the same frequency as the enforcing pressure condition. In this setting
we can observe that the solvent flux changes its direction at the time when the forcing
pressure is lowest. This is the manifestation of the osmotic effect, since the concentration on
the left–hand side of the membrane is higher than the concentration on the right–hand side,
which creates the pressure force acting against the inflow pressure.
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(d) σ = 0.9, P2 = 5 · P1

Figure 10.4. Concentration distribution at steady state. Four plots for
different parameter setting; without osmotic pressure: (a) σ = 0.9 , P1 =
P2 = 0; with osmotic pressure: (b) σ = 0.9 , P2 = 0, (c) σ = 0.5 , P2 = 0, (d)
σ = 0.9 , P2 = 5 · P1.
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(a) σ = 0.9, P1 = P2 = 0
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(b) σ = 0.9, P2 = 0
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(c) σ = 0.5, P2 = 0
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(d) σ = 0.9, P2 = 5 · P1

Figure 10.5. Concentration distribution at steady state. Four plots for
different parameter setting; without osmotic pressure: (a) σ = 0.9 , P1 =
P2 = 0; with osmotic pressure: (b) σ = 0.9 , P2 = 0, (c) σ = 0.5 , P2 = 0, (d)
σ = 0.9 , P2 = 5 · P1.
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Figure 10.6. Concentration profile on horizontal cutline at steady state.
Four plots for different parameter setting; without osmotic pressure: (a)
σ = 0.9 , P1 = P2 = 0; with osmotic pressure: (b) σ = 0.9 , P2 = 0, (c)
σ = 0.5 , P2 = 0, (d) σ = 0.9 , P2 = 5 · P1.
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Figure 10.7. Hydrodynamic pressure distribution at steady state. Four
plots for different parameter setting; without osmotic pressure: (a) σ =
0.9 , P1 = P2 = 0; with osmotic pressure: (b) σ = 0.9 , P2 = 0, (c) σ =
0.5 , P2 = 0, (d) σ = 0.9 , P2 = 5 · P1.
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(d) σ = 0.9, P2 = 5 · P1

Figure 10.8. Hydrodynamic pressure profile on horizontal cutline at steady
state. Four plots for different parameter setting; without osmotic pressure:
(a) σ = 0.9 , P1 = P2 = 0; with osmotic pressure: (b) σ = 0.9 , P2 = 0, (c)
σ = 0.5 , P2 = 0, (d) σ = 0.9 , P2 = 5 · P1.
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Figure 10.9. Distribution of vx velocity component at steady state. Four
plots for different parameter setting; without osmotic pressure: (a) σ =
0.9 , P1 = P2 = 0; with osmotic pressure: (b) σ = 0.9 , P2 = 0, (c) σ =
0.5 , P2 = 0, (d) σ = 0.9 , P2 = 5 · P1.
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Figure 10.10. Profile of vx velocity component on horizontal cutline at
steady state. Four plots for different parameter setting; without osmotic
pressure: (a) σ = 0.9 , P1 = P2 = 0; with osmotic pressure: (b) σ = 0.9 , P2 =
0, (c) σ = 0.5 , P2 = 0, (d) σ = 0.9 , P2 = 5 · P1.
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Figure 10.11. Time evolution of concentration at midpoint of the mem-
brane for different parameter combinations; without osmotic pressure: (a)
σ = 0.9 , P1 = P2 = 0; with osmotic pressure: (b) σ = 0.9 , P2 = 0, (c)
σ = 0.5 , P2 = 0, (d) σ = 0.9 , P2 = 5 · P1.
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Figure 10.12. Time evolution of hydrodynamical pressure at midpoint
of the membrane for different parameter combinations; without osmotic
pressure: (a) σ = 0.9 , P1 = P2 = 0; with osmotic pressure: (b) σ = 0.9 , P2 =
0, (c) σ = 0.5 , P2 = 0, (d) σ = 0.9 , P2 = 5 · P1.
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Figure 10.13. Time evolution of total solvent flux through Γm for different
parameter combinations; without osmotic pressure: (a) σ = 0.9, P1 = P2 = 0;
with osmotic pressure: (b) σ = 0.9 , P2 = 0, (c) σ = 0.5 , P2 = 0, (d)
σ = 0.9 , P2 = 5 · P1.
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Figure 10.14. Time evolution of various quantities for periodic pressure
inlet, σ = 0.9, P2 = 0; (a) concentration, (b) pressure, (c) total solvent flux
through Γm, all plotted for the middle point of the membrane boundary.
Dotted profiles represent the frequency of the pressure inlet oscillations.
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(a) trans–synovial flow (b) opposition to fluid drainage

Figure 10.15. Effect of hyaluronan concentration on fluid drainage through
synovial interstitium; (a) effect on pressure–flow relation, (b) effect of
hyaluronan concentration on opposition to outflow; From Scott et al. (2000b).

10.6. Application of the transmission model to synovial membranes and
synovial fluid

As it has been introduced in Chapter 2, the hyaluronan outflow buffering is important for
the balance of joint fluid volume and composition of the fluid, which is, generally, important
for the whole stability of synovial joint system. For these reasons, it is important to study
the filtration processes of synovial fluid through the synovial membrane in relation to the
hyaluronan concentration, which can vary with different physiological conditions of the
joint. This motivates us to apply our membrane transmission model (developed for diluted
polymeric solutions) to synovial fluid drainage.

