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Abstract 

The objective of the thesis is to examine interdependencies among the stock 

markets of the Czech Republic, Hungary, Poland and Germany in the period 2008-2010. 

Two main methods are applied in the analysis. The first method is based on the use of 

high-frequency data and consists in the computation of realized correlations, which are 

then modeled using the heterogeneous autoregressive (HAR) model. In addition, we 

employ realized bipower correlations, which should be robust to the presence of jumps 

in prices. The second method involves modeling of correlations by means of the 

Dynamic Conditional Correlation GARCH (DCC-GARCH) model, which is applied to 

daily data. The results indicate that when high-frequency data are used, the correlations 

are biased towards zero (the so-called “Epps effect”). We also find quite significant 

differences between the dynamics of the correlations from the DCC-GARCH models 

and those of the realized correlations. Finally, we show that accuracy of the forecasts of 

correlations can be improved by combining results obtained from different models 

(HAR models for realized correlations, HAR models for realized bipower correlations, 

DCC-GARCH models). 
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Abstrakt 

Cílem této práce je prozkoumání závislostí mezi akciovými trhy České 

republiky, Maďarska, Polska a Německa v období 2008-2010. V analýze jsou 

aplikovány dvě hlavní metody. První metoda je založena na využití vysokofrekvenčních 

dat a spočívá ve výpočtu realizovaných korelací a jejich následném modelování pomocí 

heterogenního autoregresního (HAR) modelu. Kromě toho používáme též realizované 

bipower korelace, které by neměly být ovlivněny přítomností skoků v cenách. Druhou 

metodou je modelování korelací pomocí Dynamic Conditional Correlation GARCH 

(DCC-GARCH) modelu, který aplikujeme na denní data. Výsledky ukazují, že při 

použití vysokofrekvenčních dat jsou korelace vychýleny směrem k nule (tzv. Epps 

efekt). Rovněž nacházíme poměrně významné rozdíly mezi dynamikou korelací 

z DCC-GARCH modelů a realizovaných korelací. Na závěr zjišťujeme, že pro dosažení 

přesnějších předpovědí korelací je vhodné kombinovat výsledky získané z různých 

zkoumaných modelů (HAR modely pro realizované korelace, HAR modely pro 

realizované bipower korelace, DCC-GARCH modely).   
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1. Introduction 

One of the key problems in financial econometrics is the estimation, modeling and 

forecasting of volatility and correlations of asset returns. A large body of literature has 

been devoted to this topic in recent decades. While the main focus has been on volatility 

modeling, understanding the comovements of returns is also of great practical importance. 

Accurate estimates of covariances or correlations are needed in many financial 

applications, such as risk management, asset allocation or derivative pricing. 

Over the past decade, new insights into the behavior of asset returns have been 

gained. As high-frequency data became widely available, researchers were given the 

opportunity to exploit the information contained in intraday returns. This opened a whole 

new chapter in the modeling of volatility and correlations, with the attention being turned 

to the use of so-called “realized volatility”. The realized volatility approach was pioneered 

by Andersen and Bollerslev (1998) but it took a few years until rigorous theoretical 

framework was developed. In this respect, the most important paper is that of Andersen et 

al. (2003). Currently, the realized volatility approach is an active area of research that 

produces very interesting findings. Considerable progress has already been achieved in the 

analysis of the univariate case. We can mention for example the papers of 

Barndorff-Nielsen and Shephard (2004c), Zhang, Mykland and Aït-Sahalia (2005), 

Andersen, Bollerslev and Diebold (2007) or Corsi (2009). In the multivariate context 

(realized covariances and correlations) the foundations were laid by the work of Barndorff-

Nielsen and Shephard (2004a) but more systematic research began only recently, see for 

example Barndorff-Nielsen et al. (2010) or Zhang (2011). 

Besides that, most researchers (not meaning only those who apply the realized 

volatility approach) analyze data from the U.S.1 or Western European markets. In contrast, 

markets in Central and Eastern Europe have typically received considerably less attention, 

which is by itself a good reason to examine these markets. Moreover, the stock markets in 

this region have already attracted the attention of numerous investors, for whom it is of 

great interest to understand the links among the markets. Further motivation can be 

provided by the fact that Central European countries are obliged (once they meet the 

convergence criteria) to join the euro zone, so the degree of comovements among the stock 

                                                           
1
 U.S. = United States of America 
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markets of these countries and vis-à-vis the markets of the euro area can have implications 

for the stability of the monetary union. 

Generally, the existing literature on the relationships among the Central European 

stock markets indicates that over the course of their development, the emerging stock 

markets in this region have become more closely linked to each other, as well as to the 

developed markets. There is some evidence that the interdependencies among the markets 

were influenced by the Asian and Russian crises and later by the Central European 

countries’ accession to the European Union. Most of the empirical studies used daily or 

weekly data and when high-frequency data were employed (see Égert and Kočenda 

(2007a) and Égert and Kočenda (2007b)), they were analyzed by methods that are usually 

applied to daily or lower-frequency data. 

In the light of what was mentioned above, we now turn to the objectives and 

contributions of our thesis. We examine linkages among the stock markets of the Czech 

Republic, Poland, Hungary and Germany in the period 2008-2010, thus employing recent 

data.  Our most important contribution is that we analyze Central European stock markets 

by means of realized correlations constructed from high-frequency data. To our best 

knowledge, no study on this topic has been published so far, which means that we present 

primary results obtained in this field. In addition, we also use so-called realized bipower 

correlations, which should be robust to jumps in the price process. We study the main 

characteristics of the realized correlations and investigate the dynamics of the correlations 

among the analyzed markets. To capture the correlation dynamics, we model the realized 

correlations using the heterogeneous autoregressive model which was proposed by Corsi 

(2009) and then used by Audrino and Corsi (2010) in the context of realized correlations.  

However, our analysis is not restricted to the use of the realized correlations. The 

second method that we apply is multivariate GARCH modeling, namely the DCC-GARCH 

model of Engle and Sheppard (2001) and Engle (2002). Although GARCH models have 

certain weaknesses, a very good motivation for their use is that sometimes we have to work 

with data that are simply not available at high frequencies, in which case the realized 

volatility approach cannot be applied. Even in a situation where we have the 

high-frequency data at hand, the results given by GARCH models are still worth looking at 

because they offer an interesting comparison. 
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Among the most important research questions that we will try to answer in our 

thesis are the following: What is the nature and dynamics of the interdependencies among 

the Central European stock markets? Are there significant differences between the results 

obtained by the two methods (realized correlations, DCC-GARCH model)? Concerning the 

realized correlations, how much are the results affected by the use of different sampling 

frequencies or by the use of estimators that should be robust to the presence of jumps? Do 

the correlations respond to market developments during the recent financial crisis? How do 

our models perform in forecasting correlations? 

The rest of the thesis is organized as follows. In Section 2 we explain the theoretical 

background of our analysis. Section 3 presents some basic information on the Central 

European stock markets and also provides a literature review on the linkages among the 

markets. In Section 4 we describe our data and detail the construction of variables. In 

Section 5 we report and discuss our empirical results. Section 6 summarizes the main 

findings and concludes.  

The thesis is based on the author’s master thesis defended at the Institute of 

Economic Studies in June 2011. The reviewer’s comments have been studied carefully and 

some of them have been taken into consideration, resulting in a few minor changes made in 

the thesis. This applies mainly to Section 3 where we have added two sources to the 

literature review and an explanatory note to Figure 3-1 and Figure 3-2. Certain critical 

comments of the reviewer have been considered unjustified and therefore have not been 

incorporated in the thesis. 
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2. Theoretical Background 

In this chapter we provide the theoretical framework of two different approaches to 

estimating, modeling and forecasting volatility and correlations.  

The first approach is based on the realized variance and the analogous concepts of 

realized covariances and correlations. Together, the realized variance and the related 

measures can be referred to as realized measures. In Section 2.1.1. we show how these 

measures are constructed. By means of the theory of quadratic variation, realized variances 

and covariances can be connected to conditional variances and covariances of asset returns, 

which is shown in Section 2.1.2. A considerable advantage of this approach is that it 

enables us to treat volatility (or co-volatility) as an observable variable. As a consequence, 

relatively simple and straightforward methods can be used for the modeling and 

forecasting of volatility and correlations. This is shown in Section 2.1.3., in which we 

describe the heterogeneous autoregressive (HAR) model.  

The second approach presented in this chapter (Section 2.2.) is based on GARCH 

modeling, thus it is somewhat more traditional. The model that we use is the Dynamic 

Conditional Correlation GARCH (DCC-GARCH) model, which is currently one of the 

most popular multivariate GARCH models. The section starts with a brief introduction to 

multivariate GARCH modeling and then we continue with the specification and estimation 

procedure of the DCC-GARCH model.  

2.1. Realized Measures 

The realized volatility approach including its theoretical underpinnings was 

introduced by Andersen et al. (2001). Later Andersen et al. (2003) and Barndorff-Nielsen 

and Shephard (2004a) developed a truly rigorous theoretical framework for the realized 

measures. We will try to present here the main points. However, we should first explain 

how the realized measures are constructed.  

2.1.1. Construction of Realized Measures 

Let ��,� denote the logarithmic price of asset � at time �. Suppose that we have a 

sample of � days and that within each day the prices are sampled at time interval Δ with a 

total of 	 such intervals in one trading day. The length of a trading day is normalized to 



 

5 

 

unity and the interval Δ is expressed as a fraction of the trading day, so we have Δ = 1 	⁄ . 

Realized variance (
�) of asset � on day � is defined as  

 
��,� = � ��,��������
��� , (1) 

where � = 1, … , � and ��,������ = ��,������ − ��,���������� are intraday returns for day �. 

Realized volatility2 (
���) is then computed as the square root of realized variance, 

formally 

 
����,� =  
��,�. (2) 

In a similar vein, for two assets � and " whose prices are synchronized, we can construct 

the daily realized covariance (
#��). This is computed as  

 
#���,$,� = � ��,������
�

��� �$,������. (3) 

To generalize the concept, we can consider a total of % assets with their logarithmic 

prices given by the % × 1 vector '� = ���,�, … , �(,��), assuming the synchronization of all 

prices. The % × % realized covariance matrix on day � is then defined as  

 *+,-� = � .������
�

��� .������) , (4) 

where .������ = '������ −  '���������� is the % × 1 vector of intraday returns for day �. 

The ��/ element on the main diagonal of *+,-� is equal to the realized variance of asset �, 
while the off-diagonal element in the ��/ row and the "�/ column represents the realized 

covariance between assets � and ". For the realized covariance matrix to be positive 

definite, the number of assets �%� cannot exceed the number of intraday returns for each 

day �	� (Andersen et al., 2003). Finally, we also define the daily realized correlation (
#) 

between assets � and ", which is given by  

 
#�,$,� = 
#���,$,� 
��,� ⋅  
�$,� = 
#���,$,�
����,� ⋅ 
���$,�. (5) 

                                                           
2
 It should be noted that the terminology used in the literature is not consistent. In some papers the term 

“realized volatility” refers to the quantity defined in equation (1). 
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In addition, we define the realized bipower variance and covariance, which were 

introduced by Barndorff-Nielsen and Shephard (2004c) and Barndorff-Nielsen and 

Shephard (2004b). The realized bipower variance (
12�) of asset � on day � is given by  

 
12��,� = 3��� 		 − 1 �4��,������44��,����������4�
��� , (6) 

where 3� = √2 √7⁄ = E�|:|� and : ∼ %�0,1�. The realized bipower covariance 

(
12#��) between assets � and " is defined as 


12#���,$,� = 3���4 		 − 1 �>4��,������ + �$,������44��,���������� + �$,����������4�
���− 4��,������ − �$,������44��,���������� − �$,����������4@. (7) 

In the general framework of % assets we can construct the % × % daily realized bipower 

covariance matrix, which is simply given by  

 

*AB+,-� =
C
D 
12��,� 
12#���,�,� ⋯ 
12#���,(,�
12#���,�,� 
12��,� ⋮⋮ ⋱ ⋮
12#��(,�,� ⋯ ⋯ 
12�(,� H

I. (8) 

Finally, the daily realized bipower correlation (
12#) between assets � and " is 

computed as  

 
12#�,$,� = 
12#���,$,� 
12��,� ⋅  
12�$,�. (9) 

Now that we have shown how the realized measures are constructed, we proceed to 

explain the underlying theory.  

2.1.2. Quadratic Variation Theory  

Following Andersen et al. (2003), we consider an N-dimensional price process 

defined on a complete probability space �Ω, ℱ, 2�, evolving in continuous time over the 

interval L0, �M, where � is a positive integer. Further, let ℱ� ⊆ ℱ be the σ-field that reflects 

the information at time t, so that ℱP ⊆ ℱ� for 0 ≤ R ≤ � ≤ �.3 If the price process is 

arbitrage-free and has finite mean, then the logarithmic vector price process 

                                                           
3
 It is assumed that the family of σ-fields �ℱ���∈LT,)M ⊆ ℱ satisfies the conditions of P-completeness and right 

continuity, which are the usual assumptions for an information filtration. 
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' = >'���@�∈LT,)M belongs to the class of special semi-martingales. To avoid confusion, we 

should stress that the notation introduced in the previous sentence is used for the 

theoretical continuous-time price process, while the discrete approximation of this process 

is referred to by subscripts � (see section 2.1.1). The same kind of notation is used for the 

return process. 

To briefly introduce semi-martingales, a process is called a semi-martingale if it 

can be decomposed as the sum of a finite variation process and a local martingale. Back 

(1991) further notes that the defining property of a special semi-martingale is that the finite 

variation process in the decomposition is taken to be predictable, which means that its 

value at time � is known just before time �. Importantly, the decomposition of a special 

semi-martingale is unique and it is called the canonical decomposition.  

As mentioned above, process ' is a special semi-martingale, so it can be 

decomposed uniquely as the sum of a finite variation and predictable mean component U = �V�, … V(�) and a local martingale W = �X�, … X(�). These may each be written as 

the sum of a continuous sample-path part and a jump part. We thus have the following 

representation for '���  

 '��� = '�0� + U��� + W��� = '�0� + UY��� + ΔU��� + WY��� + ΔW���, (10) 

where the finite variation predictable components UY��� and ΔU��� are respectively 

continuous and pure jump processes, the local martingales WY��� and ΔW��� are 

respectively continuous sample-path and compensated jump processes, and by definition W�0� ≡ U�0� ≡ 0. The no-arbitrage condition implies that whenever ΔU��� ≠ 0 (which 

means that there is a jump whose timing and magnitude is known prior to the jump event 

and thus an arbitrage opportunity exists), there must be a concurrent jump in the martingale 

component, i.e. ΔW��� ≠ 0. Furthermore, this martingale jump must be large enough (with 

strictly positive probability) to change the direction of the jump in the price. Formally, if \V��� ≠ 0, then  

 2]sgn>ΔU���@ = − sgn>ΔU��� + ΔW���@a > 0, (11) 

where sgn�x� ≡ 1 for d ≥ 0 and sgn�x� ≡ −1 for d < 0. 
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Having discussed the characterization of the price process, let us now focus on the 

returns. The continuously compounded return over the interval L� − ℎ, �M, where 0 ≤ � −ℎ ≤ � ≤ �, is denoted by  

 .��, ℎ� = '��� − '�� − ℎ�. (12) 

We will also assume that for ℎ = 1 the interval represents one trading day and ���, 1� is 

the corresponding daily return. The cumulative return process from � = 0 onward, . = >.���@�∈LT,)M, is given by  

 .��� ≡ .��, �� = '��� − '�0� = U��� + W���. (13) 

As a result of the properties of '���, process .��� is a special semi-martingale with the 

unique decomposition into the predictable and integrable mean component U and the local 

martingale W. Besides that, the cumulative return process is subject to two types of jumps. 

First, there are predictable jumps, for which ΔU��� ≠ 0 and equation (11) must hold. Such 

jumps may occur in case of perfectly anticipated releases of information. In contrast, jumps 

of the second type are purely unanticipated, i.e. ΔU��� = 0 but ΔW��� ≠ 0, typically 

occurring when the market is hit by some unexpected news.  

