CHARLES UNIVERSITY IN PRAGUE
FACULTY OF SOCIAL SCIENCES

Institute of Economic Studies

Jana Maskova

Analysis of Interdependencies among
Central European Stock Markets

Rigorosis Diploma Thesis

Prague 2012



Author: Mgr. Jana MaSkova
SupervisorPhDr. Jozef Barunik Ph.D.
Academic Year2011/2012



Declaration of Authorship

1. The author hereby declares that she compiled higisig independently, using only
the listed resources and literature.
2. The author grants to Charles University permissmmeproduce and to distribute

copies of this thesis document in whole or in part.

Prague, February 7, 2012 Jana Maskova



Acknowledgements

| would like to thank my supervisor, PhDr. Jozefr@8dk Ph.D., for all his insightful
comments, encouragement, willingness to answer nagtepns and last but not least,
providing me with the high-frequency data.



Bibliographic Record

Maskova, Jananalysis of Interdependencies among Central Eurof&tack Markets.
Prague, 2012. 86 p. Rigorosis diploma thesis (BhOharles University in Prague,
Faculty of Social Sciences, Institute of Economtadies. Supervisor: PhDr. Jozef
Barunik Ph.D.

Abstract

The objective of the thesis is to examine interdelpacies among the stock
markets of the Czech Republic, Hungary, Poland@@anany in the period 2008-2010.
Two main methods are applied in the analysis. Tisé fihethod is based on the use of
high-frequency data and consists in the computaifaalized correlations, which are
then modeled using the heterogeneous autoregredsAR) model. In addition, we
employ realized bipower correlations, which shdogdrobust to the presence of jumps
in prices. The second method involves modeling afratations by means of the
Dynamic Conditional Correlation GARCH (DCC-GARCH)del, which is applied to
daily data. The results indicate that when higlofiency data are used, the correlations
are biased towards zero (the so-called “Epps éjfedie also find quite significant
differences between the dynamics of the correlativom the DCC-GARCH models
and those of the realized correlations. Finally,slhew that accuracy of the forecasts of
correlations can be improved by combining resul$aimed from different models
(HAR models for realized correlations, HAR modeds fealized bipower correlations,
DCC-GARCH models).
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Abstrakt

Cilem této prace je prozkoumani zavislosti meziiaKeni trhy Ceské
republiky, Malarska, Polska a d&ihecka v obdobi 2008-2010. V analyze jsou
aplikovany d¥ hlavni metody. Prvni metoda je zaloZena na vyuygbkofrekveginich
dat a spéiva ve vypdtu realizovanych korelaci a jejich nasledném modaid pomoci
heterogenniho autoregresniho (HAR) modelu. Krdoho pouzivame téz realizované
bipower korelace, které by neétp byt ovlivnény prfitomnosti skok v cenach. Druhou
metodou je modelovani korelaci pomoci Dynamic Ciomtal Correlation GARCH
(DCC-GARCH) modelu, ktery aplikujeme na denni dafgsledky ukazuji, ze ip
pouziti vysokofrekvetnich dat jsou korelace vychyleny &®am k nule (tzv. Epps
efekt). RoveZz nachazime poémn¢ vyznamné rozdily mezi dynamikou korelaci
z DCC-GARCH modei a realizovanych korelaci. Na zawzjistujeme, Ze pro dosazeni
piesrgjSich pgedpowdi korelaci je vhodné kombinovat vysledky ziskané&znych
zkoumanych modél (HAR modely pro realizované korelace, HAR modelso p

realizované bipower korelace, DCC-GARCH modely).

Kli¢ova slova

stredni Evropa, akciové trhy, realizovana korelacalizevana bipower korelace,

vysokofrekvegini data, heterogenni autoregresni model, DCC-GAR®Hel
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1. Introduction

One of the key problems in financial econometrecghe estimation, modeling and
forecasting of volatility and correlations of asseturns. A large body of literature has
been devoted to this topic in recent decades. Whédemain focus has been on volatility
modeling, understanding the comovements of retisraéso of great practical importance.
Accurate estimates of covariances or correlations aeeded in many financial

applications, such as risk management, asset titlagar derivative pricing.

Over the past decade, new insights into the behafi@asset returns have been
gained. As high-frequency data became widely abks)aresearchers were given the
opportunity to exploit the information containedimraday returns. This opened a whole
new chapter in the modeling of volatility and ctatmns, with the attention being turned
to the use of so-called “realized volatility”. Thealized volatility approach was pioneered
by Andersen and Bollerslev (1998) but it took a fgears until rigorous theoretical
framework was developed. In this respect, the nmpbrtant paper is that of Andersen et
al. (2003). Currently, the realized volatility appch is an active area of research that
produces very interesting findings. Considerabtegpess has already been achieved in the
analysis of the univariate case. We can mention éxample the papers of
Barndorff-Nielsen and Shephard (2004c), Zhang, Myl and Ait-Sahalia (2005),
Andersen, Bollerslev and Diebold (2007) or Corsd(®@). In the multivariate context
(realized covariances and correlations) the fouadatwere laid by the work of Barndorff-
Nielsen and Shephard (2004a) but more systemag@areh began only recently, see for
example Barndorff-Nielsen et al. (2010) or Zhan@l(P).

Besides that, most researchers (not meaning owmlgetlwho apply the realized
volatility approach) analyze data from the U.&. Western European markets. In contrast,
markets in Central and Eastern Europe have typicalleived considerably less attention,
which is by itself a good reason to examine theaekats. Moreover, the stock markets in
this region have already attracted the attentiomwherous investors, for whom it is of
great interest to understand the links among thekete Further motivation can be
provided by the fact that Central European coustaee obliged (once they meet the

convergence criteria) to join the euro zone, sodibgree of comovements among the stock

1 U.S. = United States of America



markets of these countries and vis-a-vis the markthe euro area can have implications

for the stability of the monetary union.

Generally, the existing literature on the relatlips among the Central European
stock markets indicates that over the course of tthevelopment, the emerging stock
markets in this region have become more closeketinto each other, as well as to the
developed markets. There is some evidence thahtéelependencies among the markets
were influenced by the Asian and Russian crises latet by the Central European
countries’ accession to the European Union. Mosihefempirical studies used daily or
weekly data and when high-frequency data were eyeplo(see Egert and Kenda
(2007a) and Egert and Kenda (2007b)), they were analyzed by methods tieatisually

applied to daily or lower-frequency data.

In the light of what was mentioned above, we nowntto the objectives and
contributions of our thesis. We examine linkageomagnthe stock markets of the Czech
Republic, Poland, Hungary and Germany in the pe2i@@3-2010, thus employing recent
data. Our most important contribution is that walgze Central European stock markets
by means of realized correlations constructed fiuigh-frequency data. To our best
knowledge, no study on this topic has been puldigtefar, which means that we present
primary results obtained in this field. In additjome also use so-called realized bipower
correlations, which should be robust to jumps ia grice process. We study the main
characteristics of the realized correlations anvestigate the dynamics of the correlations
among the analyzed markets. To capture the caoeldiynamics, we model the realized
correlations using the heterogeneous autoregressodel which was proposed by Corsi

(2009) and then used by Audrino and Corsi (201@héncontext of realized correlations.

However, our analysis is not restricted to the ofsthe realized correlations. The
second method that we apply is multivariate GARCstlgling, namely the DCC-GARCH
model of Engle and Sheppard (2001) and Engle (208i)ough GARCH models have
certain weaknesses, a very good motivation for the is that sometimes we have to work
with data that are simply not available at highgérencies, in which case the realized
volatility approach cannot be applied. Even in auaion where we have the
high-frequency data at hand, the results given ARGH models are still worth looking at
because they offer an interesting comparison.



Among the most important research questions thaiwwletry to answer in our
thesis are the following: What is the nature andashyics of the interdependencies among
the Central European stock markets? Are therefgignt differences between the results
obtained by the two methods (realized correlati@GC-GARCH model)? Concerning the
realized correlations, how much are the resultscéfd by the use of different sampling
frequencies or by the use of estimators that shibeltbbust to the presence of jumps? Do
the correlations respond to market developmentsgltine recent financial crisis? How do

our models perform in forecasting correlations?

The rest of the thesis is organized as followsSégtion 2 we explain the theoretical
background of our analysis. Section 3 presents sbasec information on the Central
European stock markets and also provides a literagview on the linkages among the
markets. In Section 4 we describe our data andilde& construction of variables. In
Section 5 we report and discuss our empirical tesdection 6 summarizes the main

findings and concludes.

The thesis is based on the author's master thesfisnded at the Institute of
Economic Studies in June 2011. The reviewer’s contsneave been studied carefully and
some of them have been taken into consideratignjtreg in a few minor changes made in
the thesis. This applies mainly to Section 3 whee have added two sources to the
literature review and an explanatory note to FigB+e and Figure 3-2. Certain critical
comments of the reviewer have been considered tifftgdsand therefore have not been

incorporated in the thesis.



2. Theoretical Background

In this chapter we provide the theoretical framedwairtwo different approaches to

estimating, modeling and forecasting volatility ammrelations.

The first approach is based on the realized vagiaamzl the analogous concepts of
realized covariances and correlations. Together, réfalized variance and the related
measures can be referred to as realized measuar&ection 2.1.1. we show how these
measures are constructed. By means of the theayyaafratic variation, realized variances
and covariances can be connected to conditionanas and covariances of asset returns,
which is shown in Section 2.1.2. A considerable aadage of this approach is that it
enables us to treat volatility (or co-volatility3 an observable variable. As a consequence,
relatively simple and straightforward methods cam Wised for the modeling and
forecasting of volatility and correlations. This seown in Section 2.1.3., in which we

describe the heterogeneous autoregressive (HARgImod

The second approach presented in this chapteri¢g8ezR.) is based on GARCH
modeling, thus it is somewhat more traditional. Thedel that we use is the Dynamic
Conditional Correlation GARCH (DCC-GARCH) model, i is currently one of the
most popular multivariate GARCH models. The secstarts with a brief introduction to
multivariate GARCH modeling and then we continuéhwhe specification and estimation
procedure of the DCC-GARCH model.

2.1. Realized Measures

The realized volatility approach including its thetoical underpinnings was
introduced by Andersen et al. (2001). Later Anderseal. (2003) and Barndorff-Nielsen
and Shephard (2004a) developed a truly rigorousrétieal framework for the realized
measures. We will try to present here the maintpoidowever, we should first explain

how the realized measures are constructed.

2.1.1. Construction of Realized Measures

Let p;, denote the logarithmic price of assedt timet. Suppose that we have a
sample ofl" days and that within each day the prices are saugl time interval with a

total of m such intervals in one trading day. The length t&fag@ling day is normalized to



unity and the intervah is expressed as a fraction of the trading dayyeshaveA = 1/m.

Realized varianceR(/) of assei on dayt is defined as

m

RV = Z ri?t—1+kAi (1)

k=1
wheret = 1,...,T andr;¢_11xa = Dit-14ka — Dit—1+(k—1)a are intraday returns for day

Realized volatility (RVOL) is then computed as the square root of realizaiance,

formally
RVOLl,t = 1/RVi,t' (2)

In a similar vein, for two asseisand;j whose prices are synchronized, we can construct

the daily realized covarianc&O0V). This is computed as

m

RCOV,;: = Z Tit—1+kA Tjt—1+kA- (3)
k=1
To generalize the concept, we can consider aabtdlassets with their logarithmic
prices given by th&/ x 1 vectorp, = (py¢, ..., Pne)’, @ssuming the synchronization of all
prices. ThaV x N realized covariance matrix on days then defined as

m

RCOV, = Z Tt—1+kA r{—1+kA' 4)
k=1

Wherer._ . xa = Pe—1+ka — Pr-1+k-1)a 1S theN X 1 vector of intraday returns for day
Theit" element on the main diagonal REOV, is equal to the realized variance of agset
while the off-diagonal element in th€ row and thei*"* column represents the realized
covariance between assedtsand j. For the realized covariance matrix to be positive
definite, the number of assefy) cannot exceed the number of intraday returns dehe
day (m) (Andersen et al., 2003). Finally, we also defime daily realized correlatioR ()

between asseisandj, which is given by

RCOV; j, RCOV; .
RCyj = = - (5)
/RVi,t RV, RVOL;: - RVOL;,;

? It should be noted that the terminology used in the literature is not consistent. In some papers the term
“realized volatility” refers to the quantity defined in equation (1).
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In addition, we define the realized bipower var@rand covariance, which were
introduced by Barndorff-Nielsen and Shephard (200d4nd Barndorff-Nielsen and
Shephard (2004b). The realized bipower variaR&P({’) of assei on dayt is given by

_2 m S
RBPVi; = 4 mz|ri,t—1+kA||ri,t—1+(k—1)A|: (6)
k=2
where u, =v2/Vym =E(Ju]) and u ~ N(0,1). The realized bipower covariance
(RBPCOV) between assefsandj is defined as

u? mox
RBPCOV;;, = —mZﬂTi,t—um + 75 e—rrka| [Tie— 1+ m)a + Ty -1+ k-1

4 = (7)

- |7”i,t—1+kA - Tj,t—1+kA||7”i,t—1+(k—1)A - Tj,t—1+(k—1)A|)-

In the general framework d¥ assets we can construct tNex N daily realized bipower
covariance matrix, which is simply given by

RBPV,,  RBPCOV,,, -+ RBPCOV, .,

RBPCOV,,,  RBPV,,

RBPCOV, = (8)

RBPCOVy 1, -+ RBPVy,

Finally, the daily realized bipower correlatiolRBPC) between asset$ and j is
computed as

RBPCOV, ;,
JRBPV,; - \[RBPV;,

RBPCi'j't = (9)

Now that we have shown how the realized measueesarstructed, we proceed to

explain the underlying theory.

2.1.2. Quadratic Variation Theory

Following Andersen et al. (2003), we consider Nutlimensional price process
defined on a complete probability spa@® F, P), evolving in continuous time over the
interval [0, T], whereT is a positive integer. Further, €t < F be thes-field that reflects
the information at timet, so thatF, € F, for 0 <s <t < T.> If the price process is

arbitrage-free and has finite mean, then the Ityaic vector price process

* It is assumed that the family of o-fields (Foteo,r) € F satisfies the conditions of P-completeness and right
continuity, which are the usual assumptions for an information filtration.
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p= (p(t))te[o‘ﬂ belongs to the class of special semi-martingdlesavoid confusion, we

should stress that the notation introduced in thevipus sentence is used for the
theoretical continuous-time price process, whike discrete approximation of this process
is referred to by subscripts(see section 2.1.1). The same kind of notatiamsed for the

return process.

To briefly introduce semi-martingales, a processaed a semi-martingale if it
can be decomposed as the sum of a finite variggioness and a local martingale. Back
(1991) further notes that the defining propertya@pecial semi-martingale is that the finite
variation process in the decomposition is takerbdopredictable, which means that its
value at timet is known just before time. Importantly, the decomposition of a special

semi-martingale is unique and it is called the céred decomposition.

As mentioned above, procegs is a special semi-martingale, so it can be
decomposed uniquely as the sum of a finite vamatdad predictable mean component
A = (44, ..4)T and a local martingal® = (M, ... My)”. These may each be written as
the sum of a continuous sample-path part and a jparp We thus have the following

representation fgp(t)
pt) =p(0)+A(t) + M(t) = p(0) + A°(t) + AA(t) + M°(t) + AM(t), (10)

where the finite variation predictable componedtqt) and AA(t) are respectively
continuous and pure jump processes, the local mgales M°(t) and AM(t) are
respectively continuous sample-path and compengateg processes, and by definition
M(0) = A(0) = 0. The no-arbitrage condition implies that whenedi(t) = 0 (which
means that there is a jump whose timing and madgmitsi known prior to the jump event
and thus an arbitrage opportunity exists), therstrha a concurrent jump in the martingale
component, i.eAM(t) # 0. Furthermore, this martingale jump must be lamgyeugh (with
strictly positive probability) to change the direct of the jump in the price. Formally, if
AA(t) # 0, then

P[sgn(AA(t)) = — sgn(AA(t) + AM(t))] > 0, (11)

wheresgn(x) = 1 for x > 0 andsgn(x) = —1 forx < 0.