In this section, we shall consider the transmission model for the membrane as introduced
above in application to synovial membrane. Furthermore, we shall include into the model
the effects of membrane resistivity to bulk flow, and, we shall consider the non–Newtonian
characteristic of synovial fluid, in a manner of viscosity being concentration and shear rate
dependent

µ = µ0

(
β + γ|D|2

)n(c)
,(10.21)

where the shear–thinning index is of the form of

n (c) = ω

(
1

αc2 + 1
− 1

)
,(10.22)

as was closely described in Chapter 5. We start from experiments of Scott et al. (2000b)
and Coleman et al. (1999), see Fig. 10.15, which were motivated to test the concentration
polarization hypothesis, in particular the effect of hyaluronan concentration on pressure–
driven flow across a synovial membrane in vivo. As it was described by Scott and Coleman,
the hyaluronan concentration significantly reduces the outflow of synovial fluid from the
synovial cavity, even for high intraarticular pressures. On the other hand the dilution of
hyaluronan in synovial fluid, as in effusions, results facilitation of fluid drainage. Our aim is
to reproduce such characteristic of synovial fluid membrane transport and obtain similar
outflow properties/relations.

There can be many mechanisms playing a role during the synovial fluid drainage, for
example the increase of intramembrane viscosity, the influence of molecular chain length on
the critical concentration of molecular overlapping, the influence of inhibitors of chain–chain
interactions, etc. We shall nevertheless focus on the concentration polarization due to the
reflexivity of the synovial membrane, and newly, we include to the model the resistivity of the
membrane to the bulk flow. In the previous section, we assumed such membrane properties
that the zero reflexivity, σ = 0, led to a membrane–free model. This means that the flow
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G1

G2

G3

G4 Gm

Figure 10.16. Two–dimensional computational domain with dimensions
〈−5, 5〉 × 〈0, 1〉; boundaries Γ1 and Γ3 are impermeable walls, Γ4 is the inlet
and Γ2 is the outlet. Γm is the inner boundary representing the zero–thickness
membrane.

Figure 10.17. Computational mesh. From both horizontal directions the
mesh is refined close the membrane.

through the membrane would not be slowed down, or in other words, the fluid would not
“feel” the membrane presence, which is physically non–realistic. From the experiment of Scott,
see Fig. 10.15 (a), it is visible that the relation between outflow and imposed intraarticular
pressure exhibit linear relation for zero concentration solution of hyaluronan. This can be
considered as a specification of the membrane resistivity to the bulk flow of the Newtonian
fluid “background”. We therefore, as the membrane is considered as zero–thickness interface,
prescribe the resistance R through the normal stress as following

[−(p− − p+)I + 2
1

Re
(D− −D+)]n− = −(π(c−)− π(c+))n− −R(vn)n−,(10.23)

where, as suggested from the experiment, we take linear relation for the resistance

R(vn) = R̃ vn,(10.24)

with a constant resistivity R̃. All together, we assume the transmission conditions for velocity

vτ
+ = vτ

− = 0, v+ · n+ = −v− · n− = v · n+,(10.25)

[−(p− − p+)I + 2
1

Re
(D− −D+)]n− = −(π(c−)− π(c+))n− −R(vn)n−(10.26)

and for concentration

1

Pe
grad c− · n− = (σc−)v · n− + (1− σ)(c− − c+) min(0,v · n−),(10.27)

1

Pe
grad c+ · n+ = (σc+)v · n+ + (1− σ)(c+ − c−) min(0,v · n+).(10.28)

For the experiment reproduction, we consider the same two–dimensional test geometry
as above with fixed and rigid interface Γm representing the membrane, see Fig. 10.16, with
the mesh refined around the membrane, see Fig. 10.17. Moreover, since we assume diffusivity
of order 10−6, we solve the problem by the use of the numerical stabilization method,
particularly by the continuous interior penalty (CIP) method, as described in Chapter 8,
Section 8.8.

As in the experiment, we assume the pressure driven flow, for which the fluid of a given
concentration enters the channel on boundary Γ4, and the filtrate leaves the channel on
boundary Γ2. Here, we record the total flux of the fluid as a function of an imposed pressure
on boundary Γ1 and qualitatively compare it with the volume outflow relation from the
experiment. We prescribe the walls of the channel Γ1 and Γ3 to be impermeable for both,
the concentration and velocity. The form of the boundary conditions on the outer boundaries
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(a) trans–synovial flow – numerical result

(b) trans–synovial flow – experimental result

Figure 10.18. Qualitative comparison of numerical results of pressure
driven flow through the membrane (a), with the experimental results of
Scott et al. (2000b), (b).

is then following

Γ4 : [−pI + 2
1

Re
D]n = −pinn, c = cin,(10.29)

Γ1,Γ3 : v = 0,

(
1

Pe
grad c+ cv

)
· n = 0,(10.30)

Γ2 : [−pI + 2
1

Re
D]n = 0n,

1

Pe
grad c · n = 0,(10.31)

where cin is a constant inlet concentration and pin is a constant pressure inlet. During the
simulations we cycle over the values of cin and pin, as we want to compare the results of
Scott et al. (2000b). We set the initial conditions as a rest state (v = 0 and c = 0).

The numerical results of the simulations are presented in the Fig. 10.18. As it is well
distinctive, the model is able to capture the main outflow vs. imposed pressure characteristics
which are their linear relationship and the rapid decrease of the outflow for the concentration
around 0.13 ≈ 2mg/ml and higher. Even though we consider the phenomenologically derived
model, under the considered limitations it gives reasonable resulting properties of the filtration
process.
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Edmunds, D. and Rákosńık, J. (2000). Sobolev embeddings with variable exponent. Studia
Math, 143(3):267–293.
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