An important property of a semi-martingale (and thus also of every special semi-

martingale) is that it has a quadratic variation process. Let L., .M = hL., .M���i�∈LT,)M be the 

quadratic variation % × % matrix process of the cumulative return process with its ij th 

element denoted as ]��, �$a. Using the definition of quadratic variation employed by 

Barndorff-Nielsen and Shephard (2004a), we have  

 L., .M��� = plim�→o � L.������ − .����ML.������ − .����M)���
��T ,  (14) 

where �T = 0 < �� < ⋯ < �� = �, supq����� − ��� → 0 for 	 → ∞ and plim denotes 

probability limit. The i th diagonal element of L., .M is the quadratic variation process of the 

i th asset return, while the ij th off-diagonal element represents the quadratic covariation 

process between asset returns � and ". Recalling the definition of the cumulative return 

process, we can also rewrite (14) as  

 L., .M��� = plim�→o � L'������ − '����ML'������ − '����M)���
��T .  (15) 
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Andersen et al. (2003) note that if the finite variation mean component U in equation (10) 

is continuous (which means that there are no predictable jumps), then the ij th element of the 

quadratic variation is given by  

 ]��, �$a��� = ]X�, X$a��� = ]X�Y , X$Ya��� + � ΔX��s�ΔTsPs� X$�s�.  (16) 

This is an implication of the fact that the quadratic variation of continuous finite variation 

processes is zero, so U has no effect on the quadratic variation. Equation (16) also shows 

that jump components are relevant for the quadratic covariation only if there are 

simultaneous jumps in the price path for the i th and j th asset.  

Given the definition of quadratic variation, we can immediately see how it relates to 

the realized measures. Equation (15) implies that as 	 → ∞ (or Δ → 0) and for all � = 1, … , �,  

 *+,-� t→ L., .M��� − L., .M�� − 1�, (17) 

where 
t→ denotes convergence in probability. It means that the daily realized covariance 

matrix consistently estimates daily increments to the quadratic return variation process. By 

the same reasoning, the following convergence result is obtained for the daily realized 

correlation between assets � and "  
 
#�,$,� t→ L��, �$M��� − L��, �$M�� − 1� �L��, ��M��� − L��, ��M�� − 1���L�$ , �$M��� − L�$, �$M�� − 1��. (18) 

Next, we show the connection between the quadratic variation and the conditional return 

covariance matrix, as developed by Andersen et al. (2003).  

We assume that the arbitrage-free logarithmic price process ' is square-integrable 

and that the mean component U is continuous. The conditional return covariance matrix at 

time � − ℎ over L� − ℎ, �M is then given by  

 cov�.��, ℎ�|ℱ��/� = E�L., .M��� − L., .M�� − ℎ�|ℱ��/� + xU��, ℎ�+ xUW��, ℎ� + xUW) ��, ℎ�, (19) 

where 0 ≤ � − ℎ ≤ � ≤ �, xU��, ℎ� = cov�U��� − U�� − ℎ�|ℱ��/� and xUW��, ℎ� =E�U���LW��� − W�� − ℎ�M)|ℱ��/�. By imposing certain additional conditions, we can 

simplify the expression on the right-hand side of (19). Specifically, if the mean process, hU�R� − U�� − ℎ�iP∈L��/,�M, conditional on information at time � − ℎ is independent of the 
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return innovation process, hW�:�iy∈L��/,�M, then the last two terms on the right-hand side 

of (19) are both zero. Furthermore, if the mean process, hU�R� − U�� − ℎ�iP∈L��/,�M, 
conditional on information at time � − ℎ is a predetermined function over L� − ℎ, �M, then 

we get rid of the second term on the right-hand side of (19) and we are thus left with  

 cov�.��, ℎ�|ℱz�{� = E�L., .M��� − L., .M�� − ℎ�|ℱz�{�. (20) 

Andersen et al. (2003) argue that the conditions leading to equation (20) are satisfied for a 

wide range of commonly used models. Focusing on the daily horizon, i.e. ℎ = 1, equation 

(20) says that the time � − 1 conditional covariance matrix of the daily returns, .��, 1�, 

equals the time � − 1 conditional expectation of the daily increments to the quadratic 

return variation process, L., .M��� − L., .M�� − 1�. Another interpretation is that the time � 

ex-post value of the daily increment to the quadratic variation is an unbiased estimator for 

the daily return covariance matrix conditional on information at time � − 1.  

Now we will consider a somewhat less general framework, in which we can obtain 

more specific results. In addition to the absence of arbitrage and the square integrability of 

the logarithmic price process ', we also assume that ' has continuous sample path, i.e. 

with no jumps, and that the associated quadratic return variation process L., .M��� is of full 

rank (which implies that no asset is redundant). Under these conditions, we have the 

following representation for returns  

 .��, ℎ� = '��� − '�� − ℎ� = | }�
��/ �R�~R + | ��R��

��/ ~��R�, (21) 

where 0 ≤ � − ℎ ≤ � ≤ �, }�R� is an integrable predictable vector of dimension % × 1, 

��R� = ���,$�R���,$��,…,( is an % × % matrix, ��R� is an % × 1 dimensional standard 

Brownian motion, integration of a matrix or vector with respect to a scalar denotes 

component-wise integration, so that  

 | }�R��
��/ ~R = �| 3��R��

��/ ~R, … , | 3(�R��
��/ ~R�) , (22) 
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and integration of a matrix with respect to a vector denotes component-wise integration of 

the associated vector, so that  

 | ��R��
��/ ~��R� = �| � ��,$�R�~�$�R�(

$��
�

��/ , … , | � �(,$�R�~�$�R�(
$��

�
��/ �) . (23) 

Furthermore, we have  

 2 �| ���,$�R����
��/ ~R < ∞� = 1,      1 ≤ �, " ≤ %.    (24) 

Defining the % × % matrix ��R� = ���,$�R���,$��,…,( as ��R� = ��R���R�), the 

increments to the quadratic return variation process have the following form  

 L., .M��� − L., .M�� − ℎ� = | ��
��/ �R�~R. (25) 

The expression � ��R����/ ~R is the so-called integrated covariance matrix over the interval L� − ℎ, �M. Recalling the relationship expressed by (17), it follows that as 	 → ∞ and for all � = 1, … , �,  

 *+,-� t→ | ��R��
��� ~R, (26) 

meaning that the daily realized covariance matrix is a consistent estimator of the daily 

integrated covariance matrix. Similarly, for the realized correlation between assets � and " 
we have  

 
#�,$,� t→ � ��,$�R����� ~R
�� ��,��R����� ~R � �$,$�R����� ~R . (27) 

Finally, if the mean process }�R� and the covolatility process ��R� are independent 

of the Brownian motion ��R� over L� − ℎ, �M, then  

 .��, ℎ�| ��h}�R�, ��R�iP∈L��/,�M ∼ % �| }�R��
��/ ~R, | ��R��

��/ ~R��, (28) 

where �h}�R�, ��R�iP∈L��/,�M denotes the σ-field generated by >}�R�, ��R�@P∈L��/,�M. The 

result in (28) implies that daily returns are conditionally (on the sample path of }�R� and 

��R�) normally distributed with mean � }�R����� ~R and covariance matrix � ��R����� ~R, 
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where the mean is usually very small and � ����� �R�~R can be approximated by the realized 

covariance matrix, as suggested by (26).  

So far we have focused on providing the theoretical underpinnings for the realized 

covariance matrix (and also the realized correlation) so it remains to explain the connection 

to the realized bipower measures. We will not go deep into technical details, but rather 

point out the similarities and differences. As clarified by Barndorff-Nielsen and Shephard 

(2004b), if the price process has continuous sample paths (like in equation (21)), then the 

realized bipower covariance matrix has the same probability limit as the realized 

covariance matrix. However, the convergence results differ if the price process exhibits 

jumps. Assuming finite activity jumps, the price process could be then expressed as  

 '��� = | }�R��
T ~R + | ��R��

T ~��R� + � ��
��

���
, (29) 

where # is the simple counting process satisfying #� < ∞ for all � and we also assume that 

∑ ��,������� < ∞ for � =  1, … , % and all �. In this case the probability limit of the realized 

covariance matrix is affected by the presence of jumps. To be more specific, for all 

� = 1, … , � and for 	 → ∞ we have  

 *+,-� t→ | ��R��
��� ~R + � ����)

������s��
 (30) 

In contrast, the limit of the bipower realized covariance matrix does not change with the 

addition of jumps, i.e. *AB+,-� still converges to the daily integrated covariance matrix 

(for all � = 1, … , �).  

Finally, it should be noted that Barndorff-Nielsen and Shephard (2004a) provided 

the asymptotic distribution theory for the realized covariance matrix (as well as the 

realized correlation) and that Barndorff-Nielsen and Shephard (2004c) and 

Barndorff-Nielsen and Shephard (2004b) discussed the asymptotic distribution of the 

realized bipower variance and covariance. It turns out that realized bipower variance and 

covariance are less efficient than realized variance and covariance when there are no 

jumps. Therefore, on the one hand, the realized bipower measures are robust to jumps. On 

the other hand, if the price process is not subject to jumps, then the robustness to jumps 

comes at the expense of higher variance of the estimator.  
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2.1.3. HAR Model  

In the previous sections we introduced the realized measures and explained the 

theory that underlies their use in estimating variances, covariances and correlations. Now 

we will describe a simple model for the realized measures. The model is called the 

heterogeneous autoregressive (HAR) model and it was proposed by Corsi (2009). The 

HAR model was originally derived for realized volatility but it can also be applied to 

model realized correlations.  

Let us explain the derivation of the model in the realized volatility framework. It 

means that we are now in a univariate setting with only one asset �. Yet, for notational ease 

we will suppress the subscript � in this subsection. We consider the following continuous 

time process  

 ~���� = 3���~� + ����~����, (31) 

where ���� is the logarithm of instantaneous price, 3��� is a càdlàg (right continuous with 

left limits) finite variation process, ���� is a standard Brownian motion and ���� is a 

stochastic process independent of ����. A full trading day is represented by the time 

interval 1~ and the integrated volatility associated with day � is defined as  

 ����� = �| ���
���� ���~��� �⁄ . (32) 

The daily realized volatility is denoted as 
������� and given by  

 
������� = � � ������
���

��T
�

� �⁄
, (33) 

where Δ = 1~ X⁄  and ����� = ����� − ���������. Besides that, we will also consider 

volatilities viewed over longer time horizons, namely one week (5 working days) and one 

month (22 working days). These multi-period volatilities are computed as simple averages 

of the daily quantities, with the weekly and monthly aggregations indicated by superscripts 

��� and �	�, respectively. For example, the weekly realized volatility at time � is given by  

 
������� = 15 �
������� + 
���������� +  … + 
�����¡���� �. (34) 

The model is based on the idea that market participants are heterogeneous in terms 

of their time horizons of trading. It is assumed that participants with different time 
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horizons perceive and create different types of volatility components. Furthermore, an 

important feature of volatility is its asymmetric propagation, meaning that volatility over 

shorter time intervals is influenced by volatility over longer time intervals rather than 

conversely.  

We define the latent partial volatility �¢��∙� as the volatility generated by a certain 

market component and for simplicity we consider only three volatility components related 

to time horizons of one day, one week and one month. The daily, weekly and monthly 

partial volatilities are then denoted as �¢����, �¢���� and �¢����, respectively. Moreover, we 

connect the partial volatility to the integrated volatility by assuming that �¢���� = �����. Each 

partial volatility is assumed to depend on the past realized volatility corresponding to the 

same time horizon and the expected value of the next-period longer-term partial volatility. 

Since the longest time interval that we consider is one month, the monthly partial volatility 

is determined only by the past monthly realized volatility. The model is thus characterized 

by the following three equations  

 �¢������� = ¤��� + ¥���
������� + �¦������� , (35) 

 �¢������� = ¤��� + ¥���
������� + §���E�¨�¢������� © + �¦������� , (36) 

 �¢������� = ¤��� + ¥���
������� + §���E�¨�¢������� © + �¦������� , (37) 

where �¦������� , �¦�������  and �¦�������  are contemporaneously and serially independent 

zero-mean error terms with an appropriately truncated left tail in order to guarantee the 

positivity of partial volatilities.  

Substituting (35) into (36) and then (36) into (37) while recalling that �¢���� = �����, 
we arrive at  

 �������� = ¤ + ª���
������� + ª���
������� + ª���
������� + �¦������� . (38) 

Finally, we use the fact that the ex post value of ��������  can be expressed as  

 �������� = 
���������� + �������� , (39) 

where ����� represents both latent daily volatility measurement and estimation errors. 
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Substituting (39) into (38), we obtain  

 
���������� = ¤ + ª���
������� + ª���
������� + ª���
������� + �����, (40) 

where ����� = �¦������� − �������� . We have thus obtained a simple time series model of 

realized volatility. The model is estimated using the ordinary least squares (OLS) method.  

Importantly for our case, Audrino and Corsi (2010) suggest that the model can be 

also used for realized correlations between two assets (for notational ease we do not use 

the subscripts � and "). Plugging 1~ = 1 and suppressing the superscript for daily 

correlations, we have  

 
#��� = ¤ + ª���
#� + ª���
#���� + ª���
#���� + ����, (41) 

where 
#�, 
#���� and 
#���� are respectively the daily, weekly and monthly realized 

correlations. It is quite obvious that besides direct modeling of correlations, the model can 

be also used to generate forecasts of correlations. Given the information at time �, the 

one-step ahead forecast is simply obtained as  

 E��
#���� = ¤ + ª���
#� + ª���
#���� + ª���
#����. (42) 

2.2. DCC-GARCH Model  

Before formulating the DCC-GARCH model, we will first briefly describe the 

general framework of multivariate Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) models. The ARCH-GARCH modeling dates back to 1980s, 

when Engle (1982) first introduced an ARCH model and later Bollerslev (1986) proposed 

its extension to a GARCH model. Since that time GARCH models have become common 

tools in the analysis of time series data. Using univariate GARCH models, we can model 

the conditional variance of a single time series, while with multivariate GARCH models 

we can analyze the conditional variances and covariances of % time series. In financial 

applications, the analyzed series are usually the daily returns of assets. However, GARCH 

models can be also used for various other types of time series data.  

Following Bauwens et al. (2006), we consider an % × 1 vector of daily returns .�, 
where � =  1, … , �. Further, let ℱ��� denote the σ-field generated by the past information 

until time � − 1. We can express .� as  
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 .� = }� + «�, (43) 

where }� = ¬�.�|ℱ���� is the conditional mean vector of .� and vector «� can be written 

as  

 «� = ­��/�¯�. (44) 

Matrix ­��/� in (44) is a positive definite matrix of dimension % × % and ̄ � is an % × 1 

random vector satisfying  

 E�¯�� = 0 

cov�¯�� = °( , (45) 

where °( is the identity matrix of order %. 

To make clear what exactly ­��/� is, we compute the conditional variance-

covariance matrix of .�: 
 cov�.�|ℱ���� = cov����.�� = cov����«�� 

= ­��/�cov����¯��>­��/�@) = ­�. 
(46) 

The matrix ­��/� thus can be defined as any % × % positive definite matrix such that ­� is 

the conditional variance-covariance matrix of .� (as well as «�).4 Denoting the elements of ­� as ℎ�,$,�5, �, " =  1, … , %, the element ℎ�,�,� is the conditional variance of ��,� and the 

element ℎ�,$,� = ℎ$,�,�, � ≠ ", is the conditional covariance between ��,� and �$,�. Various 

specifications of ­� were proposed in the literature. In general, one of the main problems 

with multivariate GARCH models is to find a reasonable balance between flexibility and 

parsimony. Another issue that has to be taken into account is imposing positive 

definiteness of ­�. The approach taken in the DCC-GARCH model is to specify separately 

the individual conditional variances and the conditional correlation matrix, using a two-

step procedure to estimate the parameters of the model. Let us now describe the DCC-

GARCH model in detail.  

                                                           
4
 Matrix ­��/� can be thought of as the Cholesky decomposition of ­�. Given a symmetric positive definite 

matrix ±, the Cholesky decomposition is a lower triangular matrix ² with strictly positive diagonal entries 

such that ± = ²²) . 
5
 The same kind of notation will be used for all matrices in this subsection.  
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The Dynamic Conditional Correlation GARCH (DCC-GARCH) model was 

proposed by Engle and Sheppard (2001) and Engle (2002). The model can be regarded as a 

generalization of the constant conditional correlation GARCH model developed by 

Bollerslev (1990). It should be noted that Tse and Tsui (2002) also proposed a multivariate 

GARCH model with time-varying correlations and their model thus can be seen as an 

alternative to the Engle’s and Sheppard’s model. However, we will focus here on the 

model of Engle and Sheppard. The model is explained below6.  