Having discussed the characterization of the groeess, let us now focus on the
returns. The continuously compounded return overitierval [t — h, t], where0 < t —
h <t <T,is denoted by

r(t,h) =p() —p(t —h). (12)

We will also assume that fdr = 1 the interval represents one trading day afwi1) is

the corresponding daily return. The cumulative nretyprocess fromt =0 onward,

r= (r(t))te[oﬂ, is given by

r(t) =r(tt) =p(t) —p(0) = A(t) + M(t). (13)

As a result of the properties pf(t), processr(t) is a special semi-martingale with the
unique decomposition into the predictable and iratielg mean componedtand the local
martingaleM. Besides that, the cumulative return processhgestito two types of jumps.
First, there are predictable jumps, for whith(t) # 0 and equation (11) must hold. Such
jumps may occur in case of perfectly anticipatddases of information. In contrast, jumps
of the second type are purely unanticipated, A&(t) = 0 but AM(t) # 0, typically

occurring when the market is hit by some unexpentaus.

An important property of a semi-martingale (andstlalso of every special semi-
martingale) is that it has a quadratic variatioacess. Lefr,r] = {[r,7](t) };c[o ] be the
quadratic variationV x N matrix process of the cumulative return procesth s ij"
element denoted a[sri,rj]. Using the definition of quadratic variation emgdd by
Barndorff-Nielsen and Shephard (2004a), we have

m-—1

[r, 7](¢) = plim Z [r(tisr) — Tt (tesn) — (D], (14)
k=0

m-—oo

wheret, =0<t; < <t, =t, supy(tys1 — tx) = 0 for m - o and plim denotes
probability limit. Thei™ diagonal element di-, ] is the quadratic variation process of the
i™ asset return, while thg™ off-diagonal element represents the quadratic riatian
process between asset retuinsnd j. Recalling the definition of the cumulative return
process, we can also rewrite (14) as

m—1

[r,7](t) = plim z [p(tes1) — PEIIP(trr1) — PED]T. (15)
k=0

m-—oo
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Andersen et al. (2003) note that if the finite aidn mean componewd in equation (10)
is continuous (which means that there are no pialie jumps), then thig" element of the
quadratic variation is given by

[0 = (Mo My](0) = [ME MEN© + ) AM(AM(S) (16)
0ss<t

This is an implication of the fact that the quatratriation of continuous finite variation
processes is zero, gbhas no effect on the quadratic variation. Equafiid) also shows
that jump components are relevant for the quadrateariation only if there are

simultaneous jumps in the price path for ifhandj™ asset.

Given the definition of quadratic variation, we dgarmediately see how it relates to
the realized measures. Equation (15) implies tlsaina> « (or A - 0) and for all
t=1,..,T,

Rcov, > [r, 7)) — [r,r](t - 1), (17)

p . - . . .
where— denotes convergence in probability. It means thatdaily realized covariance
matrix consistently estimates daily incrementsdh® quadratic return variation process. By
the same reasoning, the following convergence tresubbtained for the daily realized

correlation between assétandj

. [r, 151(8) — [, 151 (¢ — 1) (18)
W [Tl @ — [y rd &6 — D) ([, 71 () — 17,731 — 1)

Next, we show the connection between the quadvatiation and the conditional return

covariance matrix, as developed by Andersen €2@03).

We assume that the arbitrage-free logarithmic ppiceesyp is square-integrable
and that the mean componehts continuous. The conditional return covariancrin at

timet — h over[t — h, t] is then given by

cov(r(t, h)|F_p) = E([r,r](t) — [, 7](t — W)|F_p) + T4(t, h) (19)
+ Tam(t,h) + Thy(t, h),

where 0<t—h<t<T, Ty(th)=cov(A(t) —A(t —h)|F_p) and Iyy(t,h) =
EA()[M(t) — M(t — h)]"|F._,). By imposing certain additional conditions, we can
simplify the expression on the right-hand side 18)( Specifically, if the mean process,

{A(s) — A(t — h)}se[e—n,e, conditional on information at time— h is independent of the

9



return innovation proces$M (u)},e[c—n,t, then the last two terms on the right-hand side
of (19) are both zero. Furthermore, if the meancess, {A(s) — A(t — h)}sefe—n.1s
conditional on information at time— h is a predetermined function ovgr— h, t], then

we get rid of the second term on the right-hane sid(19) and we are thus left with
cov(r(t, W)|Fe-n) = E([r, r](©) — [r, 7](t — h)|F-p). (20)

Andersen et al. (2003) argue that the conditioadifeg to equation (2@re satisfied for a
wide range of commonly used models. Focusing ord#iky horizon, i.eh = 1, equation
(20) says that the time— 1 conditional covariance matrix of the daily return&, 1),
equals the timg — 1 conditional expectation of the daily incrementsthe quadratic
return variation process$r, r|(t) — [r,r](t — 1). Another interpretation is that the time
ex-post value of the daily increment to the quadnedriation is an unbiased estimator for

the daily return covariance matrix conditional aformation at time — 1.

Now we will consider a somewhat less general fraorkwin which we can obtain
more specific results. In addition to the abserfcarioitrage and the square integrability of
the logarithmic price procegs, we also assume thpt has continuous sample path, i.e.
with no jumps, and that the associated quadraticmesariation procesgr, r](t) is of full
rank (which implies that no asset is redundant)désnthese conditions, we have the

following representation for returns

t t

u(s)ds + f o(s)dW(s), (21)
t—h

r(t,h) = p(®) - p(t - h) = f

t—h
where0 <t—h <t <T, u(s) is an integrable predictable vector of dimenshx 1,

o(s) = (Ui’j(S))ij—l . is an N X N matrix, W(s) is an N x 1 dimensional standard

Brownian motion, integration of a matrix or vectaith respect to a scalar denotes

component-wise integration, so that

LihM(S) ds = <j: uy(s) ds, jt Ly (s) dS>T’ 22)

—h t—h
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and integration of a matrix with respect to a vedenotes component-wise integration of
the associated vector, so that

T

t t N t N
f a(s) dW(s) = f Zal,j(s)dwj(s),..., f ZJN,j(s)de(s) . (23)
t—h =1 =1

Furthermore, we have

P Ut (ai,j(s))z ds < oo

—-h

=1, 1<i,j<N. (24)

Defining the N x N matrix 2(s) = (Qi,j(s))“ , s 2(s) = o(s)a(s)”, the
i,j=1,..,

increments to the quadratic return variation predes/e the following form

t

[r,7](t) — [r,r](t — h) = f Q (s)ds. (25)

t—h

The expressio[ftt_h.(l(s) ds is the so-called integrated covariance matkigr the interval

[t — h, t]. Recalling the relationship expressed by (17),llbfes that asn — co and for all
t=1,..,T,

t
rRcov, 2 | a(s)ds, (26)

t—1
meaning that the daily realized covariance matsiaiconsistent estimator of the daily

integrated covariance matrix. Similarly, for thalieed correlation between assétsnd;

we have
t
P ft—lﬂi'j(s) ds

RCi,j,t g .
t t
th_l 0(s)ds [ 0;;(s)ds

(27)

Finally, if the mean procegs(s) and the covolatility process(s) are independent

of the Brownian motioM (s) over[t — h, t], then

t t
r(t, )] o{R(S), 0() hseteone ~ N( | was [ aw ds>, (28)
t—h t—h
where o{pu(s), 6(s)}se(c—ns denotes the-field generated byu(s), a(s))se[t_ht]. The

result in (28) implies that daily returns are caiugially (on the sample path @f(s) and

o(s)) normally distributed with meaﬁtt_lu(s) ds and covariance matriitt_l.()(s) ds,
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where the mean is usually very small efﬁ_di.(l (s)ds can be approximated by the realized

covariance matrix, as suggested by (26).

So far we have focused on providing the theoreticalerpinnings for the realized
covariance matrix (and also the realized correfdtsm it remains to explain the connection
to the realized bipower measures. We will not gepdeto technical details, but rather
point out the similarities and differences. As iflad by Barndorff-Nielsen and Shephard
(2004b), if the price process has continuous sampailes (like in equation (21)), then the
realized bipower covariance matrix has the samebahitity limit as the realized
covariance matrix. However, the convergence regiifter if the price process exhibits
jumps. Assuming finite activity jumps, the pricepess could be then expressed as

Ct
= d aw , (29)
p() fo u(s) ds + fo o(s) (s)+;1k

where( is the simple counting process satisfyifig< oo for all t and we also assume that
Zit:l]fk <o fori= 1,..,N and allt. In this case the probability limit of the realize

covariance matrix is affected by the presence aipgt To be more specific, for all

t=1,..,Tandform - o we have

t
rcov, > | Q(s)ds + Z JuJE (30)
t=1 Ci—1<k=C;
In contrast, the limit of the bipower realized coaace matrix does not change with the
addition of jumps, i.eRBPCOV, still converges to the daily integrated covariancarix

(forallt =1,..,7T).

Finally, it should be noted that Barndorff-Nielsend Shephard (2004a) provided
the asymptotic distribution theory for the realizedvariance matrix (as well as the
realized correlation) and that Barndorff-Nielsen danShephard (2004c) and
Barndorff-Nielsen and Shephard (2004b) discussed asymptotic distribution of the
realized bipower variance and covariance. It twuasthat realized bipower variance and
covariance are less efficient than realized vagaand covariance when there are no
jumps. Therefore, on the one hand, the realizedviegp measures are robust to jumps. On
the other hand, if the price process is not suliggumps, then the robustness to jumps

comes at the expense of higher variance of themair.
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2.1.3. HAR Model

In the previous sections we introduced the realizeghsures and explained the
theory that underlies their use in estimating varés, covariances and correlations. Now
we will describe a simple model for the realizedaswees. The model is called the
heterogeneous autoregressive (HAR) model and it praposed by Corsi (2009). The
HAR model was originally derived for realized vdligg but it can also be applied to

model realized correlations.

Let us explain the derivation of the model in tealized volatility framework. It
means that we are now in a univariate setting wiitly one assat Yet, for notational ease
we will suppress the subscripin this subsection. We consider the following combus

time process

dp(t) = u(t)dt + a(t)dW (t), (31)

wherep(t) is the logarithm of instantaneous prig€t) is a cadlag (right continuous with
left limits) finite variation processy¥/(t) is a standard Brownian motion aadqt) is a
stochastic process independenti{t). A full trading day is represented by the time

interval 1d and the integrated volatility associated with day defined as

¢ 1/2
at(d) = <] o? (w)dw> : (32)
t—1d
The daily realized volatility is denoted BB’OL(td) and given by
M-1 1/2
RVOL® = (Z rtz_kA) , (33)
k=0

where A = 1d/M and r,_ga = Pr—ka — Pe—k+1)a- Besides that, we will also consider
volatilities viewed over longer time horizons, ndaynene week (5 working days) and one
month (22 working days). These multi-period volaés are computed as simple averages
of the daily quantities, with the weekly and mogtabgregations indicated by superscripts

(w) and(m), respectively. For example, the weekly realizeldtiity at timet is given by
1
RvOLY” = = (RvOL® + RVOLZ,, + ... + RVOLYL,,) (34)

The model is based on the idea that market paatitgpare heterogeneous in terms

of their time horizons of trading. It is assumedttiparticipants with different time

13



horizons perceive and create different types oftdly components. Furthermore, an
important feature of volatility is its asymmetricopagation, meaning that volatility over
shorter time intervals is influenced by volatiliover longer time intervals rather than

conversely.

We define the latent partial voIatiIit&t(') as the volatility generated by a certain
market component and for simplicity we considerydhkee volatility components related
to time horizons of one day, one week and one morile daily, weekly and monthly

partial volatilities are then denoted égi), &t(w) and 6t(m), respectively. Moreover, we

connect the partial volatility to the integratedatdity by assuming thaﬁt(d) = at(d). Each
partial volatility is assumed to depend on the paatized volatility corresponding to the
same time horizon and the expected value of thepenod longer-term partial volatility.
Since the longest time interval that we considemie month, the monthly partial volatility
is determined only by the past monthly realizedatitily. The model is thus characterized

by the following three equations

gim = cm 4 ¢pmMmpyoL™ + 5T (35)

G0 = ¢ + 9WRVOLY +yWIE |65, | + @, (36)
~(d da ~ ~(d

O't(+1d =c@ + ¢(d)RV0L(t '+ V(d)Et[o—l:(-‘:-vl)w] + wt(+)1d' (37)

~(m) ~(w) ~(d)

where @;,1,,, @1, and @,;, are contemporaneously and serially independent

zero-mean error terms with an appropriately trusddeft tail in order to guarantee the

positivity of partial volatilities.

Substituting (35) into (36) and then (36) into (3w)ile recalling thaﬁt(d) = at(d),

we arrive at

6{8)q = ¢+ BORVOLY + BRVOLY + B™RVOLI + 5%, (38)

Finally, we use the fact that the ex post valuet(ﬁid can be expressed as

@ _ (@) (d)
Opyia = RVOLLY g + 070, (39)

Wherewt(d) represents both latent daily volatility measurena estimation errors.
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Substituting (39) into (38), we obtain

RVOL®, , = c + BPRVOLD + BWRVOLY + BIRVOLT™ + wyy4  (40)

t+1d

where wei14 = at(‘j)ld - wgﬂd. We have thus obtained a simple time series moflel

realized volatility. The model is estimated usihg brdinary least squares (OLS) method.

Importantly for our case, Audrino and Corsi (20%0pgest that the model can be
also used for realized correlations between twetasgor notational ease we do not use
the subscriptsi and j). Plugging 1d =1 and suppressing the superscript for daily

correlations, we have
RCyq = ¢ + BYRC, + BWRC™M + B™RCI™ + weyq, (41)

where RC;, RCt(W) and RCt(m) are respectively the daily, weekly and monthlylirea
correlations. It is quite obvious that besidesdairmaodeling of correlations, the model can
be also used to generate forecasts of correlati@ngen the information at time, the

one-step ahead forecast is simply obtained as

E¢(RCyy1) = ¢ + BDRC, + BWRC™ + pmRc™. (42)

2.2. DCC-GARCH Model

Before formulating the DCC-GARCH model, we will dir briefly describe the
general framework of multivariate Generalized Aatpessive Conditional
Heteroscedasticity (GARCH) models. The ARCH-GARCHdaling dates back to 1980s,
when Engle (1982) first introduced an ARCH model #ater Bollerslev (1986) proposed
its extension to a GARCH model. Since that time @&Rmodels have become common
tools in the analysis of time series data. Usiniyanate GARCH models, we can model
the conditional variance of a single time seriekijlevwith multivariate GARCH models
we can analyze the conditional variances and cawvegs ofN time series. In financial
applications, the analyzed series are usually #ilg deturns of assets. However, GARCH
models can be also used for various other typésefseries data.

Following Bauwens et al. (2006), we considerhax 1 vector of daily returng,,
wheret = 1,...,T. Further, letF,_; denote thes-field generated by the past information

until timet — 1. We can express, as
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re= U + &, (43)

whereu, = E (r:|F;-,) is the conditional mean vector of and vector,; can be written

as
St == Hi/ZZt. (44)

Matrix Hi/z in (44) is a positive definite matrix of dimensidhx N andz; is anN X 1

random vector satisfying
E(z,)=0

(45)
cov(z,) = Iy,

wherel is the identity matrix of ordeyv.