Consider an % × 1 random process «� such that  

 «�|ℱ��� ∼ %�0, ­��, (47) 

Where  

 ­� ≡ ³�*�³�. (48) 

Since «� is already assumed to have zero mean, it is usually a vector of residuals from 

some simple model for the conditional mean of the time series. Matrix ³� in (48) is the 

% × % diagonal matrix of conditional standard deviations of series ́ �,�, … , ´(,�. The i th 

element on the main diagonal of ³� is thus equal to the square root of the i th element on the 

main diagonal of ­�, while all other elements of ³� are zero, formally ~�,�,� =  ℎ�,�,� and 

~�,$,� = 0, � ≠ ", �, " =  1, … , %. Matrix *� in (48) is the % × % matrix of conditional 

correlations, so the elements on its main diagonal are equal to 1. The assumption of 

multivariate normality in (47) enables us to formulate a likelihood function, using which 

we estimate the parameters governing the dynamics of ­�. However, as noted by Engle 

and Sheppard (2001), normality of «� is not needed for consistency and asymptotic 

normality of the estimator. If the assumption of normality is not satisfied, the estimator can 

be interpreted as a quasi-maximum likelihood estimator.  

The log-likelihood can be written as  

 � = − 12 ��% log�27� + log|­�| + «�)­���«��)

���
 

 

 � = − 12 ��% log�27� + log|³�*�³�| + «�)³���*���³���«��)

���
 

 

                                                           
6
 Please note that the notation used here is slightly different from that used in Engle (2002) and Engle and 

Sheppard (2001). 
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 � = − 12 ��% log�27� + 2 log|³�| + log|*�| + µ�)*���µ��)
���  (49) 

 � = − 12 ��% log�27� + 2 log|³�| + «�)³���³���«� − µ�)µ� + log|*�|)
��� + µ�)*���µ��, 

(50) 

where µ� = ³���«� are the residuals standardized by their conditional standard deviations. 

The function in (50) can be split into two parts. The first part is composed of terms 

containing ³�, while the second one is composed of terms containing *�. Let us denote the 

parameters in ³� as ¶ and the additional parameters in *� as ·. We can then write the log-

likelihood as follows: 

 ��¶, ·� = �¸�¶� + ���¶, ·�, (51) 

where �¸�¶� is the volatility component given by  

 �¸�¶� = − 12 ��% log�27� + log|³�|� + «�)³���«��)
���  (52) 

and ���¶, ·� is the correlation part, which has the form  

 ���¶, ·� = − 12 ��log|*�| + µ�)*���µ� − µ�)µ��)
��� . (53) 

The log-likelihood, as formulated in (51), can be maximized in two steps. In the 

first step we focus on the volatility part. Our aim is to find  

 ¶¹ = arg maxh�¸�¶�i. (54) 

Note that the maximization of (52) can be also viewed as the maximization of (49) with *� 
replaced by °( (identity matrix of order %). It is convenient to rewrite (52) as  

 �¸�¶� = − 12 � � �log�27� + log>~�,�,�� @ + ´�,��~�,�,�� �)
���

(
��� . (55) 

We can see that (55) is the sum of log-likelihoods of the individual series, hence it can be 

maximized by separately maximizing each of the % terms. Each series is assumed to 

follow a univariate GARCH process. The most widely used model is the GARCH(1,1) 

model, in which case the conditional variances are given by 
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 ~�,�,�� = �� + ¼�´�,���� + ª�~�,�,����  (56) 

where �� > 0, ¼� ≥ 0, ª� ≥ 0, ¼� + ª� < 1, ~�,�,T� > 0, � =  1, … , %. We could of course 

include more lags in the model (where the lag lengths chosen for different series need not 

be the same) but the GARCH(1,1) is by far the most common choice. In general, the 

specification is not even restricted to the standard GARCH(p,q) model. The univariate 

models can be specified as any GARCH process that has normally distributed errors and 

satisfies appropriate stationarity conditions, as well as non-negativity constraints.  

Once we have estimated the volatility parameters, we can proceed to the second 

step in maximizing (51). We now take ¶¹ as given and maximize (53) with respect to ·, 

formally  

 max½ ¾��>¶¹, ·@¿. (57) 

The second step thus consists in standardizing the residuals «� by their estimated 

conditional standard deviations and then using the standardized residuals µ� to estimate the 

parameters that govern the process of *�. The correlation structure is specified as follows. 

Consider an % × % matrix À� given by  

 À� = �1 − Á − Â�ÀÃ + Áµ���µ���) + ÂÀ���, (58) 

where Á ≥ 0, Â ≥ 0, Á + Â < 1, ÀÃ  is the unconditional covariance matrix of the 

standardized residuals and ÀT is positive definite. Equation (58) could be also generalized 

to include more lags. Using matrix À�, matrix *� can be obtained as  

 *� = diag>Å�,�,���/�, … , Å(,(,���/�@ À� diag>Å�,�,���/�, … , Å(,(,���/�@, (59) 

where diag>Å�,�,���/�, … , Å(,(,���/�@ is a diagonal matrix with elements Å�,�,���/�, … , Å(,(,���/� on the 

main diagonal. The elements of *� are thus of the form ��$,� = ÆÇ,È,�
 ÆÇ,Ç,�ÆÈ,È,�, �, " =  1, … , %.  

Under some reasonable regularity conditions formulated by Engle and Sheppard 

(2001), the two-stage maximum likelihood estimator will be consistent and asymptotically 

normal. Moreover, the model is formulated in such a way that it ensures positive 

definiteness of ­�. To be more specific, À� is positive definite for all � because it is a 

weighted average of a positive semi-definite matrix �µ���µ���) � and positive definite 

matrices. Positive definiteness of À� then implies positive definiteness of *� and given the 
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restrictions on the parameters of the univariate GARCH models, ­� is positive definite as 

well. The exact formulations and proofs of the propositions that establish positive 

definiteness of ­� (for the more general case when (56) and (58) are of higher orders) can 

be found in Engle and Sheppard (2001).  

Finally, let us show how we can make forecasts using the DCC-GARCH model. 

The one-step ahead forecast can be obtained easily. If all the information at time � is 

known, the equations of the model directly provide the forecast for the very next point in 

time, i.e. � + 1. We have  

 E�>~�,�,���� @ = �� + ¼�´�,�� + ª�~�,�,�� , (60) 

 E��À���� = �1 − Á − Â�ÀÃ + Á³���«��³���«��) + ÂÀ� , (61) 

 E��*���� = E�>diag>Å�,�,�����/� , … , Å(,(,�����/� @ À��� diag>Å�,�,�����/� , … , Å(,(,�����/� @@. (62) 
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3. Central European Stock markets 

The purpose of this chapter is to give a short overview of the stock markets in the 

Central European region. We focus on those stock markets whose relationships we 

examine in the empirical part. These are the Czech, Polish, Hungarian and German stock 

markets. Germany, although geographically a part of Central Europe, is taken as a 

benchmark for Western Europe. We first briefly summarize the development of the three 

emerging markets (Czech, Polish, Hungarian) and present some key figures of the four 

markets in question. In the second part of the chapter we provide a literature review on the 

relationships among the markets. We tried to select several empirical studies which vary in 

the methods and data used but the review is not intended to be exhaustive.  

3.1. Characteristics of the Markets 

Although the beginnings of the stock exchanges in Prague, Warsaw and Budapest 

date back to the nineteenth century, the World War II and the subsequent developments 

brought an end to trading at these exchanges. Following the collapse of the communist 

regime in Central and Eastern Europe, the exchanges started to write their modern history. 

In 1990 the Budapest Stock Exchange was the first one to reopen, followed by the Warsaw 

Stock exchange in 1991. The Prague Stock Exchange was established in 1992 and the first 

trading session took place in the following year.  

The development of the emerging stock markets was significantly influenced by the 

privatization strategies of the individual countries. The mass privatization scheme adopted 

by the Czech Republic initially led to a dramatic increase in the number of companies 

listed on the Prague Stock Exchange. However, most of the firms were eventually delisted 

due to a lack of liquidity, which undermined confidence in the market. For example, the 

number of listed companies decreased by more than 80% between 1996 and 1997. In 

contrast, the approach chosen by Poland and Hungary was to first establish a framework 

for securities trading and after that list the companies through initial public offerings, thus 

ensuring a smoother development of the market7 (Caviglia, Krause and Thimann, 2002).  

With the approaching accession to the European Union (EU), the Central European 

stock markets strengthened their credibility and started to attract foreign investors. In 

                                                           
7
 Yet, it should be noted that Poland switched to a mass privatization strategy in 1996.  
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connection with joining the EU, the three exchanges were also granted full membership in 

the Federation of European Securities Exchanges. In the following years the markets saw 

an increase in size, as well as in trading activity but this favorable development was 

interrupted in 2008, when the markets were hit by the worldwide financial crisis. Finally, 

we can add that the Budapest and Prague stock exchanges underwent some major changes 

in their ownership structure and consequently became members of the CEE Stock 

Exchange Group. The Group was officially launched in 2009 and besides the two members 

mentioned, it includes the stock exchanges of Vienna and Ljubljana.  

To get a better idea of the development of the markets, Figure 3-1 and Figure 3-2 

show the market capitalizations and the values of share trading at the Budapest, Prague and 

Warsaw stock exchanges between the years 2001 and 2010.8 Several observations can be 

made from these figures. First, we can notice the overall upward trend in the period 2004-

2007 and the subsequent changes caused by the crisis. Second, during the whole ten-year 

period the Warsaw Stock Exchange had a significantly higher market capitalization than 

the other two stock exchanges. As for the values of share trading, the differences were 

much smaller and in two years (2004 and 2005) the Warsaw Stock Exchange was even 

surpassed by the Prague Stock Exchange. This can be interpreted as an indication of a 

relatively lower liquidity of the Polish stock market compared to the other two markets. 

However, it should be also noted that before the markets were hit by the crisis, the trading 

values at all the three exchanges grew proportionally more (on average) than the 

corresponding market capitalizations, thus indicating increasing liquidity. Finally, out of 

the three exchanges the Warsaw Stock Exchange seems to be the most successful in 

recovering its pre-crisis figures.  

                                                           
8
 Please note that we intentionally exclude the German market from these two figures. The German market 

is much larger than the other three markets and combining the data for all the four markets would make 

the graph difficult to read. The purpose of Figure 3-1 and Figure 3-2 is rather to demonstrate the 

development of the three emerging markets. Comparison with the German market (Deutsche Börse) is 

shown in Table 3-1.  
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Figure 3-1: Year-end market capitalizations (EUR mil.) 

 
Source: Federation of European Securities Exchanges 
Note: The figures exclude foreign companies other than those exclusively listed on the exchange. 

Figure 3-2: Values of share trading (EUR mil.) 

 
Source: Federation of European Securities Exchanges 
Notes: The figures include all trades, irrespective of the type of shares traded (domestic or foreign) and the 
mechanism by which the transaction occurred (electronic order book transaction, off-electronic order book 
transaction, dark pool transaction or reporting transaction). If we considered only trading of domestic 
shares, there would be some noticeable differences in case of the Prague Stock Exchange but the overall 
pattern would be very similar. 

Table 3-1 summarizes some key data for the three exchanges on which we focused 

above and also for Deutsche Börse. This enables us to compare the characteristics of all the 

four markets that we will analyze in the empirical part. We can immediately notice that 

most of the figures for Deutsche Börse are one or two orders of magnitude higher than the 

corresponding figures for the other three exchanges. The Warsaw Stock Exchange, which 

is the largest of the three, has a 7.5 times lower market capitalization than Deutsche Börse. 

The differences are even more pronounced in case of trading values. For example, the 

annual value of share trading at the Budapest Stock Exchange is approximately equivalent 
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to a three-day trading value at Deutsche Börse. It is obvious that the value of share trading 

at Deutsche Börse is not only considerably higher in absolute terms but also relative to 

market capitalization. This clearly demonstrates that the German stock market is much 

more liquid than the other three markets.  

Another interesting comparison can be made by looking at the numbers of 

transactions and the implied average values of a transaction. We can, for example, notice 

that trading at the Warsaw Stock Exchange is characterized by a relatively large number of 

rather small transactions. An average transaction at Deutsche Börse or even at the Prague 

Stock Exchange is roughly three times larger than an average transaction concluded at the 

Warsaw Stock Exchange. This may be connected with the fact that there are quite a lot of 

companies listed on the Warsaw Stock Exchange relative to its market capitalization and 

the transaction is thus likely to involve shares that have low market value. Concerning the 

number of listed companies, we should also point out that the Prague Stock Exchange has a 

much higher percentage of foreign companies listed (approx. 40%) than the other 

exchanges. Note that this is also reflected in the value of foreign shares traded.  

Table 3-1: Main market indicators for 2010 

 
Budapest SE Prague SE Warsaw SE 

Deutsche 

Börse 

Market capitalization at year-end (EUR 

mil.) 
20 624.40 31 922.18 141 918.41 1 065 712.58 

Value of share trading (EUR mil.) 20 006.6 15 391.0 59 693.0 1 744 015.9 

Domestic shares 19 971.1 10 629.1 58 581.8 1 491 542.9 

Foreign shares 35.5 4 761.9 1 111.1 252 472.8 

Average daily value of share trading 

(EUR mil.) 
78.2 61.1 235.9 6 812.6 

Number of transactions 2 613 895 1 162 643 13 123 810 117 234 113 

Average value of a transaction (EUR) 7 653.9 13 237.9 4 548.5 14 876.4 

Listed companies at year-end 52 27 584 765 

Domestic companies 48 16 569 690 

Foreign companies 4 11 15 75 

Source: Federation of European Securities Exchanges, own calculations 
Notes: SE = Stock Exchange. The market capitalization figures exclude foreign companies other than those 
exclusively listed on the exchange. If not specified explicitly, the trading figures include all trades, 
irrespective of the type of shares traded (domestic or foreign) and the mechanism by which the transaction 
occurred (electronic order book transaction, off-electronic order book transaction, dark pool transaction or 
reporting transaction). Average daily trading value is the trading value divided by the number of days for 
which the stock exchange was open. Average value of a transaction is the trading value divided by the 
number of transactions. Exclusively listed foreign companies are included in domestic companies.  
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3.2. Review of the Literature  

Let us now present the results of a few empirical studies which examined linkages 

among the Central European stock markets.  

Gelos and Sahay (2000) investigated financial market comovements across 

European transition economies with a special focus on the Czech Republic, Hungary, 

Poland (hereinafter referred to as CE-3) and Russia. First, weekly stock return correlations 

computed over different time windows spanning the period 1994-1999 exhibited an 

upward trend. The authors then employed daily data to analyze the behavior of stock 

markets during three crisis periods, namely the Czech crisis (1997), the Asian crisis 

(1997-1998) and the Russian crisis (1998). A vector autoregression analysis was carried 

out, including impulse response functions and Granger causality tests, and it was also 

tested whether correlations (adjusted for an increase in variance) between the originating 

country’s stock market and markets of the other countries significantly increased during 

the crises. To summarize the results, while stock market interactions were weak during the 

Czech crisis (except for an increase in the correlation between the Czech and Hungarian 

markets), there was a stronger response of the markets during the Asian crisis and quite 

substantial shock transmission during the Russian crisis. The Russian crisis was the only 

one during which the returns in the originating country “Granger caused” those in the other 

countries. However, there was no significant increase in correlations.  

Scheicher (2001) analyzed the regional and global integration of CE-3 stock 

markets during 1995-1997. Employing daily returns, the author estimated a vector 

autoregression in which the errors were modeled using a multivariate GARCH model with 

constant correlations. A number of tests were performed to support the results. Overall, 

statistically significant spillovers of shocks were found in both returns and volatilities. 

However, there was a lack of global influences in volatilities (i.e. only regional spillover 

effects were found) and moreover, the estimated correlation coefficients were low and in 

most cases insignificant.  

Cappiello et al. (2006) examined the financial integration of selected new EU 

member states (including CE-3) with the euro area and among themselves. The analysis 

relied on daily data for the period from 1994 to 2005. The whole sample was divided into 

two sub-samples, the first one covering the pre-convergence period (up to the end of 1999) 

and the second one the convergence period (from the beginning of 2000). The dependence 
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between markets was measured by the conditional probability of comovements, i.e. the 

probability that, at time �, the returns on market � were lower (or higher) than the 

θ-quantile of the return distribution, conditional on the same event occurring on market ". 
The probabilities were estimated using the regression quantile-based methodology. 

Comparing the results for the two periods, the stock markets of CE-3 exhibited a 

significant increase in the probabilities of comovements both among themselves and 

vis-à-vis the euro zone (with the exception of the couple euro area-Hungary). The authors 

also assessed the extent to which these changes were driven by global factors, concluding 

that although in some cases the impact of global factors was significant, they could not 

entirely explain the increase in comovements.  

The stock market integration of selected new EU members (CE-3 and Slovakia) 

was also investigated by Babetskii, Komárek and Komárková (2007), who, however, 

focused only on the integration with the euro area (i.e. not among the new member states). 

Using weekly data for the period 1995-2006, the authors applied the concepts of beta 

convergence (to measure the speed of convergence) and sigma convergence (to evaluate 

the degree of integration). The results revealed the existence of relatively fast beta 

convergence and in the case of the Czech Republic and Hungary there was evidence of an 

increased pace of convergence in the period 2001-2006 compared to the period 1995-2000. 

Nevertheless, the analysis also showed that neither the announcement of EU enlargement 

nor the enlargement itself had a major impact on beta convergence. Regarding sigma 

convergence, the markets exhibited an overall increase in the degree of integration during 

the period 1995-2004, yet divergence from the euro area was observed since 2005, which 

the authors explained by the fact that the examined stock markets experienced high growth 

(higher than that of the benchmark euro zone index).  

Syllignakis and Kouretas (2006) used several different techniques to analyze daily 

and weekly data of seven Central and Eastern European (CEE) stock markets (including 

CE-3), the German stock market and the US stock market over the period 1995-2005. 

Applying the cointegration and common trends methodology, the markets were found to be 

partially integrated (with the number of cointegrating relations being less than the number 

of common trends). Moreover, the results indicated that five of the CEE markets (CE-3, 

Slovakia and Slovenia) together with the two developed markets had a significant common 

permanent component. An alternative insight into the relationships between the CEE 

markets and the developed ones was provided by the estimation of bivariate DCC-GARCH 
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models. As for the stock markets of CE-3, there was evidence of an increasing trend in 

their conditional correlations with the two developed markets. The analysis suggested that 

the dependencies strengthened during the Asian and Russian crises and that afterwards the 

correlations declined but remained at relatively high levels until the end of the examined 

period.  

Égert and Kočenda (2007b) used intraday (5-minute) data for the period from 

mid-2003 to early 2006 and estimated a series of bivariate DCC-GARCH models for stock 

markets of CE-3 and for three developed stock markets (France, Germany and the UK). 

The estimated correlations between the CE-3 markets and the French market (taken as a 

benchmark for Western Europe) were positive but very low (lower than 0.05). Similar 

values were obtained for the correlations among the CE-3 markets but in this case all the 

three correlation series at least showed an increasing trend. These results were in sharp 

contrast with the correlations among the developed markets. However, it should be 

probably said that the application of the DCC-GARCH model to intraday data is a little bit 

problematic due to the existence of intraday seasonalities. To overcome this difficulty, the 

authors considered an appropriately shortened time window for each day (11:00-14:40), 

thus leaving a relatively large amount of data unexploited.  

The study of Égert and Kočenda (2007a) was similar in that it also used 5-minute 

data and it focused on the same stock markets. However, the analyzed period was shorter 

(mid-2003 to early 2005) and different methods were employed, namely cointegration 

tests, Granger causality tests (applied to returns and also to volatilities estimated using 

univariate GARCH models) and estimation of a vector autoregression model which 

included both returns and volatilities. While no robust cointegration relationship was 

found, there was evidence of short-term spillover effects. Granger causality tests revealed 

the existence of bidirectional causal relationships in returns, as well as in volatilities. Yet, 

the vector autoregression suggested that there were fewer interactions among the markets. 

We should add that the authors again considered the relatively short time window 

(11:00-14:40) but they also discussed the results for a longer time window (10:00-15:55), 

sometimes finding noteworthy differences.  

Savva and Aslanidis (2010) examined comovements among five CEE stock 

markets (including CE-3) and the euro zone during the period from 1997 to 2008. 

Employing weekly data, the authors estimated bivariate smooth transition conditional 

correlation GARCH models, which assume the existence of different regimes with 



 

28 

 

regime-specific constant correlations and allow for a smooth change between the 

correlation regimes. The Czech and Polish markets showed an increase in their correlations 

with the euro zone, while for Hungary there was no evidence of a significant change in 

correlation. In the case of Poland the shift in the correlation occurred before the EU 

accession, whereas for the Czech Republic it started before the accession date and 

gradually continued after the country joined the EU. Besides that, the results revealed that 

there was a significant increase in correlations among the CE-3 markets and that in general 

the shifts occurred after the increase in correlations with the euro zone. For some 

correlation pairs the analysis indicated the presence of a second change in correlations but 

the double transition models seemed to be just a refinement of the single transition ones. 

The authors also found that the increase in the correlations with the euro zone mostly 

reflected EU-related developments rather than the world-wide financial integration.  

Finally, we should mention some related research papers written in recent years at 

the Institute of Economic Studies, Faculty of Social Sciences, Charles University in 

Prague. Brabcová (2010) used 5-minute intraday data of CE-3 stock markets and modeled 

volatility of these markets by estimating heterogeneous autoregressive models of realized 

volatility. Brabcová thus focused on the analysis of the univariate case (volatility), while 

we examine interdependencies among the markets (covariances and correlations). 

Moreover, our analysis is not restricted to only one sampling frequency and we also show 

comparison with results obtained by a different method (DCC-GARCH model). 

Concerning the application of the DCC-GARCH model, Princ (2010) used this model to 

investigate relationships between the Czech stock market and 11 developed stock markets 

(Western Europe, USA, Japan). Since we are interested in linkages among Central 

European stock markets, the results of Princ are not directly comparable to ours.  
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4. Data 

In this chapter we first provide basic information on our data, mention some 

problems that we encounter and explain the steps that we take in order to obtain the final 

dataset. Next we discuss the issue of selecting the appropriate sampling frequency, which 

is one of the foremost problems in the practical application of realized measures. Finally 

we detail the construction of the realized measures and also explain the way in which we 

obtain the time series for the DCC-GARCH analysis.  

4.1. Description of the Dataset  

As mentioned in the previous chapter, we focus on the stock markets of the Czech 

Republic, Hungary, Poland and Germany (which is taken as a benchmark for Western 

Europe). Each of the analyzed stock markets is represented by one stock index. The indices 

are the following: BUX for the Hungarian market, DAX for the German market, PX for the 

Czech market and WIG20 for the Polish market. Our sample covers the period from 

January 2, 2008 to November 30, 2010. For each index we have its values recorded at 5-

minute intervals throughout each trading day (close prices of the 5-minute intervals are 

used). All the data were obtained from Tick Data, Inc. It should be noted that the data had 

been cleaned by the proprietary algorithms of Tick Data. For further information on the 

issues associated with the data filtering, we refer to Falkenberry (2002). 

Since we want to examine interdependencies among the markets, we need the time 

series to be comparable across the different stock indices. Two issues have to be taken into 

account. First, there are days on which one stock exchange is open, while another one is 

closed due to a national holiday or other reasons. This is reflected in the fact that our 

sample period includes 726 trading days for BUX, 743 for DAX, 724 for PX and 732 for 

WIG20. Second, the stock exchanges have different trading hours. To be more specific, the 

5-minute close prices of BUX, DAX, PX and WIG20 are available for the time windows of 

9:05 to 16:30, 9:05 to 17:35, 9:30 to 16:00 and 9:35 to 16:10, respectively. Our solution to 

the first problem is to include only those days for which we have data on all the four stock 

indices. This condition is satisfied for 696 days. To overcome the second difficulty, for 

each day we consider only the time interval 9:35-16:00, which leaves us with 78 

observations per day for each of the indices.  
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An additional practical problem is that there are missing values for some days. The 

approach that we take in dealing with this issue can be summarized as follows: If more 

than five observations are missing for some of the series on a given day, we remove the 

day from the sample. This procedure reduces the number of days to 691.9 In this smaller 

sample there are still four days with missing values but in all cases it concerns only one or 

two observations, which should not have a significant influence on our results. These days 

are therefore retained in the sample. However, it has to be noted that for each missing 

observation we also remove the corresponding observations in the other series in order to 

ensure full comparability.  

Figure 4-1: 5-minute index values and 5-minute logarithmic returns 

 
Note: The return series do not include overnight returns.  

                                                           
9
 The removed days are the following: 30/12/2008, 19/05/2009, 13/08/2009, 30/12/2009 and 25/10/2010.  
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The final time series of the 5-minute index values and the corresponding 5-minute 

returns (first differences of logarithmic index values) are shown in Figure 4-1. Looking at 

the graphs, we can observe the effects of the global financial crisis. All the four indices 

declined sharply in the second half of 2008, reached their lowest points in the first quarter 

of 2009 and then started to rise again. A noteworthy difference is that while the PX index 

more or less stagnated from the last quarter of 2009 till the end of the examined period, the 

other three indices still showed an upward trend. The return plots provide evidence that the 

period of late 2008 and early 2009 was characterized by high volatility. Later on volatility 

returned to lower levels.  

4.2. Construction of Variables 

Let us first explain the choice of the 5-minute sampling scheme for index values. 

The asymptotic results derived in Section 2.1.2. suggest that prices should be sampled as 

frequently as possible in order to obtain accurate estimates of variances, covariances and 

correlations. However, the reality is more complicated. It is a well known fact that if data 

are sampled at very high frequencies, they are contaminated by the so-called market 

microstructure noise. The noise arises from various market frictions, such as discreteness 

of prices, bid-ask spreads or simultaneous quoting of different prices by competing market 

makers (Andersen, Bollerslev and Meddahi, 2011). Most researchers deal with this 

problem by sampling relatively sparsely, i.e. they use such frequencies at which the bias 

caused by microstructure noise is not a major concern.10 The most common choice in the 

literature is to sample data at 5-minute intervals. Some studies use even lower frequencies, 

for example 30 minutes. It should be also noted that Zhang, Mykland and Aït-Sahalia 

(2005) proposed a methodology for determining the optimal sampling frequency. 

It is very important to say that matters are even more complicated in a multivariate 

setting due to the problem of non-synchronous trading or nontrading, as pointed out for 

example by de Pooter, Martens and van Dijk (2008) or Barndorff-Nielsen et al. (2010). 

Non-synchronous trading refers to the fact that different assets do not usually trade at 

exactly the same instants. Nontrading occurs when one asset trades frequently over a 

certain period, while another one does not trade. If very high sampling frequencies are 

                                                           
10

 An alternative approach is to explicitly include noise in the price process and then design procedures that 

reduce its impact on the estimation results. 
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used, these phenomena can induce quite a significant bias in the measures of dependence 

(covariance, correlation) between assets.  

Clearly, the selection of the appropriate sampling frequency is a nontrivial issue 

since we face a trade-off between the above mentioned biases and a potentially large 

stochastic error resulting from using low number of observations per day. As argued by 

Andersen et al. (2001), a key factor that has to be taken into account is the liquidity of the 

particular market (where lower frequencies should be used for less liquid markets). We 

follow the common practice in the literature and use the 5-minute sampling frequency. 

However, in light of the complexity of the problem and given the fact that the examined 

markets do not belong to the most liquid ones, we do not want to restrict our analysis to 

only one frequency. Therefore, we also sample prices (in our case index values) at 

30-minute and 1-hour intervals.  

The 30-minute and 1-hour price series are obtained from the 5-minute series. Two 

things should be clarified in this respect. Concerning the 30-minute series, the interval 

between the first two intraday observations is slightly shorter than 30 minutes since it runs 

from 9:35 to 10:00.11 As for the 1-hour series, we disregard the interval 9:35-10:00, which 

means that the first price on each day is the one at 10:00. For all three frequencies we 

compute the realized measures using the formulas given in Section 2.1.1. However, it has 

to be stressed that overnight returns are excluded from our analysis. Taking the 5-minute 

series as an example, the first return on each day is calculated as the difference between the 

logarithmic prices at 9:40 and at 9:35 (providing both values are available).  

So far we have focused on intraday data and the construction of daily realized 

measures. The second approach used in our analysis is the estimation of the DCC-GARCH 

model, for which we need daily returns. Since we want to allow for direct comparison of 

the results given by the two different methods, the daily returns should be computed over 

the same time intervals that we use for the construction of realized measures. Therefore, 

we calculate the return on day � by subtracting the day � logarithmic price at 9:35 from the 

day � logarithmic price at 16:00. This is equivalent to calculating the sum of all intraday 

returns for day �. It is thus important to bear in mind that when speaking about daily 

returns, we will always mean returns computed in the way described above (i.e. not as the 

                                                           
11

 For one day (14/07/2009) the observation at 9:35 is missing, so we use the value at 9:40 instead. 

Similarly, for one day (08/01/2010) the observation at 11:30 is missing and therefore we use the value at 

11:35 instead.  
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first differences of daily closing logarithmic prices, in which case the daily returns would 

include the overnight returns).  

The last issue we have to deal with is that the DCC-GARCH model should be 

applied to zero mean data (see equation (47)). It would be possible to directly assume that 

the returns have zero mean but to ensure that the condition is satisfied, we filter the daily 

return series by an AR(1) model. Formally, for each of the four series (BUX, DAX, PX, 

WIG20) we estimate the model  

 ��,� = ¤� + É���,��� + ´�,�, (63) 

where ��,� stands for the individual daily return series. By this procedure we obtain the 

residuals ́�,� and these are then used as the input data in the DCC-GARCH estimation. 
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5. Empirical Findings  

We analyze four markets, each represented by one stock index, which means that 

there are a total of six index pairs. Note that for the sake of simplicity, the WIG20 index 

will be referred to only as WIG, so the notation for the index pairs will be as follows: 

BUX-DAX, BUX-PX, BUX-WIG, DAX-PX, DAX-WIG and PX-WIG. Each part of our 

analysis is carried out for all the six pairs. The DCC-GARCH models are estimated in the 

bivariate form in order to allow the parameters to vary across the index pairs.  

In the first part of this chapter we present the main statistics for correlations (as 

well as for covariances), make a comparison and explain the observed differences. In the 

second part we report detailed results for the DCC-GARCH and HAR models and discuss 

the dynamics of the correlations. In the last subsection we examine the forecasting 

performance of the models. All computations and estimations were carried out in 

MATLAB, version 7.10.0.499 (R2010a). For the estimation of the DCC-GARCH models 

we used the code from the UCSD GARCH Toolbox, which was developed by Kevin 

Sheppard.  

5.1. Main Characteristics of Correlations and Covar iances  

Table 5-1 shows the means and standard deviations of the correlations from the 

DCC-GARCH models, the realized correlations and the realized bipower correlations. We 

also report the unconditional correlations of daily returns.  

Table 5-1: Main statistics for correlations 

 
BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG 

Uncond 0.594 
 

0.621 
 

0.627 
 

0.649 
 

0.694 
 

0.680 
 

 
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

DCC 0.605 0.021 0.601 0.080 0.605 0.047 0.662 0.033 0.696 0.035 0.640 0.037 

RC 1h 0.545 0.340 0.481 0.369 0.508 0.344 0.585 0.304 0.630 0.299 0.505 0.345 

RC 30m 0.499 0.257 0.424 0.270 0.455 0.259 0.528 0.239 0.611 0.216 0.454 0.268 

RC 5m 0.275 0.171 0.199 0.150 0.250 0.159 0.359 0.144 0.410 0.145 0.253 0.140 

RBPC 1h 0.523 0.434 0.494 0.469 0.506 0.445 0.591 0.384 0.645 0.403 0.520 0.429 

RBPC 30m 0.489 0.302 0.411 0.319 0.439 0.312 0.508 0.281 0.603 0.258 0.453 0.310 

RBPC 5m 0.255 0.176 0.208 0.173 0.230 0.173 0.347 0.164 0.383 0.155 0.248 0.169 

Notes: Uncond = Unconditional correlation of daily returns, SD = Standard Deviation 
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Several important observations can be made from the table. Let us first list the most 

distinctive features of the correlations and then discuss some of them in more detail. The 

unconditional correlations of daily returns, as well as the means of the correlations from 

the DCC-GARCH models, are all quite high. This is in accordance with strengthening of 

the linkages among the examined markets over the previous years, as documented in some 

of the studies presented in Section 3.2. Looking at the realized correlations and the realized 

bipower correlations, we notice that the means decrease when prices are sampled more 

frequently and that this downward bias is quite substantial when we move from the 

30-minute frequency to the 5-minute frequency. On the other hand, the use of higher 

sampling frequencies leads to a considerable reduction in the standard deviation of the 

realized correlations, as well as the realized bipower correlations.12 As for the relationship 

between the realized correlations and the corresponding realized bipower correlations, we 

can see that the means are usually very similar (in most cases slightly lower for the 

bipower correlations) but the bipower correlations have higher standard deviations, with 

the difference being more pronounced for lower frequencies.  