To make clear what exactlﬁi/ % is, we compute the conditional variance-

covariance matrix of:

cov(re|Fe_1) = cove_q1 (1) = cove_q (&)

T
= Hi/zcovt_l(zt)(H%/z) (46)
=H,.

The matrixHi/ ? thus can be defined as aNyx N positive definite matrix such thaf, is
the conditional variance-covariance matrixrgf(as well ass,).* Denoting the elements of
H. ash;;:> i,j= 1,..,N, the element,;, is the conditional variance of, and the
elementh; ;. = hj;., i # j, is the conditional covariance betwegn andr;,. Various
specifications off, were proposed in the literature. In general, dnh@® main problems
with multivariate GARCH models is to find a reasbleabalance between flexibility and
parsimony. Another issue that has to be taken mtoount is imposing positive
definiteness oH,. The approach taken in the DCC-GARCH model iptecdy separately
the individual conditional variances and the caondl correlation matrix, using a two-
step procedure to estimate the parameters of thaelnbet us now describe the DCC-
GARCH model in detail.

* Matrix Hi/z can be thought of as the Cholesky decomposition of H;. Given a symmetric positive definite

matrix X, the Cholesky decomposition is a lower triangular matrix U with strictly positive diagonal entries
such that X = UUT.
> The same kind of notation will be used for all matrices in this subsection.
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The Dynamic Conditional Correlation GARCH (DCC-GARYL model was
proposed by Engle and Sheppard (2001) and EngB2J2The model can be regarded as a
generalization of the constant conditional coriefat GARCH model developed by
Bollerslev (1990). It should be noted that Tse &adi (2002) also proposed a multivariate
GARCH model with time-varying correlations and theiodel thus can be seen as an
alternative to the Engle’'s and Sheppard’s modelwéi@r, we will focus here on the
model of Engle and Sheppard. The model is explaimtoir’.

Consider amV x 1 random process; such that

&|Fe—1 ~ N(O,Hy), (47)
Where

H, = D,R,D,. (48)

Sinceg; is already assumed to have zero mean, it is ysaallector of residuals from
some simple model for the conditional mean of theetseries. MatrixD; in (48) is the
N x N diagonal matrix of conditional standard deviatiafsseriese;, ...,ey¢. The it
element on the main diagonal Bf is thus equal to the square root of fhelement on the
main diagonal o, while all other elements d, are zero, formallyl;; , = \/m and
dij:=0,i#j,i,j=1,..,N. Matrix R, in (48) is theN X N matrix of conditional
correlations, so the elements on its main diagamal equal to 1. The assumption of
multivariate normality in (47) enables us to foratel a likelihood function, using which
we estimate the parameters governing the dynanfid$, oHowever, as noted by Engle
and Sheppard (2001), normality &f is not needed for consistency and asymptotic
normality of the estimator. If the assumption ofmality is not satisfied, the estimator can
be interpreted as a quasi-maximum likelihood estima

The log-likelihood can be written as
T

1
L=-> ) (Nlog(2m) +log|H¢| + & H;'&,)

t=1

T
1
L= —5 ) (Nlog(2m) + logID,R,D;| + £/ D; ' R;'D; &)
t=1

® Please note that the notation used here is slightly different from that used in Engle (2002) and Engle and
Sheppard (2001).
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T
1
b= _EZ(Nlog(Zﬂ) + 2log|D,| + log|R¢| + uf Ry uy) (49)
t=1

T
1
L= _EZ(N log(2m) + 2log|D,| + . D;1D; e, — ulu, + log|R,|
t=1

(50)

+ui Ry uy),
whereu, = D;'g, are the residuals standardized by their conditietzandard deviations.
The function in (50) can be split into two partsheTfirst part is composed of terms
containingD,, while the second one is composed of terms cantaR,. Let us denote the

parameters ilD, as@ and the additional parametersRpas¢. We can then write the log-
likelihood as follows:

L(G, ¢) = LV (0) + LC (0, ¢): (51)

whereL, (0) is the volatility component given by

T
1
L,(6) = —EZ(N log(27) + log|D,|? + £,7D72¢,) (52)
t=1

andL. (6, ¢) is the correlation part, which has the form

T
1
Le©,¢) = = ) (loglR,| +uf Ry u, — ufuy) (53)
t=1

The log-likelihood, as formulated ifb1), can be maximized in two steps. In the
first step we focus on the volatility part. Our asrto find

0 = arg max{L,(0)}. (54)

Note that the maximization of (52) can be also w@éwas the maximization of (49) wit}
replaced byl (identity matrix of ordeW). It is convenient to rewrite (52) as
1 N T 8-2
Ly(6) = — EZ Z <log(2n) +log(d?;,) + ﬁ) (55)
i=1t=1 "
We can see that (55) is the sum of log-likelihootithe individual series, hence it can be
maximized by separately maximizing each of ftieterms. Each series is assumed to
follow a univariate GARCH process. The most widabed model is the GARCH(1,1)
model, in which case the conditional variancesgaren by
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diz,i,t = w; + “igiz,t—1 + Bidiz,i,t—1 (56)

wherew; >0, ¢; =20, 5, =0, a; + §; < 1, diz‘i‘0 >0,i=1,..,N. We could of course
include more lags in the model (where the lag lesghosen for different series need not
be the same) but the GARCH(1,1) is by far the ntmshmon choice. In general, the
specification is not even restricted to the staddaARCH(p,q) model. The univariate
models can be specified as any GARCH process #wmnbrmally distributed errors and

satisfies appropriate stationarity conditions, @ ws non-negativity constraints.

Once we have estimated the volatility parametees,cen proceed to the second
step in maximizing (51). We now tal@®as given and maximize (53) with respecigtp

formally

mgx{LC (6,¢)} (57)

The second step thus consists in standardizing réiseduals €, by their estimated
conditional standard deviations and then usingsthedardized residualg to estimate the
parameters that govern the proces®pfThe correlation structure is specified as follows

Consider arV x N matrix Q, given by
Qt = (1 —a-— b)a + aut_lu’tl;_l + th—l’ (58)

where a >0, b>0, a+b<1,Q is the unconditional covariance matrix of the
standardized residuals ag is positive definite. Equation (58) could be atmmeralized

to include more lags. Using matifx., matrixR, can be obtained as

. -1/2 -1/2 . -1/2 -1/2
R, = diag(q;1'" - dune) @ diag(ar s - e ) (59)
where diag(q;1/2, .,y n-) is @ diagonal matrix with elemenig;?>, ..., qy > on the
main diagonal. The elementsRf are thus of the form;, = —=4_ j,j = 1,...,N.
9 I m”’t V4iitdj,jt J

Under some reasonable regularity conditions fortedldby Engle and Sheppard
(2001), the two-stage maximum likelihood estimatdl be consistent and asymptotically
normal. Moreover, the model is formulated in suchway that it ensures positive
definiteness ofH;. To be more specifioQ, is positive definite for alt because it is a
weighted average of a positive semi-definite mafii_,ul_,) and positive definite

matrices. Positive definiteness @f then implies positive definiteness Bf and given the
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restrictions on the parameters of the univariatdRGA modelsH; is positive definite as
well. The exact formulations and proofs of the msipons that establish positive
definiteness oH, (for the more general case when (56) and (58pahegher orders) can

be found in Engle and Sheppard (2001).

Finally, let us show how we can make forecastsguie DCC-GARCH model.
The one-step ahead forecast can be obtained eHsdil. the information at time is
known, the equations of the model directly provide forecast for the very next point in

time, i.e.t + 1. We have
Et(diz,i,t+1) = w; + aigiz,t + ,Bidiz,i,t; (60)
E.(Qi1)=(0-a- b)@ + aDt_lst(Dt_lgt)T + bQ¢, (61)

Et(Re4q) = Et(diag(q;iﬁl, ---’qz:/,lz\ﬁﬂ) Qt+1 diag(q;},/til, ---'q;/jv/iﬂ))' (62)
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3. Central European Stock markets

The purpose of this chapter is to give a short\deer of the stock markets in the
Central European region. We focus on those stockketsn whose relationships we
examine in the empirical part. These are the Czeohsh, Hungarian and German stock
markets. Germany, although geographically a partCehtral Europe, is taken as a
benchmark for Western Europe. We first briefly suamize the development of the three
emerging markets (Czech, Polish, Hungarian) andemtesome key figures of the four
markets in question. In the second part of the t&rape provide a literature review on the
relationships among the markets. We tried to saleeeral empirical studies which vary in

the methods and data used but the review is nended to be exhaustive.

3.1. Characteristics of the Markets

Although the beginnings of the stock exchangesragie, Warsaw and Budapest
date back to the nineteenth century, the World Wand the subsequent developments
brought an end to trading at these exchanges. alipthe collapse of the communist
regime in Central and Eastern Europe, the exchastgeed to write their modern history.
In 1990 the Budapest Stock Exchange was the firstto reopen, followed by the Warsaw
Stock exchange in 1991. The Prague Stock Exchaageestablished in 1992 and the first

trading session took place in the following year.

The development of the emerging stock markets wgsfisantly influenced by the
privatization strategies of the individual coungtidfhe mass privatization scheme adopted
by the Czech Republic initially led to a dramatncrease in the number of companies
listed on the Prague Stock Exchange. However, ofaste firms were eventually delisted
due to a lack of liquidity, which undermined comicte in the market. For example, the
number of listed companies decreased by more tld&n Between 1996 and 1997. In
contrast, the approach chosen by Poland and Hungasyto first establish a framework
for securities trading and after that list the camps through initial public offerings, thus
ensuring a smoother development of the mar@aviglia, Krause and Thimann, 2002).

With the approaching accession to the Europeanrufiit)), the Central European

stock markets strengthened their credibility anaitetl to attract foreign investors. In

7 Yet, it should be noted that Poland switched to a mass privatization strategy in 1996.
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connection with joining the EU, the three exchangese also granted full membership in
the Federation of European Securities Exchangethelrfollowing years the markets saw
an increase in size, as well as in trading actilty this favorable development was
interrupted in 2008, when the markets were hithey worldwide financial crisis. Finally,
we can add that the Budapest and Prague stock myehanderwent some major changes
in their ownership structure and consequently becamembers of the CEE Stock
Exchange Group. The Group was officially launche@@09 and besides the two members

mentioned, it includes the stock exchanges of Vaesomd Ljubljana.

To get a better idea of the development of the ptarkFigure 3-1 and Figure 3-2
show the market capitalizations and the value$afestrading at the Budapest, Prague and
Warsaw stock exchanges between the years 2001C0f Several observations can be
made from these figures. First, we can notice trexall upward trend in the period 2004-
2007 and the subsequent changes caused by tre &&siond, during the whole ten-year
period the Warsaw Stock Exchange had a signifigamther market capitalization than
the other two stock exchanges. As for the valueshaire trading, the differences were
much smaller and in two years (2004 and 2005) tlas@iv Stock Exchange was even
surpassed by the Prague Stock Exchange. This camtdypreted as an indication of a
relatively lower liquidity of the Polish stock matkcompared to the other two markets.
However, it should be also noted that before theketa were hit by the crisis, the trading
values at all the three exchanges grew proporiipnaiore (on average) than the
corresponding market capitalizations, thus indigatincreasing liquidity. Finally, out of
the three exchanges the Warsaw Stock Exchange siefms the most successful in

recovering its pre-crisis figures.

® please note that we intentionally exclude the German market from these two figures. The German market
is much larger than the other three markets and combining the data for all the four markets would make
the graph difficult to read. The purpose of Figure 3-1 and Figure 3-2 is rather to demonstrate the
development of the three emerging markets. Comparison with the German market (Deutsche Bérse) is
shown in Table 3-1.
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Figure 3-1: Year-end market capitalizations (EUR mii.)

160 000
140 000
120 000
100 000
80000
60 000
40 000
20000 -
0 -

W Budapest

Prague

B Warsaw

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Source: Federation of European Securities Exchanges
Note: The figures exclude foreign companies othan those exclusively listed on the exchange.

Figure 3-2: Values of share trading (EUR mil.)
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Source: Federation of European Securities Exchanges

Notes: The figures include all trades, irrespectdfehe type of shares traded (domestic or foremym) the
mechanism by which the transaction occurred (etettr order book transaction, off-electronic ordeydk
transaction, dark pool transaction or reporting trsaction). If we considered only trading of dontesti
shares, there would be some noticeable differentesmse of the Prague Stock Exchange but the dveral
pattern would be very similar.

Table 3-1 summarizes some key data for the threbagges on which we focused
above and also for Deutsche Borse. This enablés e@mpare the characteristics of all the
four markets that we will analyze in the empiripalrt. We can immediately notice that
most of the figures for Deutsche Bdrse are onavordrders of magnitude higher than the
corresponding figures for the other three exchanglee Warsaw Stock Exchange, which
is the largest of the three, has a 7.5 times lonanket capitalization than Deutsche Borse.
The differences are even more pronounced in cadeading values. For example, the

annual value of share trading at the Budapest Stxckange is approximately equivalent
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to a three-day trading value at Deutsche Bords.dbvious that the value of share trading
at Deutsche Bdrse is not only considerably higheabsolute terms but also relative to
market capitalization. This clearly demonstratest tthe German stock market is much

more liquid than the other three markets.

Another interesting comparison can be made by tapkat the numbers of
transactions and the implied average values o&rasséction. We can, for example, notice
that trading at the Warsaw Stock Exchange is cheniaed by a relatively large number of
rather small transactions. An average transactiddeatsche Bérse or even at the Prague
Stock Exchange is roughly three times larger thaaveerage transaction concluded at the
Warsaw Stock Exchange. This may be connected wéhdct that there are quite a lot of
companies listed on the Warsaw Stock Exchangeivel&t its market capitalization and
the transaction is thus likely to involve sharest thave low market value. Concerning the
number of listed companies, we should also pointlwat the Prague Stock Exchange has a
much higher percentage of foreign companies ligi@oprox. 40%) than the other

exchanges. Note that this is also reflected irvilee of foreign shares traded.

Table 3-1: Main market indicators for 2010

Deutsche

Budapest SE Prague SE Warsaw SE  _ .
Borse

Market capitalization at year-end (EUR ) /o 3192718 14191841 1065712.58

mil.)

Value of share trading (EUR mil.) 20 006.6 15391.0 59693.0 1744 015.9
Domestic shares 199711 10629.1 58581.8 1491542.9
Foreign shares 35.5 4761.9 11111 252 472.8

,(L\Ev:;aitieljaily value of share trading 78.2 61.1 2359 6812.6

Number of transactions 2 613 895 1162643 13123810 117234113

Average value of a transaction (EUR) 7 653.9 132379 45485 14 876.4

Listed companies at year-end 52 27 584 765
Domestic companies 48 16 569 690
Foreign companies 4 11 15 75

Source: Federation of European Securities Exchangesa calculations

Notes: SE = Stock Exchange. The market capitatimdigures exclude foreign companies other thars¢ho
exclusively listed on the exchange. If not spetifexplicitly, the trading figures include all trasle
irrespective of the type of shares traded (domestiforeign) and the mechanism by which the tratieac
occurred (electronic order book transaction, oféatonic order book transaction, dark pool transantor
reporting transaction). Average daily trading valisethe trading value divided by the number of dfoys
which the stock exchange was open. Average valuwe tcdnsaction is the trading value divided by the
number of transactions. Exclusively listed foretgmpanies are included in domestic companies.
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3.2. Review of the Literature

Let us now present the results of a few empiritadiies which examined linkages

among the Central European stock markets.

Gelos and Sahay (2000) investigated financial mam@movements across
European transition economies with a special foousthe Czech Republic, Hungary,
Poland (hereinafter referred to as CE-3) and RuB#ist, weekly stock return correlations
computed over different time windows spanning thexiqu 1994-1999 exhibited an
upward trend. The authors then employed daily datanalyze the behavior of stock
markets during three crisis periods, namely thec@zerisis (1997), the Asian crisis
(1997-1998) and the Russian crisis (1998). A veatdioregression analysis was carried
out, including impulse response functions and Geargpusality tests, and it was also
tested whether correlations (adjusted for an irsraa variance) between the originating
country’s stock market and markets of the othemtioes significantly increased during
the crises. To summarize the results, while stoakket interactions were weak during the
Czech crisis (except for an increase in the carmlabetween the Czech and Hungarian
markets), there was a stronger response of theetsaduring the Asian crisis and quite
substantial shock transmission during the RussiemscThe Russian crisis was the only
one during which the returns in the originating oy “Granger caused” those in the other

countries. However, there was no significant insega correlations.

Scheicher (2001) analyzed the regional and glohtdgration of CE-3 stock
markets during 1995-1997. Employing daily returtise author estimated a vector
autoregression in which the errors were modeledgusimultivariate GARCH model with
constant correlations. A number of tests were peréol to support the results. Overall,
statistically significant spillovers of shocks wei@nd in both returns and volatilities.
However, there was a lack of global influences ahatilities (i.e. only regional spillover
effects were found) and moreover, the estimatecelaion coefficients were low and in

most cases insignificant.

Cappiello et al. (2006) examined the financial gnétion of selected new EU
member states (including CE-3) with the euro amé @mong themselves. The analysis
relied on daily data for the period from 1994 t®20The whole sample was divided into
two sub-samples, the first one covering the prereayence period (up to the end of 1999)

and the second one the convergence period (frorbeébmning of 2000). The dependence
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between markets was measured by the condition&lapility of comovements, i.e. the
probability that, at timet, the returns on markeat were lower (or higher) than the
f-quantile of the return distribution, conditional the same event occurring on market
The probabilities were estimated using the regoessjuantile-based methodology.
Comparing the results for the two periods, the lstatarkets of CE-3 exhibited a
significant increase in the probabilities of comemts both among themselves and
vis-a-vis the euro zone (with the exception of ¢tbeple euro area-Hungary). The authors
also assessed the extent to which these changesdween by global factors, concluding
that although in some cases the impact of globatbfa was significant, they could not

entirely explain the increase in comovements.

The stock market integration of selected new EU bws (CE-3 and Slovakia)
was also investigated by Babetskii, Komarek and &dwva (2007), who, however,
focused only on the integration with the euro drea not among the new member states).
Using weekly data for the period 1995-2006, thehars applied the concepts of beta
convergence (to measure the speed of convergende$igma convergence (to evaluate
the degree of integration). The results revealesl ¢listence of relatively fast beta
convergence and in the case of the Czech Repuldiddangary there was evidence of an
increased pace of convergence in the period 2006-26mpared to the period 1995-2000.
Nevertheless, the analysis also showed that neitleeannouncement of EU enlargement
nor the enlargement itself had a major impact ota lm®nvergence. Regarding sigma
convergence, the markets exhibited an overall asgan the degree of integration during
the period 1995-2004, yet divergence from the ewea was observed since 2005, which
the authors explained by the fact that the examateck markets experienced high growth

(higher than that of the benchmark euro zone index)

Syllignakis and Kouretas (2006) used several diffetechniques to analyze daily
and weekly data of seven Central and Eastern Earof€EE) stock markets (including
CE-3), the German stock market and the US stockehayver the period 1995-2005.
Applying the cointegration and common trends mettagly, the markets were found to be
partially integrated (with the number of cointegngtrelations being less than the number
of common trends). Moreover, the results indicdtet five of the CEE markets (CE-3,
Slovakia and Slovenia) together with the two depetbmarkets had a significant common
permanent component. An alternative insight inte tkelationships between the CEE
markets and the developed ones was provided bgstiraation of bivariate DCC-GARCH
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models. As for the stock markets of CE-3, there exddence of an increasing trend in
their conditional correlations with the two deveddpmarkets. The analysis suggested that
the dependencies strengthened during the AsiarRasdian crises and that afterwards the
correlations declined but remained at relativelyhhievels until the end of the examined

period.

Egert and Keéenda (2007b) used intraday (5-minute) data for gheod from
mid-2003 to early 2006 and estimated a series\arizite DCC-GARCH models for stock
markets of CE-3 and for three developed stock nsrig&rance, Germany and the UK).
The estimated correlations between the CE-3 markatsthe French market (taken as a
benchmark for Western Europe) were positive buy vew (lower than 0.05). Similar
values were obtained for the correlations amongBe3 markets but in this case all the
three correlation series at least showed an inicrgdsend. These results were in sharp
contrast with the correlations among the developetkets. However, it should be
probably said that the application of the DCC-GARRHdel to intraday data is a little bit
problematic due to the existence of intraday seagws. To overcome this difficulty, the
authors considered an appropriately shortened tiimeow for each day (11:00-14:40),
thus leaving a relatively large amount of data yhaixed.

The study of Egert and Kenda (2007a) was similar in that it also used Sutain
data and it focused on the same stock markets. wEwthe analyzed period was shorter
(mid-2003 to early 2005) and different methods weneployed, namely cointegration
tests, Granger causality tests (applied to retam also to volatilities estimated using
univariate GARCH models) and estimation of a vechotoregression model which
included both returns and volatilities. While nobust cointegration relationship was
found, there was evidence of short-term spilloviezats. Granger causality tests revealed
the existence of bidirectional causal relationshipeeturns, as well as in volatilities. Yet,
the vector autoregression suggested that there feeer interactions among the markets.
We should add that the authors again consideredrdlaively short time window
(11:00-14:40) but they also discussed the resatta flonger time window (10:00-15:55),

sometimes finding noteworthy differences.

Savva and Aslanidis (2010) examined comovementsngnfove CEE stock
markets (including CE-3) and the euro zone durihg period from 1997 to 2008.
Employing weekly data, the authors estimated batarismooth transition conditional

correlation GARCH models, which assume the exigen€ different regimes with
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regime-specific constant correlations and allow forsmooth change between the
correlation regimes. The Czech and Polish markeis/ed an increase in their correlations
with the euro zone, while for Hungary there wasewadence of a significant change in
correlation. In the case of Poland the shift in tiwerelation occurred before the EU
accession, whereas for the Czech Republic it stabefore the accession date and
gradually continued after the country joined the. Bdsides that, the results revealed that
there was a significant increase in correlationsragrthe CE-3 markets and that in general
the shifts occurred after the increase in correfati with the euro zone. For some
correlation pairs the analysis indicated the presaf a second change in correlations but
the double transition models seemed to be jusfi@eraent of the single transition ones.
The authors also found that the increase in theelations with the euro zone mostly

reflected EU-related developments rather than thedawide financial integration.

Finally, we should mention some related researgeisawritten in recent years at
the Institute of Economic Studies, Faculty of Sb&aiences, Charles University in
Prague. Brabcovéa (2010) used 5-minute intraday afa@E-3 stock markets and modeled
volatility of these markets by estimating heteragmms autoregressive models of realized
volatility. Brabcova thus focused on the analydigshe univariate case (volatility), while
we examine interdependencies among the marketsarfieoees and correlations).
Moreover, our analysis is not restricted to onlg @ampling frequency and we also show
comparison with results obtained by a different hmodt (DCC-GARCH model).
Concerning the application of the DCC-GARCH modinc (2010) used this model to
investigate relationships between the Czech stomtket and 11 developed stock markets
(Western Europe, USA, Japan). Since we are intdest linkages among Central
European stock markets, the results of Princ arelinectly comparable to ours.
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4. Data

In this chapter we first provide basic information our data, mention some
problems that we encounter and explain the stegtsviha take in order to obtain the final
dataset. Next we discuss the issue of selectingpipeopriate sampling frequency, which
is one of the foremost problems in the practicalliaption of realized measures. Finally
we detail the construction of the realized measargsalso explain the way in which we

obtain the time series for the DCC-GARCH analysis.

4.1. Description of the Dataset

As mentioned in the previous chapter, we focushenstock markets of the Czech
Republic, Hungary, Poland and Germany (which iemaks a benchmark for Western
Europe). Each of the analyzed stock markets issgmted by one stock index. The indices
are the following: BUX for the Hungarian market, RAor the German market, PX for the
Czech market and WIG20 for the Polish market. Came covers the period from
January 2, 2008 to November 30, 2010. For eachximgehave its values recorded at 5-
minute intervals throughout each trading day (clpsees of the 5-minute intervals are
used). All the data were obtained from Tick Dates, it should be noted that the data had
been cleaned by the proprietary algorithms of Te&ka. For further information on the

issues associated with the data filtering, we refdralkenberry (2002).

Since we want to examine interdependencies amangtrkets, we need the time
series to be comparable across the different stmikes. Two issues have to be taken into
account. First, there are days on which one stackange is open, while another one is
closed due to a national holiday or other reasdihss is reflected in the fact that our
sample period includes 726 trading days for BUX3 7@ DAX, 724 for PX and 732 for
WIG20. Second, the stock exchanges have differading hours. To be more specific, the
5-minute close prices of BUX, DAX, PX and WIG20 anailable for the time windows of
9:05 to 16:30, 9:05 to 17:35, 9:30 to 16:00 andb9®B16:10, respectively. Our solution to
the first problem is to include only those dayswdrich we have data on all the four stock
indices. This condition is satisfied for 696 day®. overcome the second difficulty, for
each day we consider only the time interval 9:3®Q@6 which leaves us with 78

observations per day for each of the indices.
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An additional practical problem is that there amgsing values for some days. The
approach that we take in dealing with this issue los@a summarized as follows: If more
than five observations are missing for some ofgéees on a given day, we remove the
day from the sample. This procedure reduces thebeumf days to 691.In this smaller
sample there are still four days with missing valbat in all cases it concerns only one or
two observations, which should not have a significgafluence on our results. These days
are therefore retained in the sample. Howeverag to be noted that for each missing
observation we also remove the corresponding ohgens in the other series in order to

ensure full comparability.

Figure 4-1: 5-minute index values and 5-minute logé&hmic returns

x 10° BUX BUX - returns
4 0.05

2MMMMMW%MN%WWWMMWJWW%NWM% | 0

0 : : .05 : :
2008 2009 2010 2011 2008 2009 2010 2011

DAX DAX - returns
10000 0.05

5000 M 0 MWMMWWWWWWW

0 : : .05 : :
2008 2009 2010 2011 2008 2009 2010 2011

PX PX- returns
2000 0.05

0 : : .05 : :
2008 2009 2010 2011 2008 2009 2010 2011

WIG WIG - returns
4000 0.05

0 : : .05 : :
2008 2009 2010 2011 2008 2009 2010 2011

Note: The return series do not include overnightines.

° The removed days are the following: 30/12/2008, 19/05/2009, 13/08/2009, 30/12/2009 and 25/10/2010.
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The final time series of the 5-minute index valaes the corresponding 5-minute
returns (first differences of logarithmic index wat) are shown in Figure 4-1. Looking at
the graphs, we can observe the effects of the blotencial crisis. All the four indices
declined sharply in the second half of 2008, reddheir lowest points in the first quarter
of 2009 and then started to rise again. A notewuodifference is that while the PX index
more or less stagnated from the last quarter 09 2illlGhe end of the examined period, the
other three indices still showed an upward trer fieturn plots provide evidence that the
period of late 2008 and early 2009 was characteiizehigh volatility. Later on volatility

returned to lower levels.

4.2. Construction of Variables

Let us first explain the choice of the 5-minute péing scheme for index values.
The asymptotic results derived in Section 2.1.8gsst that prices should be sampled as
frequently as possible in order to obtain accuestttmates of variances, covariances and
correlations. However, the reality is more compgkca It is a well known fact that if data
are sampled at very high frequencies, they areacantited by the so-called market
microstructure noise. The noise arises from varimasket frictions, such as discreteness
of prices, bid-ask spreads or simultaneous quatfrdjfferent prices by competing market
makers (Andersen, Bollerslev and Meddahi, 2011).stM@searchers deal with this
problem by sampling relatively sparsely, i.e. thesg such frequencies at which the bias
caused by microstructure noise is not a major aoriéeThe most common choice in the
literature is to sample data at 5-minute interv8leme studies use even lower frequencies,
for example 30 minutes. It should be also noted #eang, Mykland and Ait-Sahalia
(2005) proposed a methodology for determining thinwal sampling frequency.

It is very important to say that matters are evemertomplicated in a multivariate
setting due to the problem of non-synchronous migadir nontrading, as pointed out for
example by de Pooter, Martens and van Dijk (2008Barndorff-Nielsen et al. (2010).
Non-synchronous trading refers to the fact thated#ht assets do not usually trade at
exactly the same instants. Nontrading occurs whes asset trades frequently over a

certain period, while another one does not tratl@ety high sampling frequencies are

1% An alternative approach is to explicitly include noise in the price process and then design procedures that
reduce its impact on the estimation results.
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used, these phenomena can induce quite a sigriificas in the measures of dependence

(covariance, correlation) between assets.

Clearly, the selection of the appropriate sampfiregiuency is a nontrivial issue
since we face a trade-off between the above mesdidnases and a potentially large
stochastic error resulting from using low numberobkervations per day. As argued by
Andersen et al. (2001), a key factor that has ttaken into account is the liquidity of the
particular market (where lower frequencies showdubed for less liquid markets). We
follow the common practice in the literature ane uke 5-minute sampling frequency.
However, in light of the complexity of the probleand given the fact that the examined
markets do not belong to the most liquid ones, wenot want to restrict our analysis to
only one frequency. Therefore, we also sample grige our case index values) at

30-minute and 1-hour intervals.

The 30-minute and 1-hour price series are obtaired the 5-minute series. Two
things should be clarified in this respect. Consegrthe 30-minute series, the interval
between the first two intraday observations ishdligshorter than 30 minutes since it runs
from 9:35 to 10:08* As for the 1-hour series, we disregard the inte®v25-10:00, which
means that the first price on each day is the anEO®0. For all three frequencies we
compute the realized measures using the formulagn Section 2.1.1. However, it has
to be stressed that overnight returns are exclfidea our analysis. Taking the 5-minute
series as an example, the first return on eachsdeglculated as the difference between the

logarithmic prices at 9:40 and at 9:35 (providirgghbvalues are available).

So far we have focused on intraday data and thsteantion of daily realized
measures. The second approach used in our analykes estimation of the DCC-GARCH
model, for which we need daily returns. Since wetwa allow for direct comparison of
the results given by the two different methods, dbdy returns should be computed over
the same time intervals that we use for the coostmu of realized measures. Therefore,
we calculate the return on dayy subtracting the daylogarithmic price at 9:35 from the
day t logarithmic price at 16:00. This is equivalentcaculating the sum of all intraday
returns for dayt. It is thus important to bear in mind that whereagng about daily

returns, we will always mean returns computed enwlay described above (i.e. not as the

" For one day (14/07/2009) the observation at 9:35 is missing, so we use the value at 9:40 instead.
Similarly, for one day (08/01/2010) the observation at 11:30 is missing and therefore we use the value at
11:35 instead.
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first differences of daily closing logarithmic peis, in which case the daily returns would
include the overnight returns).