Comparing the results for the different index pairs, all methods (unconditional 

correlations, DCC-GARCH models, realized correlations and realized bipower 

correlations) suggest that the strongest linkage is the one between DAX and WIG. The 

ordering of the other pairs depends on the method used. Overall, the realized correlations 

and the realized bipower correlations indicate that the three emerging markets (represented 

by BUX, PX and WIG) are more correlated with the German market than among 

themselves. However, we should add that sometimes the differences are very small (BUX-

DAX compared to BUX-WIG or PX-WIG). In case of the DCC-GARCH models, the PX-

WIG pair exhibits higher correlation than the BUX-DAX pair. According to the 

unconditional correlations, the dependence between PX and WIG is even stronger that 

between DAX and PX, while the BUX-DAX pair appears to be the least correlated one.  

 

                                                           
12

 The standard deviations of the realized correlations or the realized bipower correlations cannot be 

directly compared to the standard deviations of the correlations from the DCC-GARCH models because we 

use completely different methods to obtain the correlations.  
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To have the full picture, we also report the results for covariances (Table 5-2). We 

can notice that the most important characteristics are similar to those of the correlations. 

When increasing the sampling frequency, the covariances are subject to downward bias 

(although in some cases the mean of the realized correlations slightly increases when 

moving from the 1-hour frequency to the 30-minute frequency), while the standard 

deviations of the realized covariances and the realized bipower covariances decrease (again 

with some minor exceptions). Concerning the differences between the realized covariances 

and the corresponding realized bipower covariances, the table shows that the bipower 

covariances have lower means but there is no universal relationship between the standard 

deviations (for the 1-hour frequency the bipower covariances have higher standard 

deviations while for the lower frequencies it is usually the other way round). Note that 

unlike correlations, covariances cannot be used to compare the degree of dependence 

across the different index pairs because correlations are dimensionless quantities while 

covariances are not.  

Figure 5-1: Correlations from the DCC-GARCH models vs. realized correlations 
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Let us now focus on the above mentioned issue of the downward bias of the 

correlations, as well as the covariances. To illustrate the problem graphically, in Figure 5-1 

we plot the correlations from the DCC-GARCH models together with the 5-minute and 

30-minute realized correlations. The 1-hour realized correlations are not shown in order to 

avoid clutter in the figure. Analogously, Figure 5-2 provides a graphical comparison of 

covariances but we can see that the plots of the correlations make it easier to observe the 

bias associated with higher sampling frequencies. Similar figures for the realized bipower 

correlations and covariances can be found in the Appendix (Figure A-1 and Figure A-2).  

Figure 5-2: Covariances from the DCC-GARCH models vs. realized covariances  
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for example by de Pooter, Martens and van Dijk (2008) or Barndorff-Nielsen et al. (2010). 

These researchers analyzed data for stocks traded on the New York Stock Exchange. It has 

to be pointed out that we can find a noteworthy difference between their results and the 

results reported here. While we observe a considerable drop in covariances and 

correlations when increasing the sampling frequency from 30 minutes to 5 minutes, the 

above mentioned authors report a substantial decrease in covariances13 at such frequencies 

as 1 minute or 15 seconds, whereas the bias associated with the 5-minute frequency is 

relatively small.  

De Pooter, Martens and van Dijk (2008) and Barndorff-Nielsen et al. (2010) 

attribute the observed bias to non-synchronous trading. This is broadly confirmed by Renò 

(2003) who investigated the determinants of the Epps effect.14 More recently Zhang (2011) 

provided an analytic characterization of the Epps effect, formally showing that for 

positively related assets, non-synchronous trading induces a negative bias in the realized 

covariance and that the magnitude of the bias increases with the sampling frequency. 

Importantly, the theory developed by Zhang (2011) implies that the bias due to 

non-synchronization is more pronounced if the traded assets are less liquid. This provides 

an explanation for the differences between our results and those reported by de Pooter, 

Martens and van Dijk (2008) and Barndorff-Nielsen et al. (2010), as the Central European 

stock markets are clearly characterized by lower liquidity than the US stock market. It 

should be noted that our estimates can be also affected by microstructure noise but since 

the bias due to noise should not be large even for the 5-minute frequency, it seems that 

non-synchronous trading is of much greater importance.  

A natural question that arises is whether the observed biases are statistically 

significant. To find this out, we perform paired t-tests, i.e. we test the significance of the 

difference between the means of two dependent samples. For each of the six index pairs, 

the test is performed for the correlations from the DCC-GARCH models versus the 

different realized correlations and realized bipower correlations, for the realized 

                                                           
13

 Barndorff-Nielsen et al. (2010) report the results for both covariances and correlations, the overall 

pattern being similar. De Pooter, Martens and van Dijk (2008) focus only on covariances but they also 

compute realized variances, which exhibit an upward bias for high frequencies. Therefore, it is quite clear 

that the correlations would suffer from a downward bias as well and that its magnitude would be even 

larger (in relative terms) than for the covariances.  

14
 In fact, Renò (2003) identifies two factors that can explain the Epps effect, namely non-synchronous 

trading and lead-lag relationships. However, it is shown that non-synchronicity plays the main role and 

furthermore, the author remarks that non-synchronous trading itself can induce spurious lead-lag relations, 

as argued by Chan (1992) and Chan (1993). 
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correlations among themselves, for the realized bipower correlations among themselves 

and finally also for the realized correlations versus the corresponding bipower correlations. 

The same is done for the covariances. To give an example, we take the BUX-DAX 

correlations from the DCC-GARCH model and the BUX-DAX 5-minute realized 

correlations, calculate their difference for each day and then test the null hypothesis that 

the mean of the difference is equal to zero against the alternative that it is not equal to zero.  

 The p-values from the tests are reported in the Appendix (Table A-1 for the 

correlations and Table A-2 for the covariances). Overall, we can say that the differences 

among the correlations, as well as among the covariances, are statistically significant. 

Testing at the 5% level of significance, for most index pairs we fail to reject the null only 

when we compare either the lower-frequency realized correlations with the corresponding 

bipower correlations or the 1-hour covariances (realized or realized bipower) with the 

30-minute covariances.  

However, it is also necessary to say that the paired t-test relies on the assumption 

that the differences between the two samples are normally distributed, which is violated in 

some cases. To assess the possible impact on the results for correlations, we also try to use 

the Fisher-transformed correlations, for which there is evidence that the normality 

assumption is more likely to be satisfied (especially when one of the tested samples is the 

1-hour realized correlations). The Fisher transformation is given by  

 Ê� = 12  log 1 + ��1 − �� , (64) 

where �� stands for the correlation on day � and Ê� is the Fisher-transformed correlation. A 

disadvantage of this approach is that we cannot perform the tests for all the combinations 

of correlations because in some cases (namely for the 1-hour and 30-minute bipower 

correlations) the estimated correlations occasionally fall outside of the [-1,1] interval and 

hence the Fisher transformation cannot be applied. The p-values from the paired t-tests for 

Fisher transformed correlations can be found in Table A-3 in the Appendix. The only 

noteworthy difference from the previous results is that for some index pairs we fail to 

reject the null when comparing the correlations from the DCC-GARCH models with the 

1-hour realized correlations.  

Finally, Figure 5-3 shows the boxplots of the 1-hour, 30-minute and 5-minute 

realized correlations. These pictures enable us to graphically compare the overall 
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distributional characteristics of the realized correlations. Besides the downward bias 

discussed above, we can observe the reduction in the dispersion of correlations as we 

increase the sampling frequency. This is simply caused by the fact that we use more 

observations per day. For example, in the case of the 1-hour sampling frequency only six 

returns per day are available, resulting in a very high variance of the realized correlations. 

In the Appendix we show the boxplots of the realized bipower correlations (Figure A-3). 

The overall pattern is similar but in addition, Figure A-3 demonstrates the problem of the 

lower frequency (especially the 1-hour) bipower correlations not always falling in the 

[-1,1] interval, which was already mentioned above in connection with the Fisher 

transformation.  

Taking into consideration all the characteristics of the realized correlations and 

realized bipower correlations, in the following analysis we focus only on the 5-minute and 

30-minute correlations (and of course also on the correlations from the DCC-GARCH 

models).  

Figure 5-3: Boxplots of realized correlations 
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5.2. Estimation Results for the DCC-GARCH and HAR M odels 

5.2.1. DCC-GARCH Models 

In the previous subsection we already discussed some characteristics of the 

correlations and covariances from the DCC-GARCH models in comparison with the 

realized measures. Let us now present more detailed results for the DCC-GARCH models. 

In Table 5-3 we report the parameter estimates obtained by the two-step maximization of 

the log-likelihood function. All model equations include only the first lags (i.e. they are in 

the form of (56) and (58)). In addition, Table 5-3 shows the R2 of the regressions in which 

the correlations from the DCC-GARCH models are used as an explanatory variable for the 

5-minute and 30-minute realized correlations and realized bipower correlations. The 

purpose of these regressions is to examine whether the correlations from the DCC-GARCH 

models develop in a similar way to the realized correlations/realized bipower correlations.  

Table 5-3: DCC-GARCH models 

 
BUX DAX PX WIG 

 
ω 7.85E-06 * 6.53E-06 ** 5.31E-06 ** 6.04E-06 **  

 
(4.22E-06) 

 
(2.89E-06) 

 
(2.60E-06) 

 
(3.02E-06) 

 
 α 0.133  *** 0.100  *** 0.173  *** 0.108  ***  

 
(0.033)  

 
(0.022)  

 
(0.044)  

 
(0.027)  

 
 β 0.835  *** 0.843  *** 0.812  *** 0.867  ***  

 
(0.042)  

 
(0.034)  

 
(0.041)  

 
(0.029)  

 
 

 
BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG 

a 0.009 
 

0.050 * 0.030 
 

0.017 
 

0.038 

 

0.017 
 

 
(0.013)  (0.026)  (0.020)  (0.011)  (0.028)  (0.011) 

 
b 0.965 *** 0.878 *** 0.888 *** 0.963 *** 0.844 *** 0.943 *** 

 
(0.068)  (0.052)  (0.053)  (0.026)  (0.080)  (0.032) 

 
R

2 
 

 
 

 
 

 
 

 
 

 
 

 
 RC 5m 0.003 

 
0.031 

 
< 0.001 

 
< 0.001 

 
0.002 

 
0.011 

 
RBPC 5m 0.002 

 
0.022 

 
< 0.001 

 
< 0.001 

 
< 0.001 

 
0.016 

 
RC 30m 0.003 

 
0.034 

 
0.003 

 
0.003 

 
0.005 

 
0.005 

 
RBPC 30m < 0.001 

 
0.030 

 
0.003 

 
0.001 

 
0.005 

 
0.003 

 
Note: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. Significance was assessed using z-tests. 

The parameters of the univariate GARCH models take values that can be 

commonly found in the literature. The α parameters, which measure the impact of 

innovations, are relatively small, while the ª parameters, which capture the persistence of 

volatility, are all higher than 0.8. All alphas and betas are significantly different from zero 



 

43 

 

(at the 1% level). However, our focus is rather on the second set of parameters, i.e. Á and 

Â, as these describe the dynamics of the correlations. The innovation parameters (Á) are 

considerably lower than the α parameters of the univariate models and in most cases the 

impact of innovations is not statistically significant even at the 10% level. On the other 

hand, the persistence parameters (Â) are mostly higher than the ª parameters of the 

univariate models and not surprisingly, all of them are significant at the 1% level. Overall, 

these results indicate a strong persistence of the correlations. A closer look at the parameter 

estimates reveals some differences among the index pairs. To be more specific, while the 

BUX-DAX, DAX-PX and PX-WIG correlations are characterized by a particularly strong 

persistence, the correlations for the DAX-WIG, BUX-PX and BUX-WIG pairs seem to be 

somewhat less persistent. Looking at the R2 values reported in Table 5-3, we can say that 

the dynamics of the correlations from the DCC-GARCH models are quite different from 

those of the realized correlations and the realized bipower correlations. With only a few 

exceptions (the BUX-PX pair and partly the PX-WIG pair), the R2 are lower than 1%.  

5.2.2. HAR Models  

Now we proceed to discuss the results for the HAR models. We use two different 

frequencies (5 minutes and 30 minutes) and two different estimators (realized correlations 

and realized bipower correlations), so combining these, we get four types of HAR models. 

Besides the parameter estimates and the R2 of the models, we also report the p-values of 

several tests performed on the residuals. The tests that we use are the following: the 

Ljung-Box test for autocorrelation (H0: no autocorrelation up to a specified lag), the Engle 

test for conditional heteroscedasticity, i.e. the presence of ARCH effects (H0: no ARCH 

effects up to a specified order), and the Jarque-Bera test for normality (H0: normality).  

Let us start with the HAR models for the 5-minute realized correlations (Table 

5-4). Concerning the significance of the lagged daily, weekly and monthly correlations, the 

index pairs differ in terms of which of the variables are significant and how strongly 

significant they are. Interestingly, none of the variables is significant for all index pairs. 

Recalling the results obtained for the DCC-GARCH models, one would expect that for the 

index pairs with the particularly persistent correlations, we should find a strong 

significance of the monthly and/or the weekly realized correlations. This is confirmed for 

the BUX-DAX pair but not in case of the other pairs. For the DAX-PX pair we find only a 

weak significance of the monthly correlations and the weekly correlations are not 
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significant even at the 10% level. In case of the PX-WIG pair the monthly and the weekly 

correlations just switch their roles. In contrast, we find, for example, a strong significance 

of the monthly correlations for the DAX-WIG pair, which represents the group with the 

relatively less persistent correlations according to the DCC-GARCH models.  

The R2 values reported in Table 5-4 are quite low but this is not very surprising 

given the relatively high variation in the realized correlations. In any case, modeling the 

realized correlations by means of their lagged daily, weekly and monthly values yields 

higher R2 than regressing them on the correlations from the DCC-GARCH models. As for 

the tests performed on the residuals, we can say that the residuals are well behaved. There 

is no evidence of autocorrelation or ARCH effects and in four cases we do not even reject 

(at the 5% level of significance) the hypothesis that the residuals are normally distributed. 

These results justify the use of the OLS method and indicate that the models provide an 

adequate fit to the data.  

Table 5-4: HAR models for the 5-minute realized correlations 

 
BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG 

c 0.060 *** 0.098 *** 0.096 *** 0.189 *** 0.130 *** 0.168 *** 

 
(0.021)  (0.022)  (0.023)  (0.043)  (0.037)  (0.033) 

 
β

(d)
 0.028 

 
-0.014 

 
0.093 ** 0.091 ** 0.094 ** 0.084 * 

 
(0.045)  (0.045)  (0.045)  (0.045)  (0.045)  (0.044)  

β
(w)

 0.383 *** 0.423 *** 0.334 *** 0.145 
 

0.156 
 

0.172 * 

 
(0.094)  (0.094)  (0.091)  (0.095)  (0.098)  (0.097) 

 
β

(m)
 0.374 *** 0.103 

 
0.194 * 0.239 * 0.436 *** 0.079 

 

 
(0.106)  (0.131)  (0.114)  (0.142)  (0.123)  (0.153) 

 
R

2
 0.173 

 
0.064 

 
0.102 

 
0.039 

 
0.094 

 
0.026 

 
LB 10 0.942 

 
0.928 

 
0.271 

 
0.311 

 
0.683 

 
0.971 

 
ARCH 5 0.750 

 
0.709 

 
0.714 

 
0.250 

 
0.127 

 
0.871 

 
JB 0.191 

 
0.303 

 
0.185 

 
0.005 

 
0.002 

 
0.073 

 
Notes: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. LB 10 = p-value of the Ljung-Box test for residual 
autocorrelation up to lag 10, ARCH 5 = p-value of the Engle test for the presence of fifth order ARCH effects 
in residuals, JB = p-value of the Jarque-Bera test for normality of residuals 

Now we move on to the HAR models for the 5-minute realized bipower 

correlations (Table 5-5). Comparing the results to those reported in Table 5-4, we can 

observe some differences in the significance of the explanatory variables, especially in 

case of the lagged daily correlations. While in the HAR models for the 5-minute realized 

correlations the lagged daily correlations were significant (at the 5% or 10% level) for four 
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pairs, in the models for the bipower correlations they are significant just in one case (and 

the significance is only weak). A noteworthy consequence of the changes in the 

significance of regressors is that for one index pair (PX-WIG) none of the explanatory 

variables is significant. Nevertheless, those variables that were significant at the 1% level 

in the models for the realized correlations remain strongly significant also when the models 

are estimated for the bipower correlations. Notice that there are no newly significant 

variables in the models for the bipower correlations, i.e. if some variable was not 

significant in Table 5-4, it is not significant in Table 5-5 either. The R2 values of the 

models for the realized bipower correlations are lower than those of the models for the 

realized correlations. Concerning the differences in the properties of the residuals, there is 

some improvement in the satisfaction of the normality assumption but for one pair 

(DAX-PX) we reject the null hypothesis of no ARCH effects at the 5% level of 

significance.  