The last issue we have to deal with is that the BEEXRCH model should be
applied to zero mean data (see equation (47))oltldvbe possible to directly assume that
the returns have zero mean but to ensure thataiheéiton is satisfied, we filter the daily
return series by an AR(1) model. Formally, for ea€hhe four series (BUX, DAX, PX,
WIG20) we estimate the model

Tit =Ci+@iTi—1+ &y (63)

wherer;, stands for the individual daily return series. Bys procedure we obtain the

residualss; , and these are then used as the input data in@i2@ GARCH estimation.
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5. Empirical Findings

We analyze four markets, each represented by @ok& gtdex, which means that
there are a total of six index pairs. Note thattfeg sake of simplicity, the WIG20 index
will be referred to only as WIG, so the notatiom fhe index pairs will be as follows:
BUX-DAX, BUX-PX, BUX-WIG, DAX-PX, DAX-WIG and PX-WIG. Each part of our
analysis is carried out for all the six pairs. TN C-GARCH models are estimated in the

bivariate form in order to allow the parametersadoy across the index pairs.

In the first part of this chapter we present thamrsatistics for correlations (as
well as for covariances), make a comparison andaaxghe observed differences. In the
second part we report detailed results for the B&ARCH and HAR models and discuss
the dynamics of the correlations. In the last scotise we examine the forecasting
performance of the models. All computations andnedions were carried out in
MATLAB, version 7.10.0.499 (R2010a). For the estiioa of the DCC-GARCH models
we used the code from the UCSD GARCH Toolbox, whicds developed by Kevin
Sheppard.

5.1. Main Characteristics of Correlations and Covar lances

Table 5-1 shows the means and standard deviatibtiseocorrelations from the
DCC-GARCH models, the realized correlations andrdaized bipower correlations. We

also report the unconditional correlations of dadturns.

Table 5-1: Main statistics for correlations

BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG
Uncond 0.594 0.621 0.627 0.649 0.694 0.680

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
DCC 0.605 0.021 0.601 0.080 0.605 0.047 0.662 0.033 0.696 0.035 0.640 0.037
RC 1h 0.545 0.340 0.481 0.369 0.508 0.344 0.585 0.304 0.630 0.299 0.505 0.345
RC30m 0.499 0.257 0.424 0.270 0.455 0.259 0.528 0.239 0.611 0.216 0.454 0.268
RC5m 0.275 0.171 0.199 0.150 0.250 0.159 0.359 0.144 0.410 0.145 0.253 0.140
RBPC1h 0.523 0.434 0.494 0.469 0.506 0.445 0.591 0.384 0.645 0.403 0.520 0.429
RBPC 30m 0.489 0.302 0.411 0.319 0.439 0.312 0.508 0.281 0.603 0.258 0.453 0.310
RBPC5m 0.255 0.176 0.208 0.173 0.230 0.173 0.347 0.164 0.383 0.155 0.248 0.169

Notes: Uncond = Unconditional correlation of daigturns, SD = Standard Deviation
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Several important observations can be made fronathle. Let us first list the most
distinctive features of the correlations and the&tuss some of them in more detail. The
unconditional correlations of daily returns, as v the means of the correlations from
the DCC-GARCH models, are all quite high. Thisnsaccordance with strengthening of
the linkages among the examined markets over #naqurs years, as documented in some
of the studies presented in Section 3.2. Lookinfpatealized correlations and the realized
bipower correlations, we notice that the means edsmm when prices are sampled more
frequently and that this downward bias is quite staitial when we move from the
30-minute frequency to the 5-minute frequency. @a other hand, the use of higher
sampling frequencies leads to a considerable resuat the standard deviation of the
realized correlations, as well as the realized Wigrocorrelationd? As for the relationship
between the realized correlations and the correlpgrrealized bipower correlations, we
can see that the means are usually very similam@st cases slightly lower for the
bipower correlations) but the bipower correlatidvasre higher standard deviations, with

the difference being more pronounced for lower destries.

Comparing the results for the different index pam methods (unconditional
correlations, DCC-GARCH models, realized correladio and realized bipower
correlations) suggest that the strongest linkaggmesone between DAX and WIG. The
ordering of the other pairs depends on the metlsed.uOverall, the realized correlations
and the realized bipower correlations indicate thatthree emerging markets (represented
by BUX, PX and WIG) are more correlated with therBan market than among
themselves. However, we should add that sometiheedifferences are very small (BUX-
DAX compared to BUX-WIG or PX-WIG). In case of tBeCC-GARCH models, the PX-
WIG pair exhibits higher correlation than the BUXR pair. According to the
unconditional correlations, the dependence betw®¥nand WIG is even stronger that

between DAX and PX, while the BUX-DAX pair appetode the least correlated one.

2 The standard deviations of the realized correlations or the realized bipower correlations cannot be
directly compared to the standard deviations of the correlations from the DCC-GARCH models because we
use completely different methods to obtain the correlations.
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To have the full picture, we also report the resitdr covariances (Table 5-2). We
can notice that the most important characterisaressimilar to those of the correlations.
When increasing the sampling frequency, the comees are subject to downward bias
(although in some cases the mean of the realizectlabons slightly increases when
moving from the 1-hour frequency to the 30-minuteqtiency), while the standard
deviations of the realized covariances and thezebipower covariances decrease (again
with some minor exceptions). Concerning the diffiesss between the realized covariances
and the corresponding realized bipower covariantes,table shows that the bipower
covariances have lower means but there is no wableelationship between the standard
deviations (for the 1-hour frequency the bipowenvar@nces have higher standard
deviations while for the lower frequencies it isuaky the other way round). Note that
unlike correlations, covariances cannot be usedotmpare the degree of dependence
across the different index pairs because correlgtire dimensionless quantities while

covariances are not.

Figure 5-1: Correlations from the DCC-GARCH modelsvs. realized correlations
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Let us now focus on the above mentioned issue efdbwnward bias of the
correlations, as well as the covariances. To Hlaistthe problem graphically, in Figusel
we plot the correlations from the DCC-GARCH modiggether with the 5-minute and
30-minute realized correlations. The 1-hour redlizerrelations are not shown in order to
avoid clutter in the figure. Analogously, Figure25grovides a graphical comparison of
covariances but we can see that the plots of thelations make it easier to observe the
bias associated with higher sampling frequenciexsil& figures for the realized bipower

correlations and covariances can be found in theeAgdix (Figure A-1 and Figure A-2).

Figure 5-2:Covariances from the DCC-GARCH models vs. realizedovariances
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The finding that correlations between stock retullesrease when the sampling
frequency increases was first reported by EppsqQL%or this reason the phenomenon is
usually referred to as the “Epps effect” in theetaliterature. Although the effect was
observed as early as at the end of the 1970srtedtto receive greater attention only after
high-frequency financial data became widely avaddaln the context of stock market

realized covariances and correlations, empiricalence for the Epps effect was provided
38



for example by de Pooter, Martens and van Dijk @afr Barndorff-Nielsen et al. (2010).
These researchers analyzed data for stocks traddtedNew York Stock Exchange. It has
to be pointed out that we can find a noteworthyedénce between their results and the
results reported here. While we observe a conditkerarop in covariances and
correlations when increasing the sampling frequeinoyn 30 minutes to 5 minutes, the
above mentioned authors report a substantial deetieacovariancédat such frequencies
as 1 minute or 15 seconds, whereas the bias asbeidth the 5-minute frequency is

relatively small.

De Pooter, Martens and van Dijk (2008) and Barrfediélsen et al. (2010)
attribute the observed bias to non-synchronousngad his is broadly confirmed by Reno
(2003) who investigated the determinants of theskgffect'* More recently Zhang (2011)
provided an analytic characterization of the Epfiecge formally showing that for
positively related assets, non-synchronous tradidgces a negative bias in the realized
covariance and that the magnitude of the bias as&® with the sampling frequency.
Importantly, the theory developed by Zhang (201d)plies that the bias due to
non-synchronization is more pronounced if the tdadssets are less liquid. This provides
an explanation for the differences between ourlt®sand those reported by de Pooter,
Martens and van Dijk (2008) and Barndorff-Nielserale (2010), as the Central European
stock markets are clearly characterized by lowguidiity than the US stock market. It
should be noted that our estimates can be alsotaffdoy microstructure noise but since
the bias due to noise should not be large everthirs-minute frequency, it seems that
non-synchronous trading is of much greater impagan

A natural question that arises is whether the ofeseriases are statistically
significant. To find this out, we perform pairedests, i.e. we test the significance of the
difference between the means of two dependent ssmpbr each of the six index pairs,
the test is performed for the correlations from DE€C-GARCH models versus the
different realized correlations and realized bipowsrrelations, for the realized

3 Barndorff-Nielsen et al. (2010) report the results for both covariances and correlations, the overall
pattern being similar. De Pooter, Martens and van Dijk (2008) focus only on covariances but they also
compute realized variances, which exhibit an upward bias for high frequencies. Therefore, it is quite clear
that the correlations would suffer from a downward bias as well and that its magnitude would be even
larger (in relative terms) than for the covariances.

" In fact, Rend (2003) identifies two factors that can explain the Epps effect, namely non-synchronous
trading and lead-lag relationships. However, it is shown that non-synchronicity plays the main role and
furthermore, the author remarks that non-synchronous trading itself can induce spurious lead-lag relations,
as argued by Chan (1992) and Chan (1993).
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correlations among themselves, for the realize@dvogy correlations among themselves
and finally also for the realized correlations wsrshe corresponding bipower correlations.
The same is done for the covariances. To give ample, we take the BUX-DAX
correlations from the DCC-GARCH model and the BUX>D 5-minute realized
correlations, calculate their difference for eaey @nd then test the null hypothesis that
the mean of the difference is equal to zero agdéimestlternative that it is not equal to zero.

The p-values from the tests are reported in th@eAdix (Table A-1 for the
correlations and Table A-2 for the covariances)er@l, we can say that the differences
among the correlations, as well as among the cavees, are statistically significant.
Testing at the 5% level of significance, for masdax pairs we fail to reject the null only
when we compare either the lower-frequency realaadelations with the corresponding
bipower correlations or the 1-hour covariancesliged or realized bipower) with the

30-minute covariances.

However, it is also necessary to say that the gattest relies on the assumption
that the differences between the two samples amaily distributed, which is violated in
some cases. To assess the possible impact onsthiesr®r correlations, we also try to use
the Fisher-transformed correlations, for which ¢éhes evidence that the normality
assumption is more likely to be satisfied (espéci@hen one of the tested samples is the

1-hour realized correlations). The Fisher transtiaom is given by

1 1+7
Zt=§10g1_r,
t

(64)

wherer; stands for the correlation on dayndz, is the Fisher-transformed correlation. A
disadvantage of this approach is that we canndogerthe tests for all the combinations
of correlations because in some cases (namelyh®rithour and 30-minute bipower
correlations) the estimated correlations occasigrall outside of the [-1,1] interval and
hence the Fisher transformation cannot be applibd.p-values from the paired t-tests for
Fisher transformed correlations can be found inl&as3 in the Appendix. The only
noteworthy difference from the previous resultghat for some index pairs we fail to
reject the null when comparing the correlationsrfrtnhe DCC-GARCH models with the

1-hour realized correlations.

Finally, Figure 5-3 shows the boxplots of the 14HoB80-minute and 5-minute
realized correlations. These pictures enable usgrephically compare the overall
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distributional characteristics of the realized etations. Besides the downward bias
discussed above, we can observe the reductionerdigpersion of correlations as we
increase the sampling frequency. This is simplyseduby the fact that we use more
observations per day. For example, in the cas@eflthour sampling frequency only six
returns per day are available, resulting in a \regh variance of the realized correlations.
In the Appendix we show the boxplots of the realibgpower correlations (Figure A-3).
The overall pattern is similar but in addition, tig A-3 demonstrates the problem of the
lower frequency (especially the 1-hour) bipowerrelations not always falling in the
[-1,1] interval, which was already mentioned abawe connection with the Fisher

transformation.

Taking into consideration all the characteristidstiee realized correlations and
realized bipower correlations, in the following bisés we focus only on the 5-minute and
30-minute correlations (and of course also on theetations from the DCC-GARCH

models).

Figure 5-3: Boxplots of realized correlations
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5.2. Estimation Results for the DCC-GARCH and HAR M  odels

5.2.1. DCC-GARCH Models

In the previous subsection we already discussedesoharacteristics of the
correlations and covariances from the DCC-GARCH e®dn comparison with the
realized measures. Let us now present more detatedts for the DCC-GARCH models.
In Table 5-3 we report the parameter estimatesiralaby the two-step maximization of
the log-likelihood function. All model equationsciade only the first lags (i.e. they are in
the form of (56) and (58)). In addition, Table St%ws the Rof the regressions in which
the correlations from the DCC-GARCH models are usedn explanatory variable for the
5-minute and 30-minute realized correlations andlized bipower correlations. The
purpose of these regressions is to examine whttberorrelations from the DCC-GARCH

models develop in a similar way to the realizedeations/realized bipower correlations.

Table 5-3: DCC-GARCH models

BUX DAX PX WIG
w 7.85E-06 *  6.53E-06 ** 5.31E-06 **  6.04E-06 **
(4.22E-06) (2.89E-06) (2.60E-06) (3.02E-06)
a 0.133  *** 0100  *** 0.173 xxx (0108 **
(0.033) (0.022) (0.044) (0.027)
8 0.835  *** 0.843 xxx (0,812 xxx (867 Kk
(0.042) (0.034) (0.041) (0.029)
BUX-DAX  BUX-PX BUX-WIG  DAX-PX DAX-WIG  PX-WIG
a 0.009 0.050 *  0.030 0.017 0.038 0.017
(0.013) (0.026) (0.020) (0.011) (0.028) (0.011)
b 0.965 *** (.878 *** (0.888 *** 0963 *** (0.844 *** (.943 ***
(0.068) (0.052) (0.053) (0.026) (0.080) (0.032)
RZ
RC 5m 0.003 0.031 <0.001 <0.001 0.002 0.011
RBPC5m  0.002 0.022 <0.001 <0.001 <0.001 0.016
RC 30m 0.003 0.034 0.003 0.003 0.005 0.005
RBPC 30m < 0.001 0.030 0.003 0.001 0.005 0.003

Note: Standard errors of the parameter estimatesraported in parentheses. ***, ** and * denote
significance at the 1%, 5% and 10% level, respedtivSignificance was assessed using z-tests.

The parameters of the univariate GARCH models tak&ies that can be
commonly found in the literature. The parameters, which measure the impact of
innovations, are relatively small, while t8eparameters, which capture the persistence of

volatility, are all higher than 0.8. All alphas abdtas are significantly different from zero
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(at the 1% level). However, our focus is rathertlos second set of parameters, aeand

b, as these describe the dynamics of the correktidhe innovation parameters) (are
considerably lower than the parameters of the univariate models and in mostsctéhe
impact of innovations is not statistically signéditt even at the 10% level. On the other
hand, the persistence parametesy gre mostly higher than thg parameters of the
univariate models and not surprisingly, all of thara significant at the 1% level. Overall,
these results indicate a strong persistence afdhelations. A closer look at the parameter
estimates reveals some differences among the ipdies. To be more specific, while the
BUX-DAX, DAX-PX and PX-WIG correlations are charadzed by a particularly strong
persistence, the correlations for the DAX-WIG, BBX- and BUX-WIG pairs seem to be
somewhat less persistent. Looking at tifevBlues reported in Table 5-3, we can say that
the dynamics of the correlations from the DCC-GAR®@Iddels are quite different from
those of the realized correlations and the reall@pdwer correlations. With only a few
exceptions (the BUX-PX pair and partly the PX-WIidrp, the R are lower than 1%.

5.2.2. HAR Models

Now we proceed to discuss the results for the HARIets. We use two different
frequencies (5 minutes and 30 minutes) and twedifft estimators (realized correlations
and realized bipower correlations), so combinires#) we get four types of HAR models.
Besides the parameter estimates and thefRhe models, we also report the p-values of
several tests performed on the residuals. The testswe use are the following: the
Ljung-Box test for autocorrelation gHno autocorrelation up to a specified lag), thglEn
test for conditional heteroscedasticity, i.e. tlmespnce of ARCH effects (Hno ARCH

effects up to a specified order), and the JarquexBsst for normality (bl normality).

Let us start with the HAR models for the 5-minuéalized correlations (Table
5-4). Concerning thsignificance of the lagged daily, weekly and moyitdrrelations, the
index pairs differ in terms of which of the varieblare significant and how strongly
significant they are. Interestingly, none of theiables is significant for all index pairs.
Recalling the results obtained for the DCC-GARCHdele, one would expect that for the
index pairs with the particularly persistent coatgns, we should find a strong
significance of the monthly and/or the weekly readi correlations. This is confirmed for
the BUX-DAX pair but not in case of the other paksr the DAX-PX pair we find only a

weak significance of the monthly correlations arm tweekly correlations are not
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significant even at the 10% level. In case of tXeWIG pair the monthly and the weekly
correlations just switch their roles. In contragg, find, for example, a strong significance
of the monthly correlations for the DAX-WIG pairhweh represents the group with the

relatively less persistent correlations accordmthe DCC-GARCH models.

The R values reported in Table 5-4 are quite low bus ikinot very surprising
given the relatively high variation in the realizeorrelations. In any case, modeling the
realized correlations by means of their laggedydaileekly and monthly values yields
higher R than regressing them on the correlations fror8€-GARCH models. As for
the tests performed on the residuals, we can sdyhb residuals are well behaved. There
Is no evidence of autocorrelation or ARCH effectd & four cases we do not even reject
(at the 5% level of significance) the hypotheskut tine residuals are normally distributed.
These results justify the use of the OLS methodiaditate that the models provide an

adequate fit to the data.

Table 5-4: HAR models for the 5-minute realized caelations

BUX-DAX  BUX-PX BUX-WIG  DAX-PX DAX-WIG  PX-WIG
c 0.060 *** 0.098 *** 0.096 0.189 0.130 0.168
(0.021) (0.022) (0.023) (0.043) (0.037) (0.033)
8 0.028 -0.014 0.093 0.091 0.094 0.084
(0.045) (0.045) (0.045) (0.045) (0.045) (0.044)
6™ 0.383 *** 0423 *** 0334 0.145 0.156 0.172
(0.094) (0.094) (0.091) (0.095) (0.098) (0.097)
6™ 0.374 *** 0.103 0.194 0.239 0.436 0.079
(0.106) (0.131) (0.114) (0.142) (0.123) (0.153)
R? 0.173 0.064 0.102 0.039 0.094 0.026
LB 10 0.942 0.928 0.271 0.311 0.683 0.971
ARCH5  0.750 0.709 0.714 0.250 0.127 0.871
B 0.191 0.303 0.185 0.005 0.002 0.073

Notes: Standard errors of the parameter estimates reported in parentheses. ***, ** and * denote
significance at the 1%, 5% and 10% level, respettivLB 10 = p-value of the Ljung-Box test for cesil
autocorrelation up to lag 10, ARCH 5 = p-value loé tEngle test for the presence of fifth order ARsEfdcts
in residuals, JB = p-value of the Jarque-Bera festnormality of residuals

Now we move on to the HAR models for the 5-minutmlized bipower
correlations (Table 5-5). Comparing the resultghiose reported in Table 5-4, we can
observe some differences in the significance of eékplanatory variables, especially in
case of the lagged daily correlations. While in &R models for the 5-minute realized

correlations the lagged daily correlations wereisicant (at the 5% or 10% level) for four

44



pairs, in the models for the bipower correlatiomsytare significant just in one case (and
the significance is only weak). A noteworthy consence of the changes in the
significance of regressors is that for one indek (RRX-WIG) none of the explanatory
variables is significant. Nevertheless, those \mes that were significant at the 1% level
in the models for the realized correlations renstiangly significant also when the models
are estimated for the bipower correlations. Noticat there are no newly significant
variables in the models for the bipower correlaiomne. if some variable was not
significant in Table 5-4, it is not significant ifable 5-5 either. The Rvalues of the
models for the realized bipower correlations angelothan those of the models for the
realized correlations. Concerning the differencethe properties of the residuals, there is
some improvement in the satisfaction of the nonyadissumption but for one pair
(DAX-PX) we reject the null hypothesis of no ARCHfeets at the 5% level of

significance.

We have to add that all the HAR models discussefaiswere also estimated for
the Fisher-transformed correlations (see equa®dn).( The results for these models are
reported in the Appendix (Table A-4 and Table A-Gyerall, there are only very minor
differences between the models discussed here laogk tfor the Fisher-transformed

correlations.

Table 5-5: HAR models for the 5-minute realized bipwer correlations

BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG

c 0.060 *** 0.104 *** (0.093 *** (0.224 *** (0.150 *** (0.156 ***
(0.020) (0.024) (0.023) (0.046) (0.041) (0.033)
8 0.052 -0.041 0.024 0.081 *  0.048 0.056
(0.046) (0.045) (0.045) (0.044) (0.044) (0.044)
e™ 0.318 *** 0.426 *** 0.308 *** 0.123 0.112 0.142
(0.095) (0.097) (0.097) (0.097) (0.102) (0.101)
8™ 0.402 *** 0.114 0.268 **  0.152 0.451 *** 0.173
(0.109) (0.134) (0.124) (0.157) (0.138) (0.157)
R? 0.158 0.057 0.073 0.023 0.052 0.020
LB 10 0.555 0.808 0.653 0.910 0.793 0.675
ARCH5  0.612 0.739 0.425 0.013 0.735 0.511
B 0.067 0.136 0.818 0.059 0.050 0.661

Notes: Standard errors of the parameter estimates reported in parentheses. *** ** and * denote
significance at the 1%, 5% and 10% level, respettivLB 10 = p-value of the Ljung-Box test for cesil
autocorrelation up to lag 10, ARCH 5 = p-value loé tEngle test for the presence of fifth order ARsEfdcts
in residuals, JB = p-value of the Jarque-Bera festnormality of residuals
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Let us now devote a few lines to the HAR models tfog 30-minute realized
correlations, focusing mainly on the differencamirthe results reported aboyes shown
in Table 5-6those variables that were significant at the 1%llév the previous models
are still significant but in some cases only wealdif other significant variables become
now insignificant, with the notable exception oétlagged daily BUX-WIG correlations.
Interestingly, some previously insignificant valed gain statistical significance, namely
the lagged daily BUX-DAX correlations and also tagged weekly DAX-PX correlations
(although in the latter case the significance iy aveak). The models for the 30-minute
realized correlations have considerably lowérttian those for the 5-minute correlations,
which we can attribute to the higher variance ef 30-minute correlations. The residuals
do not appear to exhibit autocorrelation or ARCH@ef but in all cases we strongly reject

the hypothesis that they are normally distributed.

It is necessary to say that the non-normality efdeals can have an impact on the
results of the t-tests for regression coefficiehts: the purpose of comparison, Table A-6
in the Appendix summarizes the results for the HABdels estimated for the 30-minute
Fisher-transformed realized correlations. It casdwen that when the Fisher transformation
is applied on the correlations, then for most paiesdo not reject the normality of the
residuals (at the 5% level). We can also notice tire are some slight changes in the

significance of variables compared to the modeliste non-transformed correlations.

Table 5-6:HAR models for the 30-minute realized correlations

BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG

c 0.227 *** 0.232 *** (0264 *** (0.475 *** (0349 *** (397 ***
(0.053) (0.049) (0.054) (0.083) (0.083) (0.073)
8 0.102 **  0.035 0.121 *** 0.017 0.038 0.071
(0.045) (0.045) (0.044) (0.044) (0.044) (0.044)
™ 0.191 ** 0.272 *** 0205 ** 0175 *  0.099 0.077
(0.096) (0.098) (0.093) (0.101) (0.103) (0.096)
8™ 0.252 *  0.140 0.091 -0.095 0.290 *  -0.025
(0.132) (0.136) (0.138) (0.174) (0.165) (0.179)
R? 0.058 0.038 0.047 0.007 0.019 0.009
LB 10 0.223 0.795 0.554 0.292 0.635 0.483
ARCH5 0.974 0.093 0.520 0.234 0.949 0.247
B <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Notes: Standard errors of the parameter estimates reported in parentheses. *** ** and * denote
significance at the 1%, 5% and 10% level, respettivL.B 10 = p-value of the Ljung-Box test for cesil
autocorrelation up to lag 10, ARCH 5 = p-value loétEngle test for the presence of fifth order ARSHfdcts
in residuals, JB = p-value of the Jarque-Bera festnormality of residuals
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The HAR models for the 30-minute realized bipowerrelations (Table 5-7) can
be described as follows: In most cases the expanaariables become less significant or
insignificant (with only one or no significant vakile in the individual regressions), theé R
values further decrease and for all pairs we styorgject the normality of the residuals.
An interesting finding is that we find no signifioc@e of the monthly correlations and that
out of the five variables that were significantreg 1% level in the models for the 5-minute
correlations, only two remain significant. It shdude reminded that we cannot apply the
Fisher transformation on the 30-minute realizecbwigx correlations (due to the fact that
they occasionally exceed the value of 1), so itaspossible to make a comparison with
the models for the transformed correlations.

Table 5-7:HAR models for the 30-minute realized bipower corr&ations

BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG

c 0.316 *** 0.251 *** (0.319 *** (.413 *** (0492 *** (0472 ***
(0.060) (0.053) (0.060) (0.075) (0.105) (0.084)
8 0.050 0.049 0.122 *** 0.021 0.026 0.039
(0.044) (0.045) (0.044) (0.044) (0.043) (0.043)
e™ 0.223 ** 0.176 *  0.098 0.211 ** -0.100 -0.020
(0.098) (0.101) (0.095) (0.101) (0.112) (0.103)
8™ 0.084 0.157 0.051 -0.050 0.260 -0.061
(0.143) (0.148) (0.154) (0.168) (0.203) (0.206)
R? 0.026 0.023 0.025 0.012 0.003 0.001
LB 10 0.205 0.595 0.421 0.678 0.549 0.793
ARCH5 0.636 0.107 0.411 0.435 0.838 0.589
B <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Notes: Standard errors of the parameter estimates reported in parentheses. *** ** and * denote
significance at the 1%, 5% and 10% level, respettivLB 10 = p-value of the Ljung-Box test for cesil
autocorrelation up to lag 10, ARCH 5 = p-value loé tEngle test for the presence of fifth order ARsEfdcts
in residuals, JB = p-value of the Jarque-Bera festnormality of residuals

5.2.3. Comparison of Correlation Dynamics

To conclude the subsection on the estimation rgswi¢ plot the correlations from
the DCC-GARCH models together with the fitted valfi®m the HAR models. Figure 5-4
shows the fitted values from the HAR models for Baminute and 30-minute realized
correlations, while in Figure 5-5 we focus on thed®ls for the realized bipower
correlations. Besides again demonstrating the tissussed in the previous subsection,
these pictures enable us to compare the correlaymamics suggested by the various

models that we estimated. It should be noted tleatould of course directly compare the
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dynamics of the correlations from the DCC-GARCH msdwith those of the realized
correlations and realized bipower correlations gigor example Figure 5-1 and Figure A-
1. However, such comparison is made a bit diffibylthe large variation of the 30-minute
correlations. The HAR models should capture the nmdynamics of the realized
correlations/realized bipower correlations (redakt in almost all cases there was no
evidence of autocorrelation or ARCH effects in tlesiduals) and plotting of the fitted
values allows for an easy visual inspection ofdimeilarities and differences. We thus find

this comparison useful.

Looking at Figure 5-4, one of the most interesfiinglings is that despite the bias
and the differences in the HAR models (significanteariables, B the dynamics of the
5-minute realized correlations are generally vémyilar to those of the 30-minute realized
correlations. As for the dynamics of the 5-minutolver correlations versus the
30-minute ones, sometimes they are characterizeadrbiatively high degree of similarity
(e.g. the BUX-DAX pair) but in some cases there @asiderable differences (e.g. the
DAX-WIG pair). If we look at the dynamics of theatezed correlations in comparison
with the corresponding bipower correlations, wedfiout that the differences are only
minor at the 5-minute frequency, but become soméewl@e pronounced (at least for
some pairs) at the 30-minute frequency. Still, va@ conclude that there is a general

similarity in the dynamics of the 5-minute and 30rate correlations.

In contrast, the DCC-GARCH models often suggegediht correlation dynamics,
which was already indicated by the lovf WRalues reported in Table 5-3. There are some
index pairs and periods of time for which all therelations seem to follow similar time
paths (e.g. the BUX-WIG pair in 2008 and 2009) ibumost cases the contrast is quite
striking (the BUX-DAX pair can serve as a good epéh In spite of this, we are still able
to identify some general tendencies in the devetaygrof correlations during the analyzed
period. We can usually observe an initial drop anrelations, after which the correlations
increased, reflecting the downturn in stock markéfiterwards, there is a decrease in
correlations at the end of 2008/beginning of 20@9,around the time when the markets
reached the bottom. During 2009 the correlatioosemsed again and then another fall can
be observed at the end of 2009/beginning of 204®ically followed by a temporary rise
in correlations and a further decrease later ir020his can be interpreted as an indication
that the markets recovered from the global findrariais and began to be more influenced

by domestic events.
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Figure 5-4:Correlations from the DCC-GARCH models vs. fitted \alues from HAR
models for realized correlations
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Figure 5-5:Correlations from the DCC-GARCH models vs. fitted \alues from HAR
models for realized bipower correlations
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5.3. Forecasting Exercise

5.3.1. Description of the Setting

So far, we have focused on analyzing the dynanficemelations during the whole
period under study, thus estimating the modelslbtha available data (January 2008 to
November 2010). Now we would like to find out whetthe models are able to predict the
future development of correlations. For this pugage have to divide the sample into two
parts, where the first part will contain the inf@ton that we know and the second part
will represent “the future”. Therefore, we divideetanalyzed period into an in-sample
period of 550 days and an out-of-sample periochefremaining 141 days. We presume
that the in-sample period is long enough to allbe markets to absorb the effects of the
crisis. The out-of sample period covers seven men#nd its length relative to the length
of the in-sample period is approximately equal # (Le. the lengths of the out-of-sample
period and of the whole period under study areha tatio of 1:5). All the models
described in the previous subsection are reestinaeg only the data for the in-sample
period and based on the obtained parameter estirtatiemodels produce one-step ahead
forecasts of correlations for the out-of-sampleiqeer In other words, we keep the
estimated parameters fixed and taking the morentealeservations one by ofig each

time we generate the forecast for the next day.

To evaluate the forecasts, we employ the approatiduced by Mincer and
Zarnowitz (1969), who suggest to regress the ratadizs of a given time series on a
constant and the forecasts. Such a regression mmoaly referred to as the
Mincer-Zarnowitz regression and for the one-stegaatforecasts of realized correlations it

takes the form
RCiyy = bg + by E¢(RCpy1) + Upys. (65)
As argued by Mincer and Zarnowitz (1969), if theefmast is unbiased and efficient, the

coefficientsh, andb, are equal to 0 and 1, respectively. Moreoverhigher theR? of the

regression, the better is the predictive powehefforecast.