We have to add that all the HAR models discussed so far were also estimated for 

the Fisher-transformed correlations (see equation (64)). The results for these models are 

reported in the Appendix (Table A-4 and Table A-5). Overall, there are only very minor 

differences between the models discussed here and those for the Fisher-transformed 

correlations.  

Table 5-5: HAR models for the 5-minute realized bipower correlations 

 
BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG 

c 0.060 *** 0.104 *** 0.093 *** 0.224 *** 0.150 *** 0.156 *** 

 
(0.020) 

 
(0.024) 

 
(0.023) 

 
(0.046) 

 
(0.041) 

 
(0.033) 

 
β

(d)
 0.052 

 
-0.041 

 
0.024 

 
0.081 * 0.048 

 
0.056 

 

 
(0.046) 

 
(0.045) 

 
(0.045) 

 
(0.044) 

 
(0.044) 

 
(0.044) 

 
β

(w)
 0.318 *** 0.426 *** 0.308 *** 0.123 

 
0.112 

 
0.142 

 

 
(0.095) 

 
(0.097) 

 
(0.097) 

 
(0.097) 

 
(0.102) 

 
(0.101) 

 
β

(m)
 0.402 *** 0.114 

 
0.268 ** 0.152 

 
0.451 *** 0.173 

 

 
(0.109) 

 
(0.134) 

 
(0.124) 

 
(0.157) 

 
(0.138) 

 
(0.157) 

 
R

2
 0.158 

 
0.057 

 
0.073 

 
0.023 

 
0.052 

 
0.020 

 
LB 10 0.555 

 
0.808 

 
0.653 

 
0.910 

 
0.793 

 
0.675 

 
ARCH 5 0.612 

 
0.739 

 
0.425 

 
0.013 

 
0.735 

 
0.511 

 
JB 0.067 

 
0.136 

 
0.818 

 
0.059 

 
0.050 

 
0.661 

 
Notes: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. LB 10 = p-value of the Ljung-Box test for residual 
autocorrelation up to lag 10, ARCH 5 = p-value of the Engle test for the presence of fifth order ARCH effects 
in residuals, JB = p-value of the Jarque-Bera test for normality of residuals 
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Let us now devote a few lines to the HAR models for the 30-minute realized 

correlations, focusing mainly on the differences from the results reported above. As shown 

in Table 5-6, those variables that were significant at the 1% level in the previous models 

are still significant but in some cases only weakly. All other significant variables become 

now insignificant, with the notable exception of the lagged daily BUX-WIG correlations. 

Interestingly, some previously insignificant variables gain statistical significance, namely 

the lagged daily BUX-DAX correlations and also the lagged weekly DAX-PX correlations 

(although in the latter case the significance is only weak). The models for the 30-minute 

realized correlations have considerably lower R2 than those for the 5-minute correlations, 

which we can attribute to the higher variance of the 30-minute correlations. The residuals 

do not appear to exhibit autocorrelation or ARCH effects but in all cases we strongly reject 

the hypothesis that they are normally distributed.  

It is necessary to say that the non-normality of residuals can have an impact on the 

results of the t-tests for regression coefficients. For the purpose of comparison, Table A-6 

in the Appendix summarizes the results for the HAR models estimated for the 30-minute 

Fisher-transformed realized correlations. It can be seen that when the Fisher transformation 

is applied on the correlations, then for most pairs we do not reject the normality of the 

residuals (at the 5% level). We can also notice that there are some slight changes in the 

significance of variables compared to the models for the non-transformed correlations.  

Table 5-6: HAR models for the 30-minute realized correlations 

 
BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG 

c 0.227 *** 0.232 *** 0.264 *** 0.475 *** 0.349 *** 0.397 *** 

 (0.053) 
 

(0.049) 
 

(0.054) 
 

(0.083) 
 

(0.083) 
 

(0.073) 
 

β
(d)

 0.102 ** 0.035 
 

0.121 *** 0.017 
 

0.038 
 

0.071 
 

 (0.045) 
 

(0.045) 
 

(0.044) 
 

(0.044) 
 

(0.044) 
 

(0.044) 
 

β
(w)

 0.191 ** 0.272 *** 0.205 ** 0.175 * 0.099 
 

0.077 
 

 (0.096) 
 

(0.098) 
 

(0.093) 
 

(0.101) 
 

(0.103) 
 

(0.096) 
 

β
(m)

 0.252 * 0.140 
 

0.091 
 

-0.095 
 

0.290 * -0.025 
 

 (0.132) 
 

(0.136) 
 

(0.138) 
 

(0.174) 
 

(0.165) 
 

(0.179) 
 

R
2
 0.058 

 
0.038 

 
0.047 

 
0.007 

 
0.019 

 
0.009 

 
LB 10 0.223 

 
0.795 

 
0.554 

 
0.292 

 
0.635 

 
0.483 

 
ARCH 5 0.974 0.093 

 
0.520 

 
0.234 

 
0.949 

 
0.247 

 
JB < 0.001 

 
< 0.001 

 
< 0.001 

 
< 0.001 

 
< 0.001 

 
< 0.001 

 
Notes: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. LB 10 = p-value of the Ljung-Box test for residual 
autocorrelation up to lag 10, ARCH 5 = p-value of the Engle test for the presence of fifth order ARCH effects 
in residuals, JB = p-value of the Jarque-Bera test for normality of residuals 
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The HAR models for the 30-minute realized bipower correlations (Table 5-7) can 

be described as follows: In most cases the explanatory variables become less significant or 

insignificant (with only one or no significant variable in the individual regressions), the R2 

values further decrease and for all pairs we strongly reject the normality of the residuals. 

An interesting finding is that we find no significance of the monthly correlations and that 

out of the five variables that were significant at the 1% level in the models for the 5-minute 

correlations, only two remain significant. It should be reminded that we cannot apply the 

Fisher transformation on the 30-minute realized bipower correlations (due to the fact that 

they occasionally exceed the value of 1), so it is not possible to make a comparison with 

the models for the transformed correlations.  

Table 5-7: HAR models for the 30-minute realized bipower correlations 

 
BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG 

c 0.316 *** 0.251 *** 0.319 *** 0.413 *** 0.492 *** 0.472 *** 

 (0.060) 
 

(0.053) 
 

(0.060) 
 

(0.075) 
 

(0.105) 
 

(0.084) 
 

β
(d)

 0.050 
 

0.049 
 

0.122 *** 0.021 
 

0.026 
 

0.039 
 

 (0.044) 
 

(0.045) 
 

(0.044) 
 

(0.044) 
 

(0.043) 
 

(0.043) 
 

β
(w)

 0.223 ** 0.176 * 0.098 
 

0.211 ** -0.100 
 

-0.020 
 

 (0.098) 
 

(0.101) 
 

(0.095) 
 

(0.101) 
 

(0.112) 
 

(0.103) 
 

β
(m)

 0.084 
 

0.157 
 

0.051 
 

-0.050 
 

0.260 
 

-0.061 
 

 (0.143) 
 

(0.148) 
 

(0.154) 
 

(0.168) 
 

(0.203) 
 

(0.206) 
 

R
2
 0.026 

 
0.023 

 
0.025 

 
0.012 

 
0.003 

 
0.001 

 
LB 10 0.205 

 
0.595 

 
0.421 

 
0.678 

 
0.549 

 
0.793 

 
ARCH 5 0.636 

 
0.107 

 
0.411 

 
0.435 

 
0.838 

 
0.589 

 
JB < 0.001 

 
< 0.001 

 
< 0.001 

 
< 0.001 

 
< 0.001 

 
< 0.001 

 
Notes: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. LB 10 = p-value of the Ljung-Box test for residual 
autocorrelation up to lag 10, ARCH 5 = p-value of the Engle test for the presence of fifth order ARCH effects 
in residuals, JB = p-value of the Jarque-Bera test for normality of residuals 

5.2.3. Comparison of Correlation Dynamics  

To conclude the subsection on the estimation results, we plot the correlations from 

the DCC-GARCH models together with the fitted values from the HAR models. Figure 5-4 

shows the fitted values from the HAR models for the 5-minute and 30-minute realized 

correlations, while in Figure 5-5 we focus on the models for the realized bipower 

correlations. Besides again demonstrating the bias discussed in the previous subsection, 

these pictures enable us to compare the correlation dynamics suggested by the various 

models that we estimated. It should be noted that we could of course directly compare the 
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dynamics of the correlations from the DCC-GARCH models with those of the realized 

correlations and realized bipower correlations using for example Figure 5-1 and Figure A-

1. However, such comparison is made a bit difficult by the large variation of the 30-minute 

correlations. The HAR models should capture the main dynamics of the realized 

correlations/realized bipower correlations (recall that in almost all cases there was no 

evidence of autocorrelation or ARCH effects in the residuals) and plotting of the fitted 

values allows for an easy visual inspection of the similarities and differences. We thus find 

this comparison useful. 

Looking at Figure 5-4, one of the most interesting findings is that despite the bias 

and the differences in the HAR models (significance of variables, R2) the dynamics of the 

5-minute realized correlations are generally very similar to those of the 30-minute realized 

correlations. As for the dynamics of the 5-minute bipower correlations versus the 

30-minute ones, sometimes they are characterized by a relatively high degree of similarity 

(e.g. the BUX-DAX pair) but in some cases there are considerable differences (e.g. the 

DAX-WIG pair). If we look at the dynamics of the realized correlations in comparison 

with the corresponding bipower correlations, we find out that the differences are only 

minor at the 5-minute frequency, but become somewhat more pronounced (at least for 

some pairs) at the 30-minute frequency. Still, we can conclude that there is a general 

similarity in the dynamics of the 5-minute and 30-minute correlations.  

In contrast, the DCC-GARCH models often suggest different correlation dynamics, 

which was already indicated by the low R2 values reported in Table 5-3. There are some 

index pairs and periods of time for which all the correlations seem to follow similar time 

paths (e.g. the BUX-WIG pair in 2008 and 2009) but in most cases the contrast is quite 

striking (the BUX-DAX pair can serve as a good example). In spite of this, we are still able 

to identify some general tendencies in the development of correlations during the analyzed 

period. We can usually observe an initial drop in correlations, after which the correlations 

increased, reflecting the downturn in stock markets. Afterwards, there is a decrease in 

correlations at the end of 2008/beginning of 2009, i.e. around the time when the markets 

reached the bottom. During 2009 the correlations increased again and then another fall can 

be observed at the end of 2009/beginning of 2010, typically followed by a temporary rise 

in correlations and a further decrease later in 2010. This can be interpreted as an indication 

that the markets recovered from the global financial crisis and began to be more influenced 

by domestic events. 
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Figure 5-4: Correlations from the DCC-GARCH models vs. fitted values from HAR 
models for realized correlations 

 

Figure 5-5: Correlations from the DCC-GARCH models vs. fitted values from HAR 
models for realized bipower correlations 
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5.3. Forecasting Exercise 

5.3.1. Description of the Setting  

So far, we have focused on analyzing the dynamics of correlations during the whole 

period under study, thus estimating the models on all the available data (January 2008 to 

November 2010). Now we would like to find out whether the models are able to predict the 

future development of correlations. For this purpose, we have to divide the sample into two 

parts, where the first part will contain the information that we know and the second part 

will represent “the future”. Therefore, we divide the analyzed period into an in-sample 

period of 550 days and an out-of-sample period of the remaining 141 days. We presume 

that the in-sample period is long enough to allow the markets to absorb the effects of the 

crisis. The out-of sample period covers seven months15 and its length relative to the length 

of the in-sample period is approximately equal to 1:4 (i.e. the lengths of the out-of-sample 

period and of the whole period under study are in the ratio of 1:5). All the models 

described in the previous subsection are reestimated using only the data for the in-sample 

period and based on the obtained parameter estimates, the models produce one-step ahead 

forecasts of correlations for the out-of-sample period. In other words, we keep the 

estimated parameters fixed and taking the more recent observations one by one16, each 

time we generate the forecast for the next day.  

To evaluate the forecasts, we employ the approach introduced by Mincer and 

Zarnowitz (1969), who suggest to regress the realizations of a given time series on a 

constant and the forecasts. Such a regression is commonly referred to as the 

Mincer-Zarnowitz regression and for the one-step ahead forecasts of realized correlations it 

takes the form  

 
#��� = ÂT + Â�E��
#���� + :���. (65) 

As argued by Mincer and Zarnowitz (1969), if the forecast is unbiased and efficient, the 

coefficients ÂT and Â� are equal to 0 and 1, respectively. Moreover, the higher the R2 of the 

regression, the better is the predictive power of the forecast.  

One question that arises is what we should use as the dependent variable in the 

Mincer-Zarnowitz regressions. In our analysis we decided to employ the 5-minute realized 

                                                           
15

 The in-sample period ends on April 29, 2010. 
16

 In case of the DCC-GARCH models the observations are first filtered by the same AR(1) model that is used 

for the filtration of in-sample returns.  



 

51 

 

correlations. First, we regress them on the forecast from the HAR models for the 5-minute 

realized correlations, by which we obtain a certain kind of benchmark. We will thus refer 

to this regression and the forecast used in the regression as the benchmark regression and 

the benchmark forecast, respectively. It is then possible to make a comparison by running 

similar regressions for the forecasts from the other models, i.e. using the same response 

variable and changing the explanatory variable. However, even more interesting is to 

include the alternative forecast in the benchmark regression (thus having two explanatory 

variables) and observe how it affects the coefficient estimates, the significance of 

explanatory variables and the R2 of the regression. Such an analysis can help us to find out 

whether the particular alternative forecast contains valuable information that is not 

embodied in the benchmark forecast and whether the inclusion of the alternative forecast 

significantly improves the predictive power of the forecast.  

5.3.2. Results  

The key results are summarized in the following six tables (Table 5-8 to Table 

5-13). For each index pair the first row shows the benchmark regression, then we report the 

results for the regressions that additionally include one alternative forecast and finally we 

include all the forecasts in one regression.  

Table 5-8: Evaluation of forecasts for the BUX-DAX correlations 

 const  RC 5m RBPC 5m RC 30m  RBPC 30m  DCC R
2
 

0.054 

 

0.870 *** 
   

 
 

 
 

 

0.096 

(0.072)  (0.227)          
 

0.044 

 

-0.174 
 

1.145 ** 
 

 
 

 
 

 

0.124 

(0.072)  (0.546)  (0.546)        
 

0.071 

 

0.904 *** 
  

-0.054 

 
 

 
 

 

0.096 

(0.120)  (0.301)    (0.313)      
 

0.130 

 

0.907 *** 
   

 

-0.176 

 
 

 

0.098 

(0.142)  (0.235)      (0.283)    
 

-0.051 

 

0.804 *** 
   

 
 

 

0.211 

 

0.097 

(0.277)  (0.282)        (0.538)  
 

-0.246 

 

-0.636 
 

1.341 ** 0.190 

 

-0.298 

 

0.722 

 

0.136 

(0.299)  (0.691)  (0.580)  (0.435)  (0.401)  (0.575)  
 

Note: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. 
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Table 5-9: Evaluation of forecasts for the BUX-PX correlations 

 const  RC 5m RBPC 5m RC 30m  RBPC 30m  DCC R
2
 

-0.013 
 

1.126 *** 
        

0.077 

(0.069)  (0.331)          
 

-0.016 
 

-0.052 
 

1.133 
       

0.090 

(0.069)  (0.899)  (0.805)        
 

-0.109 
 

0.687 
   

0.440 
     

0.085 

(0.109)  (0.509)    (0.387)      
 

-0.031 
 

1.071 *** 
    

0.074 
   

0.077 

(0.105)  (0.408)      (0.319)    
 

-0.095 
 

0.711 * 
      

0.287 
 

0.092 

(0.087)  (0.427)        (0.188)  
 

-0.151 
 

-1.238 
 

1.479 * 0.951 
 

-0.486 
 

0.164 
 

0.119 

(0.121)  (1.096)  (0.861)  (0.607)  (0.479)  (0.199)  
 

Note: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. 
 