One question that arises is what we should uséneasi¢pendent variable in the

Mincer-Zarnowitz regressions. In our analysis weidied to employ the 5-minute realized

® The in-sample period ends on April 29, 2010.
' In case of the DCC-GARCH models the observations are first filtered by the same AR(1) model that is used
for the filtration of in-sample returns.
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correlations. First, we regress them on the fotetas the HAR models for the 5-minute
realized correlations, by which we obtain a certamd of benchmark. We will thus refer
to this regression and the forecast used in theessgpn as the benchmark regression and
the benchmark forecast, respectively. It is thesspae to make a comparison by running
similar regressions for the forecasts from the othedels, i.e. using the same response
variable and changing the explanatory variable. el@x, even more interesting is to
include the alternative forecast in the benchmadkassion (thus having two explanatory
variables) and observe how it affects the coefficiestimates, the significance of
explanatory variables and thé & the regression. Such an analysis can help fisdmut
whether the particular alternative forecast corstavraluable information that is not
embodied in the benchmark forecast and whethemtiasion of the alternative forecast

significantly improves the predictive power of tioeecast.

5.3.2. Results

The key results are summarized in the following tsikles (Table 5-8 to Table
5-13). For each index pair the first row showshibachmark regression, then we report the
results for the regressions that additionally idelone alternative forecast and finally we

include all the forecasts in one regression.

Table 5-8:Evaluation of forecasts for the BUX-DAX correlatiors

const RC 5m RBPC5m  RC30m RBPC30m  DCC R
0.054 0.870 *** 0.096
(0.072) (0.227)

0.044 -0.174 1.145 ** 0.124
(0.072) (0.546) (0.546)

0.071 0.904 **x -0.054 0.096
(0.120) (0.301) (0.313)

0.130 0.907 *** -0.176 0.098
(0.142) (0.235) (0.283)

-0.051 0.804 **x 0.211 0.097
(0.277) (0.282) (0.538)

-0.246 -0.636 1.341 **  0.190 -0.298 0.722 0.136
(0.299) (0.691) (0.580) (0.435) (0.401) (0.575)

Note: Standard errors of the parameter estimates sgported in parentheses. ***, ** and * denote
significance at the 1%, 5% and 10% level, respebtiv
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Table 5-9: Evaluation of forecasts for the BUX-PX arrelations

const RC 5m RBPC5m  RC30m RBPC30m DCC R?
-0.013 1.126 *** 0.077
(0.069) (0.331)

-0.016 -0.052 1.133 0.090
(0.069) (0.899) (0.805)

-0.109 0.687 0.440 0.085
(0.109) (0.509) (0.387)

-0.031 1.071 *** 0.074 0.077
(0.105) (0.408) (0.319)

-0.095 0.711 * 0.287 0.092
(0.087) (0.427) (0.188)

-0.151 -1.238 1.479 *  0.951 -0.486 0.164 0.119
(0.121) (1.096) (0.861) (0.607) (0.479) (0.199)

Note: Standard errors of the parameter estimatesraported in parentheses. ***, ** and * denote
significance at the 1%, 5% and 10% level, respebtiv

Table 5-10: Evaluation of forecasts for the BUX-WIGcorrelations

const RC5m RBPC 5m RC30m RBPC30m DCC R’
0.014 0.977 *** 0.096
(0.067) (0.254)

0.010 0.601 0.420 0.100
(0.067) (0.545) (0.539)

-0.090 0.636 0.422 0.105
(0.110) (0.384) (0.358)

-0.228 0.651 ** 0.747 * 0.116
(0.151) (0.312) (0.421)

0.245 1.053 *** -0.413 0.103
(0.227) (0.264) (0.388)

0.018 0.156 0.684 -0.105 0.875 -0.480 0.132
(0.271) (0.632) (0.550) (0.493) (0.584) (0.397)

Note: Standard errors of the parameter estimatesraported in parentheses. ***, ** and * denote
significance at the 1%, 5% and 10% level, respebtiv
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Table 5-11:Evaluation of forecasts for the DAX-PX correlations

const RC 5m RBPC5m  RC30m RBPC30m DCC R?
0.261 0.346 0.004
(0.162) (0.441)

0.296 *  0.794 -0.564 0.008
(0.171) (0.808) (0.852)

0.458 0.481 -0.471 0.008
(0.324) (0.482) (0.671)

0.198 0.276 0.177 0.005
(0.230) (0.477) (0.452)
-0.229 0.088 0.884 ** 0.038
(0.275) (0.451) (0.403)

0.064 0.778 -0.840 -1.333 0.942 0.842 ** 0.057
(0.389) (0.840) (0.945) (0.925) (0.674) (0.406)

Note: Standard errors of the parameter estimatesraported in parentheses. ***, ** and * denote

significance at the 1%, 5% and 10% level, respebtiv

Table 5-12:Evaluation of forecasts for the DAX-WIG correlations

const RC 5m RBPC5m  RC30m RBPC30m  DCC R?
0304 * 0321 0.004
(0.178) (0.411)

0.472 ** 0.803 -0.928 0.018
(0.214) (0.534) (0.661)

0.402 0.500 -0.283 0.006
(0.254) (0.529) (0.526)

0.540 0.351 -0.411 0.006
(0.589) (0.418) (0.978)

0.076 0.271 0.361 0.009
(0.344) (0.417) (0.465)

0.428 0.864 -0.918 -0.159 -0.233 0.365 0.025
(0.703) (0.616) (0.671) (0.541) (1.005) (1.005)

Note: Standard errors of the parameter estimatesraported in parentheses. ***, ** and * denote
significance at the 1%, 5% and 10% level, respedbtiv
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Table 5-13:Evaluation of forecasts for the PX-WIG correlations

const RC 5m RBPC5m  RC30m RBPC30m DCC R?
10279 * 2191 *** 0.078
(0.161) (0.640)

-0.282 *  2.683 ** -0.483 0.080
(0.162) (1.173) (0.965)

-0.252 2.235 *¥* -0.084 0.078
(0.236) (0.702) (0.540)

0.320 1.514 * -0.968 0.092
(0.437) (0.785) (0.657)

-0.983 *** 1394 ** 1.392 ** 0.120
(0.315) (0.699) (0.540)

-0.478 2.761 ** -1.811 -0.141 -0.773 1.408 ** 0.139
(0.696) (1.261) (1.097) (0.544) (0.783) (0.607)

Note: Standard errors of the parameter estimatesraported in parentheses. ***, ** and * denote
significance at the 1%, 5% and 10% level, respebtiv

To provide a comparison and supporting evidencedoifindings, Table A-7 in the
Appendix presents the results for the regressionghich we use only one forecast, i.e. we
simply change the explanatory variable insteacholuiding the alternative forecast in the
benchmark regression. One important thing to rotbat when we use forecasts obtained
from lower-frequency data (30-minute, daily), wenigat generally expect the constant

term in the regression to be close to 0 due tdikae discussed in Section 5.1.

A very interesting finding is that the results diffacross the index pairs. Let us
comment on each of the six cases. Concerning thX-BBAX pair (Table 5-8), the
benchmark forecast performs quite weél} @ndb, are close to 0 and 1, respectively, and
the regressor is strongly significant). However,ewhwe include the forecast from the
model for the 5-minute bipower correlations, theviyeadded variable is significant (with
the coefficient not far from 1), while the benchidorecast becomes insignificant.
Moreover we observe quite a significant increasthnR of the regression. Note that if
the 5-minute bipower correlation forecast is usedtte only explanatory variable (see
Table A-7), the Rremains almost the same abydandb, are even closer to the desired
values that in the benchmark regression. The feBalole 5-8 shows that when we include
other forecasts in the benchmark regression, thay out to be insignificant and the
increase in the Ris very small. Also, the 5-minute bipower corrigatforecast remains

significant even in the regression that includésha! forecasts.
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As for the BUX-PX case (Table 5-9), the resultstfog benchmark regression are
again satisfactory but we observe a slightly dé@fegrpattern when including the alternative
forecasts. With the exception of the 30-minute hipo correlation forecast, which is
clearly inferior, the inclusion of the alternatif@ecasts leads to a situation where either
both explanatory variables are insignificant, oe af the variables is insignificant and the
other one is only weakly significant (at the 10%elk. This indicates that all these
forecasts embody a similar kind of information, etiis also confirmed by similar’R
values reported in Table A-7. Nevertheless, we wgatice that in the regression that
includes the 5-minute bipower correlation forec#, coefficients for the benchmark and
for the alternative forecast are close to 0 andcedpectively. Moreover, when we include
all forecasts in one regression, the 5-minute bgroworrelation forecast is weakly
significant, while all other variables are insigogint. In the light of these findings, it is
quite interesting that out of the regressions with explanatory variables, the regression
with the highest Ris not the one that includes the 5-minute bipow@relation forecast
but the one with the DCC-GARCH forecast (although difference is small).

Turning to the BUX-WIG pair (Table 5-10), the resulfor the benchmark
regression do not differ much from the previous tages, except for the fact that the
coefficient is even closer to 1. Similarly to th&JB-PX case, if the 5-minute bipower
correlation forecast or the 30-minute correlationetast is included in the benchmark
regression, the explanatory variables make eackr atisignificant. In contrast, the
DCC-GARCH forecast does not have any influencehensignificance of the benchmark
forecast and is itself insignificant. The most resting result is the one obtained for the
regression that includes the 30-minute bipowereatation forecast. In this regression both
explanatory variables are significant (at leaghat10% level), which has not occurred in
any of the cases discussed so far. Moreover, theession with the 30-minute bipower
correlation forecast has a highef Ehan those which include the other alternative
BUX-WIG forecasts. However, if all variables arecluded in one regression, none of

them is significant.

Unlike the previous benchmark forecasts, the faebar the DAX-PX pair has
very little predictive power (see Table 5-11). Thelusion of the alternative forecasts does

not lead to any significant improvement, with onetable exception, namely the
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DCC-GARCH forecast! The coefficient for the DCC-GARCH forecast is @ds 1 and

the variable is significant at the 5% level. Yée & is quite low compared to the previous
index pairs. Concerning the DAX-WIG pair (Table B}lwe again obtain poor results for
the benchmark regression but this time none of alernative forecasts significantly

changes the situation.

Turning to the results for the last pair, i.e. PX&\Table 5-13), we can see that
the R of the benchmark regression is comparable to thbssned for the first three index
pairs but the forecast is biased and inefficienheWw we include the alternative forecasts,
two different outcomes can be observed. The fotecéd®m the HAR models are
insignificant and even though in some cases thightsl change the significance of the
benchmark forecast, it has to be pointed out thatcoefficients for these forecasts are
negative. On the other hand, the DCC-GARCH foretasis out to be significant and its
inclusion is associated with relatively large irmse in B. Nevertheless, we must also add
that similarly to the benchmark forecast, the DCAR&H forecast is biased and
inefficient (see Table A-7). When we include allrigllles in one regression, both the
benchmark and the DCC-GARCH forecast remain sicguifi.

Finally, we should say that we also experimenteth whe forecasts for the
Fisher-transformed correlations, using the 5-mirkigher-transformed correlations as the
response variable in the regressions. In the Apgend report six tables (Table A-8 to
Table A-13) analogical to those shown abdVeGenerally, the regressions for the
Fisher-transformed correlations have slightly higRé values but the overall pattern of

results is very similar.

Yitis probably worth mentioning that for the DAX-PX pair there is a noteworthy difference between the
results reported in Table 5-3 and those that we obtain if the model is estimated using only the data for the
in-sample period. In the latter case the a and b parameters are equal to 0.064 and 0.68, respectively.

'® Note that the realized correlation and realized bipower correlation forecasts are obtained from the HAR
models for the Fisher-transformed correlations. The DCC-GARCH forecasts are generated in the same way
as before and we only apply the Fisher transformation on the forecasts.
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6. Conclusion

In this thesis we studied the interdependenciesngntbe stock markets of the
Czech Republic, Poland, Hungary and Germany in ghaod 2008-2010. We first
described the theories underlying our calculatemd provided an overview of the Central
European stock markets. Afterwards we devoted & sih@apter to some data issues and
finally we presented our empirical findings. We ttdhute to the research on the Central
European stock markets by analyzing their interddpecies with the use of
high-frequency data. We studied the main charatiesi and dynamics of realized
correlations and compared the results to thosendgyethe DCC-GARCH models. There
are several factors that make our analysis paatilyuinteresting, namely (i) the use of
both the realized correlations and the realizedwey correlations (ii) the computation of
realized measures for different sampling frequesyaed (iii) the fact that the period under

study includes the recent financial crisis.

When comparing the main characteristics of the etations, we observed the
so-called Epps effect, i.e. the decrease in cdioela for higher sampling frequencies,
which is attributable to non-synchronous tradingetestingly, we found a considerably
larger downward bias for the 5-minute frequencyttiee researchers who investigated the
US stock market. This illustrates the role that keadiquidity can play in affecting the
correlation results. Another distinct feature oé trealized correlations, as well as the
realized bipower correlations, is the decreaseanawce for higher sampling frequencies.
Overall, these findings show the difficulty of satiag the appropriate sampling frequency
and point to the importance of developing suchnesiors that would be able to handle
non-synchronous trading. In this respect, we cantioe for example the recent works of
Zhang (2011) and Barndorff-Nielsen et al. (2010)n€erning the differences among the
examined index pairs, it is probably worth repagtimat all methods used in our analysis
indicated that the strongest dependence is theébetveeen the stock markets of Germany

and Poland.

The parameter estimates of the DCC-GARCH modelsliéhpquite strong
persistence of the correlations. This was onlylpaxdnfirmed by the results for the HAR
models, since for some pairs we found no or onlgknggnificance of the lagged weekly

and monthly realized correlations. Compared to riedels for the 5-minute realized
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correlations, the use of the bipower correlatiomsl/ar of the 30-minute frequency
generally resulted in weaker significance of regoes. Nevertheless, it should be also
added that we found no evidence of autocorrelaiioARCH effects (with one exception)
in the residuals of the HAR models. Importantlye thsual inspection of the fitted values
revealed a relatively high degree of similaritythie correlation dynamics suggested by the
different kinds of HAR models (sometimes with theception of the model for the
30-minute bipower correlations). This correlatiomttprn often contrasted with the
dynamics suggested by the DCC-GARCH models buhemtole, it was possible to find
some common tendencies in the development of ediwak, apparently reflecting the
responses of the markets to the global financiaiscr

Finally, several interesting findings emerged frima forecasting exercise, taking
the 5-minute realized correlations as a benchmiHnk. results differed across the index
pairs. First, for three pairs the benchmark fore@aild be considered unbiased and
efficient. Second, in most cases (regardless oftivenethe benchmark forecast was
unbiased and efficient or not), the predictive powkthe forecast could be significantly
improved by including either the bipower correlatimrecast (5-minute or 30-minute) or
the DCC-GARCH forecast. Concerning the DCC-GARCHedast, the result is
particularly interesting. Recall that the DCC-GAR@tbdel was estimated for daily data
(i.e. only one observation per day), so it is telibit surprising that the forecast from the
model contained valuable information that was net gmbodied in the benchmark
forecast. In any case, our findings indicate thla¢mvmaking a forecast, it may be useful to
consider different models.

Our results have important implications for risk mragement, for example the
calculation of beta or value at risk of a portfolithis could be an interesting extension of

our analysis and a possible topic for further regea
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Appendix

Figure A-1: Correlations from the DCC-GARCH modelsvs. realized bipower
correlations
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Figure A-2: Covariances from the DCC-GARCH models vs. realizetlipower
covariances
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Table A-1: P-values from paired t-tests for correlations
BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG
DCCvs. RC 1h <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
DCC vs. RC30m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
DCCvs. RC5m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
DCCvs. RBPC 1h <0.001 <0.001 <0.001 <0.001 0.001 <0.001
DCC vs. RBPC 30m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
DCCvs. RBPC5m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RC 1hvs. RC30m <0.001 <0.001 <0.001 <0.001 0.021 <0.001
RC1hvs. RC5m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RC 30m vs. RC5m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RBPC 1h vs. RBPC 30m 0.034 <0.001 <0.001 <0.001 0.005 <0.001
RBPC 1h vs. RBPC 5m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RBPC 30m vs. RBPC 5m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RC 1h vs. RBPC1lh 0.051 0.297 0.810 0.567 0.161 0.196
RC 30m vs. RBPC 30m 0.188 0.076 0.027 0.008 0.283 0.948
RC5m vs. RBPC5m <0.001 0.007 <0.001 <0.001 <0.001 0.268
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Table A-2: P-values from paired t-tests for covariances

BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG

DCC vs. RCOV 1h 0.021 <0.001 <0.001 0.004 0.010 <0.001
DCC vs. RCOV 30m 0.014 <0.001 <0.001 0.006 0.320 <0.001
DCCvs. RCOV 5m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
DCC vs. RBPCOV 1h 0.009 <0.001 <0.001 0.001 0.002 <0.001
DCC vs. RBPCOV 30m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
DCC vs. RBPCOV 5m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RCOV 1h vs. RCOV 30m 0.848 0.564 0.765 0.921 0.085 0.565
RCOV 1h vs. RCOV 5m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RCOV 30m vs. RCOV 5m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

RBPCOV 1h vs. RBPCOV 30m 0.115 0.062 0.168 0.079 0.563 0.741
RBPCOV 1h vs. RBPCOV 5m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RBPCOV 30m vs. RBPCOV5m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

RCOV 1h vs. RBPCOV 1h 0.039 0.565 0.009 0.041 0.015 0.006
RCOV 30m vs. RBPCOV 30m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RCOV 5m vs. RBPCOV 5m <0.001 0.077 <0.001 <0.001 <0.001 <0.001

Table A-3: P-values from paired t-tests for Fisher-transformedcorrelations

BUX-DAX BUX-PX BUX-WIG DAX-PX DAX-WIG PX-WIG

DCCvs. RC 1h 0.020 0.014 0.447 0.933 0.151 <0.001
DCCvs. RC 30m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
DCCvs. RC5m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
DCC vs. RBPC 5m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RC 1h vs. RC 30m <0.001 <0.001 <0.001 <0.001 <0.0010 <0.001
RC 1hvs. RC5m <0.001 <0.001 <0.001 <0.001 <0.0010 <0.001
RC 30mvs. RC5m <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RC5m vs. RBPC5m <0.001 0.002 <0.001 0.009 <0.001 0.785
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Figure A-3: Boxplots of realized bipower correlations
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Table A-4: HAR models for the 5-minute Fisher-transformed reailzed correlations

BUX-DAX  BUX-PX BUX-WIG  DAX-PX DAX-WIG  PX-WIG
c 0.064 *** 0.101 *** 0.100 *** 0.202 *** 0.140 *** 0.179
(0.022) (0.023) (0.024) (0.046) (0.040) (0.035)
8 0.026 -0.012 0.089 ** 0.093 ** 0.098 0.082
(0.045) (0.045) (0.045) (0.044) (0.045) (0.044)
™ 0.379 *** 0.417 *** (0323 *** 0,122 0.153 0.170
(0.095) (0.094) (0.091) (0.095) (0.098) (0.098)
8™ 0.380 *** 0.110 0212 * 0260 *  0.441 *** 0.071
(0.107) (0.131) (0.115) (0.143) (0.122) (0.154)
R? 0.172 0.064 0.100 0.037 0.098 0.025
LB 10 0.926 0.935 0.218 0.259 0.653 0.956
ARCH5 0.672 0.786 0.721 0.359 0.270 0.823
B 0.011 0.284 <0.001 0.595 0.002 0.004

Notes: Standard errors of the parameter estimates reported in parentheses. *** ** and * denote
significance at the 1%, 5% and 10% level, respettivLB 10 = p-value of the Ljung-Box test for cesil
autocorrelation up to lag 10, ARCH 5 = p-value loé tEngle test for the presence of fifth order ARsEfdcts
in residuals, JB = p-value of the Jarque-Bera festnormality of residuals
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Table A-5: HAR models for the 5-minute Fisher-transformed reailzed bipower

correlations

BUX-DAX  BUX-PX BUX-WIG  DAX-PX DAX-WIG  PX-WIG
c 0.063 *** 0.110 0.098 *** 0248 *** 0166 *** 0.168 ***
(0.021) (0.025) (0.024) (0.051) (0.045) (0.036)
8 0.050 -0.035 0.027 0.075 *  0.058 0.049
(0.046) (0.045) (0.045) (0.044) (0.044) (0.044)
6™ 0.306 *** 0.428 0.299 *** 0.119 0.108 0.132
(0.095) (0.097) (0.097) (0.097) (0.101) (0.102)
6™ 0.416 *** 0.106 0.277 **  0.146 0.440 *** 0.177
(0.109) (0.133) (0.124) (0.159) (0.138) (0.160)
R? 0.156 0.058 0.073 0.020 0.052 0.018
LB 10 0.473 0.792 0.653 0.886 0.851 0.685
ARCH5  0.793 0.626 0.600 0.024 0.580 0.608
B 0.043 0.864 0.003 0.142 0.049 <0.001

Notes: Standard errors of the parameter estimates reported in parentheses. *** ** and * denote
significance at the 1%, 5% and 10% level, respettivLB 10 = p-value of the Ljung-Box test for cesil
autocorrelation up to lag 10, ARCH 5 = p-value loé tEngle test for the presence of fifth order ARsEdcts
in residuals, JB = p-value of the Jarque-Bera festnormality of residuals

Table A-6: HAR models for the 30-minute Fisher-transformed reéized correlations

BUX-DAX  BUX-PX BUX-WIG  DAX-PX DAX-WIG  PX-WIG
c 0.263 *** 0.267 0.304 *** (0569 *** 0409 *** 0460 ***
(0.066) (0.058) (0.064) (0.102) (0.100) (0.088)
8 0.088 **  0.035 0.115 *** 0.022 0.014 0.061
(0.045) (0.045) (0.044) (0.044) (0.044) (0.044)
™ 0.184 *  0.265 0.209 **  0.142 0.145 0.073
(0.097) (0.098) (0.093) (0.100) (0.103) (0.097)
8™ 0.294 **  0.161 0.117 -0.049 0.318 **  0.017
(0.133) (0.136) (0.135) (0.176) (0.156) (0.178)
R? 0.058 0.039 0.049 0.006 0.025 0.007
LB 10 0.180 0.894 0.211 0.332 0.699 0.515
ARCH5 0.118 0.242 0.597 0.487 0.914 0.238
B 0.961 0.152 0.021 0.055 0.124 0.909

Notes: Standard errors of the parameter estimates reported in parentheses. *** ** and * denote
significance at the 1%, 5% and 10% level, respettivLB 10 = p-value of the Ljung-Box test for cesil
autocorrelation up to lag 10, ARCH 5 = p-value loé tEngle test for the presence of fifth order ARsEfdcts
in residuals, JB = p-value of the Jarque-Bera festnormality of residuals
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Table A-7: Mincer-Zarnowitz regressions for individual forecads

BUX-DAX
RC 5m RBPC5m  RC30m RBPC30m  DCC

b, 0.054 0.036 0.046 0279 *  -0.338
(0.072) (0.067) (0.123) (0.143) (0.264)

b, 0.870 *** 0.986 *** 0.562 ** 0.098 1.120 **
(0.227) (0.223) (0.243) (0.287) (0.444)

R? 0.096 0.123 0.037 <0.001 0.044

BUX-PX
RC 5m RBPC5m  RC30m RBPC30m  DCC

b, -0.013 -0.018 -0.136 -0.006 -0.065
(0.069) (0.065) (0.107) (0.107) (0.086)

b, 1.126 *** 1.090 *** 0.836 *** 0.558 **  0.486 ***
(0.331) (0.295) (0.252) (0.265) (0.146)

R? 0.077 0.090 0.073 0.031 0.074

BUX-WIG
RC 5m RBPC5m  RC30m RBPC30m  DCC

b, 0.014 0.038 -0.127 0286 *  0.263
(0.067) (0.062) (0.108) (0.151) (0.239)

b, 0.977 *** 0.946 *** 0.867 *** 1264 *** 0.005
(0.254) (0.252) (0.238) (0.345) (0.393)

R 0.096 0.092 0.087 0.088 <0.001

DAX-PX
RC 5m RBPC5m  RC30m RBPC30m  DCC

b, 0.261 0.340 **  0.494 0.249 -0.210
(0.162) (0.165) (0.322) (0.211) (0.257)

b, 0.346 0.136 -0.202 0.274 0.904 **
(0.441) (0.466) (0.615) (0.418) (0.388)

R 0.004 <0.001 <0.001 0.003 0.038

DAX-WIG
RC 5m RBPC5m  RC30m RBPC30m  DCC

b, 0.304 *  0.561 0.426 *  0.608 0.161
(0.178) (0.206) (0.253) (0.583) (0.318)

b, 0.321 -0.290 0.029 -0.273 0.408
(0.411) (0.509) (0.410) (0.963) (0.458)

R 0.004 0.002 <0.001 <0.001 0.006

PX-WIG
RC 5m RBPC5m  RC30m RBPC30m  DCC

b, 0279 *  -0.069 -0.003 1.029 *** -0.941 ***
(0.161) (0.134) (0.230) (0.239) (0.318)

b, 2.191 *** 1365 ** 0.611 1,710 ***  1.868 ***
(0.640) (0.536) (0.510) (0.239) (0.489)

R? 0.078 0.045 0.010 0.068 0.095

Note: Standard errors of the parameter estimatesraported in parentheses. ***, ** and * denote
significance at the 1%, 5% and 10% level, respebtiv
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Table A-8: Evaluation of forecasts for the BUX-DAX Fisher-transformed correlations

const RC5m RBPC 5m RC 30m DCC R’
0.054 0.882 *** 0.100
(0.077) (0.224)

0.044 -0.161 1.136 ** 0.126
(0.076) (0.565) (0.566)

0.073 0.928 *** -0.057 0.100
(0.120) (0.319) (0.277)

0.006 0.844 *** 0.088 0.100
(0.230) (0.285) (0.401)

-0.181 -0.522 1.363 ** -0.050 0.445 0.132
(0.253) (0.722) (0.610) (0.276) (0.429)

Comparison with the regression for non-transformed correlations excluding RBPC 30m

const RC5m RBPC 5m RC 30m DCC R?
-0.267 -0.543 1.354 **  -0.035 0.644 0.132
(0.297) (0.679) (0.579) (0.312) (0.564)

Note: Standard errors of the parameter estimatesraported in parentheses. ***, ** and * denote
significance at the 1%, 5% and 10% level, respebtiv

Table A-9: Evaluation of forecasts for the BUX-PX Fisher-trangormed correlations

const RC5m RBPC 5m RC 30m DCC R’
-0.016 1.136 *** 0.079
(0.071) (0.329)

-0.016 -0.082 1.146 0.093
(0.071) (0.900) (0.788)

-0.109 0.644 0.398 0.091
(0.099) (0.492) (0.297)

-0.056 0.720 0.191 0.093
(0.076) (0.435) (0.131)

-0.151 -1.122 1.294 0.443 0.153 0.119
(0.101) (1.046) (0.798) (0.302) (0.132)

Comparison with the regression for non-transformed correlations excluding RBPC 30m

const RC5m RBPC 5m RC 30m DCC R?
-0.184 -0.956 1.236 0.487 0.216 0.112
(0.116) (1.060) (0.827) (0.400) (0.192)

Note: Standard errors of the parameter estimatesraported in parentheses. ***, ** and * denote
significance at the 1%, 5% and 10% level, respebtiv
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Table A-10:Evaluation of forecasts for the BUX-WIG Fisher-transformed
correlations

const RC5m RBPC 5m RC 30m DCC R’
0.009 0.997 *** 0.099
(0.071) (0.256)

0.007 0.623 0.405 0.102
(0.071) (0.575) (0.557)

-0.083 0.596 0.369 0.108
(0.103) (0.418) (0.304)

0.213 1.090 *** -0.325 0.108
(0.186) (0.267) (0.274)

0.150 0.251 0.523 0.337 -0.362 0.122
(0.207) (0.650) (0.567) (0.305) (0.280)

Comparison with the regression for non-transformed correlations excluding RBPC 30m

const RC5m RBPC5m RC30m DCC R?
0.157 0.211 0.585 0.402 -0.442 0.118
(0.256) (0.634) (0.549) (0.361) (0.398)

Note: Standard errors of the parameter estimat@sraported in parentheses. ***, ** and * denote
significance at the 1%, 5% and 10% level, respebtiv

Table A-11:Evaluation of forecasts for the DAX-PX Fisher-trangormed correlations

const RC5m RBPC5m  RC30m DCC R?
0.259 0.412 0.006
(0.181) (0.456)

0.301 0.808 -0.520 0.008
(0.195) (0.819) (0.892)

0.633 *  0.686 -0.751 0.017
(0.346) (0.504) (0.595)

-0.132 0.096 0.648 ** 0.046
(0.241) (0.467) (0.269)

0.259 0.401 -0.026 -0.800 0.661 ** 0.059
(0.374) (0.824) (0.917) (0.613) (0.270)

Comparison with the regression for non-transformed correlations excluding RBPC 30m

const RC5m RBPC5m RC30m DCC R?
-0.018 0.474 -0.320 -0.462 0.886 ** 0.043
(0.386) (0.814) (0.872) (0.686) (0.406)

Note: Standard errors of the parameter estimatesraported in parentheses.***, ** and * denote
significance at the 1%, 5% and 10% level, respebtiv
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Table A-12:Evaluation of forecasts for the DAX-WIG Fisher-transformed
correlations

const RC5m RBPC 5m RC 30m DCC R’
0.317 0.356 0.005
(0.194) (0.407)

0.472 ** 0.778 -0.804 0.016
(0.230) (0.530) (0.649)

0.350 0.462 -0.105 0.006
(0.222) (0.533) (0.339)

0.132 0.307 0.244 0.010
(0.301) (0.412) (0.303)

0.310 0.838 -0.805 -0.110 0.260 0.022
(0.335) (0.625) (0.653) (0.341) (0.305)

Comparison with the regression for non-transformed correlations excluding RBPC 30m

const RC5m RBPC5m RC30m DCC R?
0.294 0.860 -0.918 -0.183 0.378 0.024
(0.402) (0.614) (0.669) (0.529) (0.465)

Note: Standard errors of the parameter estimatesraported in parentheses.***, ** and * denote
significance at the 1%, 5% and 10% level, respebtiv

Table A-13:Evaluation of forecasts for the PX-WIG Fisher-trandormed correlations

const RC5m RBPC5m  RC30m DCC R’
-0.331 * 2347 *¥x 0.080
(0.177) (0.675)

-0.328 * 2,652 ** -0.315 0.081
(0.178) (1.149) (0.960)

-0.361 2.294 *xx 0.082 0.080
(0.283) (0.779) (0.595)

-0.789 *** 10552 ** 0.860 ** 0.122
(0.250) (0.731) (0.336)

-0.833 ** 25862 ** -1.459 -0.128 1.060 *** 0.135
(0.326) (1.236) (1.028) (0.590) (0.364)

Comparison with the regression for non-transformed correlations excluding RBPC 30m

const RC5m RBPC5m RC30m DCC R?
-1.060 *** 2771 ** -1.406 -0.151 1.623 *** 0.132
(0.371) (1.261) (1.017) (0.544) (0.566)

Note: Standard errors of the parameter estimatesraported in parentheses. ***, ** and * denote
significance at the 1%, 5% and 10% level, respebtiv
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