Table 5-10: Evaluation of forecasts for the BUX-WIG correlations 

 const  RC 5m RBPC 5m RC 30m  RBPC 30m  DCC R
2
 

0.014 
 

0.977 *** 
        

0.096 

(0.067)  (0.254)          
 

0.010 
 

0.601 
 

0.420 
       

0.100 

(0.067)  (0.545)  (0.539)        
 

-0.090 
 

0.636 
   

0.422 
     

0.105 

(0.110)  (0.384)    (0.358)      
 

-0.228 
 

0.651 ** 
    

0.747 * 
  

0.116 

(0.151)  (0.312)      (0.421)    
 

0.245 
 

1.053 *** 
      

-0.413 
 

0.103 

(0.227)  (0.264)        (0.388)  
 

0.018 
 

0.156 
 

0.684 
 

-0.105 
 

0.875 
 

-0.480 
 

0.132 

(0.271)  (0.632)  (0.550)  (0.493)  (0.584)  (0.397)  
 

Note: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. 
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Table 5-11: Evaluation of forecasts for the DAX-PX correlations 

 const  RC 5m RBPC 5m RC 30m  RBPC 30m  DCC R
2
 

0.261 
 

0.346 
         

0.004 

(0.162)  (0.441)           

0.296 * 0.794 
 

-0.564 
       

0.008 

(0.171)  (0.808)  (0.852)         

0.458 
 

0.481 
   

-0.471 
     

0.008 

(0.324)  (0.482)    (0.671)       

0.198 
 

0.276 
     

0.177 
   

0.005 

(0.230)  (0.477)      (0.452)     

-0.229 
 

0.088 
       

0.884 ** 0.038 

(0.275)  (0.451)        (0.403)   

0.064 
 

0.778 
 

-0.840 
 

-1.333 
 

0.942 
 

0.842 ** 0.057 

(0.389)  (0.840)  (0.945)  (0.925)  (0.674)  (0.406)   

Note: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. 
 

Table 5-12: Evaluation of forecasts for the DAX-WIG correlations 

 const  RC 5m RBPC 5m RC 30m  RBPC 30m  DCC R
2
 

0.304 * 0.321 
         

0.004 

(0.178) 
 

(0.411) 
 

 
 

 
 

 
 

 
 

 

0.472 ** 0.803 
 

-0.928 
       

0.018 

(0.214) 
 

(0.534) 
 

(0.661) 
 

 
 

 
 

 
 

 

0.402 
 

0.500 
   

-0.283 
     

0.006 

(0.254) 
 

(0.529) 
 

 
 

(0.526) 
 

 
 

 
 

 

0.540 
 

0.351 
     

-0.411 
   

0.006 

(0.589) 
 

(0.418) 
 

 
 

 
 

(0.978) 
 

 
 

 

0.076 
 

0.271 
       

0.361 
 

0.009 

(0.344) 
 

(0.417) 
 

 
 

 
 

 
 

(0.465) 
 

 

0.428 
 

0.864 
 

-0.918 
 

-0.159 
 

-0.233 
 

0.365 
 

0.025 

(0.703) 
 

(0.616) 
 

(0.671) 
 

(0.541) 
 

(1.005) 
 

(1.005) 
 

 

Note: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. 
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Table 5-13: Evaluation of forecasts for the PX-WIG correlations 

 const  RC 5m RBPC 5m RC 30m  RBPC 30m  DCC R
2
 

-0.279 * 2.191 *** 
 

      
 

0.078 

(0.161)  (0.640)           

-0.282 * 2.683 ** -0.483 
       

0.080 

(0.162)  (1.173)  (0.965)         

-0.252 
 

2.235 *** 
  

-0.084 
     

0.078 

(0.236)  (0.702)    (0.540)       

0.320 
 

1.514 * 
    

-0.968 
   

0.092 

(0.437)  (0.785)      (0.657)     

-0.983 *** 1.394 ** 
      

1.392 ** 0.120 

(0.315)  (0.699)        (0.540)   

-0.478 
 

2.761 ** -1.811 
 

-0.141 
 

-0.773 
 

1.408 ** 0.139 

(0.696)  (1.261)  (1.097)  (0.544)  (0.783)  (0.607)   

Note: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. 

To provide a comparison and supporting evidence for our findings, Table A-7 in the 

Appendix presents the results for the regressions in which we use only one forecast, i.e. we 

simply change the explanatory variable instead of including the alternative forecast in the 

benchmark regression. One important thing to note is that when we use forecasts obtained 

from lower-frequency data (30-minute, daily), we cannot generally expect the constant 

term in the regression to be close to 0 due to the bias discussed in Section 5.1. 

A very interesting finding is that the results differ across the index pairs. Let us 

comment on each of the six cases. Concerning the BUX-DAX pair (Table 5-8), the 

benchmark forecast performs quite well (ÂT and Â� are close to 0 and 1, respectively, and 

the regressor is strongly significant). However, when we include the forecast from the 

model for the 5-minute bipower correlations, the newly added variable is significant (with 

the coefficient not far from 1), while the benchmark forecast becomes insignificant. 

Moreover we observe quite a significant increase in the R2 of the regression. Note that if 

the 5-minute bipower correlation forecast is used as the only explanatory variable (see 

Table A-7), the R2 remains almost the same and ÂT and Â� are even closer to the desired 

values that in the benchmark regression. The rest of Table 5-8 shows that when we include 

other forecasts in the benchmark regression, they turn out to be insignificant and the 

increase in the R2 is very small. Also, the 5-minute bipower correlation forecast remains 

significant even in the regression that includes all the forecasts.  



 

55 

 

As for the BUX-PX case (Table 5-9), the results for the benchmark regression are 

again satisfactory but we observe a slightly different pattern when including the alternative 

forecasts. With the exception of the 30-minute bipower correlation forecast, which is 

clearly inferior, the inclusion of the alternative forecasts leads to a situation where either 

both explanatory variables are insignificant, or one of the variables is insignificant and the 

other one is only weakly significant (at the 10% level). This indicates that all these 

forecasts embody a similar kind of information, which is also confirmed by similar R2 

values reported in Table A-7. Nevertheless, we can notice that in the regression that 

includes the 5-minute bipower correlation forecast, the coefficients for the benchmark and 

for the alternative forecast are close to 0 and 1, respectively. Moreover, when we include 

all forecasts in one regression, the 5-minute bipower correlation forecast is weakly 

significant, while all other variables are insignificant. In the light of these findings, it is 

quite interesting that out of the regressions with two explanatory variables, the regression 

with the highest R2 is not the one that includes the 5-minute bipower correlation forecast 

but the one with the DCC-GARCH forecast (although the difference is small).  

Turning to the BUX-WIG pair (Table 5-10), the results for the benchmark 

regression do not differ much from the previous two cases, except for the fact that the Â� 

coefficient is even closer to 1. Similarly to the BUX-PX case, if the 5-minute bipower 

correlation forecast or the 30-minute correlation forecast is included in the benchmark 

regression, the explanatory variables make each other insignificant. In contrast, the 

DCC-GARCH forecast does not have any influence on the significance of the benchmark 

forecast and is itself insignificant. The most interesting result is the one obtained for the 

regression that includes the 30-minute bipower correlation forecast. In this regression both 

explanatory variables are significant (at least at the 10% level), which has not occurred in 

any of the cases discussed so far. Moreover, the regression with the 30-minute bipower 

correlation forecast has a higher R2 than those which include the other alternative 

BUX-WIG forecasts. However, if all variables are included in one regression, none of 

them is significant.  

Unlike the previous benchmark forecasts, the forecast for the DAX-PX pair has 

very little predictive power (see Table 5-11). The inclusion of the alternative forecasts does 

not lead to any significant improvement, with one notable exception, namely the 
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DCC-GARCH forecast.17 The coefficient for the DCC-GARCH forecast is close to 1 and 

the variable is significant at the 5% level. Yet, the R2 is quite low compared to the previous 

index pairs. Concerning the DAX-WIG pair (Table 5-12), we again obtain poor results for 

the benchmark regression but this time none of the alternative forecasts significantly 

changes the situation.  

Turning to the results for the last pair, i.e. PX-WIG (Table 5-13), we can see that 

the R2 of the benchmark regression is comparable to those obtained for the first three index 

pairs but the forecast is biased and inefficient. When we include the alternative forecasts, 

two different outcomes can be observed. The forecasts from the HAR models are 

insignificant and even though in some cases they slightly change the significance of the 

benchmark forecast, it has to be pointed out that the coefficients for these forecasts are 

negative. On the other hand, the DCC-GARCH forecast turns out to be significant and its 

inclusion is associated with relatively large increase in R2. Nevertheless, we must also add 

that similarly to the benchmark forecast, the DCC-GARCH forecast is biased and 

inefficient (see Table A-7). When we include all variables in one regression, both the 

benchmark and the DCC-GARCH forecast remain significant.  

Finally, we should say that we also experimented with the forecasts for the 

Fisher-transformed correlations, using the 5-minute Fisher-transformed correlations as the 

response variable in the regressions. In the Appendix we report six tables (Table A-8 to 

Table A-13)  analogical to those shown above.18 Generally, the regressions for the 

Fisher-transformed correlations have slightly higher R2 values but the overall pattern of 

results is very similar.  

                                                           
17

 It is probably worth mentioning that for the DAX-PX pair there is a noteworthy difference between the 

results reported in Table 5-3 and those that we obtain if the model is estimated using only the data for the 

in-sample period. In the latter case the Á and Â parameters are equal to 0.064 and 0.68, respectively. 

18
 Note that the realized correlation and realized bipower correlation forecasts are obtained from the HAR 

models for the Fisher-transformed correlations. The DCC-GARCH forecasts are generated in the same way 

as before and we only apply the Fisher transformation on the forecasts.  
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6. Conclusion 

In this thesis we studied the interdependencies among the stock markets of the 

Czech Republic, Poland, Hungary and Germany in the period 2008-2010. We first 

described the theories underlying our calculations and provided an overview of the Central 

European stock markets. Afterwards we devoted a short chapter to some data issues and 

finally we presented our empirical findings. We contribute to the research on the Central 

European stock markets by analyzing their interdependencies with the use of 

high-frequency data. We studied the main characteristics and dynamics of realized 

correlations and compared the results to those given by the DCC-GARCH models. There 

are several factors that make our analysis particularly interesting, namely (i) the use of 

both the realized correlations and the realized bipower correlations (ii) the computation of 

realized measures for different sampling frequencies, and (iii) the fact that the period under 

study includes the recent financial crisis.  

When comparing the main characteristics of the correlations, we observed the 

so-called Epps effect, i.e. the decrease in correlations for higher sampling frequencies, 

which is attributable to non-synchronous trading. Interestingly, we found a considerably 

larger downward bias for the 5-minute frequency than the researchers who investigated the 

US stock market. This illustrates the role that market liquidity can play in affecting the 

correlation results. Another distinct feature of the realized correlations, as well as the 

realized bipower correlations, is the decrease in variance for higher sampling frequencies. 

Overall, these findings show the difficulty of selecting the appropriate sampling frequency 

and point to the importance of developing such estimators that would be able to handle 

non-synchronous trading. In this respect, we can mention for example the recent works of 

Zhang (2011) and Barndorff-Nielsen et al. (2010). Concerning the differences among the 

examined index pairs, it is probably worth repeating that all methods used in our analysis 

indicated that the strongest dependence is the one between the stock markets of Germany 

and Poland.  

The parameter estimates of the DCC-GARCH models implied quite strong 

persistence of the correlations. This was only partly confirmed by the results for the HAR 

models, since for some pairs we found no or only weak significance of the lagged weekly 

and monthly realized correlations. Compared to the models for the 5-minute realized 
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correlations, the use of the bipower correlations and/or of the 30-minute frequency 

generally resulted in weaker significance of regressors. Nevertheless, it should be also 

added that we found no evidence of autocorrelation or ARCH effects (with one exception) 

in the residuals of the HAR models. Importantly, the visual inspection of the fitted values 

revealed a relatively high degree of similarity in the correlation dynamics suggested by the 

different kinds of HAR models (sometimes with the exception of the model for the 

30-minute bipower correlations). This correlation pattern often contrasted with the 

dynamics suggested by the DCC-GARCH models but on the whole, it was possible to find 

some common tendencies in the development of correlations, apparently reflecting the 

responses of the markets to the global financial crisis.  

Finally, several interesting findings emerged from the forecasting exercise, taking 

the 5-minute realized correlations as a benchmark. The results differed across the index 

pairs. First, for three pairs the benchmark forecast could be considered unbiased and 

efficient. Second, in most cases (regardless of whether the benchmark forecast was 

unbiased and efficient or not), the predictive power of the forecast could be significantly 

improved by including either the bipower correlation forecast (5-minute or 30-minute) or 

the DCC-GARCH forecast. Concerning the DCC-GARCH forecast, the result is 

particularly interesting. Recall that the DCC-GARCH model was estimated for daily data 

(i.e. only one observation per day), so it is a little bit surprising that the forecast from the 

model contained valuable information that was not yet embodied in the benchmark 

forecast. In any case, our findings indicate that when making a forecast, it may be useful to 

consider different models.  

Our results have important implications for risk management, for example the 

calculation of beta or value at risk of a portfolio. This could be an interesting extension of 

our analysis and a possible topic for further research.  
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Appendix 

 
Figure A-1: Correlations from the DCC-GARCH models vs. realized bipower 
correlations 

 

2008 2009 2010 2011

-0.5

0

0.5

1

BUX - DAX

2008 2009 2010 2011

-0.5

0

0.5

1

BUX - PX

2008 2009 2010 2011

-0.5

0

0.5

1

BUX - WIG

2008 2009 2010 2011

-0.5

0

0.5

1

DAX - PX

2008 2009 2010 2011
-0.5

0

0.5

1

DAX - WIG

2008 2009 2010 2011

-0.5

0

0.5

1

PX - WIG

 

 

RBPC 30m RBPC 5m DCC



 

64 

 

Figure A-2: Covariances from the DCC-GARCH models vs. realized bipower 
covariances 

 

 

Table A-1: P-values from paired t-tests for correlations 

 
BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG 

DCC vs. RC 1h < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

DCC vs. RC 30m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

DCC vs. RC 5m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

DCC vs. RBPC 1h < 0.001 < 0.001 < 0.001 < 0.001 0.001 < 0.001 

DCC vs. RBPC 30m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

DCC vs. RBPC 5m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RC 1h vs. RC 30m < 0.001 < 0.001 < 0.001 < 0.001 0.021 < 0.001 
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RC 5m vs. RBPC 5m < 0.001 0.007 < 0.001 < 0.001 < 0.001 0.268 
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Table A-2: P-values from paired t-tests for covariances 

 
BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG 

DCC vs. RCOV 1h 0.021 < 0.001 < 0.001 0.004 0.010 < 0.001 

DCC vs. RCOV 30m 0.014 < 0.001 < 0.001 0.006 0.320 < 0.001 

DCC vs. RCOV 5m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

DCC vs. RBPCOV 1h 0.009 < 0.001 < 0.001 0.001 0.002 < 0.001 

DCC vs. RBPCOV 30m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

DCC vs. RBPCOV 5m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RCOV 1h vs. RCOV 30m 0.848 0.564 0.765 0.921 0.085 0.565 

RCOV 1h vs. RCOV 5m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RCOV 30m vs. RCOV 5m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RBPCOV 1h vs. RBPCOV 30m 0.115 0.062 0.168 0.079 0.563 0.741 

RBPCOV 1h vs. RBPCOV 5m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RBPCOV 30m vs. RBPCOV 5m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RCOV 1h vs. RBPCOV 1h 0.039 0.565 0.009 0.041 0.015 0.006 

RCOV 30m vs. RBPCOV 30m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RCOV 5m vs. RBPCOV 5m < 0.001 0.077 < 0.001 < 0.001 < 0.001 < 0.001 

 

 

Table A-3: P-values from paired t-tests for Fisher-transformed correlations 

 
BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG 

DCC vs. RC 1h 0.020 0.014 0.447 0.933 0.151 < 0.001 

DCC vs. RC 30m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

DCC vs. RC 5m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

DCC vs. RBPC 5m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RC 1h vs. RC 30m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RC 1h vs. RC 5m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RC 30m vs. RC 5m < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RC 5m vs. RBPC 5m < 0.001 0.002 < 0.001 0.009 < 0.001 0.785 
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Figure A-3: Boxplots of realized bipower correlations 

 

Table A-4: HAR models for the 5-minute Fisher-transformed realized correlations 

 
BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG 

c 0.064 *** 0.101 *** 0.100 *** 0.202 *** 0.140 *** 0.179 *** 

 
(0.022) 

 
(0.023) 

 
(0.024) 

 
(0.046) 

 
(0.040) 

 
(0.035) 

 
β

(d)
 0.026 

 
-0.012 

 
0.089 ** 0.093 ** 0.098 ** 0.082 * 

 
(0.045) 

 
(0.045) 

 
(0.045) 

 
(0.044) 

 
(0.045) 

 
(0.044) 

 
β

(w)
 0.379 *** 0.417 *** 0.323 *** 0.122 

 
0.153 

 
0.170 * 

 
(0.095) 

 
(0.094) 

 
(0.091) 

 
(0.095) 

 
(0.098) 

 
(0.098) 

 
β

(m)
 0.380 *** 0.110 

 
0.212 * 0.260 * 0.441 *** 0.071 

 

 
(0.107) 

 
(0.131) 

 
(0.115) 

 
(0.143) 

 
(0.122) 

 
(0.154) 

 
R

2
 0.172 

 
0.064 

 
0.100 

 
0.037 

 
0.098 

 
0.025 

 
LB 10 0.926 

 
0.935 

 
0.218 

 
0.259 

 
0.653 

 
0.956 

 
ARCH 5 0.672 

 
0.786 

 
0.721 

 
0.359 

 
0.270 

 
0.823 

 
JB 0.011 

 
0.284 

 
< 0.001 

 
0.595 

 
0.002 

 
0.004 

 
Notes: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. LB 10 = p-value of the Ljung-Box test for residual 
autocorrelation up to lag 10, ARCH 5 = p-value of the Engle test for the presence of fifth order ARCH effects 
in residuals, JB = p-value of the Jarque-Bera test for normality of residuals 
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Table A-5: HAR models for the 5-minute Fisher-transformed realized bipower 
correlations 

 
BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG 

c 0.063 *** 0.110 *** 0.098 *** 0.248 *** 0.166 *** 0.168 *** 

 
(0.021) 

 
(0.025) 

 
(0.024) 

 
(0.051) 

 
(0.045) 

 
(0.036) 

 
β

(d)
 0.050 

 
-0.035 

 
0.027 

 
0.075 * 0.058 

 
0.049 

 

 
(0.046) 

 
(0.045) 

 
(0.045) 

 
(0.044) 

 
(0.044) 

 
(0.044) 

 
β

(w)
 0.306 *** 0.428 *** 0.299 *** 0.119 

 
0.108 

 
0.132 

 

 
(0.095) 

 
(0.097) 

 
(0.097) 

 
(0.097) 

 
(0.101) 

 
(0.102) 

 
β

(m)
 0.416 *** 0.106 

 
0.277 ** 0.146 

 
0.440 *** 0.177 

 

 
(0.109) 

 
(0.133) 

 
(0.124) 

 
(0.159) 

 
(0.138) 

 
(0.160) 

 
R

2
 0.156 

 
0.058 

 
0.073 

 
0.020 

 
0.052 

 
0.018 

 
LB 10 0.473 

 
0.792 

 
0.653 

 
0.886 

 
0.851 

 
0.685 

 
ARCH 5 0.793 

 
0.626 

 
0.600 

 
0.024 

 
0.580 

 
0.608 

 
JB 0.043 

 
0.864 

 
0.003 

 
0.142 

 
0.049 

 
< 0.001 

 
Notes: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. LB 10 = p-value of the Ljung-Box test for residual 
autocorrelation up to lag 10, ARCH 5 = p-value of the Engle test for the presence of fifth order ARCH effects 
in residuals, JB = p-value of the Jarque-Bera test for normality of residuals 

 

Table A-6: HAR models for the 30-minute Fisher-transformed realized correlations 

 
BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG 

c 0.263 *** 0.267 *** 0.304 *** 0.569 *** 0.409 *** 0.460 *** 

 
(0.066) 

 
(0.058) 

 
(0.064) 

 
(0.102) 

 
(0.100) 

 
(0.088) 

 
β

(d)
 0.088 ** 0.035 

 
0.115 *** 0.022 

 
0.014 

 
0.061 

 

 
(0.045) 

 
(0.045) 

 
(0.044) 

 
(0.044) 

 
(0.044) 

 
(0.044) 

 
β

(w)
 0.184 * 0.265 *** 0.209 ** 0.142 

 
0.145 

 
0.073 

 

 
(0.097) 

 
(0.098) 

 
(0.093) 

 
(0.100) 

 
(0.103) 

 
(0.097) 

 
β

(m)
 0.294 ** 0.161 

 
0.117 

 
-0.049 

 
0.318 ** 0.017 

 

 
(0.133) 

 
(0.136) 

 
(0.135) 

 
(0.176) 

 
(0.156) 

 
(0.178) 

 
R

2
 0.058 

 
0.039 

 
0.049 

 
0.006 

 
0.025 

 
0.007 

 
LB 10 0.180 

 
0.894 

 
0.211 

 
0.332 

 
0.699 

 
0.515 

 
ARCH 5 0.118 

 
0.242 

 
0.597 

 
0.487 

 
0.914 

 
0.238 

 
JB 0.961 

 
0.152 

 
0.021 

 
0.055 

 
0.124 

 
0.909 

 
Notes: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. LB 10 = p-value of the Ljung-Box test for residual 
autocorrelation up to lag 10, ARCH 5 = p-value of the Engle test for the presence of fifth order ARCH effects 
in residuals, JB = p-value of the Jarque-Bera test for normality of residuals 
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Table A-7: Mincer-Zarnowitz regressions for individual forecasts 

BUX-DAX 

 
 RC 5m RBPC 5m RC 30m  RBPC 30m  DCC 

b0 0.054 
 

0.036 
 

0.046 
 

0.279 *  -0.338 
 

 

(0.072) 
 

(0.067) 
 

(0.123) 
 

(0.143) 
 

(0.264) 
 

b1 0.870 *** 0.986 *** 0.562 ** 0.098 
 

1.120 ** 

 

(0.227) 
 

(0.223) 
 

(0.243) 
 

(0.287) 
 

(0.444) 
 

R
2
 0.096 

 
0.123 

 
0.037 

 
< 0.001 

 
0.044 

 
BUX-PX 

 
 RC 5m RBPC 5m RC 30m  RBPC 30m  DCC 

b0 -0.013 
 

-0.018 
 

-0.136 
 

-0.006 
 

 -0.065 
 

 

(0.069) 
 

(0.065) 
 

(0.107) 
 

(0.107) 
 

(0.086) 
 

b1 1.126 *** 1.090 *** 0.836 *** 0.558 ** 0.486 *** 

 

(0.331) 
 

(0.295) 
 

(0.252) 
 

(0.265) 
 

(0.146) 
 

R
2
 0.077 

 
0.090 

 
0.073 

 
0.031 

 
0.074 

 
BUX-WIG 

 
 RC 5m RBPC 5m RC 30m  RBPC 30m  DCC 

b0 0.014 
 

0.038 
 

-0.127 
 

-0.286 * 0.263 
 

 

(0.067) 
 

(0.062) 
 

(0.108) 
 

(0.151) 
 

(0.239) 
 

b1 0.977 *** 0.946 *** 0.867 *** 1.264 *** 0.005 
 

 

(0.254) 
 

(0.252) 
 

(0.238) 
 

(0.345) 
 

(0.393) 
 

R
2
 0.096 

 
0.092 

 
0.087 

 
0.088 

 
< 0.001 

 
DAX-PX 

 
 RC 5m RBPC 5m RC 30m  RBPC 30m  DCC 

b0 0.261 
 

0.340 ** 0.494 
 

0.249 
 

 -0.210 
 

 

(0.162)  (0.165) 
 

(0.322)  (0.211)  (0.257) 
 

b1 0.346 
 

0.136 
 

-0.202 
 

0.274 
 

0.904 ** 

 

(0.441)  (0.466) 
 

(0.615)  (0.418)  (0.388) 
 

R
2
 0.004 

 
< 0.001 

 
< 0.001 

 
0.003 

 
0.038 

 
DAX-WIG 

 
 RC 5m RBPC 5m RC 30m  RBPC 30m  DCC 

b0 0.304 * 0.561 
 

0.426 * 0.608 
 

0.161 

 

 

(0.178) 
 

(0.206)  (0.253) 
 

(0.583)  (0.318) 

 b1 0.321 
 

-0.290 
 

0.029 
 

-0.273 
 

0.408 

 

 

(0.411) 
 

(0.509)  (0.410) 
 

(0.963)  (0.458) 

 R
2
 0.004 

 
0.002 

 
< 0.001 

 
< 0.001 

 
0.006 

 PX-WIG 

 
 RC 5m RBPC 5m RC 30m  RBPC 30m  DCC 

b0 -0.279 * -0.069 
 

-0.003 
 

1.029 *** -0.941 *** 

 

(0.161) 
 

(0.134) 
 

(0.230)  (0.239) 
 

(0.318) 
 

b1 2.191 *** 1.365 ** 0.611 
 

-1.710 *** 1.868 *** 

 

(0.640) 
 

(0.536) 
 

(0.510)  (0.239) 
 

(0.489) 
 

R
2
 0.078 

 
0.045 

 
0.010 

 
0.068 

 
0.095 

 
Note: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. 
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Table A-8: Evaluation of forecasts for the BUX-DAX Fisher-transformed correlations 

 const  RC 5m RBPC 5m RC 30m   DCC R
2
 

0.054 
 

0.882 *** 
      

0.100 

(0.077)  (0.224) 
 

 
 

    
 

0.044 
 

 -0.161 
 

1.136 ** 
    

0.126 

(0.076)  (0.565) 
 

(0.566) 
 

    
 

0.073 
 

0.928 *** 
  

 -0.057 
   

0.100 

(0.120)  (0.319) 
 

 
 

(0.277)    
 

0.006 
 

0.844 *** 
    

0.088 
 

0.100 

(0.230)  (0.285) 
 

 
 

  (0.401)  
 

 -0.181 
 

 -0.522 
 

1.363 **  -0.050 
 

0.445 
 

0.132 

(0.253)  (0.722) 
 

(0.610) 
 

(0.276)  (0.429)  
 

Comparison with the regression for non-transformed correlations excluding RBPC 30m 

 const  RC 5m RBPC 5m RC 30m   DCC R
2
 

 -0.267 
 

 -0.543 
 

1.354 **  -0.035 
 

0.644 
 

0.132 

(0.297)  (0.679)  (0.579)  (0.312)  (0.564)   

Note: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. 

 

Table A-9: Evaluation of forecasts for the BUX-PX Fisher-transformed correlations 

 const  RC 5m RBPC 5m RC 30m   DCC R
2
 

 -0.016 
 

1.136 *** 
      

0.079 

(0.071)  (0.329)       
  

 -0.016 
 

 -0.082 
 

1.146 
     

0.093 

(0.071)  (0.900)  (0.788)     
  

 -0.109 
 

0.644 
   

0.398 
   

0.091 

(0.099)  (0.492)    (0.297)   
  

 -0.056 
 

0.720 
     

0.191 
 

0.093 

(0.076)  (0.435)      (0.131) 
  

 -0.151 
 

 -1.122 
 

1.294 
 

0.443 
 

0.153 
 

0.119 

(0.101)  (1.046)  (0.798)  (0.302)  (0.132)  
 

Comparison with the regression for non-transformed correlations excluding RBPC 30m 

 const  RC 5m  RBPC 5m  RC 30m   DCC R
2
 

 -0.184 
 

 -0.956 
 

1.236 
 

0.487 
 

0.216 
 

0.112 

(0.116)  (1.060)  (0.827)  (0.400)  (0.192) 

  Note: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. 
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Table A-10: Evaluation of forecasts for the BUX-WIG Fisher-transformed 
correlations 

 const  RC 5m RBPC 5m RC 30m   DCC R
2
 

0.009 
 

0.997 *** 
      

0.099 

(0.071)  (0.256)        
 

0.007 
 

0.623 
 

0.405 
     

0.102 

(0.071)  (0.575)  (0.557)      
 

 -0.083 
 

0.596 
   

0.369 
   

0.108 

(0.103)  (0.418)    (0.304)    
 

0.213 
 

1.090 *** 
    

 -0.325 
 

0.108 

(0.186)  (0.267)      (0.274)  
 

0.150 
 

0.251 
 

0.523 
 

0.337 
 

 -0.362 
 

0.122 

(0.207)  (0.650)  (0.567)  (0.305)  (0.280)  
 

Comparison with the regression for non-transformed correlations excluding RBPC 30m 

 const  RC 5m  RBPC 5m  RC 30m   DCC R
2
 

0.157 
 

0.211 
 

0.585 
 

0.402 
 

 -0.442 
 

0.118 

(0.256)  (0.634)  (0.549)  (0.361)  (0.398) 

  Note: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. 

 

Table A-11: Evaluation of forecasts for the DAX-PX Fisher-transformed correlations 

 const  RC 5m RBPC 5m RC 30m   DCC R
2
 

0.259 
 

0.412 
       

0.006 

(0.181)  (0.456)        
 

0.301 
 

0.808 
 

 -0.520 
     

0.008 

(0.195)  (0.819)  (0.892)     
  

0.633 * 0.686 
   

 -0.751 
   

0.017 

(0.346)  (0.504)    (0.595)    
 

 -0.132 
 

0.096 
     

0.648 ** 0.046 

(0.241)  (0.467)      (0.269)  
 

0.259 
 

0.401 
 

 -0.026 
 

 -0.800 
 

0.661 ** 0.059 

(0.374)  (0.824)  (0.917)  (0.613)  (0.270)  
 

Comparison with the regression for non-transformed correlations excluding RBPC 30m 

 const  RC 5m  RBPC 5m  RC 30m   DCC R
2
 

 -0.018 
 

0.474 
 

 -0.320 
 

 -0.462 
 

0.886 ** 0.043 

(0.386)  (0.814)  (0.872)  (0.686)  (0.406) 

  Note: Standard errors of the parameter estimates are reported in parentheses.***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. 
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Table A-12: Evaluation of forecasts for the DAX-WIG Fisher-transformed 
correlations 

 const  RC 5m RBPC 5m RC 30m   DCC R
2
 

0.317 
 

0.356 
       

0.005 

(0.194)  (0.407)        
 

0.472 ** 0.778 
 

 -0.804 
     

0.016 

(0.230)  (0.530)  (0.649)      
 

0.350 
 

0.462 
   

 -0.105 
   

0.006 

(0.222)  (0.533)    (0.339)    
 

0.132 
 

0.307 
     

0.244 
 

0.010 

(0.301)  (0.412)      (0.303)  
 

0.310 
 

0.838 
 

 -0.805 
 

 -0.110 
 

0.260 
 

0.022 

(0.335)  (0.625)  (0.653)  (0.341)  (0.305)  
 

Comparison with the regression for non-transformed correlations excluding RBPC 30m 

 const  RC 5m  RBPC 5m  RC 30m   DCC R
2
 

0.294 
 

0.860 
 

 -0.918 
 

 -0.183 
 

0.378 

 

0.024 

(0.402)  (0.614)  (0.669)  (0.529)  (0.465)  

 Note: Standard errors of the parameter estimates are reported in parentheses.***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. 

 

Table A-13: Evaluation of forecasts for the PX-WIG Fisher-transformed correlations 

 const  RC 5m RBPC 5m RC 30m   DCC R
2
 

 -0.331 * 2.347 *** 
      

0.080 

(0.177)  (0.675)       
 

  -0.328 * 2.652 **  -0.315 
     

0.081 

(0.178)  (1.149)  (0.960)      

  -0.361 
 

2.294 *** 
  

0.082 
   

0.080 

(0.283)  (0.779)    (0.595)    

  -0.789 *** 1.552 ** 
    

0.860 ** 0.122 

(0.250)  (0.731)      (0.336)  

  -0.833 ** 2.862 **  -1.459 
 

 -0.128 
 

1.060 *** 0.135 

(0.326)  (1.236)  (1.028)  (0.590)  (0.364)  

 
Comparison with the regression for non-transformed correlations excluding RBPC 30m 

 const  RC 5m  RBPC 5m  RC 30m   DCC R
2
 

 -1.060 *** 2.771 **  -1.406 
 

 -0.151 
 

1.623 *** 0.132 

(0.371)  (1.261)  (1.017)  (0.544)  (0.566) 

  Note: Standard errors of the parameter estimates are reported in parentheses. ***, ** and * denote 
significance at the 1%, 5% and 10% level, respectively. 


